
MIT Open Access Articles

Sampling-based motion planning with
deterministic mu-calculus specifications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Karaman, S., and E. Frazzoli. “Sampling-based motion planning with deterministic
μ-calculus specifications.” Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on. 2009.
2222-2229. ©2010 Institute of Electrical and Electronics Engineers.

As Published: http://dx.doi.org/10.1109/CDC.2009.5400278

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/59434

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59434

Sampling-based Motion Planning
with Deterministic μ-Calculus Specifications

Sertac Karaman Emilio Frazzoli

Abstract— In this paper, we propose algorithms for the on-
line computation of control programs for dynamical systems
that provably satisfy a class of temporal logic specifications.
Such specifications have recently been proposed in the lit-
erature as a powerful tool to synthesize provably correct
control programs, for example for embedded systems and
robotic applications. The proposed algorithms, generalizing
state-of-the-art algorithms for point-to-point motion planning,
incrementally build finite transition systems representing a
discrete subset of dynamically feasible trajectories. At each
iteration, local μ-calculus model-checking methods are used
to establish whether the current transition system satisfies
the specifications. Efficient sampling strategies are presented,
ensuring the probabilistic completeness of the algorithms. We
demonstrate the effectiveness of the proposed approach on
simulation examples.

I. INTRODUCTION

The automatic generation of control programs that prov-

ably satisfy complex specifications on the system’s behavior

is a problem of great current interest, e.g., for the design

and certification of high-confidence embedded and robotic

systems, e.g., in automotive, aerospace, security, and medical

applications. Various flavors of temporal logics, including,

e.g., Linear Temporal Logic (LTL) [1], [2] and Metric

Temporal Logic (MTL) [3], [4], have been shown to be not

only powerful languages to express complex specifications,

but also amenable to formal methods for control design.

A common approach to control design with temporal

logic specifications is based on the construction of feed-

back controllers leading to an abstraction of the underlying

physical system into a finite transition system (e.g., Kripke

structures). For example, in [2], a partition of the state space

is constructed, and control laws are designed that ensure

direct transitions between neighboring cells in the partition.

Model checking [5] is then performed on a negation of

the specifications for such discrete transition system, thus

synthesizing as a counter-example a control law governing

transitions, ultimately satisfying the given specification.

The ability of these methods to synthesize a control

program satisfying the specification depend heavily on the

construction of the abstracted finite transition system. In

other words, abstraction-based methods are, in general, not

complete, since the choice of the abstraction constrains the

achievable system’s behaviors, and the synthesis procedure

may not yield a control law satisfying the specifications

even though one exists. Completeness may be achieved

limiting the class of dynamical systems and/or specifications

The authors are with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA.

to highly-structured cases (e.g., ω−regular properties can be

checked for rectangular hybrid automata, which constitutes

a maximal class of such systems [6], [7]). In addition, such

methods rely on off-line computations to construct the finite

transition system abstraction, and are not directly applicable,

e.g., to dynamically changing environments.

In this paper, we propose a different approach, building on

two main ideas. First, instead of relying on a fixed abstraction

of the underlying dynamical system, we incrementally con-

struct a finite transition system representing a discrete sample

of the dynamically feasible trajectories for the system. This

is done through a sampling procedure inspired by state-

of-the-art methods originally designed to solve point-to-

point motion planning problems in robotics [8]. Second, we

propose incremental model checking methods, establishing

in an efficient way whether the transition system at the

current iteration is rich enough to satisfy the specification.

In doing so, we concentrate on deterministic μ-calculus, a

temporal logic that is known to (i) admit efficient model-

checking algorithms, and (ii) be strictly more expressive

than other linear time temporal logics used in the literature,

including LTL.

The paper is structured as follows: In Section II, we

formally introduce the syntax and semantics of the deter-

ministic fragment of μ-calculus and provide the problem

formulation. Section III contains the main contributions of

the paper. More specifically, in III-A we present an efficient,

probabilistically-complete incremental sampling-based algo-

rithm to compute a control program for a dynamical system

satisfying μ-calculus specifications. In III-B, we propose an

incremental model checking algorithm, which complements

the sampling-based algorithm. In Section IV, we discuss the

effectiveness of the proposed algorithms through numerical

experiments.

II. BACKGROUND AND PROBLEM FORMULATION

Consider a discrete-time, time-invariant dynamical control

system, described by the equations

z(i+ 1) = f(z(i), u(i)), (1)

where z : N→ R
n is the state trajectory, u : N→ [−1, 1]m,

is the control law, and f : R
n × [−1, 1]m → R

n is

Lipschitz. Let Π be a set, the elements of which are called

the atomic propositions, usually denoted by p1, p2, . . . , and

let L : R
n → 2Π be a state-labeling function, which maps

each state to the set of atomic propositions it satisfies.

Given an initial condition z(0), it is desired to design

a control law u such that the (infinite) state trajectory

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

WeC04.3

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 2222

z satisfies a given temporal logic specification Φ. In the

following, we will provide some details of our choice of

specification language, i.e., μ-calculus, and its semantics in

terms of the system (1). In particular, we will define what we

mean by saying that a control law u correctly implements a

specification Φ on system (1).

A. Finite models of dynamical control systems

A common model used in computer science to check

temporal properties of systems, such as reachability, safety,

fairness, or liveness, is a class of finite transition systems

called Kripke structures, which we formalize as follows.

Definition II.1 (Kripke Structure) A Kripke structure K,
defined on a set Π of atomic propositions, is a tuple K =
(S,S0,R,L), where S is a finite set of states, S0 ⊆ S is a
set of initial states, R ⊆ S × S, where for all s ∈ S there
exists s′ ∈ S such that (s, s′) ∈ R, is the transition relation,
L : S → 2Π is the labeling function.

Even though the dynamical control system model (1),

endowed with a state-labeling function, is richer than a

Kripke structure, a subset of its possible behaviors can be

modeled as Kripke structures. More precisely,

Definition II.2 (Finite models of dynamical systems)
A Kripke structure K = (S, {s0},R,L∗) models the
dynamical control system (1), with initial condition z(0),
if (i) S ⊆ R

n ∪ {��}; (ii) s0 = z(0) ∈ S; (iii) (s, s′) ∈ R
only if s′ = �� , or if s ∈ R

n and there exists v ∈ R
m,

‖v‖∞ ≤ 1, such that s′ = f(s, v); (iv) L(s) = L(s) for all
s ∈ R

n, and L(��) = ∅.
In other words, all transitions in the Kripke structure K can

be mapped to trajectories for the system (1). (The converse

is clearly not true.) The symbol �� represents a sink state,

satisfying no atomic propositions, which allows to express

finite-time trajectories using the Kripke structure formalism.

Given a model of the system as a Kripke structure, the

model-checking question is to find those states/paths that

satisfy a (temporal) logic formula on the set of atomic propo-

sitions, or prove that no such state/path exists. The logic

formula is generally referred to as the specification, since

the logic, in this case, constitutes a language to represent the

specification, which itself encodes a desirable behavior of

the system. Note that in our case, in which Kripke structures

are finite models of dynamical control systems, if a state in a

Kripke structure modeling the system satisfies a specification,

so does the original system. On the other hand, if the state

does not satisfy the specification, it may be the case that the

particular Kripke structure is not a rich enough model of the

system; a refinement of the Kripke structure may be required

to prove that the specification can indeed be satisfied.

B. Temporal logics and the μ-calculus

Several specification logics have been proposed in the

literature, including Computation Tree Logic (CTL), Linear

Temporal Logic (LTL), and their superset CTL∗. For this

work, we concentrate on a form of temporal logic called de-

terministic μ-calculus. The reasons for our choice are that (i)

μ-calculus admits very efficient model-checking algorithms,

and (ii) it is very expressive, the full μ-calculus being a strict

superset of other temporal logics such as those mentioned

above. In fact, the deterministic μ-calculus is known to be

able to express all ω-regular properties [9] (i.e., properties

that can be stated on a Büchi automaton, see [10]). In the

following, we briefly discuss a fragment of μ-calculus, which

is particularly appropriate for robotics applications.

Let Var be a set of variables.We will commonly use

the letters x and y to indicate variables. The syntax of the

deterministic μ-calculus is defined as follows.

Definition II.3 (Deterministic μ-calculus) Let Π and Var
be two disjoint sets. The syntax of the deterministic μ-
calculus is given in BNF form as follows:

φ := p | ¬p |x | p ∧ φ | ¬p ∧ φ |φ ∨ φ |♦φ |μx.φ | νx.φ
where p ∈ Π and x ∈ Var.

Following [11], the set of all deterministic μ-calculus formu-

lae will be denoted by L1. The ♦ operator will be referred to

as the existential successor operator, whereas the operators

μx. and νx. will be called, respectively, the least and greatest

fixed-point operators. The size of a μ-calculus formula Φ,

denoted by |Φ|, is defined as the total number of atomic

propositions, variables, and operators in Φ.

The semantics of μ-calculus formulae is commonly de-

fined on Kripke structures. Let K = (S, {s0},R,L) be a

Kripke structure defined of a set of atomic propositions Π.

Given a formula φ ∈ L1, the subset of S for which φ holds

will be denoted as �φ�K; a state s ∈ �φ�K will be referred to

as a φ-state. Moreover, let KQ
x , where Q ⊆ S and x ∈ Var,

be the Kripke structure KQ
x = (S, {s0},R,L′)—defined on

an augmented set of atomic propositions, namely Π∪{x}—
such that

L′(s) =

{
L(s) ∪ {x} for all s ∈ Q
L(s) for all s /∈ Q.

Definition II.4 (Semantics of the deterministic μ-calculus)
Given a formula φ ∈ L1, the set �φ�K is recursively defined
as follows1:

• �p�K = {s ∈ S |x ∈ L(s)}, for all p ∈ Π,
• �¬p�K = {s ∈ S |x ∈ L(s)} for all p ∈ Π,
• �φ ∧ ψ�K = �φ�K ∩ �ψ�K,
• �φ ∨ ψ�K = �φ�K ∪ �ψ�K,
• �♦φ�K = {s ∈ S | there exists s′ ∈
S such that (s, s′) ∈ R and s′ ∈ �φ�K},

• �μx.φ�K is the least set Q such that Q = �φ�KQ
x

,
i.e., �μx.φ�K is such that �μx.φ�K = �φ�K�μx.φ�K

x
and

∀Q′ ⊆ S.
[
Q′ = �φ�KQ′

x
⇒ �μx.φ�K ⊆ Q′

]
.

1By convention, unary operators have precedence over binary operators.

WeC04.3

2223

• �νx.φ�K = is the greatest set Q such that Q = �φ�KQ
x

,
i.e., �νx.φ�K is such that �νx.φ�K = �φ�K�νx.φ�K

x
and

∀Q′ ⊆ S.
[
Q′ = �φ�KQ′

x
⇒ Q′ ⊆ �νx.φ�K

]
.

One of the main advantages of the μ-calculus is that its

model-checking procedure is very simple and intuitive. Note

that in the absence of the fixed-point and the existential

successor operators the formulae can be evaluated at a given

state, i.e., even without the knowledge of R. Formulae with

finite nesting of the existential successor operator can also

be handled fairly easily by searching for a successor state

that satisfies the subformula with the existential successor

operator. The fixed-point operators, however, appear rather

troublesome. Interestingly, they can also be model-checked

easily. The following theorem suggest a natural global

model-checking procedure for fixed-point formulae.

Theorem II.5 (Tarski-Knaster Theorem (see e.g., [12]))
Let K be a Kripke structure and φ be an L1 formula.
Moreover, let Qi be defined recursively as follows:
• Q0 = ∅,
• Qi = �φ�KQi−1

x
.

Then, (i) Qi ⊆ Qi−1, for all i ∈ N, (ii) there exists a number
n ∈ N such that Qn = Qn−1, and (iii) Qn = �μx.φ�K.
Furthermore, if Qi = S in the above definition, then we have
that (i) Qi−1 ⊆ Qi, for all i ∈ N, (ii) there exists a number
m ∈ N such that Qm = Qm−1, and (iii) Qm = �νx.φ�K.

This interpretation of the Tarski-Knaster fixed-point theorem

follows from the fact that, for any μ-calculus formula φ,

and any Kripke structure K, the function f(Q) := �φ�KQ
x

,

which maps 2S to itself, is a monotonic function, i.e., for

any P,Q ⊆ S, P ⊆ Q implies that f(P) ⊆ f(Q) (for the

proofs and related discussion see, for example, [12]).

Deterministic μ-calculus is the fragment of modal μ-

calculus, in which no branching property can be expressed.

Rather than a limitation, this is desirable feature for motion

planning problems, since the motion plan in the end is

itself a “trajectory” respecting the linear flow of the time.

Hence, by employing the deterministic μ-calculus we rule

out all the branching-time specifications and focus only on

those specifications for which a linear time trajectory can be

generated. In terms of its expressive power, the determin-

istic μ-calculus is strictly more expressive than the Linear

Temporal Logic [6], [9]. More precisely, L1 is known to be

equally expressive as the set of all ω−regular properties. That

is, any temporal property that can be expressed using, for

instance, Büchi automata [10], can be expressed in L1 (see

for example [9] or [6] for constructive proofs). Hence, L1 is

indeed the most expressive regular language that can be used

for the specification of linear time properties, which makes

it the most expressive temporal logic for motion planning

applications.

Despite its raw expressive power, the μ-calculus is not

well accepted for direct use in practical applications due to its

unnatural semantics. That is, unlike, for instance the temporal

logics, long μ-calculus specifications are found to be quite

hard to understand by inspection, and expressing temporal

properties using μ-calculus, even though possible, is hard for

humans. However, there are algorithms which convert a given

temporal logic specification, e.g., in LTL, into a μ-calculus

specification automatically (see for instance [9], [13]). To

further introduce the μ-calculus, we present a few example

formulae, which will be revisited in the next section after

introducing sampling-based algorithms.

Examples

a) Reachability Specifications: Consider the μ-calculus

formula Φ = μx.(p ∨ ♦x). In words, Φ is satisfied by the

smallest set of states, which, if labeled with x, would satisfy

p∨♦x. Notice that such set is the set Q of all states, which

either satisfy p or can reach a state that satisfies p. One way

to see this is to carry out the iteration in the Tarski-Knaster

theorem: Q1 is the set of states that satisfy p, Q2 is the set

of states that either satisfy p (that are in Q1) or that have

an outgoing edge to a state that satisfies p, Q3 is the set of

states that are either in Q2 or have a transition to a state in

Q2, etc. This iteration converges to the set of all states, from

which there is a trajectory leading to a state that satisfies p.

Another, perhaps more intuitive look at Φ is the following.

First, note that such set of states is indeed a fixed point,

i.e., if Q is labeled with x, then the set of states that satisfy

p∨♦x would be Q itself. That is, all the states in Q satisfy

p ∨ ♦x and no other state outside Q satisfy p ∨ ♦x. The

former statement is true, since each state in Q either satisfy

p or has a transition to a state that satisfies x. The latter one

is also correct, since if there is any state s′ that is not in Q
but it satisfies p ∨ ♦x, then it either has to satisfy p or it

has to have a transition to a state which is labeled with x.

In any case, s′ would have a path that reaches Q and thus

reaches a state that satisfy p. Hence, Φ essentially defines

a reachability property, ensuring the reachability to a state

that satisfies p.

b) Safety Specifications: Next, consider Φ = νx.(q ∧
♦x). In words, this formula is satisfied by the largest set Q
of states that both satisfy q and has a transition to a state

with the same property. Hence, for any state in Q, there must

be cycle of states, all of which satisfy q.

c) Safely Reaching a Region: The standard motion

planning objective is, for instance, to avoid obstacles and

reach a goal state. Let us label the goal states with p and

the obstacles with q. Then, the specification Φ = μx.(¬q ∧
(p ∨ ♦x)) is the smallest set of states for which there exists

a trajectory reaching state that satisfies p (a goal state) and

along the way never goes through a state that satisfies q (an

obstacle).

d) Reaching a Safe Region: Another example is the one

in which the specification is to eventually reach a point where

a property p can be retained forever. Essentially, this can be

done easily by merging the first two examples together as in

Φ = μx.((νy.(p ∧ ♦y)) ∨ ♦x).
e) Ordering Specifications: A common specification

is, for instance, to ensure some property p until another

WeC04.3

2224

property q is attained. In this case, a corresponding μ-

calculus specification is μx.(p∨ (q∧♦x)), which intuitively

states that either q is satisfied or there is a next state which

satisfies p and the property p ∨ (q ∧ ♦x).
f) Liveness Specifications: Consider a final example,

where it is desired to satisfy a property p infinitely often. That

is, at all points along the path, p is satisfied in the future. One

way to specify such a behavior is to use νy.μx.♦((p∧y)∨x),
which intuitively states that in the next states either the

property p is satisfied, or there is a path to a state which

satisfies p (stated via the disjunction and the μx. operators).

Moreover, this statement is true at all times (stated via the

conjunction and the νy. operators).

C. Problem Formulation

At this point, we can relate discrete-time dynamical sys-

tems to μ-calculus specifications as follows.

Definition II.6 A dynamical control system of the form (1),
endowed with a state-labeling function L, is said to satisfy a
μ-calculus specification Φ at some initial state x0 if and only
if there exists a Kripke structure K∗ = (S∗, {s0},R∗,L∗)
modeling the system, and such that s0 ∈ �Φ�K∗ .

Hence, by definition, a discrete-time dynamical system sat-

isfies a given μ-calculus specification if one can construct a

Kripke structure K∗ from a finite subset of its state space,

such that K∗ respects the state transitions of the dynamical

system described by Equation (1) and x0 satisfies Φ in K.

Given the above definition, the motion planning problem

with μ-calculus specifications can be stated as follows:

Problem II.7 Given a discrete-time dynamical control sys-
tem (1), and an L1 formula Φ, determine whether or not the
dynamical system satisfies Φ. If yes, return a control law u
implementing the specification. If not, return failure.

It is worth mentioning at this point that even though this

problem definition is not directly related to motion planning,

we will show in the next sections that satisfaction of a μ-

calculus specification can be related to a “path”, which in

turn can be used as the motion plan with desired properties.

III. PLANNING ALGORITHMS

In principle, Problem II.7 could be addressed using the

following iterative procedure: (i) Choose a finite set of states

(including the initial condition) from R
m, e.g., by random

sampling; (ii) Construct a Kripke structure modeling the

system (1) from this set of states and the sink state ��,

i.e., by determining which state pairs are in R, and defining

the appropriate labeling function, as in Def. II.6; (iii) Check

whether this model satisfies the specification Φ, using, e.g.,

the Tarski-Knaster iteration [12]. If not, repeat the procedure

adding more states into the Kripke structure.

The soundness of the procedure above is a consequence

of the following technical lemma, which will be proved in

the appendix.

Lemma III.1 Let K = (S, {s0},R,L) and K′ =
(S ′, {s0},R′,L′) be two Kripke structures such that (i)
S ⊆ S ′, (ii)R ⊆ R′, (iii) for all s ∈ S, L(s)∩Π = L′(s)∩Π.
Then, for any L1 formula Φ, �Φ�K ⊆ �Φ�K′ .

Intuitively, the lemma states that any Kripke structure K′
that can be constructed from K by adding extra states and

transitions satisfies the same set of L1 formulae as K at all

the states that are common to both structures. Even though

this seems intuitive, this property can easily be shown not to

be true for, for instance, the full μ-calculus.

In order to make the iterative procedure effective, it is

necessary to ensure that samples are chosen in such a way

that the resulting Kripke structure models a rich set of

trajectories of the dynamical system. Moreover, it is desirable

that the complexity of checking whether a Kripke structure

satisfies a specification at each iteration only depend on the

number of states added at that iteration, not on the total

number of states in the finite model. We will address these

two points next.

A. Sampling-based Kripke Structures

Sampling-based algorithms have been recently proposed

as a very efficient approach to robotic motion planning.

Such algorithms, e.g., Probabilistic RoadMaps (PRM) [14],

and Rapidly-exploring Random Trees (RRT) [15] effectively

build a finite transition system modeling a dynamical system,

and check whether such finite transition contains a trajectory

from the initial state to a desired goal state. In PRMs, states

are chosen randomly, independently and identically from a

given distribution; moreover, PRMs are typically undirected

graphs, and are not directly applicable to general dynamical

systems. On the other hand, RRTs are constructed as directed

trees, and new states/transitions are added in a way that effi-

ciently probes the set of all feasible trajectories of a general

dynamical system. Unfortunately, since RRTs are directed

trees—and thus unable to express cyclic trajectories—they

cannot serve as finite models of trajectories satisfying general

ω-regular properties.

In order to combine efficient exploration with the ability

to satisfy general ω-regular properties, we propose an exten-

sion of the RRT algorithm, to which we refer as Rapidly-

exploring Random Graph (RRG). Before giving the full

algorithm, let us introduce some necessary components.

Distance function: Let Dist : R
n × R

n → R≥0 be a

continuous function, with Dist(u, v) = 0 iff v = f(u, 0).
Sample generation: Let Sample : N→ R

n be a function

that generates independent, identically distributed samples

from a distribution S supported on R
n (or a subset containing

all states that can possibly satisfy the specification).

Local steering: Let Steer : R
n × R

n → [−1, 1]m

be a function that computes a control input moving the

initial state “closer” to a desired state. More precisely,

if v = Steer(s1, s2), with Dist(s1, s2) > 0, then

Dist(f(s1, v), s2) < Dist(s1, s2). The function Steer− is

similarly defined, backwards in time. In other words, let

f− : R
n × [−1, 1]m → R

n be such that, if s′ = f(s, v),

WeC04.3

2225

then s = f−(s′, v). Then, if v = Steer−(s2, s1), with

Dist(s1, s2) > 0, then Dist(f−(s2, v), s2) < Dist(s1, s2).
Finally, we assume that the local steering functions provide

exact one-step steering when feasible. In other words, if s2
is reachable in one step from s1, then f(s1,Steer(s1, s2)) =
s2, and s1 = f−(s2,Steer−(s2, s1)).

The main body of the RRG algorithm is given in Alg.

1. We incrementally build a Kripke structure modeling the

system (1), initializing it to a trivial structure containing only

the initial condition. At each step, we first check whether

the current Kripke structure satisfies the specification Φ
(an efficient algorithm to perform this computation will be

given in the next section). If not, a sample is chosen, based

on which new states/transitions are added to the Kripke

structure, until the specification is satisfied. Note that the

algorithm may not terminate, unless a trajectory of (1) exists

that satisfies Φ, and can be expressed by the Kripke structure

at some iteration.

Algorithm 1: RRG(Φ, z(0))
s0 ← z(0), S ← {s0, ��}, R ← {(s0, ��)}, i← 0;1

while s0 /∈ �Φ�K do2

K ← (S, {s0},R,L);3

q ← Sample(i), i← i+ 1;4

(S+,R+)← Expand(K, q);5

(S−,R−)← Expand−(K, q);6

S ← S ∪ S+ ∪ S−;7

R ← R∪R+ ∪R−;8

Return K;9

New states/transitions are added to the Kripke structure

using the Expand procedure outlined in Alg. 2. Essentially,

for each sample q, we find the nearest neighbor s∗ already in

the Kripke structure, and attempt to reach q from this state.

Then we repeat the same procedure, considering only states

in the Kripke structure, and in the intersection of half-spaces

containing q but not previously-considered nearest neighbors,

until there are no more such states. A similar function,

Expand−, can be defined working backwards in time (i.e.,

using the Steer−function); in addition, in Expand− we do

not create any transitions to states that are not reachable from

the initial state.

Algorithm 2: Expand(K = (S, s0,R,L), q)
C ← R

n, S ′ ← ∅, R′ ← ∅;1

while S ∩ C �= ∅ do2

s∗ = arg mins∈S∩C Dist(s, q);3

s′ ← Steer(s∗, q);4

S ′ ← S ′ ∪ {s′}, R′ ← R′ ∪ {(s∗, s′), (s′, ��)};5

Remove from C a halfspace H(s∗, q) containing6

s∗ but not q, i.e., C ← C \H(S∗, q);
Return the sets S ′ and R′;7

The RRG algorithm yields a Kripke structure that contains

an RRT-like tree, with the addition of edges generating

q

s0
s∗

s∗previous

(s∗)−

C

Fig. 1. Illustration of the RRG algorithm. Blue and red circles represent
new states in S+ and S−, respectively.

cycles. The algorithm inherits the probabilistic completeness

of RRTs, i.e., if there exists a Kripke structure K∗ as

given in Definition II.6, under mild technical conditions, the

algorithm finds it with high probability as the number of

samples increases. More formally,

Theorem III.2 Consider a time-invariant, discrete-time dy-
namical system (1), satisfying a L1 specification Φ. As-
sume that (i) there exists a Kripke structure K∗ =
(S∗, {s0},R∗,L∗), which models an overconstrained ver-
sion of (1), in which the control must lie in [−η, η]m,
η ∈ (0, 1), (ii) z(0) ∈ �Φ�K∗ , (iii) there exists ε > 0
such that for all s ∈ S, and z ∈ R

n : ‖z − s‖ ≤ ε,
L(s) = L(z). Then the RRG algorithm terminates with
an output K = (S, {s0},R,L), such that z(0) ∈ �Φ�K,
with probability approaching one, as the number of samples
increases.

Proof: (Sketch) It is a well-known fact that (infinite)

trajectories satisfying ω-regular properties (such as L1 spec-

ifications) can be decomposed into a finite-length prefix

and a (possibly trivial) finite-length loop that is repeated

infinitely often [12]. Hence, a finite number of (ordered)

states are sufficient to completely characterize a solution.

Let us call this set of states S̄. Based on the assumptions

on the theorem, and the continuity of the function f in

the dynamical system, one can define a finite sequence

(respectively, loop) of neighborhoods around the states in S̄
such that all points in a neighborhood can reach in one step

all points in the next neighborhood (modulo the loop length

if appropriate). Reasoning by induction, one can show that

(i) there is a finite probability that at the i-th iteration, the

sample q will be generated in the neighborhood of the first

state in S̄ after the initial condition z(0), thus adding a state

in that state’s neighborhood; (ii) assuming that the Kripke

structure at the i-th iteration already includes transitions up

to the neighborhood of the k-th state in the solution, there

is a finite probability that the sample q will be generated in

the neighborhood of the (k + 1)-th state, thus adding a new

state there. Hence, as the number of samples goes to infinity,

the probability that the set of states in the incrementally-

WeC04.3

2226

built Kripke structure K does not contain all the states in K̄
vanishes.

The above theorem does not state bounds on, e.g., the

rate at which the probability of success converges to one.

However, we refer interested readers to the literature on

RRTs and incremental sampling methods (e.g., [15]) for

some additional insights on the matter.

B. Incremental Model Checking

In this section, we first present a simple local model

checking procedure for deterministic μ-calculus. Then, we

extend this algorithm to an incremental model checker, where

new states or transitions can be added to the Kripke structure

without necessarily running the whole model checking pro-

cedure all over. This type of model checking procedure well

suits the sampling based algorithm presented in the previous

section.

A local model checking procedure for the deterministic

fragment of the μ-calculus is presented in Algorithm 3,

which checks whether or not the initial state of a given

Kripke structure K satisfies a given L1 formula Φ. The al-

gorithm also assumes a global data structure, called Stack,

which is essentially a set that stores state and L1 formula

pairs, i.e., Stack ⊆ S × L1. Moreover, the algorithm uses

the function BndFormula(x) which maps the set Var of

variables to the subformula of the form σx.φ, i.e., the

subformula that x is bound by in Φ.

Lemma III.3 The Algorithm ModelCheck(s0,Φ) returns
True if and only if s0 ∈ �Φ�K holds.

Algorithm 3 is very similar to the local model checking al-

gorithm that appears in [12] and has many common grounds

with the global algorithm provided in [11]. The proof of

Lemma III.3 is very similar to the correctness proofs of the

procedures given in those references, hence this proof will

not be carried out here. Even though we do not provide full

proofs here for the sake of brevity, Lemma III.3 can be used

to prove the correctness of the incremental model checking

algorithm, which will be outlined shortly.

Given an L1 formula φ, let SF(φ) be the set of all

subformulae of φ. For incremental model checking purposes,

we maintain a graph G = (V,E), where V ⊆ S × SF(φ) is

called the set of nodes and E ⊆ V × V is the set of edges.

Given two nodes, v = (s, ψ) and v′ = (s, ψ′) in V , there

exists an edge (v, v′) in E, if one of the following holds:

• ψ = p ∧ ψ′ and p ∈ L(s),
• ψ = ¬p ∧ ψ′ and p /∈ L(s),
• ψ = ψ′ ∨ ψ′′ (for some ψ′′),
• ψ = μx.ψ′ or ψ = νx.ψ′,
• ψ = x where x ∈ Var and ψ′ = μx.ψ′′ or ψ′ = νx.ψ′′

for some ψ′′.

Let v′ = (s′, ψ), then there exists an edge (v, v′) in E if the

following holds:

• ψ = ♦ψ′ and (s, s′) ∈ R.

Algorithm 3: ModelCheck(K,Φ, s, φ)
switch φ do1

case p where p ∈ Π2

return p ∈ L(s)3

case ¬p where p ∈ Π4

return p /∈ L(s)5

case p ∧ ϕ6

return p ∧ ModelCheck(s, ϕ)7

case ¬p ∧ ϕ8

return ¬p ∧ ModelCheck(s, ϕ)9

case ϕ ∨ ψ10

return11

ModelCheck(s, ϕ) ∨ ModelCheck(s, ψ)
case ♦ϕ12

for ∀s′ ∈ suc(s) do13

if ModelCheck(s′, ϕ) then14

return True15

return False16

case σx.ϕ where σ ∈ {μ, ν}17

Stack := Stack ∪ {(s, ϕ)}18

V alue := ModelCheck(s, ϕ)19

Stack := Stack \ {(s, ϕ)}20

return V alue21

case x where x ∈ V ar22

if (s, BndFormula(x)) ∈ Stack then23

switch BndFormula(x) do24

case μx.ϕ25

return False26

case νx.ϕ27

return True28

else29

return ModelCheck(s, BndFormula(x))30

Notice that these conditions resemble the branching con-

ditions in Algorithm 3. Intuitively, there is an edge be-

tween two nodes (s, ψ) and (s′, ψ′) in G = (V,E), if

ModelCheck(K,Φ, s, ψ) calls ModelCheck(K,Φ, s′, ψ′).
The incremental model checking algorithm also maintains

a reachability relation Reaches ⊂ V × V , where (v, v′) ∈
Reaches and v = (s, ψ), implies that ψ is a ν−formula, i.e.,

ψ is of the form ψ = νx.ψ′, and that there is a path from v
to v′ in E.

Given a Kripke structure K, adding a state s in to K is

done by updating S as S ∪{s} and adding (s, ψ) into V , for

all (s, ψ′). Moreover, edges (v, v′), where v = (s, ψ) and

v′ = (s, ψ′), are added into E according to the definition

outlined above. Let v = (s, ψ) and v′ = (s′, ψ′) be two

nodes in V . When a transition (s, s′) is added into R, we

add (v, v′) into E if ψ = ♦ψ′. After adding each edge (v, v′)
to E, the reachability relation Reach is updated with (v̄, v′),
if there exists a node v̄ = (s̄, ψ̄) in V such that ψ̄ is a

ν−formula and there is a path on G = (V,E), which does

not cross a node (s′′, ψ′′), where ψ′′ is a μ−formula bigger

WeC04.3

2227

than ψ̄.

A given L1 specification is satisfied if and only if there

exists two nodes v = (s, ψ) and v′ = (s, ψ′) in V such

that ψ′ = x with x ∈ Var and ψ = νx.ϕ for some ϕ and

that (i) there is a path from v to v′ in G = (V,E), (ii)

this path does not cross any node v′′ = (s′′, ψ′′), where ψ′′

is a μ−formula that is larger than ψ, and (iii) this path is

reachable from the node (s0, φ), where s0 is the initial state

and φ is the specification.

Precisely speaking, one has to incrementally maintain the

relation Reach as well the set of those nodes in V that can

be reached from (s0, φ). Let us note that maintenance of the

reachability relation of a graph is a problem of particular

interest in incremental computation (see, for instance, [16]).

Although in the case of adding and deleting edges its

incremental time complexity is known to be unbounded, if

the case where only adding edges is considered it is one of

the easiest problems in incremental computation (see [16]

for further discussion and proofs).

IV. SIMULATION RESULTS

In this section, we provide an illustrative example. We

consider a linear discrete time dynamical system with z(i+
1) = Az(i) +Bu(i), where

A =
[

1.019 −0.029
0.049 0.95

]
, B =

[
0.101 −0.0015
0.0025 0.098

]
.

The initial condition is z0 = [0, 0].
The specification requires the system to visit two distinct

subsets R1 and R2 of the state-space infinitely often while

avoiding a large region R3. Let p1, p2, and p3 be the atomic

propositions, which are satisfied by only those states that are

in regions R1, R2, and R3, respectively. More precisely, the

dynamical system is labeled such that pi ∈ L(s) if s ∈ Ri

for all i = 1, 2, 3. This specification can be given in the

deterministic μ−calculus as

μw.((¬p3 ∧ ♦w) ∨ νz.{(p2 ∧ μx.[¬p3 ∧ ((p1 ∧ z) ∨ ♦x)])
∨(p1 ∧ μy.[¬p3 ∧ ((p2 ∧ z) ∨ ♦y)])})

The algorithm described in this paper takes about 3.5

seconds to solve this example sampling slightly more than

1000 states and exploring close to 6000 nodes. The solution

trajectory as well as the parts of the state-space that were

explored are shown in Figure 2. The graph produced by the

RRG algorithm is depicted in Figure 3, while searching for

this solution.

In Figure 4, an example run on a system with linear

dynamics z(i + 1) = Az(i) + Bu(i), where A and B are

identity matrices, is considered. The layout of the regions in

the state-space is the same as the previous example. The

algorithm took less than 0.1 seconds to find the answer

exploring about 350 nodes.

We have also run some limited experiments on similar

problems in higher-dimensional spaces (up to 12), obtaining

computation time of the order of a few seconds. Further

investigation of the performance of the algorithm in high-

dimensional spaces will be the objective of future work.

�6 �4 �2 0 2 4 6 8
�6

�4

�2

0

2

4

6

8

Fig. 2. The part of the state space explored and the trajectory that satisfies
the specification. Regions R1 and R2 are shown in red in the upper right and
lower left corners. Region R3 is the red rectangular region in the middle.

�6 �4 �2 0 2 4 6 8
�6

�4

�2

0

2

4

6

8
100 samples

(a)

�6 �4 �2 0 2 4 6 8
�6

�4

�2

0

2

4

6

8
250 samples

(b)

�6 �4 �2 0 2 4 6 8
�6

�4

�2

0

2

4

6

8
500 samples

(c)

�6 �4 �2 0 2 4 6 8
�6

�4

�2

0

2

4

6

8
750 samples

(d)

Fig. 3. Demonstration of the RRG algorithm on the example.

V. CONCLUSIONS

In this paper, we propose an incremental, sampling-based

methodology for the generation of motion plans for dy-

namical systems that provably satisfy temporal logic spec-

ifications. In particular, we concentrate on specifications

expressed in the deterministic μ-calculus, which is a superset

of other well-known linear temporal logic formulas which

have been extensively used, e.g., for robotics applications.

Our approach is based on two steps: (i) a sampling-based

generation of finite transition systems modeling a subset

of the possible system trajectories, and (ii) an incremental

model-checking algorithm that can establish whether the

current model of the system is rich enough to express

WeC04.3

2228

�10 �8 �6 �4 �2 0 2 4 6 8 10
�10

�8

�6

�4

�2

0

2

4

6

8

10

Fig. 4. Simulation with simple dynamics.

behaviors satisfying the specification. Numerical experiments

suggest that the proposed approach is fast enough for on-line

implementation in robotics and embedded systems, even in

high-dimensional problems. Future work will include exten-

sions to address feedback control policies, reactive planning,

efficient sampling methods, and trajectory optimization.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Amit Bhatia for sev-

eral inspiring discussions about motion planning algorithms

and their possible extensions to handle complex specifi-

cations. This research was done with support from the

Michigan/AFRL Collaborative Center on Control Sciences,

AFOSR grant no. FA 8650-07-2-3744. Any opinions, find-

ings, and conclusions or recommendations expressed in this

publication are those of the authors and do not necessarily

reflect the views of the supporting organizations.

REFERENCES

[1] P. Tabuada and G.J. Pappas. Linear temporal logic control of discrete-
time linear systems. IEEE Trans. Automatic Control, 14(1):61–70,
2006.

[2] M. Kloetzer and C. Belta. A fully automated framework for control
of linear systems from temporal logic specifications. IEEE Trans.
Automatic Control, 53(1):287–297, 2008.

[3] S. Karaman and E. Frazzoli. Vehicle routing problem with metric
temporal logic specifications. In IEEE Conference on Decision and
Control, 2008.

[4] R. Koymans. Specifying real-time properties with metric temporal
logic. Real-time Systems, 2(4):255–299, 1990.

[5] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking.
Springer, 1999.

[6] T.A. Henzinger, R. Majumdar, and J. Raskin. A classification of
symbolic transition systems. ACM Transactions on Computational
Logic, 6(1):1–32, 2005.

[7] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What is decidable
about hybrid automata? Journal of Computer and System Sciences,
57:94–124, 1998.

[8] E. Frazzoli, M.A. Dahleh, and E. Feron. Real-time motion planning
for agile autonomous vehicles. Journal of Guidance, Control and
Dynamics, 25(1):116–129, 2002.

[9] E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model checking for
the mu-calculus and its fragments. Theoretical Computer Science,
258:491–522, 2001.

[10] W. Thomas. Handbook of Theoretical Computer Science, chapter
Automata on Infinite Objects. Elsevier Science, 1990.

[11] E. Emerson, C. Jutla, and A. Sistla. On model-checking for the
fragments of mu-calculus. In CAV 93: Computer-aided Verification,
1993.

[12] K. Schneider. Verification of Reactive Systems. Springer, 2004.
[13] M. Dam. CTL* and ECTL* as fragments of the modal mu-calculus.

Theoretical Computer Science, 126:77–96, 1994.
[14] L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Proba-

bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[15] S. LaValle and J.J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378–400, 2001.

[16] G. Ramalingam. Bounded Incremental Computation. Number 1089
in Lecture Notes in Computer Science. Springer, 1996.

APPENDIX

Proof: [Lemma III.1] The proof is an induction on the

size of the formula Φ. For |Φ| = 1, we have that Φ must

be of the form Φ = p, where p ∈ Π. In this case, for all

s ∈ S, we have s ∈ �p�K ⇔ p ∈ L(s), which is itself then

equivalent to p ∈ L′(s) (by Condition (iii.a) of the lemma),

which in turn is equivalent to s ∈ �Φ�K′ by the semantics.

Assume that the hypothesis holds for all L1 formulae of

size n − 1. For the induction step, let us consider all the

different possible cases. Let Φ be of the form ¬φ, which

can only happen if Φ = ¬p, where p ∈ Π, following the

syntax of L1. This case is very similar to the base case, i.e.,

s ∈ �¬p�K ⇔ p /∈ L(s) ⇔ p /∈ L′(s) ⇔ s ∈ �¬p�K′
for all s ∈ S. Let Φ be of the form Φ = φ ∨ ψ, then,

by the induction hypothesis, there holds �φ�K ⊆ �φ�K′ and

�ψ�K ⊆ �ψ�K′ , using which we conclude �φ ∨ ψ�K =
�φ�K ∪ �ψ�K′ ⊆ �φ�K′ ∪ �ψ�K′ = �φ ∨ ψ�K′ . For the case

when Φ = φ ∧ ψ, the same fact can be used to deduce

�φ ∧ ψ�K = �φ�K ∩ �ψ�K′ ⊆ �φ�K′ ∩ �ψ�K′ = �φ ∧ ψ�K′ .
Consider the case Φ = ♦φ. Then, for all s ∈ S, we have that

s ∈ �♦φ�K is equivalent to ∃s̃ ∈ S such that (s, s̃) ∈ R and

s̃ ∈ �ψ�K. Note that since s̃ ∈ S and (s, s̃) ∈ R, we have

that s̃ ∈ S ′ and (s, s̃) ∈ R′, by Conditions (i) and (ii) of the

lemma. Hence, the last statement implies that there exists

s̃ ∈ S ′ such that (s, s̃) ∈ R′. Moreover, by the induction

hypothesis, we have s′ ∈ �φ�K implies that s̃ ∈ �φ�K′ . These

statements together are equivalent to s ∈ �φ�K′ , which finally

establishes �φ�K ⊆ �φ�K′ . Consider the case, in which φ is

of the form Φ = μx.φ. To prove this case we show that

the sets Q0 := ∅, Qi := �φ�KQi−1
x

as well as Q′0 := ∅,
Q′i := �φ�

K′Q
′
i−1

x

satisfy Qi ⊆ Q′i for all i. Noting that,

by the Tarski-Knaster Theorem, Qi and Q′i converge to

�μx.φ�K and �μx.φ�K′ , respectively, this result will imply

that �μx.φ�K ⊆ �μx.φ�K′ . Hence, it remains to show that

Qi ⊆ Q′i for all i. To show this property let us consider an

inner induction on the number i. For the base case, i = 0,

the statement holds trivially. In the induction step, noting

that Qi−1 ⊂ Q′i−1 holds by the induction hypothesis, we

have that KQi
x and K′Q′i−1

x satisfy all the conditions of the

lemma. Hence, we have Qi = �φ�KQi
x
⊂ �φ�K′Q

′
i

x

= Q′i,
where the set inclusion is by the induction hypothesis of the

outer induction since φ is of size n − 1. The case when

Φ = νx.φ is very similar to the previous case, hence we

omit that part of the proof here for the sake of brevity.

WeC04.3

2229

