
MIT Open Access Articles

Autonomous routing algorithms for
networks with wide-spread failures

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Wajahat Khan, Long Bao Le, and E. Modiano. “Autonomous routing algorithms for
networks with wide-spread failures.” Military Communications Conference, 2009. MILCOM 2009.
IEEE. 2009. 1-6. ©2010 Institute of Electrical and Electronics Engineers.

As Published: http://dx.doi.org/10.1109/MILCOM.2009.5379792

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/59450

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59450

AUTONOMOUS ROUTING ALGORITHMS FOR NETWORKS WITH
WIDE-SPREAD FAILURES

Wajahat Khan, Long Bao Le and Eytan Modiano

Communications and Networking Research Group
Massachusetts Institute of Technology

Cambridge, MA, USA 02139
Emails: {wajahat, longble, modiano} @mit.edu

Abstract- We study end-to-end delay performance ofdif-
ferent routing algorithms in networks with random failures.
Specifically, we compare delay performances of Differential
Backlog (DB) and Shortest Path (SP) routing algorithms
and show that DB routing outperforms SP routing in terms
of throughput when the network is heavily loaded and/or the
failure rate is high while SP routing achieves better delay
performance in the low load regime. Then, we investigate
delay performance of a hybrid routing algorithm that com
bines principles of both SP and DB routing algorithms and
show that it outperforms both of these routing algorithms.
Finally, we demonstrate improvements in delay performance
ofDB routing through the use ofa digitalfountain approach
which was originally proposed for multicast applications.
In addition, our results show that there exists an optimal
coding rate where digitalfountain based DB routing achieves
minimum end-to-end delay. To the best of our knowledge,
this is the first work which investigates delay performance
of DB routing and its enhanced versions for networks with
link failures.

Index Terms-Differential backlog routing, shortest path
routing, digital fountain, end-to-end delay, throughput re
gion

I. INTRODUCTION

A robust communications network must have built-in
redundancies to recover from failures. However, surviv
able topology design forms a necessary but not sufficient
condition for failure recovery. Recovering from a failure
usually involves re-routing of data along pre-planned
back-up paths (typically used for recovery from single
link failures) [1], [2], [3]. However, in the event of a
catastrophic failure, the use of pre-planned back-up paths
is not practical. When dealing with networks on the
scale of a nation-wide communications infrastructure, it
is impossible to pre-plan against all the possible link

This work was supported by NSERC Postdoctoral Fellowship
and by ARO Muri grant number W9llNF-08-l-0238, DTRA grant
number HDTRAl-07-l-0004, NSF grant numbers CNS-062678l and
CNS-083096l.

978-1-4244-5239-2/09/$26.00 ©2009 IEEE

failures. For example, the number of possible failure
scenarios for a graph with just thirty links is over a
billion. Also, for such an approach to work, every node
in the network must know the state of the entire network
which may not be achieved in most practical networks.
Hence, autonomous re-routing algorithms which can
dynamically respond to failure(s) and require minimal
network-state knowledge are a key solution for networks
with failures.

Traditional approaches to autonomous routing have
been based on shortest path algorithms such as Open
Shortest Path First (OSPF) [4]. These algorithms have
their drawbacks when responding to changes in network
topologies (which includes failures) both in terms of
efficient capacity utilization and speed of recovery. The
time complexity of computing all-pair shortest paths
using a simple algorithm like Bellman-Ford algorithm
is O(N3) where N is the number of nodes [5]. For
large networks this computation over short time periods
becomes not only challenging but practically impossible.
Distributed implementations which are necessary in a
nation-wide network have yet greater time complexity.
Our goal in this paper is to develop novel approaches
to the autonomous re-routing problem for rapid and
efficient failure recovery.

The DB routing algorithm was originally proposed
by Tassiulas and Ephremides in the context of wireless
networks which was shown to achieve the maximum
throughput performance [6]. DB routing can be easily
implemented in a distributed manner in wired networks,
such as optical backbone networks, since each node
only needs to know the states of its neighbors. The
throughput-optimal performance and ease of implemen
tation of DB routing makes it an obvious candidate for
autonomous re-routing. Although recent testbed imple
mentation shows that DB routing achieves good through
put and fairness performance, its delay performance is
not well understood [11].

In this paper, we investigate delay performance of DB

Paper ID# 901159.PDF

routing and its enhanced variants in an optical backbone
network of major US service providers. Specifically,
we compare end-to-end delay performance of DB and
SP routing in this backbone network with and without
failures. We show that SP routing indeed achieves lower
delay in the low load condition but it has much lower
throughput performance compared to the DB routing. We
then compare delay performance of a hybrid (HybridDB)
routing algorithm which combines the principles of DB
and SP routing algorithms by incorporating routing costs
into the "differential backlog" routing metric. We show
that the HybridDB routing algorithm indeed outperforms
both DB and SP routing algorithms while achieving
the maximum throughput performance. Given the fact
that long end-to-end delay of a few packets from a file
results in significant increase of file transfer delay, we
propose to combine the digital fountain approach with
DB routing to reduce to the file transfer delay. Our results
show that digital fountain based DB routing successfully
improves end-to-end file transfer delay and there exists
an optimal coding rate that achieves the minimum delay
performance.

This paper is organized as follows. In section II, we
briefly review the SP and DB routing algorithms. We also
describe the HybridDB routing and the digital fountain
based DB routing algorithms. In section III, we describe
our simulation setup and present extensive simulation re
sults which compare performance of the aforementioned
routing algorithms. Conclusions are stated in section IV.

II. SYSTEM MODEL AND ROUTING ALGORITHMS

In this section, we describe the system model, review
the SP and DB routing algorithms and present two
enhanced routing algorithms, namely HybridDB and
digital fountain based DB routing algorithms whose
performances are investigated in the next section.

A. System Models

We consider a wired network (e.g., optical backbone
networks) which is formed by a set of nodes and links.
Assume that the network has N nodes. It is further
assumed that time is slotted. Assume that files arrive ran
domly over time which are destined to randomly chosen
destination nodes. For any such arriving file, a routing
algorithm is employed for end-to-end data delivery. In
the following, we refer to a combination of such a file,
its source and destination nodes as a data session. We
will consider four different routing algorithms, namely
SP, DB, HybridDB and digital fountain based DB routing
algorithms. Among these routing algorithms, SP is a

single-path routing policy while the others are multipath
routing policies.

Data packets of different sessions are buffered at each
network node according to their destinations. Specifi
cally, each node maintains N - 1 FIFO queues to buffer
data packets which are destined to other N - 1 nodes.
A destination node of any file/session waits until it
receives a sufficient number of packets to reconstruct
the underlying file. After the file is reconstructed, it is
delivered to the higher layers and exits the network.

We are interested in end-to-end packet and file transfer
delay performances of the aforementioned routing algo
rithms where end-to-end packet/file delay is measured
from the time instant a packet/file enters the network to
the time instant it is successfully received/reconstructed
at the destination node. Note that a file exits the network
only after the destination node receives a sufficient
number of packets to reconstruct it. It is assumed that
network links are either in "WORKING" or "FAILED"
states in any time slot. A "WORKING" link can transmit
one packet/time slot while a "FAILED" link cannot
transmit any packet until its state is changed to the
"WORKING" state. We assume that network failures
only impact network links. Because data packets are
buffered at node queues, there is no need for error
recovery at the link or transport layer.

B. Routing Algorithms

1) SP Routing Algorithm: SP routing is by far the
most common class of algorithms employed in modem
networks. As might be implied from its name, SP routing
considers all the possible paths between a source and
destination and chooses the one with minimum cost. The
costs are typically a function of length, congestion or
monetary costs of a link. Bellman-Ford and Dijkstra [5]
are two widely used shortest path algorithms. The best
known running times of these algorithms are O(NE)
and O(N log N + E) respectively, where N represents
the number of nodes and E represents the number of
links in a network. In this paper, we assume that routing
costs of the SP routing algorithm are simply the number
of hops along a route (SP routing algorithm is simply
minimum-hop routing).

2) DB Routing Algorithm: The underlying idea be
hind DB routing is to use all network resources to dis
tribute data, differentiated by destination (data destined
to one particular destination is called the corresponding
commodity). Routing decisions are made at the begin
ning of each time slot. To describe the DB routing
in more details, let U~c) (t) be the number of packets
waiting at node a destined for node c in time slot t. For

2 of 6

Paper ID# 901159.PDF

each pair of directly connected nodes, let us say nodes a
and b, the commodity c~b (t) with the highest differential
backlog which is calculated as

c~b(t) = argmax {U~c)(t) - U~C)(t)} (1)
CE{l, ... ,N}

is transmitted over the link (a, b) in time slot t where
{I, ..., N} is the set of network nodes. In the case where
there are multiple commodities achieving the maximum
differential backlog, one of them is chosen randomly.
Also, if the number of packets at a particular queue for
some commodity is smaller than that required by the
routing algorithm, outgoing links of the corresponding
node are randomly chosen to transmit available packets.

It has been shown that the DB routing algorithm
achieves maximum throughput performance [6], [7].
Specifically, let throughput region be the union of all
flow/sessions arrival rate vectors such that there exists
some routing algorithm which can stabilize all the net
work queues (i.e., their queue lengths are bounded). It
can be shown that DB routing algorithm stabilizes all
arrival rate vectors which lie strictly inside the through
put region [6], [7]. Although DB routing is throughput
optimal, its delay performance is not well-understood.
In fact, some recent works show that the maximum
weight scheduling (a version of DB routing for single
hop wireless traffic flows) achieves order optimal delay
in a wireless cellular network and most practical wireless
ad hoc networks [9], [10]. However, its actual delay
performance was not investigated in these papers.

3) HybridDB Routing Algorithm: It has been recog
nized that although DB routing algorithm is throughput
optimal, its delay performance may not be very good in
low network load conditions [7], [11]. This is because
the DB routing algorithm exploits all possible routes
including loops in the network to achieve the maximum
throughput. In the low load regime, the DB routing
algorithm tends to use long routes [11] which may hurt
the delay performance. In fact, routing data along short
routes may achieve good delay performance while still
maintaining queue stability (i.e., bounded queue length)
in the low network load. Therefore, an adaptive DB
routing which uses long routes only when necessary
can potentially achieves both good throughput and delay
performances.

One way to exploit advantages of both DB and SP
routing algorithms is to incorporate routing cost into the
differential backlog metric presented in (1) so that data is
routed along short routes when the network load is low.
Specifically, we propose the HybridDB routing algorithm
which chooses a commodity for link (a, b) in time slot

t as follows [7]:

c~b(t) = argmax {U~c)(t) - U~c)(t)
CE{l, ... ,N}

+a (Va(c)(t) - ~(C)(t))} (2)

where Vi(c) is the routing cost to deliver data from node
i to node c and a is a weighting factor. If the underlying
SP routing is minimum-hop routing then Vi(c) is simply
the number of hops on the minimum-hop route from
node i to node c and vlc

)(t) - ~(c) (t) == 1. In addition,
the larger the weighting factor a the more likely short
routes are selected for data delivery.

4) Digital Fountain Based DB Routing Algorithm:
For end-to-end delivery from a source node to the corre
sponding destination node, a long file must be broken
into a large number of packets. Because DB routing
may use a long route to deliver a packet, it is highly
likely that it takes a long time before the destination
node receives all required packets to reconstruct the file.
Hence, the end-to-end file transfer delay could be po
tentially reduced if the destination node can reconstruct
the file by using only a subset of the original packets.
In fact, the digital fountain coding technique enables us
to achieve this goal. The digital fountain approach was
originally proposed by Byers, Luby and Mitzenmacher
for the asynchronous multicast application [12].

In an ideal digital fountain approach, x packets broken
from a file are encoded into n > x packets which are
then transmitted over the network. A receiver which
receives any x distinct packets out of the n transmitted
packets in any order can reconstruct the original file.
This ideal digital fountain approach can be realized by
using the classical Reed Solomon (RS) erasure code.
However, it has been indicated in [12] that the ideal
digital fountain using RS erasure code has several im
plementation limitations. The authors of [12] have also
proposed several codes including Tornado codes [13] and
Luby Transform codes [14] which can approximate the
ideal digital fountain and are easy to implement. The
approximate digital fountain solution usually requires the
number of received packets to be slightly larger than
the number of original packets before a receiver can
reconstruct the original file.

To make our investigation independent of code design
issues, we assume an ideal digital fountain solution
in this paper. It can be observed that digital fountain
approach can be jointly employed with any routing
algorithms presented in the previous subsections. This is
because the digital fountain approach is only needed to
encode data at a source node and to reconstruct original
files at a destination node.

3 of 6

Paper ID# 901159.PDF

leoO

leoO

ShortestPath-File
ShortestPath-Packet

DifferentialBacklog-File ... +.
Different ial Backlog-Packet +

1400

1200

70

60

HybridDB :alpha=5 -File -.,..,-
HybridDB :alpha=5 -Pacl<:el

DifferenlialBacklog(alpha=O)-Flle ... +- ..
Differen tial Backlog (alpha =O)-Packet

Shortest Path-File
Shortest Path-Packet

1000

eoo

eoo

400

200

B 50

!
! 40

i
! 30

t ...
20

403525201510
O '-==--.L-_~_~_~_~_~_~_-----'

o
10

Fig. I. File and packet delays of SP and DB versus failure rate (for
A=1/4, p= 1/4, simulation time : I million slots)

Fig. 2. Delay performance of SP, DB, and HybridDB versus network
load (for p= 1/4, simulation time: 10 million slots)

III . PERFORMANCE EVALUATION

In this section, we investigate and compare delay
performances of the routing algorithms presented in
the previous section. All numerical results are obtained
for an optical backbone network of major US service
providers with 29 bidirectional links and 13 nodes [8].

250

200

HybridDB :alpha=5-File -
HybridDB :alpha=5 -Packet

Differen tial Backlog (alpha =O)-File .

DifferenlialBaCkI09J~~~:s~Ot:~~~

ShorteslPath-Packel

.: /

40

20

35

. /

15

2520

10

1510

.........

..............

....

HybridDBalpha=5-File -;.;-
HybridDB :alpha=5-Packet

Differential Backlog(alpha=O)-File ... + ..

Differential BaCklo9J~~~:s~O~tt~~~

Shortest Path-Packet

O '-------~---~---~---~-----'
o

."..--/ /

~/"'''''''''. '''''... " .
.. - .

50

~:

300 ,-------~ ---::c --~---~___,

250

50

I 200

I
i 150

§
s
j 100

I
1, 50

Fig. 3. File and packet delays of SP, DB, and HybridDB versus
failure rates (for A=1/10, p= 1/4, simulation time : 10 million slots)

Fig. 4. File and packet delays of SP, DB, and HybridDB versus
failur e rates (for A=1/4, p= 1/4, simulation time: 10 million slots)

A. Simulation Settings and Parameters

Recall that time is slotted. Files arrive at the beginning
of each slot at each node according to a Poisson process
with arrival rate A files per slot. A file is equally likely
to be destined to any node in the network except the
source node. The number of packets in each file is a
geometric random variable with parameter p. In order to
investigate the impacts of code rate on delay performance
of different routing algorithms using the digital fountain
solution, we fix file sizes at x packets (in Figs. 6, 7).
Also, for a file of x packets, n = rx / fl packets are
generated where f is the code rate. At the destination
node, a file reconstruction is assumed to be performed
successfully when any x of the n = rx / fl packets
originally transmitted by source node have been received.

Nodes keep track of the number of packets they have
received for each file destined to them. Since there is
no packet loss, redundant packets in a file do get to the
nodes sometimes whereby they are discarded. A file is
called active if its destination has not received all the
packets required to reconstruct that file. A list of all
active files, is maintained at each destination node.

For DB-based routing algorithms, after all arrivals
for a slot take place, each link is marked with the
commodity that has the maximum differential backlog
across that link, with ties broken randomly. For links
with a positive differential backlog, one packet of the
marked commodity is transmitted across the link. If there

4 of 6

Paper ID# 901159.PDF

- ~ - - - - ><- - - - -.,>;- - - --

HybridDB :alpha=5 ,O%Failures-File -B
HybndDB:alpha=5, 0% Failures-Packet

HybridDB:alpha=5. 5% Failures-File
HybridDB:alpha=5 , 5% Failures-Packet

06 ,0% Failures-File --x-
DB. 0% Failures-Packet

DB, 5% Failures-File .. +.
DB, 5% Failures-Packet +

120

20

40

I 100

,
i 60

j
i
~ 60

i

. ,..

DB, 0% Failures-File -';-.
DB. 0% Failures-Packet

OB,5%Failures-File .+..
DB, 5% Failures-Packet +

....

60

40

140 ,-------~--~--~---~-______,

1.1 1.2 1.3 1.4 1.5
1.1 1.2 1.3 1.4 1.5

Fig. 5. Delay performance of Digital Fountain appro ach in DB
versus code rate (for ..\=1125, x=20, simulation time : I million slots)

Fig. 6. Delay performance of Digital Fountain approach in DB and
HybridDB versus code rate with and without failures (for ..\=1125,
x=20, simulation time: 1 million slots)

40353025201510

HybridOBwithout Digital Fountain-File --e-

HybridDB wilh Oi ~~?~~~~t:~i~~i~~ ::~~~ali~-ii:~~
HybndDB with Dlgrta~ Fountain (coding rate = 1/1.2)-Packet

DB~~~~~o~it ~~T~~Jn~~~~~~~~~ -+-
DB with Digrtal Fountain (CO~i ng rate = 1/1.2)-File .. +.

DB With Digrtal Fountain (coding rate = 1'1 .2)-Packet ... -/

d

o'------~-~-~-~-~-~-~-------'
o

400

100

500

~
!
! 300

i
!
~ 200

l

Fig. 7. Delays of Digital Fountain approach in SP, DB and
HybridDB versus failure rate with different values of code rate (for
..\=1150, x = 20, simulation time: I million slots)

it does not achieve the full throughput of the network.
Therefore, DB routing achieves much greater throughput
than SP routing. This can be confirmed by noticing that
file transfer delay under SP routing increases sharply
when failure probability is larger than 15% while rapid
increase in file transfer delay under DB routing only
occurs for failure probability larger than 35%.

In Figs. 2, 3, 4, we compare delay performances
of SP, DB, and HybridDB routing algorithms. These
figures show that HybridDB routing achieves better delay
performance than DB routing. It can also be seen from
Fig. 2 that DB and HybridDB routing algorithms have
similar throughput performance. This can be interpreted
as follows . HybridDB routing can exploit all possible
paths to achieve maximum throughput when the network
load is high but it tends to use shorter and more direct
paths to deliver data in the low load condition. Fig. 3
shows that for networks with link failures , the delay
improvement of HybridDB routing compared to DB
routing becomes less significant when the failure rate is

B. Comparison of Sp' DB, and HybridDB Routing

In Fig . 1, we show delay performances of SP and DB
routing algorithms versus the steady state probability of
"FAILED" state (called failure probability in the follow
ing) . It can be observed that in the SP routing, packets
are routed deterministically toward their destinations;
hence SP routing behaves better in terms of delays when
the network load is low (i.e., low failure probability).
However, since SP routing does not utilize all possible
routing paths in the network to perform load balancing,

is a shortage of commodity packets at a network node ,
the competing links are randomly served. All packet
transmissions are completed by the end of a slot.

At the beginning of each slot, a "WORKING" link
changes its state to "FAILED" with probability PI and
a "FAILED" state changes it state to "WORKING" with
probability Pw (i.e ., link status is modeled as a two state
Markov chain). All links start in the "WORKING" state.
Hence, the steady state probability, 1rI ' of being in the
"FAILED" state is given as

1r1 - PI (3)
PI +Pw

For SP routing, we use Dijkstras All-pair Shortest-Path
algorithm. As each link can transfer up to one packet in
each slot, the cost of all links are set to be equal to
I. Each node maintains an address classifier to route
packets to outgoing links based on their destinations.
Queues at network nodes buffer new arrivals to the nodes
as well as routed packets from other parts of the network.
The address classifiers are updated every time slot to
account for any changes in network topology resulting
from any link failures or activations. When a link fails ,
all packets residing in its queue get rerouted to the link
source. End-to-end delay are averaged over all sessions.

5 of 6

Paper ID# 901159.PDF

high. In addition, SP routing has good delay performance
in the low load condition but it achieves lower throughput
compared to the other two routing algorithms.

C. Routing Performance with Digital Fountain Solution

In Fig. 5, we show delay performance of DB routing
with the digital fountain solution versus code factor
which is equal to l/code rate for networks with and
without failures. It can be observed from this figure that
end-to-end file transfer delay of DB routing decreases
when the code factor increases from 1; then it increases
when the code factor reaches a certain optimal value.
In addition, end-to-end packet delay always increases
when the code factor increases for both networks with
and without failures. These results can be interpreted
as follows. With the increase in the code factor, source
nodes add increasing amount of redundant information
into the original data. Addition of more redundant infor
mation would reduce the end-to-end file transfer delay
for low code factors because a receiver can reconstruct
an original file by using a smaller fraction of the encoded
file. However, adding more redundant information also
increases network load and, therefore, congestion in
the network which would potentially increase queueing
delay. Therefore, there exists an optimal code factor
which depends on network load and failure rates. In
contrast, packet delay always increases with increased
code factor because individual packets do not benefit
from the use of coding.

In Fig. 6, we compare delay performances of DB and
HybridDB routing algorithms with the digital fountain
solution for different values of code factors. This figure
shows that by employing the digital fountain solution,
HybridDB routing can further improve delay perfor
mance compared to the original DB routing. Also, there
exists an optimal code factor for the HybridDB routing
which is smaller than the optimal code factor under
the DB routing. This is because the HybridDB routing
algorithm tends to use shorter routes which makes the
network "more congested" compared to the DB routing
algorithm. Finally, we compare delay performances of
DB and HybridDB routing algorithms with and without
the digital fountain solution versus failure rates in Fig.
7. Again, HybridDB routing using the digital fountain
solution achieves the best file transfer delay performance
compared to other algorithms.

IV. CONCLUSIONS

In this paper, we investigated delay performances of
the DB routing algorithm and its enhanced versions

for networks with link failures. Specifically, we have
shown through extensive numerical investigation that SP
routing achieves good delay performance in the low
network load regime but it has very low throughput
performance compared to the DB routing algorithm. In
addition, by combining the principles of both SP and DB
routing algorithms, HybridDB routing has better delay
performance than DB routing while achieving similar
throughput performance. Moreover, the digital fountain
approach can be combined with DB or HybridDB routing
to further improve end-to-end file transfer delay. Finally,
there exists an optimal code factor which results in the
minimum end-to-end file transfer delay which depends
on the network load and failure probability.

REFERENCES

[1] R. Bhandari, Survivable Networks: Algorithms for Diverse Rout
ing, Kluwer Academic Publishers, 1999.

[2] E. Modiano and A. Narula-Tam, "Survivable lightpath routing:
A new approach to the design of WDM-based networks," IEEE
J. Sel. Areas Commun., vol. 20, no. 4, pp. 800-809, 2002.

[3] A. Narula-Tam, E. Modiano, and A. Brzezinski, "Physical topol
ogy design for survivable routing of logical rings in WDM-based
networks," IEEE J. Sel. Areas Commun., vol. 22, no. 8, pp. 1525
1538, 2004.

[4] Christian Huitema, Routing in the Internet, Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1995.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Second Edition. The MIT Press,
September 2001.

[6] L. Tassiulas and A. Ephremides, "Stability properties of con
strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks," IEEE Trans. Aut. Con
trol, vol. 37, no. 12, pp. 1936-1948, Dec. 1992.

[7] M. J. Neely, E. Modiano, and C. E. Rohrs, "Dynamic power
allocation and routing for time varying wireless networks," IEEE
J. Sel. Areas Commun., vol. 23, no. 1, pp. 89-103, Jan. 2005.

[8] W. F. Khan, "Autonomous routing algorithms for networks with
wide-spread failures: A case for differential backlog routing."
Master thesis, Massachusetts Institute of Technology, 2008.

[9] M. Neely, "Delay analysis for max weight opportunistic schedul
ing in wireless systems," Allerton 2008, Sept. 2008.

[10] L. B. Le, K. Jagannathan, and E. Modiano, "Delay analysis
of maximum weight scheduling in wireless ad hoc networks,"
CISS'2009, Mar. 2009.

[11] A. Warrier, S. Janakiraman, and I. Rhee, "DiffQ: Practical
differential backlog congestion control for wireless networks,"
INFOCOM 2009.

[12] J. W. Byers, M. Luby, and M. Mitzenmacher, "A digital fountain
approach to asynchronous reliable multicast," IEEE J. Sel. Areas
Commun., vol. 20, no. 8, pp. 1528-1540, 2002.

[13] M. Luby, "Information additive code generator and decoder for
communications systems," U.S. Pat. No. 307 487, Oct. 2001.

[14] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman,
"Efficient erasure correcting codes," IEEE Trans. Inf. Theory, vol.
47, pp. 569-584, Feb. 2001.

6 of 6

