Lecture 2
What we hear:
Basic dimensions of auditory experience
What we hear: dimensions of auditory experience

• Hearing: ecological functions (distant warning, communication, prey detection; works in the dark)
• Detection, discrimination, recognition, reliability, scene analysis
• Operating range: thresholds, ceilings, & frequency limits
• Independent dimensions of hearing & general properties
 – Pitch
 – Timbre (sound quality)
 – Loudness
 – Duration
 – Location
 – Distance and Size
• Perception of isolated pure tones
• Interactions of sounds: beatings, maskings, fusions
• Masking (tones vs. tones, tones in noise)
• Fusion of sounds & the auditory "scene":
 – how many objects/sources/voices/streams?
• Representation of periodicity and spectrum
• Power spectrum and auditory filter metaphors
• Analytical (Helmholtz) vs. Gestalt (Stumpf) perspectives
Hearing: ecological functions

- Distant warning of predators approaching
- Identification of predators
- Localization/tracking of prey
- Con-specific communication
 - Mating/competition
 - Cooperation (info. sharing)
 - Territory
- Navigation in the dark

http://www.pbs.org/wgbh/nova/wolves/

http://www.pbs.org/lifeofbirds/songs/index.html

bat-eared fox
http://www.essex.ac.uk/psychology/hearinglab/index.htm
The auditory scene: basic dimensions

Temporal organization
- Events
- Notes
- Temporal patterns of events

Organization of sounds
- Voices, instruments
- Streams
- Objects
- Sources

Attributes of sounds
- **Loudness** (intensity)
- **Pitch** (dominant periodicity)
- **Timbre** (spectrum)
- **Duration**
- **Location** (bearing, range)
Auditory qualities in music perception & cognition

<table>
<thead>
<tr>
<th>Quality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td>Melody, harmony, consonance</td>
</tr>
<tr>
<td>Timbre</td>
<td>Instrument voices</td>
</tr>
<tr>
<td>Loudness</td>
<td>Dynamics</td>
</tr>
<tr>
<td>Organization</td>
<td>Fusions, objects. How many voices?</td>
</tr>
<tr>
<td>Rhythm</td>
<td>Temporal organization of events</td>
</tr>
<tr>
<td>Longer pattern</td>
<td>Repetition, sequence</td>
</tr>
<tr>
<td>Mnemonics</td>
<td>Familiarity, novelty</td>
</tr>
<tr>
<td>Hedonics</td>
<td>Pleasant/unpleasant</td>
</tr>
<tr>
<td>Affect</td>
<td>Emotional associations, meanings</td>
</tr>
<tr>
<td>Semantics</td>
<td>Cognitive associations/expectations</td>
</tr>
</tbody>
</table>
Basic auditory qualities
Dimensions of auditory perception

- **Pitch**
- **Location**
- **Timbre**
- **Loudness**

FUSION

Grouping into separate objects
Temporal co-occurrence
Harmonic structure

TEMPORAL EVENT STRUCTURE

Meter, sequence

- John Lurie
- Car Cleveland
- Music from Stranger than Paradise
Visual scene

Line
Shape
Texture
Lightness
Color
Transparency

Objects
Apparent distance
Apparent size
etc.

LIFE MAGAZINE COVER,
Margaret Bourke-White
Fort Peck Dam, Montana (1st Life Cover)
November 23, 1936.
Sound level basics

- Sound pressure levels are measured relative to an absolute reference
- (re: 20 micro-Pascals, denoted Sound Pressure Level or SPL).
- Since the instantaneous sound pressure fluctuates, the average amplitude of the pressure waveform is measured using root-mean-square RMS. (Moore, pp. 9-12)
- \[
\text{Rms}(x) = \sqrt{\text{mean}(\text{sum}(x_t^2))}
\]
- Where \(x_t \) is the amplitude of the waveform at each instant \(t \) in the sample
- Because the dynamic range of audible sound is so great, magnitudes are expressed in a logarithmic scale, decibels (dB).
- A decibel of amplitude expresses the ratio of two amplitudes (rms pressures, P1 and P_reference) and is given by the equation:
 \[
 \text{dB} = 20 \times \log_{10}(\text{P1}/\text{P_reference})
 \]
 20 dB = 10 fold change in rms level
Decibel scale for relative amplitudes (levels) (rules of thumb)

20 dB = fold change amplitude
10 dB = 3+ fold change
6 dB = 2 fold change amplitude
3 dB = 1.4 fold change
2 dB = 1.26 fold change (26 %)
1 dB = 1.12 fold change (12%)
0 dB = 1 fold change (no change)
-6 dB = 1/2
-20 dB = 1/10 fold change
Perceptual functions

Subjective vs. objective measures

Subjective measures
 Magnitude estimation

Objective measures
Detection: capability of distinguishing the presence or absence of a stimulus (or some aspect of a stimulus, e.g. AM detection)
Threshold: the value of a stimulus parameter at which a stimulus can be reliably detected
Sensation level (SL): sound level re: threshold

Discrimination: capability of distinguishing between two stimuli
Difference limen: the change in a stimulus parameter required for reliable discrimination, just-noticeable-difference (jnd)
Weber fraction: Difference limen expressed as proportional change (e.g. $\Delta f/f$)

Matching task
Two-alternative forced choice (2AFC)

Recognition: correct identification of a particular stimulus
Dynamic range

0 dB SPL is set at 20 microPascals
60 dB SPL is therefore a 1000 fold change in RMS over 0 dB

A typical background sound level is 50-60 dB SPL.

Dynamic range describes the range of sound pressure levels.

The auditory system registers sounds from 20 dB to >> 120 dB SPL

The auditory system has a dynamic range in excess of 100 dB (!) or a factor of $10^5 = 100,000$ in amplitude.

It is quite remarkable that musical sounds remain recognizable over most of this range. This a fundamental aspect of hearing that all auditory theories must address -- how auditory percepts remain largely invariant over this huge range (perceptual constancy).
Typical sound levels in music

- Pain > 130 dB SPL
- Loud rock concert 120 dB SPL
- Loud disco 110 dB SPL
- fff 100 dB SPL
- f (forte, strong) 80 dB SPL
- p (piano, soft) 60 dB SPL
- ppp 40 dB SPL

- Lower limit
- Threshold of hearing 0 dB SPL

- Musical notation ranges from Pierce, Science of Musical Sound, p. 325

On origins of music dynamics notation

http://www.wikipedia.org/wiki/Pianissimo

In music, the word dynamics refers to the volume of the sound. The renaissance composer Giovanni Gabrieli was one of the first to indicate dynamics in music notation. The two basic dynamic indications in music are piano, meaning "softly" or "quietly", usually abbreviated as p; and forte, meaning "loudly" or "strong", usually abbreviated as f. More subtle degrees of loudness or softness are indicated by mp, standing for mezzo-piano, and meaning "half-quiet"; and mf, mezzo-forte, "half loud". Beyond fand p, there is ff, standing for "fortissimo", and meaning "very loudly"; and pp, standing for "pianissimo", and meaning "very quietly". To indicate even more extreme degrees of intensity, more ps or fs are added as required. fff (fortississimo) and ppp (pianississimo) are found in sheet music quite frequently, but more than three fs or ps is quite rare. It is sometimes said that pppp stands for pianissississimo, but such words are very rarely used either in speech or writing, even when present in a score. There is some evidence that this use of an increasing number of letters to indicate greater extremes of volume stems from a convention dating from the 17th century where p stood for piano, pp stood for più piano (literally "more quietly") and, by extension, ppp indicated pianissimo. Antonio Vivaldi seems to have written using this convention, but it was largely replaced by the above, more familiar, system by the middle of the 18th century.
Typical sound pressure levels in everyday life

(The Decibel Scale: Some typical sound levels)

<table>
<thead>
<tr>
<th>Quietest perceivable sound</th>
<th>Quiet bedroom</th>
<th>Normal conversation</th>
<th>Lathe</th>
<th>Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Front end loader | Lawn mowing | Grinding | Chainsaw

(Reproduced courtesy of WorkSafe, Department of Consumer and Employment Protection, Western Australia (www.safetyline.wa.gov.au). The graphic being that at the bottom of: http://www.safetyline.wa.gov.au/institute/level2/course18/lecture54/l54_03.asp)
Demonstrations

- Demonstrations using waveform generator
- Relative invariance of pitch & timbre with level
- Loudness matching
- Pure tone frequency limits
- Localization
Loudness

Dimension of perception that changes with sound intensity (level)

Intensity ~ power;
Level~amplitude

Demonstration using waveform generator
Masking demonstrations

Magnitude estimation
Loudness matching
Sound level meters and frequency weightings
Intensity discrimination improves at higher sound levels

Best Weber fraction $\Delta L/L$ is about 1 dB

A comparison of just noticeable intensity differences (averaged across frequencies) for various species. Man (open symbols): red (Dimmick & Olson, 1941), orange (experiment I), blue (experiment III, Harris, 1963); cat: purple (Raab & Ades, 1946; Elliott & McGee, 1965); rat: pink (Henry, 1938; Hack, 1971); mouse: brown (Ehret, 1975b); parakeet: green (Dooling & Saunders, 1975b).

Figure adapted from cited sources above.
Loudness as a function of pure tone level & frequency

Absolute detection thresholds on the order of 1 part in a million, \(\Delta \text{pressure} \approx 1/1,000,000 \text{ atm} \) (Troland, 1929)

Constant-loudness curves for persons with acute hearing. All sinusoidal sounds whose levels lie on a single curve (an *isophon*) are equally loud. A particular loudness-level curve is designated as a loudness level of some number of phons. The number of phons is equal to the number of decibels only at the frequency 1,000 Hz.
Loudness perception: perceived growth of loudness w. level

Perceived loudness of tones of various frequencies as a function of physical intensity.

- 1,000 Hz
- 10,000 Hz
- 100 Hz
Curves showing threshold of hearing at various frequencies for a group of Americans: 1 percent of the group can hear any sound with an intensity above the 1 percent curve; 5 percent of the group can hear any sound with an intensity above the 5 percent curve; and so on.
Progressive loss of sensitivity at high frequencies with increasing age. The audiogram at 20 years of age is taken as a basis of comparison.

(From Morgan, 1943, after Bunch, 1929.)
Dynamic range of some musical instruments

Range of pitches of pure & complex tones

• Pure tone pitches
 – Range of hearing (~20-20,000 Hz)
 – Range in tonal music (100-4000 Hz)

• Most (tonal) musical instruments produce harmonic complexes that evoke pitches at their fundamental frequencies (F0’s)
 – Range of F0’s in tonal music (30-4000 Hz)
 – Range of missing fundamental (30-1200 Hz)
Emergent pitch

Missing F0

Line spectra

Autocorrelation (positive part)

Pure tone

200 Hz
Correlograms: interval-place displays (Slaney & Lyon)

Frequency (CF)

Autocorrelation lag
Frequency ranges of (tonal) musical instruments
Frequency ranges: hearing vs. musical tonality

(Courtesy of Malcolm Slaney (Research Staff Member of IBM Corporation). Used with permission.)

Musical tonality
Octaves, intervals, melody: 30-4000 Hz

Range of hearing
Ability to detect sounds: ~ 20-20,000 Hz

Temporal neural mechanism

Place mechanism
Duplex time-place representations

temporal representation
- **level-invariant**
 - strong (low fc, low n)
 - weak (high fc, high n; F0 < 100 Hz)

place-based representation
- **level-dependent**
 - coarse

Similarity to place pattern

cf. Terhardt's spectral and virtual pitch
Pitch dimensions: height & chroma

Contrast between one-dimensional and two-dimensional models of pitch perception. Notes of a scale played on an ordinary instrument spiral upward around the surface of a cylinder, but computer-generated notes can form a Shepard scale that goes around in circle.

Chroma helix after Drobisch (1852).
Pitch height and pitch chroma

Typical human performance for pure-tone frequency discrimination.
Pure tone pitch discrimination becomes markedly worse above 2 kHz

Weber fractions for frequency ($\Delta f/f$) increase 1-2 orders of magnitude between 2 kHz and 10 kHz
Pure tone pitch discrimination improves at longer tone durations and at higher sound pressure levels.
Note durations in music

Timbre: a multidimensional tonal quality

tone texture, tone color distinguishes voices, instruments

Stationary Aspects
(spectrum)

Dynamic Aspects
△ spectrum
△ intensity
△ pitch
attack
decay

Vowels

Consonants

(Photo Courtesy of Pam Roth. Used with permission.)

Photo Courtesy of Per-Ake Bystrom. Used with permission.)

Photo Courtesy of Miriam Lewis. Used with permission.)

http://www.wikipedia.org/
Stationary spectral aspects of timbre

Waveforms

[ae]
F0 = 100 Hz

[ae]
F0 = 125 Hz

[er]
F0 = 100 Hz

[er]
F0 = 125 Hz

Power Spectra

Formant-related Vowel quality Timbre

Autocorrelations

Pitch periods, 1/F0

100 Hz 125 Hz

Time (ms) Frequency (kHz) Interval (ms)
Timbre dimensions: spectrum, attack, decay

Masking (tone vs. tone)

Demonstration: tones in noise; tones vs. tones
Masking audiograms

Wegel & Lane, 1924
Please see http://www.zainea.com/masking2.htm for a discussion of masking.
Tone on tone masking curves (Wegel & Lane, 1924)
From masking patterns to "auditory filters" as a model of hearing

Power spectrum
Filter metaphor

Notion of one central spectrum that subserves perception of pitch, timbre, and loudness

2.2. Excitation pattern Using the filter shapes and bandwidths derived from masking experiments we can produce the excitation pattern produced by a sound. The excitation pattern shows how much energy comes through each filter in a bank of auditory filters. It is analogous to the pattern of vibration on the basilar membrane. For a 1000 Hz pure tone the excitation pattern for a normal and for a SNHL (sensori-neural hearing loss) listener look like this: The excitation pattern to a complex tone is simply the sum of the patterns to the sine waves that make up the complex tone (since the model is a linear one). We can hear out a tone at a particular frequency in a mixture if there is a clear peak in the excitation pattern at that frequency. Since people suffering from SNHL have broader auditory filters their excitation patterns do not have such clear peaks. Sounds mask each other more, and so they have difficulty hearing sounds (such as speech) in noise. --Chris Darwin, U. Sussex,
http://www.biols.susx.ac.uk/home/Chris_Darwin/Perception/Lecture_Notes/Hearing3/hearing3.html
Shapes of perceptually-derived "auditory filters" (Moore)
Binaural localization

Azimuth:
 interaural time differences (20-600 usec)
 interaural level differences

Elevation:
 received spectrum of broadband sounds (pinna effects)

Please see Figure 2.1 in Woodworth, Robert Sessions, 1869-1962. Experimental Psychology. New York: H. Holt and company, c1938.
Interaural time difference and localization of sounds