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Abstract 

Aviation is an industry that has seen tremendous growth in the last several decades.  With 

demand for aviation projected to rise at an annual rate of 5% over the next 20 to 25 years, it is 

important to consider technological, operational, and policy changes that can help accommodate 

the forecasted growth while minimizing detrimental effects to the environment, which include 

aircraft noise, air quality degradation, and climate change.  This thesis presents a new method to 

quantify the monetary impacts of aviation-related noise, which are of particular interest to 

policymakers and other aviation stakeholders for the evaluation of policy options and tradeoffs. 

Previous studies on the monetization of aviation noise impacts typically used the hedonic pricing 

method to estimate noise-induced property value depreciation.  However, this approach requires 

detailed data on local real estate markets, which are not readily available at a fine resolution for 

many airports regions around the world.  The new monetization model developed in this thesis is 

based on city-level personal income, which is often more widely available than real estate data.  

At the core of the approach is a meta-analysis of 60 hedonic pricing noise studies from North 

America, Europe, and Australia, which was used to derive a general relationship between 

average personal income and the Willingness to Pay (WTP) for noise abatement by means of a 

multivariate regression analysis.  Several explanatory variables were introduced, and a backward 

selection procedure was used so that the final regression contained only parameters that have a 

significant effect on WTP.  The resulting model expressed WTP for noise abatement as a 

function of the city-level average personal income and an interaction term, which is the product 

of the income and a dummy variable for non-US airports.  Applying the new model to income 

data, noise contours, and population data for 178 airports worldwide, the global capitalized 

monetary impacts of commercial aviation noise in 2005 were estimated to be $25.0 billion, with 

a standard deviation of $2.2 billion.  Comparison with previous results yielded a difference of 

less than 17%, demonstrating convergent validity of the new model. 

Uncertainty assessment of the income-based model was conducted in order to understand the 

sources of uncertainty and how they may limit the model’s functionality and applicability.  

Monte Carlo Simulations were used to explicitly quantify the propagation of uncertainties.  

Local, global, and distributional sensitivity analyses were also performed to investigate how each 

model input contributes to output variability, and to prioritize the inputs on which future research 
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should be directed.  The results suggested that further research should be conducted to expand 

the meta-analysis data set, with a particular emphasis on low-income nations where few noise 

studies currently exist.  A more comprehensive meta-analysis data set would elucidate the 

relationship between income and WTP for noise abatement, thereby reduce epistemic uncertainty 

and broaden model applicability. 

 

Thesis Supervisor:  Ian A. Waitz 

Title:  Department Head and Jerome C. Hunsaker Professor of Aeronautics and Astronautics   
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1 Introduction 

The advent of human flight over 100 years ago was one of the most defining scientific 

achievements of the modern age.  Aviation is an industry that has vitalized national economies, 

enabled the mobility of millions of people, and helped to establish a global society that is 

unprecedented in its interconnectivity.  The growth of aviation over the last several decades has 

been unmatched by any other major form of transportation, and is expected to continue at a rate 

of about 5% per year for the next 20 to 25 years [Society of British Aerospace Companies, Metz 

et al. (2007)].  However, with this progress comes a price, as the environmental impacts of 

aviation have become increasingly important in the last 50 years.  A 2000 survey by the United 

States General Accounting Office revealed that 72% of delayed work and 25% of cancelations in 

US airport expansion projects have been due to environmental issues [GAO (2000)].   

Environmental concerns associated with aviation include aircraft noise, air quality degradation, 

water pollution, and climate change.  Of these issues, aircraft noise is the one with the most 

immediate and perceivable community impact, and was thus the first to be regulated when 

negative public reactions surged in the 1960’s due to the proliferation of commercial jet aircraft.  

In 1969, the United States Federal Aviation Administration (FAA) adopted Part 36 of Title 14 of 

the Code of Federal Regulations (CFR), which set forth noise certification standards for 

commercial aircraft [FAA (2004b)].  In 1971, the International Civil Aviation Organization 

(ICAO) published Annex 16: Environmental Protection, Volume I: International Noise 

Standards, which has subsequently been updated for newer aircraft technologies [ICAO (2005)].  

In 1979, the US Congress enacted the Aviation Safety and Noise Abatement Act, which led to 

the establishment of 14 CFR Part 150 and guidelines for compatible land use surrounding airport 

regions [FAA (2004a)].  Similar aviation noise directives have also been enacted in other parts of 

the world, for example in the European Union [European Parliament (2002)], Australia 

[Commonwealth of Australia Law (2010)], and Japan [Ministry of the Environment (2000)]. 

As a result of legislations and technological improvements, significant progress has been made to 

mitigate aviation-related noise over the last few decades.  In the US, the number of people 

impacted by aircraft noise has dramatically decreased over the past 35 years, despite a six-fold 

increase in mobility during that period [Waitz et al. (2004)].  However, the aviation noise 

problem is far from eradicated.  Worldwide, there are still more than 14 million people exposed 
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to at least 55 dB of commercial aviation noise, incurring an equivalent of $1.1 billion per year in 

housing value depreciation, and an additional $800 million per year in rental value loss [Kish 

(2008)].  About 42% of those monetary noise impacts are in the US.  A survey of the 50 busiest 

airports in the US revealed that noise is the most serious environmental issue in aviation [GAO 

(2000)].  Similarly in Europe, noise is also cited as the dominant concern, comprising a large 

share of the total monetary environmental impacts [Schipper (2004)].  Given that long-term 

growth in aviation is anticipated despite the recent global economic downturn, it is expected that 

environmental issues will continue to increase in prominence and urgency [FAA (2009b)].  

Therefore, when assessing the potential of future technological, operational, or policy options, it 

is crucial to consider these matters so as to make decisions that are both economically feasible 

and environmentally responsible.  Balancing competing environmental and economic interests 

presents a challenge for policymakers, aircraft designers, aircraft manufacturers, and other 

aviation stakeholders.  Adding to the complexity is that there exist numerous interdependencies 

among aircraft noise emissions, air quality, and climate impacts, such that any mitigation efforts 

must consider the full spectrum of environmental implications and tradeoffs.  It is a difficult 

problem influenced by politics, budget constraints, and uncertainties in forecasting future events.  

1.1 Project Scope 

In order to address some of various environmental challenges facing the future of aviation, the 

FAA, along with the National Aeronautics and Space Administration (NASA) and Transport 

Canada, established the Partnership for AiR Transportation Noise and Emissions Reduction 

(PARTNER), a Center of Excellence and academic research consortium.  It comprises of nine 

universities and approximately 50 advisory board members from industry, academia, and 

government working together to address the myriad environmental challenges of aviation, which 

affect aircraft design, performance, emissions, efficiency, operations, economics, and alternative 

fuels [PARTNER (2010)].  The work of this thesis falls within the scope of PARTNER Project 

3: Valuation and Trade-offs of Policy Options.   
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Figure 1: Aviation Environmental Tools Suite [PARTNER (2010)] 

Project 3, under the auspices of the FAA’s Office of Environment and Energy (AEE), has as its 

goal to contribute to the development of a comprehensive set of tools, known as the Aviation 

Environmental Tools Suite (Figure 1), and to more thoroughly assess the environmental impacts 

of aviation activity.  The inputs to the tools suite are aviation policies or scenarios of interest, 

which may pertain to regulations (e.g. noise and emissions stringencies, changes to aircraft 

operations and procedures), finances (e.g. fees or taxes), or anticipated technological 

improvements.  These inputs are processed through several modules to produce a cost-benefit 

analysis that explicitly details the monetized benefits of the policy with respect to a well-defined 

baseline [Waitz et al. (2006)].   

The modules within the tools suite framework include the Environmental Design Space (EDS), 

the Aviation Environmental Design Tool (AEDT), and the Aviation environmental Portfolio 

Management Tool (APMT).  An in-depth discussion of each of these modules may be found in 

Mahashabde (2009).  The EDS estimates the source noise, emissions, performance, and vehicle 

cost characteristics associated with particular aircraft and engine designs, or with proposed 

technologies.  The AEDT receives aircraft design characteristics from EDS and computes the 

corresponding noise and emissions footprints.  Within the realm of APMT, there are the 

Economics and Impacts modules.  The APMT-Economics module receives information 

regarding vehicle cost and performance from EDS, and models the air transportation supply and 

demand responses necessary to meet future demands for aviation.   
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The APMT-Impacts module aims to provide policymakers and stakeholders with the capability 

to evaluate the physical and socio-economic impacts of environmental policy alternatives, which 

are presented as public and private mitigation costs and public environmental benefits [Waitz et 

al. (2006)].  It consists of three areas of focus: climate impacts, air quality impacts, and noise 

impacts (Table 1).  The APMT-Impacts Climate Module estimates the globally-averaged impact 

of aircraft emissions on surface temperature and the monetary value of the resulting effects on 

health, well-being, and ecology.  The Air Quality Module estimates incidences of mortality and 

morbidity from primary and secondary particulate matter, as well as their associated monetary 

value.  More details regarding the development and application of the Climate and Air Quality 

Modules may be found in [Brunelle-Yeung (2009), Fan (2010), Mahashabde (2009), and Marais 

et al. (2008)]. 

Table 1: Overview of environmental impacts modeled in APMT 

Impact Type Effects Modeled 
Primary Metrics 

Physical Monetary 

Climate 

 CO2 

 Non-CO2: NOx-O3, cirrus, 

sulfates, soot, H2O, 

contrails, NOx-CH4, NOx-

O3 long 

 Globally-averaged 

surface temperature 

change 

 Annual impacts 

 Net present value 

Air Quality 

 Primary particulate matter 

(PM) 

 Secondary PM by NOx and 

SOx 

 Incidences of 

mortality and 

morbidity 

 Annual impacts 

 Net present value 

Noise 

 Property value 

depreciation (owner-

occupied and rental 

properties) 

 Population exposed 

to noise 

 Noise exposure 

area 

 Capitalized impacts 

 Annual impacts 

 Net present value 

 

The work of this thesis focuses on the development of a new noise monetization model for use in 

the APMT-Impacts Noise Module.  The motivation behind the project is to create a model that 

has fewer data limitations than the previous approach employed by Kish (2008), and is more 

widely applicable for estimating global noise impacts.  The main deliverable is a fully-

functioning model within the larger Aviation Environmental Tools Suite that may be used to 

estimate the physical and monetary noise impacts associated with aviation environmental 
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policies.  The overarching goal of the model is to support cost-benefit analyses that may help 

inform policy assessment and decision-making.  

1.2 Thesis Organization 

This thesis is composed of eight chapters.  The structure and content of the remaining chapters 

are briefly described below. 

Chapter 2 provides an overview of aviation noise impacts, including how they are measured and 

methods used for their assessment.  It also presents previous work pertaining to the APMT-

Impacts Noise Module, and the motivation for the current thesis. 

Chapter 3 introduces the connection between the current project and the field of environmental 

economics, and presents a literature review of various valuation methods used for environmental 

goods, with a particular focus on aviation noise.  It also discusses the role of meta-analysis in 

environmental economics, as well as how benefit transfer may be employed to apply the findings 

from one study to estimate impacts in other locales. 

Chapter 4 presents a detailed discussion of the development process for the new income-based 

hedonic noise monetization model to be integrated into the APMT-Impacts Noise Module.  It 

describes the adapted meta-analysis of existing aircraft noise studies, the data search to 

supplement primary study findings, statistical methods used for multivariate regression, and 

finally, the derivation of a relationship between income and Willingness to Pay for noise 

abatement, which can be used for global benefit transfer of monetary aviation noise impacts.   

Chapter 5 details how the income-based hedonic noise monetization model can be applied for 

environmental policy analysis.  It describes the various inputs of the model and their associated 

assumptions, as well as how they fit together in the algorithm to produce the desired outputs.  

Chapter 5 also introduces the lens concept for selecting a particular combination of model 

parameters to assess proposed policy measures.  This chapter concludes with a discussion of 

some of the key limitations of the model and their implications for model applicability and 

validity. 
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Chapter 6 describes the uncertainty assessment of the income-based hedonic noise monetization 

model.  Some key steps include classification of uncertainty sources, quantification of 

uncertainty propagation using Monte Carlo Simulation, and conducting local, global, and 

distributional sensitivity analyses to characterize the contribution of each model input to output 

variability.   

Chapter 7 describes the use of the new income-based hedonic noise monetization model to solve 

a sample problem on global aviation noise impacts.  The results of this exercise are compared to 

previous findings from the APMT-Impacts Noise Module, hence providing a benchmark 

measure of model validity. 

Chapter 8 summarizes the findings and conclusions of this thesis and highlights areas of the 

project that may benefit from additional research. 

1.3 Thesis Contributions  

The objectives of this thesis center on the development of a new noise monetization model for 

integration into the APMT-Impacts Module, and the Aviation Environmental Tools Suite as a 

whole.  Some key contributions include: 

1. Conducted a comprehensive meta-analysis of hedonic pricing studies for aviation-

related noise to understand trends in the literature which may enable benefit transfer 

of aircraft noise impacts on an international scale. 

2. Developed a globally-applicable regression model relating the Willingness to Pay for 

aviation noise abatement to city-level income. 

3. Applied the new model to analyze policy measures relevant to environmental issues 

in aviation.   

4. Performed an uncertainty assessment of the model to understand limitations in 

functionality and identify sources of uncertainty which may be reduced through 

further research. 
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2 Background and Motivation 

This chapter provides the motivation for the thesis by presenting an overview of the issues 

relevant to the assessment of aviation-related noise impacts and describing some previous work 

on the subject.  First, a brief summary is provided of several measures commonly used to 

quantify aircraft noise.  Section 2.2 outlines some of the known effects of aviation-related noise 

and describes methods for their evaluation.  Specifically, the estimation of the monetary impacts 

of noise through hedonic pricing with real estate values is addressed, for which further 

elaboration will be provided in Chapter 3.  The last two sections of this chapter discuss the use of 

the hedonic pricing method in the previous work in the APMT-Impacts Noise Module and 

identify the limitations of the approach, which segues into a statement of the need to develop a 

new method to monetize aviation-related noise impacts. 

2.1 Noise Metrics 

Before delving into a discussion about noise impacts, it is first necessary to introduce the 

nomenclature of the field – namely, some metrics that are used to quantify sound, and more 

specifically, noise from aircraft.  The measures described below are by no means a 

comprehensive list of relevant noise metrics, but are terms that will be used repeatedly in 

subsequent sections of this thesis. 

The most basic measure of sound is the Sound Pressure Level (SPL), which is expressed as the 

logarithm of the ratio of a measured pressure to a reference pressure.  The unit of SPL is the 

decibel (dB).  One of the major challenges in applied acoustics is to relate physical measures of 

sound, such as dB, intensity, or frequency, with the subjective perception of sound by human 

listeners, which is often qualified by psychophysiological terms such as loudness or pitch [Kryter 

(1960)].  Furthermore, the source of the sound, as well as the duration, also affects how it is 

perceived.  For example, aircraft noise is perceived to be more annoying to the surrounding 

community than road and rail traffic noise, even when the measured noise levels are equivalent 

[Miedema and Oudshoorn (2001)].  Explanations for this observation include acoustic factors, 

such as the presence of discrete tones in aircraft engine noise, as well as non-acoustic factors, 

such as the fear of an aircraft crashing [Fields (1992)]. 
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Because of difficulties in selecting a single metric to convey the relationship between sound level 

and human response, many measures have been proposed to attempt to quantify aviation-related 

noise.  They are typically sorted into two groups: those that describe noise from a single event, 

and those that refer to the time-averaged sound over multiple events.  For single-event noise, a 

common metric to use is the Sound Exposure Level (SEL), which is the total energy produced 

from the noise event, expressed in dB.  For describing the short-term effects of noise, such as 

sleep awakenings, a metric such as Lmax, the maximum A-weighted
1
 SEL of the event, may be 

appropriate.  Another common metric is the Effective Perceived Noise Level (EPNL or EPNdB), 

which accounts for the duration of the sound and the presence of discrete tones, and is used by 

the FAA as the standard for aircraft noise certification under 14 CFR Part 36.  For longer-term 

effects, such as annoyance or housing value depreciation, a time-averaged measure, such as the 

Equivalent Noise Level (Leq), is more suitable.  The Leq corresponds to a particular time period, 

and represents the constant A-weighted noise level that carries the same amount of energy in that 

duration as the actual, time-varying sounds that occur in the time period.  The most commonly 

chosen length of time is 24 hours, and the 24-hour A-weighted Leq, with a 10 dB penalty applied 

for night time hours,
2
 is known as the Day-Night average sound Level (DNL).  In the US, the 

FAA has established DNL as the primary metric for measuring aircraft noise exposure and 

establishing regulations.  For example, under 14 CFR Part 150, the FAA sets 65 dB DNL to be 

the threshold below which all forms of land use are deemed compatible.  In Europe, the Day-

Evening-Night average sound Level (DENL) is used instead; DENL is very similar to DNL, 

except that it also applies a 5 dB penalty to noise events during evening hours.  Both DNL and 

DENL are expressed in dB. 

2.2 Effects of Aviation-Related Noise 

Noise emission from aviation is an example of an environmental externality, which is defined as 

“a by-product of consumption activities that adversely affects third parties not directly involved 

                                                 
1
 The A-weighted filter adjusts the dB level of noise according to the frequency-dependent response of the 

human hearing mechanism.  For example, it discriminates against low-frequency (below 1 kHz) and very high-

frequency (above 5 kHz) noises because the human ear is less sensitive to sounds at those frequencies.  Many 

metrics used for quantifying aircraft noise employ the A-weighted filter on dB measurements; the weighted 

results have units of dBA.  See Cunniff (1977) for more details about various weighting networks used in 

acoustics. 
2
 In the formulation of DNL, nighttime hours are between 10:00pm and 7:00am.  For DENL, evening hours are 

7:00pm to 11:00pm, and nighttime hours are 11:00pm to 7:00am.   
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in the associated market transactions” [Nelson (2008)].  In this case, the third party in question is 

the people residing near airports, who experience the positive and negative effects of aviation in 

their daily lives.  These effects may be broadly categorized as physical and monetary.   

2.2.1 Physical Effects 

The physical effects of aviation noise include annoyance, sleep disturbance, interference with 

school learning and work performance, and physical and mental health effects.   

2.2.1.1 Annoyance 

Annoyance is one of the readily apparent effects of aviation-related noise, and has been the focus 

of many research studies over the last several decades.  It is the broad term given to the general 

adverse reaction of people to living in noisy environments, and may encompass effects such as 

speech interference, sleep disturbance, conflict with the desire for a tranquil environment, and 

the inability to use the telephone, radio or television satisfactorily [FICON (1992)].  A noise is 

said to be annoying if an individual or a group of individuals would actively try to reduce the 

noise, or avoid or leave the noisy area if possible [Molino (1979)].  Factors that influence an 

individual’s annoyance may be acoustic (e.g. sound level, frequency, duration) or non-acoustic 

(e.g. physiological responses, adaptation and past experience, personality, fear of the noise 

source) [Molino (1979), Passchier-Vermeer and Passchier (2000)].   

Noise level increase is closely related to annoyance and adverse reactions from the affected 

community (Table 2).  Because of this, it is often desirable to estimate the number of people near 

an airport who may be highly annoyed by aircraft noise.  While this number can be explicitly 

determined through community surveys, it is usually predicted by applying an exposure-response 

function to relate DNL and the percentage of the population highly annoyed.  Many such 

relationships have been proposed for aviation as well as other transportation noise sources, for 

example: Schultz (1978), Fidell et al. (1991), FICON (1992), Miedema and Vos (1998), and 

Miedema and Oudshoorn (2001).  A review of the literature on community annoyance due to 

aircraft noise may be found in Kish (2008) and Miller et al. (2008).  Kish (2008) also 

summarizes the relationship between various exposure-response functions and the social survey 

annoyance data provided in Fidell and Silvati (2004) (Figure 2). 
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Table 2: Effects of noise on people (residential land uses only) [FICON (1992)] 

Effects Hearing Loss Annoyance 
Average 

Community 

Reaction 
General Community  

Attitude Towards Area DNL (dB) Qualitative 

Description 

% of 

Population 

Highly 

Annoyed 

75 and 

above 
May begin to 

occur 
37% Very severe 

Noise is likely to be the most 

important of all adverse 

aspects of the community 

environment 

70 Will not likely 22% Severe 
Noise is one of the most 

important adverse aspects of 

the community environment 

65 Will not occur 12% Significant 
Noise is one of the important 

adverse aspects of the 

community environment 

60 Will not occur 7% 
Moderate to 

Slight 

Noise may be considered an 

adverse aspects of the 

community environment 

55 and 

below 
Will not occur 3% 

Moderate to 

Slight 

Noise considered no more 

important than various other 

environmental factors 

 

 

Figure 2: Exposure-response functions for annoyance [Kish (2008)] 
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Prior to this thesis project, the APMT-Impacts Noise Module calculated the percentage of people 

highly annoyed (%HA) as one of the physical impacts of aviation-related noise.  It employed the 

annoyance exposure-response function proposed by Miedema and Oudshoorn (2001), which 

estimated %HA as a function of DNL: 

  (1) 

2.2.1.2 Sleep Disturbance and Health Effects 

Sleep disturbance and health effects are other examples of physical impacts related to aviation 

noise.  Extensive literature reviews on these subjects may be found in McGuire (2009) and Swift 

(2009), respectively.  Some of the key issues identified in the two reports are paraphrased below. 

Nighttime noise from aviation is connected with a number of physiological responses, including 

a higher number of awakenings, changes in the sleep structure, increased heart rate and blood 

pressure, and other potential short-term and long-term health effects.  Griefahn et al. (2008) 

summarized the ways in which nighttime noise can alter sleep patterns, citing increased time to 

fall asleep, prolonged time to reach deeper stages of sleep, less time spent in these deeper stages, 

and a larger number of awakenings lasting longer than three minutes, which constitute conscious 

awakenings.  Potential short-term effects associated with sleep disturbance include next-day 

sleepiness, tiredness, increased annoyance, and poor work performance.  There are also several 

pathways by which aviation noise may lead to long-term health effects; these are mostly 

cardiovascular and metabolic in nature, and include elevation of heart rate and blood pressure, 

changes in hormone regulation that can lead to obesity, and potentially higher chances of 

developing ischemic heart disease and Type 2 diabetes.   

A challenge with using sleep disturbance and health effects to quantify aviation noise impacts is 

that they are difficult to measure in a consistent manner.  In order to characterize nighttime 

awakenings, for example, several types of experiments may be used.  Social surveys can be 

administered to individuals to elicit subjective evaluations of sleep quality.  Motility 

measurements may be made by asking subjects wear accelerometer devices or by placing force 

sensors under bed posts, but their accuracy is debatable.  Polysomnography is another option, 

which involves using several instruments to simultaneously measure electrical activity in the 
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brain and heart, as well as eye and muscle movements.  This approach provides the most detailed 

information about an individual’s sleep patterns, but is highly intrusive and expensive to 

implement.  Sleep awakenings can also be measured by asking subjects to press a button when 

they are awakened at night.  While this method is less intrusive than polysomnography, it is also 

less sensitive, and prone to individuals’ habituation over the length of the study.  In addition to 

myriad options in experimental design, there is also evidence to suggest that sleep disturbance 

measurements can differ significantly depending on whether the study was conducted in the 

laboratory or in the field [Pearsons et al. (1995)].  Other confounding factors include the noise 

metric chosen, the source and duration of the noise, the presence of sound insulation materials, 

the time of night, and the sleep stage of the individual exposed to the noise.  Despite these 

difficulties, however, researchers have nevertheless created models to quantify noise-induced 

sleep disturbance; for example, similar to annoyance, several exposure-response relationships 

have been developed to estimate the percent of people awakened by noise as a function of the 

indoor SEL [FICON (1992), FICAN (1997), Passchier-Vermeer (2003)]. 

To date, the APMT-Impacts Noise Module has not modeled sleep disturbance or health effects 

associated with aviation-related noise.  From August 2009 to March 2010, the FAA held a series 

three workshops entitled Aircraft Noise Impacts Research Roadmap, which drew the 

participation of expert noise researchers from around the world.  The objectives of the 

workshops were to better understand the key questions regarding the impact of aircraft noise on 

sleep and annoyance, and to prioritize research efforts for the future.  As the findings from these 

workshops are released and the recommended research efforts come to fruition, it would be 

desirable to broaden the scope of the APMT-Impacts Noise Module to account for annoyance, 

sleep disturbance, and health effects due to aviation-related noise. 

2.2.2 Monetary Effects 

While the physical effects of aviation noise are important, policymakers and other aviation 

stakeholders are also interested in understanding the monetary impacts of noise in order to assess 

the inflicted damage and evaluate the benefits and tradeoffs of various policy options [Schipper 

et al. (1998)].   
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The monetary effects of aviation noise include housing value depreciation, rental loss, and the 

monetary value of lost work or school performance.  Many studies that investigate the monetary 

impacts of aviation noise quantify housing value depreciation and rental loss through the hedonic 

pricing method,
3
 which uses observed differences in housing markets between noisy and quiet 

areas to determine the implicit value of quietness (or conversely, the cost of noise) [Wadud 

(2009)].  These hedonic pricing studies usually focus on deriving a Noise Depreciation Index 

(NDI) for one airport, which represents the percentage decrease in property value corresponding 

to one decibel increase in the noise level in the region.  Typical NDI values for aviation noise 

found in the literature range from 0% to 2.3% per dB for owner-occupied properties [Wadud 

(2009)], and tend to be similar across countries and stable over time [Nelson and Palmquist 

(2008)].  There is limited literature on the NDI for rental properties; seven studies summarized 

by Nelson and Palmquist (2008) reported estimates between 0.21% and 0.90% per dB, with a 

mean of 0.64% per dB.  The NDI derived from a hedonic pricing study in one area can also be 

applied to property value and noise exposure data from other airport regions to estimate the 

monetary impacts in various locations.
4
 

While the monetary effects of noise are usually communicated independently of the physical 

impacts, the two categories are not necessarily separate – that is, monetary effects may serve as a 

surrogate for the aggregate environmental impacts of aviation noise.  To illustrate this concept, 

consider the explanation put forth by Kish (2008): 

[The] monetary value of noise is not a separate effect that occurs in addition to 

the physical impacts.  Instead, it is a different way to account for them.  Existing 

residents who experience a drop in their house price due to an increase in the 

noise level experience the effect of lost wealth, but the total value of the effects of 

the noise is not the lost housing value plus the value of the annoyance and health 

effects.  It is only the lost housing value… because with that money the person can 

move to an equivalent house in a quieter area and return to his or her original 

level of well-being. 

                                                 
3
 See Chapter 3 for a more in-depth discussion of hedonic pricing as it relates to valuation methods used for 

environmental goods.  
4
 This approach is known as benefit transfer, and is described in detail in Section 3.3. 
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While generally agreeing with Kish (2008)’s statement, Nelson and Palmquist (2008) also point 

out that the monetary value of noise does not necessarily encompass the cost of potential long-

term health effects, though additional research is needed to conclusively link such effects to 

aircraft noise.   

Furthermore, the assessment of monetary impacts through hedonic pricing is a way to quantify 

individuals’ defensive behaviors in response to a perceived risk.  In order for this method to 

capture the full effects of an environmental change, therefore, it is required that the affected 

individual is able to recognize the differences in property value, health, quality of life, etc. 

associated with the change [EPA (2000)].  Specifically for aircraft noise, though the noise itself 

may be readily perceived, it is uncertain that all the potential detrimental effects of noise are 

fully comprehended by the impacted individuals.
5
  If the physical effects of aviation noise are not 

perceived by the population examined in a hedonic pricing study, then the measured monetary 

impacts cannot be used as a surrogate for the physical effects. 

Unfortunately, few studies exist that explicitly address the issue of interactions between the 

physical and monetary impacts of aviation noise.  An example is a study conducted by Jacobs 

Consultancy (2008) in the vicinity of Bob Hope Airport in Burbank, CA, which found that the 

equivalent NDI computed from survey data on annoyance is similar to the NDI estimates from 

previous hedonic pricing models.
6
  Interpreting the results of that study, Nelson and Palmquist 

(2008) concluded that housing value depreciation around the airport is reflective of the 

annoyance costs of aircraft noise, and because of this, and advised against assessing physical and 

monetary impacts separately and then adding them together to represent cumulative impacts, as 

that may lead to an overstatement of the total cost. 

 

                                                 
5
 Section 3.1.2 provides a further discussion on the assumptions used in hedonic pricing studies.  In particular, 

the notion of asymmetric information is addressed, which refers to individual differences in the perception and 

understanding of the detrimental effects of aviation noise. 
6
 The Jacobs Consultancy (2008) study first used a contingent valuation survey (see Section 3.1.1) to collect 

information on the number of people highly annoyed by aircraft noise.  Various exposure-response functions for 

annoyance were used [Finegold et al. (1994), Miedema and Oudshoorn (2001), and Fidell and Silvati (2004)] to 

express noise level as a function of the empirical %HA results, which were then used in a traditional hedonic 

pricing regression analysis to estimate an equivalent NDI. 
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2.3 Previous Work 

Hedonic pricing studies for aviation noise typically assess the localized impacts around one 

airport or a few airports; to date, there has been only one study which estimates the worldwide 

economic impacts of aviation-related noise [Kish (2008)], which was conducted using the 

APMT-Impacts Noise Module.  Previously, the Noise Module employed an NDI of 0.67%, 

which is the weighted-effect size of 33 NDI estimates computed in a meta-analysis of aviation 

noise studies [Nelson (2004)].  Kish (2008) used the Nelson (2004) NDI to estimate the 

monetary impacts of noise around 181 airports, and found that at 2005 levels, commercial 

aviation noise resulted in a total of $21 billion in capitalized housing value depreciation in year 

2006 US Dollars (USD), and an additional $800 million per year in lost rent.
7
  In terms of 

physical impacts, Kish (2008) estimated that there were over 14 million people exposed to at 

least 55 dB DNL of commercial aviation noise; of that group, 2.3 million were highly annoyed. 

2.3.1 Data Availability 

In order to achieve the Kish (2008) results, comprehensive data on population, housing value, 

and rent prices were required for each of the 181 airports.  While population data were available 

globally (see Section 4.2), detailed housing value data were available only for the United States 

and the United Kingdom, and detailed rent price data were even more scarce.  For the US, the 

aggregate value of owner-occupied properties and the aggregate rent paid for renter-occupied 

dwellings were obtained from the 2000 Census on the census block group-level.
8
  In order to 

adjust the property values to year 2006 USD (see Section 4.3), the distribution of housing price 

growth rates from the Office of Federal Housing Enterprise Oversight was used; it was assumed 

that both housing and rental prices increased at the same annual rate.  For the UK, the housing 

price data were obtained for postcode sectors in 2001 from the UK Land Registry, and adjusted 

to year 2006 prices using the appropriate house price indices. 

                                                 
7
 An NDI of 0.67% was used to estimate both housing value depreciation and rental loss, since the existing 

literature suggests that NDI values for owner-occupied properties and rental properties are similar. 
8
 The US Census Bureau defines a census block group (BG) as “a cluster of census blocks having the same first 

digit of their four-digit identifying numbers within a census tract… BGs generally contain between 600 and 

3,000 people, with an optimum size of 1,500 people” [US Census Bureau (2005)]. 
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2.3.2 House Price Model 

Outside of the US and the UK, Kish (2008) used a model developed by ICF International to 

estimate housing and rental values around each airport.  The model estimates the house price as a 

function of several variables, including distance away from an airport, and subsequently 

approximates the rent price at a given distance based on the house price at that location [ICF 

International (2008)].  The ICF International model was developed based on census block group-

level housing value data for 227 US airports that had commercial operations in 2000; the 

geographical extent of the data was a 25-mile radius around each airport.  The resulting model 

estimates the house price, P, based on a regression equation of the form: 

 
  

(2) 

where:  = Estimated house price in USD 

Intercept = Regression intercept 

Distance = Distance between the house location and the airport in miles 

 Pop density = County-level population density per square mile of land area 

 GDP per cap = State-level GDP per capita in thousands of USD 

 Enplaned pax = Number of enplaned passengers in 2000 in thousands 

 Dummyj = Dummy variable for airport j 

  = Regression coefficient 

In addition to distance away from the airport, Equation 2 above also controls for several other 

explanatory variables, such as the population density of the region, the Gross Domestic Product 

(GDP) per capita, the number of enplaned passengers, a regression intercept, and a dummy 

variable for each airport.   
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Table 3: Regression results of ICF International house price model [ICF International (2008)] 

Variable Coefficient t-statistic 95% Confidence Interval 

Intercept 11.4817000 791.56 [11.45327, 11.51013] 

Distance 0.0265700 28.73 [0.02476, 0.02839] 

Distance
2
 -0.0006708 -19.88 [-0.00073691, -0.00060466] 

Pop density 0.0000037 22.53 [0.00000338, 0.00000403] 

GDP per cap 0.0005854 2.26 [0.00007877, 0.00109] 

Enplaned pax 0.0000101 27.65 [0.00000938, 0.00001082] 
 

No. of observations 170,020 

R
2
 0.4177 

Adjusted R
2
 0.4169 

 

Table 3 shows the coefficients of the regression model derived from 170,020 observations in the 

US.  All non-dummy regression variables, with the exception of GDP per capita, were 

statistically significant at the 1% level.  The coefficient of the distance variable was positive, 

suggesting that the presence of an airport nearby has a detrimental effect on property value.  The 

distance squared variable was introduced to address the hypothesis that the unfavorable 

consequences of airports on house prices will likely taper off after a certain distance.  That a 

negative and statistically significant coefficient was observed for this variable lends credence to 

the hypothesis.  The population density variable was introduced to attempt to capture the local 

real estate situation; for example, one might expect that, all else being equal, a high population 

density would exert upward pressure on housing values, making for a positive coefficient [ICF 

International (2008)].  The GDP per capita was included as a proxy for the standard of living in 

the airport region; therefore, a positive coefficient was reasonable for this variable.  The 

enplaned passengers variable was expected to capture any positive (e.g. employment 

opportunities) or negative effects (road congestion, aircraft noise) due to the size of the airport.  

The value of the regression intercept depends on the average house price in the airport region.  

For US airports, this value is 11.48, as derived from the regression; for foreign airports, the 

intercept must be computed by solving Equation 2 with P set to the city-level average house 

price and distance set to 20.3 miles, which is the average distance for which the average house 

price was obtained with the regression equation for several US cities.  Finally, a dummy variable 
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was included for each of the airports in the regression analysis to address any local eccentricities 

not accounted for by the other variables.   

Similar to the house price model, ICF International also developed a model to estimate rent 

prices as a function of distance away from an airport, which requires housing values computed 

from the house price model as one of the inputs.  As it bears many similarities to the house price 

model, the details of the rent price model will not be discussed in this thesis; the interested reader 

is referred to ICF International (2008) and Kish (2008). 

2.3.3 Limitations 

While the ICF International house price model facilitated the APMT-Impacts Noise Module to 

perform global estimates of aviation noise impacts, and was indispensable to the Kish (2008) 

analysis, it nevertheless has several limitations that must be noted.  Primary among the concerns 

is that the model was derived solely from US data but applied worldwide, and therefore assumes 

that the property value – airport distance relationship observed in the US real estate market is 

transferable to foreign markets.  Whether this use of benefit transfer (see Section 3.3) is valid is 

difficult to judge due to the challenges in obtaining property value data for locations outside of 

the US and the UK.  Kish (2008) tested the results of the house price model with real estate data 

within 25 miles of UK’s Heathrow, Gatwick, and Manchester airports (Figure 3).  The ICF 

International model predicted house prices to within 47% of the actual 0.5 mile or 0.75 mile 

band-averaged prices around Heathrow and Gatwick; for Manchester, the discrepancy was up to 

70% [Kish (2008)].  While these errors are not unreasonable given the underlying variability of 

the data, they do raise doubts about the validity of the model for airports in foreign nations, 

especially those with economic situations very dissimilar to the US.   
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Figure 3: Comparison of the ICF International house price model and actual house prices around a) London-

Heathrow Airport b) London-Gatwick Airport and c) Manchester Airport [Kish (2008)] 

Another limitation of the ICF International model is that one must first adjust the intercept term 

for each foreign airport based on prior knowledge about the average house price in the region.  

For many parts of the world, however, even the city-level average house price is not readily 

available.  To overcome this problem, Kish (2008) developed a model to first estimate the 

average rent price in each city based on the GDP per capita, average income, and lodging per 

diem provided by the US Department of State to civilian employees traveling abroad.  Next, 

another model was used to approximate the average house price based on the previously 

estimated average rent price.  While the scarcity of foreign property value data necessitates the 

use of such models in order to apply the ICF International house price and rent price models, 

these additional tiers of estimation further complicate and obscure the data collection procedure.  

In terms of the APMT-Impacts Noise Module as whole, the numerous assumptions and 

uncertainties present in the inputs will propagate downstream, contribute to output variability, 

and potentially detract from the validity of the module results. 

2.4 Motivation 

The use of a hedonic pricing method to monetize aviation noise impact requires detailed property 

value data for each airport region in a policy analysis.  While this approach may be suitable for 

US-based analyses, where such data are available from the decennial census, for global 

calculations the search for foreign property value data is extraordinarily difficult and must be 

supplemented with price estimation models.  The ICF International model discussed in the 

previous section is very useful in filling in data gaps, but introduces numerous assumptions and 

uncertainties and requires time and effort to apply for all foreign airports of interest. 

a)  Heathrow Price Model Test b)   Gatwick Price Model Test c)  Manchester Price Model Test
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This thesis was mainly motivated by the limitations of the previous APMT-Impacts Noise 

Module.  The objective was to update the module with a new noise monetization model that 

circumvents some of the previous data constraints, and has greater accuracy and robustness for 

global applications.   
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3 Literature Review 

A key starting point for this thesis was an expert review of the APMT-Impacts Noise Module by 

Nelson and Palmquist (2008), which proposed several suggestions to modify and improve the 

methodology used for noise impacts valuation.  Some recommendations from this report were a 

more thorough look into different valuation techniques and accounting for potential variations in 

the perception of noise due to income disparities between locations. 

In order to explore these ideas, it is first necessary to establish the context of the project.  This 

chapter examines the problem in the framework of environmental economics, and presents a 

literature review of several topics relevant to the Nelson and Palmquist (2008) review, as well as 

to the goals of the APMT-Impacts module as a whole.  Section 3.1 identifies some commonly-

used methods for the valuation of environmental goods, with an emphasis on pointing out the 

strengths and weaknesses of each approach.  Also presented in this section is a review of the 

literature examining the effect of income on individuals’ valuation of environmental amenities.  

Section 3.2 discusses the concept of meta-analysis, a technique for synthesizing large amounts of 

data in order to derive new information.  Finally, Section 3.3 provides a literature review of 

benefit transfer, a valuable method in environmental policy assessment which makes possible the 

estimation of global impacts using limited data.  The advantages and deficiencies of the 

procedure are also addressed – a discussion that sets a cautious tone for the subsequent chapters 

of this thesis that describe model development, applicability, limitations, and uncertainties. 

3.1 Valuation of Environmental Goods 

The monetization of aviation-related noise impacts falls within the field of environmental 

economics, which is a branch of economics that views the natural environment as an asset with 

an associated economic value [Tietenberg (2003)].  Central to this subject is the idea that 

environmental goods, like water quality, clean air, and forestation, are public goods that are 

available to everyone without restriction, such that the consumption of the good by one 

individual does not reduce it for another, and the improvement of the good as a whole benefits 

each member of the society [Samuelson (1955)].  Because public goods lack transaction costs, it 

is necessary to employ non-market valuation methods in order to measure the economic value of 

an environmental amenity [Hanley et al. (1997)].  These methods are sorted into two general 
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categories: stated preference and revealed preference.  A comprehensive reference on guidelines 

for practicing various economic analysis methods is provided by the US Environmental 

Protection Agency (EPA) [EPA (2000)]; some of the key ideas will be discussed in the following 

sections. 

3.1.1 Stated Preference 

Stated preference (SP) methods directly measure people’s response to changes in a particular 

good.  The two main examples are choice experiments and contingent valuation (CV) surveys; of 

the two, the latter is much more widely-used for the valuation of environmental qualities [Boxall 

et al. (1996)].  In CV, respondents are asked to state their Willingness to Pay (WTP) for an 

environmental improvement, or alternatively, their Willingness to Accept (WTA) compensation 

for an environmental degradation.  Willingness to Pay is more commonly used in environmental 

economics than WTA because surveyed households tend to have greater familiarity with 

purchasing decisions, and would therefore provide more valid answers to WTP questions 

[Feitelson et al. (1996)].
9
  Though the format of CV surveys may differ greatly depending on the 

research questions posed, there are seven key commonalities present in most CV studies, which 

are described in Carson et al. (2001).   

Contingent valuation surveys have been used to assess the value of a variety of environmental 

goods: for example, the natural resource damages due the Exxon Valdez oil spill in Alaska 

[Carson et al. (2003)], the public’s WTP for clean water in the US [Carson and Mitchell (1993)], 

the economic value of urban wooded recreation areas in Finland [Tyrväinen and Väänänen 

(1995)], and tourists’ WTP for wildlife viewing and conservation in Namibia [Barnes et al. 

(1997)].  Despite their broad applicability, however, there is much controversy surrounding the 

use of CV in environmental economics.  First, stated preference measures such as CV capture 

intended behavior, not actual behavior [Huang et al. (1997)].  Therefore, they will be inaccurate 

if the risks perceived by the affected population do not match actual risks associated with the 

environmental detriment [EPA (2000)].  For example, Neill et al. (1994) found that WTP values 

stated in a hypothetical survey are consistently and significantly higher than revealed WTP 

values that reflect real economic commitments.  Another major criticism is that the findings of 

                                                 
9
 Carson et al. (2001) provides a more in-depth discussion on why WTP and WTA estimates are consistently 

and substantially different. 
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CV studies are highly dependent on the credibility, reliability, and precision of the survey 

responses [Diamond and Hausman (1994)].  Credibility refers to whether the respondents are 

answering the exact question that the interviewer intended to ask, reliability refers to the size and 

direction of any biases that may be present in the responses, and precision refers to the variability 

in the answers.  Another cause for concern is the presence of embedding effects, which describes 

the phenomenon that WTP estimates can differ significantly depending on whether the 

environmental good is evaluated on its own or “embedded” as part of a more inclusive package 

[Kahneman and Knetsch (1992)].  For example, Tolley et al. (1983) found that the WTP to 

prevent visibility decline at the Grand Canyon was five times greater when measured 

independently than when listed third in a sequence of choices.  Furthermore, issues in survey 

design and administration may also influence validity; these include the scope of the study, the 

sample size, the survey method, and sequence and context effects [Carson et al. (2001)].   

In light of these concerns, some critics have panned CV as a “deeply flawed methodology” that 

“[does] not have much information to contribute to informed policy-making” [Diamond and 

Hausman (1994)].  On the other hand, a panel convened by the National Oceanic and 

Atmospheric Administration to review the use of CV in environmental economics, chaired by 

Nobel laureates Kenneth Arrow and Robert Solow, concluded that when used properly, “CV 

studies can produce estimates reliable enough to be the starting point of a judicial process of 

damage assessment,” and provided guidelines for conducting rigorous and meaningful CV 

surveys [Arrow et al. (1993)]. 

In the context of aviation-related noise, the environmental quality of interest is quietness.  

Therefore, the two possible types of CV measures are WTP for noise abatement and WTA for 

increased noise exposure.  While about a dozen CV studies have been conducted to estimate the 

WTP for road noise reduction (summarized in Navrud (2002), Table 1), there have been only a 

handful of CV studies conducted specifically for aircraft noise (summarized in Navrud (2002), 

Table 2).  In the latter case, the WTP estimates vary greatly (between €8 per dB per household 

per year to almost €1,000), and Navrud (2002) concluded that more CV studies on this topic are 

required before a consistent range of WTP values can be established.   

For the valuation of aviation-related noise, CV methods are used far less often than hedonic 

pricing methods [Schipper (2004)].  A potential explanation for this trend is the concern over 



38 

 

credibility, as it can be very difficult to elicit individuals’ opinions regarding noise.  For 

example, two types of questions that may be asked in a CV survey are: “How much would you 

be willing to pay in higher apartment rents (or higher taxes) if a noise mitigation program could 

reduce your noise exposure by 50%?” [Pommerehne (1988), Soguel (1996)], and “How much 

would you be willing to pay for daytime noise to be reduced from workday levels to that of a 

Sunday morning?” [Barreiro et al. (2000)].  While the second question may elicit more consistent 

interpretations than the first, both are problematic for survey purposes [Miller et al. (2008)].  In 

the second question, “Sunday morning” noise level will have a different meaning for each 

individual, whereas in the first, it is not clear whether “reduce your noise exposure by 50%” 

refers to a sound that is half as loud (a 10 dB reduction in SPL), or to half as many noise events, 

or to half as much total sound energy (50% drop in SEL).  Therefore, in order to adopt CV as the 

method for valuating aviation-related noise impacts, care must be taken to ensure that the survey 

is constructed for consistent interpretation, and avoids the common pitfalls that may detract from 

its validity. 

3.1.2 Revealed Preference 

The second category of valuation methods used for environmental goods is revealed preference 

(RP), which measures the implicit value of an attribute.  A commonly-used approach in this 

category is hedonic pricing (HP), which is “a technique that derives value for non-market goods 

such as environmental quality based on the value of market goods, such as residential property” 

[Schipper et al. (1998)].  For aviation noise, the idea is that the market for residential housing is 

complementary to that for noise avoidance; therefore, the variation in property values with noise 

level naturally sorts buyers and sellers according to their Willingness to Pay for quietness 

[Nelson (2008)].   

The basic concept of HP is that, everything else being the same, a property in a noisier area will 

fetch a lower selling price than one in a quieter area.  The disparity in the price can be tied to the 

difference in the noise level at the two properties, allowing for the calculation of an NDI, which 

represents the percentage decrease in monetary value per dB increase in noise.  In order to draw 

valid conclusions from an HP study, however, the “everything else being the same” clause must 

be respected – that is, the study must account for all other factors that may influence property 

value, such that the only remaining explanatory variable is the level of noise exposure.  These 
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potential explanatory factors can be classified into several groups: structural, accessibility, 

neighborhood, and environmental [Bateman et al. (2001)].  Structural variables include property 

type, year of construction, floor area, the number and size of rooms, the number of bathrooms, 

presence of a garage, etc.  Accessibility variables include the distance to downtown, shopping 

centers, public parks, or transportation infrastructure, such as highways and airports.  

Neighborhood variables define the quality of a property’s surroundings; some examples include 

the crime rate, quality of schools, and age distribution.  In addition to noise level, other potential 

environmental variables include air pollution level and quality of the views from the property.  A 

complete hedonic pricing study must control for all relevant explanatory variables to ensure that 

any observed trends between property value and noise level may indeed be attributable to aircraft 

noise. 

The theoretical foundations of hedonic pricing were laid by Lancaster (1966) and Rosen (1974), 

and the use of HP to assess the economic impacts of aviation noise is well-established.  In the 

US, the first applications of HP for this purpose were in 1970’s, with examinations into property 

values in the vicinity of airports in Minneapolis [Emerson (1972)], Dallas, Los Angeles, New 

York City [Paik (1972)], San Francisco, St. Louis, Cleveland, New Orleans, San Diego, and 

Buffalo [Nelson (1979)].  Since then, the HP method has been used to estimate the noise impacts 

around numerous airports in the US, Canada, Europe, and Australia; many of these studies are 

summarized in Nelson (1980), Schipper et al. (1998), Nelson (2004), and Wadud (2009).  The 

NDI estimates derived from these studies are typically positive, indicating that aviation noise is 

viewed as a detrimental environmental externality.  Wadud (2009) found that raw NDI estimates 

range between 0% and 2.3% per dB, whereas Nelson (2004) used a variety of meta-analytical 

techniques to narrow that range to between 0.50% and 0.70% per dB, with a weighted-effect size 

of 0.67% per dB.  Other HP studies have found, however, that the advantages of close proximity 

to an airport outweigh the negative effects associated with higher noise levels [Tomkins et al. 

(1998), Lipscomb (2003)].  One hypothesis for explaining this observation is that the presence of 

the airport increases the ease of travel and the number of employment opportunities in the region.   

While most HP studies focus on single-family detached homes, there have also been efforts to 

examine the impact of aviation noise on rental properties.  Seven studies of aircraft noise-

induced rental loss reported NDI values ranging from 0.21% to 0.90% per dB, with an average of 
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0.64% per dB [Nelson and Palmquist (2008)].
10

  The similarity of owner-occupied and rental 

property NDI estimates was the basis for the selection of one common NDI value to estimate 

both housing value depreciation and rental loss in the Kish (2008) analysis.  Some studies have 

also investigated the impact of aviation noise on multi-unit residential condominiums and vacant 

land; Uyeno et al. (1993) found that the NDI for multi-unit condominiums around Vancouver 

International Airport was higher than that for detached homes (0.90% per dB versus 0.65% per 

dB), and that the NDI for vacant land was much higher than those of the two other property 

types.   

Despite the extensive use of HP in valuating aviation noise impacts, the approach is not without 

weaknesses.  The drawbacks of HP mainly revolve around the assumptions that must be made in 

order to use the method.  Chief among those assumptions is that the housing market under 

consideration is in perfect equilibrium, such that individuals are perfectly sorted in their 

residences according to their personal appraisal of quietness.  In reality, this is likely not the 

case, as there may be external constraints on the housing market (e.g. price caps, scarcity of 

housing), and nonzero transaction costs associated with selling one property and purchasing 

another.
11

  Adding to the complexity is that there may be inherent differences in housing markets 

between various airports, or even within the same city, such that despite best efforts to account 

for discrepancies using regression variables, some variations remain unexplained.  These effects 

are not always well-understood, and Nelson and Palmquist (2008) concluded that there is not 

sufficient evidence to suggest that housing market imperfections systematically bias HP results 

in one direction or another.  Hedonic pricing also does not control for individual differences in 

the perception of and response to noise, nor does it consider the possibility that certain properties 

may have sound insulation, which would alter the residents’ discernment of noise.  Furthermore, 

it can be impeded by issues such as inadequate control of explanatory variables, regression 

misspecification, unrepresentative sample size, and limitations in the availability of real estate 

data. 

                                                 
10

 One of the seven studies, Feitelson et al. (1996), used CV instead of HP to estimate the NDI for rental 

properties around Dallas-Fort Worth airport. 
11

 In HP, it is assumed that there are no transaction costs; that is, if a resident desired to sell a house in a noisy 

area and purchase one in a quiet area, he or she would be able to do so immediately and effortlessly. 
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Another major concern is that in order for HP results to be meaningful, the homeowners must 

have been aware of the presence of aviation noise, and have taken that factor into account when 

purchasing their property.  Only in this case does the comparatively lower house price reveal the 

implicit cost of noise.  This illustrates the concept of asymmetric information, which was shown 

by Pope (2007) to be a significant issue in HP.  Pope (2007) examined 16,900 single-family 

housing transactions between 1992 and 2000 near Raleigh-Durham International Airport.  

During this period, the state of North Carolina passed a statute mandating the disclosure of 

aviation noise to potential homebuyers in impacted areas, which went into effect in 1996.  Pope 

(2007) found that after the enactment of the disclosure, house prices decreased by as much as 

2.9% in the noisiest regions, corresponding to a 37% increase in NDI.  This suggests that prior to 

the disclosure, homebuyers may not have been fully informed of aviation noise, or else did not 

adequately consider it as a factor when purchasing their house.  The Pope (2007) analysis 

demonstrates that the assumption of full information in HP studies is not always met, and 

therefore the reported monetary impact of aviation noise may not reflect the full environmental 

cost.   

3.1.3 Comparing Stated Preference and Revealed Preference Methods 

In theory, stated preference and revealed preference methods are two ways to account for the 

same environmental costs.  Therefore, it has been a topic of interest to compare findings from the 

two types of studies to see whether they present the same information.
12

  For example, Carson et 

al. (1996) analyzed 83 studies and made 616 comparisons of CV and revealed preference 

estimates for a variety of quasi-public goods (not limited to aviation noise), and found that CV 

results were generally smaller than RP results, but not grossly so.  The ratio of CV/RP estimates 

had a mean of 0.89, with a 95% confidence interval of [0.81, 0.96].  Specifically for aircraft 

noise, Pommerehne (1988)’s study in Basel, Switzerland found that the mean WTP per dB of 

noise reduction per household per month derived using HP was 22 CHF (Swiss francs, where 1 

euro = 1.47 CHF), whereas the equivalent value from CV was 32 CHF [Navrud (2002)].  

Another way to compare the two methods is in terms of the equivalent NDI values.  Feitelson et 

al. (1996) used CV telephone surveys to estimate the noise costs of airport expansion, finding 

                                                 
12

 This is the idea of testing for convergent validity.  Convergent validity tests are useful when “two or more 

measurement techniques are potentially capable of measuring the desired quantity, but both do so with error” 

[Carson et al. (1996)]. 



42 

 

equivalent NDI values between 2.4% and 4.1% per dB, which are significantly higher than 

typical NDI values reported by HP studies.  Kish (2008) collected a series of 13 NDI and 15 

WTP values from transportation noise studies in Europe and Japan.  Using reasonable 

assumptions for discount rate, time span, and household size, Kish (2008) converted the NDI of 

0.67% used in the APMT-Impacts Noise Module into an equivalent WTP.  This test for 

convergent validity revealed that the 0.67% NDI falls well within the range of 13 international 

NDI values (mean = 0.59% per dB), and that the equivalent WTP of €76 per dB per household 

per year computed from this NDI was comparable to the 15 international WTP values (mean = 

€56 per dB per household per year) (Figure 4).  These examples all seem to suggest that there is 

no consistent trend as to which of the HP or CV method estimates higher premiums for aircraft 

noise, a sentiment echoed by Nelson (2008) and Nelson and Palmquist (2008).   

 

Figure 4: International and US equivalent values for a) NDI and b) WTP [Kish (2008)] 

 

3.1.4 Variation with Income 

Another topic of much discussion in environmental economics is the whether the public’s 

valuation of environmental goods varies with income.  Aside from a matter of academic interest, 

this issue also has important policy implications – for example, if distributional effects exist, 

environmental policies may be regressive and thus disproportionately favor wealthy individuals 

[Flores and Carson (1997)].  A term that is commonly used when describing this issue is income 

elasticity, which is a measure of the responsiveness of an economic quantity to changes in 

a)         International NDI Frequencies b) International WTP Frequencies
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income.  Contingent valuation studies often discuss the income elasticity of WTP, which is the 

ratio of the percent change in WTP for a particular good to the percent change in income.  When 

that ratio is negative, the good being considered is inferior; when it is between zero and one, the 

good is considered necessary; when it is greater than one, the good is considered a luxury.  Some 

economists have argued that environmental goods are luxuries, and that concern for these goods 

is a pursuit of the wealthy, which in poor families would be displaced by the basic needs for food 

and shelter [McFadden (1994)].  There is some empirical support for this claim: Borcherding and 

Deacon (1972) found that the income elasticity for the “parks-recreation” public good was 

greater than one for three of the four examined groups,
13

 and Walters (1975) reported that the 

ratio of the average valuation of noise to permanent income is between 1.7 and 2.0.  However, 

other economists assert that the evidence is weak [Carson et al. (2001)]; in fact, Kriström and 

Riera (1996) dismisses the suggestion that environmental improvements are luxury goods as 

economic “folklore.” 

Several studies have suggested that environmental goods are in fact necessary goods.  A meta-

analysis of CV studies for various environmental services in Sweden revealed that income has a 

positive and significant effect on WTP, but that the income elasticity of WTP was less than one 

[Hökby and Söderqvist (2001)].  These findings are consistent with the results reported by 

Kriström and Riera (1996) for CV studies in other parts of Europe.  That the income elasticity for 

environmental goods is between zero and one means that as income rises, individuals’ valuation 

of the environment increases at a decreasing rate.  In the policy context, this implies that 

environmental improvements are more beneficial to low-income groups, and conversely, that 

environmental costs are also borne disproportionately by the poor.   

The trend of diminishing returns with increasing income brings up another much-discussed topic 

in environmental economics – the Environmental Kuznets Curve.   The Environmental Kuznets 

Curve (EKC) is an inverted-U-shaped curve that describes the relationship between income and 

environmental qualities (Figure 5).  It conjectures that as the per capita income of a society 

increases, environmental deterioration rises, reaches a turning point, then decreases.  The EKC is 

                                                 
13

 However, Borcherding and Deacon (1972) found income elasticities between 0.2 and 1.0 for many of the 

other public goods examined in the study, such as local education and hospitals. 
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adapted from Simon Kuznets’ eponymous observation that the economic inequality in a country 

follows an inverted-U function with respect to income level [Kuznets (1955)]. 

 

Figure 5: Environmental Kuznets Curve [Yandle et al. (2004)]   

The intuition behind the shape of the EKC is thus [Arrow et al. (1995)]:  

[People] in poor countries cannot afford to emphasize amenities over material 

well-being.  Consequently, in the earlier stages of economic development, 

increased pollution is regarded as an acceptable side effect of economic growth.  

However, when a country has attained a sufficiently high standard of living, 

people give greater attention to environmental amenities.  This leads to 

environmental legislation, new institutions for the protection of the environment, 

and so forth. 

Given this description, it is not difficult to see why the EKC is often closely tied to discussions 

about whether environmental goods are necessary or luxury goods.  One of the first uses of the 

EKC was to address the environmental implications of a North American Free Trade Agreement 

(NAFTA), in particular with respect to air pollution [Grossman and Krueger (1992)].  That study 

concluded that the liberalization of world trade may promote both economic and environmental 

goals; the explanation adopted by the authors for the downward turn of the EKC is that as 

countries increase in wealth, they also tend to employ cleaner technologies in their industrial 

operations.  Since the Grossman and Krueger (1992) report, over 100 studies have been 
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published about the EKC; a detailed literature review and a survey of issues relating to the 

subject may be found in Yandle et al. (2004) and Dinda (2004), respectively.   

The use of the EKC to describe the valuation of environmental goods is a contentious topic.  

First, the applicability of the EKC is very limited: only some air quality indicators, such as local 

pollutants, exhibit evidence of the EKC, and there is also no agreement in the literature about the 

income level of the turning point [Dinda (2004)].  Many critics also challenge the rigor and 

robustness of the econometrics used in the EKC literature.  Stern (2004) calls the EKC a 

“stylized fact” which arose because of insufficient attention paid to diagnostic statistics.  When 

the appropriate statistical tests are performed, Stern (2004) suggests that there is no evidence that 

an EKC exists; instead, the reduction of environmental impacts with higher income is due to 

time-related effects previously unaccounted for.  Similarly, Deacon and Norman (2006) reports 

that an examination of air pollution data with robust empirical methods suggests that the 

correlation between income and pollution level does not agree with the EKC any more than what 

would be dictated by chance.  Finally, Arrow et al. (1995) stresses that the EKC is but an 

empirical relationship, and criticizes those who use it to conclude that promoting a nation’s 

economic growth will in turn induce environmental improvement.  Instead, the downward turn in 

the EKC at high income levels is not a self-fulfilling prophecy, but rather the result of 

legislations and policies enacted for environmental protection.  In light of the debate surrounding 

the issue, perhaps the only sure conclusion to be drawn is that the EKC underscores the 

importance of policies and technological improvements aimed at mitigating environmental 

degradation.  

3.2 Meta-Analysis 

One of the major difficulties with research in environmental economics is that large-scale CV 

and HP studies require the collection and synthesis of copious amounts of data, which can be 

prohibitively expensive and time-consuming.  For this reason, meta-studies (which carry out 

meta-analyses) are often used to summarize and integrate the findings from individual primary 

studies in order to derive generalized relationships.  The meta-analysis concept was first 

proposed by Glass (1976) for use in the field of education, which, like environmental economics, 

relies more heavily on applied research and outcome evaluation than on basic research and 



46 

 

controlled experiments.  Glass (1976) points out many advantages to performing meta-analysis, 

which include making sense of large amounts of information, decreasing the dependence on 

original data, deriving untapped knowledge from existing studies, and discerning overarching, 

systems-level trends.  Meta-analysis has been used extensively in the medical sciences and 

psychology, and since the 1990’s, in environmental economics as well [Schipper et al. (1998)].  

In fact, many of the studies cited in this chapter are meta-studies rather than primary studies – for 

example, Hökby and Söderqvist (2001), Kriström and Riera (1996), and Carson et al. (1996).  

Meta-studies pertaining to the monetary impacts of aviation noise, and therefore of particular 

relevance for the current thesis project, include Nelson (1980), Schipper et al. (1998), Nelson 

(2004), and Wadud (2009).  

The use of meta-analysis in environmental economics raises a new set of concerns.  For example, 

Schipper et al. (1998) points out that economics is only a “quasi-experimental science,” wherein 

study circumstances are difficult to control.  The lack of a consistent set of controls among the 

primary studies subsequently leads to a lack of comparability in the meta-study, because 

individual results were obtained for local sets of conditions rather than with the intention of 

cross-study comparisons.  Nelson and Kennedy (2009) examined 140 meta-analyses spanning 17 

categories within environmental and natural resource economics and described some commonly-

observed problems.  These issues include sample heterogeneity, heteroscedasticity, correlation 

within or between primary studies, and publication bias.  Sample heterogeneity refers to the 

aforementioned concern of Schipper et al. (1998), where differences in empirical results may be 

due to potential disparities in the scope, design, and methodology of the various studies.  

Heteroscedasticity is the notion that the primary study observations may have non-homogeneous 

variances, a problem with implications for data reliability and regression model specification 

(see Section 4.5.2).  Correlation effects are important when meta-studies extract multiple 

estimates from the same primary study, or from a group of studies of similar design, which can 

lead to the non-independence of meta-analysis samples.  Publication bias refers to a form of 

selection bias wherein primary studies with statistically weak, insignificant, unusual, or 

otherwise “undesirable” results are less likely to be submitted or selected for publication.  Many 

of these problems may be avoided by using stringent selection criteria for primary study 

inclusion, employing various meta-regression techniques, and adopting the meta-analysis “best-

practices” outlined in Nelson and Kennedy (2009).  A high-quality meta-study must test and 
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account for these issues before attempting to derive new information from the primary study data 

set. 

3.3 Benefit Transfer 

Closely tied to the meta-analysis technique is the idea of benefit transfer, which is the application 

of the findings from an empirical study in one location to estimate the effect in another location 

[Schipper et al. (1998)].  Benefit transfer is of critical importance to environmental 

policymaking: because of limited time and money to perform new valuation studies, it is often 

desirable and necessary to generalize the results from “study sites” to “policy sites” [Navrud 

(2004)].  Its use dates back to the US water resource development era of the 1960’s: Krutilla and 

Fisher (1975) reports on the application of technique to estimate the lost recreational value 

resulting from the Hells Canyon hydroelectric project.  Benefit transfer is sometimes also given 

the broader term of “value transfer” in order to reflect both the positive and negative 

connotations of measured quantities in environmental economics.  The history, methods, and 

technical literature of benefit transfer are discussed in great detail in Navrud (2004) and Navrud 

and Ready (2007).  The following paragraphs summarize some of the key points from those 

texts.   

There are two main categories of benefit transfer, unit value transfer and function transfer.  

Within unit value transfer, there can be simple unit transfer, or unit transfer with income 

adjustments.  Simple unit transfer is the most straightforward approach, involving the application 

of an estimate (e.g. WTP per household per year for some environmental attribute) derived from 

one site to another site.  An example in the assessment of aviation noise impacts is the use of an 

NDI calculated from an HP study in one airport region to estimate the housing value depreciation 

around a different airport.  This approach involves making the assumption that the residents of 

the two locations have the same implicit valuation of aircraft noise.  When the regions have very 

different income levels and costs of living, however, simple unit transfers should not be used, 

and instead the parameter being transferred should be scaled by the ratio of the income levels as 

well as by the income elasticity of demand for the environmental good in question.   

The second category of benefit transfer also contains two related approaches: benefit function 

transfer and meta-analysis.  The first refers to the use of a benefit function derived from 
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empirical results in one location to estimate the benefits at the policy site.  For a CV study 

pertaining to the WTP for a particular environmental good, the function may have the following 

form [Navrud (2004)]:  

  (3) 

where:  = Willingness to pay of household i at site j  

 = Set of characteristics associated with the environmental good at site j 

 = Set of characteristics associated with household i at site j 

 , ,  = Regression coefficients 

 e = Random error 

The valuation of environmental goods is typically a complex function of many variables, 

including site characteristics, individual preferences, and income levels [Loomis (1992)].  As 

such, benefit function transfers are generally more reliable than unit value transfer because they 

allow for these explanatory variables to be taken into account [Kirchhoff et al. (1997)].  

The final subcategory of benefit transfer is meta-analysis, discussed in the previous section, 

which differs from benefit function transfer in that instead of deriving the transfer function from 

one valuation study, multiple primary studies are used.  One particularly relevant example of this 

approach is found in Kish (2008), which used the NDI derived from the Nelson (2004) meta-

study of 0.67% per dB to estimate the total aviation noise impacts around 181 airport regions 

worldwide.  The use of meta-analysis results to perform benefit transfer illustrates the 

hierarchical nature of research in environmental economics. 

While benefit transfer offers an appealing alternative to conducting full-fledged environmental 

valuation studies, its accuracy has long been questioned.  Like the other topics addressed in this 

chapter, the validity of benefit transfer applications is highly dependent on the quality and 

consistency of the available data, and the scope and design of the experiment.  Several studies 

have examined this issue by testing for convergent validity of transfer estimates.  Downing and 

Ozuna (1995) performed benefit function transfer using eight CV studies for recreational fishing 

along the Texas Gulf Coast over three distinct time periods, and concluded that the method tends 

to overestimate the value of the environmental good.  Loomis (1992) took the same approach for 
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recreational fishing sites in several US states, and concluded that such transfers are likely to be 

inaccurate (errors range from 5% to 40%).  Similarly, Kirchhoff et al. (1997) found that 16 of 24 

intrastate and interstate benefit transfers involving WTP for recreational activities had errors of 

less than 50%, although the largest reported error was in excess of 200%.  The last two studies 

included many site-specific regression variables in the benefit function, including average 

income, population characteristics, and attributes of the environmental good.  On the 

international scale, Ready et al. (2004) examined the benefit transfer of WTP for the avoidance 

of specific health impacts related to air and water quality in five European countries, finding that 

the average error of international unit value transfers was 38%.  Perhaps more interestingly, 

however, Ready et al. (2004) found that the use of benefit function transfers in lieu of unit value 

transfers did not improve the result, which contrasts with the findings of Kirchhoff et al. (1997).  

Rozan (2004) conducted CV studies to measure the WTP for air quality in two cities, one in 

France and one in Germany, and compared the directly estimated benefits with the transferred 

benefits in each city.  While the two chosen sites had the similar income levels and demographic 

distributions, the WTP for air quality differed significantly – 282 FF (French francs) in the 

French city versus 466 FF in the German city, leading the author to conclude that benefit transfer 

was not generally valid.   

Despite these lackluster results, however, the authors of the above studies also concede that 

benefit transfer can be a useful tool for policymaking, and that its accuracy is open to 

interpretation.  For example, while it may not be a suitable method for determining compensation 

schemes for individuals subject to environmental harms [Downing and Ozuna (1995)], benefit 

transfer may be appropriate for conducting cost-benefit analyses so that policymakers can use 

approximate values to make an acceptable decision [Rozan (2004)].  Furthermore, the reliability 

of the method may be improved through the meticulous accounting of potential explanatory 

variables.  In attempting to make a benefit transfer between two locations, one must be aware 

that the approach may be limited by inherent differences between the sites, the environmental 

resources, the populations (e.g. income, demographics, nationality, customs), and the time 

periods [Rozan (2004), Downing and Ozuna (1995), Navurd (2004)].  Because of these spatial 

and temporal uncertainties, it is difficult to define a threshold of satisfactory validity for benefit 

transfer; Navrud (2004) concludes that for environmental policymaking, the level of acceptable 

accuracy is subjective and depends on the context of the proposed policy. 
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This thesis project touches on all of the topics discussed in this chapter.  The model development 

process described in Chapter 4 addresses objectives 1 and 2 listed in Section 1.3, and involves 

extensive use of the concepts of HP, WTP, income elasticity, and meta-analysis.  Once 

development was complete, Chapter 5 discusses how the model may be used to estimate the 

global physical and monetary impacts of aviation-related noise, thereby performing benefit 

transfer and fulfilling thesis objective 3.  Chapter 6 describes the characterization of model 

uncertainties (thesis objective 4), and Chapter 7 presents a sample problem to demonstrate the 

convergent validity of using the new model to perform benefit transfer on an international scale. 
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4 Model Development 

The core of the thesis project is the development of a new monetization model for use in the 

APMT-Impacts Noise Module.  The approach was to start with a meta-analysis of existing HP 

noise studies, and based on the recommendations of Nelson and Palmquist (2008), derive a 

function for WTP for noise abatement with respect to income and other significant explanatory 

variables for use in global benefit transfer of monetized noise impacts.  

4.1 Noise Meta-Study 

The data set used to derive a relationship between income and WTP for noise abatement was 

based on a meta-study by Wadud (2009).  The Wadud (2009) study expanded upon several 

previous meta-analyses [Walters (1975), Nelson (2004), Envalue (2007), Bateman et al. (2001)], 

and compiled the results of 65 hedonic pricing noise studies from various airports in seven 

countries: the United States, Canada, the United Kingdom, Australia, France, Switzerland, and 

the Netherlands.  These studies were conducted between 1970 and 2008, and all had the goal of 

determining a NDI for a particular airport region.  For each study, the author, year, airport name, 

location, and NDI result were listed.  Where available, the sample size, property value in the 

airport region, and standard error associated with the derived NDI were also presented.  The full 

list of noise studies is provided in Appendix A. 

4.2 Data Search 

In order to adapt the Wadud (2009) meta-study for the current work, a data search was first 

carried out to obtain a complete set of property value, household size, and income data for each 

of the 65 noise studies.  

For 54 of the 65 studies, the average property value in the airport region during the year of the 

study was available; this value was presented in year 2000 USD.  For each of the remaining 11 

studies, the average value of owner-occupied properties in the city during the year of the noise 

study was obtained from national statistical agencies, including the US Census Bureau, the UK 

Office for National Statistics, the Australian Bureau of Statistics, and Statistics Netherlands.  
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Similarly, the household size in each city during the year of the noise study was also obtained 

from these agencies. 

The income indicator that was used was the average per capita personal income for each city 

derived from household surveys; alternatively, the city-level average household income was also 

acceptable, as dividing by the city-level household size resulted in the average per capita 

personal income.  This metric was chosen because it is directly reflective of the economic status 

of the local population.  Other common economic indicators, such as the per capita Gross 

Domestic Product (GDP) or Gross National Income (GNI), do not properly account for social 

and environmental costs and benefits, and therefore may not be suitable proxies for the standard 

of living in a region [Goossens et al. (2007)].  For the US studies, income data on the 

Metropolitan Statistical Area (MSA) level for each year dating back to 1969 were available from 

the US Bureau of Economic Analysis [US BEA].  For the other six countries, income data were 

obtained from national statistical agencies.  In the few cases where city-level income data were 

not available, county-level or region-level income data were used. 

At the completion of the search, five studies were excluded from further consideration due to the 

lack of available city-level property value or income data.
14

  Therefore, 60 studies were used to 

derive a relationship between income and WTP for noise abatement. 

4.3 Monetary Adjustments 

In order to make comparable monetary values from different time periods and countries, it was 

necessary to establish a consistent method for making adjustments to income and property value 

data.  The year 2000 was selected as the reference time point, and the US Dollar (USD) was 

selected as the reference currency.  Foreign currencies were converted to USD through the 

Purchasing Power Parity (PPP).  The PPP is the ratio of the cost of an identical basket of goods 

in two separate economies, and represents a way to compare the purchasing power of different 

currencies.  It is more appropriate for use in the current work than the market exchange rate 

because it accounts for the relative cost of living in different countries, hence allowing for global 

                                                 
14

 This was the case for 4 of the 5 studies (Sydney 1971, Englewood 1972, Bodo 1984, and Basel 1988).  The 

Toronto 1990 study was excluded because the negative NDI would have resulted in an implausible negative 

WTP.   
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comparisons without systematically understating the purchasing power of low-income nations 

[Schafer and Victor (2000)].  The PPP uses the US as a reference economy, and has the unit of 

International Dollar, where one International Dollar has the same purchasing power as one US 

Dollar in same time period.  The year 2000 PPP values were obtained from the Organisation for 

Economic Co-operation and Development [OECD (2000)]. 

The income values associated with the 60 studies were adjusted to year 2000 USD using the 

procedure shown in Figure 6.  First, the income in the year in which the study was conducted 

was obtained from the appropriate national statistical agency; this value was specified in the 

national currency associated with the airport region.  If income data could not be obtained for the 

year of the study, then the income value for a nearby year was used, and adjusted to the year of 

the study by applying the nationwide growth rate in the per capita GNI (Step 1) [IMF].  The 

assumption in this step is that the income growth in the airport region during those years is 

consistent with the growth in the GNI per capita in the same period.  It was important to 

determine the income in the year of the primary study so as to provide a common point of 

reference between the income and the noise study findings.  In Step 2, the nationwide growth in 

the Consumer Price Index (CPI) between the year of the study and 2000 was applied to inflate or 

deflate the income value to the year 2000 level.  Finally, the PPP in 2000 was applied to convert 

the foreign income value to USD (Step 3).  For the US studies, the income adjustment process 

was much simpler.  Historical income data from the BEA were adjusted to year 2000 USD using 

an inflation calculator from the US Bureau of Labor Statistics (Step 2) [BLS (2010)]; no PPP 

adjustment was necessary.   

 

Figure 6: Procedure for adjusting foreign income 

For the non-US studies where property values were provided in Wadud (2009), the conversion to 

year 2000 USD had been performed with the currency exchange rate in 2000 instead of the PPP.  

Therefore, for the sake of consistent comparison, it was necessary to readjust the property values 
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for those studies by first reverting back to the foreign currency using the year 2000 market 

exchange rate, then converting to USD using the PPP.  For the US studies, no further 

adjustments on property value were necessary. 

For those studies where property value data were obtained from national statistical agencies, the 

monetary adjustment process was similar to that for income, and is shown in Figure 7.  The key 

difference is that in Step 1, the nationwide housing price growth rate is used instead of the 

growth rate in the GNI per capita to adjust a monetary value to the year of the primary study.   

 

Figure 7: Procedure for adjusting foreign property value 

 

4.4 Relating Willingness to Pay and Income 

In the 60 hedonic pricing noise studies, the derived NDI ranged from 0% to 2.3% per dB and 

followed a scattered distribution, as shown in Figure 8a.  The mean and median NDI were 0.83% 

and 0.70%, respectively, which are higher than the unweighted mean and median values reported 

by Nelson (2004) (0.75% and 0.67%, respectively).  The property values in year 2000 USD 

ranged from $64,422 (Atlanta 1985) to $502,775 (New York – John F. Kennedy 1994), with a 

mean of $154,950 and a median of $125,332 (Figure 8b). 
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Figure 8: Distribution of a) NDI and b) property values in the meta-study 

The WTP for noise abatement was derived using the NDI, property value, and household size 

corresponding to each study and its airport region.  The steps for calculating WTP are described 

in Nelson and Palmquist (2008) and paraphrased below: 

1. Adopt an average NDI for housing values, and assume that this value is stable over 

time and across developed countries. 

2. Convert the NDI into a marginal WTP measure by using an average housing value.  

Multiplying the house value by the NDI produces a WTP value per dB per household.  

3. Divide the WTP per dB per household value by the number of people per household 

or dwelling to yield a capitalized value per person per dB. 

For each airport region, the WTP per person per dB of noise reduction is simply given by: 

  (4) 

Because WTP is calculated directly from the mean property value in each region, the resulting 

quantity represents the capitalized monetary value, which means that it embodies all future noise 

impacts.  The procedure for transforming capitalized noise impacts into annual impacts will be 

discussed in Section 5.3.2.2. 

It is also important to note that while Equation 4 relates the WTP as a function of the average 

house value in each airport region, the average rent price could also have been used.  Nelson and 

a)            Noise Depreciation Index b) Property Value



56 

 

Palmquist (2008) states that in areas where both house price and rent data are available, such as 

the US, the conversion between the two data sets should be straightforward.  Therefore, Equation 

4 could have also used the average rental value in each airport region to estimate the WTP for 

noise abatement; in theory the two results should be interchangeable, assuming that the 

relationship between rent and house prices is known and stable.  In this thesis, however, the 

approach of using rent prices will not be considered, due to the inconsistent availability of rental 

value data globally. 

Figure 9 shows the resulting WTP for the 60 studies plotted versus the per capita income, 

separated by US and non-US studies.  The US studies tend to be clustered in the bottom right 

corner, suggesting a lower WTP for noise abatement with respect to income around US airport 

regions.   

 

Figure 9: WTP versus income for meta-study data 
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4.5 Statistical Considerations 

4.5.1 Outlier Identification 

The observations in Figure 9 appear scattered, suggesting the presence of significant outliers.  

Using a Cook’s Distance Test,
15

 five outliers were identified in the 60-observation data set.  

These studies were: Los Angeles 1994, New York – John F. Kennedy 1994, London – Gatwick 

1996, London – Heathrow 1996, and Geneva 2005.  These studies correspond to the five points 

in Figure 9 with the highest WTP. 

4.5.2 Heteroscedasticity 

One problem that is often present in meta-studies is heteroscedasticity, which implies that the 

individual observations in the data set were drawn from distributions with disparate variances 

[Nelson and Kennedy (2009)].  If heteroscedasticity were observed, the assumption of 

homoscedasticity in ordinary least-squares (OLS) regression would be violated [Schipper et al. 

(1998)].  There are several ways to identify heteroscedasticity.  First, one can visually inspect a 

plot of the residuals versus the predicted values: if such a plot “fans out,” then heteroscedasticity 

may be present.  Second, the Breusch-Pagan/Cook-Weisberg Test checks for heteroscedasticity 

by performing hypothesis testing with a 
2
 distribution, with the null hypothesis of equal 

variance on all observations in the data set [Breusch and Pagan (1979)].  Third, the White Test, 

which is a special case of the Breusch-Pagan/Cook-Weisberg Test, may be used in cases where 

heteroscedasticity takes on a non-linear form [Kennedy (2008)].   

In this thesis, the first two methods were used to check for heteroscedasticity.  A plot of the 

residuals on WTP versus the predicted values does appear to “fan out” to both sides of the 

dashed line representing zero residual, suggesting that heteroscedasticity may be present (Figure 

10).  Furthermore, the result of a Breusch-Pagan/Cook-Weisberg Test was 
2
(1) = 6.52, with a p-

value of 0.0107, which suggested that there is enough evidence to accept the alternative 

hypothesis of heteroscedasticity at α = 0.05. 

                                                 
15

A Cook's Distance Test measures the influence of a particular observation.  It determines the effect on the 

residuals for all other observations in the data set when one observation is deleted.  Observations with a larger 

Cook’s Distance than the rest of the data are those which have unusually high influence and may be identified 

as outliers [Garson (2010)]. 
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Figure 10: Residuals versus predicted values for WTP 

Because heteroscedasticity was observed, OLS regression was no longer appropriate, as the 

resulting parameters would not be the best linear unbiased estimators (BLUE).  This is because 

OLS regression gives equal weight to all observations when, in fact, observations with larger 

variance contain less information than observations with smaller disturbance variance [Kennedy 

(2008)].  When this is the case, alternative regression models, such as weighted least-squares 

(WLS), are typically used (see Section 4.6.1). 

4.5.3 Multicollinearity 

Because WTP was calculated as the product of property value and NDI divided by household 

size in Equation 4, one concern was that any observed relationship between income and WTP 

may in fact be due to the correlation between income and property value.  This is the issue of 

multicollinearity, which occurs when two or more explanatory variables in a multiple regression 

model are highly correlated, and may lead to unreliable regression estimates [Verbeek (2008)].  

To check for multicollinearity, a matrix may be constructed that lists the correlation coefficient 

between each of the explanatory variables.  In econometrics, multicollinearity is usually 

indicated by an entry in the correlation matrix greater than 0.80 [Kennedy (2008)].  Table 4 

shows the symmetric correlation matrix for WTP, property value, NDI, and income; the 

correlation coefficient between income and property value was 0.22, implying that 

multicollinearity was not observed. 
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Table 4: Correlation matrix between WTP, property value, NDI, and income 

 WTP Property Value NDI Income 

WTP 1.00 0.84 0.69 0.10 

Property Value 0.84 1.00 0.28 0.22 

NDI 0.69 0.28 1.00 -0.09 

Income 0.10 0.22 -0.09 1.00 

 

4.6 Multivariate Regression 

As suggested in Figure 9, there appears to be a different relationship between income and WTP 

for the US studies and the non-US studies.  To capture this trend, an interaction term was 

introduced, which was defined as the product of income and a dummy variable that equals zero 

for US studies, and one for non-US studies.  Such an interaction term effectively acts as a 

Boolean switch that selects between two different regression relationships – one for US studies, 

and one for non-US studies.
16

   

4.6.1 Regression Form Specification 

Prior to performing a regression analysis, it was necessary to first specify the functional form of 

the regression.  Because the relationship under consideration was between an environmental 

amenity and income, the Environmental Kuznets Curve was an appealing choice.  However, it 

was not chosen due to concerns regarding the EKC identified in Section 3.1.4, and because the 

data in Figure 9 did not seem to suggest an inverted-U relationship.  Several other options were 

also considered, including linear, quadratic, cubic, logarithmic, exponential, and power 

regressions.  However, none of these functional forms was a particularly good fit for the data – 

similarly low R
2
 values were observed for the simplest form (linear) and the more complex 

functions.
17

  Concerns also arose as to the validity of more complex functional forms in light of a 

                                                 
16

 An alternative to the interaction term was to use only a non-US dummy variable.  However, that approach 

assumes that the slope of the relationship between WTP and income remained constant between the US and 

non-US studies, with the only difference being in the intercept.   The interaction term was chosen over the non-

US dummy variable because of the added flexibility to vary the slope of a regression relationship between WTP 

and income. 
17

 While R
2
, the coefficient of determination, was considered in the regression form selection process, it was 

used only to conclude that the various functional forms were equally inadequate in fitting the data set, which 

motivated the selection of the simplest (linear) regression form.  It was not used as a parameter for choosing 

among different functional forms, or between OLS and WLS regression.  Kennedy (2008) cautions against the 
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heteroscedastic data set with significant outliers.  Therefore, a simple linear function was 

selected as the form of the regression.  This specification choice is consistent with numerous 

previous studies in Europe that examined the income elasticity of WTP for various 

environmental goods [Hökby and Söderqvist (2001), Kriström and Riera (1996)].   

An ordinary least-squares linear regression is the simplest model to use, but is not appropriate in 

this case due to the presence of heteroscedasticity.  A weighted least-squares regression should 

be used instead, as the assumption of homoscedasticity was violated [Garson (2010)].  Common 

WLS strategies include weighting each observation by the sample size of the primary study or by 

the reciprocal of the sample variance, such that observations derived from studies with larger 

sample sizes or smaller sample variances are considered to be more reliable [Nelson and 

Kennedy (2009)].  However, as sample size
18

 and sample variance were not consistently 

available for all 60 studies, another weighting scheme must be considered.   

Another option is to use robust estimators, which are “insensitive to violations of any of the 

assumptions made about the way in which the data are generated,” and commonly used in lieu of 

OLS regression estimators when there are concerns regarding outliers, heteroscedasticity, 

multicollinearity, and errors in variables [Kennedy (2008)].  The robust estimator used in this 

case is a bisquare estimator, which assigns each observation a weight of w, based on the residual 

r and tuning constant k, according to the following equation: 

  (5) 

The robust regression with a bisquare weighting function iteratively reweighted the 60 

observations to minimize the sum of the absolute error.  Using the default tuning constant of 

4.685, a visual representation of the bisquare weighting scheme is shown in Figure 11.   

                                                                                                                                                             
applicability of the R

2 
parameter in econometrics, citing that the R

2
 parameter is only meaningful in OLS 

regression, that it is very sensitive to the range of the independent and dependent variables, and that it is 

generally very low for cross-sectional econometric data. 
18

 Of the 60 studies, 57 reported the primary study sample size.  For those 57, a weighted least-squares linear 

regression was implemented where each observation was weighted by its primary study sample size.  This 

weighting scheme generated regression parameters that were very similar to those from a robust regression with 

a bisquare weighting function; the latter method was ultimately chosen. 
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Figure 11: Weighting scheme of robust regression with bisquare estimator 

The weight w is approximately equal to one for observations with small residuals, decreases to 

zero as the absolute value of the residual increases from zero to 4.685, and equals zero for 

observations with an absolute residual value of greater than 4.685.  The underlying assumption 

for using this robust WLS regression is that the residual of each observation can be used to proxy 

the sample variance, and thereby correct for heteroscedasticity.  An added benefit is that five 

outliers identified with the Cook’s Distance Test all had residuals with an absolute value greater 

than 4.685, and were therefore given a weight of zero.  In this way, the robust WLS regression 

result follows the bulk of the observations, and simultaneously accounts for both 

heteroscedasticity and outliers in the data set. 

4.6.2 Backward Selection 

When deriving a relationship between income and WTP for noise abatement, control variables 

must be introduced so as to account for any correlations between those parameters that may not 

be due to aviation noise.  The inclusion of these variables was also an attempt to address any 

sample heterogeneity in the data set as well as to adhere to meta-analysis best-practices set forth 

in Nelson and Kennedy (2009).  The control variables included in the meta-analysis are very 

similar to those employed by Nelson (2004) and Wadud (2009); they include the sample size of 

the primary study, a functional form dummy variable, an airport accessibility dummy variable, 

and dummy variables for each of the decades represented in the data set. 
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The functional form dummy variable refers to whether the primary study derived the NDI based 

on a linear or a semilogarithmic regression specification; this choice has been shown to 

significantly affect the NDI result [Schipper et al. (1998)].  In a linear model, property value is 

assumed to be a linear function of the explanatory variables, whereas in a semilogarithmic 

model, the logarithm of property value is assumed to be a linear function of the other variables.  

As a linear model generally tends to overestimate noise damages, a positive sign was expected 

for the functional form dummy variable [Wadud (2009)].   

The airport accessibility dummy variable refers to whether or not the primary study considered 

the benefits of having an airport nearby (in terms of ease of travel, employment opportunities, 

etc.) in addition to the drawbacks.  The expected sign for this variable was therefore negative, 

because the housing value depreciation (and the corresponding WTP) should be less when also 

considering the positive externalities of the airport.   

Because the meta-study used a data set that spans almost 40 years, it was also necessary to 

control for possible changes in the perception of noise over time.  To this end, three decade 

dummy variables were introduced, one each for studies conducted in the 1980’s, 1990’s, and 

2000’s (with the 1970’s decade as the default).  Taking all of the above variables into account, a 

multivariate robust linear regression was carried out with the 60 observations in order to identify 

the significant variables through backward selection.  Backward selection is an iterative 

procedure in which the least significant parameter (based on p-value) at each step is discarded, 

and the process is repeated until all remaining parameters are significant at the 10% level.  The 

step-by-step results of the backward selection are shown in Table 5, listing the insignificant 

parameter at each iteration. 

Table 5: Backward selection – insignificant parameters 

Iteration Least Significant Parameter p-value 

1 1990’s decade dummy variable 0.9334 

2 Airport accessibility dummy variable 0.8598 

3 Sample size 0.6788 

4 1980’s decade dummy variable 0.4895 

5 2000’s decade dummy variable 0.3613 

6 Functional form dummy variable 0.1729 
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Table 6 shows the outcome of the backward selection procedure.  The interaction term was the 

most significant parameter, with a p-value of 0.0052 and a coefficient of 0.0154.  The income 

parameter was also significant, with a p-value of 0.0424 and a coefficient of 0.0138.  The sign of 

both the income and interaction term coefficients represent a positive relationship between 

income and WTP for noise abatement.  These results are also in line with the observation that the 

US airport regions in the meta-study tend to exhibit a lower WTP for noise abatement with 

respect to income than the non-US airports. 

Table 6: Backward selection – significant parameters 

Parameter Coefficient p-value 

Income  0.0138 0.0424 

Interaction term 0.0154 0.0052 

 

The intercept of the linear regression model was -30.3440 (p-value = 0.8620).  The intercept was 

not considered an explanatory variable eligible for exclusion through backward selection, and 

was therefore included in the final regression result despite its large p-value.  The income 

coefficient, interaction term, and intercept will henceforth be collectively referred to as the 

regression parameters.  The equation specifying the relationship between WTP for noise 

abatement and the regression parameters is given by: 

  (6) 

Since the effect of the interaction term is that the coefficient on the income variable is increased 

for studies conducted around non-US airports, Equation 6 may also be rewritten as: 

  (7) 

The above equations match the form of the relationship proposed by Navrud (2004) to perform 

benefit function transfer of WTP for environmental goods (Equation 3).  Figure 12a shows 

Equations 6 and 7 superimposed on the meta-analysis data set.  The two black lines represent the 

different relationships between WTP and income for the US and non-US studies.  Figure 12b 

gives a visual representation of the weighting scheme used in the robust linear regression.  The 

circles indicating the individual observations are sized in proportion to the weighting scheme of 



64 

 

the robust regression; observations near the regression lines have a weight close to one, whereas 

those farther away have a weight closer to zero.  The five outliers identified in Section 4.5.1 were 

given a weight of zero, and were therefore effectively excluded from the data set. 

  

Figure 12: Result of robust linear regression: a) with all 60 observations and b) observations sized to reflect 

robust weighting scheme 
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a)            All 60 observations b) Reflecting robust weighting scheme
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5 Model Application 

This chapter defines and explains the three main aspects of the new income-based hedonic noise 

monetization model: inputs, algorithm, and outputs.  The goal of the chapter is to inform would-

be users of the model on how the various pieces fit and work together to produce the desired 

results. 

5.1 Inputs 

To avoid confusion between the terms input, factor, and parameter, it is necessary to first 

establish the terminology in the context of the income-based hedonic noise monetization model.  

The definitions provided below are consistent with those set forth in Allaire (2009) for 

describing models with application to aviation environmental systems. 

Model inputs are the set of all factors and parameters that must be specified in order to enable 

model operation.  Model factors are external inputs to the model that correspond to the scenario 

considered for analysis; specifically, they include the noise contours, the population density 

grids, and the city-level average per capita personal income.  Model parameters are quantities 

that determine the characteristics of the model, and are independent of the scenario of interest.  

They include the regression parameters, income growth rate, noise contour uncertainty, 

background noise level, significance level, and discount rate.  The model factors and parameters 

are described in detail in the following sections. 

5.1.1 Model Factors  

5.1.1.1 Noise Contours 

Noise contours represent the Day-Night Level of aircraft noise at a particular location, and are 

computed as yearly averages around each airport.  They are created using the Model for 

Assessing Global Exposure to the Noise of Transport Aircraft (MAGENTA), which is an FAA 

batch processing tool for the Integrated Noise Model (INM).  The INM computes the noise level 

for a single aircraft event at distinct grid points around the runway given the aircraft’s engine 

type, airframe characteristics, thrust setting, and flight trajectory.  These calculations are based 

on noise-power-distance curves derived from empirical data and industry standards for various 
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aircraft and engine types.  To characterize the full set of operations at an airport, MAGENTA 

requires airport-specific data (e.g. airport location and runway configuration), weather 

conditions, as well as the arrival and departure trajectories for each aircraft operating through the 

airport.  The single aircraft events are summed to obtain the cumulative noise level, which is 

temporally-averaged over a 24-hour period, consistent with the DNL metric. 

 

Figure 13: Sample INM noise contour output.  Note: This contour is for demonstrative purposes only. 

The output noise contour of INM is a geographically-referenced (in latitude/longitude) contour 

map with bands demarcating regions of a particular DNL of noise exposure, as shown in Figure 

13.  In order to be compatible for use with the income-based noise model, the noise contours 

must be referenced in the Universal Transverse Mercator (UTM) coordinate system.  The UTM 

is an example of a projected coordinate system, which is preferable to the conventional 

latitude/longitude specification because it allows locations to be referenced on a regularly-spaced 

grid.
19

  Each noise contour is transformed from a latitude/longitude coordinate system to a UTM 

coordinate system using the appropriate reference system and zone map for the airport’s 

location: for US airports, the 1983 North American Datum (NAD83) geodetic reference system 

                                                 
19

 The use of a regularly-spaced grid is particularly important for performing global analyses of aviation noise 

impacts.  The degree-minute-second convention of latitude/longitude references corresponds to different 

physical distances depending on the location of the airport.  To batch-process many airports for a policy 

analysis, it is necessary to employ a system where the relationship between the coordinate values and physical 

distances is consistent across the globe.  The UTM system divides the portion of the Earth between 80°S and 

84°N latitude into 60 zones, each of which is mapped onto a two-dimensional surface using the Transverse 

Mercator projection.  The distortion introduced in the projection is minimized when using the reference 

projection map for the appropriate UTM zone. 
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is used; for non-US airports, the 1984 World Geodetic System (WGS84) reference system is 

used. 

To perform a policy analysis, usually two sets of noise contours are needed: baseline and policy. 

The baseline noise contours for the reference year (also known as the 0
th 

year) are constructed 

based on actual aircraft movement data for a representative day of operations.  The baseline or 

consensus forecast for future years represents an estimate of the most likely future noise scenario 

while maintaining the status quo for technology, fleet mix, and aviation demand.  The policy 

forecast reflects the expected future noise levels after the implementation of a particular aviation 

policy.  Forecasting of future noise scenarios is conducted by the Forecast and Economic Sub-

Group (FESG) within the ICAO Committee on Aviation Environmental Protection (CAEP).  To 

evaluate the economic implications for noise associated with a particular aviation policy, the 

difference between the policy and the baseline scenarios (henceforth referred to as a “policy 

minus baseline” scenario) is considered. 

5.1.1.2 Population Data 

Population data are required to estimate the number of people residing in the region surrounding 

each airport.  They are presented as grids of population density (number of persons per square 

meter) in UTM coordinates.  As the population density grid must be overlaid with the noise 

contour for each airport in order to compute the monetary noise impacts, the geographical extent 

of the grid must completely contain the noise contour so that the entirety of the noise-impacted 

area may be considered in the analysis.  Population data are obtained from several sources: for 

US regions, block group-level 2000 Census data are used; for European regions, the European 

Environmental Agency’s (EEA) population maps are used; for most of the rest of the world, 

population data are obtained from the Gridded Rural-Urban Mapping Project (GRUMP).  For 

some countries, more detailed data from local statistical agencies are available, which are used in 

lieu of the EEA or GRUMP data.  This is the case for the UK, South Africa, Canada, and 

Australia.  Currently, all population data correspond to 2000 (US Census and GRUMP data) or 

2001 values (EEA data), and any population changes since that time are not accounted for. 
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5.1.1.3 Income Data 

The city-level average personal income must be acquired for each airport in the analysis.  These 

data may be obtained from a variety of sources, most notably from national statistical agencies 

(see Section 4.2).  Many such agencies are listed in Appendix C for the sample problem 

presented in Section 7.1.  The income data search should be conducted for the baseline reference 

year, and adjusted to reference year USD using the procedure outlined in Figure 6.  In cases 

where the city-level income cannot be found, it may be estimated based on the relationship 

between income and GNI per capita observed for other airport regions in the study (see Section 

7.1.2).   

5.1.2 Model Parameters 

Model parameters can be either deterministic or distributional.  Deterministic parameters are 

used when the exact value of the parameter is known, or can be selected based on guidelines or 

on previous knowledge about a particular situation.  Of the six model parameters, the discount 

rate, significance level, and income growth rate are set to be deterministic values, as they 

represent value judgments rather than parameters rooted in scientific knowledge.   

Some model parameters have uncertainties that arise from limitations in scientific knowledge, a 

lack of predictability, or modeling difficulties.  Such parameters include the background noise 

level, contour uncertainty, and the regression parameters.  The uncertainty in these parameters 

will propagate through the model calculations and create uncertainty in the output.  In order to 

capture this propagation of uncertainty, Monte Carlo Simulations (MCS) are conducted, which 

entail specifying each input parameter as a probabilistic distribution, and calculating an output 

for each input sample.  In this way, numerous runs are performed, resulting in a distribution of 

output values.  For the uncertainty assessment and sample problem presented in this thesis 

(Chapters 6 and 7, respectively), the number of Monte Carlo runs was set to 2000.  Uncertainty 

analysis using MCS will be further discussed in Section 6.3. 

5.1.2.1 Discount Rate 

The discount rate is a parameter that captures the depreciation in the value of money over time, 

and is expressed as an annual rate.  It is an important consideration in the monetization of 

aviation noise impacts because aviation policies usually have a time span on the order of several 
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decades.  Though the discount rate may be chosen to be any reasonable value, in this thesis rates 

of 1%, 3.5%, and 5% will be considered (corresponding to high, nominal, and low monetized 

noise impacts, respectively), consistent with previous work in APMT-Impacts [Kish (2008), 

Mahashabde (2009)].   

5.1.2.2 Significance Level 

The significance level is the threshold DNL above which aircraft noise is considered to have 

“significant impact” on the surrounding community.  It is unique as a model parameter in that it 

does not affect the value of the computed monetary noise impacts.  Instead, its only function is to 

designate noise impacts as significant or insignificant, and thereby include them in or exclude 

them from the reported results. 

The nominal value of the significance level is equal to the background noise level, such that any 

aviation noise above the ambient noise level in the community is regarded as having a significant 

impact (see Section 5.1.2.4 for discussion about background noise level).  However, other levels 

of significance may also be chosen.  According to 14 CFR Part 150, the FAA defines the level of 

significant noise exposure to be 65 dB DNL, below which all types of land use are deemed 

compatible [FAA (2006a)].   

5.1.2.3 Income Growth Rate 

The income growth rate represents the annual rate of change in the city-level average personal 

income.  It is universally applied to the income levels of all airports in the analysis when 

calculating the WTP for noise abatement.  The appropriate value to use for the income growth 

rate will vary from country to country, but may be estimated from the yearly growth in the GNI 

per capita for various nations included in the analysis.  It is important to note that the value of 

interest is the real income growth rate, independent of inflation – thus, when considering the 

nominal growth in GNI per capita, the annual inflation rate must be deducted.
20

 

For many developed nations, an annual growth rate between 2 to 3% may be a reasonable 

assumption; however, for parts of the developing world the value may be more extreme, or may 

fluctuate greatly from year to year [World Bank (2010)]. The nominal value of the income 

                                                 
20

 Alternatively, inflation may be accounted for by first adjusting the GNI per capita values from different years 

to the currency of a common reference year using an inflation calculator, then computing the percent change in 

GNI per capita. 
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growth rate is zero so as to allow for the quantification of the monetary impacts of noise solely 

due to the growth of aviation, rather than due to growth in economic activity (this is particularly 

useful when considering a policy minus baseline scenario). 

5.1.2.4 Background Noise Level 

The economic impacts of aviation-related noise should only be evaluated when aircraft noise 

exceeds the ambient noise level in the airport region.  This threshold is termed the background 

noise level (BNL), and is implemented as 2000 random samples for each airport, drawn from a 

triangular distribution between 50 dB and 55 dB, with a mode of 52.5 dB.  In the previous 

version of the APMT-Impacts Noise Module, the background noise level was known as the quiet 

level.  The BNL may vary from region to region, but for urban areas, it is typically about 50 to 

60 dB in the daytime and 40 dB at night [Nelson (2004)].  Navrud (2002) cites numerous studies 

in Europe that use a BNL of either 50 or 55 dB, and recommends using DENL 55 for aircraft 

noise.  In the US, under the 1972 Noise Control Act, the EPA recommended 55 dB DNL as the 

“level requisite to protect health and welfare with an adequate margin of safety” [EPA (1974)].  

Further discussion of the choice of the BNL distribution can be found in Kish (2008). 

5.1.2.5 Contour Uncertainty 

Currently, the noise contours from MAGENTA are fixed values.  In order to account for 

uncertainty in those contours, it is assumed that the contour noise levels have a triangular 

uncertainty distribution with minimum, maximum, and mode at -2 dB, 2 dB, and 0 dB, 

respectively.  This contour uncertainty (CU) distribution represents an engineering estimate, and 

should be updated as a greater understanding is gained of the uncertainties in the INM output.  

Another limitation of the triangular distribution is that it only captures uncertainties in the noise 

level, not uncertainties in the area of the contour, which may disproportionately affect the 

estimated monetary noise impacts [Tam et al. (2007)].  Future work in the AEDT assessment 

effort should include quantifying the uncertainty in the noise levels calculated by the INM, as 

well as implementing the capability to scale the area of the noise contours. 

5.1.2.6 Regression Parameters 

In order to obtain probabilistic distributions for the three regression parameters, bootstrapping 

was performed with the 60 meta-analysis observations in order to generate alternative data sets 
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and construct multiple estimates of the regression parameter coefficients.  In the bootstrapping 

procedure, 60 samples are randomly drawn with replacement from the original data set, and a 

bisquare robust regression is performed in order to compute the income coefficient, interaction 

term, and intercept.  This process was repeated 2000 times for each airport included in the 

analysis.
21

   

 

Figure 14: Bootstrapping distributions for: a) income coefficient, b) interaction term, and c) intercept 

Figure 14 shows the approximately Gaussian probabilistic distributions for the three regression 

parameters obtained from bootstrapping, as well as the mean and standard deviation (SD) of each 

distribution.  The histograms represent 2000 bootstrap samples for each of 207 airports, for a 

total of 414,000 discrete points.
22

  Notice that the mean of each distribution is slightly different 

from the coefficients in Equation 6 due to the random sampling in the bootstrapping procedure. 

5.1.3 Lenses 

For the ease of policy analysis, lenses were created as ready-made sets of inputs that can be used 

to evaluate decision alternatives.  Each of the three lenses – midrange, low-impacts, and high-

impacts – is a group of model parameter values that can be applied to any set of model factors to 

evaluate the outcome given a particular perspective or outlook.  The midrange lens represents a 

most likely scenario, where all model parameters are set to their nominal value or distribution (as 

                                                 
21

 In order to check whether 2000 iterations were enough for convergence, the running mean and variance were 

plotted versus the iteration number for each regression parameter.  After 2000 iterations, fluctuations in the 

running mean of the income coefficient and the interaction term were on the order of 0.1%, and those in the 

running mean of the intercept were on the order of 1%.  After 2000 iterations, fluctuations in the running 

variance of all three parameters were on the order of 1%. 
22

 Bootstrapping was performed for 207 airports, corresponding to the number of airports in the ICAO-CAEP/8 

Goals Forecast.  However, when using these bootstrapping results as part of the noise lenses to perform 

uncertainty assessment, only 172 of the 207 sets of 2000 samples were used (see Section 6.1). 

a)  Mean = 0.0143, SD = 0.0079 b)  Mean = 0.0170, SD = 0.0094 c)  Mean = - 37.48, SD = 207.85
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described in Section 5.1.2).  The low-impacts lens represents an optimistic outlook, or the best-

case scenario, in which the impacts of aviation noise are minimum.  The high-impacts lens, on 

the other hand, represents a pessimistic or worst-case scenario, wherein the impacts of aviation 

noise are maximum.  Table 7 summarizes the parameters for each of the three lenses.  The 

midrange lens is the only one that employs MCS, and therefore produces a distribution of 

outputs.  The low-impacts and high-impacts lenses are purely deterministic, in which the model 

parameters are set to the bounds of their respective distributions.  Because there are no clear 

lower and upper bounds in the regression parameter distributions, the income coefficient is 

instead set to the 10
th

 and 90
th

 percentile value of the nominal distribution for the low-impacts 

and high-impacts lenses, respectively.  The interaction term and intercept are set to their nominal 

values (from Equation 6) in the two deterministic lenses.  The discount rate is not explicitly 

included in any of the input lenses because its effect is solely in the post-processing of the model 

outputs.  That is, any discount rate may be applied to the results from any of the lenses to reflect 

different economic scenarios.   

Table 7: Noise lenses 

Model Parameter Low-Impacts Lens Midrange Lens High-Impacts Lens 

Significance Level 65 dB 
Background Noise 

Level 
50 dB 

Income Growth Rate 0% 0% 0% 

Background Noise 

Level 
55 dB 

 

50 dB 

Contour Uncertainty -2 dB 

 

2 dB 

Income Coefficient 
0.0046  

(10
th

 percentile value) 

 

0.0241 

(90
th

 percentile value) 

Interaction Term 0.0154 

 

0.0154 

Intercept -30.3440 

 

-30.3440 

52.5 dB 55 dB50 dB

0 dB 2 dB-2 dB

Mean = 0.0143

SD = 0.0079

Mean = 0.0170

SD = 0.0094

Mean = -37.48

SD = 207.85
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5.2  Algorithm 

The income-based noise monetization model is a suite of scripts and functions implemented in 

the MATLAB® (R2009a, The MathWorks, Natick, MA) numerical computing environment.  

The algorithm of the model is shown schematically in Figure 15.   

 

Figure 15: Schematic of income-based hedonic monetization model 

For each airport, the city-level average per capita personal income is combined with the income 

growth rate and the coefficients of the regression parameters derived in Section 4.6.2 to calculate 

a WTP per person per dB of noise abatement for the airport region.  The population density grid 

and noise contour are spatially aligned according to their UTM coordinates, and superimposed to 

calculate the number of people at each grid point exposed to the DNL represented in the noise 

contour.  Figure 16 shows an example of a rasterized noise contour overlaid on a population 

density grid.  The white spaces in the map represent areas with no population according to 

census data (e.g. water, nature reserves, non-residential areas, etc.). 
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Figure 16: Superposition of noise contour and population density grid.
23

  Note: This figure is for 

demonstrative purposes only. 

Because it is assumed that the MAGENTA noise contours have some level of uncertainty, and 

that aviation noise impacts the surrounding community only if it is above the background noise 

level of the region, the expression for the noise level used in the calculation of monetary impacts 

(termed ΔdB) is given by: 

  (8) 

For each grid point p, the monetized value of noise, Vp, is given by: 

  (9) 

                                                 
23

 The noise contour is shown as semi-transparent in order visualize the underlying population density.  Slight 

distortions in the noise contour (compared to Figure 13) are due to the projection from latitude/longitude 

coordinates to UTM coordinates.  The pixilation in the population density map is due to the resolution limit of 

the regularly-spaced grid.  The scale bar is set to represent deciles in the population density.   
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The units of Vp are USD in the reference year of the noise contours.  In order to compute Vt, the 

total capitalized noise impacts associated with year t, Vp is summed over all grid points within 

each noise level band (e.g. 55-60 dB, 60-65 dB), across all noise level bands for each airport, and 

finally across all airports in the analysis: 

  (10) 

5.3 Outputs  

There are two main classes of outputs for the income-based hedonic noise monetization model, 

physical impacts and monetary impacts.  The physical impacts include the noise exposure area 

and the exposed population, whereas the monetary impacts include the capitalized noise impacts, 

annual noise impacts, and Net Present Value (NPV).  The algorithm for computing these outputs 

is shown in Figure 15, and will be described in the following sections.   

Because baseline and policy scenarios are usually provided for only a subset of the years in the 

policy period (e.g. at 10-year intervals), to report year-by-year impacts the results (both physical 

and monetary impacts) are linearly interpolated between fixed contour years. 

5.3.1 Physical Impacts 

For a particular set of noise contours, the physical impacts associated with each noise level band 

may be computed for all individual airports.  The noise exposure area is the size (in m
2
) of the 

geographical region that is subject to a particular level of noise.  The exposed population is the 

number of people residing in the noise exposure area.  The yearly physical impacts associated 

with both the baseline and policy scenarios may be obtained using interpolation.  However, it 

must be noted that since there is no forecasted population growth in the income-based noise 

monetization model, the physical impacts of noise for future years should be interpreted in the 

context of changes in the policy scenario relative to the baseline, rather than as absolute 

numbers. 

Unlike the monetary impacts of noise, physical impacts are reported as the number of people or 

the size of the geographical area exposed to at least 55 dB of aviation-related noise, rather than 
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as impacts relative to the background noise level.
24

  This is because in the scenarios considered 

in this thesis, the lowest noise level in any of the contours was 55 dB.  Therefore, neither the 

contour uncertainty nor the background noise level triangular distributions affect the total 

estimated physical impacts. 

5.3.2 Monetary Impacts 

5.3.2.1 Capitalized Noise Impacts  

The total monetary impact estimated from one set of noise contours is a capitalized value, which 

means that it embodies all future impacts associated with the given noise scenario.  A more 

intuitive approach for understanding capitalized impacts may be to revisit the hedonic pricing 

method used in Kish (2008), which attempted to quantify noise-induced housing value 

depreciation. 

In an area exposed to significant aviation-related noise, homeowners will generally pay less for a 

house because of the detrimental effects of noise.  Therefore, the monetary impact of noise (or 

conversely, the implicit value of quietness) is captured in the difference in price between a house 

in a noisy area and an otherwise identical house in a quiet area.  However, the monetary loss due 

to noise is a one-time occurrence, which is only realized when the owner sells the house.  

Therefore, the total monetary impact computed from the noise contours of one year also 

encapsulates the housing value depreciation due to all future noise anticipated by the 

homeowners. 

Because the income-based noise monetization model was derived from 60 hedonic pricing 

studies, the WTP for noise abatement is explicitly a function of capitalized attributes such as 

NDI and property value (Equation 4), making it also a capitalized value.  Therefore, the 

economic damages computed from the noise contours of one particular year represent the 

capitalized noise impacts associated with that year.  It is therefore not valid to sum the 

                                                 
24

 Monetary impacts of noise are calculated with respect to ΔdB away from the background noise level, which 

has an upper limit of 55 dB DNL in the current definition (Section 5.1.2.4).  For example, for a noise contour 

level of 55 dB and ΔdB = 0 (e.g. contour uncertainty = 0 and background noise level = 55 dB), the estimated 

monetary impacts for that grid point would be zero, whereas the physical impacts would be non-zero, assuming 

the population density at that point is non-zero. 
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interpolated yearly capitalized noise impacts to compute a total amount for a specific scenario, as 

doing so would introduce double-counting. 

A key difference between the income-based hedonic noise monetization model and the previous 

APMT-Impacts Noise Module is that rather than separating the monetary impacts of aviation 

noise into housing value depreciation and rental loss, the results of the income-based model in 

theory capture both effects.  The explanation is thus: in the former hedonic pricing model, the 

people who reside within the area of the noise contour are sorted into homeowners and renters.  

The housing value depreciation and rental value loss experienced by residents, therefore, 

correspond to different portions of the total population exposed to aviation noise.  However, in 

the income-based hedonic monetization model, the WTP for noise abatement is expressed as a 

per person monetary value, and is applied to all individuals residing within the noise contour 

area, with no distinction between homeowners and renters.  The capitalized monetary impacts 

estimated using the income-based model, therefore, represent the cumulative effect of housing 

value depreciation and rental loss associated with of aviation noise.  In this way, the income-

based model exhibits an important advantage over the previous Noise Module, in that no 

knowledge is required about the split between owner-occupied and rental properties in each 

airport region. 

5.3.2.2 Annual Noise Impacts 

Because capitalized noise impacts do not capture changes in aviation noise over the time span of 

an environmental policy, it is often of interest to policymakers to consider annual noise impacts.  

To transform a capitalized value into an annual value, it is first necessary to assume a discount 

rate, R, and policy time span of N years.  These values are then used to calculate the Capital 

Recovery Factor (CRF)
25

: 

  (11) 

The CRF converts a capitalized value into an annuity, which is a constant payment in each year 

over a period of N years.  The capitalized noise impacts in the reference year, V0 (see Equation 

                                                 
25

 The usage of CRF to denote the Capital Recovery Factor in the APMT-Impacts Noise Module should not be 

confused with Concentration Response Functions used in the APMT-Impacts Air Quality Module, which 

represent exposure-response relationships for estimating changes in health incidences. 
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10), can then be equally distributed over all subsequent years (1 through N) by multiplying by 

the CRF; the product is the annuity, B0, or the base amount in each year independent of future 

changes in aviation noise.   

  (12) 

The second contribution to annual noise impacts is the additional damages incurred each year 

due to the forecasted growth of aviation.  This amount, termed the marginal impact, is simply the 

difference in the capitalized impacts between each year and the previous year.  For year t, the 

marginal impact, Mt, is given by: 

  (13) 

Since yearly capitalized impacts are linearly interpolated between fixed noise contour years, Mt 

is constant within each interpolation set.  There is no marginal impact associated with the 

reference year.  The annual noise impact is the sum of the annuity and the marginal impact, 

which must then be discounted into the reference year dollar amount.  The total annual noise 

impact for year t post-discount is given by: 

  (14) 

Equation 14 can be rewritten in terms of only the capitalized noise impacts for each year, 

discount rate, and policy time span. 

  (15) 

5.3.2.3 Net Present Value 

The Net Present Value is a measure of the total monetary impacts of aviation noise over the time 

span of an environmental policy, expressed as a dollar amount in the reference year currency.  It 

is the most convenient metric for comparing the noise impacts of different aviation policies, or 

for comparing the different categories of environmental impact (e.g. climate, air quality, and 

noise) associated with one particular policy.  For this reason, NPV is usually the metric adopted 

for considering environmental impact tradeoffs in APMT-Impacts.  
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The NPV is calculated by summing the discounted annual noise impacts (Equation 15) over the 

duration of the policy period.  The annuity in the reference year is not included in the 

summation.   

  (16) 

An alternate way of thinking about the NPV is that it is the capitalized impact in the reference 

year plus the sum of the discounted marginal impact in all subsequent years.  This approach 

bypasses the transformation from capitalized impacts to annual impacts, and is given in Equation 

17.  It can be shown that with algebraic manipulation, Equation 16 reduces to Equation 17; 

hence, the two approaches are equivalent. 

  (17) 

5.4 Limitations 

There are several limitations to the income-based hedonic noise monetization model.  The most 

critical is that the model was developed based on 60 hedonic studies from North America, 

Europe, and Australia, which are all developed regions of the world with relatively high income.  

However, the regression relationship between WTP and income derived from these studies is 

then applied globally, for both low-income and high-income regions.  It is not inconceivable that 

low-income regions may have an entirely different income elasticity of WTP for noise 

abatement, one that does not fit in with the linear relationship predicted by the robust 

multivariate regression.  However, until more studies are available that address the economic 

impacts of noise in low-income regions, it is uncertain how this shortcoming affects the results of 

any analyses conducted using the income-based hedonic noise monetization model.   

The limitations of meta-study data do not only affect the low-income regions.  It is possible that 

the 60-observation data set does not accurately reflect the reality of the noise problem (for 

example, perhaps the studies were only conducted in areas where the local reaction to aviation 

noise was unusually strong), and thus the derived regression relationship does not precisely 
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capture the monetary impacts of aviation-related noise.  Similarly, it is also possible that the 

observed trend between income and WTP for noise abatement may be due to factors unrelated to 

aviation noise – while the backward selection procedure presented in Section 4.6.2 aimed to 

consider as many explanatory variables as possible, it is likely that the list was incomplete.  

Future work should focus on expanding the meta-analysis data set and introducing more 

explanatory variables into the regression model. 

Another potential limitation of the income-based noise model is that it can only be used for 

airport regions where accurate and detailed population data are available.  Though not a 

shortcoming of the model development process itself, this constraint does affect the applicability 

of the model and the accuracy of its results.  While the US Census, EEA, and GRUMP 

population data provide extensive global coverage, these data sources are updated infrequently 

(the population data used in this thesis date from 2000 and 2001) and do not necessarily give an 

accurate portrayal of the population distribution in the reference year of the noise contours.  

Furthermore, the income-based noise model currently does not account for population growth, so 

there are no forecasted population grids to align with the projected future noise contours. 

However, while these limitations may affect the baseline or policy scenario results to the first 

order, when considering a policy minus baseline scenario, the effects become second-order.  In 

this way, the limitation on detailed population data does not detract from the model’s ability to 

discriminate the costs or benefits of a particular aviation policy scenario relative to the baseline.  
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6 Uncertainty Assessment 

The income-based hedonic noise monetization model developed in this thesis is intended to be 

used as part of the Aviation Environmental Tools Suite to analyze proposed policies and inform 

decision-making.  However, the use of an empirical model to predict probable outcomes 

necessitates questions such as: “What confidence can one have in the model results?” and “What 

can be done to improve this confidence?” [Allaire (2009)].  To answer these questions, it is 

important to understand how uncertainties evolve from the inputs and assumptions of the model 

and propagate to the outputs.  

Uncertainty assessment refers to a rigorous procedure to represent, characterize, and analyze the 

uncertainties in a model [Allaire (2009)].  It is of critical importance to APMT-Impacts because 

it presents a way to quantify the uncertainties associated with each module, as well as those 

related to the system as a whole.  Furthermore, because model outputs are driven by assumptions 

in the inputs, it is important to understand those causal relationships so as to provide the proper 

context for interpreting any conclusions drawn from the results.  In this way, uncertainty 

assessment also plays an essential role in facilitating the transfer of policy-relevant information 

from the model developers to the policymakers and other stakeholders [Mahashabde (2009)].  

Results of previous assessment efforts for the APMT-Impacts Climate, Air Quality, and Noise 

Modules can be found in Mahashabde (2009), Brunelle-Yeung (2009), and Kish (2008), 

respectively.  System-level assessment of APMT-Impacts as well as of the Aviation 

Environmental Tools Suite as a whole is an area of ongoing research in PARTNER. 

6.1 Objectives and Methodology 

There are several objectives in conducting uncertainty assessment for the income-based hedonic 

noise monetization model.  These include: 

 Understand how uncertainties in each model input contributes to the variability in 

model outputs 

 Rank model inputs based on their contribution to output variability  

 Identify limitations in model functionality that may hinder the model’s applicability  
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 Identify sources of uncertainty which may be reduced through further research and 

validation  

The noise contours used in the uncertainty assessment were obtained from the ICAO-CAEP/8 

Goals Forecast, which included 207 airports worldwide.  Of these 207, 172 airports were 

included the assessment effort, as population data were not readily available for the remaining 

35.  The baseline contours used in the analysis corresponded to the ICAO-CAEP/8 Goals 

Technology Freeze scenario, whereas the policy contours corresponded to the Advanced 

Technology scenario.  The noise reference year was 2006, and the forecasted future noise 

contours corresponded to 2016, 2026, and 2036.  Therefore, the policy of interest has a lifespan 

of 30 years.   

Population data were obtained from the 2000 US Census, the EEA, and GRUMP, as described in 

Section 5.1.1.2.  Income data were obtained from the US Bureau of Economic Analysis in 2006 

for the 92 US airports, and from various national statistical agencies in 2005 for the 80 non-US 

airports.
26

  The model parameters considered in the uncertainty assessment include those that are 

part of the noise lenses (Table 7), as well as the discount rate.  The nominal case refers to the 

midrange noise lens and a discount rate of 3.5%, consistent with the definitions in Chapter 5.   

The NPV was used as the output of comparison because it is the only metric that makes use of all 

model parameters, as well as considers the entire time span of the policy.  Physical impacts were 

not considered because they do not incorporate many of the model parameters, such as discount 

rate, income growth rate, and regression parameters. 

A comprehensive procedure for conducting uncertainty assessment using a probabilistic 

approach is described in detail in Allaire (2009), and the steps are list below: 

1. Establish the desired outcomes of the uncertainty assessment 

2. Document the assumptions and limitations of the model 

3. Document factors and outputs of the model 

4. Classify and characterize uncertainty 

                                                 
26

 2005 income data were used for non-US airports because they were already available from the sample case 

discussed in Section 7.1 without requiring a new data search.  Because the purpose of model assessment was to 

characterize the sensitivities of the various model parameters, not quantify the absolute value of the NPV, the 

one year income discrepancy should have no effect on the assessment results. 
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5. Conduct uncertainty analysis 

6. Conduct sensitivity analysis 

7. Communicate results 

The current assessment effort followed the above guidelines.  Steps 2 and 3 have already been 

discussed in previous sections of this thesis; the remainder of this chapter will focus on Steps 4 

through 7 of the list. 

6.2 Uncertainty Classification  

Uncertainty in scientific models may be broadly categorized as epistemic or aleatory.  Epistemic 

uncertainty arises due to limitations in scientific knowledge, and may be reduced with further 

research and improved understanding, whereas aleatory uncertainty arises from natural 

randomness and is therefore irreducible [Allaire (2009)].  

The inputs to the income-based hedonic noise monetization model contain both epistemic and 

aleatory uncertainty.  For example, the MAGENTA noise contours, population data, and income 

data are constrained by data availability and quality, which may be categorized as epistemic.  

Similarly, the model parameters, such as the discount rate, income growth rate, significance 

level, and regression parameters exhibit epistemic uncertainty as they are limited by insufficient 

knowledge about physical reality.  The selection of the background noise level contains both 

epistemic and aleatory uncertainties: aleatory, due to natural variations in the ambient noise level 

in different communities; epistemic, due to inadequacies in the proposed triangular distribution 

for capturing these ambient noise levels, which arise due to limited knowledge. 

In addition to the epistemic versus aleatory classification, within the context of evaluating 

aviation environmental policies in APMT-Impacts, uncertainty may also be categorized in the 

following groups according to the input type [Mahashabde (2009)]: 

 Valuation:  The valuation category refers to monetization methods used to quantify 

environmental impacts, and depends on the selection of parameters such as the 

discount rate and level of significant impact. 
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 Scenario:  The scenario category includes alternative forecasts of future activities or 

situations, such as aviation demand growth, population estimates, and income growth. 

 Scientific and Modeling:  Scientific and modeling uncertainties are epistemic in 

nature and arise from limitations in scientific knowledge or modeling approaches. 

Of the model parameters discussed in Section 5.1.2, the discount rate and the significance level 

contribute to valuation uncertainty.  The income growth rate is an example of scenario 

uncertainty.  The background noise level, contour uncertainty, and regression parameters contain 

scientific and modeling uncertainty, which are epistemic in nature.  Of the three model factors 

identified in Section 5.1.1, the uncertainty in the MAGENTA noise contours is a type of 

scientific and modeling uncertainty, which is captured by the contour uncertainty model 

parameter.  To date, no work has been done to characterize the uncertainty in the population data 

and the city-level income data, though these could be potential areas to focus future research 

efforts. 

6.3 Uncertainty Analysis 

The two main components of uncertainty assessment are uncertainty analysis and sensitivity 

analysis.  Uncertainty analysis refers to the process of characterizing and analyzing the effects of 

uncertainty in model inputs, with the goal of identifying how these uncertainties propagate to the 

model outputs [Allaire (2009)].  In APMT-Impacts, the fundamental tool for conducting 

uncertainty analysis is Monte Carlo Simulations.  In MCS, uncertainty characterization is 

achieved by defining model parameters as random variables with probability distributions when 

possible.  Performing MCS requires iterating the model algorithm thousands of times, and 

computing an output for each set of parameters sampled from their probabilistic distributions.  

The goal of the analysis is to construct a histogram of the model output, estimate its mean and 

variance, and use that information to make quantitative comparisons of various policy scenarios 

or to evaluate the performance of the model relative to fidelity requirements [Allaire (2009)]. 

In the income-based hedonic noise monetization model, the probability distributions employed to 

characterize input uncertainty are triangular distributions for the background noise level and 

contour uncertainty, and approximately Gaussian distributions for the three regression 
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parameters (see Section 5.1.2).  Because of these selections, the model output is expected to have 

a unimodal (and approximately Gaussian) distribution with an unambiguous mean and variance. 

For the baseline scenario, the NPV distribution of the nominal case over 2000 MC runs had a 

mean of $44.4 billion (in year 2006 USD), and a standard deviation of $3.2 billion (Figure 17a).  

The 10
th

 and 90
th

 percentile NPV values were $40.4 billion and $48.3 billion, respectively.  

 

Figure 17: NPV distribution with all parameters set to nominal values for the a) baseline scenario and b) 

policy minus baseline scenario 

As discussed previously, in order to evaluate the economic implications associated with a 

particular aviation policy, it is desirable to consider not just the results relating to the baseline or 

policy scenario alone, but rather the difference between the two.  In order to conduct MCS for a 

policy minus baseline scenario, the choice exists to use either a paired sampling approach or an 

unpaired sampling approach for the model parameters.  In a paired sampling approach, the same 

random draws for model parameters are applied to both the baseline and the policy scenarios, 

whereas in an unpaired approach, different random draws are used.  Unpaired sampling in MCS 

has been shown to contribute to a larger output variance than paired sampling, resulting in 

double-counting of uncertainties [Mahashabde (2009)].  In the context of evaluating aviation-

related noise impacts, many modeling uncertainties are common to both the baseline and policy 

scenarios, such that the only difference between the two should be changes in the noise contours 

as a result of policy implementation.  Therefore, a paired sampling approach for MCS was 

employed for the policy minus baseline scenario in order to more accurately estimate output 

uncertainties. 

a) Baseline Scenario b)          Policy Minus Baseline Scenario
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Because the aviation policy considered in the uncertainty assessment represents the 

implementation of advanced technologies designed to reduce aircraft noise, it resulted in lower 

monetary noise impacts than the baseline scenario; hence, the NPV calculated in the policy 

minus baseline scenario were negative.  For the policy minus baseline scenario, the NPV 

distribution of the nominal case had a mean of $-11.6 billion and a standard deviation of $0.77 

billion (Figure 17b).  The 10
th

 and 90
th

 percentile NPV values were $-12.6 billion and $-10.6 

billion, respectively. 

6.4 Sensitivity Analysis 

The second component of uncertainty assessment is sensitivity analysis, which aims to 

investigate how each model input contributes to variability in the outputs.  It can also be used to 

identify the inputs on which future research should be directed so as to reduce input uncertainty 

and thereby output variability.  The reader is referred to Allaire (2009) for an overview of 

sensitivity analysis methods, as well as for detailed descriptions (including mathematical 

derivations) of the approaches outlined below. 

In the current uncertainty assessment effort, three sensitivity analyses were performed: local 

sensitivity analysis (LSA), global sensitivity analysis (GSA), and distributional sensitivity 

analysis (DSA).  As in the case of uncertainty analysis, the scope of the sensitivity analysis 

included the model parameters, but not the external model factors.   

6.4.1 Local Sensitivity Analysis 

Local sensitivity analysis assesses the output variability due to particular realizations of 

epistemic uncertainties in the model parameters; that is, it examines how the perturbation of each 

model parameter from its nominal selection changes the output [Mahashabde (2009)].  Local 

sensitivity analysis may be performed for both deterministic as well as distributional inputs; in 

latter case, since distributional inputs lead to a distribution of outputs, the mean of the 

distribution may be used to describe the result.  The spread in the output between the low and 

high realizations of each input (with respect to the nominal case) may be compared so as to rank 

the inputs according to their sensitivity. 
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Table 8: Deterministic and distributional model parameters used in LSA 

Deterministic Parameters Distributional Parameters 

Discount Rate 

 

Background Noise Level 

 

Significance Level 

 

Contour Uncertainty 

 

Income Growth Rate 

 

Income Coefficient 

 

 

Table 8 shows the model parameters used in the LSA; note that these values were based on the 

noise lenses defined in Table 7, but with a few exceptions, which are discussed below.  When 

conducting LSA, the first step was to run the nominal case, where all model parameters were set 

to their nominal values or distributions, as described in Section 5.1.2 and highlighted in blue in 

Table 8.  The mean NPV over the 2000 MC runs for the nominal case was calculated, against 

which all other NPV results in the LSA were benchmarked.  Next, the model parameters were 

varied one at a time across the full range of their values (corresponding to the low- and high-

NPV cases in Table 8) while fixing all other parameters at their nominal selections.  Of the three 

regression parameters, only the income coefficient was varied in the LSA to its 10
th

 and 90
th

 

percentile values; the interaction term and intercept were held fixed at their nominal distributions 

for all cases, as their definitions in the noise lenses do not entail evaluation at more extreme 

values.  For income growth rate, the nominal value was 0%, and a rate of 3% was selected as the 

high-impacts realization.  No low-impacts case was selected because a negative income growth 

rate was judged to be non-realistic.  The significance level was equal to the background noise 

level in the nominal case, and 65 dB DNL in the low-NPV case, as is consistent with the 

3.5% 5%

Nominal Low NPV

1%
High NPV

52.5 dB 55 dB

Nominal Low NPV

50 dB

High NPV

Background 

Noise Level
65 dB

Nominal Low NPVHigh NPV

0 dB 2 dB

Nominal High NPV

-2 dB

Low NPV

0% 3%
Nominal High NPVHigh NPV

Mean = 0.0143

SD = 0.0079
0.0241

Nominal High NPV

0.0046

Low NPV
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midrange and low-impacts lenses, respectively.  However, the 50 dB DNL significance level 

corresponding to the high-impact lens was not implemented, because the lowest noise level in 

the contours used for uncertainty assessment was 55 dB.   

Figure 18 shows the LSA results for the baseline scenario, benchmarked against the mean NPV 

for the nominal case of $44.4 billion (in year 2006 USD).  Of the six model parameters, the 

income growth rate showed the largest spread between its low- and high-NPV realizations.  The 

ranking of the model parameters with respect to contribution to output variability, from greatest 

to least, is: 1) income growth rate, 2) income coefficient, 3) background noise level, 4) 

significance level, 5) contour uncertainty, and 6) discount rate.  

 

Figure 18: Local sensitivity analysis results – baseline scenario 

Figure 19 shows the LSA results for the policy minus baseline scenario, where the mean NPV of 

the nominal case was $-11.6 billion.  The ranking of the model parameters with respect to 

contribution to output variability, from greatest to least, is: 1) income growth rate, 2) income 

coefficient, 3) discount rate, 4) background noise level, 5) significance level, and 6) contour 

uncertainty.   
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Figure 19: Local sensitivity analysis results – policy minus baseline scenario 

 

6.4.2 Global Sensitivity Analysis 

Global sensitivity analysis is a method of decomposing output variance into contributions from 

the individual model parameters and the interactions between parameters.  Unlike LSA, it is 

conducted only for those inputs that can be expressed as probabilistic distributions.  The process 

of variance apportionment in GSA is carried out with the Sobol’ method, which uses MCS to 

calculate the Main-effect Sensitivity Index (MSI) and the Total-effect Sensitivity Index (TSI) for 

each parameter [Homma and Saltelli (1996), Sobol’ (2003)].  The MSI of a parameter signifies 

the contribution to output variance due to that parameter alone, whereas the TSI denotes the 

contribution to output variance due to that parameter and its interactions with other model 

parameters.  The TSI calculations are performed using the mean-subtracted alternative GSA 

approach, which enhances computational stability [Sobol’ (2001)].  The MSI and TSI values can 

be used to rank the model inputs based on their contribution to output variability.  The sum of all 

MSI for the model should be roughly equal to one, whereas the sum of the TSI should be greater 

than or equal to one, depending on the magnitude of the interaction effects.  The Sobol’ method 

has been employed extensively for GSA of various modules within APMT-Impacts 

[Mahashabde (2009), Brunelle-Yeung (2009), Kish (2008), Jun (2007)]. 
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Global sensitivity analysis was conducted only for the distributional model parameters – namely, 

the background noise level, contour uncertainty, and the three regression parameters.  Since GSA 

inputs must be independent distributions, the three regression parameters were considered 

collectively, as together they represent one independent regression distribution obtained from the 

bootstrapping procedure described in Section 5.1.2.6.  Therefore, a total of three inputs were 

examined, and for each parameter a MCS with 2000 runs was performed where the distribution 

of the given parameter was fixed at its base sample values, while all other parameters were 

resampled from their respective distributions.  A total of five runs were required for each GSA 

scenario – one resampled case for each of the three model parameters, one base case without 

resampling, and one case where all parameters were resampled.  The MSI and TSI for the model 

parameters were calculated based on the NPV distributions obtained from the five evaluations. 

For the deterministic parameters, an inner loop/outer loop procedure may be employed in order 

to investigate what interaction effects, if any, they have on the MSI and TSI of the distributional 

parameters.  In the outer loop, a deterministic input, such as income growth rate, is set to its 

extreme value (as defined in the LSA) while holding all other parameters at their nominal values.  

The inner loop consists of conducting the GSA for the distributional inputs at their nominal 

values, as described above.  In this thesis, three outer loop settings were considered, 

corresponding to the nominal case for all model parameters, a significance level of 65 dB DNL, 

and an income growth rate of 3%.  The discount rate was not varied from 3.5% in the inner 

loop/outer loop procedure because it solely affects the post-processing of the NPV results, and 

therefore has no impact on the MSI and TSI of the other inputs. 
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Figure 20: Global sensitivity indices – outer loop: nominal case 

Figure 20 shows the MSI and TSI for the nominal baseline and policy minus baseline scenarios.  

In both scenarios, the regression parameters had by far the largest MSI and TSI, followed by the 

background noise level, with the contour uncertainty having the smallest indices.  This suggests 

that the majority of the output variability is attributable to scientific and modeling uncertainties 

associated with the WTP versus income regression relationship implemented in the model.   

 

Figure 21: Global sensitivity indices – outer loop: significance level = 65 dB 
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Figure 21 shows the GSA results for the outer loop setting where the significance level is set to 

65 dB.  With this change, the background noise level becomes a negligible contributor to output 

variability because no longer is each grid point in the noise contours considered to have 

significant monetary impact.  Therefore, only a subset of the noise grid points – those exceeding 

65 dB DNL – are included in the NPV calculation; those points all have a ΔdB of at least 10 dB, 

hence reducing the relative influence of the variability in the background noise level in the 

monetary impact calculation.  Correspondingly, the contour uncertainty has a larger relative 

contribution to output variability, as it plays a key role in determining whether or not certain grid 

points are included in the impact calculation.
27

  The decrease in the MSI and TSI for the 

regression parameters is also explained by the larger ΔdB values in this particular outer loop 

setting, which downplays the relative influence of the WTP (and therefore the regression 

parameters) in the computation of monetary noise impacts. 

 

Figure 22: Global sensitivity indices – outer loop: income growth rate = 3% 

Figure 22 shows the GSA results for the outer loop setting where the income growth rate is set to 

3% per year.  There are only minor changes in the MSI and TSI between Figure 20 and Figure 

22, and no shifts in relative ranking of the three inputs the based on their indices.  This result is 
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 For example, if the noise contour level at a grid point is 65 dB DNL, it will be judged to have significance 

noise impact if the contour uncertainty associated with that point is greater than or equal to zero.  Otherwise, if 

the contour uncertainty is negative, the noise level at that point will not meet the 65 dB significance threshold, 

and is therefore excluded from the monetary impact calculation. 
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not surprising, given that the income growth rate should have no effect on the noise level (ΔdB), 

but rather scale the WTP by a constant value for each airport in each year.  For this setting, the 

magnitude of the NPV is much larger than for the nominal case, but the breakdown of model 

parameters by contribution to output variability remains relatively unchanged. 

6.4.3 Distributional Sensitivity Analysis 

For parameters whose uncertainty is epistemic, distributional sensitivity analysis may be 

conducted to investigate how choices regarding the input distribution can affect the output 

variability.  The DSA procedure was developed by Allaire (2009) and is summarized below. 

Distributional sensitivity analysis builds upon the GSA concept, and attempts to account for one 

of its inherent limitations.  In GSA, it is assumed that all epistemic uncertainty associated with a 

particular input may be reduced to zero through further research and improved knowledge – an 

optimistic assumption that can lead to inappropriate allocation of resources.  Distributional 

sensitivity analysis, on the other hand, avoids this generalization by treating the portion of an 

input’s variance that can be reduced as a random variable.  For this reason, it may be more 

appropriate than GSA for the prioritization of efforts aimed at uncertainty reduction, as it could 

convey for which input(s) directed research will yield the greatest return. 

One key parameter in DSA is δ, defined as the ratio of the variance of a particular input that 

cannot be reduced and the total variance of the original distribution for that input.  An output of 

interest in GSA is the MSI of each input; the analogous quantity in DSA is the adjSi(δ), or the 

adjusted main-effect sensitivity index of input i given that it is known that only 100(1– δ)% of its 

variance can be reduced.  Additionally, the AASi, or average adjusted main-effect sensitivity 

index of input i, is the expected value of adjSi over all δ on the interval [0, 1].   

One advantage of the DSA methodology is that it is performed directly on the outputs generated 

from GSA, thus the computational cost remains at five runs for each outer loop setting.  The 

technique that permits the reuse of GSA results is acceptance/rejection sampling.  For the 

income-based hedonic noise monetization model, two forms of acceptance/rejection sampling 

are employed: a triangular distribution scheme for the background noise level and contour 
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uncertainty, and a multivariate normal distribution routine to accommodate the three correlated 

regression parameters.
28

  

Before presenting DSA results, it is first necessary to note a few inherent differences between the 

structure of the income-based hedonic noise monetization model and the DSA methodology.  In 

order to successfully employ acceptance/rejection sampling, it is crucial to achieve exact 

correspondence between the input and output distributions.  That is to say, for each GSA run, the 

variability in the 2000 NPV outputs computed via MCS must be attributable to corresponding 

variations in the 2000 input samples.  Otherwise, non-realistic negative indices may result.  As 

described in Sections 5.1.2.4 through 5.1.2.6, however, the background noise level, contour 

uncertainty, and regression parameters inputs were created by drawing 2000 samples from the 

appropriate distribution for each airport; for the 172 airports included in the uncertainty 

assessment, this represented a total of 344,000 samples for each input.  The NPV, on the other 

hand, was calculated based on the total monetary noise impacts over all 172 airports, resulting in 

a total of only 2000 output samples.  This disconnect in the number of samples violates the input-

output correspondence required for acceptance/rejection sampling.  In order to reconcile this 

discrepancy, the NPV was computed for each airport individually, resulting 172 sets of 2000 

output samples.  For each airport j, its 2000 NPV samples, denoted by NPVj, could then be 

exactly matched to the three corresponding sets of 2000 input samples.  Fortunately, since NPV 

is additive, the linearity of the problem allows for the decoupling of the outputs in this way. 

Taking the above approach, an adjusted main-effect sensitivity index may be computed for each 

of the three distributional inputs (vary i) for each airport (vary j) for each choice of irreducible 

variance ratio (vary δ) – the three degrees of freedom can be expressed by writing adjSij(δ).  In 

order to synthesize these values into representative results for the sake of comparison, it is 

                                                 
28

 Allaire (2009) outlines the acceptance/rejection sampling procedure for input distributions that are triangular, 

uniform, or Gaussian.  For a Gaussian distribution with one independent variable, the mean is held constant 

while the variance is scaled by δ in order to generate new Gaussian input distributions on which to perform 

acceptance/rejection sampling.  For a multivariate normal distribution, the analogous quantities are the vector of 

means and the covariance matrix.  The vector of means is held constant while the entries of the covariance 

matrix are scaled by δ in order to generate new distributions with pre-determined variance characteristics.  

Rather than one-dimensional Gaussian distributions described with bell-shaped curves, the new multivariate 

normal distributions generated for acceptance/rejection sampling are represented by ellipsoids in three-

dimensional space.  The volume of each ellipsoid corresponds to the determinant of the original covariance 

matrix scaled by δ
D
, where D is the dimensionality of the multivariate normal distribution.  In order for this 

procedure to be valid, the original covariance matrix must be positive-definite. 
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necessary to adopt an approach to that converts adjSij(δ) into an overall adjSi(δ) for each input i 

by accounting for the individual contributions of all 172 airports.  This may be done by 

computing a weighted sum along the j index, where each adjSij(δ) is scaled by the ratio of the 

variance of NPVj to the variance of the total NPV.  The details of this procedure are provided in 

Appendix B.  The result is adjSi(δ), the desired DSA output, which can in turn be used to 

compute AASi.   

 

Figure 23: Adjusted main-effect sensitivity indices as a function of percent reducible input variance for the a) 

baseline scenario and b) policy minus baseline scenario 

Figure 23 plots the adjSi for each of the three distributional parameters as a function of 1– δ, the 

percent of the input variance that is assumed to be reducible through further research and 

improved knowledge.  The baseline and policy minus baseline scenarios exhibit very similar 

trends.  These results were obtained by performing acceptance/rejection sampling on the GSA 

outputs corresponding to the nominal case outer loop setting.   

As expected, adjSi grows with increasing 1– δ, exhibiting an approximately linear relationship 

for all three parameters.  One way to interpret this result is that each parameter’s contribution to 

total output variability can be decreased in proportion to reductions in its epistemic uncertainty.  

In theory, when δ = 0 (or 1– δ = 1), the adjSi for each input (rightmost points in Figure 23a and 

Figure 23b) should match the MSI computed in GSA.  Indeed, Table 9 shows that for 1– δ = 1, 

the adjSi for all three parameters closely match the MSI results from GSA, with discrepancies no 

larger than 0.02.   

  

a)                   Baseline Scenario b)         Policy Minus Baseline Scenario
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Table 9: Adjusted main-effect sensitivity indices for various choices of 1– δ 

1-δ 
Baseline Scenario Policy Minus Baseline Scenario 

BNL CU Reg. Param. BNL CU Reg. Param. 

0.1 0.01 0.01 0.09 0.01 0.01 0.09 

0.2 0.03 0.02 0.17 0.03 0.02 0.17 

0.3 0.04 0.03 0.25 0.05 0.03 0.25 

0.4 0.05 0.04 0.32 0.06 0.04 0.32 

0.5 0.07 0.05 0.39 0.08 0.05 0.38 

0.6 0.08 0.06 0.45 0.10 0.07 0.44 

0.7 0.09 0.07 0.52 0.12 0.08 0.50 

0.8 0.12 0.08 0.57 0.13 0.09 0.55 

0.9 0.12 0.09 0.63 0.15 0.09 0.62 

1.0 0.15 0.10 0.71 0.17 0.12 0.69 
 

MSI 0.13 0.08 0.72 0.16 0.10 0.70 

AAS 0.07 0.05 0.37 0.08 0.05 0.36 

 

  

Figure 24: Comparison of MSI and AAS for the a) baseline scenario and b) policy minus baseline scenario 

Figure 24 shows a comparison of the AAS and MSI for the three parameters.  The MSI results 

from GSA suggested that the prioritization of inputs for further research should be the regression 

parameters first, followed by the background noise level, and the contour uncertainty last.  This 

ranking order is corroborated by the AAS values from DSA, which indicates that the greatest 

reduction in model uncertainty can be achieved by improving the regression relationship shown 

in Equations 6 and 7.  One way to achieve this reduction is to supplement the meta-analysis data 

set with additional aviation noise studies, especially from airport regions with low average 

personal income.  Doing so would shed light on the relationship between income and WTP for 
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noise abatement in the portion of the income spectrum where such information is currently 

lacking.  This issue will be discussed in more detail in Section 8.2.  While the DSA results 

suggest that the data set used in the model development process may benefit from the inclusion 

of additional noise studies, it must be cautioned that they do not imply that further research will 

necessarily lead to a decrease in the regression parameters’ epistemic uncertainty or contribution 

to output variability.  Furthermore, the DSA results should not be interpreted to indicate that the 

uncertainties associated with one input are easier to reduce than those of another.  
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7 Noise Impacts Calculations 

When developing a new method to monetize global aviation-related noise impacts, it is important 

benchmark the new model against results from previous work in order to check for convergent 

validity, or the achievement of similar outcomes using different noise monetization methods 

[Nelson and Palmquist (2008)].  This chapter describes this verification process through a sample 

problem.   The various model factors, parameters, and assumptions used in the sample problem 

are consistent with the Kish (2008) study, thereby allowing for a direct comparison with the 

results obtained previously using the APMT-Impacts Noise Module.  The chapter concludes with 

a discussion of the sample problem findings and their implications for the model development 

effort. 

7.1 Sample Problem 

7.1.1 Model Factors 

The sample problem used the same set of population density and noise contour inputs as Kish 

(2008).  The noise contour reference year was 2005, and the forecasted future year was 2035.  

The noise contours were created using MAGENTA based on operations conducted on October 

18, 2005, which comprised a total of 65,235 flights.  There were 181 airports in the analysis, 

which are located in 38 countries plus Taiwan, with 95 of the airports located in the US (see 

Appendix C).  These 181 airports are part of MAGENTA’s database of 185 Shell 1 airports, 

which account for an estimated 91 percent of total global noise exposure [FAA (2009a)].  For the 

sake of consistency with the Kish (2008) result, only the baseline scenario was considered.   

Population data were obtained from the 2000 US Census, the EEA, and GRUMP, as described in 

Section 5.1.1.  Both the noise and population inputs were already available from the Kish (2008) 

analysis; therefore, the collection of new data for these factors was not necessary. 

7.1.2 Income Data and Income Estimation 

For the airports included in the sample problem, income data were obtained from numerous 

sources, which are summarized in Appendix C, Table C1.  For the 95 US airports, MSA-level 

income data were obtained for 2005 from the US Bureau of Economic Analysis (see Appendix 



100 

 

C, Table C2).  For 53 of the 86 non-US airports, city- and region-level income data were 

available from various national statistical agencies, which were adjusted to year 2005 USD using 

the procedure described in Section 4.3.  Of the remaining airports, country-level income data 

were available for 26, and neither city-level nor country-level data were available for the last 

seven.  For these seven airports, it was necessary to estimate the income based on another 

economic indicator, such as GNI per capita.  Using year 2005 PPP values, a regression 

relationship was developed between GNI per capita and country-level income for the 79 airports 

where income data had already been obtained [World Bank (2007)].  Each country represented 

one observation in the regression data set; for countries with multiple airports in the analysis, the 

mean income over the various airport regions was used.  Equation 18 shows the result of the 

linear OLS regression, which had an R
2
 value of 0.82.   

  (18) 

There were three Pakistani airports in the analysis that had an extremely low country-level 

income.  When estimating the WTP for those regions, the combination of the low income and the 

negative intercept in Equation 6 resulted in a negative WTP for noise abatement, which was 

deemed non-realistic.  Therefore, those three airports were excluded from the data set, and the 

analysis proceeded with only 178 airports.  This illustrates one of the limitations of the income-

based monetization model in that it lacks robustness for estimating noise impacts in very low-

income areas. 

7.1.3 Model Parameters 

There are several model parameters that are common to both the previous hedonic pricing noise 

model used in APMT-Impacts and the current income-based model.  These include the discount 

rate, significance level, background noise level (previously known as the quiet level), and the 

contour uncertainty.  In the sample problem, these parameters were defined in the same way as in 

the Kish (2008) analysis; namely, they were set to the nominal values or distributions 

corresponding to the midrange lens (Table 7).   
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7.2 Results 

7.2.1 Physical Impacts 

Using the income-based hedonic noise monetization model, the number of people exposed to at 

least 55 dB DNL of aviation-related noise around 178 airports was 13.7 million in 2005, and 

23.0 million in 2035 (Figure 25a).  This represents a 67.9% increase over the 30-year time span, 

which is due solely to the change in the forecasted noise contours, since population growth was 

accounted for in the model.  Kish (2008) reported a total of 14.2 million people exposed to at 

least 55 dB DNL in 2005 around 181 airports.  The discrepancy between the two results is due to 

the exclusion of the three Pakistani airports.  If those three airports were included in the analysis, 

then the global population exposed to at least 55 dB DNL in 2005 would be 14.2 million.   

 

Figure 25: Change in physical impacts between 2005-2035: a) exposed population and b) noise exposure area 

The total area around 178 airports subject to at least 55 dB DNL of noise exposure was 0.59 

million km
2
 in 2005, and 0.93 million km

2
 in 2035, representing an increase of 59.2% over the 

30-year time span.  The physical impacts estimated by the income-based hedonic noise 

monetization model match those reported in Kish (2008); this is not surprising, as the algorithm 

for computing these impacts was not modified between the two different noise models used in 

APMT-Impacts. 

a) Exposed Population b) Noise Exposure Area
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7.2.2 Monetary Impacts 

In terms of the monetary impacts of aviation noise, Kish (2008) reported a total of $21.4 billion 

in capitalized housing value loss in 2005 around 181 airports, and an additional $800 million per 

year in rental value loss.  Figure 26 shows the distribution of the capitalized noise impacts in 

2005 around 178 airports computed using the income-based hedonic noise monetization model.  

The output histogram had a mean of $25.0 billion (also designated as V0 in Section 5.3.2), a 

standard deviation of $2.2 billion, and 10
th

 and 90
th

 percentile values of $22.3 billion and $27.9 

billion, respectively.  Comparing the mean result from the new income-based model with the 

Kish (2008) housing value depreciation estimate, the difference is 16.8%.
29

  However, it should 

be noted that this comparison is only for the capitalized noise impacts – that is, the $800 million 

per year in rental value loss reported by Kish (2008) were not included, so the actual difference 

between the two models is even less than 16.8%.  Section 7.3.2 will address the topic of 

comparing the results of the income-based model with both the housing value depreciation and 

rental loss reported by Kish (2008). 

 

Figure 26: Distribution of capitalized noise impacts in 2005 

The projected growth in aviation between 2005 and 2035 resulted in a 91.3% change in the 

undiscounted capitalized noise impacts over the 30-year period, or a 2.7% annual increase.  This 

                                                 
29

 It should be noted that percent differences for all model comparisons in this chapter do not account for the 

exclusion of the three Pakistani airports.  Therefore, the monetized impacts calculated with the income-based 

model would be larger if all 181 airports were included in the analysis. 
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trend is shown in Figure 27a, where the solid red line and the error bars denote the mean and 

standard deviation, respectively.  However, when a 3.5% discount rate is applied to account for 

the depreciation in the value of money over time, the discount rate outpaces the annual increase 

in capitalized noise impacts, resulting in a decaying curve (Figure 27b). 

Kish (2008) also reported that the equivalent worldwide annual noise impacts (also known as the 

annuity, or B0 from Equation 12) was $1.1 billion, assuming a 3% discount rate and a 30-year 

time span.  Using a 3% discount rate, the annuity computed from the capitalized noise impacts 

with the new income-based model was $1.3 billion, representing a difference of 18.2%.
30

  As the 

nominal value of the discount rate was defined as 3.5% instead of 3% in this thesis, the annuity 

result with a 3% discount rate is only presented for the sake of comparison; the results 

communicated in the remainder of this chapter were calculated using a 3.5% discount rate. 

  

Figure 27: Change in capitalized noise impacts between 2005-2035 a) undiscounted and b) with a 3.5% 

discount rate 

 

Figure 28 shows the NPV distribution computed in the sample problem.  The mean NPV over 

the 2000 MC runs was $39.1 billion in year 2005 USD, and the standard deviation was $2.2 

billion.   

                                                 
30

 As before, the additional $800 million per year in rental loss was not considered in the comparison.  This 

issue will be addressed in Section 7.3.2. 

a) Undiscounted b) Discounted at 3.5%
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Figure 28: NPV distribution for midrange lens with 3.5% discount rate 

 

7.3 Discussion 

7.3.1 Spatial Distribution of Impacts 

The results presented in the previous section signify the physical and monetary impacts of 

aviation noise worldwide.  However, in addition to the global sum, it is also useful to understand 

where the estimated noise impacts occur.  Figure 29 shows the location of the 178 airports in the 

sample problem, and the relative magnitude of the number of people exposed to at least 55 dB 

DNL of aviation noise in each airport region.     
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Figure 29: Number of people exposed to at least 55 dB DNL of aviation noise 

 

 

Figure 30: Number of people exposed to at least 55 dB DNL of aviation noise, percent by region 

Figure 30 shows the breakdown of the exposed population into different geographical regions, as 

classified by the United Nations [United Nations (2010)].  North America has the highest total 

population exposed to aviation-related noise (about one-third), followed by Asia (18%), the 

Middle East (16%), Europe (11%), Eurasia (9%), and Central America (8%).  Africa and 

Oceania had the lowest number of people exposed to at least 55 dB DNL of aviation noise.   
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Figure 31: Mean capitalized noise impacts in 2005  

 

 

Figure 32: Mean capitalized noise impacts in 2005, percent by region
31

 

Figure 31 shows relative magnitude of capitalized impacts around each of the 178 airport regions 

at 2005 noise levels.  Approximately 44% the global monetary impacts of aviation noise occur in 

North America, followed by 18% each in Europe and Asia, 11% in the Middle East, 5% in 

Eurasia, 2% in Central America, and very low contributions from Africa and Oceania.  Regions 

such as North America and Europe have a larger share of the global monetary noise impacts than 

                                                 
31

 Figure 31 and Figure 32 were created based on the mean capitalized noise impacts in the 2005 reference year.  

Were similar figures to be made for the mean equivalent annual noise impacts, they would look practically 

identical, as conversion between the two types of monetary impacts is easily facilitated by multiplying by the 

appropriate CRF. 
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exposed population because of the higher income in those areas, which result in a relatively 

larger WTP for noise abatement.  Conversely, regions such as Africa, Eurasia, Central America, 

and the Middle East have a smaller proportion of monetary impacts relative to exposed 

population due to the lower income in those areas, which lead to a smaller WTP per dB of noise 

reduction.   

7.3.2 US Airports Comparison 

The comparisons of monetary impacts between the sample problem and the Kish (2008) results 

presented in Section 7.2.2 only revealed the net difference in the mean aggregate capitalized 

noise impacts between the two models.  Rental loss results from Kish (2008) were not included 

because of the inherent disconnect between capitalized noise impacts and annual noise impacts.  

This section presents an analysis that attempts to reconcile this discrepancy and compare the total 

monetary impacts estimated from the two models, using the results from the 95 US airports as 

the basis for comparison.  These airports are listed in Appendix C, Table C2.  Only the US 

airports were selected because they represent the subset of airports for which comprehensive data 

were available: that is, detailed data for population, housing value, rental value, and income.  

Therefore, a comparison of the monetary impacts for the US airports would demonstrate 

convergent validity between the two models, while minimizing uncertainties related to the 

quality and availability of input data or the applicability of the ICF International house price and 

rent price estimation methods.  Such a comparison also eliminates any output discrepancies due 

to the exclusion of the three Pakistani airports in the sample problem.   

Using the income-based hedonic monetization model, the capitalized aviation noise impacts in 

2005 for the 95 US airports totaled $10.5 billion, representing 42.1% of the global sum.  From 

the Kish (2008) study, the US airports comprised $5.9 billion in capitalized housing value 

depreciation and $291.7 million in yearly rental loss, representing 27.5% and 36.7% of the global 

totals for those quantities, respectively.   

In order to add together housing value depreciation and rental loss in a meaningful way, two 

approaches may be adopted.  The first is to convert both quantities into a common metric for 

comparison, either capitalized impacts or annual impacts.  The second is to compare the NPV, 

which already incorporates such a conversion in its computation (Equations 16 and 17).  Both 
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methods require the assumption of a discount rate and a policy time period, and will be discussed 

below. 

7.3.2.1 Capitalized Noise Impacts 

The first method compares the capitalized monetary impacts at 2005 noise levels estimated using 

the previous and new versions of the APMT-Impacts Noise Module.  The rental loss, an annual 

impact value, was converted into a capitalized value by dividing by the appropriate CRF (e.g. 

rearranging Equation 12 to solve for V0), and added to the housing value depreciation to obtain a 

total capitalized noise impacts estimate associated with the Kish (2008) analysis.  Assuming a 

3.5% discount rate and a 30-year policy time period, this total was $11.2 billion; compared with 

the $10.5 billion result from the income-based model, the difference in the sum over the 95 US 

airports was -6.3%. 

 

Figure 33: Percent difference in model estimates of capitalized noise impacts for 95 US airports, assuming a 

30-year time period and a 3.5% discount rate 

Figure 33 shows the distribution of the difference in capitalized noise impacts for each airport 

individually; the mean, median, and standard deviation of the histogram are 3.4%, -2.7%, and 

42.8%, respectively.  This airport-by-airport comparison demonstrates that the communication of 

aggregate results may belie model differences; that is, comparing the total capitalized noise 

impacts summed over all 95 airports revealed a difference of only -6.3% between the two 

models, whereas the large variance in the airport-by-airport comparison suggested that the local 

difference may be as high as 183%.   
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The difference in the estimated capitalized noise impacts between the two models was also 

plotted as a function of income and exposed population in order to investigate the effect of these 

factors on model comparability (see Figure 34).  For example, if a positive and significant 

relationship existed between the model difference and the income, then that may suggest that the 

benefit function in Equation 6 overstates the relationship between WTP and income.  However, 

no correlation was observed between the magnitude of the difference in the model estimates and 

either of these potential explanatory variables (R
2
 < 0.1 in both cases).  This suggests that the 

model differences must be attributed to other variables, or to inherent variability in the 

conversion between a hedonic pricing monetization method and one based on a per person WTP 

for noise abatement. 

 

Figure 34: Percent difference in model estimates of capitalized noise impacts for 95 US airports as a function 

of a) city-level income and b) exposed population (note the semilogarithmic scale) 

One important advantage of using capitalized noise impacts in 2005 to establish convergent 

validity is that assumptions for the annual housing growth rate used by Kish (2008) do not affect 

the comparison results.  However, one major limitation is that the conversion of rental loss from 

an annual value to a capitalized value is highly dependent on the adopted discount rate and 

policy time period.  Because these assumptions are applied only to the rental loss, not to the 

housing value depreciation or the results of the income-based model, they introduce potential 

sources of inconsistency.  Figure 35 illustrates this issue: the percent difference in the model 

estimates for the total capitalized noise impacts summed over 95 airports is plotted versus the 

assumed policy time period for three commonly-used discount rates.  It shows that for the 

previously stated set of assumptions, the difference is -6.3%.  However, if the policy time period 

a)         Income b) Exposed Population
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were shortened to 10 years while the discount rate is held constant at 3.5%, the difference 

between the two models would become 26.8%.  Similarly, if the discount rate were decreased to 

1% and the time period held constant at 30 years, the difference would become -21.4%.  These 

examples point out that the results of the model comparison can vary greatly across multiple sets 

of valid assumptions.  One way to mitigate the comparison uncertainties introduced by these 

assumptions is to consider the NPV estimates, because in order to calculate NPV, the discount 

rate and policy time period must be applied across the board – to housing value depreciation, 

rental loss, and the results of the income-based monetization model.  This analysis is presented in 

the next section. 

 

Figure 35: Percent difference in model estimates of capitalized noise impacts summed over 95 US airports as 

a function of policy time period and discount rate 

 

7.3.2.2 Net Present Value 

Since the noise contours used in the sample problem corresponded to 2005 and 2035, the natural 

choice for policy time period was 30 years.  The discount rate was selected to be 3.5%, as 

consistent with the results from Section 7.2.2, though the effect of varying the discount rate will 

also be discussed.  To convert the Kish (2008) housing value depreciation results into NPV 

estimates, the procedure is the same as for the capitalized noise impacts derived from the 

income-based monetization model, shown in Equations 16 and 17.  The rental loss associated 
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with year t, denoted Rentt, is computed through linear interpolation between the 2005 and 2035 

estimates.  For a selected discount rate R, the NPV associated with rental loss is given by: 

  (19) 

The sum of the housing value depreciation and rental loss NPV estimates over the 95 US airports 

was $17.0 billion in year 2005 USD.  The NPV calculated using the income-based hedonic 

monetization model was $16.2 billion, representing a -4.6% difference when compared with the 

Kish (2008) result.  Figure 36 shows the distribution of the percent difference in NPV for each 

airport individually; the mean, median, and standard deviation of the histogram are 2.9%, -3.4%, 

and 39.8%, respectively.  As in the case of capitalized noise impacts, local variations in the NPV 

estimates were often quite large, despite a mean difference of only 2.9% across the 95 airports.   

 

Figure 36: Percent difference in model estimates of NPV for 95 US airports, assuming a 30-year time period 

and a 3.5% discount rate 

Figure 36 raises another question: if the monetary noise impacts predicted by the two models can 

differ by almost 200%, what confidence can one have in the results of either model?  One way to 

answer this question is to investigate the outliers of the histogram to see if there is anything to be 

learned from the results of those airports.  For example, do the outliers represent large airports 

with high traffic, or small airports with fewer operations?  To what extent do the outliers 

influence the overall NPV estimate for all airports?   
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For the present analysis, the term “outlier” will be loosely applied to any airport whose percent 

difference in model estimates of NPV is less than -51.4% or greater than 72.9%; these values are 

the 5
th

 and 95
th

 percentiles of the histogram shown in Figure 36, and are marked by the blue and 

red dotted lines, respectively.  There are a total of 10 outliers, 5 falling below the 5
th

 percentile 

(KOA, LIH, OGG, SJU, and SMF), and 5 exceeding the 95
th

 percentile (AUS, BHM, FSD, LIT, 

and OKC).
32

   

A quick inspection of the list of outliers suggests that they tend to be smaller, regional airports 

rather than major air transportation hubs.  In fact, none of the 10 are among the top 30 busiest 

airports in the US in 2005 by number of enplanements [FAA (2006b)].  Collectively, they make 

up only 1.6% of the overall US NPV estimated in the income-based hedonic monetization model.  

In fact, OKC (Will Rogers World Airport, Oklahoma City, OK), the strongest outlier at 191% 

difference between the two model NPV estimates, contributed only 0.05% of the total NPV.  

Another useful way to compare the two models on an airport-by-airport basis is to examine the 

actual NPV estimates rather the percentage difference between the two results.  Consider, for 

example, Figure 37, which plots the NPV calculated from the income-based model on the 

vertical axis, and that from the previous HP model on the horizontal axis.  The blue and red lines 

denote the 5
th

 and 95
th

 percentiles of percentage difference between the two models, respectively, 

and correspond to the dotted lines on the histogram in Figure 36.  The 10 outliers are marked 

with blue or red circles, and enlarged for emphasis.  Figure 37a shows a scatter plot of the raw 

NPV data on a linear scale, which illustrates that the outliers are overwhelmingly clustered in the 

lower left corner, and therefore contribute only small fractions to the overall.  Figure 37b shows 

the same set of data, but plotted on a log-log scale for improved legibility.  These results 

demonstrate that though large percent differences between model predictions were observed 

locally, the extent to which the outliers influenced aggregate estimates of aviation noise impacts 

was very small. 

                                                 
32

 See Appendix C, Table C2, for a listing of the locations of these airports. 
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Figure 37: NPV estimates from income-based model versus previous hedonic pricing model: a) linear scale 

and b) log-log scale.  Outliers are highlighted in blue or red and enlarged for emphasis.   

Finally, even though the use of NPV as the metric for establishing convergent validity mitigates 

the inconsistencies and uncertainties discussed in Section 7.3.2.1, the choice of discount rate still 

has a great effect on the model comparison result.  Figure 38 shows that the percent difference in 

the estimated NPV summed over the 95 US airports is smallest for a discount rate of around 4%.  

This example further highlights the importance of communicating not only the differences in the 

outputs when evaluating model performance, but also the assumptions that must be made in 

order to enable a valid comparison. 

 

Figure 38: Difference in estimated NPV summed over the 95 US airports as a function of discount rate 

a) Linear Scale b) Logarithmic Scale
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The comparisons presented in Section 7.3.2 demonstrate that the income-based hedonic noise 

monetization model estimated similar capitalized noise impacts and NPV as the previous hedonic 

pricing model for the 95 US airports in the sample problem.  Differences in the results of the two 

models were generally less than 10% in magnitude, though they were highly dependent on 

assumptions regarding discount rate and policy time period.  It was also shown that those airports 

exhibiting the largest percent differences in model NPV estimates had only minor contributions 

to the overall monetary impacts of aviation noise.  For the 178 airports around the world, the 

difference in the total noise impacts estimated by the two models was less than 17%.  That the 

two different noise valuation approaches produced such consistent results is very encouraging for 

the development effort of the new income-based model.  However, while the close comparisons 

are promising, it must be cautioned that as neither set of results is a gold standard, one model 

should not be used to validate the other.  Each model has its own set of assumptions, such that 

comparisons of the results may be influenced by model uncertainties as well as by the accuracy 

of the algorithms.  In this way, the sample problem presented in this chapter has demonstrated 

the concept of convergent validity: two different measurement techniques produced similar 

outcomes, but neither result can be assumed to be the true answer.  Furthermore, the sample 

problem showed that the new income-based model was much easier to utilize than the former 

hedonic pricing model.  Therefore, the success of the model development effort is conveyed 

through the test of convergent validity, as well as through the new model’s broad applicability 

and ease of implementation.  
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8 Conclusions and Future Work 

8.1 Summary and Conclusions 

As the global economy develops over the next several decades, it is expected that mobility will 

rise with income and motivate a shift toward faster modes of transportation [Schafer and Victor 

(2000)].  The growth of air transportation will also bring about the need to better understand and 

mitigate the environmental impacts of aviation, to which noise is a major contributor.  There are 

both physical and monetary effects associated with aircraft noise, which include annoyance, 

sleep disturbance, and property value depreciation. 

This thesis presented a new model to quantify the monetary impacts of aviation-related noise 

based on city-level income.  The model development centered on a meta-analysis of 60 aviation 

noise studies from North America, Europe, and Australia.  An extensive data search was 

performed in order to collect information on income, household size, average property value, 

income growth rate, inflation rate, and purchasing power parity for each airport region in the 

meta-study, which were used to derive a general relationship between average personal income 

and WTP for noise abatement.  Various statistical and econometric methods were employed, 

including tests for outliers, heteroscedasticity, and multicollinearity, as well as weighted least-

squares regression, inclusion of control variables, and identification of significant parameters 

through backward selection.  Using a multivariate regression analysis, a model was developed 

that expressed WTP as a function of city-level personal income and an interaction term, which is 

the product of income and a non-US dummy variable.  This relationship enables benefit transfer 

of aviation noise impacts on an international scale. 

As part of the model development process, uncertainty assessment was conducted to identify 

sources of uncertainty and how they may limit the model’s functionality and applicability.  Both 

epistemic and aleatory uncertainties were identified in the input parameters.  Monte Carlo 

Simulations were used to characterize the propagation of input uncertainties to the model 

outputs.  Local, global, and distributional sensitivity analyses were also conducted.  The results 

of the local sensitivity analysis revealed that the model outputs were particularly sensitive to the 

choice of income growth rate, as well as the income coefficient in the regression relationship.  
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From the global sensitivity analysis, it was shown that the three regression parameters – income, 

interaction term, and intercept – collectively had the greatest contribution to output variability.  

Finally, the distributional sensitivity analysis confirmed this result, suggesting that the regression 

parameters should be prioritized for further research, which could lead to refinements to the 

model that would reduce epistemic uncertainty and thereby enhance accuracy. 

Applying the income-based hedonic monetization model to 178 airports worldwide, the global 

monetary impacts of aviation-related noise in 2005 were estimated.  Using 2000 Monte Carlo 

trials, the mean capitalized impacts were computed to be $25.0 billion, with a standard deviation 

of $2.2 billion.  About 42% of these monetary impacts were contributed by the 95 US airports in 

the analysis.  Comparing the mean result from the new income-based model with the Kish (2008) 

result, the difference in the estimated capitalized noise impacts was less than 17%.  Assuming a 

3.5% discount rate and a 30-year policy time period, the Net Present Value of the monetary 

impacts was $39.1 billion in year 2005 USD.   

The income-based hedonic noise monetization model can easily be integrated into the APMT-

Impacts Module within the Aviation Environmental Tools Suite.  It offers several key advantages 

over the previous hedonic pricing model used in APMT-Impacts.  Chief among them is that it 

circumvents the need to collect detailed property value data for each airport in a policy analysis, 

which are often not readily available at a fine resolution outside of the US and the UK.  Because 

property value data are not required, supplemental models to estimate house prices and rental 

values are also unnecessary, which reduces uncertainty in the model factors.  The monetary 

impacts estimated by the income-based model represent both housing value depreciation and 

rental loss without the need to distinguish between homeowners and renters among the residents 

exposed aviation noise.  Overall, the income-based hedonic noise monetization model is 

appealing for its relative ease of implementation, and can be used by policymakers, aircraft 

manufacturers, and other stakeholders in the aviation industry to estimate the monetary impacts 

of technological improvements or policy measures related to aviation noise. 

8.2 Recommended Future Work 

There are several areas of this project that may benefit from additional research efforts.  One key 

issue is the accuracy of the population data used to estimate physical and monetary noise 
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impacts.  The US population data date from the 2000 Census, while the GRUMP and EEA data 

correspond to 2000 and 2001 population levels, respectively.  As new data become available, it is 

important to update the model factors so as use the most accurate inputs possible.  In addition to 

updating the population data, the model algorithm could also be expanded to apply an annual 

population growth rate, which would be useful for the estimation of future physical and 

monetary impacts. 

Another area for potential future work is the enhancement of model factor data resolution.  

Currently, the resolution of the noise contour grids is 50m, and for the population density grids, 

it is 200m.  In the future, it may be desirable to enhance this resolution, or employ alternative file 

formats that would obviate data rasterization and thus reduce information loss.  However, in 

making these refinements, some tradeoffs may be required in order to reconcile the competing 

demands of data accuracy and computational time. 

A third issue is that the current iteration of the APMT-Impacts Noise Module does not explicitly 

account for the physical impacts of aviation noise, such as annoyance, sleep disturbance, or 

health effects.  Some techniques for assessing these impacts, such as exposure-response 

functions for estimating the number of people who experience annoyance or sleep disturbance, 

are already available and can be easily implemented within the algorithm of the existing model.  

It is expected that the FAA Aircraft Noise Impacts Research Roadmap workshops will stimulate 

new research in these areas, which will generate more information that can be incorporated into 

the APMT-Impacts Noise Module and be used to assess various physical impacts.  These 

additional capabilities would enable a more comprehensive representation of the experiences of 

people affected by aviation noise, and also enhance the utility of the Noise Module for policy 

analysis and decision-making.  

Finally, the area of this thesis project that would benefit the most from additional research is the 

expansion of meta-analysis data set.  As the development of the income-based noise 

monetization model rested heavily on the collection of hedonic pricing noise studies from around 

the globe, the process was constrained by data availability, especially in parts of the developing 

world.  As such, the income elasticity of WTP for low-income regions may differ from the linear 

relationship derived in the regression analysis, which could greatly affect estimates of monetary 

noise impacts.  For example, a recent study of property values around Bangkok’s Suvarnabhumi 
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International Airport between 2002 and 2008 computed an equivalent NDI of 2.14% for the 

region [Chalermpong (2010)].  When combined with the mean property value reported in the 

study and the average household size in Bangkok ($142,218 and 3.8 persons, respectively), the 

WTP per person for one decibel of noise abatement is estimated to be $801 (Equation 4) 

[National Statistical Office Thailand].  However, using an average national personal income of 

$3,566 in 2005, the WTP predicted by the regression model is $74 (Equation 6), which differs 

significantly from the previous result and illustrates the urgent need to increase knowledge of 

noise impacts around the globe.  It is expected that additional studies conducted in parts of the 

developing world would help elucidate the relationship between income and WTP for noise 

abatement at the lower end of the income spectrum, which in turn would bolster the validity and 

broaden the applicability of the income-based hedonic noise monetization model. 
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Appendix A: Aviation Noise Meta-Study 

Study # Author Year City Country Sample 

Size 

Property 

Value 

(USD 

2000)
1
 

NDI 

(%  

per 

dB) 

WTP per  

HH (USD- 

PPP 2000)
2
 

House- 

hold  

size
3
 

WTP per 

person 

(USD-PPP 

2000) 

Income  

(USD-

PPP 

 2000) 

1 Paik 1970 Dallas USA 94 104,824 2.30 2,411 2.60 927 18,853 

2 Paik 1971 Los Angeles USA 92 115,073 1.80 2,071 2.60 797 21,923 

3 Paik 1972 New York 

(JFK) 

USA 106 96,938 1.90 1,842 2.60 708 24,586 

4 Roskill 

Commission 

1970 London 

(LHR) 

UK 20 86086 0.71 633 2.90 218 10,010 

5 Roskill 

Commission 

1970 London 

(LGW) 

UK 20 86086 1.58 1,409 2.90 486 10,010 

6* Mason 1971 Sydney Australia   0.00     

7 Emerson 1972 Minneapolis USA 222 101,564 0.59 599 2.68 224 21,747 

8* Coleman 1972 Englewood USA 21  1.58     

9 Dygart 1973 San Francisco USA 82 122,544 0.50 613 2.27 270 26,536 

10 Dygart 1973 San Jose USA 98 93,240 0.70 653 2.92 224 23,732 

11 Price 1974 Boston USA 270 128,120 0.81 1,038 2.48 419 21,900 

12 Gautrin 1975 London 

(LHR) 

UK 67 82,011 0.62 527 2.80 188 11,759 

13 De Vany 1976 Dallas USA 1,270 97,680 0.80 781 2.67 293 21,563 

14 Maser et al. 1977 Rochester USA 398 81,175 0.86 698 2.56 273 22,511 

15 Maser et al. 1977 Rochester USA 990 92,650 0.68 630 2.56 247 22,511 

16 Balylock 1977 Dallas USA 4,264 111,000 0.99 1,099 2.60 423 22,267 

17 Mieszkowski 

& Saper 

1978 Toronto Canada 509 139,771 0.66 1,111 2.70 411 14,082 

18 Fromme 1978 Washington 

Reagan 

USA 28 133,502 1.49 1,989 2.46 809 27,441 

19 Nelson 1978 Washington 

Reagan 

USA 52 121,900 1.06 1,292 2.46 525 27,441 

20 Nelson 1979 San Francisco USA 153 131,806 0.58 764 2.20 347 29,801 

21 Nelson 1979 St. Louis USA 113 72,865 0.51 372 2.51 148 22,614 

22 Nelson 1979 Cleveland USA 185 92,787 0.29 269 2.37 114 24,720 

23 Nelson 1979 New Orleans USA 143 97,569 0.40 390 2.65 147 20,761 

24 Nelson 1979 San Diego USA 125 143,150 0.74 1,059 2.53 419 23,275 
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Study # Author Year City Country Sample 

Size 

Property 

Value 

(USD 

2000)
1
 

NDI 

(%  

per 

dB) 

WTP per  

HH (USD- 

PPP 2000)
2
 

House- 

hold  

size
3
 

WTP per 

person 

(USD-PPP 

2000) 

Income  

(USD-

PPP 

 2000) 

25 Nelson 1979 Buffalo USA 126 91,713 0.52 477 2.40 198 21,276 

26 Abelson 1979 Sydney Australia 592 98,773 0.40 517 3.00 172 11,356 

27 Abelson 1979 Sydney Australia 822 112,883 0.00 0 3.00 0 11,356 

28 McMillan et al. 1980 Toronto Canada 352 133,817 0.51 822 2.70 304 15,708 

29 Mark 1980 St. Louis USA 6,553 68,543 0.42 288 2.49 116 21,903 

30* Hoffman 1984 Bodo Norway   1.00     

31 O'Byrne et al. 1985 Atlanta USA 248 80,597 0.64 516 2.24 231 25,014 

32 O'Byrne et al. 1985 Atlanta USA 96 64,422 0.67 432 2.24 193 25,014 

33 Opschoor 1986 Amsterdam Netherlands  82,732 0.85 854 2.82 303 16,501 

34* Pommerehne 1988 Basel Switzerland   0.50     

35 Burns et al. 1989 Adelaide Australia 100 92,482 0.78 943 2.60 363 11,504 

36 Penington 1990 Manchester UK 3,472 78,357 0.34 276 2.50 110 13,058 

37 Gillen & 

Levesque 

1990 Toronto Canada 1,886 214,899 1.34 3,468 2.70 1,284 18,539 

38* Gillen & 

Levesque 

1990 Toronto Canada 1347 135472 -0.01     

39 BIS Shrapnel 1990 Sydney Australia 344 170,836 1.10 2,457 2.90 847 12,035 

40 Uyeno 1993 Vancouver Canada 645 156,558 0.65 1,226 2.60 471 21,557 

41 Uyeno 1993 Vancouver Canada 907 156,558 0.90 1,697 2.60 653 21,557 

42 Tarassoff 1993 Montreal Canada 427 151,859 0.65 1,189 2.40 495 17,278 

43 Collins & 

Evans  

1994 Manchester UK 558 78,357 0.47 381 2.50 153 12,916 

44 Levesque 1994 Winnipeg Canada 1,635 88,488 1.30 1,385 2.50 554 18,078 

45 BAH-FAA 1994 Baltimore USA 30 163,281 1.07 1,747 2.39 731 28,380 

46 BAH-FAA 1994 Los Angeles USA 24 442,338 1.26 5,573 2.56 2,175 27,370 

47 BAH-FAA 1994 New York 

(JFK) 

USA 30 502,775 1.20 6,033 2.46 2,451 33,625 

48 BAH-FAA 1994 New York 

LGA) 

USA 30 264,815 0.67 1,774 2.46 721 33,625 

49 Mitchell 

McCotter 

1994 Sydney Australia 750 170,836 0.68 1,519 2.90 523 12,278 

50 Yamaguchi 1996 London 

(LGW) 

UK  264,782 2.30 6,308 2.39 2,639 15,720 

51 Yamaguchi 1996 London 

(LHR) 

UK  264,782 1.51 4,141 2.39 1,733 15,720 
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Study # Author Year City Country Sample 

Size 

Property 

Value 

(USD 

2000)
1
 

NDI 

(%  

per 

dB) 

WTP per  

HH (USD- 

PPP 2000)
2
 

House- 

hold  

size
3
 

WTP per 

person 

(USD-PPP 

2000) 

Income  

(USD-

PPP 

 2000) 

52 Myles 1997 Reno USA 4,332 170,100 0.37 629 2.38 264 32,694 

53 Tomkins et al. 1998 Manchester UK 568 105,227 0.63 687 2.40 286 13,830 

54 Espey & Lopez 2000 Reno-Sparks USA 1,417 132,498 0.28 371 2.56 145 36,019 

55 Burns et al. 2001 Adelaide Australia 5,207 135,353 0.94 1,664 2.40 693 26,298 

56 Rossini et al. 2002 Adelaide Australia 4,139 146,181 1.34 2,561 2.40 1,067 26,105 

57 Salvi 2003 Zurich Switzerland 565 382,101 0.75 2,611 2.10 1,243 22,664 

58 Lipscomb 2003 Atlanta USA 105 105,766 0.08 85 2.40 35 30,625 

59 McMillan 2004 Chicago USA 4,012 183,727 0.81 1,488 3.06 486 34,347 

60 Mc Millan 2004 Chicago USA 22,541 193,917 0.88 1,706 3.06 558 34,347 

61 Baranzini & 

Ramirez 

2005 Geneve Switzerland 1,847 376,673 1.17 4,015 2.10 1,912 26,650 

62 Cohen & 

Coughlin 

2006 Atlanta USA 1,643 76,570 0.43 329 2.40 137 31,166 

63 Cohen & 

Coughlin 

2007 Atlanta USA 508 120,696 0.69 833 2.40 347 31,347 

64 Faburel & 

Mikiki 

2007 Paris France 688 123,895 0.06 86 2.40 36 22,698 

65 Pope 2007 Raleigh USA 16,900 212,005 0.36 763 2.46 310 32,700 

 

Adapted from Wadud (2009), Table 4.2 

* Study excluded from multivariate regression. 

                                                 
1
 Property values from Wadud (2009) were given in USD 2000, and conversions were performed using the US-foreign currency exchange rate (later re-adjusted 

using the PPP).  Italicized values are not given in Wadud (2009), but gathered from various national statistical agencies. 

2
 Willingness to Pay per household was calculated as Property Value x NDI, where the property value from Wadud (2009) was adjusted to USD using the 2000 

PPP [OECD (2000)]. 

3
 Household size data were gathered from the US Census Bureau, or from various national statistical agencies. 
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Appendix B: Calculation of Adjusted Main-Effect 

Sensitivity Indices for DSA 

Let NPV represent the Net Present Value of monetary noise impacts summed over all airports, 

which in the uncertainty assessment analysis of this thesis is an output vector computed over 

2000 MC runs.  Let NPVj denote the contribution to the NPV by the j
th

 airport, which is also a 

2000x1 vector.  Taking advantage of the linearity of the problem, these contributions may 

summed according to: 

  (B1) 

Since the NPVj distributions are independent (e.g. there are no interaction effects among 

airports), the variance may be decomposed in the following manner: 

  (B2) 

The variance of each NPVj distribution may be apportioned to three different input parameters: 

background noise level, contour uncertainty, and regression parameters.  This apportionment 

does not account for any interaction effects among the inputs.  Let MSIij denote the main-effect 

sensitivity index of input i at airport j.  Equation B2 may be rewritten as: 

  (B3) 

Rearranging Equation B3, the following relations may be used to explicitly express the MSI for 

each input i: 

  (B4) 

  (B5) 
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The MSIi represents the proportion of total output variance that may be attributed to input i alone 

when it is assumed that all epistemic uncertainty associated with input i may be reduced to zero 

through further research and improved knowledge.  In DSA, however, it is desirable to 

understand how the sensitivity index changes with δ, the ratio of the variance of input i that 

cannot be reduced and the total variance of the original distribution for that input.  The analogous 

quantity for MSIi in DSA is adjSi(δ), the adjusted main-effect sensitivity index of input i given 

that it is known that only 100(1– δ)% of its variance can be reduced.  Similarly, the analogy for 

MSIij in DSA is adjSij(δ).  Making the appropriate substitutions, Equation B5 may be rewritten to 

derive an expression for adjSi(δ): 

  (B6) 
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Appendix C: Airports and Sources of Income Data  

Table C1: Non-US Shell 1 airports and income data sources 

Airport City Country Data Resolution Income Data Source 

ALG Algiers Algeria Country Populstat
1
 

EVN Yerevan Armenia Country 
National Statistical Service of 

the Republic of Armenia 

ADL Adelaide 

Australia City 
Australian Bureau of 

Statistics 

BNE Brisbane 

CBR Canberra 

CNS Cairns 

MEL Melbourne 

PER Perth 

SYD Sydney 

VIE Vienna Austria City Statistics Austria 

BAH* Bahrain Bahrain 
Country 

(Estimated) 
 

BRU Brussels Belgium Region Statistics Belgium 

YUL Montreal 

Canada City Statistics Canada 

YVR Vancouver 

YWG Winnipeg 

YYC Calgary 

YYZ Toronto 

CAN* Guangzhou China 
Country 

(Estimated) 
 

CPH Copenhagen Denmark City Statistics Denmark 

OUL Oulu Finland City Statistics Finland 

CDG Paris 

France City 

National Institute of Statistics 

and Economic Studies 

(INSEE), Local Statistics 

LYS Lyon 

MRS Marseille 

ORY Paris 

TLS Toulouse 

CGN Cologne 

Germany County 
Statistisches Bundesamt 

Deutschland  

DUS Dusseldorf 

FRA Frankfurt 

HAM Hamburg 

MUC Munich 

ATH* Athens Greece 
Country 

(Estimated) 
 

SYZ Shiraz 
Iran Country 

Central Bank of the Islamic 

Republic of Iran THR Tehran 
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Airport City Country Data Resolution Income Data Source 

TLV Tel Aviv Israel Country 
Israel Central Bureau of 

Statistics 

BGY Milan 

Italy Region 
Italian National Institute of 

Statistics (Istat) 

BLQ Bologna 

FCO Rome 

LIN Milan 

MXP Milan 

MBJ* Montego Bay Jamaica 
Country 

(Estimated) 
 

CTS Sapporo 

Japan City 

Ministry of Internal Affairs 

and Communications, 

Statistics Bureau, Consumer 

Statistics Division 

FUK Fukuoka 

HND Tokyo 

ITM Osaka 

KIX Osaka 

NGO Nagoya 

NRT Tokyo 

ALA Almaty Kazakhstan Country 
Agency of the Republic of 

Kazakhstan on Statistics 

KWI* Kuwait Kuwait 
Country 

(Estimated) 
 

GDL Guadalajara 

Mexico Country 
International Labour 

Organization 

MEX Mexico City 

MID Merida 

TIJ Tijuana 

AMS Amsterdam Netherlands City
2
 Statistics Netherlands 

BGO Bergen Norway City Statistics Norway 

ISB Islamabad 

Pakistan Country 
Government  of  Pakistan, 

Statistics Division 
KHI Karachi 

LHE Lahore 

MNL Manila Philippines Country 
National Statistics Office, 

Republic of the Philippines 

LIS Lisbon Portugal Country 
Institut de la Statistique 

Québec 

DOH Doha Qatar Country Qatar Statistics Authority 

IKT Irkutsk 

Russia Country 
Federal State Statistics Office 

of Russia 

LED St. Petersburg 

OVB Novosibirsk 

SVO Moscow 

VKO Moscow 

JED Jeddah 

Saudi Arabia Country 

Japan International 

Cooperation Agency 

Planning and Evaluation 

Department
3
 

RUH Riyadh 

SIN Singapore Singapore City-state Statistics Singapore 
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Airport City Country Data Resolution Income Data Source 

CPT Cape Town 
South Africa Province Statistics South Africa 

JNB Johannesburg 

BCN Barcelona 

Spain Region 
National Statistics Institute of 

Spain  

MAD Madrid 

PMI 
Palma 

Mallorca 

AGH 
Ängelholm/ 

Helsingborg Sweden City Statistics Sweden  

ARN Stockholm 

GVA Geneva 
Switzerland Region 

Federal Statistical Office of 

Switzerland ZRH Zurich 

KHH Kaohsiung Taiwan Country National Statistics Republic 

of China (Taiwan) TSA Taipei Taiwan Country 

BKK Bangkok Thailand Country 
Thailand National Statistical 

Office 

IST* Istanbul Turkey 
Country 

(Estimated) 
 

LGW London 
United 

Kingdom 
City Office for National Statistics LHR London 

MAN Manchester 

TAS* Algiers Uzbekistan 
Country 

(Estimated) 
 

 

Italicized entries represent data sources that are not official national statistical agencies. 

* Income was estimated for the airport region based on 2005 GNI per capita, PPP method 

[World Bank (2007)]. 

                                                 
1
 Income was provided as a range between1600-2020 USD (unknown date); the midrange value was used.  Source: 

Lahmeyer, J. (2004) [online].  Algeria: General Data of the Country. http://www.populstat.info/Africa/algeriag.htm.  

Accessed August 4, 2009. 

2
 Average personal income was only available at the country level, whereas disposable income was available at both 

the country level and the city level.  The country level average personal income was used, and adjusted to the city 

level by the ratio of the city level and country level disposable income. 

3
 Source: Japan International Cooperation Agency, Planning and Evaluation Department (2003).  Country Profile 

Study on Poverty: Saudi Arabia, pp. 7. 
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Table C2: US Shell 1 airports and MSA-level income data obtained from the US BEA 

Airport City State 2005 Income ($) 

ABE Allentown PA 33,537 

ABQ Albuquerque NM 30,880 

ALB Albany NY 35,981 

ANC Anchorage AK 39,379 

ATL Atlanta GA 35,424 

AUS Austin TX 34,863 

BDL Hartford CT 42,797 

BFI Seattle WA 42,804 

BHM Birmingham AL 35,818 

BNA Nashville TN 35,692 

BOI Boise ID 32,444 

BOS Boston MA 47,128 

BUF Buffalo NY 31,832 

BWI Baltimore MD 41,099 

CAE Columbia SC 30,768 

CLE Cleveland OH 35,322 

CLT Charlotte NC 36,861 

CMH Columbus OH 34,610 

COS Colorado Springs CO 33,145 

CVG Cincinnati OH 35,009 

DAY Dayton OH 31,376 

DCA Washington, DC DC 49,606 

DFW Dallas/Ft. Worth TX 38,085 

DSM Des Moines IA 37,634 

DTW Detroit MI 36,692 

ELP El Paso TX 23,875 

EWR Newark NJ 48,675 

FAT Fresno CA 25,950 

FLL Fort Lauderdale FL 38,259 

FSD Sioux Falls SD 35,754 

GEG Spokane WA 28,802 

GRR Grand Rapids MI 31,661 

GSO Greensboro NC 31,391 

HNL Honolulu HI 37,188 

HOU Houston TX 40,565 

IAD Washington, DC DC 49,606 

IAH Houston TX 40,565 

ICT Wichita KS 33,695 

ILN Wilmington OH 28,237 

IND Indianapolis IN 35,752 

ITO Hilo HI 27,147 

JAX Jacksonville FL 35,333 
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Airport City State 2005 Income ($) 

JFK New York NY 46,026 

KOA Kailua-Kona  HI 27,147 

LAS Las Vegas NV 36,869 

LAX Los Angeles CA 37,543 

LGA New York NY 46,026 

LIH Kauai Island/Lihue HI 29,566 

LIT Little Rock AR 33,184 

MCI Kansas City MO 35,593 

MCO Orlando FL 31,822 

MDW Chicago IL 39,409 

MEM Memphis TN 34,057 

MHT Manchester NH 39,240 

MIA Miami FL 38,259 

MKE Milwaukee WI 37,193 

MSP Minneapolis MN 42,377 

MSY New Orleans LA 18,983 

OAK Oakland CA 53,557 

OGG Kahului HI 31,486 

OKC Oklahoma City OK 33,387 

OMA Omaha NE 37,816 

ONT Ontario CA 26,789 

ORD Chicago IL 39,409 

ORF Norfolk VA 33,129 

PBI West Palm Beach FL 51,374 

PDX Portland OR 35,115 

PHL Philadelphia PA 40,720 

PHX Phoenix AZ 33,066 

PIT Pittsburgh PA 36,097 

PVD Providence RI 35,106 

RDU Raleigh/Durham NC 36,001 

RIC Richmond VA 36,995 

RNO Reno NV 42,756 

ROC Rochester NY 33,996 

RSW Fort Myers FL 38,482 

SAN San Diego CA 40,406 

SAT San Antonio TX 31,168 

SDF Louisville KY 33,751 

SEA Seattle WA 42,804 

SFO San Francisco CA 53,557 

SHV Shreveport LA 30,574 

SJC San Jose CA 51,418 

SJU San Juan PR 15,182
1
 

SLC Salt Lake City UT 33,287 

SMF Sacramento CA 35,355 
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Airport City State 2005 Income ($) 

SRQ Sarasota FL 43,206 

STL St. Louis MO 35,653 

SWF Newburgh/Stewart Field NY 34,105 

SYR Syracuse NY 31,366 

TOL Toledo OH 30,496 

TPA Tampa FL 33,607 

TUL Tulsa OK 35,483 

TUS Tucson AZ 29,354 

TYS Knoxville TN 30,720 

                                                 
1
 For San Juan, Puerto Rico, MSA-level income was not available from the US BEA; instead, city-level income 

from the 2000 US Census was used, and adjusted to year 2005 USD using the nationwide income growth rate. 

 


