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Abstract—We introduce a new tool for approximation and
testing algorithms called partitioning oracles. We develop methods
for constructing them for any class of bounded-degree graphs with
an excluded minor, and in general, for any hyperfinite class of
bounded-degree graphs. These oracles utilize only local compu-
tation to consistently answer queries about a global partition that
breaks the graph into small connected components by removing
only a small fraction of the edges.

We illustrate the power of this technique by using it to extend
and simplify a number of previous approximation and testing
results for sparse graphs, as well as to provide new results that
were unachievable with existing techniques. For instance:

• We give constant-time approximation algorithms for the size
of the minimum vertex cover, the minimum dominating set,
and the maximum independent set for any class of graphs
with an excluded minor.

• We show a simple proof that any minor-closed graph property
is testable in constant time in the bounded degree model.

• We prove that it is possible to approximate the distance
to almost any hereditary property in any bounded degree
hereditary families of graphs. Hereditary properties of interest
include bipartiteness, k-colorability, and perfectness.

1. INTRODUCTION

Solving combinatorial graph problems (such as minimum
vertex cover, maximum independent set, minimum domi-
nating set) has been one of the main research goals of
theoretical computer science. In the early 1970s, many of
those problems unfortunately turned out to be as hard as the
satisfiability problem, due to the breakthrough result of Karp
([12], see the survey [10]). In the 1990s, the discovery of
the PCP theorem resulted in showing that even finding good
approximate solutions is often NP-hard (see for instance
[23]).

In spite of these negative results, multiple methods for
finding good approximate solutions for several restricted
classes of graphs have been developed over the years.
Notably, Lipton and Tarjan [14] proved the separator the-
orem for planar graphs, which resulted in polynomial-time
approximation schemes for several combinatorial problems,
which remain NP-hard even restricted to planar graphs [15].
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The separator theorem was generalized to arbitrary graphs
with an excluded minor by Alon, Seymour, and Thomas [1],
and similar polynomial-time approximation schemes imme-
diately followed.

An important implication of the separator theorem is that
any graph with a fixed excluded minor with maximum
degree bounded by d can be partitioned into small com-
ponents of size at most poly(d, 1/ε) by removing only an
ε-fraction of edges. In this paper, we develop techniques
for locally computing such a partition. We construct a
partitioning oracle that given query access to a minor-free
graph, provides query access to a fixed partition, and uses an
amount of computation that is independent of the graph size.
Just like knowing the entire partition is useful for finding
a good approximate solution, our local version is useful
for approximating the size of the optimal solution in time
independent of the actual graph size. Our partitioning oracles
also find applications to other testing and approximation
problems that we describe in more detail below.

Graph classes: We construct partitioning oracles for
hyperfinite classes of graphs with bounded degree. Infor-
mally, hyperfinite graphs are those that can be partitioned
into constant-size components by removing a small fraction
of edges. A formal definitions follows.

Definition 1:
• Let G = (V,E) be a graph. G is (ε, k)-hyperfinite if

it is possible to remove ε|V | edges of the graph such
that the remaining graph has connected components of
size at most k.

• Let ρ be a function from R+ to R+. A graph G is ρ-
hyperfinite if for every ε > 0, G is (ε, ρ(ε))-hyperfinite.

• Let C be a class of graphs. C is ρ-hyperfinite if every
graph in C is ρ-hyperfinite.

Examples of bounded-degree hyperfinite classes of graphs
include bounded-degree graphs with an excluded minor [1]
(for instance, bounded-degree planar graphs, bounded-
degree graphs with constant tree-width), bounded-degree
graphs of subexponential growth [7], and the class of non-
expanding bounded-degree graphs considered by Czumaj,
Shapira, and Sohler [6].

Elek [8] gives results similar to ours for bounded degree-
graphs of subexponential growth. Note that bounded-degree
graphs with an excluded minor often do not have bounded
growth. For instance, consider full binary trees, which are
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an example of many popular minor-free classes of graphs.
They do not have K3 as a minor; yet the number of vertices
around each vertex grows exponentially fast.

Constant-time approximation algorithms: We say that
an algorithm is an (α, β)-approximation algorithm for a
value V (x) if on input x, it outputs V ′(x) such that
V (x) ≤ V ′(x) ≤ α · V (x) + β with probability at least
2/3. Moreover, for a given graph problem, we say that an
(α, εn)-approximation algorithm runs in constant time if its
running time is bounded by a function of ε and the average
degree d̃ (which we assume to be known to the algorithm).

The line of research on constant-time approximation
algorithms for graph problems was initiated by Par-
nas and Ron [18], who showed a constant-time (2, εn)-
approximation algorithm for minimum vertex cover1,
and a constant-time (O(log d), εn)-approximation algorithm
for minimum dominating set. Later, Nguyen and Onak
[17] showed a constant-time (1, εn)-approximation algo-
rithm for maximum matching. Alon2 showed a constant-
time (O(d log log d/ log d), εn)-approximation algorithm for
maximum independent set. The running times of some of
the above algorithms were improved by Marko and Ron
[16], and by Yoshida, Yamamoto, and Ito [22]. On the
negative side, Trevisan [18] showed that for any δ > 0,
a (2 − δ, εn)-approximation algorithm for vertex cover
has to make Ω(

√
n) queries to the graph. Alon showed

that there is no constant-time (o(log d), εn)-approximation
algorithm for minimum dominating set, and no constant-time
(o(d/log d), εn)-approximation algorithm for maximum in-
dependent set.

Elek [8] proved the existence of constant-time (1, εn)-
approximation algorithms for minimum vertex cover, min-
imum dominating set, and maximum independent set for
bounded-degree graphs of subexponential growth. His paper
does not provide any explicit bounds on the running time.

In this paper, we show that the above lower bounds can
be overcome for any bounded-degree hyperfinite class of
graphs. In fact, this is true for a slightly larger family of
graph classes with bounded average degree, which includes
any class of (unbounded degree) graphs with an excluded
minor. More precisely, for any such class of graphs, there
are constant-time (1, εn)-approximation algorithms for min-
imum vertex cover, minimum dominating set, and maximum
independent set. For any class of graphs with an excluded
minor, the running time of our algorithms is 2poly(1/ε). Note
that finding algorithms of running time 2(1/ε)o(1) is unlikely,
since by setting ε = 1/(3n), this would yield subexponential
randomized algorithms for NP-hard problems. The above
three problems are NP-hard for planar graphs, even with
degree bounded by 3 [9], [10].

1From now on, whenever we say “an approximation algorithm for
problem A”, we mean “an approximation algorithm for the size of the
optimal solution to A”.

2The results of Noga Alon will appear in a joint journal version with [17].

Testing minor-closed properties: Another application of
our techniques is to property testing in the bounded-degree
model [11]. We say that a graph property3 is minor closed
if it is closed under removal of edges, removal of vertices,
and edge contraction. Examples of minor-closed families of
graphs include planar graphs, outerplanar graphs, graphs of
genus bounded by a constant, graphs of tree-width bounded
by a constant, and series-parallel graphs.

In the case being considered, the goal of an ε-tester for
a given minor-closed property P is to distinguish, with
probability 2/3, graphs that satisfy P from those that need
to have at least εn edges deleted to satisfy P , where ε > 0.
Goldreich and Ron [11] showed an O(1/ε3) tester for the
property that the input graph is a forest, i.e., does not have
K3 as a minor. Until the breakthrough result of Benjamini,
Schramm, and Shapira [4], who showed that any minor-
closed property can be tested in constant time, this was the
only minor-closed property that was known to be testable
in constant time. However, the running time of the tester
of Benjamini, Schramm, and Shapira is 222poly(1/ε)

, and the
analysis is quite involved. We give a simple proof of their
result, and present a tester that runs in 2poly(1/ε) time.

Approximation of distance to hereditary properties: A
graph property is hereditary if it is closed under removal
of vertices. Many natural graph families are hereditary,
including all minor-closed graph families, perfect graphs,
bipartite graphs, k-colorable graphs, graphs with an excluded
induced subgraph (see the appendix of [6] for a longer list
of hereditary properties). All those properties are known be
testable in constant time for dense graphs in the adjacency
matrix model even with one-sided error [2], i.e., a graph
having a given property cannot be rejected. This is not
the case in the bounded-degree model. For instance, testing
bipartiteness requires Ω(

√
n) queries [11], and testing three-

colorability requires Ω(n) queries [5]. Motivated by these
lower bounds, Czumaj, Shapira, and Sohler [6] turned to
testing properties of specific bounded-degree non-expanding
families of graphs, which include minor-closed families
of graphs. For those graphs, they showed that all hered-
itary properties are testable in constant-time (with one-
sided error). Their proof holds for any hyperfinite family
of bounded-degree graphs.

We say that a hereditary property P is degenerate if there
is an empty graph on some number of vertices that does
not have P . For every non-degenerate hereditary P , every
hyperfinite class C of bounded-degree graphs, and every ε >
0, one can additively approximate the number of edges that
must be modified (i.e., inserted or removed) up to εn to
achieve P in time independent of the graph size for graphs
in C. It is impossible to specify the running time even for a
fixed class of graphs, since P need not even be computable.

3In this paper, all graph properties are defined for graphs with no labels
and are therefore closed under permutation of vertices.
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Nevertheless, if a non-degenerate P can be specified via
a (potentially infinite) set of forbidden connected induced
graphs, and there is an T (n)-time algorithm that checks if
a graph on n vertices has P , then one can show that the
distance to P to can be approximated in any fixed bounded-
degree class of graphs with an excluded minor in 2poly(1/ε) ·
T (poly(1/ε)) time.

The reason behind excluding degenerate hereditary prop-
erties is the following. Every degenerate P excludes an
empty graph on k vertices, for some constant k, which
implies that if a graph G has P , then it does not have an
independent set of size k, and therefore, has Ω(n2) edges.
Since the input graph has O(n) edges, a large number of
edges must be inserted. On the contrary, for every non-
degenerate hereditary property, the distance to the property
is always of order O(n), since it suffices to remove all edges
to achieve the property.

A sample application of our result is a (1, εn)-
approximation algorithm for the number of edges that must
be removed from the input bounded-degree planar graph
to make it 3-colorable. The running time of the algorithm
can be made 2poly(1/ε). The result of Czumaj et al. only
guarantees the existence of a constant-time algorithm that for
planar bounded-degree graphs, can tell 3-colorable graphs
from those that need to have at least εn edges removed, for
every ε > 0.

Elek [8] proved the existence of constant-time approxima-
tion algorithms for distance approximation to union-closed
monotone properties in bounded-degree graphs of subex-
ponential growth. Even though a union-closed monotone
property need not be hereditary, all natural union-closed
monotone properties are hereditary4. On the other hand,
perfectness is hereditary, but is not monotone.

For general bounded-degree graphs, Marko and Ron [16]
give a constant-time (O(1), ε)-approximation algorithm for
the distance to H-freeness, where H is an arbitrary fixed
graph. They also show a constant-time (1, ε)-approximation
algorithm for the distance to cycle-freeness.

Local distributed approximation algorithms: A dis-
tributed algorithm is local if it runs in a number of rounds
that is independent of the size of the underlying graph. The
first paper on constant-time graph approximation algorithms
due to Parnas and Ron [18] was based on the observation that
given a local distributed algorithms for finding a solution to a
graph problem, the size of the solution can be approximated
by sampling a small number of vertices in the graph, and
simulating the distributed algorithm on their neighborhood.
On the other hand, Nguyen and Onak [17] noticed that
an oracle for a large matching, which they designed for a
constant-time algorithm, can be simulated for most nodes
on a bounded radius neighborhood. Therefore, a distributed

4If a union-closed monotone property is closed under removing an
isolated vertex, then it is hereditary. All union-closed monotone properties
listed by Elek [8] are hereditary and non-degenerate.

algorithm can construct a good solution in a constant number
of communication rounds.

Our partitioning oracle, which provides query access
to a partition of vertices, can also be simulated locally.
We collect a constant size neighborhood and the random
numbers assigned to it. Simulating the oracle’s computation
for sufficiently many rounds, we assign a partition to most
of the nodes, and those that we do not succeed for in the
given time limit, create their own parts. This modification
cuts additional edges, but their number is small as long as
the number of nodes for which simulation does not succeed
is small. Such a partition can be used to compute a good
approximate solution to many combinatorial problems, in a
manner similar to our constant-time algorithms.

Lenzen, Oswald, and Wattenhofer [13] gave a local
multiplicative O(1)-approximation algorithm for minimum
dominating set. Our techniques yield a distributed algorithm
that computes an additive ±εn approximation in constant
time, for any ε > 0. It is an interesting question if our
techniques can be combined with theirs to give a local
(1 + ε)-approximation algorithm for this problem.

2. PRELIMINARIES

Model: We assume that an algorithm is given the
number n of vertices, and can uniformly sample from the set
of vertices in O(1) time. The paper uses the bounded-degree
model introduced by Goldreich and Ron [11]. In this model,
the degrees of all vertices are bounded by d = O(1), and
the algorithm has query access to the adjacency list of each
vertex. In this paper we assume that we can read a single
adjacency list in O(d) time.

Some of our approximation algorithms also work for
graphs with bounded average degree. We use d̃ to denote
a bound on the average degree of a graph. In this case, we
assume that an algorithm can learn the degree of a given
vertex in O(1) time, and that it can read the adjacency
list of a given vertex in time proportional to the number
of neighbors.

Partitions: We say that P is a partition of a set S if it is
a family of nonempty subsets of S such that

⋃
X∈P X = S,

and for all X,Y ∈ P either X = Y or X ∩ Y = ∅. We
write P [q] to denote the set in P that contains an element
q ∈ S.

Uniformity and Non-Uniformity: Throughout the paper,
we call a testers, an approximation algorithm, or an oracle
uniform if it takes ε, the approximation parameter, as input.
Otherwise, we call it non-uniform.

Graph Minors: A graph H is a minor of a graph G,
if H can be obtained from G by vertex removals, edges
removals, and edge contractions. A graph is H-minor free
if it does not have H as a minor. A graph property P is
minor-closed if for every graph G ∈ P , every minor of G
also belongs to P . The Robertson-Seymour theorem [21]
says that every minor-closed property can be expressed via
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a constant number of excluded minors. Moreover, Robertson
and Seymour [20] showed that for every minor H , there is
a deterministic O(n3)-time algorithm for checking if H is
present in the input graph.

Lemma 2 (Proposition 4.1 in [1]): For every graph H ,
there exists a constant CH such that if G is an n-vertex
H-minor free graph, then there exists a set S of at most
CH · n/

√
t vertices of G such that removing vertices of

S leaves no connected component on more than t nodes
(t > 1).

Corollary 3: Let H be a fixed graph. There exists a
constant CH > 1 such that for every ε ∈ (0, 1), every H-
minor free graph with degree bounded by d is (εdn,C2

H/ε
2)-

hyperfinite.
Proof: Set t in Lemma 2 to C2

H/ε
2 > 1. One can

remove from G at most εn vertices so that each remaining
connected component has at most C2

H/ε
2 vertices. Since

the degree of each vertex in G is bounded by d, it suffices
to remove from G the edges incident to those vertices to
achieve the same property. The number of these edges is at
most εdn.

Notation: We write VC(G) to denote the minimum
vertex cover size for a graph G.

Let G be a graph. We write G|k, k ∈ N to denote G
without the edges that are incident to vertices of degree
higher than k in G. For a class of graphs C, we define:

C|k = {G|k : G ∈ C}.

3. LOCAL PARTITIONS AND THEIR APPLICATIONS

We now define the main tool that is used in the paper. A
partitioning oracle provides query access to a global partition
of the graph into.

Definition 4: We say thatO is an (ε,k)-partitioning oracle
for a class C of graphs if given query access to a graph
G = (V,E) in the adjacency-list model, it provides query
access to a partition P of V . For a query about v ∈ V , O
returns P [v]. The partition has the following properties:
• P is a function of the graph and random bits of the

oracle. In particular, it does not depend on the order of
queries to O.

• For every v ∈ V , |P [v]| ≤ k and P [v] induces a
connected graph in G.

• If G belongs to C, then |{(v, w) ∈ E : P [v] 6=
P [w]}| ≤ ε|V | with probability 9/10.

The most important property of our oracle is that with
high probability, it can compute answers in time independent
of the graph size by using only local computation. We prove
the following lemma for any class of hyperfinite graphs. A
relatively simple proof appears in Section 4.

Lemma 5: Let G be an (ε, ρ(ε))-hyperfinite graph with
degree bounded by d ≥ 2. There is an (εd, ρ(ε3/54000))-
partitioning oracle. Let q be the number of non-adaptive

queries to the oracle. With probability 1 − δ, the oracle
makes q

δ · 2d
O(ρ(ε3/54000))

queries to the input graph, and
the total amount of the oracle’s computation is q

δ log q
δ ·

2d
O(ρ(ε3/54000))

.
By combining the above oracle with with Corollary 3

one can achieve explicit bounds for any class of graphs
with an excluded minor. The expected number of queries
of an (εd, CH/ε6)-partitioning oracle to the input graph is
2d
O(1/ε6)

for every query to the oracle. We show a more
efficient oracle for bounded-degree ρ-hyperfinite graphs with
bounded function ρ.

Lemma 6: Let R : R2 → R be a polynomial. Let C be
a class of graphs such that, for every d ∈ N+, and every
ε ∈ (0, 1), C|d is (ε,R(d, ε))-hyperfinite. There is a uniform
partitioning oracle that takes d ∈ Z+ and ε ∈ (0, 1) as input
and acts as an (ε,poly(1/ε, d))-partitioning oracle for C|d.
Let q be the number of queries to the oracle. The oracle
makes q · 2poly(ε,d) queries to the input graph and the total
amount of the oracle’s computation is (q log q) · 2poly(ε,d).

We omit the full proof of the above lemma in this version
of the paper. We give a sketch of our techniques in Section 4.

3.1. Constant-Time Approximation Algorithms

We first describe an application of partitioning oracles
to approximating the size of an optimal solution for com-
binatorial problems on restricted classes of graphs. As an
example, consider the minimum vertex cover problem for
planar graphs. We show that an (ε,poly(1/ε))-partitioning
oracle for planar graphs of degree O(1/ε) can be used to
partition the input graph into components of size poly(1/ε).
The union of optimal vertex covers over all connected
components constitutes a set of size within O(εn) of the
minimum vertex cover size of the original graph. By sam-
pling O(1/ε2) vertices and checking for each of them if
it belongs to the optimal vertex cover for their component,
we get a (1, O(εn))-approximation to the minimum vertex
cover size of the original graph.

A formal lemma and proof follow. To achieve a good
approximation, a bound on the average degree is needed.
Note that every class of graphs with an excluded minor has
average degree bounded by a constant.

Lemma 7: Let C be a class of graphs with average degree
bounded by d̃. Let ε > 0. Let O be an (ε/3, k)-partitioning
oracle for the class C|3d̃/ε. There is a (1, εn)-approximation
algorithm for the minimum vertex cover size in any graph
G = (V,E) in C. The algorithm
• gives O query access to the graph G|3d̃/ε,
• makes O(1/ε2) uniformly distributed queries to O,
• uses 2O(k)/ε2 +O(d̃k/ε3) time for computation.

The same holds for the maximum independent set problem,
and the minimum dominating set problem.

Proof: All edges from G missing in G|3d̃/ε can be
covered by vertices of degree greater than 3d̃/ε in G. We
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write G′ = (V,E′) to denote G|3d̃/ε. Note that the number
of such vertices is by Markov’s inequality at most εn/3.
Therefore, we have

VC(G)− εn/3 ≤ VC(G′) ≤ VC(G).

Each query about the adjacency list of a vertex v in G′

can easily be computed in O(3d̃/ε) time. If the degree of v
is greater than 3d̃/ε in G, then v is an isolated vertex in G′.
Otherwise, we go over the neighbors of v in G, and each
neighbor w in G stays a neighbor in G′ if and only if w
has degree greater than 3d̃/ε in G. We give O query access
to G′. With probability 9/10, O provides query access to a
partition P such that the number of edges (v, w) ∈ E′ with
P [v] 6= P [w] is at most εn/3. Let G′′ = (V,E′′) be G′ with
those edges removed. Since they can be covered with εn/3
vertices, we have

VC(G′)− εn/3 ≤ VC(G′′) ≤ VC(G′),

that is,

VC(G)− 2εn/3 ≤ VC(G′′) ≤ VC(G).

To get a (1, εn)-approximation to VC(G), it suffices to
estimate VC(G′′) up to ±εn/6. By the Chernoff bound,
we achieve that with probability 9/10 by sampling O(1/ε2)
vertices and computing the fraction of them in a fixed
minimum vertex cover of G′′. Such a vertex cover can be
obtained by computing a minimum vertex cover for each
connected component of G′′ independently. Therefore, for
every vertex v in the sample, we obtain P [v] from O. We
compute a minimum vertex cover for the component induced
by P [v] in such a way that the vertex cover does not depend
on which vertex in P [v] was the query point. Finally, we
check if the query point v belongs to the computed vertex
cover for the component. In total, our procedure takes at
most O

(
k · d̄/ε3

)
+ 2O(k)/ε2 time.

To prove the same statement for maximum independent
set, it suffices to notice that removing edges incident to the
high degree vertices increases the maximum independent set
by at most εn/3. For minimum dominating set, we assume
that all the high degree nodes are in the dominating set,
and we take this into account when we compute optimal
solutions for each connected component in the partition. This
can only increase the solution size by εn/3.

We now use the already recalled fact that the average
degree of a graph with an excluded minor is O(1). We
combine Lemma 6 and Lemma 7, and achieve the following
corollary.

Corollary 8: For every H-minor free family of graphs
(with no restriction on the maximum degree), there are
(1, εn)-approximation algorithms for the optimal solution
size for minimum vertex cover, maximum independent set,
and minimum dominating set that run in 2poly(1/ε) time.

Algorithm 1: Tester for H-Minor Freeness (for suffi-
ciently large graphs)

Input: query access to a partition P given by an
(εd/4, k)-partitioning oracle for H-minor free
graphs with degree bounded by d for the input
graph

f := 01

for j = 1, . . . , t1 = O(1/ε2) do2

Pick a random v ∈ V and a random i ∈ [d]3

if v has ≥ i neighbors, and the i-th neighbor of v4

not in P [v] then f := f + 1
if f/t1 ≥ 3

8ε then REJECT5

Select independently at random a set S of t2 = O(1/ε)6

vertices of the graph
if the graph induced by

⋃
x∈S P [x] is not H-minor free7

then REJECT
else ACCEPT8

3.2. Testing Minor-Closed Properties

We now describe how partitioning oracles can be used
for testing if a bounded-degree graph has a minor-closed
property. The constant-time testability of minor-closed prop-
erties was first established by Benjamini, Schramm, and
Shapira [4].

We now recall the definition of property testing in the
bounded degree model [11]. A graph G is ε-far from a
property P if it must undergo at least εdn graph operations
to satisfy P , where a single graph operation is either an edge
removal or an edge insertion. An ε-tester T for property P
is a randomized algorithm that has query access to G in the
sense defined in the preliminaries, and:
• if G satisfies P , T accepts with probability at least 2/3,
• if G is ε-far from P , T rejects with probability at least

2/3.
Lemma 9: Let H be a fixed graph. Let O be an (εd/4, k)-

partitioning oracle for the class of H-minor free graphs with
degree bounded by d. There is an ε-tester for the property
of being H-minor free in the bounded-degree model that
provides O with query access to the input graph, makes
O(1/ε2) uniform queries to O, and uses O(dk/ε+k3/ε6) =
poly(d, k, 1/ε) time for computation.

Proof: Our tester is Algorithm 1. The value t1 equals
C1/ε

2 for a sufficiently high constant C1 such that by the
Chernoff bound the number of edges cut by the partition P
is approximated up to ±εdn/8 with probability 9/10. Let
t3 = C2/ε be an upper bound on the expected time to hit a
set of size ε|X|/2 by independently taking random samples
from X , where C2 is a sufficiently large constant. We set
t2 in the algorithm to 10 · q · t3, where q is the number of
connected components in H . Finally, we set t4 to C3 · k · t22
for a sufficiently high constant C3 such that for graphs on
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more than t4 nodes, the probability that two samples from S
belong to the same component P [v] is at most 1/10. If the
number of vertices in the graph is at most t4 = O(k/ε2), we
read the entire graph, and check if the input is H-minor free
in O((k/ε2)3) time. For larger graphs, we run Algorithm 1.

If G is H-minor free, then the fraction of edges cut by
P is with probability 1 − 1/10 at most εdn/4. If this is
the case, the estimate on the number of broken edges that
is computed by tester is at most 3εdn/8 with probability
1 − 1/10. Moreover, every induced subgraph of G is also
H-minor free, so G cannot be rejected in the loop in Line 5
of the algorithm. Hence, G is accepted with probability at
least 8/10 > 2/3.

Consider now the case when G is ε-far. If the partition
P cuts more than εdn/2 edges, the graph is rejected with
probability 1−1/10. We therefore assume in Steps 6–8 that
P cuts less than εdn/2 edges. Let G′ be the new graph after
the partition. G′ remains ε/2-far from H-minor freeness, and
there are at least εdn/2 edges that must be removed to get an
H-minor free graph. This implies that G′ is ε/2-far from Hi-
minor freeness also for every connected component Hi, 1 ≤
i ≤ q, of H . For every i, at least an ε/2-fraction of nodes
belong to a component that is not Hi-minor free. Therefore,
it suffices to pick in expectation t3 random nodes to find
a component that is not Hi-minor free. For q connected
components of H , it suffices to pick in expectation q · t3
random nodes to find each of them. By picking, 10 · q ·
t3 random nodes, we find the components with probability
1− 1/10. Furthermore, since the considered graph is large,
i.e., has at least t4 nodes, the components for each i are
different with probability 1−1/10, and the graph is rejected
in Step 7. Therefore, the probability that a graph that is ε-far
is accepted is at most 3/10 < 1/3.

By combining Lemma 6 with Lemma 9, we obtain a
2poly(1/ε)-time tester for H-minor freeness for graphs of
degree O(1). Since every minor-closed property can be
expressed via a finite set of excluded minors H [21], it
suffices to test if the input is ε/s-far from being minor free
for each of them, where s is their number. We arrive at the
following theorem.

Theorem 10: For every minor-closed property P , there is
a uniform ε-tester for P in the bounded-degree model that
runs in 2poly(1/ε) time.

3.3. Approximating Distance to Hereditary Properties For
Hyperfinite Graphs

Parnas, Ron, and Rubinfeld [19] studied generalizations
of property testing: tolerant testing and distance approx-
imation. For a given property P , and an appropriately
defined distance to P , an (ε1, ε2)-tolerant tester for P tells
apart inputs at distance at most ε1 from P and those at
distance at least ε2 from P with probability at least 2/3,
where 0 ≤ ε1 < ε2. An (α, β)-distance approximation
algorithm for P computes an (α, β)-approximation to the

Algorithm 2: Approximating distance to not having a
set of connected graphs as induced subgraphs

Input: set H of connected graphs (does not include the
graph on one vertex)

Input: query access to a partition P given by an
(εd/4, k)-partitioning oracle for a class C of
graphs

f := 01

for j = 1, . . . , t = O(1/ε2) do2

Pick a random v ∈ V3

q := the minimum number of edge operations to4

make the graph induced by P [v] have no graph in
H as an induced subgraph
f := f + q

d·|P [v]|5

Return f/t+ ε/2.6

distance of the input to P with probability 2/3. In the
following, we study constant-time (1, δ)-distance approxi-
mation algorithms with δ being a parameter. Such algorithms
immediately yield constant-time (ε1, ε2)-tolerant testers by
setting δ to (ε2 − ε1)/2.

In the bounded-degree model, the distance to a given
property P is k/(dn), where k is the minimum number
of graph operations (edge insertions and deletions) that are
needed to make the graph achieve P . All input graphs have
the maximum degree bounded by d, but the closest graph
with property P need not have the degree bounded by d.

Lemma 11: Let H be a fixed set of connected graphs
that does not contain the 1-vertex graph. Let O be an
(εd/4, k)-partitioning oracle for a class C of graphs with
degree bounded by d, where k is a function of only ε. There
is a (1, ε)-approximation algorithm for the distance to the
property of not having any graph in H as an induced sub-
graph, for graphs in C. The algorithm provides O with query
access to the input graph, makes O(1/ε2) random uniformly
distributed queries to O, and uses (O(dk)+2O(k2))/ε2 time
for computation.

Proof: We use Algorithm 2. The partition P cuts at
most εdn/4 edges with probability 1− 1/10, which implies
that the distance to the property changes by at most ±ε/4.
Consider the new graph G′ with connected components
corresponding to the partition of P . Every graph in H ∈ H
is connected, so H can only appear as an induced subgraph
of a connected component of G′. Therefore, it does not make
sense to add edges connecting components of G′. This would
not exclude any existing induced graph from H. Hence, any
shortest sequence of operations that removes from G′ all
induced copies of graphs inH, does this over each connected
component in G′ separately.

The value t = O(1/ε2) in the algorithm is chosen such
that we estimate the number of edge operations divided by
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dn up to ±ε/4 with probability 1 − 1/10 by the Chernoff
bound. Therefore, the algorithm returns a correct estimate
with probability at least 1 − 1/10 − 1/10 = 4/5. The best
set of edge operations can be found for a single component
in 2O(k2) time by enumerating all possible modifications,
and verifying that none of the graphs in H on at most k
nodes are present as an induced subgraph.

Lemma 12: Let P be a non-degenerate hereditary prop-
erty. Let O be an (εd/16, k)-partitioning oracle for a class
C of graphs with degree bounded by d. There is a (non-
uniform) (1, ε)-approximation algorithm for the distance to
P for graphs in C. The algorithm provides O with query
access to the input graph, and makes a constant number of
uniformly distributed queries to the oracle. Its running time
is independent of the graph size.

Proof: The proof reuses some ideas of Czumaj, Shapira,
and Sohler [6], who showed a one-sided tester for hereditary
properties of hyperfinite classes of bounded-degree graphs.

Let H be the set of all graphs that do not have P . Since
P is hereditary, if a graph has any of the graphs in H as
an induced subgraph, it does not have P . Consider a subset
H′ of H that only consists of graphs H ∈ H that have all
components of size at most k. There are at most t = 2O(k2)

different connected graphs A1, . . . , At on at most k vertices.
Every graph in H′ can be represented as a vector a ∈ Nt,
where ai is the number of times Ai appears as a connected
component. For a graph H ∈ H′, its configuration is the
vector c ∈ {0, 1}t such that for each i, 1 ≤ i ≤ t, ci = 0 if
and only if ai = 0. We say that a configuration c ∈ {0, 1}t
is present if there is a graph in H′ with configuration c.
We call the one-vertex graph trivial. Recall that H is non-
degenerate. This implies that for each present configuration
c, there is i such that ci = 1, and Ai is non-trivial. A subset
X of A = {Ai : 1 ≤ i ≤ t} is hitting if it does not contain
the trivial graph, and for every present configuration c, there
is j such that cj = 1 and Aj ∈ X . For non-degenerate H,
there always exists at least one hitting subset of A.

Since there exists a (εd/16, k)-partitioning oracle for the
input graph G, G is (εd/16, k)-hyperfinite, and there is a
graph G′ with components of size at most k that can be
created by removing at most εdn/16 edges from G. G′ is
at distance at most ε/16 from G. The distance of G′ to
P is bounded from above by the minimum distance from
having no induced subgraph in X , where X is taken over all
hitting sets. If we exclude at least one connected component
for every graph in H′, we get a graph that satisfies P . We
write M to denote the above minimum distance to excluding
a hitting set from G′. Note that the shortest sequence of
operations that exclude a given hitting set X does not add
edges between different connected components of G. These
edges do not remove any existing copy of a graph in X .
Note that M is bounded by 1, since it suffices to remove all
edges in G′ to achieve P .

We now claim that in fact, we have to exclude some hitting

set almost entirely for sufficiently large graphs, unless we
want to conduct a long sequence of operations. For every
present configuration c ∈ {0, 1}t (the number of them is
finite), we fix an arbitrary graph Hc ∈ H′ with this config-
uration. Consider any sequence of at most (M − ε/4) · dn
operations that turns G′ into a graph G′′. We will show that
for n greater than some constant (which depends on ε, d,
k, and P), G′′ has an induced copy of one of the graphs
Hc. Let G? be G′′ with only edges that connect vertices in
the same connected component in G′. By the definition of
M , G? must be ε/4-far from having any of the hitting sets
excluded. We claim that there is a present configuration c
such that for every non-trivial Ai with ci = 1, the distance
of G? to not having Ai as an induced subgraph is at least
ε/(8k2t). Suppose for contradiction that for every present
configuration c, there is i such that Ai is a non-trivial graph,
ci = 1, and the distance of G? from not having Ai as an
induced subgraph is less than ε/(8k2t). For every present
configuration c, removing such an Ai from G? requires a
sequence of fewer than εdn/(8k2t) graph operations. For
every inserted or deleted edge (u, v) by such an sequence
of operations, let us delete from G? all edges incident to
both u and v. This is fewer than εdn/(4 ·2t) graph deletions
for every present configuration c, and this way we do not
introduce any new connected induced subgraph. By going
over all present configurations, we can entirely remove all
induced copies of at least one graph in each configuration
with fewer than εdn/4 graph deletions. This implies that
we can exclude a hitting set with fewer than εdn/4 graph
operations. This yields a contradiction.

We proved that there is a present configuration c such
that for every i such that ci = 1 and Ai is non-trivial, the
distance of G? to not having Ai as an induced subgraph is at
least ε/(8k2t). Note that because each connected component
in G? has at most k vertices, the number of vertex disjoint
copies of Hc is Ωε,d,k(n) in G?. Let q be the number of
connected components in Hc. We can pick sets Ii, 1 ≤ i ≤
q, of subgraphs of G? such that each Ii, 1 ≤ i ≤ q, is
a set of induced copies of the i-th connected component
of Hc, |Ii| ≥ bn/Cc (where C only depends on ε, d, k,
and the choice of graphs Hc), and the graphs in

⋃
i Ii are

pairwise vertex disjoint. Note that each induced subgraph
of G? that appears in Ii is also an induced graph in G′′.
There are at least bn/Ccq ways of selecting one subgraph
from each Ii. Consider one of such choices. If there were no
additional edges between the selected subgraphs, this would
give us an induced copy of Hc. The total number of edges
in G′′ is at most 2dn, and each edge connects at most 2
subgraphs in

⋃
Ii. This means that each edge can make at

most nq−2 choices of one subgraph from each Ii not give
an induced copy of Hc. For sufficiently large n, we have
2dn · nq−2 < bn/Ccq , and there is an induced copy of Hc.
Summarizing, for sufficiently large graphs, the distance of
G′ to P is at least M − ε/4.
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Algorithm 3: The global partitioning algorithm with
parameters k and δ

(π1, . . . , πn) := random permutation of vertices1

P := ∅2

for i = 1, . . . , n do3

if πi still in the graph then4

if there exists a (k, δ)-isolated neighborhood of5

πi in the remaining graph then
S := this neighborhood6

else7

S := {πi}8

P := P ∪ {S}9

remove vertices in S from the graph10

Therefore, the distance of G to P is between M − 5ε/16
and M + ε/16. Moreover, M is approximated up to ±ε/16
by M ′, which we define as the distance of G to entirely ex-
cluding one of the hitting sets. Therefore, to get a sufficiently
good approximation to the distance of G to P , it suffices
to compute (1, εn/4)-approximation to M ′ for sufficiently
large graphs. This can be done by using the algorithm of
Lemma 11 for all hitting sets, and amplifying the probability
of its success in the standard way. For small graphs, we hard-
wire the exact solution to the problem.

4. A SIMPLE PARTITIONING ORACLE

4.1. Local Computation

We reuse a general method for local computation that was
introduced by Nguyen and Onak [17]. Consider a graph with
random numbers in [0, 1] assigned to its vertices. Suppose
that to compute a specific function f of a vertex v, you first
need to compute recursively the same function for neighbors
of v that were assigned a smaller number than that of v. The
following lemma gives a bound on the expected number of
vertices for which f must be computed.

Lemma 13 ([17], proof of Lemma 12): Let G = (V,E)
be a graph of degree bounded by D ≥ 2, and let g : V ×
(V ×A)? → A be a function. A random number r(v) ∈ [0, 1]
is independently and uniformly assigned to each vertex v of
G. A function fr : V → A is defined recursively, using g.
For each vertex v, we have

fr(v) = g(v, {(w, fr(w)) : r(w) < r(v)}).

Let S ⊆ V be a set of vertices v selected independently of
r, for which we want to learn fr(v). The expected number of
vertices w for which we have to recursively compute fr(w)
in order to compute fr(v) for v ∈ S is at most |S| · 2O(D).

4.2. The Oracle

We introduce an auxiliary definition of a small subset S
of vertices that contains a specific node, and has a small
number of outgoing edges relatively to S.

Definition 14: Let G = (V,E) be a graph. For any subset
S ⊂ V , we write eG(S) to denote the number of edges in
E that have exactly one endpoint in S.

We say that S ⊆ V is a (k, δ)-isolated neighborhood of
v ∈ V if v ∈ S, the subgraph induced by S is connected,
|S| ≤ k, and eG(S) ≤ δ|S|.

We now show that a random vertex has an isolated
neighborhood of required properties with high probability.

Lemma 15: Let G = (V,E) be a ρ(ε)-hyperfinite graph
with degree bounded by d, where ρ(ε) is a function from R+

to R+. Let G′ = (V ′, E′) be a subgraph of G that is induced
by at least δn vertices. For any ε ∈ (0, 1), the probability that
a random vertex in G′ does not have a (ρ(ε2δ/1800), ε/30)-
isolated neighborhood in G′ is at most ε/30.

Proof: Any induced subgraph of G can still be parti-
tioned into components of size at most ρ(ε) by removing at
most εn edges. Since G′ has at least δn vertices, it is still
(ε/δ, ρ(ε))-hyperfinite for any ε > 0, or equivalently, it is
(ε, ρ(ε · δ))-hyperfinite for any ε > 0.

Therefore, there is a set S′ ⊆ E′ of at most (ε2/1800)|V ′|
edges such that if all the edges in S′ are removed, the
number of vertices in each connected component is at most
ρ(ε2δ/1800). Denote the achieved partition of vertices into
connected components by P . We have

Ev∈V ′

[
eG(P [v])
|P [v]|

]
=
∑
S∈P

|S|
|V ′|
· eG(S)
|S|

=
2|S′|
|V ′|

≤ ε2

900
.

By Markov’s inequality, the probability that a random
v ∈ V ′ is such that e(P [v])/|P [v]| > ε

30 is at most
ε/30. Otherwise, P [v] is an (ρ(ε2δ/1800), ε/30)-isolated
neighborhood of v.

Finally, we now use the above lemma to construct a par-
titioning oracle.

Proof of Lemma 5: We set k = ρ(ε3/54000) and
δ = ε/30. Consider the global Algorithm 3 with these
parameters. The algorithm partitions the vertices of the input
graph into sets of size at most k. We define a sequence
of random variables Xi, 1 ≤ i ≤ n, as follows. Xi

corresponds to the i-th vertex removed by Algorithm 3 from
the graph. Say, the remaining graph has n− t vertices, and
the algorithm is removing a set S of r vertices. Then we
set Xt+1 = . . . = Xt+r = eG′(S)/r, where G′ is the
graph before the removal of S. Note that

∑n
i=1Xi equals

the number of edges between different parts in P . For every
i, if Xi corresponds to a set S that was a (k, δ)-isolated
neighborhood of the sampled vertex, then Xi ≤ δ = ε/30.
Otherwise, we only know that Xi ≤ d. However, by
Lemma 15, if i ≤ n − εn/30, this does not happen with
probability greater than ε/30. Therefore, we have for every
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i ≤ n− εn/30

E[Xi] ≤ ε/30 + d · ε/30 ≤ 2εd/30

For i > n − εn/30, we again use the bound Xi ≤ d.
Together, this gives that the expected number of edges con-
necting different parts of P is at most 2εdn/30+εdn/30 <
εdn/10. Markov’s inequality implies that the number of such
edges is at most εdn with probability 9/10.

It remains to show how Algorithm 3 can be simulated
locally. For each vertex v, we want to compute P [v]. Instead
of a random permutation, we independently assign a random
number r(v) uniformly selected from the range [0, 1]. We
only generate r(v)’s when they are necessary, and we store
them as they may be needed later again. The numbers
generate a random ordering of vertices. To compute P [v],
we first recursively compute P [w] for each vertex w with
r(w) < r(v) and distance to v at most 2 ·k. If v ∈ P [w] for
one of those w, then P [v] = P [w]. Otherwise, we search for
a (k, δ)-isolated neighborhood of v, keeping in mind that all
vertices in P [w] that we have recursively computed are no
longer in the graph. If we find such an neighborhood, we
set P [v] to it. Otherwise, we set P [v] = {v}.

To bound the complexity of the oracle, we use Lemma 13.
Our computation graph is G? = (V,E?) where E? con-
nects all pairs of vertices that are at distance at most
2 · k in the input graph. The degree of G? is bounded
by D = dO(ρ(ε3/54000)). The expected number of ver-
tices for which we have to compute P [v] is at most
q · 2dO(ρ(ε3/54000))

. The query complexity at each vertex is
bounded by dO(ρ(ε3/54000)). By Markov’s inequality, both
the query complexity and the number of vertices visited are
bounded by q · 2dO(ρ(ε3/54000))

/δ with probability 1− δ.
The required isolated neighborhood of a vertex can easily

be found in 2d
O(ρ(ε3/54000))

time if it exists. An additional
cost in computation comes from the need to find if r(v)
was assigned before. By using a standard dictionary, this
can be done in time at most logarithmic in the number of
r(v) that were assigned. This gives an additional logarithmic
factor in the time complexity.

5. AN EFFICIENT PARTITIONING ORACLE

In this section, we sketch the ideas behind the partitioning
oracle of Lemma 6. A detailed description is deferred to the
full version of the paper.

5.1. The Partitioning Method

In order to locally simulate Algorithm 3, the simple oracle
of Section 4 has to compute the graph partition recursively
for a large number of nodes. In particular, it may have to
follow long chains of dependencies. In the improved parti-
tioning oracle, we try to avoid such expensive dependencies.
Our new global algorithm proceeds in a number of rounds. In
each round, it finds a maximal set of disjoint neighborhoods.

Then, it removes these neighborhoods from the graph at once
and moves on to the next round.

Since each neighborhood removed in round k only de-
pends on the neighborhoods that were removed in previous
rounds, its dependency chain has length at most k. If we
bound the total number of rounds, then we also bound the
number of queries made by each vertex to locally compute
its partition. In order to bound the number of rounds, we
show that in each round, the expected fraction of vertices
removed is at least poly(ε/d). Therefore, after a poly(d/ε)
number of rounds, the remaining graph has less than εdn/2
edges with high probability, and the algorithm can terminate.

To simulate the algorithm locally, we observe that each
round can be simulated for a given vertex v by learning
the graph at the end of the previous round within distance
poly(d/ε) from v. Since there are only poly(d/ε) rounds, a
vertex can simulate the global algorithm by making at most
dpoly(d/ε) queries to the input graph.

5.2. Growing Neighborhoods

When trying to show that the expected fraction of vertices
removed in each round is poly(ε/d), it is easy to realize that
the naı̈ve neighborhood growing algorithm will not work,
since an exponential number of prospective neighborhood
can intersect locally. (In such an algorithm, each vertex
queries all vertices within distance poly(d/ε), and uses
brute-force search to find an isolated neighborhood of size
poly(d/ε).)

Instead, we use the Volume-Biased Evolving Set Process
(VBESP) due to Andersen and Peres [3] to grow a neigh-
borhood for each node. With a small modification to the
algorithm, we show a lemma similar to their Theorem 2:

Lemma 16: Let A ⊆ V be any (k, ε5/(303 ·240 ·960 ·d3 ·
log(2kd)))-isolated neighborhood. There is a subset AT ⊆
A of size at least (1− ε)A for which the following holds. If
v ∈ AT , then with probability at least 1−ε/60, we can find
an isolated neighborhood Sv will satisfy all the following:

1) Sv is a (2k, ε/30)-isolated neighborhood.
2) |Sv \A| ≤ ε · |Sv|/30 · d

The neighborhoods grown by the VBESP have properties
that allow for avoiding intersections of too many neighbor-
hoods at the same time. Also, the VBESP runs in near linear
time, which is exponentially better than the naı̈ve algorithm.
We believe that the VBESP can be helpful for other constant-
time algorithms.

6. OPEN QUESTION

The main open problem is whether there exists a parti-
tioning oracle with query or running time complexity that
is polynomial in 1/ε for graphs with an excluded minor.
An affirmative answer would imply a poly(1/ε) tester
for minor-closed properties in the bounded degree model,
solving Open Problem 4 in [4].
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