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Abstract— We present a general method for proving upper
bounds on the eigenvalues of the graph Laplacian. In particular, we
show that for any positive integer k, the kth smallest eigenvalue of
the Laplacian on a bounded-degree planar graph is O(k/n). This
bound is asymptotically tight for every k, as it is easily seen to
be achieved for planar grids. We also extend this spectral result
to graphs with bounded genus, graphs which forbid fixed minors,
and other natural families. Previously, such spectral upper bounds
were only known for k = 2, i.e. for the Fiedler value of these
graphs. In addition, our result yields a new, combinatorial proof of
the celebrated result of Korevaar in differential geometry.

1. INTRODUCTION

In combinatorial optimization, spectral methods are a
class of techniques that use the eigenvectors of matrices as-
sociated with the underlying graphs. These matrices include
the adjacency matrix, the Laplacian, and the random-walk
matrix of a graph. One of the earliest applications of spectral
methods is to graph partitioning, pioneered by Hall [23] and
Donath and Hoffman [15], [16] in the early 1970s. Donath
and Hoffman proposed using eigenvectors of the adjacency
matrix. The use of the graph Laplacian for partitioning
was introduced by Fiedler [18], [19], [20], who showed
a connection between the second-smallest eigenvalue of
the Laplacian of a graph and its connectivity. Since their
inception, spectral methods have been used for solving a
wide range of optimization problems, from graph coloring
[7], [4] to image segmentation [35], [41] to web search [27],
[10].

Analysis of the Fiedler value. In parallel with the practical
development of spectral methods, progress on the mathe-
matical front has has made connections between various
graph properties and corresponding graph spectra. In 1970,
independent from the work of Hall and of Donath and
Hoffman, Cheeger [13] proved that the isoperimetric number
of a continuous manifold can be bounded from above by
the square root of the smallest eigenvalue of its Laplacian.
Cheeger’s inequality was then extended to graphs by Alon
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[2], Alon and Milman [3], and Sinclair and Jerrum [36].
They showed that if the Fiedler value of a graph — the
second smallest eigenvalue of the Laplacian of the graph —
is small, then partitioning the graph according to the values
of the vertices in the associated eigenvector will produce a
cut where the ratio of cut edges to the number of vertices
in the cut is similarly small.

To explain the practical success of spectral partitioning al-
gorithms in scientific computing and VLSI design, Spielman
and Teng [38] proved a spectral theorem for planar graphs,
which asserts that the Fiedler value of every bounded-
degree planar graph with n vertices is O(1/n). They also
showed that the Fiedler value of a finite-element mesh in d
dimensions with n vertices is O(n−2/d). Kelner [25] then
proved that the Fiedler value of a bounded-degree graph
with n vertices and genus g is O((g + 1)/n). The proofs
in [38], [25] critically use the inherent geometric structure
of the planar graphs, meshes, and graphs with bounded
genus. Recently, Biswal, Lee, and Rao [8] developed a new
combinatorial approach for studying the Fiedler value; they
resolved most of the open problems in [38]. In particular,
they proved that the Fiedler value of a bounded-degree
graph of n vertices without a Kh minor is O((h6 log h)/n).
These spectral theorems together with Cheeger’s inequality
on the Fiedler value immediately imply that one can use
the spectral method to produce a partition as good as the
best known partitioning methods for planar graphs [32],
geometric graphs [33], graph with bounded genus [21], and
graphs free of small complete minors [5].

Higher eigenvalues and our contribution. Although pre-
vious theoretical work most focuses on k = 2 (the Fiedler
value of a graph), higher eigenvalues and eigenvectors are
used in many practical algorithms [6], [11], [12], [41]. For
example, Alpert and Yao [6] report that in the context of
VLSI applications, the use of more eigenvectors produces
better partitions; Spielman and Teng [37] showed that the
embedding of a planar graph with the eigenvectors associ-
ated with the second and the third smallest eigenvalues of the
graph Laplacian usually gives a nearly planar drawing; and
Tolliver [40] shows experimentally that higher eigenvectors
provide better multiway image segmentations.

In this paper, we prove the following theorem on higher
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graph spectra, which concludes a long line of work on upper
bounds for the eigenvalues of graphs.

Theorem 1.1 (Graph spectra). Let G be a constant-degree
n-vertex graph either with a constant genus, or with a
constant-sized forbidden minor. Then the kth smallest eigen-
value of the Laplacian on G is O(k/n).

Our spectral theorem provides a theoretical justification of
the experimental observation that when k is small, the kth

eigenvalues of the graphs arising in scientific computing,
image processing, and VLSI design are usually small as
well. We hope our result will lead to new progress in the
analysis of practical spectral methods, and the design of new
spectral algorithms.

For special graphs such as line graphs, grid graphs and
complete binary trees, the higher spectra are known. The
question of higher eigenvalues has also been resolved in the
2-dimensional Riemannian setting. Korevaar [28] answered
the question of Yau by extending results of Hersch [24] and
Yang and Yau [42] which provide a tight upper bound on the
smallest eigenvalue of the Laplace operator of a Riemannian
manifold: He proved that the kth smallest eigenvalue of the
Laplace operator of a genus g surface M is O

(
k(g+1)
vol(M)

)
.

However, the spectra of graphs may be more subtle than
the spectra of surfaces For graphs with large diameter, the
analysis of graph spectra resembles the analysis for surfaces.
For example, Chung [14] gave an upper bound of O(1/D2)
on the the Fiedler value, where D is the diameter of the
graph. Grigor’yan and Yau [22] extended Korevaar’s analysis
to bounded genus graphs that have strong volume measure
— these graphs have diameter Ω(

√
n).

Bounded-degree planar graphs (and bounded genus
graphs), however, may have diameter as small as O(log n),
making it impossible to directly apply these diameter-based
spectral analyses. For planar graphs and graphs of genus g,
Spielman and Teng [38] and Kelner [25] showed that without
any assumption on graph diameters, planarity and a genus
bound are sufficient to guarantee that the Fiedler value is
small. Their spectral theorems can be viewed as a discrete
analogue of the results of Hersch and and Yang and Yau for
compact 2-surfaces.

Our spectral theorem not only provides a discrete analog
for Korevaar’s theorem on higher eigenvalues, but also
extends the higher-eigenvalue bounds to graphs with a
bounded forbidden minor, a family that is more combina-
torially defined. Because the Laplacian of a manifold can
be approximated by that of a mesh graph, our result also
provides a new, combinatorial proof of Korevaar’s theorem.
In fact—although we defer details to the full version—our
analysis has a natural analog in the manifold setting as well.

Our work builds on the method of Biswal, Lee, and
Rao [8], which uses multi-commodity flows to define a
deformation of the graph geometry. This deformation is
derived from certain kinds of optimal flows in the graph. To

capture higher eigenvalues, we study a new flow problem,
which we define in Section 1.2 and call subset flows; this
notion may be independently interesting. As we discuss in
the next section, these flows arise as dual objects of certain
kinds of optimal spreading metrics on the graph. We use
techniques from the theory of discrete metric spaces to build
test vectors from spreading metrics, and we develop new
combinatorial methods to understand the structure of optimal
subset flows.

1.1. Outline of our approach

For the sake of clarity, we restrict ourselves for now to
a discussion of bounding λk(G) when G = (V,E) is a
bounded-degree planar graph with n = |V |. Towards this
end, we first review the known methods for bounding λ2 =
λ2(G).

Bounding λ2. By the variational characterization of eigen-
values, giving an upper bound on λ2 requires finding a
certain kind of embedding of G into the real line (see
Section 1.2). Spielman and Teng [38] obtain an initial
geometric representation using the Koebe-Andreev-Thurston
circle packing theorem for planar graphs. Because of the
need for finding a test vector which is orthogonal to the
first eigenvector, one has to post-process this representation
before it will yield a bound on λ2. They use a topological
argument to show the existence of an appropriate Möbius
transformation which achieves this. (A similar step was used
40 years ago by Hersch [24] in the manifold setting.) Even in
the arguably simpler setting of manifolds, no similar method
is known for bounding λ3, due to the lack of a rich enough
family of circle-preserving transformations.

Our approach initiates with the arguments of Biswal,
Lee, and Rao [8]. Instead of finding an external geometric
representation, those authors begin by finding an appropriate
intrinsic deformation of the graph, expressed via a non-
negative vertex-weighting ω : V → [0,∞), which induces a
corresponding shortest-path metric on G,

distω(u, v) = length of shortest u-v path,

where the length of a path P is given by
∑
v∈P ω(v). The

proper deformation ω is found via variational methods (it
is the optimum of some convex program), and the heart of
the analysis involves studying the geometry of the optimal
solutions, via their dual formulation in terms of certain
kinds of multi-commodity flows. Finally, techniques from
the theory of metric embeddings are used to embed the
resulting metric space (V, distω) into the real line, thus
recovering an appropriate test vector to bound λ2.

Controlling λk for k ≥ 3. In order to bound higher eigen-
values, we need to produce a system of many disjoint test
vectors. The first problem one encounters is that the optimal
deformation ω might not contain enough information to
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produce more than a single vector if the geometry of the
ω-deformed graph is degenerate, e.g. if V = C ∪C ′ for two
large clusters C,C ′ where C and C ′ are far apart, but each
has small diameter.

Spreading metrics and padded partitions. To combat this,
we would like to impose the constraint that no large set
collapses in the metric distω , i.e. that for any subset C ⊆ V
with |C| ≥ n/k, the diameter of C is large. In order to
produce such an ω by variational techniques, we have to
specify this constraint (or one like it) in a convex way. We
do this using the well-known spreading metric constraints
(see, e.g. [17]) on all sets of size ≈ n/k.

Given such a spreading weight ω, we show in Section
2 how to obtain a bound on λk by producing k smooth,
disjoint bump functions on (V, distω), which then act as
our k test vectors. The bump functions are produced using
padded metric partitions (see, e.g. [30]), which are known to
exist for all planar graphs from the seminal work of Klein,
Plotkin, and Rao [26].

The spreading deformation, duality, and subset flows. At
this point, to upper bound λk, it suffices to find a spreading
weight ω with

∑
v∈V ω(v)2 small enough. In order to do

this, in Section 2.3, we write a convex program to compute
the best weight ω. The dual program involves a new kind
of multi-commodity flow problem, which we now describe.

Consider a probability distribution µ on subsets S ⊆ V .
For a flow F in G (see Section 1.2 for a review of multi-
commodity flows), we write F [u, v] for the total amount of
flow sent from u to v, for any u, v ∈ V . In this case a
feasible µ-flow is one which satisfies, for every u, v ∈ V ,

F [u, v] ≥ Pr
µ

[u, v ∈ S],

where S is chosen according to the distribution µ. In other
words, every set S places a demand of µ(S) between every
pair u, v ∈ S. For instance, the classical all-pairs multi-
commodity flow problem would be specified by choosing µ
which concentrates all its weight on the entire vertex set V .

Given such a µ, the corresponding “subset flow” problem
is to find a feasible µ-flow F so that the total `2-norm of the
congestion of F at vertices is minimized (see Section 2.3 for
a formal definition of the `2-congestion). Finally, bounding
λk requires us to prove lower bounds on the congestion of
every possible µ-flow with µ concentrated on sets of size
≈ n/k.

An analysis of optimal subset flows: New crossing num-
ber inequalities. In the case of planar graphs G, we use
a randomized rounding argument to relate the existence
of a feasible µ-flow in G with small `2-congestion to the
ability to draw certain kinds of graphs in the plane without
too many edge crossings. This was done in [8], where the
relevant combinatorial problem involved the number of edge
crossings necessary to draw dense graphs in the plane, a

question which was settled by Leighton [31], and Ajtai,
Chvátal, Newborn, and Szemerédi [1].

In the present work, we have to develop new crossing
weight inequalities for a “subset drawing” problem. Let H =
(U,F ) be a graph with non-negative edge weights W : F →
[0,∞). Given a drawing of H in the plane, we define the
crossing weight of the drawing as the total weight of all edge
crossings, where two edges e, e′ ∈ F incur weight W (e) ·
W (e′) when they cross. Write cr(H;W ) for the minimal
crossing weight needed to draw H in the plane. In Section 4,
we prove the following theorem, which forms the technical
core of our eigenvalue bound.

Theorem 1.2 (Subset crossing theorem). There exists a
constant C ≥ 1 such that if µ is any probability distribution
on subsets of [n] with ES∼µ|S|2 ≥ C, then the following
holds. For u, v ∈ [n], defining W (u, v) = PrS∼µ[u, v ∈ S],
we have

cr([n];W ) &
1
n

(
ES∼µ|S|2

)5/2
.

Observe that the theorem is asymptotically tight for
all values of E|S|2. Classical crossing bounds [1], [31]
show that drawing an r-clique in the plane requires Ω(r4)
edge crossings. Thus if we take µ to be uniform on k
disjoint subsets of size n/k, then the crossing weight is
≈ k · (1/k)2 · (n/k)4 = n4/k5, which matches the lower
bound 1

n (E|S|2)5/2 = 1
n (n/k)5.

The difficulty of proving Theorem 1.2 lies in controlling
the extent to which µ is a mixture of three different types
of “extremal” distributions: (1) µ is uniformly distributed on
all sets of size r, (2) µ is concentrated on a single set of size
r, and (3) µ is uniform over n/r disjoint sets, each of size
r. In the actual proof, we deal with the corresponding cases:
(1’) µ is uniformly spread over edges, i.e. PrS∼µ[u, v ∈ S]
is somewhat uniform over choices of u, v ∈ V . In this case,
we have to take a global approach, showing that not only
are there many intra-set crossings, but also a lot of crossing
weight is induced by crossing edges coming from different
sets. (2’) PrS∼µ[u ∈ S] is unusually large for all u ∈ V ′
with |V ′| � |V |. In this case, there is a “density increment”
on the induced subgraph G[V ′], and we can apply induction.
Finally, if we are in neither of the cases (1’) or (2’), we are
left to show that, in some sense, the distribution µ must be
similar to case (3) above, in which case we can appeal to
the classical dense crossing bounds applied to the complete
graph on S ∩ S′ where S, S′ ∼ µ are chosen i.i.d.

More general families. Clearly the preceding discus-
sion was specialized to planar graphs. To handle general
excluded-minor families, we can no longer deal with the
notion of drawings, and we have to work directly with
multi-commodity flows in graphs. To do this, we use the
corresponding “flow crossing” theory developed in [8].
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1.2. Preliminaries

1.2.1. Laplacian spectrum: Let G = (V,E) be a finite,
undirected graph. We consider the linear space RV = {f :
V → R} and define the Laplacian L : RV → RV as the
symmetric positive definite linear operator given by

(Lf)(v) =
∑
u∼v

f(v)− f(u).

which in matrix form could be written as L = D − A
where A is the adjacency matrix of G and D the di-
agonal matrix whose entries are the vertex degrees. We
wish to give upper bounds on the kth eigenvalue of L for
each k. To do this we consider the seminorm given by
‖f‖L = f · Lf =

∑
u∼v(f(u) − f(v))2 and restrict it to

k-dimensional subspaces U ⊂ RV . By the spectral theorem,
the maximum norm ratio ‖f‖L/‖f‖ over U is minimized
when U is spanned by the k eigenvectors of least eigenvalue,
in which case its value is λk. Therefore if we exhibit a k-
dimensional subspace U in which ‖f‖L ≤ c for all unit
vectors f , it follows that λk ≤ c.

In particular, to describe such a subspace U it suffices to
produce k test vectors f1, . . . , fk such that both fi · fj and
fi · Lfj are zero for all i 6= j, and the norm ratios

‖fi‖L
‖fi‖

=
∑
u∼v(f(u)− f(v))2∑

u f(u)2

are all bounded by c. Both orthogonality conditions will hold
if the fi are disjoint both in their support and in the set of
edges incident to their support.

1.2.2. Flows: Let G = (V,E) be a finite, undirected
graph, and for every pair u, v ∈ V , let Puv be the set of all
paths between u and v in G. Let P =

⋃
u,v∈V Puv .

Then a flow in G is a mapping F : P → [0,∞). For any
u, v ∈ V , let F [u, v] =

∑
p∈Puv F (p) be the amount of flow

sent between u and v. We speak of the symmetric function
F [·, ·] : V ×V → [0,∞) as the demand function of the flow
F .

Our main technical theorem concerns a class of flows
we call subset flows. Let µ be a probability distribution on
subsets of V . Then F is a µ-flow if its demand has the form
F [u, v] = PrS∼µ[u, v ∈ S]. For r ≤ |V |, we write Fr(G)
for the set of all µ-flows in G with supp(µ) ⊆

(
V
r

)
.

We say a flow F is an integral flow if it is supported
on only one path p in each Puv , and a unit flow if every
demand F [u, v] is either 0 or 1. For an edge-weighted graph
G′ = (V ′, E′), we call F a G′-flow if its demand function is
induced by the weights on G′ under some vertex embedding
V ′ → V , and in this case we call G′ a demand graph and
G the host graph.

We define the squared `2-congestion, or simply conges-
tion, of a flow F by con(F ) =

∑
v∈V CF (v)2, where

CF (v) =
∑
p∈P:v∈p F (p). This congestion can also be

written as

con(F ) =
∑
p,p′∈P

∑
v∈p∩p′

F (p)F (p′)

and is therefore bounded below by a more restricted sum,
the intersection number:

inter(F ) =
∑

u,v,u′,v′

|{u,v,u′,v′}|=4

∑
p∈Puv
p′∈Pu′v′

∑
x∈p∩p′

F (p)F (p′)

2. EIGENVALUES AND SPREADING WEIGHTS

2.1. Padded partitions

Let (X, d) be a finite metric space. We will view a
partition P of X as a collection of subsets, and also as
a function P : X → 2X mapping a point to the subset that
contains it. We write β(P,∆) for the infimal value of β ≥ 1
such that∣∣∣{x ∈ X : B(x,∆/β) ⊆ P (x)

}∣∣∣ ≥ |X|
2
.

Let P∆ be the set of all partitions P such that for every
S ∈ P , diam(S) ≤ ∆. Finally, we define

β∆(X, d) = inf
{
β(P,∆) : P ∈ P∆

}
.

The following theorem is a consequence [34] of the main
theorem of Klein, Plotkin, and Rao [26].

Theorem 2.1. Let G = (V,E) be a graph without a Kr,r

minor and (V, d) be any shortest-path semimetric on G, and
let ∆ > 0. Then β∆(V, d) = O(r2).

In particular, if G is planar then β∆(V, d) is bounded
by an absolute constant, and if G is of genus g > 0 then
β∆(V, d) = O(g).

2.2. Spreading vertex weights

Consider a non-negative weight function ω : V → R+

on vertices, and extend ω to subsets S ⊆ V via ω(S) =∑
v∈V ω(v). We associate a vertex-weighted shortest-path

metric by defining

distω(u, v) = min
p∈Puv

ω(p).

Say that ω is (r, ε)-spreading if, for every S ⊆ V with
|S| = r, we have

1
r2

∑
u,v∈S

distω(u, v) ≥ ε
√∑
v∈V

ω(v)2.

Write εr(G,ω) for the maximal value of ε for which ω
is (r, ε)-spreading.

Theorem 2.2 (Higher eigenvalues). Let G = (V,E) be any
n-vertex graph with maximum degree dmax, and let λk be
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the kth Laplacian eigenvalue of G. Then for any weight
function ω : V → R+ with∑

v∈V
ω(v)2 = 1,

we have

λk ≤ O
(
dmax

1
ε2n

(
βε/2(V, distω)

)2)
,

where ε = εbn/4kc(G,ω).

Proof: Let ω be an (bn/4kc, ε)-spreading weight func-
tion. Let V = C1 ∪ C2 ∪ · · · ∪ Cm be a partition of V into
sets of diameter at most ε/2, and define for every i ∈ [m],

Ĉi =
{
x ∈ Ci : B(x, ε/(2β)) ⊆ Ci

}
,

where β = βε/2(V, distω). By the definition of β, there
exists a choice of {Ci} with

|Ĉ1 ∪ Ĉ2 ∪ · · · ∪ Ĉm| ≥ n/2.

Now, since diam(Ci) ≤ ε/2, we see that

1
|Ci|2

∑
u,v∈Ci

distω(u, v) ≤ ε

2
=
ε

2

√∑
v∈V

ω(v)2,

so by the (bn/4kc, ε)-spreading property of ω, we know that
|Ci| ≤ n/4k for every i ∈ [m].

Thus by taking disjoint unions of the sets {Ĉi} which are
each of size at most n/4k, we can find sets S1, S2, . . . , S2k

with |Si| ≥ n/4k and distω(Si, Sj) ≥ ε/(2β) for every
i 6= j.

Letting S̃i be the ε/(4β)-neighborhood of Si, we see that
the sets {S̃i} are pairwise disjoint. Now define, for every
i ∈ [2k],

W (S̃i) =
∑
u∈S̃i

∑
v:uv∈E

[ω(u) + ω(v)]2

Clearly, we have

2k∑
i=1

W (S̃i) ≤ 2
∑
uv∈E

[ω(u) + ω(v)]2

≤ 4dmax

∑
v∈V

ω(v)2 = 4dmax.

Hence by averaging, there exists a subcollection, say{
S̃1, S̃2, . . . , S̃k

}
, with W (S̃i) ≤ 4dmax

k for i = 1, 2, . . . , k.
Finally, we define functions f1, f2, . . . , fk : V → R by

fi(x) = max
{

0,
ε

4β
− distω(x, Si)

}
so that fi is supported on S̃i.

Since each fi is 1-Lipschitz and has supp(fi) ⊆ S̃i, we
have∑
uv∈E

|fi(u)− fi(v)|2 =
∑
u∈S̃i

∑
v:uv∈E

|fi(u)− fi(v)|2

≤
∑
u∈S̃i

∑
v:uv∈E

distω(u, v)2

=
∑
u∈S̃i

∑
v:uv∈E

[ω(u) + ω(v)]2

= W (S̃i) ≤
4dmax

k
.

Furthermore the functions have disjoint support and satisfy∑
u∈V

fi(u)2 ≥
(
ε

4β

)2

|Si| &
(
ε2

β2

)
n

k
.

Combining the preceding two estimates shows that for each
fi, ∑

uv∈E |fi(u)− fi(v)|2∑
u∈V fi(u)2

.
dmax

n

(
β

ε

)2

,

and the proof is complete by the discussion in Section 1.2.1.

The following results follow from Theorem 2.2, The-
orem 2.1, Theorem 2.4, Lemma 3.2, Theorem 4.1, and
Corollary 3.5.

Corollary 2.3. If G is planar, then

λk ≤ O
(
dmax

k

n

)
.

If G is of genus g > 0, then

λk ≤ O
(
dmaxg

3 k

n

)
.

If G is Kh-minor-free, then

λk ≤ O
(
dmaxh

6 log h
k

n

)
.

2.3. Spreading weights and subset flows

We now show a duality between the optimization problem
of finding a spreading weight ω and the problem of mini-
mizing congestion in subset flows. The following theorem
is proved by a standard Lagrange-multipliers argument.

Theorem 2.4 (Duality). Let G = (V,E) be a graph and let
r ≤ |V |. Then

max
{
εr(G,ω)

∣∣∣ω : V → R+

}
=

1
r2

min
{√

con(F )
∣∣∣F ∈ Fr(G)

}
.

Proof: We shall write out the optimizations
maxω εr(G,ω) and 1

r2 minF
√

con(F ) as convex programs,
and show that they are dual to each other. The equality
then follows from Slater’s condition [9, Ch. 5]:
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Fact 2.5 (Slater’s condition for strong duality). When the
feasible region for a convex program (P) has non-empty
interior, the values of (P) and its dual (P∗) are equal.

We begin by expanding maxω εr(G,ω) as a convex
program (P). Let P ∈ {0, 1}P×V be the path incidence
matrix; Q ∈ {0, 1}P×(V2) the path connection matrix; and
R ∈ {0, 1}(

V
r )×(V2) a normalized set containment matrix,

respectively defined as

Pp,v =
{

1 v ∈ p
0 else

Qp,uv =
{

1 p ∈ Puv
0 else

RS,uv =
{

1/r2 {u, v} ⊂ S
0 else.

Then the convex program (P) = maxω εr(G,ω) is

minimize −ε
subject to ε1 � Rd Qd � Ps s>s ≤ 1

d � 0 s � 0
.

Introducing Lagrange multipliers λ, µ, ν, the Lagrangian
function is

L(d, s, λ, µ, ν) = −ε+λ>(ε1−Rd)+µ>(Qd−Ps)+ν(s>s−1)

so that (P) and its dual (P∗) may be written as

(P) = inf
ε,d,s

sup
λ,µ,ν

L(d, s, λ, µ, ν)

(P∗) = sup
λ,µ,ν

inf
ε,d,s

L(d, s, λ, µ, ν).

Now we simplify (P∗). Rearranging terms in L, we have

(P∗) = sup
λ,µ,ν

inf
ε,d,s

(λ>1− 1)ε+ (µ>Q− λ>R)d

+ (νs>s− µ>Ps)− ν
= sup
λ,µ,ν

inf
ε

(λ>1− 1)ε

+ inf
d

(µ>Q− λ>R)d+ inf
s

(νs>s− µ>Ps)− ν.

Now the infima infε(λ>1 − 1)ε and infd(µ>Q − λ>R)d
are either 0 or −∞, so at optimum they must be zero and
λ>1−1 ≥ 0, µ>Q−λ>R � 0. With these two constraints,
the optimization reduces to supµ,ν infs(νs>s−µ>Ps)− ν.
At optimum the gradient of the infimand is zero, so s =
P>µ
2ν and the infimum is −‖P

>µ‖22
4ν . Then at maximum ν =

1
2‖P

>µ‖2, so that the supremand is −‖P>µ‖2. We have
shown that (P∗) is the convex program

maximize −
∥∥P>µ∥∥

2
subject to µ>Q � λ>R λ>1 ≥ 1

µ � 0 λ � 0
.

This program is precisely (the negative of) the program to
minimize vertex 2-congestion of a subset flow in Fr(G),
where the subset weights are normalized to unit sum. The
proof is complete.

3. CONGESTION MEASURES

In this section, we develop concepts that will enable us to
give lower bounds on the congestion con(F ) of all subset
flows F in a given graph G.

Definition 3.1. Let G be a graph, the host graph. For a
weighted graph H , called the demand graph, define the G-
congestion of H:

conGH = min
F an H-flow in G

con(F )

and the G-intersection number of H:

interG(H) = min
F an integral H-flow in G

inter(F ).

The next lemma is proved via randomized rounding.

Lemma 3.2 (Rounding). For any graph G and unit flow
F , there is an integral unit flow F ∗ with the same demand
function such that

inter(F ∗) ≤ inter(F ).

Consequently for every G and H

interG(H) ≤ min
F an H-flow in G

inter(F ) ≤ conG(H). (1)

Proof: We produce an integral flow F ∗ randomly by
rounding F . For each pair of endpoints u, v, choose inde-
pendently a path puv in Puv with Pr[puv = p] = F (p) for
each p. Then

E[inter(F ∗)] =
∑

u,v,u′,v′

|{u,v,u′,v′}|=4

E
[
|puv ∩ pu′v′ |

]
=

∑
u,v,u′,v′

|{u,v,u′,v′}|=4

∑
p∈Puv
p′∈Pu′v′

∑
x∈p∩p′

F (p)F (p′) = inter(F )

so that with positive probability we must have inter(F ∗) ≤
inter(F ). Equation 1 follows because inter(F ) ≤ con(F )
always.

Definition 3.3. A congestion measure is a nonnegative
function C = interG on weighted graphs, for some host
graph G, that satisfies the following equation for some
constants c(C), a(C) and all graphs H = (E, V ):

C(H) ≥ |E|3

c(C)|V |2
− a(C)|V | (2)

In particular, C(Kn) ≥ n4/8c(C)− a(C)n.

The term a(C)|V | in (2) is present for technical reasons.
Throughout this and the following section, terms containing
a(C) should be thought of as negligible and ignored on a
first reading.

Lemma 3.4. Suppose that for some G and k = k(G), every
H obeys

interG(H) ≥ |E(H)| − k|V (H)| − k2. (3)
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Then it follows that for every H ,

interG(H) ≥ 1
18
|E(H)|3

k2|V (H)|2
− k|V (H)| (4)

so that interG is a congestion measure with c(interG) =
18k2 and a(interG) = k.

Proof: It suffices to consider |E(H)| ≥ 3k|V (H)| since
otherwise the right-hand side of inequality (4) is negative.

Fix any H-flow F in G. Sample the nodes of H in-
dependently with probability p each to produce a new
demand graph H ′ and flow F ′ = F |H′ . Then inter(F ′) ≥
interG(H ′) ≥ |E(H ′)| − k|V (H ′)| − k2, and by taking
expectations we have

p4inter(F ) ≥ p2|E(H)| − pk|V (H)| − k2.

Choosing p = 3k|V (H)|/|E(H)| and using the fact that
|E(H)|/|V (H)|2 < 1 we obtain (4).

The proof of the following follows [8].

Corollary 3.5. If G is planar, then interG is a congestion
measure with c(interG) = 162 and a(interG) = 3. If G
is of genus g > 0, then interG is a congestion measure
with c(interG) = O(g) and a(interG) = O(

√
g). If G is

Kh-minor-free, then interG is a congestion measure with
c(interG) = O(h2 log h) and a(interG) = O(h

√
log h).

Proof: If F is an integral H-flow with inter(F ) > 0,
then some path in F and corresponding edge of H can be
removed to yield an integral H ′-flow F ′ with inter(F ′) ≤
inter(F )−1. Therefore to prove (3) it suffices to consider H
with interG(H) = 0 and show that |E(H)| ≤ k|V (H)|+ k.
Then Lemma 3.4 will imply interG is a congestion measure
with c(interG) = 18k2 and a(interG) = k.

When G is planar, an H-flow F in G with inter(F ) = 0
gives a drawing of H in the plane without crossings, so that
H itself is planar. Then an elementary application of the
Euler characteristic gives

|E(H)| ≤ 3|V (H)| − 6 < 3|V (H)|.

When G is of genus at most g > 0, the same argument
gives

|E(H)| ≤ 3|V (H)|+ 6(g − 1)

which suffices for k = O(
√
g).

For Kh-minor-free G and H with interG(H) = 0,
if H is bipartite with minimum degree 2, then Lemma
3.2 from [8] implies that H is Kh-minor-free, so that
|E(H)| ≤ cKT |V (H)|h

√
log h by the theorem of Kostochka

[29] and Thomason [39]. For general H , by taking a
random partition we can obtain a bipartite subgraph H ′ with
E(H ′) ≥ E(H)/2, so that interG(H) = 0 implies

|E(H)| ≤ 2cKTh
√

log h|V (H)|.

In the next section, we will also require the following
lemma.

Lemma 3.6. Let C = interG be a congestion measure and
µ a subset distribution on a vertex set V . Write Hµ for the
graph on V with edge weights Hµ(u, v) = PrS∼µ[u, v ∈ S].
Then

C(Hµ) ≥ 1
8c(C)

ES∼µ,S′∼µ
[
|S ∩ S′|4

]
− a(C)ES∼µ,S′∼µ [|S ∩ S′|] .

Proof of Lemma 3.6: For any flow F let the vertices
of Hµ be identified with the corresponding vertices of G.
For each u, v with Hµ(u, v) > 0, let Fuv denote the unique
path p ∈ Puv with F > 0. Then, taking F in subscripts over
integral Hµ-flows in G,

C(Hµ) = min
F

inter(F )

= min
F

∑
u,v,u′,v′

|{u,v,u′,v′}|=4

|{Fuv ∩ Fu′v′}|Pr
S∼µ

[u, v ∈ S] Pr
S′∼µ

[u′, v′ ∈ S′]

= min
F

ES∼µ,S′∼µ

 ∑
u,v∈S,u′,v′∈S′
|{u,v,u′,v′}|=4

|{Fuv ∩ Fu′v′}|


≥ min

F
ES∼µ,S′∼µ

[
inter(F |S∩S′)

]
where the inequality comes by restricting the sum to terms
with u, v, u′, v′ ∈ S ∩S′. Then since the minimum expecta-
tion is bounded below by the expected minimum, it follows
that

C(Hµ) ≥ ES∼µ,S′∼µ
[
min
F

inter(F |S∩S′)
]

= ES∼µ,S′∼µ
[
C(K|S∩S′|)

]
and the conclusion follows.

4. CONGESTION FOR SUBSET FLOWS

Theorem 4.1. There is a universal constant c0 > 0 such that
the following holds. Let µ be any probability distribution on
subsets of [n]. For u, v ∈ [n], define

F (u, v) = Pr
S∼µ

[u, v ∈ S]

and let Gµ be the graph on [n] weighted by F . Let C be a
congestion measure. Then

C(Gµ) &
1

c(C)n
(
E|S|2

)5/2 − c0 a(C)
n

E|S|2

As in the previous section, the terms involving a(C)
should be thought of as negligible.
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Corollary 4.2. If µ is supported on
(

[n]
r

)
for some r, then

C(Gµ) & r5

c(C)n −
a(C)r2
n . In particular, if r = Ω(a(C) ·

c(C))1/3, then

C(Gµ) &
r5

c(C)n
.

Proof of Theorem 4.1: We will freely use the fact that

E|S|2 =
∑
u,v

F (u, v).

Also, put F (u) = PrS∼µ[u ∈ S] for u ∈ [n].

The proof will proceed by induction on n, and will be
broken into three cases.

Case I: Light edges.

Let E(α, β) = {(u, v) : α ≤ F (u, v) ≤ β}.

Claim 4.3. For every β ∈ [0, 1], we have

C(Gµ) &

(∑
(u,v)∈E(0,β) F (u, v)

)3

βc(C)n2
− β2a(C)n. (5)

Proof: First, observe that by (2), the subgraph consist-
ing of the edges in E(α, α′) contributes at least

α2 |E(α, α′)|3

c(C)n2
− α′2a(C)n

to C(Gµ) for every α, α′ ∈ [0, 1]. Therefore letting Ei =
E
(
2−i−1β, 2−iβ

)
, we have

C(Gµ) &
1

c(C)n2

∞∑
i=0

2−2iβ2|Ei|3 − a(C)n
∞∑
i=0

2−2iβ2.

Let Fi =
∑

(u,v)∈Ei F (u, v) so that |Ei| ≥ (2i/β)Fi, and
then

C(Gµ) &
1

βc(C)n2

∞∑
i=0

2iF 3
i − β2a(C)n,

but also
∑∞
i=0 Fi =

∑
u,v∈E(0,β) F (u, v). Thus (5) is proved

by noting that
∞∑
i=0

Fi =
∞∑
i=0

(
2−i/3 · 2i/3Fi

)

≤

( ∞∑
i=0

2−i/2
)2/3( ∞∑

i=0

2iF 3
i

)1/3

< 2.27

( ∞∑
i=0

2iF 3
i

)1/3

,

using Hölder’s inequality.
Now fix β =

√
1
n2

∑
u,v F (u, v). If we have∑

(u,v)∈E(0,β)

F (u, v) ≥ 1
4

∑
u,v

F (u, v),

then the conclusion follows from Claim 4.3.
Case II: Heavy endpoints.

Define the set of “heavy” vertices,

HK = {u : F (u) ≥ Kβ}.

Observe that∑
u∈[n]

F (u) = E
S∼µ
|S| ≤

√
E
S∼µ
|S|2 =

√∑
u,v

F (u, v) = βn,

hence |HK | ≤ n/K by Markov’s inequality.
Let EH = {(u, v) : u, v ∈ HK} be the set of edges both

of whose endpoints are heavy, and apply the statement of
the Theorem inductively to the induced graph on HK to
conclude that

C(Gµ) &
K

c(C)n

 ∑
(u,v)∈EH

F (u, v)

5/2

− a(C)
n

∑
(u,v)∈EH

F (u, v). (6)

Consequently, by taking K = 32, if
∑

(u,v)∈EH F (u, v) ≥
1
4

∑
u,v F (u, v) then

K

(∑
(u,v)∈EH F (u, v)∑

u,v F (u, v)

)5/2

≥ 1

and the conclusion again follows.
Case III: Heavy edges, light endpoints.

Define EHL = {(u, v) : F (u, v) > β, {u, v} * HK} =
E(0, β) ∪ EH . Let κ = (2a(C) · c(C))1/3, so that κ4

c(C) ≥
2a(C)κ. By Lemma 3.6, we have

C(Gµ) &
1
c(C) E

S∼µ,
S′∼µ

[
|S ∩ S′|4 1|S∩S′|≥κ

]
− a(C) E

S∼µ,
S′∼µ

[
|S ∩ S′|1|S∩S′|≥κ

]
≥ 1

2c(C) E
S∼µ,
S′∼µ

[
|S ∩ S′|4 1|S∩S′|≥κ

]
=

1
2c(C)

∑
u∈[n]

Pr[u ∈ S]2 E
S∼µ,
S′∼µ

[
|S ∩ S′|31|S∩S′|≥κ

∣∣∣u∈S∩S′]
≥ 1

2c(C)
∑

u:β≤F (u)≤Kβ

F (u)2 E
S∼µ,
S′∼µ

[
|S ∩ S′|31|S∩S′|≥κ

∣∣∣u∈S∩S′]
≥ β2

2c(C)
∑

u:β≤F (u)≤Kβ
E

S∼µ,
S′∼µ

[
|S ∩ S′|3

∣∣∣u∈S∩S′]−K2β2

2c(C)
nκ3.

Now, since K2β2

2c(C) nκ
3 = K2a(C)

n E|S|2, to finish the proof
we need only show that∑
u:β≤F (u)≤Kβ

E
S∼µ,
S′∼µ

[
|S ∩ S′|3

∣∣∣u ∈ S ∩ S′] & n
(
E|S|2

)3/2
.

(7)
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Now for each u ∈ [n] let µu denote the distribution µ
conditioned on u being a member of the set. Let IvS denote
the indicator variable [v ∈ S], so that Pr[v ∈ S | u ∈ S] can
be rewritten as ES∼µu [IvS ]. In this case,

E
S∼µ,
S′∼µ

[
|S ∩ S′|3

∣∣∣u ∈ S ∩ S′]
=

∑
v,v′,v′′

E
S∼µu,
S′∼µu

[
IvSIv′SIv′′SIvS′Iv′S′Iv′′S′

]
= E

S∼µu,
S′∼µu

[(∑
v

IvSIvS′
)3]

≥
(

E
S∼µu,
S′∼µu

[∑
v

IvSIvS′
])3

=
(∑

v

E
S∼µu

[
IvS
]2)3

Therefore the left hand side of (7) is at least

∑
u:β≤F (u)≤Kβ

(∑
v

Pr[v ∈ S | u ∈ S]2
)3

≥ 1
K6

∑
u:β≤F (u)≤Kβ

|{v : F (u, v)/F (u) ≥ 1/K}|3

≥ 1
K6

∑
u:β≤F (u)≤Kβ

|{v : F (u, v) ≥ β}|3 . (8)

Now, every edge (u, v) ∈ EHL has either F (u) ≤ Kβ
or F (v) ≤ Kβ. In particular, F (u, v) ≤ Kβ, which means
that

|EHL| ≥
∑

(u,v)∈EHL F (u, v)

Kβ
. (9)

Each of the edges in EHL appears at least once in the sum
(8), all among vertices of weight at least β (since F (u) ≥
F (u, v).) Therefore by the power-mean inequality, the left
hand side of (7) is at least

1
K6

∑
u:β≤F (u)≤Kβ

|{v : (u, v) ∈ EHL}|3

≥ 1
K6n2

 ∑
u:β≤F (u)≤Kβ

|{v : (u, v) ∈ EHL}|

3

≥ 1
K6n2

|EHL|3

and when
∑

(u,v)∈EHL F (u, v) ≥ 1
2

∑
u,v F (u, v) it follows

from (9) that this is at least

1
K9n2β3

(∑
u,v

F (u, v)

)3

& n
(
E|S|2

)3/2
,

completing the proof.
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