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Abstract 

A practical framework for the economic valuation of current energy storage systems coupled 
with photovoltaic (PV) systems is presented.  The solar-with-storage system’s operation is optimized for 
two different rate schedules: (1) Time-of-use (TOU) for residential systems, and (2) Real-time wholesale 
rates for centralized generators.  Nine storage technologies are considered for PV coupling, including six 
different battery chemistries, hydrogen electrolysis with a fuel cell, compressed air, and pumped-hydro 
energy storage.  In addition, these technologies are assessed in the capacity of enabling a solar energy 
generator to provide a set service requirement.  Concentrating solar thermal power (CSTP) with thermal 
storage is presented as a comparison for this final baseload scenario. 

Some general insights were gained during the analysis of these technologies.  It was discovered 
that there is a minimum power rating threshold for storage systems in a residential TOU market that is 
required to capture most of the benefits.  This is about 1.5 kW for a 2 kWP residential PV system.  It was 
found that roundtrip efficiency is extremely important for both TOU and real-time markets, but low self-
discharge rates are even more critical in real-time rate schedules.  It was also estimated that large 
storage systems for centralized generation would capture the most revenue with a power rating twice 
that of the storage capacity (2 hours of discharge).  However, due to cost limitations, actual optimal 
ratios were calculated to be about 3 to 7 hours of discharge for operation in a real-time market. 

None of the current technologies considered are able to economically meet the requirements 
for a residential TOU rate schedule; and only CSTP with thermal storage, pumped-hydro, and potentially 
compressed air storage are able to offer value in a centralized real-time market or a baseload scenario.  
Recommendations for future research and development (R&D) on the various storage technologies are 
given.  For many of the electrochemical batteries, the key focus areas include cycle lifetime as well as 
energy and power costs.  Roundtrip efficiency was identified as the weak-point of hydrogen systems; the 
energy cost of lithium-ion batteries was found to be prohibitively expensive for energy arbitrage 
applications; and the balance of system (BOS) and power costs were identified as the main focus areas 
for the larger pumped-hydro and compressed air storage systems. 
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1. Introduction 

The Earth’s climate is changing, with the global temperature now poised to rise more than a degree 

from its historical average, marking the largest deviation in over 10,000 years [1].  It has become 

apparent that the human processes of green house gas (GHG) emission and deforestation are the largest 

contributing factors to this unparalleled trend.  With GHG emissions already exceeding the worst-case 

scenario projected by the Intergovernmental Panel on Climate Change (IPCC) [1], immediate action is 

not only required to mitigate future detrimental effects on human society, it is a moral obligation to the 

global ecosystem we are a part of.  This is the underlying motivating factor for this work. 

The following figure is compiled from CO2 emissions projections by the Energy Information 

Administration (EIA) [2]; with the residential, commercial, and industrial sectors shown excluding 

electricity use.  It can be seen that the electric power sector is responsible for approximately 40% of all 

U.S. CO2 emissions and this does not look likely to change in the near future. 

 
Figure 1.1-1: U.S. Emissions by Sector with Projections to 2035 [2] 

Renewable energy technologies are a beacon of hope in this grim situation. However, there are major 

hurdles to the widespread adoption of many of these technologies to meet the nation’s electricity 

needs; notably, intermittency and cost.  The intermittent nature of renewable energy generation arises 

when the fuel source cannot be controlled directly.  For example, solar can only produce energy when 

the sun is up, and wind turbines can only operate when it is windy.  Although this work looks at 

photovoltaic (PV) solar generation, the principles and methods could be readily expanded to wind, 

tidal/ocean, or other intermittent generation sources.  PV was chosen because it is one of the most 
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rapidly growing renewable energy markets in the world.  From an increasing penetration perspective, it 

becomes prudent to assess various means of controlling the intermittency, while at the same time 

increasing the value of this energy service.  Relevant markets and scales include residential and 

centralized generation.  On a longer time-scale, PV may be asked to provide a set service requirement as 

renewable energy technologies are required to provide baseload generation.  This thesis will look at all 

three scenarios in turn. 

The use of energy storage has the potential to help with both controlling intermittency as well as adding 

value to the system.  In a time-varying electricity market (i.e. time-of-use or real-time pricing), storage 

can be used to shift generation from periods of low prices (off-peak) to those of higher worth (peak), as 

recognized by the Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) in the 

Solar Energy Technologies Program (SETP) Plan: 

Energy storage is an important element of advanced power management systems, as adding storage to a PV 

system has the potential to increase its value. [3] 

Although this benefit may be the economic driving force behind the development and implementation 

of energy storage, it may also enable significant quantities of renewable generation on the electric grid, 

as the Power Quality Systems Director for the Power Quality Products Division of S&C Electric Company, 

Brad Roberts, noted: 

The real benefit [of storage] will come from optimizing the value of wind and solar resources by capturing 

even more megawatt hours of clean energy to power the world’s ever expanding electric grids. [4] 

There are several methods for handling the undesirable affects of intermittency (such as demand-side 

response and/or coupling solar with other generators).  This work considers the use of energy storage to 

control the dispatch of centralized solar generation under the constraint of meeting a specific service 

requirement. 

1.1. Central Questions 

Utilizing energy storage with renewable generation, as well as to facilitate electricity grid functions, has 

been prevalent in recent literature (the reader is referred to many of the works cited in this thesis).  

Most of this work, however, looks at the benefit gained (economic and environmental) by adding the 

concept of energy storage, independent of current cost and/or performance metrics.  For example, 

Bathurst and Strbac look at the value of adding energy storage to wind farms without considering the 
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costs or performance of a specific storage technology [5].  Their goal is to develop an algorithm to 

optimize the dispatch of energy storage with wind generation, given both are already available.  Another 

common approach is to explore a purely mathematical framework for the optimization of an unspecified 

generator with a black-box storage device; like in the work of Bannister and Kaye where they look at a 

novel method for the rapid optimization of storage systems [6].  Beyond pumped-hydro [7],[8] – see 

section 2.3.10 for technology description – the author has found little if any analysis assessing the state 

of current storage technologies in the context of being able to fully capture these benefits.  Many of the 

benefits reported in these studies are not fully realizable with current technologies, or they are limited 

to niche markets.  Valuable insight may be gained by looking at the economic and technological 

benchmarks that future storage technologies must meet in order to make these benefits accessible to 

larger markets.  The central questions of this work thus become: 

1. What is the current state of energy storage technologies in being able to capture 

benefits from a residential TOU electricity rate schedule? 

2. What is the current state of energy storage technologies in being able to capture 

benefits from a wholesale real-time electricity rate schedule? 

3. What is the current state of energy storage technologies in enabling centralized 

generation to meet a specified service requirement? 

4. What are the future technological and economic benchmarks for storage to more fully 

capture these benefits? 

In this work, ‘larger markets’ are taken to be grid-connected residential PV systems as well as centralized 

photovoltaic (PV) generation (utility-scale plants) in temporal electricity rate structures.  It has also been 

common practice in recent work to optimize the charge/discharge profile of a storage device for only 

one day in advance.  This is rational in a real-time market because the electricity price forecast accuracy 

degrades considerably the further into the future it is projected; hence, optimizing a storage profile for a 

week in advance would not make much sense.  However, for residential time-of-use (TOU) rate 

schedules, the price forecast is known precisely.  With this in mind, an optimization method is employed 

that allows for nocturnal, weekly, or seasonal energy arbitrage (time-shift of energy) to assess any 

additional utility that may be gained over the traditional daily optimization method for the appropriate 

markets.  However, it is speculated that the added cost and energy losses due to physical limitations of 

the various storage devices will limit the optimization timeframe to within the realm of real-time pricing 

forecast error limitations. 
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This work aims to contribute both a novel means for optimizing energy storage investments as well as 

offering a snapshot of current storage technologies in the context of being able to enter the energy 

arbitrage market on a residential as well as a centralized scale.  Further insights are offered as to what 

future energy storage technologies might look like in order to reap these benefits more fully. 
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2. Background 

2.1. Review of Solar Energy 

Incident solar radiation (insolation) can be harvested and transformed into a usable energy form by 

three different processes: thermal capture, the photovoltaic effect, or direct fuel production.  The first 

method has been around since the 7th century B.C., when glass and mirrors were used to concentrate 

the sun’s rays to start fires; and it was incorporated into passive solar building design as early as the 1st 

century A.D. [9].  The photovoltaic effect was discovered in 1839 by French scientist Edmond Becquerel 

[9], but it wasn’t until the 1950s that modern crystalline silicon PV cells were discovered and then 

developed primarily for a very specific niche market: the space race [10].  Generating fuels from 

sunlight, like splitting water to yield hydrogen via artificial photosynthesis, has been the most recent 

development in capturing the sun’s power.  The recent work by MIT Professor Daniel Nocera has been 

very promising in this area [11]. 

This thesis will focus on the use of energy storage with photovoltaic (PV) generation.  The other two 

solar technologies do not lend themselves to this analysis as readily because (1) solar fuel technologies 

generate their own storage by the very definition of their process (hence the reason for much of their 

appeal), and (2) solar thermal technologies have already been relatively successfully integrated with 

thermal storage.  Recent work has been done with integrating a thermal storage medium (usually 

molten salt) into concentrating solar thermal power (CSTP) systems, both via government 

demonstration projects [12], as well as promising new research to increase efficiency and decrease cost 

of this technology [13],[3].  A natural advantage of developing storage for CSTP is the fact that no energy 

conversion is required for thermal storage.  CSTP with thermal storage is used as a comparison for the 

baseload scenarios looked at in the last sections of this thesis.  For PV, however, the energy being 

generated is in direct current (DC), which cannot be stored directly.  Current electric energy storage 

technologies convert this electricity into another medium that can be stored such as heat (thermal 

storage), kinetic energy (mechanical storage), electrochemical energy (chemical batteries), or chemical 

bonds (fuels).  The various technologies relevant to this work that exploit these processes are discussed 

in Section 2.3. 
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2.2. Review of Energy Storage Markets 

There are many different potential markets available for energy storage, both for interfacing with a 

generation source as well as being used directly on the grid.  Energy storage applications can be divided 

into two general functions: (1) power quality (PQ), and (2) energy arbitrage.  This work will focus on the 

latter, primarily because the PQ market is already showing signs of being exploited [14]. Before the 

energy storage functions are broken down, definitions of common energy market terms are given. 

Power Quality – Can include frequency and voltage regulation as well as backup power in case of 
outages. 

Energy Arbitrage – Involves the storage of energy when the price and/or demand (usually both) is low, 
and then discharging/selling the energy when the price and/or demand is high. 

Load-Following – Is the use of a storage device to match the generation profile of the grid to the rapidly 
fluctuating demand profile on the end-user side. 

Frequency Regulation – Is the use of energy storage to maintain the frequency within the tolerance 
limits of the generators.  The frequency can drop under conditions when demand increases faster than 
new generation can come online.  

Transmission and Distribution (T&D) Deferral – Involves the temporary use of a storage device to allow 
the existing transmission line to operate for a longer time without being upgraded or replaced by 
increasing the peak-capacity of the transmission line. 

TOU Cost Reduction – Is energy arbitrage on the user side of the meter to shift consumption from 
periods of high electricity rates to those of lower cost (end-user energy arbitrage). 

Energy storage functions can be beneficial when supplied along a variety of locations on the electricity 

value chain [15]. 

 
Figure 2.2-1: Potential Energy Storage Benefits Along Electricity Value Chain 

The basic functions shown in Figure 2.2-1 are:  supplementing existing generation sources (power 

quality and/or energy arbitrage), deferring upgrades of generators or transmission and distribution 

(T&D) lines, avoiding congestion in the transmission stage, load following (can be in the generation, 

distribution, or consumption functions), and several end-user benefits [15].  Everything prior to end-user 
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consumption can be viewed as “utility-scale” or “centralized” applications, whereas the consumption 

section of the value chain is referred to as “residential-“ or “commercial-scale”. 

In addition to the economic benefits along the value chain, environmental benefits may be realized from 

the use of energy storage.  It is possible to arbitrage energy such that energy from cleaner generators 

(natural gas) offset the emissions from dirtier sources (coal and oil).  However, it has been shown that 

significant revenue losses can be observed if a storage system is optimized purely for environmental 

benefit within a real-time pricing market [16].  Of course, if a price on GHG emissions were imposed, 

optimizing for economic benefits would at least partially include environmental concerns as well.  

Therefore, it is simplest to think of the optimization procedure as being with respect to perceived 

economic benefit, which may or may not reflect environmental effects. 

Unfortunately, there are significant regulatory barriers that prevent storage technologies from capturing 

revenue streams from many of these markets.  Notably, all of the T&D functions and many of the 

generation functions do not have a regulatory framework to facilitate integration into their rate base.  A 

recent report by Pike Research LLC stated this problem concisely: 

Major regulatory hurdles must be met before storage can even be considered for use in some markets.  

According to the newly established Electricity Advisory Council, no cohesive plan exists as to how storage 

technologies will be incorporated into the grid.  In addition, the current system does not credit the value of 

storage across the entire utility value chain.   Generation, transmission and distribution are typically viewed 

discretely.  The resulting challenge is the complete lack of a cost recovery system, and with no clear path for 

cost reimbursement, most utilities have opted not to invest in energy storage.  It is easier for utilities to 

make investments in conventional approaches to addressing grid instability, such as natural gas spinning 

reserves, as these investments are sure to be covered by the regulatory rate base. [17] 

Another issue that the above excerpt refers to is the fact that a single energy storage device is currently 

unable to capture revenues from multiple services along the value chain.  A report by the DOE’s Sandia 

National Laboratories (SNL) summarizes additional benefits of utilizing storage with renewable 

generation that are not accounted for in the current regulatory framework: 

Depending on where the storage is located, if it is used in conjunction with bulk renewables resources, then 

the benefits may also include: 1) avoided/deferred need to build or to purchase other generation capacity, 

2) avoided/deferred need to build transmission capacity, 3) avoided transmission access charges, 4) avoided 

transmission congestion charges, 5) transmission support, and 6) ancillary services. [18] 

As mentioned at the beginning of this section, this work focuses on the energy arbitrage market.  The 

primary reason being that the PQ market has key players (ex. Beacon Power Corporation [14]) who have 

already entered onto the scene; whereas the only major players in the energy arbitrage market are 
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geographically limited (pumped-hydro and compressed air energy storage).  Energy arbitrage also offers 

the unique possibility of enabling baseload/firm generation from intermittent renewable energy 

sources, which is looked at in Section 4.3. 

2.3. Review of Current Energy Storage Technologies 

Within the framework of energy arbitrage, as discussed in the previous section, current energy storage 

technologies are evaluated on their potential to serve this market.  The grayed-out region of Figure 2.3-1 

indicates several storage technologies that are not appropriate for arbitrage.  These include 

superconducting magnetic energy storage (SMES) systems, flywheels (low- and high-speed), and 

supercapacitors.  The remaining storage technologies that could potentially perform arbitrage services 

are electrochemical batteries, flow batteries, compressed air energy storage (CAES), and pumped-hydro 

energy storage (PHES).  Another technology which is not listed in the figure, but which is considered in 

this work, is electrolysis with hydrogen storage and a fuel cell (H2).  Each technology considered in the 

analysis is described briefly in the following sections.  First, however, an explanation of the dynamics of 

energy storage capital cost is given. 

 
Figure 2.3-1: Feasible Storage Application Ranges [19] 
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2.3.1. A Note on Storage Capital Cost Estimation 

While compiling cost information for this work, it was discovered that estimating the capital cost of a 

large storage facility can be an area of significant confusion, and is rarely addressed clearly (or even 

explicitly) in the literature.  Hence, some clarifications are made here before the storage technologies 

are described. 

Table 2-1: Power- and Energy-Related Capital Costs 

Capital Expenditures 

 Power-Related BOS Cost ($/kW) 

 Energy-Related BOS Cost ($/kWh) 

 Power-Related Storage Cost ($/kW) 

 Energy-Related Storage Cost ($/kWh) 

The balance-of-system (BOS) cost is usually given as per unit power ( ) or per unit energy ( ), 

whereas the unit cost of actual storage device is given both on a power ( ) and an energy ( ) basis, as 

shown in Table 2-1.  In addition, the BOS expense is often included in the unit storage costs.  The cost of 

the power control system (PCS) is often included in the capital cost estimate; however, it is kept 

separate here because of the difference in the PCS lifetime and the total solar-with-storage system 

lifetime (see Section 3.3.2 for how PCS cost is included).  An important distinction in storage system 

architectures must be addressed here.  If a storage device is able to be sized for power and energy 

independently of one another, then the unit power and energy costs are given as separate components 

from which the total cost must be obtained by summing over power and energy requirements.  If, 

however, the storage cell has a fixed power/energy ratio, then the costs are given as a complete system 

cost and either the power or the energy component must be used to find the total capital cost 

(whichever is higher).  For example, if a 1 kW / 1 kWh battery cell cost $100 and the power and energy 

components cannot be sized independently, then the unit capital cost of this device would be either 

$100/kW or $100/kWh, and even if the storage requirement were only 1 kW / 0.5 kWh, the battery 

would still cost $100.  The former system architecture will be referred to as a “flexible” system, and the 

latter as a “fixed” system for convenience. 

For flexible systems, the capital cost may be computed as: 

Equation 2-1: Total Capital Cost for Flexible Systems 

 

In this expression,  is the balance of system cost per unit power ($/kW),  is the balance of 

system cost per unit energy ($/kWh),  is the storage cost per unit power ($/kW),  is the storage cost 
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per unit energy ($/kWh),  is the power rating of the storage device (kW), and  is the energy capacity 

of the storage device (kWh).  This expression can be re-written as: 

Equation 2-2: Simplified Total Capital Cost for Flexible Systems 

 

if the total unit power cost is defined as , and the total unit energy cost is defined as 

. 

For the fixed systems, the capital cost must be calculated as: 

Equation 2-3: Total Capital Cost of Fixed Systems 

 

In this expression,  is the maximum of the power and energy costs, respectively.  

Note that this expression does not lend itself to the simplification shown in Equation 2-2.  A summary of 

these power- and energy-related costs for each technology to be analyzed is shown in Table 2-2 below. 

Table 2-2: Storage Capital Cost Summary 

Storage Technology Lead-Acid Li-Ion NiCd NaS VRB ZnBr H2 CAES PHES 

System Architecture Fix Fix Fix Fix Flex Flex Flex Flex Flex 

Power-Related ($/kW) 
         

 
 $0 $0 $0 $20 $0 $0  $0 $0 $0 

 
 $250 $333 $6,020 $1,500 $700 $300 $500 $425 $600 

Energy-Related ($/kWh) 
        

 
 $50 $0 $92 $0 $0 $0 $0 $50 $0 

   $150 $1,333 $600 $176 $230 $250 $15 $2 $12 

The entries with a zero  cost have already included this expense in the  or  metrics. 

Taking a large, 10 MW / 85 MWh, Sodium Sulfur (NaS) battery plant as an example, the distinction 

between the two system architectures can be illustrated.  Using the proper method, where the energy 

and power components of the battery cell itself are fixed and cannot be sized independently, as shown 

in Equation 2-3, the upfront capital cost of the system would be: 

 

However, if we assume energy and power are sized independently with the same respective unit costs 

for each as shown in Equation 2-1, then the capital cost would be nearly twice as much: 
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Note that these capital costs do not include the PCS or fixed operation and maintenance (O&M) costs, 

which are discussed in Section 3.3.2. 

2.3.2. Lead-Acid Batteries 

A schematic of the discharge and charge states of an electrochemical battery (not just lead-acid) is 

shown in Figure 2.3-2 below.  For a lead-acid battery, the oldest rechargeable battery chemistry, lead-

dioxide serves as the cathode electrode, lead as the anode, and sulfuric acid is used as the electrolyte 

[20]. 

 
Figure 2.3-2: Discharge (left) and Charge (right) States of an Electrochemical Battery [20] 

The main advantages of lead-acid batteries are their low capital and operation costs, and high 

efficiencies.  However, their limited cycle and calendar lifetimes make them much less economical in 

energy arbitrage applications.  These qualitative characteristics are summarized in Table 2-3. 

Table 2-3: Lead-Acid Qualitative Characteristics 

Advantages Disadvantages 

Low Capital Cost Low Cycle Lifetime 
Good Roundtrip Efficiency Low Calendar Lifetime 
Low Self-Discharge   

When available, key cost and performance metrics were obtained from the Sandia National Laboratories 

(SNL) 2001 report on energy storage characteristics and technologies (reference [21]).  However, many 

other sources were utilized in an attempt to obtain the most recent information, and for technologies 

not listed in the SNL report.  The key parameters for lead-acid batteries are listed in Table 2-4. 
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Table 2-4: Lead-Acid Quantitative Characteristics 

Parameter Value 

Energy-Related Cost $150/kWh [22] 
Power-Related Cost $250/kW [21] 
Balance of System Cost $50/kWh [21] 
Fixed O&M Cost  $1.55/kW-yr [21] 
Variable O&M Cost $0.01/kWh [21] 
Roundtrip Efficiency 87.5% [21],[20] 
Self-Discharge Rate 2%/month [20] 
Cycle Lifetime ~1,500 [20] 
Calendar Lifetime 10 years [20] 

2.3.3. Lithium-Ion (Li-Ion) Batteries 

Li-ion batteries have the same basic electrochemical architecture shown in Figure 2.3-2 above.  In this 

case, the cathode is comprised of a lithiated metal oxide (such as LiCoO2 or LiMO2), the anode is made 

of graphitic carbon, and the electrolyte is composed of a lithium salt [23].  Li-ion batteries tend to be 

most beneficial for portable frequency regulation type applications because of their excellent energy 

density and much higher cycle lifetimes at lower depths-of-discharge (>3,000 at 80% DoD [23]). 

Table 2-5: Li-Ion Qualitative Characteristics 

Advantages Disadvantages 

Excellent Efficiencies High Cost 
High Energy Density Low Cycle Lifetime 

A summary of the qualitative characteristics is shown above in Table 2-5, and the quantitative metrics 

are given in Table 2-6. 

Table 2-6: Li-Ion Quantitative Characteristics 

Parameter Value 

Energy-Related Cost $1,333/kWh [24],[22] 
Power-Related Cost $333/kW [24] 
Balance of System Cost Included 
Fixed O&M Cost N/A [25] 
Variable O&M Cost N/A [25] 
Roundtrip Efficiency ~95% [20] 
Self-Discharge Rate ~3%/month [20],[25] 
Cycle Lifetime 1,500 [20] 
Calendar Lifetime 15 years [26] 

2.3.4. Nickel-Cadmium (NiCd) Batteries 

As with lead-acid and Li-ion batteries, the electrochemical architecture for NiCd batteries is the same as 

shown in Figure 2.3-2 above.  The NiCd chemistry has been around almost as long as lead-acid batteries.  

They use nickel hydroxide for the anode material, cadmium hydroxide as the cathode, and an aqueous 

solution of mostly potassium hydroxide (small amounts of lithium hydroxide) as the electrolyte [25]. 
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Table 2-7: NiCd Qualitative Characteristics 

Advantages Disadvantages 

Long Calendar Lifetime Higher Cost 
Reliability Moderate Efficiencies 

A summary of the qualitative characteristics is shown above in Table 2-7, and the quantitative metrics 

are given in Table 2-8. 

Table 2-8: NiCd Quantitative Characteristics 

Parameter Value 

Energy-Related Cost $600/kWh [22] 
Power-Related Cost $6,020/kW [25] 
Balance of System Cost $92/kWh [25] 
Fixed O&M Cost $97/kW-yr [25] 
Variable O&M Cost $0 [25] 
Roundtrip Efficiency 74% [20] 
Self-Discharge Rate 10%/month [20] 
Cycle Lifetime ~2,250 [20] 
Calendar Lifetime 17 years [20] 

2.3.5. Sodium-Sulfur (NaS) Batteries 

Whereas most electrochemical batteries contain solid anodes and cathodes, and a liquid electrolyte; 

NaS batteries are comprised of liquid sulfur as the anode, liquid sodium as the cathode, and are 

separated (the “electrolyte”) by a solid alumina ceramic [27].  This system architecture is shown in 

Figure 2.3-3.  To maintain proper functioning, the liquid sulfur and sodium are kept at about 3000C.  This 

parasitic heat requirement is responsible for the relatively high self-discharge of ~17% per day [28]. 

 
Figure 2.3-3: NaS Schematic [27] 
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The qualitative and quantitative characteristics are given in Table 2-9 and Table 2-10, respectively. 

Table 2-9: NaS Qualitative Characteristics 

Advantages Disadvantages 

Good Cycle & Calendar Lifetime Fairly Expensive 

 
Parasitic Energy Requirement 

 
Table 2-10: NaS Quantitative Characteristics 

Parameter Value 

Energy-Related Cost $176/kWh [29] 
Power-Related Cost $1,500/kW [29] 
Balance of System Cost $20/kW [29] 
Fixed O&M Cost $9/kW-yr [30] 
Variable O&M Cost $0 [30] 
Roundtrip Efficiency 76% [30],[31] 
Self-Discharge Rate ~17%/day [28] 
Cycle Lifetime >3,000 [30] 
Calendar Lifetime 15 years [30] 

2.3.6. Vanadium Redox Flow Batteries (VRB) 

A schematic of how a flow battery operates is shown in Figure 2.3-4.  A liquid electrolyte is stored in 

external tanks and is pumped into reaction stacks (fuel cells) that converts the chemical energy into 

electricity (during discharge) or electricity into chemical energy (during charge) [29].  An advantage of 

flow batteries over conventional batteries is that the energy capacity (as determined by the volume of 

electrolyte and size of the storage tanks) can be sized independently from the power rating (as 

determined by the size of the reaction stacks). 

 
Figure 2.3-4: Flow Battery Schematic [32] 
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Another advantage is that although the reaction stacks of VRBs require replacement every 1,000 cycles 

or so, this is only a fraction of the entire system cost (~$375/kW) and most of the system will continue 

to operate for the lifetime of a PV array [29].  Refer to Table 2-11 for a summary of the qualitative 

characteristics, and Table 2-12 for the quantitative metrics. 

Table 2-11: VRB Qualitative Characteristics 

Advantages Disadvantages 

Energy and Power Sized Independently Mechanical Complexity 
Good Efficiencies Moderate Parasitic Losses (due to pumps) 
Long Lifetime of Electrolyte/Tanks 

 
Table 2-12: VRB Quantitative Characteristics 

Parameter Value 

Energy-Related Cost $230/kWh [29] 
Power-Related Cost $700/kW [29] 
Balance of System Cost Included 
Fixed O&M Cost $4/kW-yr [29] 
Variable O&M Cost $0 [29] 
Roundtrip Efficiency 85% [29],[33] 
Self-Discharge Rate 7.5%/month [31] 
Cycle Lifetime 1,250 [29] 
Calendar Lifetime 12 years [29] 

2.3.7. Zinc-Bromide (ZnBr) Flow Batteries 

The operational characteristics of a ZnBr flow battery is the same as shown in Figure 2.3-4.  Although the 

efficiencies are slightly below that of VRB, ZnBr flow batteries have a lower cost and at least one major 

manufacturing company (Premium Power, located in North Reading, MA) claims unlimited deep cycling 

capability.  The company is very secretive about their metrics, however, and no justifications are given 

for this claim [24],[34].  Since a source could not be found that states otherwise, Premium Power’s 

numbers were assumed accurate for the purposes of this analysis.  A summary of the qualitative and 

quantitative metrics are given in Table 2-13 and Table 2-14, respectively. 

Table 2-13: ZnBr Qualitative Characteristics 

Advantages Disadvantages 

Low Cost Moderate Efficiencies 
Excellent Lifetime 
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Table 2-14: ZnBr Quantitative Characteristics 

Parameter Value 

Energy-Related Cost $250/kWh [24] 
Power-Related Cost $300/kW [24] 
Balance of System Cost Included 
Fixed O&M Cost N/A [21] 
Variable O&M Cost $0.004/kWh [34] 
Roundtrip Efficiency 75%  [35] 
Self-Discharge Rate 13.5%/month [31] 
Cycle Lifetime Lifetime [34] 
Calendar Lifetime 30 years [34] 

2.3.8. Hydrogen Electrolysis with Fuel Cell (H2) 

There are three key processes of a hydrogen storage system: electrolysis which uses electricity to 

produce hydrogen from water, storage of the hydrogen (many different forms/states can be used), and 

the use of a fuel cell to generate electricity from the stored hydrogen when it is desired.  A schematic of 

how the fuel cell functions is shown in Figure 2.3-5.  As with flow batteries, the energy and power 

ratings can be sized independently for a H2 system.  However, the roundtrip efficiency is considerably 

less than flow batteries. 

 
Figure 2.3-5: Hydrogen Fuel Cell Schematic [19] 

A summary of the qualitative and quantitative metrics are given in Table 2-15 and Table 2-16, 

respectively. 

Table 2-15: H2 Qualitative Characteristics 

Advantages Disadvantages 

Low Energy Cost Low Efficiencies 
Good Lifetime O&M Cost 

 
Complexity 
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Table 2-16: H2 Quantitative Characteristics 

Parameter Value 

Energy-Related Cost $15/kWh [21] 
Power-Related Cost $500/kW [21] 
Balance of System Cost Included [21] 
Fixed O&M Cost $10/kW-yr [21] 
Variable O&M Cost $0.01/kWh [21] 
Roundtrip Efficiency 59% [21] 
Self-Discharge Rate 3%/day [20] 
Cycle Lifetime Lifetime [21] 
Calendar Lifetime 17 years [21],[25] 

2.3.9. Compressed Air Energy Storage (CAES) 

CAES technology has been commercially developed since the late 1970s, but there is only one CAES 

facility in the U.S., which has been operating since 1991 in McIntosh, Alabama [29].  This is the only 

storage technology considered which has a fuel cost associated with its operation.  In a CAES system, 

electricity is used to compress air during the charge cycle which is then released, heated in an expansion 

chamber with natural gas, and used to drive combustion AC turbines during the discharge cycle (see 

Figure 2.3-6). 

The variable cost associated with the use of natural gas during the discharge cycle can be computed 

from the following relationship: 

Equation 2-4: CAES Variable Operation Cost 

 

Assuming a fuel cost of $3/MMBtu and a heat rate of 4,000 Btu/kWh [29], this equates to a variable 

O&M of $0.012/kWh.  An interesting characteristic of CAES plants is that 2-3 times more energy is 

released during the discharge cycle than is spent in the compression stage.  This is because of the 

additional energy from the natural gas.  A simplification is made in this work by using an “effective” 

roundtrip efficiency of 85%, which accounts for the use of the fuel in the operational cycle [29]. 
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Figure 2.3-6: CAES Schematic [29] 

For large CAES plants, it is most economical to store the compressed air in large underground caverns 

(salt caverns, rock caverns, or porous rock formations) [29].  The costs/metrics listed in this work 

correspond to CAES in salt caverns.  Although somewhat geographically limited, CAES may still be viable 

for over 80% of the United States [29].  The qualitative and quantitative characteristics of this 

technology are shown in Table 2-17 and Table 2-18, respectively. 

Table 2-17: CAES Qualitative Characteristics 

Advantages Disadvantages 

Low Cost Geographically Limited 
Good Efficiencies 

 Excellent Lifetime 
 

Table 2-18: CAES Quantitative Characteristics 

Parameter Value 

Energy-Related Cost $2/kWh [29],[21] 
Power-Related Cost $400/kW [29],[21] 
Balance of System Cost $50/kWh [21] 
Fixed O&M Cost $1.42/kW-yr [21] 
Variable O&M Cost $0.012/kWh [29] 
Roundtrip Efficiency 85% [29] 
Self-Discharge Rate 0% [21] 
Cycle Lifetime Lifetime [21] 
Calendar Lifetime 30 years [21] 

2.3.10. Pumped-Hydro Energy Storage (PHES) 

In PHES, the potential energy contained in an elevated body of water serves as the energy capacity.  

Generation and pumping can either be accomplished by single-unit reversible pump-turbines, or by 

separate pumps and generators [21].  Water is pumped from a lower reservoir up to the elevated 
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reservoir during the charge cycle, and is released back down to the lower reservoir during discharge (see 

Figure 2.3-7). 

 
Figure 2.3-7: PHES Schematic [36] 

This technology has been in development since the 1920s [21].  The qualitative characteristics are the 

same as for CAES and are shown in Table 2-19.  The quantitative metrics are given in Table 2-20. 

Table 2-19: PHES Qualitative Characteristics 

Advantages Disadvantages 

Low Cost Geographically Limited 
Good Efficiencies 

 Excellent Lifetime 
 

Table 2-20: PHES Quantitative Characteristics 

Parameter Value 

Energy-Related Cost $12/kWh [21] 
Power-Related Cost $600/kW [21] 
Balance of System Cost Included 
Fixed O&M Cost $3.8/kW-yr [21] 
Variable O&M Cost $0.0038/kWh [21] 
Roundtrip Efficiency 87% [21] 
Self-Discharge Rate 0% [21] 
Cycle Lifetime Lifetime [21] 
Calendar Lifetime 30 years [21] 

2.4. Description of Case Studies 

In order to assess the value of adding energy storage in arbitrage applications, three case studies were 

chosen within the context of “larger markets”.   All three case studies are located close to Blythe, 

California, so that the level of incident solar radiation (insolation) would be consistent throughout.  

Blythe is also desirable because a local utility company, Southern California Edison (SCE), offers a TOU 
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rate schedule.  For the real-time pricing rates an average across the California Independent System 

Operator’s (CAISO) entire region was used.  The following subsections describe the relevant regional 

datasets. 

2.4.1. Insolation Data 

The insolation data for Blythe, CA, were obtained from the National Solar Radiation Database (NSRDB) 

as provided by the National Climatic Data Center (NCDC).  Richard Perez, at the State University of New 

York in Albany, resolved high-resolution satellite data (10 km grid-squares) into both global and direct 

insolation components.  Global insolation data are used for the PV simulations because the photovoltaic 

effect occurs with both direct and diffuse solar radiation, and the direct insolation data are used for the 

baseload concentrating solar thermal power (CSTP) simulations.  This insolation data can be publicly 

downloaded from the National Oceanic and Atmospheric Administration’s (NOAA) website cited here: 

[37].  In an attempt to simulate the average value of adding storage to a PV system, data from 1997 – 

2005 were averaged to obtain a typical year.  This insolation dataset, along with the electricity rates 

described below, is plotted for July 15th in Figure 2.4-1. 

Hourly generation was computed from this hourly insolation data by multiplying the insolation for a 

given hour (  in Wh/m2) by the peak watt rating of the system ( ), and dividing by 1,000 W/m2, 

the global Air Mass ( ) constant [38]: 

Equation 2-5: Solar Energy Generation 

 

2.4.2. Pricing Data 

The real-time hourly location marginal pricing (LMP) data were obtained from the CAISO public 

download site listed in the bibliography under this citation: [39].  The pricing dataset for 2008 was used, 

as this was the most recent complete dataset at the time it was retrieved.  Since 2008 was a leap-year, 

pricing data for February 29th were removed from the dataset so that the timestamp would match the 

hourly insolation data (which omitted data from the leap-years of 2000 and 2004 before averaging).  As 

seen in Figure 2.4-2, the bulk of wholesale electricity prices are in the range of 1 – 10 ¢/kWh with only a 

handful of peak-prices on the order of 25 – 40 ¢/kWh.  Therefore, the value of energy arbitrage lies 

within shifting as much generation as possible from the bulk hours to the relatively few peak-price 

hours.  The TOU rate schedule for SCE has both a time-of-day (TOD) and a seasonal variation.  These 

distinctions are shown in Table 2-21.  This rate schedule was obtained from the SCE utility company. 
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Table 2-21: SCE TOU Rate Schedule 

Season / TOD Electricity Price 

Winter Off-Peak 17.59 ¢/kWh 
Winter Peak 21.24 ¢/kWh 
Summer Off-Peak 18.44 ¢/kWh 
Summer Peak 36.06 ¢/kWh 

 
Figure 2.4-1: Insolation and Electricity Pricing Data for July 15th 
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Figure 2.4-2: Real-Time Rate Schedule Histogram

 

2.4.3. Load Data 

For the last case-study, solar-with-storage systems were evaluated within a baseload generation role.  

This was simulated by requiring the generator to meet a specific demand profile.  The demand profile 

was calculated by scaling CAISO’s hourly load by a base system size (10 MW).  The hourly system load 

data were obtained from CAISO’s public download site mentioned previously, and can be accessed 

under this reference: [39]. 
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3. Modeling Methodology 

The lifetime cost of a storage device often depends on how it is operated.  For example, the frequency 

and depth to which a storage device is charged and discharged will often dictate the operational lifetime 

of the device; and therefore the lifetime cost due to the requirement of additional capital purchases.  

Financial dynamics such as these are why the NPV calculation was kept separate from the optimization 

procedure.  The resulting two-step process is outlined in detail in Section 3.1.1, and the steps 

themselves are described in Sections 3.3.1 and 3.3.2.  In addition, throughout this work the residential 

and centralized scenarios operating within temporal rate schedules are treated separately from the 

centralized scenarios operating as baseload generators (meeting a specified service requirement). 

As a consequence, this section is divided into four main components: first, the temporal rate schedule 

scenarios’ objective and control variables are presented, and then the same is done for the baseload 

scenarios.  Next, the two steps of the optimization procedure for the temporal scenarios are discussed, 

followed by the two steps of the centralized baseload scenarios. 

3.1. Temporal Rate Schedules 

3.1.1. Objective Function 

For all the temporal rate schedule scenarios (residential TOU and centralized real-time), the ultimate 

objective is to maximize is the net present value (NPV) of the storage investment. 

The optimization problem can readily be set up as a linear programming (LP) model if the energy and 

power limits are treated as independent variables.  In other words, the storage optimization procedure 

will vary the energy capacity and power rating of the storage device and calculate the maximum 

dispatch profile for each configuration.  In this manner, the optimization procedure can be set up as a 

two-step problem; (1) solving for the optimal storage dispatch given electricity prices, certain efficiency 

limitations, and varying the energy and power constraints on the storage device and (2) calculating the 

objective function (i.e. NPV) of each storage solution to find the optimal configuration given the financial 

characteristics.  In this respect, the outputs of the first step (dependent variables) become inputs to the 

second (independent variables).  The objective function of step one is to maximize the total revenue 

observed from the dispatch profile.  In step two, this objective function (revenue), along with the 
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corresponding dispatch profile, is used to calculate the NPV of the storage device over the operational 

lifetime of the PV system. 

3.1.2. Control Variables 

For the temporal rate schedule scenarios, the dispatch profile is optimized iteratively with the power 

and energy capacity of the storage device being set at different levels.  The control variables that can be 

fine-tuned by the optimization procedure to maximize revenues are on an hourly basis throughout the 

entire year.  These include the energy being sent to storage, the energy being used directly, and the 

energy being discharged from storage.  The variables that are fixed versus those that can be controlled 

during this optimization procedure are shown in Table 3-1. 

Table 3-1: Fixed and Control Variables - Temporal Rate Schedule Optimization 

Fixed Variables Control Variables 

Storage Efficiencies Hourly Energy Used 
Storage Energy Capacity Hourly Energy Stored 
Storage Power Rating Hourly Energy Discharged 
Hourly Generation 

 Hourly Electricity Prices 
 

3.2. Baseload Generation 

3.2.1. Objective Function 

For the utility-scale baseload scenario, there are two cases considered: (1) an agreement between the 

utility and the solar generator in which the generator must dispatch only the requested demand, and (2) 

an agreement in which the generator must meet the service requirement but may also sell additional 

generation into the wholesale market.  Both cases require the solar-with-storage system to be optimized 

for meeting the required dispatch profile; therefore, the objective function is to minimize the total cost 

of the solar-with-storage system.  For the first case, the optimization problem ends here because the 

revenues are set by the dispatch requirement.  However, for the second case, the generator has the 

option of dispatching additional energy above and beyond the service requirement.  It is important to 

note that if the solar-with-storage system were allowed to sell additional energy into the wholesale 

market, and the goal was to maximize revenues,  then there would be no upper-bound on the size of the 

system (the larger the system, the larger the profits).  Therefore, in order to incorporate the costs of the 

solar-with-storage system, revenues are only maximized within the system size determined by the 

service requirement optimization procedure.  For both cases, this allows assessment of the lifetime cost 

of a storage device needed to enable meeting a particular service requirement, while minimizing the 
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entire upfront capital cost of the solar-with-storage system.  The service requirements are defined by 

different demand profiles, which are discussed in Section 4.3. 

3.2.2. Control Variables 

For the first step of the baseload optimization procedure, the fixed variables include the unit costs of the 

solar-with-storage system, the efficiencies, the required demand profile (service requirement), and a 

normalized generation profile.  The insolation data discussed in Section 2.4.1 was normalized to a 10 

MW plant, and the actual generation during the optimization process was scaled by multiplying this 

profile by a variable factor until the desired output was reached.  The control variables make up the 

system size, including the energy storage capacity and power rating, and the solar multiple (i.e. the 

previously mentioned factor, which dictates the PV array or CSTP field size).  These metrics are 

summarized in Table 3-2. 

Table 3-2: Fixed and Control Variables – Baseload Generation Optimization – Step 1 

Fixed Variables Control Variables 

Storage Efficiencies Storage Energy Capacity 
Storage Power Cost Storage Power Rating 
Storage Energy Cost Solar Generator Size 
Solar Generation Cost 

 Hourly Service Requirement 
 Relative Hourly Generation Profile 
 

Step 2 is the same as that described in Section 3.1.2 for the temporal rate schedules.  The energy 

storage capacity and power rating, as well as the hourly generation determined in the first step, now 

become the fixed variables shown in Table 3-3. 

Table 3-3: Fixed and Control Variables – Baseload Generation Optimization – Step 2 

Fixed Variables Control Variables 

Storage Efficiencies Hourly Energy Used 
Storage Energy Capacity Hourly Energy Stored 
Storage Power Rating Hourly Energy Discharged 
Hourly Service Requirement 

 Hourly Generation 
 Hourly Electricity Prices 
 

3.3. Temporal Rate Schedule Model 

3.3.1. Step 1: Storage Dispatch Optimization Model (GAMS) 

The inputs and outputs of the LP model are summarized in Table 3-4 below. 
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Table 3-4: Inputs and Outputs of LP Optimization 

Inputs (Parameters) Outputs (Variables) 
 Price of Electricity ($/kWh)  Energy Discharged from Storage (kWh) 

 Electricity Generation (kWh)  Energy Used Directly (kWh) 

 Roundtrip Efficiency of Storage (%)  State of Charge of Storage (kWh) 

 Self-Discharge Rate of Storage (%/hr)  Energy Sent to Storage (kWh) 

 Storage Power Limit (kW)  Total Revenue (objective function) 

 Storage Energy Limit (kWh)   

The total revenue ( ), which is the objective function to maximize, can be written as: 

Equation 3-1: Revenue Objective Function 

 

where  represents the hour within the optimization timeframe,  is a vector of energy 

values in hour  that are discharged from the storage device,  is a vector of energy values in 

hour  that are used directly from the PV system (sent to the load/grid), and  is the price of 

electricity in hour .  The energy being used can be related to the energy sent to storage, , in 

the following constraint: 

Equation 3-2: Energy Generation Constraint 

 

where  is the energy generated from the PV system in hour .  In other words, the energy generated 

in a given hour must either be used directly, or sent to storage.  The energy being discharged in a given 

hour is subject to an energy-balance equation that takes into account the state-of-charge, roundtrip 

efficiency, and the self-discharge rate of the storage device: 

Equation 3-3: Energy Discharged Constraint 

 

In this constraint,  is the amount of energy remaining in the storage device after hour 

,  is the hourly self-discharge rate of the storage device, and  is the roundtrip efficiency of the 

storage device.  The storage capacity and power limitations must also be imposed as follows: 

Equation 3-4: Capacity Limit Constraint 

 

and 

Equation 3-5: Power Limit Constraints 
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In these expressions,  is the capacity limitation of the storage device in kWh, and  is the power 

rating of the device in kW.  Note that this assumes the storage device has the same charge and 

discharge rate limit. 

Storage optimization models often include an explicit constraint that energy may not be charged and 

discharged at the same time.  This is a logical operational restriction; however, implementing it is both 

inconvenient and unnecessary.  Inconvenient because it would transform the model into a non-linear 

problem (NLP) because of the conditional nature of the constraint (i.e. If charging, then don’t discharge), 

which is most readily expressed by setting the product of the changed and discharged energy in every 

hour equal to zero.  Unnecessary because the model will never choose to charge and discharge at the 

same time so long as the objective function is to maximize revenues.  This is because there is always an 

efficiency sacrifice associated with sending energy to the storage device.  Therefore, the model would 

only loose revenues by cycling energy through storage within a single hour, when it could simply use it 

directly in that hour.  This condition has been tested with several different scenarios, and it has been 

found that the optimal solution never charges and discharges at the same time, even without this 

constraint explicitly imposed.  This constraint was also found to be unnecessary for the two-step 

optimization process for the baseload generation scenarios, even though the objective function of the 

first step is system cost, not revenues.  This is discussed in section 3.4.1. 

In addition to these energy-balance constraints on the operation of storage with the PV system, a lower 

bound of zero is imposed on each metric: 

 

 

The parameters of this optimization problem are constructed in MATLAB, after which they are sent to 

the General Algebraic Modeling System (GAMS) software package for evaluation (see Appendix I-a for 

the GAMS code used). 

Using this simplified optimization model, it is possible to calculate the absolute maximum value of 

adding a storage device to a PV system within a time-varying price market.  Since the model is linear, 

GAMS is able to quickly solve for the optimal storage dispatch for an entire year at a time. 
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3.3.2. Step 2: Storage Financial Model (Excel) 

A list of the required inputs for the financial model is shown in Table 3-5 below. For a list of these 

parameters for each storage technology, please see Section 2.3. 

Table 3-5: Financial Inputs 

Updated Inputs Storage Characteristics 

 First Year Discharged Energy (kWh)  Capacity Cost ($/kWh) 

 Average Depth-of-Discharge (%)  Power Cost ($/kW) 

 Average Cycles per Year (Cycles)  Balance of System ($/kWh or $/kW) 

 Req. Capacity (kWh)  Fixed O&M ($/kW-yr) 

 Req. Power (kW)  Variable O&M ($/kWh) 

 PV System Lifetime (years)  Storage Lifetime (Years) 

 

 

 Lifetime at 100% DoD (Cycles) 

The parameters in the left column (“Updated Inputs”) need to be updated for each specific storage 

application (except for the PV system lifetime), and the parameters in the right column (“Storage 

Characteristics”) need to be updated for each storage technology.  The application specific inputs are 

determined from the optimization model described in Section 3.3.1. 

An important assumption is made for electrochemical batteries, that the actual cycle lifetime of the 

storage device is proportional to the average depth-of-discharge.  The following figure (from Ibrahim, et 

al. [19]) demonstrates this relationship for lead-acid batteries: 

 
Figure 3.3-1: DoD vs. Cycle Lifetime for Lead-Acid Batteries [19] 

Using this relationship and the initial condition of 1,500 cycles at 100%  [20], the following 

extrapolation was made: 
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Figure 3.3-2: DoD vs. Cycle Lifetime for Lead-Acid Batteries - Extrapolation 

This curve has the general form: 

Equation 3-6: Effective Cycle Lifetime 

 

where  is the effective lifetime cycling capacity of the storage device at a specified average depth-

of-discharge ( ), and  is the cycling lifetime at 100% .  Due to the difficulty of obtaining a 

similar specific relationship for the other storage technologies, this same general form was adapted to 

the other electrochemical batteries by updating  for each technology.  Once the effective lifetime 

cycling capacity is known, the number of capital purchases required for each storage device can be 

approximated by: 

Equation 3-7: Number of Required Capital Purchases 

 

where  is the total cycles required of the storage device over the entire PV system lifetime (a 

system lifetime of 30 years is used for these analyses [40],[41]).  Note that each of these ratios should be 

rounded up to the nearest integer, because only whole capital purchases are allowed (cannot buy half of 

a device). 
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The calculation of capital cost per device was described in Section 2.3.1, and given in Equation 2-2 and 

Equation 2-3. 

The power control system (PCS) required for many storage devices to convert the DC output to AC 

before interfacing with the load is treated as a separate cashflow in this analysis.  The basis for this 

decision is the difference in timescales between the storage device lifetime (which is variable under 

operational conditions) and the inverter (PCS) lifetime (which is assumed to be constant).  The base PCS 

cost is assumed to be $230/kW for a mature (not first-of-a-kind) 1 MW system [29], and a lifetime of 7 

years is used [42], [43].  It has been estimated that the PCS expense scales non-linearly with the system 

size according to the following relationship [29]: 

Equation 3-8: Scaled PCS Cost 

 

where  is the base PCS cost of $230/kW, and  is the power rating of the storage device in kW. 

The operation and maintenance (O&M) expenses are assessed on a yearly basis.  There are two types of 

O&M costs: fixed ( ) and variable ( ).  Fixed O&M costs are in units of $/kW per year, and are 

based on the total power rating of the storage system.  Variable O&M costs are in $/kWh of cycled 

energy through the system.   For any given year, the O&M expense can be calculated as: 

Equation 3-9: O&M Cost 

 

where is the annual O&M cost,  is the storage power rating, and the summation of 

 is the total energy discharged from the storage device over the entire year. 

The financial model must also consider the time value of money.  This was accomplished by discounting 

the cashflows on an annual basis by a rate consistent with the investor’s perceived return on similar-risk 

investments.  For this work, a rate of 10% was assumed [44].  The NPV of the storage investment then 

becomes: 

Equation 3-10: NPV Calculation 
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where  is the initial capital investment in year zero (see Section 2.3.1),  is the lifetime of the 

solar generator in years,  is the net cashflow at the end of year , and  is the appropriate discount 

rate.   is assessed for each year by the following relationship: 

Equation 3-11: Annual Cashflow Relationship 

 

where  is the amount of money saved annually by the addition of the storage device, 

 is the storage device replacement cost each year (this is equal to zero for years in which the 

storage device does not need replacement, see Section 2.3.1 for the calculations), and  is the 

power control system replacement cost (also equal to zero for years in which the PCS does not need 

replacement).  An illustrative example of the cashflows generated by the Excel financial model is given in 

Appendix II for a fictitious lead-acid battery configuration. 

3.4. Baseload Generation Optimization Model 

For the baseload scenario, the storage financial model is exactly the same as that described in 3.3.2, and 

will not be repeated here.  This section describes the differences of the system size and storage dispatch 

models from the model described in the previous section for temporal rate schedules. 

3.4.1. Step 1: System Size Optimization (GAMS) 

Table 3-6: Inputs and Outputs of System Size LP Optimization 

Inputs (Parameters) Outputs (Variables) 
 Service Requirement Profile (kWh)  Storage Power Rating (kW) 

 Electricity Generation (kWh)  Storage Energy Capacity (kWh) 

 Roundtrip Efficiency of Storage (%)  Generation Multiple (unitless) 

 Self-Discharge Rate of Storage (%/hr)   

 Storage Power Cost ($/kW)   

 Turbine Power Cost ($/kW)   

 Storage Energy Cost ($/kWh)   

 PV Generation Cost ($/kWp)   

 CSTP Field Cost ($/kWp)   

The system size optimization model has all of the same operational constraints as the model described 

in 3.3.1.  The main differences lie in the additional constraint of meeting the service requirement, , 

and with the objective function.  As discussed in section 3.2.1, , the objective function is to minimize the 

total cost of the solar-with-storage system, while still being able to meet the service requirement.  For a 

PV-with-storage system, the service constraint can be defined as: 
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Equation 3-12: PV Service Requirement Constraint 

 

and for a CSTP-with-storage system, this is written as: 

Equation 3-13: CSTP Service Requirement Constraint 

 

The objective function to minimize for a PV system (the total upfront cost of the solar-with-storage 

system) can be written as: 

Equation 3-14: PV System Size Optimization Objective Function 

 

where  is the unit power cost of the storage device,  is the power rating of the storage device, 

 is the unit energy cost of the storage device,  is the energy capacity of the storage device,  

is the unit cost of the PV array, and  is the generation multiple.  For CSTP systems, this is written as: 

Equation 3-15: CSTP System Size Optimization Objective Function 

 

where  is the unit cost of the turbine,  is the power rating of the turbine, and  is the 

unit cost of the concentrating solar field.  The factor of 10,000 is to scale the solar multiple up to the 10 

MW generation profile it was calculated with.  The unit costs of the PV system ( ), CSTP field 

( ), and CSTP turbine ( ) are shown in Table 3-7 along with their references. 

Table 3-7: Solar Generation Unit Costs 

Metric Value 

 $3,500/kW [45] 

 $2,381/kW [46] 

 $560/kW [46] 

As with the LP model for optimizing revenues (section 3.3.1), the explicit inclusion of the restriction on 

charging and discharging at the same time is unnecessary.  Since the first step of the optimization 

procedure is allowed to shunt energy (throw it away instead of sell it or send it to storage), the model 

may always choose this instead of charging and discharging at the same time.  Whether or not it actually 

does is irrelevant – the point is that after the service requirement is met, excess energy will never 

increase the size/cost of the total system, because it can always be thrown away for free.  Therefore, the 

resulting size/cost will always be for the smallest system capable of meeting the service requirement.  

The concern thus becomes whether or not the system is too small to function realistically in a real-life 

application.  In other words, is the shunting of energy a prerequisite of the system’s operation, such as 
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would be the case if the solar field generated more energy than could be dispatched with the given 

storage size and power constraints?  Indeed, if the model converged on such an infeasible solution, one 

of two outcomes would occur within the second optimization step described below: (1) There would be 

no solution to the optimization given the system size constraints in the first step, or (2) the system 

would charge and discharge at the same time in an attempt to shunt energy, even though the objective 

function is to maximize revenue.  Both of these cases are simple to verify, and they have been for all of 

the baseload scenarios without a single violation. 

The GAMS code used for this first optimization step for a PV system and a CSTP system is shown in 

Appendix I-b and I-d, respectively. 

3.4.2. Step 2: Storage Dispatch Optimization Model (GAMS) 

This optimization model is the same as that described for the temporal rate schedules in 3.3.1, except 

for the additional constraint of meeting the service requirement.  This constraint is shown in Equation 

3-12 and Equation 3-13 for PV and CSTP systems, respectively.  This optimization code can be found in 

Appendix I-c and I-e, for a PV and CSTP system, respectively. 

3.5. Integration of Models (MATLAB) 

MATLAB was used as the interlacing web (or glue) for all the separate components; tying together the 

different optimization steps, input files, financial models, and processing the results for graphic display.  

The simulations were divided into two main groups: the temporal rate schedule scenarios, and the 

baseload generation scenarios.  The function of the MATLAB code within each one of these groups was 

to organize the inputs and outputs of all the relevant optimization and financial models.  Since these 

functions are not vital to the methodology of this thesis, details are not presented here.  The reader is 

referred to Appendix III for the temporal rate schedule code and Appendix IV for the baseload 

generation code. 

3.6. Model Limitations 

An important limitation of the scenarios discussed in this thesis lies in the underlying assumption that 

the storage device is only able to be charged from the PV array.  This is not an unreasonable assumption 

(as outlined below), but does eliminate the option of charging the storage device from the grid during 

low-demand hours (when the price of electricity is the lowest), and discharging this additional energy 
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during the peak-hours.  This potentially offers an additional revenue stream for a storage device, but is 

not considered in this work because: 

 In the near-term, there are currently no regulations or interconnection standards for a device 

that would be both consuming and producing large amounts of energy, whereas PV with storage 

acting solely as a generator is able to be integrated into the system today. 

 Allowing the storage device to charge from the grid eliminates the need for a generation source 

which, in this case, negates the positive environmental and social benefits of utilizing PV. 

 At higher levels of penetration, even if the PV system is utilized to offset emissions from 

marginal generators (gas peakers), charging the storage device when the price is low would 

increase the demand for baseload generation (coal) or increase firing of marginal generators 

(gas).  Again, this would mitigate the positive benefits of utilizing PV. 

Another important limitation of this optimization procedure is the non-inclusion of cycle control of the 

storage device.  A potentially useful strategy could be to oversize the storage device but limit the depth-

of-discharge, or even the total number of cycles, such that the operational lifetime of the storage device 

is prolonged and thereby decreasing the total cost of the device.  To include these parameters into the 

optimization would require a discrete nonlinear model (DNLP) because of the discontinuous response of 

lifetime cost with respect to number of cycles vs. calendar lifetime as mentioned in the introduction of 

Section 3.  Using such a DNLP model would make it very challenging to achieve convergence on a unique 

optimal solution. 
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4. Model Results – Case Studies (CA) 

Three scenarios are analyzed for each of the 9 identified storage technologies.  All scenarios are located 

close to Blythe, CA, which has very good insolation as well as the desired rate schedules.  For each of the 

temporal rate schedule cases, an optimal storage capacity and power rating was identified along with 

the corresponding net present value (NPV) of the storage investment.  A summary of these metrics can 

be seen in Table 4-1.  For many of the storage technologies, a zero NPV is reported.  For the temporal 

rate schedule scenarios, this means that the investment of any storage size/power would result in a 

negative return on investment, and therefore no investment should be made (i.e. money is lost over the 

lifetime of the system with that particular storage investment).  Note that the residential scenarios are 

in units of kW, kWh, and dollars; whereas the centralized results are reported as MW, MWh, and 

millions of dollars.  Also, negative NPV values are shown in parenthesis. 

Thermal storage is only applicable for CSTP systems within the baseload generation scenario.  Results 

are summarized for two specific service requirement profiles for the baseload scenarios.  The first 

service requirement is a base case scenario such that all storage technologies may be compared over 

providing a common service.  This common service requires the solar-with-storage system to provide 

load-matching between the hours of 9:00 am and 9:00 pm (12 hours).  The second service requirement 

profile is optimized to maximize the return on investment (or minimize cost) for each storage 

technology.  For these scenarios, a negative NPV means that adding storage to meet that specific service 

requirement would subtract from the total return on investment of the system as a whole.  Note that 

this does not mean that the system as a whole is not a desirable investment.  To determine this, the 

financials of the entire solar-with-storage system would have to be assessed over the lifetime of the 

project, which is out of the scope of this thesis.  It should be noted that the “power” rating for CSTP with 

thermal storage refers to the turbine size, not the thermal storage power rating. 
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Table 4-1: Summary of Results with Current Technologies 

    Lead-Acid Li-Ion NiCd NaS VRB ZnBr H2 CAES PHES Thermal 

Residential TOU                    
  Power (kW) 0  0  0  0 0 0 0  0  0.5  N/A 

  Energy (kWh) 0  0  0  0 0 0 0  0  12  N/A 

  NPV ($) $0.00  $0.00  $0.00  $0.00 $0.00 $0.00 $0.00  $0.00  $3.89  N/A 

Centralized Real-Time                    
  Power (MW) 0  0  0  0 0 0 0 6.00 8.00  N/A 

  Energy (MWh) 0  0  0  0 0 0 0 22.00 60.00  N/A 
  NPV (M$) $0.00  $0.00  $0.00  $0.00 $0.00 $0.00 $0.00  $0.328 $0.897  N/A 

Centralized Baseload                    

 
Base Case 

        
 

 
 

Start Hour 9 am 9 am 9 am 9 am 9 am 9 am 9 am 9 am 9 am 9 am 

 
Duration 12 hr 12 hr 12 hr 12 hr 12 hr 12 hr 12 hr 12 hr 12 hr 12 hr 

  Power (MW)  9.15 9.15 9.15 9.15 9.15 9.15 9.88 9.15 9.15 10.00 

  Energy (MWh)  52.79 37.46 41.59 52.15 52.20 49.63 162.01 131.39 132.25 125.61 

 
Field Size (MWp) 25.08 27.16 28.56 28.42 25.47 27.24 29.09 23.60 23.34 13.11 

  NPV (M$) ($49.58) ($392) ($212) ($32.8) ($39.2) ($14.03) ($12.39) ($5.76) ($1.03) $2.21 

 
Optimum Case 

        
 

 
 

Start Hour N/A N/A 9 am 9 am 9 am 9 am 9 am 8 am 8 am 11 am 

 
Duration N/A N/A 6 hr 6 hr 6 hr 6 hr 6 hr 7 hr 8 hr 7 hr 

 
Power (MW) 0 0 2.69 2.85 3.17 3.08 3.06 4.46 3.86 10.00 

 
Energy (MWh) 0 0 7.68 14.69 18.73 18.08 16.56 31.98 31.86 63.52 

 
Field Size (MWp) 0 0 12.99 12.38 11.40 11.62 12.13 12.83 14.71 7.75 

 
NPV (M$) 0 0 ($41.50) ($7.38) ($9.56) ($4.47) ($2.18) ($0.598) $0.273 $3.34 

4.1. Residential Time-of-Use (TOU) Pricing 

First, it is helpful to take a look at the effects of roundtrip and self-discharge efficiencies on the total 

possible revenue gains in a TOU rate schedule.  This is shown in Figure 4.1-1.  There is a surprising drop 

in revenue down to ~20% with even a slight increase in self-discharge rate.  This turns out to be an ideal 

case which would not be feasible in practical application.  This is demonstrated in the storage dispatch 

profile shown in Figure 4.1-2. 
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Figure 4.1-1: TOU – Efficiencies vs. Revenue Gain 

This ideal case is storing all of the energy generated in the winter months and discharging all of it during 

the first summer peak-price hours.  The energy requirement for such a dispatch profile is approximately 

1.6 MWh.  The power requirement to discharge all of this stored energy within the peak summer hours 

is much more reasonable at approximately 3.5 kW (since there are 688 summer peak hours in this TOU 

schedule).  This energy requirement is most likely not feasible for a residential storage installation, and 

even if it were, the costs of such a storage device would far outweigh the revenue gain of $400 per year.  

However, this offers some interesting insight as to the potential for a very low-cost per kWh storage 

device with nearly no self-discharge (similar to pumped-hydro).  Further insight may be gained if this 

ideal case is removed. 
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Figure 4.1-2: Residential System – TOU – Ideal Storage Dispatch Profile 

When this ideal case is not considered in the solution space, the effect of self-discharge is much more 

subdued in a TOU rate structure, as shown in Figure 4.1-3.  Another interesting observation from this 

figure is that roundtrip efficiency appears to be even more important in a TOU rate schedule than a real-

time market (see Section 4.2).  Also, the two efficiency components are almost identically influential on 

observed revenues (without the ideal case).  Hence, it is expected that storage devices within a TOU 

market will be able to afford larger self-discharge rate sacrifices than in a real-time market.  This is 

because of the repeated daily price cycles in TOU rate schedules. 



53 
 
 

 
Figure 4.1-3: TOU – Efficiencies vs. Revenue Gain with Ideal Case Removed 

Figure 4.1-4 below demonstrates the effects of storage energy capacity and power rating on revenue in 

a TOU pricing market. 
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Figure 4.1-4: TOU – Storage Size vs. Revenue Gain 

In a TOU rate schedule, increasing the power rating of a storage device hits saturation very quickly with 

respect to increased revenues.  This is because the energy discharge profile can be spread out among 

many peak pricing hours (decreasing the power requirement) without sacrificing revenues.  This is 

perhaps illustrated best by looking at the optimized dispatch profile for a TOU market.  The dispatch 

profiles shown in Figure 4.1-5 represent a residential 2 kWP PV system with a 15 kWh / 2 kW 

hypothetical storage device with perfect efficiency over a period of three days in the summer.  As this 

energy profile indicates, if the power rating of the storage device were increased, all the stored energy 

would be discharged within the first peak price hour each day and no added revenue benefits would be 

observed (except via self-discharge savings, if applicable).  Hence, there is a minimum power rating 

required to discharge all the stored energy within the peak price period, beyond which there is very little 

additional revenue gained.  This threshold is observed to be around 1.5 kW for a 2 kWP residential system 



55 
 
 

in a TOU rate schedule.  The reader should note that if the ideal case is feasible (1.6 MWh of storage 

capacity with no self-discharge), then this threshold is increased to ~3.5 kW. 

 
Figure 4.1-5: Residential System – TOU – Optimal Storage Dispatch Example 
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4.1.1. Lead-Acid Batteries 

 
Figure 4.1-6: Residential System – TOU – Lead-Acid – Storage Size vs. NPV 

For lead-acid batteries, it should first be noted that the lifetime costs in a residential TOU rate schedule 

outweigh the economic benefits gained, as illustrated by the maximum NPV of zero in Figure 4.1-6.  This 

suggests that it would be unwise for a residential customer to invest in a lead-acid battery storage 

system, no matter what power or capacity, if they are in a TOU pricing contract. 

The irregular behavior observed in Figure 4.1-6 is an artifact of the interplay between increasing savings 

as storage size is increased, and the cost of the storage which is dependent on the specific operational 

conditions.  For example, a larger storage device might actually have a lower lifetime cost because it is 

utilized less-frequently and therefore does not need to be replaced as often.  This is a common 

phenomena observed for the other electrochemical batteries as well.  It is especially apparent with lead-

acid battery technologies, which have a relatively low cycle lifetime and are therefore highly sensitive to 

changes in operational conditions.   
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4.1.2. Lithium-Ion (Li-Ion) Batteries 

 
Figure 4.1-7: Residential System – TOU – Li-Ion – Storage Size vs. NPV 

As seen in Figure 4.1-7, Li-ion batteries are very poorly suited for energy arbitrage applications due to 

their high unit energy cost.  These batteries are likely to enter into the power quality market well before 

they are used for any sort of energy arbitrage service.  Like lead-acid, the lifetime cost of Li-ion batteries 

is highly dependent on their operational conditions; hence, irregular contours are observed in the NPV 

surface. 
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4.1.3. Nickel-Cadmium (NiCd) Batteries 

 
Figure 4.1-8: Residential System – TOU – NiCd – Storage Size vs. NPV 

Figure 4.1-8 also shows that it would be undesirable to invest in NiCd as a storage solution for a 

residential PV system in a TOU schedule.  Notice that, because of the very high unit power cost, an 

increase in power rating dominates the NPV surface, whereas increasing the energy capacity has almost 

no effect.  The contours are uniform because the cycle lifetime of NiCd batteries in this application is not 

a limiting factor. 
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4.1.4. Sodium-Sulfur (NaS) Batteries 

 
Figure 4.1-9: Residential System – TOU – NaS – Storage Size vs. NPV 

Similar to NiCd, NaS batteries have a high system lifetime (and therefore do not need to be replaced 

often) and a high unit power cost.  Hence, the power rating almost entirely dictates the NPV of the 

storage investment.  Although a bit less expensive than NiCd, it would still be undesirable to invest in a 

residential NaS storage system. 
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4.1.5. Vanadium Redox Flow Batteries (VRB) 

 
Figure 4.1-10: Residential System – TOU – VRB – Storage Size vs. NPV 

VRB batteries have a rather poor cycle lifetime, but only the battery stacks (sometimes referred to as 

the “fuel cell”) need replacement every thousand cycles or so.  Hence, the “steps” in NPV shown in 

Figure 4.1-10 are frequent, but relatively small in magnitude.  Still, these results suggest that VRB 

storage is not suited for residential TOU systems. 
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4.1.6. Zinc-Bromide (ZnBr) Flow Batteries 

 
Figure 4.1-11: Residential System – TOU – ZnBr – Storage Size vs. NPV 

The unlimited cycle lifetime of ZnBr flow batteries result in the smooth contours of Figure 4.1-11 (the 

lifetime cost is not dependent on how it is operated).  Here again, however, ZnBr is too expensive for 

the benefits in a residential TOU schedule to recoup.  The capital cost (especially energy-related) would 

have to come down significantly before this technology would be able to offer any value in this market. 
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4.1.7. Hydrogen Electrolysis with Fuel Cell (H2) 

 
Figure 4.1-12: Residential System – TOU – H2 – Storage Size vs. NPV 

Almost all of the capital cost of a H2 system is power related; and since the revenues of a storage system 

in a TOU rate schedule only increase with increased energy capacity (after a minimum power rating is 

met), the NPV is drastically affected by an increase in power.  Essentially, as the power rating is 

increased, the cost of the system goes up considerably without any increase in revenues, which causes 

the NPV to plummet.  If the roundtrip efficiency of an H2 system were increased, a high-energy/low-

power storage system may become attractive for this application. 
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4.1.8. Compressed Air Energy Storage (CAES) 

 
Figure 4.1-13: Residential System – TOU – CAES – Storage Size vs. NPV 

Although not on a residential scale, the characteristics of CAES are not terribly suited for this type of 

storage service.  If a micro-CAES system could emulate similar costs and performance as the large scale 

installations, this could potentially be a desirable storage technology for TOU residential scenarios. 
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4.1.9. Pumped-Hydro Energy Storage (PHES) 

 
Figure 4.1-14: Residential System – TOU – PHES – Storage Size vs. NPV 

Similarly, although PHES is not currently available on a scale which would be useful for residential 

applications, it is interesting to note that if it were able to be scaled down, the performance 

characteristics of PHES could be attractive for residential systems on a TOU rate schedule.  Specifically, 

the low cost per unit energy ($/kWh), zero self-discharge, good roundtrip efficiency, no DC-AC 

conversion requirement, and high cycle and calendar lifetimes, are key characteristics for this scenario.  

Although the NPV of this hypothetical micro-PHES system is only ~$4, if the capital cost came down (and 

it were feasible to implement) this may be an attractive option for this scenario. 

4.2. Centralized Generation with Real-Time Pricing 

Similar to the TOU market, there is an ideal dispatch profile that can be captured when the storage 

device has zero self-discharge.  This profile is shown in Figure 4.2-1.  Again, this is completely unrealistic 

in actual operation; not only because of energy and power limitations of the storage device like in the 

residential scenario, but due to system limitations of the power grid as well (energy/power requirement 

of 7,000 MWh/MW, respectively).  In addition, anything other than a perfect pricing forecast would 

completely undermine this dispatch strategy.   
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Figure 4.2-1: Central Generation – Real-Time – Ideal Storage Dispatch Profile 

Hence, like in the previous section, this ideal dispatch case is removed from the solution space.  The 

following is a plot of the remaining roundtrip and self-discharge efficiency effects on revenue for a real-

time market. 
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Figure 4.2-2: Real-Time – Efficiencies vs. Revenue Gain with Ideal Case Removed 

An important observation from this figure is that both high roundtrip efficiencies and low self-discharge 

rates are extremely important with regard to recapturing revenue from energy arbitrage in a real-time 

market, but self-discharge is even more critical.  Revenue streams are nearly cut in half going from a 

2%/hour – 6%/hour self-discharge rate, confirming that technologies such as flywheels (with an hourly 

discharge anywhere from 18-200% [47]) are not appropriate for this market.  Realistically, with the 

inclusion of forecast error, self-discharge should not be higher than a single percent per hour, and 

roundtrip efficiency should be at least in the high 80% range in order to capture most of the benefits in 

the real-time market.  These are ballpark numbers given only from observations of the data presented 

here.  The actual efficiency tolerances are dependent on the storage technologies’ capital cost and the 

revenues obtainable within a specific market, among other factors. 

The next figure (Figure 4.2-3) shows the influence of storage size, both energy capacity and power 

rating, on maximum revenue attainable in a real-time market. 
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Figure 4.2-3: Real-Time – Storage Size vs. Revenue Gain 

Maximum revenue does not attain saturation nearly as quickly as in the TOU market, because in a real-

time market revenue is determined by discharging all of the generated energy within a handful of hours.   

Hence, as energy and power capacity increases, more energy is available to be discharged during these 

peak hours, and revenue continues to go up.  Realistically, the cost associated with increasing capacity 

and power will outweigh the diminishing returns seen in the revenues.  Therefore, it is most helpful to 

look at the rate at which revenue increases with respect to increasing capacity and power limits.  It is 

evident from Figure 4.2-3 that revenue initially increases fastest as the power limit is increased.  

However, it is important to note that an increase in power (ex. 20 MW) will only have a sizeable benefit 

on revenue if the energy capacity is at least twice as big (ex. 40 MWh).  Hence, for a given energy 

storage capacity, it is desirable to be able to fully discharge within ~2 hours to capture most of the 

benefits in a real-time market. 
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4.2.1. Lead-Acid Batteries 

 
Figure 4.2-4: Central Generation – Real-Time – Lead-Acid – Storage Size vs. NPV 

As with the TOU scenario, the limited cycle lifetime of lead-acid batteries makes the NPV very sensitive 

to operational characteristics.  The stair-step behavior of NPV with respect to energy capacity is a direct 

result of crossing a cycle lifetime threshold for which an additional lead-acid battery pack must be 

purchased.  For example, a 32 MW lead-acid battery bank is cycled less-frequently when the energy 

capacity is 20 MWh as compared to 15 MWh.  This decrease in lifetime cycles results in one less capital 

purchase requirement; hence there is a threshold that is crossed which abruptly changes the NPV.  Like 

the TOU scenario, lead-acid batteries are not a wise choice for this market. 
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4.2.2. Lithium-Ion (Li-Ion) Batteries 

 
Figure 4.2-5: Central Generation – Real-Time – Li-Ion – Storage Size vs. NPV 

Li-ion batteries are the only storage technology analyzed where the cost per unit energy is larger than 

the cost per unit power (and by a factor of 4!).  This intuitively makes Li-ion suited more for power 

applications than energy arbitrage, which is verified in Figure 4.2-5.  Also, because of the high 

dependence of capital cost on operational characteristics, the NPV surface appears almost to be random 

except for the general trend of decreasing return on investment with an increase in energy capacity.  

Hence, any storage system that utilizes Li-ion batteries should be well designed and tailored to the 

specific operational constraints and capabilities of this storage technology.  Regardless, it may prove 

very difficult to accurately predict the return on investment for this technology in providing any energy 

arbitrage services. 
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4.2.3. Nickel-Cadmium (NiCd) Batteries 

 
Figure 4.2-6: Central Generation – Real-Time – NiCd – Storage Size vs. NPV 

In contrast to the residential TOU scenario, centralized generation requires the NiCd battery pack to be 

operated in such a way that multiple replacements are possible.  This is represented by the stair-step 

effect in Figure 4.2-6.  It is evident that NiCd batteries are not economically viable for this market. 



71 
 
 

4.2.4. Sodium-Sulfur (NaS) Batteries 

 
Figure 4.2-7: Central Generation – Real-Time – NaS – Storage Size vs. NPV 

NaS batteries show very similar characteristics as NiCd batteries except the capital cost is significantly 

lower, and therefore the NPV is greater for comparable battery sizes.  Even so, this technology is not 

suitable for real-time markets on this scale. 
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4.2.5. Vanadium Redox Flow Batteries (VRB) 

 
Figure 4.2-8: Central Generation – Real-Time – VRB – Storage Size vs. NPV 

The unit power cost of VRBs is about half that of NaS, but the cycle lifetime is about half as well.  

Therefore, Figure 4.2-8 represents a very irregular NPV surface with losses being about half of those 

reported for NaS battery systems.  Still, this technology is a long way from being lucrative in a real-time 

market. 
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4.2.6. Zinc-Bromide (ZnBr) Flow Batteries 

 
Figure 4.2-9: Central Generation – Real-Time – ZnBr – Storage Size vs. NPV 

The unlimited cycle lifetime of ZnBr flow batteries result in a very smooth NPV response surface, as 

shown in Figure 4.2-9.  It appears as though capital cost improvements could make this technology 

attractive for this market, but further analysis shows that the unit energy cost would have to come 

down by a factor of 5, and the power cost cut in half before a positive NPV is observed.  Hence, this 

technology is still a long way from becoming attractive for this application. 
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4.2.7. Hydrogen Electrolysis with Fuel Cell (H2) 

 
Figure 4.2-10: Central Generation – Real-Time – H2 – Storage Size vs. NPV 

Many of the characteristics of H2 systems are very attractive for the energy arbitrage market, including 

the low cost per unit energy and unlimited cycle lifetime.  However, the roundtrip efficiency is too low, 

and the cost per unit power is too high to currently be viable.  Additional benefit could be gained if the 

roundtrip efficiency and the calendar lifetime were increased.  Due to discounting, however, even at 

85% system efficiency and a 30 year lifetime, the power cost would have to decrease by over half to 

about $200/kW before the NPV becomes positive.  This emphasizes the importance of decreasing the 

capital expenditure of storage systems – not just the lifetime costs. 
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4.2.8. Compressed Air Energy Storage (CAES) 

 
Figure 4.2-11: Central Generation – Real-Time – CAES – Storage Size vs. NPV 

CAES is one of two technologies that actually show to be economically viable in a real-time market 

(PHES being the other – discussed in the next section).  There is a rather limited range of options that 

would observe a positive return on the investment, from 5 MWh at 2-3 MW up to 40 MWh at 10 MW.  

The maximum return for this particular rate schedule is about $330k, which is obtained with a 22 MWh 

system rated at 6 MW. 

When considering CAES it should also be noted that there are some emissions associated with its 

operation.  The turbines consume about 4,000 Btu/kWh of natural gas [29], which at a CO2 emission rate 

of 117,000 pounds per Billion Btu [48], equates to about half a pound of CO2 per kWh.  For the above 

system configuration of 22 MWh at a rated power of 6 MW, there are about 3.12 Million pounds of CO2 

emitted each year from natural gas use.  However, compared to an average natural gas plant which 

emits about 1.1 pounds of CO2 per kWh [49], the entire solar-with-CAES system has about 6.5 times less 

CO2 emissions than a natural gas plant providing the same generation service. 
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4.2.9. Pumped-Hydro Energy Storage (PHES) 

 
Figure 4.2-12: Central Generation – Real-Time – PHES – Storage Size vs. NPV 

PHES is the only other technology considered in this work that demonstrates a positive NPV.  The range 

for which this is attainable is even larger than for CAES systems, as seen in Figure 4.2-12.  The low cost 

per unit energy capacity extends the possible system configurations past the 100 MWh limit of the plot.  

However, the maximum is observed with a 60 MWh system with a power rating of 8 MW, which is 

estimated to give a net return of almost $900k. 

4.3. Centralized Generation as Baseload 

In addition to the NPV evaluations for different service requirements, a sensitivity analysis is performed 

for all the storage technologies except CSTP with thermal.  This is done by holding all characteristics of 

the storage device constant for the 9am – 9pm service requirement configuration, and then varying 

each key cost and performance metric while measuring its effect on NPV. 

CSTP with thermal storage will be used as a comparison for PV-with-storage systems within the role of 

providing a set demand profile (service requirement).  As shown in Table 4-1, each storage technology is 

fist assessed on its capacity to provide a 12 hour service requirement starting at 9am each day of the 

year.  Thermal storage offers a $2.21 Million return on investment while providing this service.  In other 

words, the savings attainable from utilizing thermal storage – even while being required to meet this 
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service requirement – outweighs the costs by a present value of about $2 Million over the lifetime of the 

system.  Figure 4.3-1 shows the lifetime net present value (NPV) of the thermal energy storage 

investment evaluated for many different service requirement demand profiles.  All demand profiles 

have a peak demand of 10 MW.  The hour in which the service requirement begins, and the duration of 

the daily service requirement are varied.  For CSTP with thermal storage, a ~$3.3 Million return on 

investment is made possible if the system is allowed to sell the excess energy into the wholesale real-

time market and if the service requirement starts at 11:00am every day and lasts for 7 hours (through 

5:00pm). 

 
Figure 4.3-1: Baseload Generation – CSTP – Thermal – Optimized Dispatch 

A sample demand profile with these characteristics is shown in Figure 4.3-2 along with the CSTP turbine 

output and real-time electricity price profiles for July 15th.  Note that the generator is allowed to sell 

additional energy into the real-time market at the high price points (4:00pm in this case).  If the 

generator is not allowed to discharge this additional energy, there would be many days in which the 

system is oversized for the service requirement (because the system must be designed to meet the peak 

demand periods), and it would be forced to shunt (waste) the extra energy.  With this particular service 

requirement, the annual revenues would be limited to $1.44 Million (dictated by the service 

requirement), and an amount of ~$560,000 is lost from shunted energy.  For many service requirement 

profiles, this actually results in lower revenues than a completely non-dispatchable system without 
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storage.  Hence, no additional revenue exists as an incentive to add the storage device.  It is worth 

noting, however, that a valid possibility may be to couple the solar-with-storage system with a small 

peaker generator (such as a natural gas turbine).  This would allow the solar-with-storage system to be 

sized for the average demand, and the peaker would only be operated during peak demand periods.  

The analysis of this configuration is beyond the scope of this thesis, but should be looked at in future 

work. 

 
Figure 4.3-2: Baseload Service Requirement and Dispatch Profiles 

Figure 4.3-3 shows the NPV of the thermal storage investment for the scenario in which the turbine 

output is limited to producing the required service profile.  Under these restrictions there are no service 

profiles that would be favorable for adding storage.  This does not mean the system as a whole would 

not provide a positive return on investment.  Rather, this indicates that under these service restrictions, 

the investment value would decrease by the NPV amount shown in Figure 4.3-3 because of the added 

cost of the required thermal storage.  For example, the service requirement mentioned above starting at 

11:00am, and lasting for 7 hours each day, would subtract a total lifetime amount of ~$2 Million from 

the total system investment.  Since this restricted service requirement does not result in a favorable 

return on investment for thermal storage, it is safe to conclude that all the other storage technologies 

would show an even worse NPV under these conditions.  Therefore, this exercise is not repeated for the 
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other technologies, and all the other service requirement plots assume excess energy can be sold into 

the real-time market. 

 
Figure 4.3-3: Baseload Generation – CSTP – Thermal – Restricted Dispatch 

4.3.1. Lead-Acid Batteries 

 
Figure 4.3-4: Baseload Generation – PV – Lead-Acid – Optimized Dispatch 
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As seen in Figure 4.3-4 above, lead-acid batteries are too expensive over the lifetime of a PV system to 

provide a positive return for any of the service requirement profiles.  In addition, the lifetime cost of 

using lead-acid batteries to satisfy the base case 9am – 9pm service profile is ~$49.6 Million.  This is 

about 55% of the cost of the PV array required for such a system. 

 
Figure 4.3-5: Baseload Generation – PV – Lead-Acid – NPV Sensitivities 

For lead-acid batteries, the two metrics that have the most potential for influencing NPV are the unit 

energy cost and the cycle lifetime, as seen in Figure 4.3-5.  If the energy cost is reduced by 30% 

($100/kWh) and the cycle lifetime is increased by 30% (2,000 cycles at 100% DOD), not only is the NPV 

of the storage investment increased by 36%, but the total installed cost of the solar-with-storage system 

is decreased by ~3%.  This is because the service requirement may be met with a smaller solar field by 

increasing the size of the battery bank, resulting in an overall lower capital cost.  If the energy cost is 

reduced by 66% to $50/kWh, and the cycle lifetime is increased by a factor of ~4 to 6,150, then the NPV 

of the storage investment is increased by 68%, and the total cost is reduced by 7.8%.  If these dramatic 

improvements in energy cost and cycle lifetime are achieved, then the BOS cost and energy cost become 

equally important, and the cycle lifetime is no longer a limiting factor.  Therefore, the continued 

decrease of the $/kWh capital cost of the lead-acid battery becomes the most important area to focus 

on once a cycle lifetime of ~6,000 is achieved. 
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4.3.2. Lithium-Ion (Li-Ion) Batteries 

 
Figure 4.3-6: Baseload Generation – PV – Li-Ion – Optimized Dispatch 

Li-Ion batteries are an entirely unreasonable choice for the energy arbitrage required for meeting any 

service requirement.  The lifetime cost of Li-ion batteries to meet the 9am – 9pm demand profile is an 

astounding $392 Million – approximately 4 times greater than the cost of the PV array for such a system. 
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Figure 4.3-7: Baseload Generation – PV – Li-Ion – NPV Sensitivities 

Although still not suitable for energy arbitrage, the investment in Li-Ion batteries for this particular 

service requirement could be increased by a dramatic 37% for only a 1% increase in cycle lifetime from 

1,500 to 1,520.  This is too close to the assumed value of 1,500 cycles to be claimed different; therefore, 

it is speculated that an NPV of -$247.8 for Li-ion batteries is achievable.  This is still ~2.5 times more 

expensive than the capital cost of the PV array and would be a very bad investment.  A cycle lifetime of 

~11,400 would be required to eliminate this as a significant factor for NPV, which would then make the 

reduction of the unit energy cost the sole focus area.  Overall, the unit energy cost dwarfs all the other 

components, making a reduction in this metric critical for any positive investment effects.  There is a 1:1 

relationship between the unit energy cost and NPV, where a 1% reduction in the energy cost results in a 

1% increase in NPV (assuming all other parameters are held constant, and the operation of the storage 

device does not change).   Since Li-ion has a fixed architecture, and the energy cost is so high, the unit 

power cost is never a limiting factor for the storage NPV, and is therefore shown at null in Figure 4.3-7. 
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4.3.3. Nickel-Cadmium (NiCd) Batteries 

 
Figure 4.3-8: Baseload Generation – PV – NiCd – Optimized Dispatch 

Similar to Li-Ion, NiCd batteries are very poorly suited for the energy arbitrage required to meet a 

demand profile.  The lifetime cost of a NiCd battery bank to meet the 9am – 9pm service requirement is 

approximately $212 Million, which is about two times greater than the cost of the PV array for such a 

system.  However, if the system is required to meet a 6-hour demand profile starting at 9am instead, 

then the lifetime cost of the NiCd battery bank would be about 80% that of the PV array ($41.5 Million). 



84 
 
 

 
Figure 4.3-9: Baseload Generation – PV – NiCd – NPV Sensitivities 

The very high unit power cost of NiCd is the primary area of concern.  If this could be reduced by ~57% 

to $2,700/kW, then the total capital cost would come down by 17%, the storage NPV would increase by 

50%, and the cycle lifetime would become the limiting factor.  The cycle lifetime would have to be 

increased by a factor of 4 (to 9,200 cycles) before fixed O&M and BOS become of concern. 
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4.3.4. Sodium-Sulfur (NaS) Batteries 

 
Figure 4.3-10: Baseload Generation – PV – NaS – Optimized Dispatch 

Other than flow batteries, NaS batteries are the most promising electrochemical battery architecture for 

energy arbitrage analyzed in this work.  This is mostly attributed to their high cycle and calendar 

lifetimes, which limits the number of capital expenditures (replacements) that are required over the PV 

system’s lifetime.  Although the lifetime cost of NaS to provide the 12 hour service requirement is $32.8 

Million, this reduces to ~$7 Million if the demand profile is limited to 6 hours, starting at 9am. 
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Figure 4.3-11: Baseload Generation – PV – NaS – NPV Sensitivities 

As seen in Figure 4.3-11, the unit power cost has the most potential for improving the storage 

investment.  If this metric were decreased by 1/3 to $1,000/kW, it would have a directly proportional 

affect on NPV – increasing it by 33% – and the cycle lifetime would become the primary focus area.  The 

cycle lifetime would have to be increased by ~67% to 8,750 cycles before O&M and the unit costs 

become of concern again.  Unfortunately, even if these improvements were made, NaS would still be 

more expensive over the lifetime of a PV system than the available benefits under the constraint of 

meeting any of the service requirements. 
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4.3.5. Vanadium Redox Flow Batteries (VRB) 

 
Figure 4.3-12: Baseload Generation – PV – VRB – Optimized Dispatch 

Similar to NaS, but a bit more expensive, VRB would add significant cost to a PV system required to meet 

a service demand profile.  The lifetime cost of meeting the 12 hour service requirement is $39.2 Million, 

whereas the 9am/6 hour service profile has a $9.5 Million price tag. 
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Figure 4.3-13: Baseload Generation – PV – VRB – NPV Sensitivities 

If the cycle lifetime of VRB were increased by an unlikely 80% to 6,300 cycles, then the NPV would 

increase by over 55% and the unit energy and power costs become the sole metrics needing significant 

improvement.  Even with this improvement, however, VRB is still far too costly for this type of energy 

arbitrage service. 
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4.3.6. Zinc-Bromide (ZnBr) Flow Batteries 

 
Figure 4.3-14: Baseload Generation – PV – ZnBr – Optimized Dispatch 

ZnBr is the most promising electrochemical storage architecture for meeting the high energy arbitrage 

service requirements.  The lifetime cost of meeting the 12 hour demand profile ~$14 Million, but for the 

9am/6 hour profile, this is reduced to only ~4.5 Million.  This technology is still a significant added cost 

to the project investment, but perhaps not out of the question with the proper incentives. 



90 
 
 

 
Figure 4.3-15: Baseload Generation – PV – ZnBr – NPV Sensitivities 

The unit energy cost dominates the NPV for this technology.  If this metric were decreased by 50% to 

$125/kWh, the NPV would improve by about 37%.  This unit cost of energy would have to come down to 

about $20/kWh – an order of magnitude less – before the unit power cost becomes a limiting factor. 
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4.3.7. Hydrogen Electrolysis with Fuel Cell (H2) 

 
Figure 4.3-16: Baseload Generation – PV – H2 – Optimized Dispatch 

H2 systems have some very promising characteristics for energy arbitrage applications.  Notably, the 

unlimited cycle lifetime and low cost per kWh.  Reducing the unit power cost appears to offer the most 

benefit for the storage investment, as shown in Figure 4.3-17. 
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Figure 4.3-17: Baseload Generation – PV – H2 – NPV Sensitivities 

However, hydrogen has the lowest roundtrip efficiency of all the storage technologies considered in this 

work.  So, before looking at the benefits gained from decreasing the cost per unit power, an increase in 

roundtrip efficiency is considered.  If this efficiency is increased from 59% to 85%, then the storage NPV 

increases by 40% and the total capital cost of the solar-with-storage system decreases by 17%.  Without 

such an efficiency improvement, reducing the unit power cost by half – to $250/kW – would only 

increase the storage NPV by 20%, and reduce the capital cost by ~2.5%.  Hence, improvement of 

roundtrip efficiency should be the primary focus area for H2 systems when coupled with PV. 
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4.3.8. Compressed Air Energy Storage (CAES) 

 
Figure 4.3-18: Baseload Generation – PV – CAES – Optimized Dispatch 

Though often considered to be geographically limited due to the requirement of natural salt or rock 

caverns (to keep the $/kWh down), CAES may actually be viable for over 80% of the United States [29] 

and the economics are very promising for energy arbitrage services.  The lifetime cost to meet the 12 

hour service requirement is almost $5 Million, but as it can be seen in Figure 4.3-18, the NPV increases 

to about -$600k for an 8am/7 hour demand profile. 

The emissions rate for the 12 hour service requirement is about 7.52 Million pounds of CO2 per year, 

which is reduced to 2.26 Million pounds for the 8am / 7 hour service requirement.  This is about 7 times 

less than the emissions of a comparably-sized natural gas plant for the 12 hour service requirement, and 

nearly 13 times less for the 8am / 7 hour requirement.  Although it is not likely that natural gas would be 

used for a baseload-type generation service, the emissions from a baseload coal plant are about twice 

that of natural gas [49]. 
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Figure 4.3-19: Baseload Generation – PV – CAES – NPV Sensitivities 

The value of CAES is only limited by the BOS (energy-related) and unit power cost.  Although improved 

manufacturing processes could potentially lower the BOS expense, this is unlikely to decrease by very 

much because of labor costs.  It is interesting to note, however, that other metrics could be 

compromised if it meant bringing down the BOS cost.  For example, the unit cost of energy (the storage 

medium) could be increased if the BOS were decreased.  If it were possible to lower the unit power cost 

by 37.5% to $250/kW, and decrease the BOS expense by 70% to $15/kWh, then CAES actually shows a 

positive NPV while meeting the 9am – 9pm service requirement.  However, these are very aggressive 

improvements which are unlikely to be realized in the near future.  On the other hand, if the unit power 

cost and the BOS expense were each decreased by 20% to $325/kW and $40/kWh, respectively, then 

the 8am/7 hour service requirement would offer a positive NPV for CAES.  If these improvements are 

met for either of these two scenarios, then the variable O&M (natural gas fuel cost) becomes a factor. 
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4.3.9. Pumped-Hydro Energy Storage (PHES) 

 
Figure 4.3-20: Baseload Generation – PV – PHES – Optimized Dispatch 

Similar to CAES, but even more favorable, PHES boasts a $1 Million cost for the 12 hour service 

requirement and a positive NPV for an 8am/8 hour profile.   However, PHES is much more 

geographically limited than CAES due to the need for two bodies of water at different elevations. 
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Figure 4.3-21: Baseload Generation – PV – PHES – NPV Sensitivities 

The characteristics of PHES are very well suited for enabling PV to match a service requirement.  If the 

unit power cost were decreased by 20% to $480/kW, then even a slight decrease in power, energy, fixed 

O&M, or variable O&M costs dramatically increases the return on investment.  This can be seen in 

Figure 4.3-22.  Hence, the first priority is a decrease in the unit power cost (cost of the hydraulic 

turbines/pumps); after which, improvements in all other key parameters become fair game. 
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Figure 4.3-22: Baseload Generation – PV – PHES – NPV Sensitivities with Lower Power Cost 
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5. Conclusions 

This thesis looked at the current state of energy storage technologies for the purpose of providing 

various energy arbitrage services for both residential and centralized PV generators.  Two different 

electricity pricing schedules – TOU and real-time – were included in the analysis.  The TOU rate schedule 

was chosen because it is the only time-varying electricity pricing scheme available for residential 

customers.  Real-time rates were used because this is the time-varying rate schedule that a centralized 

generator has the option of selling into.  Only time-varying pricing schedules were looked at for this 

work because the value of energy arbitrage only arises when there is a temporal component to the 

value of electricity; that is, unless dispatchable energy is specifically incentivized.  These rate schedules 

also represent a sizable share of the energy wholesale and retail markets, and thus allow the assessment 

of energy storage outside of niche applications. 

Net present value (NPV) is used as the economic evaluator for each storage technology serving the 

various roles.  NPV assesses the costs and benefits of the storage technology serving a particular 

function over the lifetime of the project. 

In response to the central questions, it was found that most current energy storage technologies are 

very poorly suited for economically capturing the benefits associated with energy arbitrage in these 

larger markets (both residential and centralized).  For use with PV, the most economic technology is 

pumped-hydro, which is inherently limited in its market penetration potential due to geographic 

restrictions.  For meeting a service requirement, thermal storage used in conjunction with CSTP should 

be looked into further.  Although thermal storage shows very favorable economic characteristics, the 

cost of the CSTP plant is likely to undermine this benefit.  CAES is perhaps the most promising energy 

storage technology for use with PV in an energy arbitrage service.  The financials are only slightly less 

desirable than pumped-hydro, and the geographic limitation is much less than commonly viewed.  The 

Electric Power Research Institute shows that over 80% of the United States has geological formations 

which are favorable for underground storage [29].  As mentioned in Section 5.4, CAES also has the 

potential to act as a co-generation plant with PV because of the use of gas turbines in the discharge 

cycle.  It is for these reasons that the author chose to rank CAES as number one for energy arbitrage 
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services with PV generation, even though PHES shows a larger NPV.  The rankings of all the storage 

technologies, except for thermal which cannot be used with PV, are shown below in Table 5-1. 

Table 5-1: Summary of Current Market Viability and Future Recommendations 

Storage Technology Rank Market Viability Recommendations 

CAES 1 Centralized real-time R&D on BOS and power cost. 

PHES 2 Centralized real-time/baseload R&D on power cost. 

H2 
3 

None 
Needs R&D on roundtrip efficiency 
and power cost. 

ZnBr 4 None Needs significant R&D on energy cost. 

NaS 
5 

None 
Needs significant R&D on power cost 
and cycle lifetime. 

VRB 
6 

None 
Needs significant R&D on cycle 
lifetime, and energy and power costs. 

Lead-Acid 
7 

None 
Needs break-through R&D on cycle 
lifetime and energy cost. 

NiCd 
8 

None 
Needs break-through R&D on power 
cost and cycle lifetime. 

Li-Ion 
9 

None 
Energy cost prohibitive for arbitrage 
markets. 

Improvements in cost and performance of these technologies may not be enough for them to enter 

these larger energy arbitrage markets.  Alternative regulations to allow energy storage to receive 

benefits from multiple revenue streams should be aggressively pursued.  In addition, the unpredictable 

effects that limited cycle lifetimes have on the investment of these storage solutions could prove to be 

very problematic when investors are considering these options.  Other means to reduce the risk 

associated with purchasing a storage device should be looked at as well.  For example, offering a 

calendar-lifetime guarantee, regardless of cycling or other operational conditions. 

It is also worth noting that the baseload generation results suggest that a 6-hour service requirement 

starting at 9am is the most favorable demand profile for many of the storage technologies.  This may be 

useful information when designing/scheduling other generators to operate in conjunction with solar as 

penetration of renewable energy technologies increases. 

5.1. Residential TOU 

For a TOU rate schedule, there is a minimum power rating required to discharge all the stored energy 

within the peak price period, beyond which there is very little additional revenue gained.  For storage 

systems on a kWh scale and non-trivial self-discharge rates, this threshold is observed to be around 1.5 

kW for a 2 kWP residential system.  If a storage device meets this power threshold, the addition of 1 kWh 
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of capacity increases the annual revenue by ~$19 up to 3.5 kWh (a present value of $180 over 30 years 

with a 10% discount rate), after which the incremental revenue increase reduces to ~$4 (present value 

of $38). 

Currently, none of the storage technologies considered in this work are able to economically capture 

these benefits in a residential TOU rate schedule.  Of the technologies available to be scaled down to 

residential applications, H2 systems appear to hold the most promise – pending significant improvement 

in roundtrip efficiency and unit power cost.  Residential-scale flow batteries may also be an option for 

this market if costs come down considerably.  Although not feasible on a kW scale, the characteristics of 

PHES are attractive for this market, including the low cost per unit energy and high cycle and calendar 

lifetimes.  Electrochemical batteries are simply too expensive and do not have the required cycle 

lifetime to be viable in this application. 

5.2. Centralized Real-Time 

For centralized generation in a real-time market, a low self-discharge rate and high roundtrip efficiency 

are both extremely important to capture the benefits of energy arbitrage.  Available revenues are 

reduced by 50% going from a 2%/hour to a 6%/hour self-discharge rate.  Also, for every 1% reduction in 

roundtrip efficiency (in the range of 100% to 70%), there is approximately a 1.7% reduction in available 

revenues.  In addition, for a given energy storage capacity it is desirable to be able to fully discharge 

within ~2 hours to maximize the benefits in this market. 

When assessing each storage technology for centralized generation, only PHES and CAES are currently 

viable.  Both of these energy storage systems are geographically limited, and therefore have a restricted 

market potential, although much less so for CAES. 

5.3. Centralized Baseload 

For the baseload scenario (providing a service requirement), CSTP with thermal storage was compared 

with PV and the other storage technologies.  The results show that thermal storage with CSTP is by far 

the most economic choice when adapting a solar generator to meet a service requirement.  In addition, 

the flexibility of allowing the generator to sell excess energy into the real-time market is a prerequisite 

for capturing enough benefit to offset the cost of storage (even for thermal).  If decreasing the required 

solar field size is of importance, then very large energy and power capacities are needed.  Thermal, 
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PHES, and possibly CAES are the only candidates among current technologies for meeting these 

requirements. 

5.4. Future Work 

The work done here can be built upon in several ways.  First, the key storage parameters will always be 

able to be updated to most accurately reflect current market conditions.  An inherent challenge of 

financial modeling is to capture the moving cost target as accurately as possible.  Along these lines, a 

more comprehensive uncertainty analysis, expanding on the NPV sensitivities presented here, would 

offer valuable information for future R&D recommendations. 

The methodology may be improved by accounting for the operational characteristics of the storage 

device within the optimization algorithm.  Utilizing metrics such as number of charge/discharge cycles as 

control variables would offer a new dimension of operational flexibility which may result in a more 

favorable storage configuration.  However, the inclusion of these variables will significantly complicate 

the optimization model by transforming it into a DNLP.  If convergence can be achieved, this could offer 

some interesting insights as to the cost-benefit tradeoff of over-sizing a storage device and then limiting 

its operation to extend its lifetime. 

Improvements could be made in the modeling of CAES.  In this work, an effective efficiency was used to 

simplify the dynamics of a gas turbine operating at the discharge stage.  However, this simplification 

ignores a unique advantage CAES offers when coupled with PV generation: The gas turbine can be 

operated as a small peaker generator during peak demand periods, thus allowing a reduction in size of 

the PV system required to meet a particular service requirement.  This is because the system would no 

longer have to be oversized to meet the handful of peak-demand summer days.  If the operation of a 

CAES plant were modeled in detail, analysis of this configuration would offer interesting insights for the 

baseload generation scenario.  Future work should look at the use of a small peaker generator whether 

or not CAES is used as the storage technology, as this configuration potentially offers cost savings for the 

system as a whole.  Expanding the model to include the lifetime financials of the PV and CSTP generator 

thus becomes an important area for future work to focus on, and would allow for the economic analysis 

of the entire solar-with-storage system. 

The methodology described herein could readily be adapted to model other intermittent generators, 

such as wind or even tidal/ocean, coupled with storage.  Furthermore, additional market scenarios 
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(other rate schedules and/or market conditions) could be modeled to assess the potential of storage 

serving other energy arbitrage services. 
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Appendices 

I. GAMS Optimization Code 

The following appendices present the GAMS code used for (a) revenue maximization given storage size 

constraints, (b) PV-with-storage system size and cost minimization given a service requirement, (c) PV 

revenue maximization given system size and service requirement constraints, (d) CSTP-with-storage 

system size and cost minimization given a service requirement, and (e) CSTP revenue maximization given 

system size and service requirement constraints. 

a. Temporal Rate Schedule – Revenue Maximization 

* Choose appropriate GAMS solver 
Option LP = CPLEX ; 
Option  iterlim = 500000 ; 
 
* Define the timeframe of optimization 
Set 
t timeframe for optimization / t1*t8760 / 
 
* Define all input parameters (with place-holder values) 
Parameters 
eff                storage efficiency   / 1 / 
disch              storage self-discharge per hour  / 1 / 
storagePower  power rating of storage   / 1 / 
storageCapacity  energy capacity of storage   / 1 / 
g(t)               generation in hour t 
p(t)               revenue (price of electricity) at hour t   
 
* Define all variables 
Variables 
maxFlow(t)  maximum of discharged and stored energy in hour t 
discharged(t)      energy discharged from storage in hour t 
stored(t)          solar generation stored in hour t 
used(t)            solar energy not stored (used) in hour t 
storageLevel(t)   the amount of energy in storage at hour t 
storageCost  total cost of storage for optimization period 
hourlyR(t)         revenue earned in hour t 
totalR             total revenue earned in whole timeperiod   ; 
 
* Impose lower bound of zero on required variables 
Positive Variables discharged, stored, used, storageLevel, hourlyR   ; 
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* Define the objective function and constraint equations 
Equations 
maxFlowFnc1(t)  set max flow greater than discharged energy 
maxFlowFnc2(t)  set max flow greater than stored energy 
oneDirFnc(t)  set energy directional flow constraint 
storageCostFnc  calculates total cost of storage for optimization period 
usedFnc(t)                Energy-balance constraint function 1 
storageCapacityFnc(t) determines energy requirement of storage 
storagePowerFnc1 first component of determining power requirement of storage 
storagePowerFnc2 second component of determining power requirement of storage 
storageLevelFnc(t)        Energy-balance constraint function 2 
hourlyRFnc(t)             Hourly revenue function 
RevenueFnc                Revenue (objective) function ; 
 
* This set of constraints finds the maximum of what is discharged and stored in hour t. 
maxFlowFnc1(t) .. 
maxFlow(t) =g= discharged(t) ; 
maxFlowFnc2(t) .. 
maxFlow(t) =g= stored(t) ; 
 
* Imposes constraint that energy cannot be stored and discharged at the same time. 
oneDirFnc(t) .. 
discharged(t) + stored(t) =e= maxFlow(t) ; 
 
* The energy generated must be either sent to storage or used directly. 
usedFnc(t) .. 
g(t) =e= used(t) + stored(t); 
 
* The required storage size (capacity) is equal to the maximum state of charge of the storage device. 
storageCapacityFnc(t) .. 
storageLevel(t) =l= storageCapacity ; 
 
* The required storage power rating is equal to the maximum discharged energy in a single hour. 
storagePowerFnc1(t) .. 
discharged(t) =l= storagePower ; 
storagePowerFnc2(t) .. 
stored(t) =l= storagePower ; 
 
* The amount of energy in the storage device is equal to the storage level in 
* the previous hour times the self-discharge rate, plus the amount of energy 
* sent to storage for that hour times the efficiency, minus the amount of 
* energy discharged from storage in that hour. 
storageLevelFnc(t) .. 
storageLevel(t) =e= storageLevel(t-1)*(1-disch) + stored(t)*eff - discharged(t); 
 
* The hourly revenue is equal to the amount of energy being used directly 
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* plus the amount of energy being discharged from storage times the price 
* of electricity for that hour. 
hourlyRFnc(t) .. 
hourlyR(t) =e= (discharged(t) + used(t))*p(t); 
 
* The estimated total revenue is equal to the sum of the hourly revenue. 
RevenueFnc .. 
totalR =e= sum(t, hourlyR(t)) ; 
 
* Define the model and variables to solve 
Model storage   / all / ; 
 
* Include the MATLAB-generated parameters 
$if exist matdata.gms $include matdata.gms 
 
* Set initial values and bounds 
discharged.LO(t) = 0 ; 
discharged.L(t) = 1 ; 
discharged.UP(t) = 1.e10 ; 
 
stored.LO(t) = 0 ; 
stored.L(t) = 1 ; 
stored.UP(t) = g(t) ; 
 
used.LO(t) = 0 ; 
used.L(t) = 1 ; 
used.UP(t) = g(t); 
 
storageLevel.LO(t) = 0 ; 
storageLevel.L(t) = 1 ; 
storageLevel.UP(t) = 1.e10 ; 
 
* Solve statement 
Solve storage using lp maximizing totalR   ; 
 
* Gather the desired variables for exporting to MATLAB 
$libinclude matout storageCapacity.l 
$libinclude matout storagePower.l 
$libinclude matout totalR.l 
$libinclude matout hourlyR.l t 
$libinclude matout storageLevel.l t 
$libinclude matout discharged.l t 
$libinclude matout used.l t 
$libinclude matout stored.l t 
 
* Display results for trouble-shooting in GAMS 
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Display storageCapacity, storagePower, totalR.l, eff, disch, hourlyR.l, storageLevel.l, discharged.l, used.l, 
stored.l, g, p ; 

b. Baseload Generation – PV System Size/Cost Minimization 

* Choose appropriate GAMS solver and set iteration limit 
Option  LP = Cplex; 
Option  iterlim = 500000 ; 
 
* Define the timeframe of optimization 
Set 
t timeframe for optimization       / t1*t8760 / 
 
* Define all input parameters (with place-holder values) 
Parameters 
eff               storage efficiency   / 1 / 
disch  storage self-discharge per hour  / 1 / 
powerCost     unit cost of storage power  / 1 / 
energyCost    unit cost of storage energy  / 1 / 
PVcost         unit cost of PV system   / 1 / 
g(t)              generation in hour t 
p(t)              price of electricity in hour t 
d(t)              system demand at hour t  ; 
 
* Define all variables 
Variables 
storageCapacity  energy capacity limit of storage 
storagePower  power rating of storage 
genMultiple  generation multiplier 
gen(t)   scaled generation profile 
discharged(t)  energy discharged from storage in hour t 
stored(t)  solar generation stored in hour t 
used(t)   solar energy not stored (used) in hour t 
storageLevel(t)  the amount of energy in storage at hour t 
objective  cost variable to minimize 
shunt(t)   shunted energy   ; 
 
* Impose a zero lower bound on variables 
Positive Variables  discharged, stored, used, storageLevel, shunt, genMultiple 
                   hourlyR, genMultiple ; 
 
* Define the objective function and constraint equations 
Equations 
generationFnc(t)  set level of generation 
storageCapacityFnc(t)  storage capacity constraint 
storagePowerFnc1(t)  storage discharge power constraint 
storagePowerFnc2(t)  storage charge power constraint 
usedFnc(t)   energy balance constraint 
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storageLevelFnc(t)   storage level energy balance constraint 
demandFnc(t)   service requirement constraint 
objectiveFnc   cost function to minimize  ; 
 
* The cost objective function to minimize is equal to the system components 
* times their respective unit costs. 
objectiveFnc .. 
objective =e= storageCapacity*energyCost + 

storagePower*powerCost + 
genMultiple*10000*PVcost ; 

 
* The usable generation is equal to the generation multiplier times the 
* original generation amount in hour t. 
generationFnc(t) .. 
gen(t) =e= genMultiple*g(t) ; 
 
* The energy generated must be either sent to storage or used directly. 
usedFnc(t) .. 
gen(t) =e= used(t) + stored(t) + shunt(t) ; 
 
* The required storage size (capacity) is equal to the maximum state of charge 
* of the storage device. 
storageCapacityFnc(t) .. 
storageLevel(t) =l= storageCapacity ; 
 
* The required storage power rating is equal to the maximum discharged 
* or stored energy in a single hour. 
storagePowerFnc1(t) .. 
discharged(t) =l= storagePower ; 
storagePowerFnc2(t) .. 
stored(t) =l= storagePower ; 
 
* The amount of energy in the storage device is equal to the storage level in 
* the previous hour times the self-discharge rate, plus the amount of energy 
* sent to storage for that hour times the efficiency, minus the amount of 
* energy discharged from storage in that hour. 
storageLevelFnc(t) .. 
storageLevel(t) =l= storageLevel(t-1)*(1-disch) + stored(t)*eff - discharged(t); 
 
* The amount of energy discharged from storage plus the energy used directly 
* must be greater than or equal to the deamnd profile. 
demandFnc(t) .. 
discharged(t) + used(t) =g= d(t) ; 
 
* Define the Model and variables to be solved 
Model  storage / all / ; 
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* Include MATLAB-generated parameters 
$if exist matdata.gms $include matdata.gms 
 
* Solve the specified model and objective function 
Solve  storage using lp minimizing objective ; 
 
* Send variables to MATLAB 
$libinclude matout storageCapacity.l 
$libinclude matout storagePower.l 
$libinclude matout genMultiple.l 
 
* Display results within GAMS for debugging/verification 
Display  storageCapacity.l, storagePower.l, genMultiple.l, eff, disch 
        storageLevel.l, discharged.l, used.l, stored.l, g, p, d, gen.l  ; 

c. Baseload Generation – PV Revenue Maximization 

* Choose appropriate GAMS solver and set iteration limit 
Option  LP = Cplex; 
Option  iterlim = 500000 ; 
 
* Define the timeframe of optimization 
Set 
t timeframe for optimization       / t1*t8760 / 
 
* Define all input parameters (with place-holder values) 
Parameters 
Eff   storage efficiency   / 1 / 
Disch   storage self-discharge per hour         / 1 / 
storagePower  power rating of storage   / 1 / 
storageCapacity  energy capacity limit of storage  / 1 / 
genMultiple  generation multiplier   / 1 / 
g(t)   generation in hour t 
p(t)   price of electricity in hour t 
d(t)   system demand at hour t  ; 
 
* Define all variables 
Variables 
gen(t)   scaled generation profile 
discharged(t)  energy discharged from storage in hour t 
stored(t)  solar generation stored in hour t 
used(t)   solar energy not stored (used) in hour t 
storageLevel(t)  the amount of energy in storage at hour t 
hourlyR(t)  revenue earned in hour t 
totalR   total revenue earned in whole timeperiod  ; 
 
* Impose a zero lower bound on variables 
Positive Variables  discharged, stored, used, storageLevel, hourlyR ; 
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* Define the objective function and constraint equations 
Equations 
generationFnc(t) set level of generation 
storageCapacityFnc(t) storage capacity constraint 
storagePowerFnc1 storage discharge power constraint 
storagePowerFnc2 storage charge power constraint 
usedFnc(t)  energy balance constraint 
storageLevelFnc(t) storage level energy balance constraint 
demandFnc(t)  service requirement constraint 
hourlyRFnc(t)  revenue earned in hour t 
RevenueFnc  total revenue earned  ; 
 
* The usable generation is equal to the generation multiplier times the 
* original generation amount in hour t. 
generationFnc(t) .. 
gen(t) =e= genMultiple*g(t) ; 
 
* The energy generated must be either sent to storage or used directly. 
usedFnc(t) .. 
gen(t) =e= used(t) + stored(t) ; 
 
* The required storage size (capacity) is equal to the maximum state of charge 
* of the storage device. 
storageCapacityFnc(t) .. 
storageLevel(t) =l= storageCapacity ; 
 
* The required storage power rating is equal to the maximum discharged 
* or stored energy in a single hour. 
storagePowerFnc1(t) .. 
discharged(t) =l= storagePower ; 
storagePowerFnc2(t) .. 
stored(t) =l= storagePower ; 
 
* The hourly revenue is equal to the amount of energy being used directly 
* plus the amount of energy being discharged from storage times the price 
* of electricity for that hour. 
hourlyRFnc(t) .. 
hourlyR(t) =e= (discharged(t) + used(t))*p(t); 
 
* The amount of energy in the storage device is equal to the storage level in 
* the previous hour times the self-discharge rate, plus the amount of energy 
* sent to storage for that hour times the efficiency, minus the amount of 
* energy discharged from storage in that hour. 
storageLevelFnc(t) .. 
storageLevel(t) =l= storageLevel(t-1)*(1-disch) + stored(t)*eff - discharged(t); 
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* The amount of energy discharged from storage plus the energy used directly 
* must be greater than or equal to the deamnd profile. 
demandFnc(t) .. 
discharged(t) + used(t) =g= d(t) ; 
 
* The estimated total revenue is equal to the sum of the hourly revenue 
RevenueFnc .. 
totalR =e= sum(t,hourlyR(t)); 
 
* Define the Model and variables to be solved 
Model  storage / all / ; 
 
* Include Matlab-generated parameters 
$if exist matdata.gms $include matdata.gms 
 
* Solve the specified model and objective function 
Solve  storage using lp maximizing totalR ; 
 
* Send variables to MATLAB 
$libinclude matout totalR.l 
$libinclude matout hourlyR.l t 
$libinclude matout storageLevel.l t 
$libinclude matout discharged.l t 
$libinclude matout used.l t 
$libinclude matout stored.l t 
 
* Display results within GAMS for debugging/verification 
Display  storageCapacity, storagePower, totalR.l, eff, disch 
        genMultiple, hourlyR.l, storageLevel.l, discharged.l 
        used.l, stored.l, g, p, d, gen.l  ; 

d. Baseload Generation – CSTP System Size/Cost Minimization 

* Choose appropriate GAMS solver and set iteration limit 
Option LP = Cplex ; 
Option iterlim = 500000 ; 
 
* Define the timeframe of optimization 
Set 
t timeframe for optimization       / t1*t8760 / 
 
* Define all input parameters (with place-holder values) 
Parameters 
Eff   storage efficiency   / 1 / 
Disch   storage self-discharge per hour  / 1 / 
turbineCost  unit cost of turbine   / 1 / 
fieldCost  unit cost of field   / 1 / 
storageEnergyCost unit cost of storage energy  / 1 / 
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g(t)   generation in hour t 
p(t)   revenue (price of electricity) at hour t 
d(t)   system demand at hour t  ; 
 
* Define all variables 
Variables 
genMultiple  generation multiple 
gen(t)   scaled generation in hour t 
storageCapacity  energy capacity limit of storage 
turbineMaxOutput maximum turbine operating power 
discharged(t)  energy discharged from storage in hour t 
stored(t)  solar generation stored in hour t 
used(t)   solar energy not stored (used) in hour t 
storageLevel(t)  the amount of energy in storage at hour t 
turbineOutput(t) output of CSTP plant turbines at hour t 
hourlyR(t)  revenue earned in hour t 
totalR   total revenue earned in whole timeperiod 
savings   total savings from storage during timeperiod 
objective  cost variable to minimize 
shunt(t)   shunted energy   ; 
 
* Impose a zero lower bound on variables 
Positive Variables discharged, stored, used, storageLevel, genMultiple, shunt 
                   hourlyR, turbineOutput ; 
 
* Define the objective function and constraint equations 
Equations 
generationFnc(t) set level of generation 
storageCapacityFnc(t) storage capacity constraint 
turbineOutputFnc(t) turbine output constraint 
turbinePowerFnc(t) turbine power constraint 
usedFnc(t)  energy balance constraint 
storageLevelFnc(t) storage level energy balance constraint 
demandFnc(t)  service requirement constraint 
objectiveFnc  cost function to minimize  ; 
 
* The cost objective function to minimize is equal to the system components 
* times their respective unit costs. 
objectiveFnc .. 
objective =e= storageCapacity*storageEnergyCost + 

turbineMaxOutput*turbineCost + 
genMultiple*10000*fieldCost ; 

 
* The usable generation is equal to the generation multiplier times the 
* original generation amount in hour t. 
generationFnc(t) .. 
gen(t) =e= genMultiple*g(t) ; 
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* The energy generated must be either sent to storage or used directly. 
usedFnc(t) .. 
used(t) + stored(t) + shunt(t) =e= gen(t) ; 
 
* The required storage size (capacity) is equal to the maximum state of charge 
* of the storage device. 
storageCapacityFnc(t) .. 
storageLevel(t) =l= storageCapacity ; 
 
* The turbine output must be equal to what is discharged plus what is used 
* directly in hour t. 
turbineOutputFnc(t) .. 
turbineOutput(t) =e= discharged(t) + used(t) ; 
 
* The amount of energy discharged from storage plus the energy used directly 
* must be greater than or equal to the deamnd profile. 
demandFnc(t) .. 
turbineOutput(t) =g= d(t) ; 
 
* The turbine output in each hour must be less than or equal to the maximum 
* turbine power rating. 
turbinePowerFnc(t) .. 
turbineOutput(t) =l= turbineMaxOutput ; 
 
* The amount of energy in the storage device is equal to the storage level in 
* the previous hour times the self-discharge rate, plus the amount of energy 
* sent to storage for that hour times the efficiency, minus the amount of 
* energy discharged from storage in that hour. 
storageLevelFnc(t) .. 
storageLevel(t) =e= storageLevel(t-1)*(1-disch) + stored(t)*eff - discharged(t); 
 
* Define the Model and variables to be solved 
Model storage / all /  ; 
 
* Include MATLAB-generated parameters. 
$if exist matdata.gms $include matdata.gms 
 
* Solve the specified model and objective function 
Solve storage using lp minimizing objective ; 
 
* Gather variables to be sent back to MATLAB 
$libinclude matout storageCapacity.l 
$libinclude matout turbineMaxOutput.l 
$libinclude matout genMultiple.l 
$libinclude matout turbineOutput.l t 
$libinclude matout discharged.l t 
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$libinclude matout stored.l t 
$libinclude matout objective.l 
$libinclude matout storageLevel.l t 
 
* Display results within GAMS for debugging/verification 
Display storageCapacity.l, turbineMaxOutput.l, objective.l 
        genMultiple.l, turbineOutput.l, d ; 

e. Baseload Generation – CSTP Revenue Maximization 

* Choose appropriate GAMS solver and set iteration limit 
Option LP = Cplex; 
Option iterlim = 500000 ; 
 
* Define the timeframe of optimization 
Set 
t timeframe for optimization       / t1*t8760 / 
 
* Define all input parameters (with place-holder values) 
Parameters 
Eff   storage efficiency   / 1 / 
Disch   storage self-discharge per hour  / 1 / 
turbineMaxOutput maximum turbine operating power / 1 / 
storageCapacity  energy capacity limit of storage  / 1 / 
genMultiple  generation multiple   / 1 / 
g(t)   generation in hour t 
p(t)   revenue (price of electricity) at hour t 
d(t)   system demand at hour t  ; 
 
* Define all variables 
Variables 
gen(t)   scaled generation in hour t 
discharged(t)  energy discharged from storage in hour t 
stored(t)  solar generation stored in hour t 
used(t)   solar energy not stored (used) in hour t 
storageLevel(t)  the amount of energy in storage at hour t 
turbineOutput(t) output of CSTP plant turbines at hour t 
hourlyR(t)  revenue earned in hour t 
totalR   total revenue earned in whole timeperiod  ; 
 
* Impose a zero lower bound on variables 
Positive Variables discharged, stored, used, storageLevel 
                   hourlyR, turbineOutput ; 
 
* Define the objective function and constraint equations 
Equations 
generationFnc(t) set level of generation 
storageCapacityFnc(t) storage capacity constraint 
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turbineOutputFnc(t) turbine output constraint 
turbinePowerFnc(t) turbine power constraint 
usedFnc(t)  energy balance constraint 
storageLevelFnc(t) storage level energy balance constraint 
demandFnc(t)  service requirement constraint 
hourlyRFnc(t)  revenue earned in hour t 
RevenueFnc  total revenue earned  ; 
 
* The usable generation is equal to the generation multiplier times the 
* original generation amount in hour t. 
generationFnc(t) .. 
gen(t) =e= genMultiple*g(t) ; 
 
* The energy generated must be either sent to storage or used directly. 
usedFnc(t) .. 
gen(t) =e= used(t) + stored(t); 
 
* The required storage size (capacity) is equal to the maximum state of charge 
* of the storage device. 
storageCapacityFnc(t) .. 
storageLevel(t) =l= storageCapacity ; 
 
* The turbine output must be equal to what is discharged plus what is used 
* directly in hour t. 
turbineOutputFnc(t) .. 
turbineOutput(t) =e= discharged(t) + used(t) ; 
 
* The amount of energy discharged from storage plus the energy used directly 
* must be greater than or equal to the deamnd profile. 
demandFnc(t) .. 
turbineOutput(t) =g= d(t) ; 
 
* The turbine output in each hour must be less than or equal to the maximum 
* turbine power rating. 
turbinePowerFnc(t) .. 
turbineOutput(t) =l= turbineMaxOutput ; 
 
* The hourly revenue is equal to the amount of energy output by the turbine 
* times the price of electricity for that hour. 
hourlyRFnc(t) .. 
hourlyR(t) =e= turbineOutput(t)*p(t); 
 
* The amount of energy in the storage device is equal to the storage level in 
* the previous hour times the self-discharge rate, plus the amount of energy 
* sent to storage for that hour times the efficiency, minus the amount of 
* energy discharged from storage in that hour. 
storageLevelFnc(t) .. 
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storageLevel(t) =e= storageLevel(t-1)*(1-disch) + stored(t)*eff - discharged(t); 
 
* The estimated total revenue is equal to the sum of the hourly revenue. 
RevenueFnc .. 
totalR =e= sum(t,hourlyR(t))  ; 
 
* Define the Model and variables to be solved 
Model storage / all /  ; 
 
* Include MATLAB-generated parameters. 
$if exist matdata.gms $include matdata.gms 
 
* Solve the specified model and objective function 
Solve storage using lp maximizing totalR ; 
 
* Gather variables to be sent back to MATLAB. 
$libinclude matout totalR.l 
$libinclude matout hourlyR.l t 
$libinclude matout storageLevel.l t 
$libinclude matout discharged.l t 
$libinclude matout used.l t 
$libinclude matout stored.l t 
$libinclude matout turbineOutput.l t 
 
* Display results within GAMS for debugging/verification 
Display storageCapacity, turbineMaxOutput, genMultiple, totalR.l 
        eff, disch, turbineOutput.l, hourlyR.l, storageLevel.l 
        discharged.l, used.l, stored.l, g, p ; 
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II. Example Excel Cashflow Model 

Inputs From MATLAB     Storage Characteristics Lead-Acid 

First Year Discharged Energy (kWh) 730   System Architecture FIXED 

First Year Savings from Storage ($) $500   Require DC-AC Conversion at Discharge? YES 

Average Depth-of-Discharge (%) 30%   Roundtrip Efficiency (%) 87.50% 

Cycles per Year (Cycles) 183   Self-Discharge ($/month) 2.00% 
Power Control System Base Price ($/kW) 230   Self-Discharge ($/day)   

Req. Capacity (kWh) 4.0   Self-Discharge ($/hour) 0.0028% 

Req. Power (kW) 2.0   Cost ($/kWh Capacity) $150 

System Lifetime (years) 30   Cost ($/kW Power) $250 

Discount Rate (%) 10%   Balance of Plant ($/kWh) $50 

Power Control System Lifetime (years) 7   Balance of Plant ($/kW) $0 

Total Cycles Required (Cycles) 5,490   Fixed O&M ($/kW-yr) $1.55 
    Variable O&M ($/kWh) $0.0100 

    Lifetime (Years) 10 

    Lifetime at 100% DoD (Cycles) 1,500  

    Effective Lifetime (Cycles) 3,600  

    Total # of Capital Purchases 3 

    Storage Capital Cost per unit ($/unit) $800 

    Total Power Control Expense ($) $1,594 
         
Number of Times PCS is Replaced 1 2 3 4     
Years in Which PCS is Replaced 8 15 22 29     

         
Lead-Acid         

Number of Times Storage is Replaced 1 2       

Years in Which Storage is Replaced 11 21       

Year 0 1 2 3 4 5 6 7 

Replacement Cost ($)                 

PCS Replacement Cost ($)                 

Fixed O&M Cost ($)   $3.10 $3.10 $3.10 $3.10 $3.10 $3.10 $3.10 
Variable O&M Cost ($)   $7.30 $7.30 $7.30 $7.30 $7.30 $7.30 $7.30 

Total Cost-Flow ($) $2,394 $10.40 $10.40 $10.40 $10.40 $10.40 $10.40 $10.40 

Year 8 9 10 11 12 13 14 15 

Replacement Cost ($)       $800.00         

PCS Replacement Cost ($) $1,594.23             $1,594.23 

Fixed O&M Cost ($) $3.10 $3.10 $3.10 $3.10 $3.10 $3.10 $3.10 $3.10 

Variable O&M Cost ($) $7.30 $7.30 $7.30 $7.30 $7.30 $7.30 $7.30 $7.30 
Total Cost-Flow ($) $1,605 $10.40 $10.40 $810.40 $10.40 $10.40 $10.40 $1,604.63 

Year 16 17 18 19 20 21 22 23 

Replacement Cost ($)           $800.00     

PCS Replacement Cost ($)             $1,594.23   

Fixed O&M Cost ($) $3.10 $3.10 $3.10 $3.10 $3.10 $3.10 $3.10 $3.10 

Variable O&M Cost ($) $7.30 $7.30 $7.30 $7.30 $7.30 $7.30 $7.30 $7.30 

Total Cost-Flow ($) $10 $10.40 $10.40 $10.40 $10.40 $810.40 $1,604.63 $10.40 
Year 24 25 26 27 28 29 30  

Replacement Cost ($)                

PCS Replacement Cost ($)           $1,594.23    

Fixed O&M Cost ($) $3.10 $3.10 $3.10 $3.10 $3.10 $3.10 $3.10  

Variable O&M Cost ($) $7.30 $7.30 $7.30 $7.30 $7.30 $7.30 $7.30  

Total Cost-Flow ($) $10 $10.40 $10.40 $10.40 $10.40 $1,604.63 $10.40  
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III. MATLAB Code for Integration and Visualization – Temporal 

Rate Schedules 

 
Figure III-1: Schematic of MATLAB Code – Temporal Rate Schedules 

a. MasterCall.m 

% THIS IS THE MASTER CALL FUNCTION FOR THE TEMPORAL RATE SCHEDULE SCENARIOS: 
% INTEGRATING THE GAMS OPTIMIZATION MODEL AND THE EXCEL FINANCIAL MODEL; 
% AND FOR VISUALIZING THE RESULTS. 
  
% Clears the workspace and checks for a preexisting 'outputData.mat' 
% structure.  If preexisting data is used, only the financial runs and/or 
% plot generation programs will be run: 
clc 
clear input 
try keep outputData MASTER FINAL_NPV 
catch 
    try keep MASTER FINAL_NPV, catch end  
end 
if(exist('outputData','var')) 
    currentOutputData = input... 
        ('USE CURRENT outputData STRUCTURE (''y'' or ''n'')? ','s'); 
    switch currentOutputData 
        case 'n' 
            clear all 
    end 
end 
close all 
clc 
  
% Generate the inputs structure: 

Child functions
Master function sets initial 
conditions and calls child 
functions as appropriate

MasterCall.m

getStorageEff.m

callGAMScost.m

callGAMSeff.m

getNPVFromExcel.m

plotResults.m
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inputs.generationType = 'CSTP';      % Either 'PV' or 'CSTP' 
inputs.turbineMin = 0;               % Minimum turbine operation (kW) 
inputs.turbineMax = 10000;           % Maximum turbine rating (kW) 
inputs.genMultiple = 0:0.2:4; 
inputs.storageTechnology = 'custom'; % 'custom', 'Lead-Acid', 'LiIon' 
                                        % 'NiCd', 'CAES', 'H2' 
                                        % 'VRB', 'ZnBr', 'PHES', 'NaS', 'Tech1' 
inputs.PVsystemLifetime = 30;      % PV system lifetime in years 
inputs.discountRate = 0.1;         % Discount rate (%) 
inputs.PCScost = 230;              % Cost of power control system ($/kW) 
inputs.PCSlifetime = 7;            % Lifetime of PCS (years) 
inputs.numberDaysToOptimize = 365; % Optimization timeframe (days) 
inputs.plots = 'yes';              % Whether or not to generate plots 
inputs.startHour = 1;              % First hour to generate plots for 
inputs.duration = 8759;            % Duration of plot preview (hours) 
 
% Which GAMS model to use for optimization: 
switch inputs.generationType 
    case 'CSTP' 
        inputs.GAMSmodel = 'CSTPwStorage'; 
    case 'PV' 
        inputs.GAMSmodel = 'EPlimited'; 
end 
  
% Name of file containing production, consumption, and price vectors: 
% inputs.fileName = '10MW_BlytheCA_PV.xls';      % Central real-time Global 
inputs.fileName = '10MW_BlytheCA_CSTP.xls';      % Central real-time Direct 
% inputs.fileName = 'Residential_TOU_92223.xlsx'; % Residential TOU 
  
% Select appropriate input/output directories: 
inputs.dir = ['xxxxxxxxx\',inputs.fileName]; 
inputs.outputDir = 'xxxxxxxxx\'; 
inputs.File = 'xxxxxxxxx\storageEconomics_FINAL.xlsx'; 
 
% Energy capacity limit of storage (kWh): 
inputs.energyLimit = 0:5000:400000; 
% Power rating of storage (kW): 
inputs.powerLimit =  0:0.4:20; 
if(strcmp(inputs.generationType,'CSTP')... 
        || strcmp(inputs.generationType,'CSTP_dispatch')) 
        inputs.powerLimit = 9e99; 
end 
  
% Option to define efficiencies manually: 
if(strcmp(inputs.storageTechnology,'custom')) 
    inputs.efficiency = sqrt(0.95);      % Storage Efficiency 
    inputs.selfDis = 0;                  % Self discharge rate 
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else 
    % Retreive efficiencies and unit costs from excel file 
    [inputs] = getStorageEff(inputs); 
end 
  
  
%% Extract Production and Prices from Excel File 
[inputs.values,inputs.strings] = xlsread(inputs.dir); 
  
%% Load Optimization Profile Parameters 
inputs.startHourOriginal = 1;  % First hour of first segment 
  
% Identify if there is only one simulation to perform: 
inputs.lastRunFlag = 0; 
if(strcmp(inputs.generationType,'PV') || ... 
        strcmp(inputs.generationType,'PV_dispatch')) 
    if((length(inputs.energyLimit)*length(inputs.powerLimit)) == 1) 
        inputs.lastRunFlag = 1; 
    end 
else 
    if((length(inputs.genMultiple)*length(inputs.energyLimit)) == 1) 
        inputs.lastRunFlag = 1; 
    end 
end 
  
% Call the GAMS optimization programs and organize outputs: 
if(~exist('outputData','var') && ~exist('FINAL_NPV','var')) 
    h = 24*inputs.numberDaysToOptimize(1); 
    if(length(inputs.efficiency)>1 || length(inputs.selfDis)>1) 
        [MATRIX, aggResults, excelInputs] = callGAMSeff(inputs); 
        outputData.excelInputs = excelInputs; 
        outputData.technology = {inputs.storageTechnology}; 
        outputData.energy = inputs.energyLimit; 
        outputData.power = inputs.powerLimit; 
        outputData.Z_revenue = MATRIX; 
        outputData.X_selfDis = inputs.selfDis; 
        outputData.Y_eff = inputs.efficiency; 
    else 
        [MATRIX, aggResults, excelInputs] = callGAMScost(inputs); 
        outputData.excelInputs = excelInputs; 
        outputData.technology = {inputs.storageTechnology}; 
        outputData.roundtripEff = inputs.efficiency; 
        outputData.selfDis = inputs.selfDis; 
        try outputData.Z_genMultiple = excelInputs.MULTIPLE; catch end 
        outputData.Z_revenue = MATRIX; 
        outputData.X_Cenergy = inputs.energyLimit; 
        outputData.Y_Cpower = inputs.powerLimit; 
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    end 
     
    %% Remove Infeasible Solutions: 
    outputDataBackup = outputData; 
    if(strcmp(inputs.generationType,'PV_dispatch')) 
        outputData.Z_genMultiple(excelInputs.feasible == 0) = 0; 
    end 
    outputData.Z_revenue(excelInputs.feasible == 0) = 0; 
    outputData.excelInputs.energyCapacity(excelInputs.feasible == 0) = 0; 
    outputData.excelInputs.powerCapacity(excelInputs.feasible == 0) = 0; 
    outputData.excelInputs.annualDischarged(excelInputs.feasible == 0) = 0; 
    outputData.excelInputs.avgDOD(excelInputs.feasible == 0) = 0; 
    outputData.excelInputs.annualCycles(excelInputs.feasible == 0) = 0; 
    outputData.excelInputs.annualSavings(excelInputs.feasible == 0) = 0; 
    outputDataFeasible = outputData; 
    outputData = outputDataBackup; 
    clear outputDataBackup 
elseif(~exist('FINAL_NPV','var')) 
    disp('NOTICE: Not refreshing "outputData" structure') 
    disp('        only running NPV simulations...') 
else 
    disp('FINAL_NPV exists, plotting results...') 
end 
  
if(~exist('FINAL_NPV','var')) 
    % Get NPV of each profile: 
    runNPV = 1; 
    try 
        if(length(outputData.X_Cenergy)==1) 
            disp('Skipping NPV Analysis') 
            disp('Generating Efficiency Plots...') 
        else 
            runNPV = 1; 
        end 
    catch 
        runNPV = 1; 
    end 
  
    if(runNPV == 1) 
        try NPV_MATRIX = zeros(size(outputData.Z_revenue)); 
        catch NPV_MATRIX = zeros(size(outputData.Z_genMultiple)); end 
  
        Excel = actxserver ('Excel.Application'); 
        if ~exist(inputs.File,'file') 
            ExcelWorkbook = Excel.workbooks.Add; 
            ExcelWorkbook.SaveAs(inputs.File,1); 
            ExcelWorkbook.Close(false); 
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        end 
        invoke(Excel.Workbooks,'Open',inputs.File); 
  
        analyze = 1; 
        for t = 1:length(outputData.Y_Cpower) 
            for u = 1:length(outputData.X_Cenergy) 
                [NPV] = getNPVFromExcel(inputs, outputData, Excel, t, u); 
                clc 
                disp(['NPV Analysis: ',num2str(analyze),'/',... 
                    num2str(length(outputData.Y_Cpower)*... 
                    length(outputData.X_Cenergy))]) 
                analyze = analyze + 1; 
                NPV_MATRIX(t,u) = NPV; 
  
            end 
        end 
        Excel.ActiveWorkbook.Save; 
        Excel.Quit 
        Excel.delete 
        clear Excel 
  
        npvOriginal = NPV_MATRIX; 
        if(abs(mean(mean(NPV_MATRIX(NPV_MATRIX>0)))/... 
                median(median(NPV_MATRIX(NPV_MATRIX>0)))-1) > 0.2) 
            NPV_MATRIX_NEW = zeros(size(NPV_MATRIX)); 
  
            for xcount = 1:length(NPV_MATRIX(:,1)) 
                for ycount = 1:length(NPV_MATRIX(1,:)) 
                    if(NPV_MATRIX(xcount,ycount)>=median(median(NPV_MATRIX))) 
                        NPV_MATRIX_NEW(xcount,ycount) = ... 
                            NPV_MATRIX(xcount,ycount); 
                    else 
                        NPV_MATRIX_NEW(xcount,ycount) = NaN; 
                    end 
                end 
            end 
            NPV_MATRIX = NPV_MATRIX_NEW; 
        end 
  
        outputData.Z_NPV = NPV_MATRIX; 
        outputData.NPVoriginal = npvOriginal; 
        [maxX, maxY] = find(NPV_MATRIX == max(max(NPV_MATRIX))); 
        maxX = maxX(1); maxY = maxY(1); 
        outputData.maxCenergy = outputData.X_Cenergy(maxY); 
        outputData.maxCpower = outputData.Y_Cpower(maxX); 
  
        %% Rerun Optimization for Maximum NPV Scenario 
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        if(length(outputData.X_Cenergy)*length(outputData.Y_Cpower) > 1) 
            disp(' ') 
            disp('Running Maximum NPV Scenario...') 
            inputs.lastRunFlag = 1; 
            tempEnergy = inputs.energyLimit; 
            inputs.energyLimit = outputData.maxCenergy; 
            tempPower = inputs.powerLimit; 
            inputs.powerLimit = outputData.maxCpower; 
            [MATRIX, aggResults, excelInputs] = callGAMScost(inputs); 
            inputs.energyLimit = tempEnergy; 
            inputs.powerLimit = tempPower; 
            outputData.maxStorageProfile = excelInputs; 
        else 
            outputData.maxStorageProfile = excelInputs; 
        end 
  
        %% Display Results: 
        disp(['Total Annual Savings = $',num2str(round(sum... 
            (aggResults.aggSavings)))]) 
        electronFlowTest = aggResults.aggDischargedFromStorage.*... 
            aggResults.aggSentToStorage; 
        if(max(electronFlowTest)>0) 
            disp('ERROR - CHARGING AND DISCHARGING AT THE SAME TIME!!!') 
            disp(['Number of occurances = ',num2str(length(find... 
                (electronFlowTest>0)))]) 
            disp(['With a maximum product of ',num2str(max... 
                (electronFlowTest(electronFlowTest>0)))]) 
        end 
  
        maxTime = max(diff(find... 
            (outputData.maxStorageProfile.storageLevel==0))); 
        disp(['Maximum Time Energy is Stored = ',num2str(maxTime),... 
            ' Hours (',num2str(maxTime/24),' Days)']) 
        maxTime2 = max(diff(find... 
            (outputData.maxStorageProfile.dischargedEnergy > 0))); 
        disp(['Maximum Time Between Discharges = ',num2str(maxTime2),... 
            ' Hours (',num2str(maxTime2/24),' Days)']) 
    end 
  
    %% Plot Results 
    if(strcmp(inputs.plots,'yes')) 
        plotResults(outputData,inputs.startHour,inputs.duration); 
    end 
     
else 
  
    try storageVector = unique(cell2mat(FINAL_NPV(2:end,24))); catch end 
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    try fieldVector = unique(cell2mat(MASTER(2:end,22))); catch end 
  
    try outputData.X_Cenergy = storageVector; catch end 
    try outputData.X_CenergyVector=cell2mat(FINAL_NPV(2:end,24)); catch end 
    try outputData.Y_genMultiple = fieldVector; catch end 
    try outputData.Y_genMultipleVector=cell2mat(MASTER(2:end,22)); catch end 
    try outputData.Z_NPV_vector = cell2mat(FINAL_NPV(2:end,5)); catch end 
    try outputData.turbineSize = inputs.turbineMax; catch end 
    try outputData.realLCOE = cell2mat(FINAL_NPV(2:end,6)); catch end 
  
    plotResults(outputData,inputs.startHour,inputs.duration); 
end     

b. getStorageEff.m 

% This function retrieves the appropriate storage efficiencies and unit 
% costs 
  
function [inputs] = getStorageEff(inputs) 
  
Excel = actxserver ('Excel.Application'); 
if ~exist(inputs.File,'file') 
    ExcelWorkbook = Excel.workbooks.Add; 
    ExcelWorkbook.SaveAs(inputs.File,1); 
    ExcelWorkbook.Close(false); 
end 
invoke(Excel.Workbooks,'Open',inputs.File); 
  
xlswrite1(inputs.File,inputs.PCScost,1,'B6'); 
xlswrite1(inputs.File,inputs.PVsystemLifetime,1,'B9'); 
xlswrite1(inputs.File,inputs.discountRate,1,'B10'); 
xlswrite1(inputs.File,inputs.PCSlifetime,1,'B11'); 
  
switch inputs.storageTechnology 
    case 'Lead-Acid' 
        efficiency = xlsread1(inputs.File,1,'F3'); 
        selfDis = xlsread1(inputs.File,1,'G3'); 
        energyCost = xlsread1(inputs.File,1,'B23'); 
        powerCost = xlsread1(inputs.File,1,'B24'); 
         
    case 'LiIon' 
        efficiency = xlsread1(inputs.File,1,'F4'); 
        selfDis = xlsread1(inputs.File,1,'G4'); 
        energyCost = xlsread1(inputs.File,1,'C23'); 
        powerCost = xlsread1(inputs.File,1,'C24'); 
     
    case 'NiCd' 
        efficiency = xlsread1(inputs.File,1,'F5'); 
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        selfDis = xlsread1(inputs.File,1,'G5'); 
        energyCost = xlsread1(inputs.File,1,'D23'); 
        powerCost = xlsread1(inputs.File,1,'D24'); 
         
    case 'CAES' 
        efficiency = xlsread1(inputs.File,1,'F7'); 
        selfDis = xlsread1(inputs.File,1,'G7'); 
        energyCost = xlsread1(inputs.File,1,'F23'); 
        powerCost = xlsread1(inputs.File,1,'F24'); 
  
    case 'H2' 
        efficiency = xlsread1(inputs.File,1,'F8'); 
        selfDis = xlsread1(inputs.File,1,'G8'); 
        energyCost = xlsread1(inputs.File,1,'G23'); 
        powerCost = xlsread1(inputs.File,1,'G24'); 
  
    case 'VRB' 
        efficiency = xlsread1(inputs.File,1,'F9'); 
        selfDis = xlsread1(inputs.File,1,'G9'); 
        energyCost = xlsread1(inputs.File,1,'H23'); 
        powerCost = xlsread1(inputs.File,1,'H24'); 
  
    case 'ZnBr' 
        efficiency = xlsread1(inputs.File,1,'F10'); 
        selfDis = xlsread1(inputs.File,1,'G10'); 
        energyCost = xlsread1(inputs.File,1,'I23'); 
        powerCost = xlsread1(inputs.File,1,'I24'); 
  
    case 'PHES' 
        efficiency = xlsread1(inputs.File,1,'F11'); 
        selfDis = xlsread1(inputs.File,1,'G11'); 
        energyCost = xlsread1(inputs.File,1,'J23'); 
        powerCost = xlsread1(inputs.File,1,'J24'); 
  
    case 'NaS' 
        efficiency = xlsread1(inputs.File,1,'F12'); 
        selfDis = xlsread1(inputs.File,1,'G12'); 
        energyCost = xlsread1(inputs.File,1,'K23'); 
        powerCost = xlsread1(inputs.File,1,'K24'); 
  
    case 'Tech1' 
        efficiency = xlsread1(inputs.File,1,'F13'); 
        selfDis = xlsread1(inputs.File,1,'G13'); 
        energyCost = xlsread1(inputs.File,1,'L23'); 
        powerCost = xlsread1(inputs.File,1,'L24'); 
         
    case 'Thermal' 
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        efficiency = xlsread1(inputs.File,1,'F14'); 
        selfDis = xlsread1(inputs.File,1,'G14'); 
        energyCost = xlsread1(inputs.File,1,'M23'); 
        powerCost = xlsread1(inputs.File,1,'M24'); 
end 
  
Excel.ActiveWorkbook.Save; 
Excel.Quit 
Excel.delete 
clear Excel 
  
inputs.efficiency = efficiency; 
inputs.selfDis = selfDis; 
inputs.powerCost = powerCost; 
inputs.energyCost = energyCost; 
  
end 

c. callGAMScost.m 

% This function compiles the inputs and calls the appropriate GAMS 
% optimization model.  The results are then compiled to be sent back to 
% MATLAB for processing 
  
function [MATRIX, aggResults, excelInputs] = callGAMScost(inputs) 
  
MATRIX = zeros(length(inputs.powerLimit),length(inputs.energyLimit)); 
  
for t = 1:length(inputs.powerLimit) 
    for u = 1:length(inputs.energyLimit) 
        disp(['Analyzing System #',num2str(u + ... 
            length(inputs.energyLimit)*(t-1)),'/',num2str(length... 
            (inputs.powerLimit)*length(inputs.energyLimit))]) 
        for z = 1:length(inputs.numberDaysToOptimize); 
            clear opt_segments h g s eff disch Cpower Cenergy PVlife... 
                replace gen price aggRevenue aggSaings startHour... 
                production aggStorageLevel aggDischargedFromStorage... 
                aggUsedDirectly aggSentToStorage aggHourlyRevenue... 
                aggPrice aggTurbineOutput turbineMax 
  
            % Number of segments to optimize for: 
            opt_segments = floor(365/inputs.numberDaysToOptimize(z)); 
            % Number of hours within each segment (note: must match values 
            % in GAMS file - update if necessary): 
            h = 24*inputs.numberDaysToOptimize(z); 
 
 
            %% Compile GAMS Variables 
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  % Define set labels: 
            set = cell(1,h); 
            for n = 1:h 
                set{n} = ['t',num2str(n)]; 
            end 
  
            % Efficiency of Storage Device 
            eff.name = 'eff'; 
            eff.val = inputs.efficiency; 
  
            % Self-Discharge of Storage Device 
            disch.name = 'disch'; 
            disch.val = inputs.selfDis; 
  
            % Power Rating of Storage 
            Cpower.name = 'storagePower'; 
            Cpower.val = inputs.powerLimit(t); 
  
            % Energy Capacity of Storage 
            Cenergy.name = 'storageCapacity'; 
            Cenergy.val = inputs.energyLimit(u); 
             
            if(strcmp(inputs.generationType,'PV_dispatch')) 
                % Demand 
                d.name = 'd'; 
                d.labels = set; 
                d.val = inputs.demand; 
            end 
             
            % Generation 
            gen.name = 'g'; 
            gen.labels = set; 
  
            % Price of electricity 
            price.name = 'p'; 
            price.labels = set; 
  
            %% Start Segment Loop 
            aggRevenue = zeros(1,opt_segments); 
            aggSavings = zeros(1,opt_segments); 
            for x = 1:opt_segments 
                clear startHour production pricevector gen.val... 
                    price.val revenue 
                if(inputs.lastRunFlag == 0) 
                    clc 
                    try disp(['NPV from last analysis = ',num2str(NPV)]),... 
                    catch end 
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                    disp(['Analyzing System #',num2str(u + length... 
                        (inputs.energyLimit)*(t-1)),'/',num2str(length... 
                        (inputs.powerLimit)*length(inputs.energyLimit))]) 
                    disp(['Analyzing Segment # ',num2str(x),'/',... 
                        num2str(opt_segments)]) 
                else 
                    disp(['Analyzing Segment # ',num2str(x),'/',... 
                        num2str(opt_segments)]) 
                end 
                startHour = inputs.startHourOriginal + h*(x-1); 
                production = inputs.values(startHour:startHour-1+h,3); 
                pricevector = inputs.values(startHour:startHour-1+h,5); 
  
                %% Finish Compiling GAMS Variables 
                % Generation 
                gen.val = production'; 
                % Prices 
                price.val = pricevector'; 
  
                %% Call GAMS Solver 
                if(strcmp(inputs.generationType,'PV_dispatch')) 
                    [storageCapacity,storagePower,totalRevenue,... 
                        hourlyRevenue,storageLevel,dischargedFromStorage,... 
                        usedDirectly,sentToStorage,genMultiple]... 
                    = gams(inputs.GAMSmodel,eff,disch,Cpower,Cenergy,... 
                    gen,price,d); 
                else 
                [storageCapacity,storagePower,totalRevenue,hourlyRevenue,... 
                    storageLevel,dischargedFromStorage,usedDirectly,... 
                    sentToStorage] = gams(inputs.GAMSmodel,eff,disch,... 
                    Cpower,Cenergy,gen,price); 
                end 
                aggStorageLevel(h*(x-1)+1:h*x) = storageLevel.val; 
                aggDischargedFromStorage(h*(x-1)+1:h*x) = ... 
                    dischargedFromStorage.val; 
                aggUsedDirectly(h*(x-1)+1:h*x) = usedDirectly.val; 
                aggSentToStorage(h*(x-1)+1:h*x) = sentToStorage.val; 
                aggHourlyRevenue(h*(x-1)+1:h*x) = hourlyRevenue.val; 
                aggPrice(h*(x-1)+1:h*x) = price.val; 
                aggGen(h*(x-1)+1:h*x) = gen.val; 
  
                aggRevenue(x) = sum(hourlyRevenue.val); 
                aggSavings(x) = sum(hourlyRevenue.val)-... 
                    sum(price.val.*gen.val);                 
  
            end 
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            if(aggSavings < 0), aggSavings = 0; end 
            MATRIX(t,u) = sum(aggSavings); 
            try excelInputs.MULTIPLE(t,u) = genMultiple.val; catch end 
  
            %% Calculate Storage Characteristics 
            excelInputs.annualDischarged(t,u) =... 
                sum(aggDischargedFromStorage); 
            if(max(aggStorageLevel)>0) 
                excelInputs.avgDOD(t,u) = mean(aggDischargedFromStorage... 
                    (aggDischargedFromStorage>0)./max(aggStorageLevel)); 
            else 
                excelInputs.avgDOD(t,u) = 0; 
            end 
            excelInputs.annualCycles(t,u) = length... 
                (aggDischargedFromStorage(aggDischargedFromStorage>0)); 
            excelInputs.energyCapacity(t,u) = max(aggStorageLevel); 
            excelInputs.powerCapacity(t,u) = max(max(aggSentToStorage),... 
                max(aggDischargedFromStorage)); 
            excelInputs.annualSavings(t,u) = sum(aggSavings); 
             
            excelInputs.feasible(t,u) = 1; % Default, solution is feasible.            
            try 
                if(max(aggStorageLevel) > Cenergy.val ||... 
                        min(aggStorageLevel) < -1e5) 
                    excelInputs.feasible(t,u) = 0; 
                end 
            catch 
            end 
            try 
                if(max(max(aggDischargedFromStorage),... 
                        max(aggSentToStorage)) > Cpower.val) 
                    excelInputs.feasible(t,u) = 0; 
                elseif(min(min(aggDischargedFromStorage),... 
                        min(aggSentToStorage)) < -1e5) 
                    excelInputs.feasible(t,u) = 0; 
                end 
            catch 
            end 
            try 
                if(max(aggTurbineOutput) > turbineMax.val ||... 
                        min(aggTurbineOutput) < -1e5) 
                    excelInputs.feasible(t,u) = 0; 
                end 
            catch 
            end 
  
            try 
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                if(min(aggRevenue) < -1e5) 
                    excelInputs.feasible(t,u) = 0; 
                end 
            catch 
            end 
  
            if(inputs.lastRunFlag == 1) 
                excelInputs.storageLevel = aggStorageLevel; 
                excelInputs.dischargedEnergy = aggDischargedFromStorage; 
                excelInputs.usedDirectly = aggUsedDirectly; 
                excelInputs.storedEnergy = aggSentToStorage; 
                excelInputs.price = aggPrice; 
                excelInputs.gen = aggGen; 
            end 
        end 
    end 
end 
  
aggResults.aggStorageLevel = aggStorageLevel; 
aggResults.aggDischargedFromStorage = aggDischargedFromStorage; 
aggResults.aggUsedDirectly = aggUsedDirectly; 
aggResults.aggSentToStorage = aggSentToStorage; 
aggResults.aggHourlyRevenue = aggHourlyRevenue; 
aggResults.aggPrice = aggPrice; 
aggResults.aggGen = aggGen; 
aggResults.aggRevenue = aggRevenue; 
aggResults.aggSavings = aggSavings; 
aggResults.aggStorageCapacity = max(aggStorageLevel); 
aggResults.aggStoragePower = max(max(aggSentToStorage),... 
    max(aggDischargedFromStorage)); 
  
end 

d. callGAMSeff.m 

This function is almost identical to the callGAMScost.m function, so it will not be repeated here.  The 

main difference is that the roundtrip and self-discharge efficiencies are the parametric inputs instead of 

the energy capacity and power rating. 

e. getNPVFromExcel.m 

% This function retrieves the NPV from the Excel financial model 
 
function [NPV] = getNPVFromExcel(inputs, outputData, Excel, t, u) 
  
xlswrite1(inputs.File,outputData.excelInputs.annualDischarged(t,u),1,'B2'); 
xlswrite1(inputs.File,outputData.excelInputs.annualSavings(t,u),1,'B3'); 
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xlswrite1(inputs.File,outputData.excelInputs.avgDOD(t,u),1,'B4'); 
xlswrite1(inputs.File,outputData.excelInputs.annualCycles(t,u),1,'B5'); 
  
try xlswrite1(inputs.File,outputData.X_Cenergy(u),1,'B7'); 
catch xlswrite1(inputs.File,... 
        outputData.excelInputs.energyCapacity(t,u),1,'B7'); 
end 
  
try xlswrite1(inputs.File,outputData.Y_Cpower(t),1,'B8'); 
catch xlswrite1(inputs.File,... 
        outputData.excelInputs.powerCapacity(t,u),1,'B8'); 
end 
  
switch outputData.technology{1} 
    case 'Lead-Acid' 
        NPV = xlsread1(inputs.File,1,'H3'); 
    case 'LiIon' 
        NPV = xlsread1(inputs.File,1,'H4'); 
    case 'NiCd' 
        NPV = xlsread1(inputs.File,1,'H5'); 
    case 'CAES' 
        NPV = xlsread1(inputs.File,1,'H7'); 
    case 'H2' 
        NPV = xlsread1(inputs.File,1,'H8'); 
    case 'VRB' 
        NPV = xlsread1(inputs.File,1,'H9'); 
    case 'ZnBr' 
        NPV = xlsread1(inputs.File,1,'H10'); 
    case 'PHES' 
        NPV = xlsread1(inputs.File,1,'H11'); 
    case 'NaS' 
        NPV = xlsread1(inputs.File,1,'H12'); 
    case 'Tech1' 
        NPV = xlsread1(inputs.File,1,'H13'); 
    case 'Thermal' 
        NPV = xlsread1(inputs.File,1,'H14'); 
end 
  
end 

f. plotResults.m 

The plotResults.m script is quite lengthy and includes code for plotting all of the relevant figures in this 

thesis.  In the interest of space, and avoiding redundancy, a sample is given here for generating the 

contour plot of NPV vs. storage energy capacity and power rating. 
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% Select appropriate energy units: 
try 
    if(max(outputData.X_Cenergy)>1000) 
        X_Cenergy = outputData.X_Cenergy./1000; 
        try maxCenergy = outputData.maxCenergy./1000; catch end 
        Eunit = '(MWh)'; 
    else 
        X_Cenergy = outputData.X_Cenergy; 
        try maxCenergy = outputData.maxCenergy; catch end 
        Eunit = '(kWh)'; 
    end 
catch 
end 
% Select appropriate power units: 
try 
    if(max(outputData.Y_Cpower)>1000) 
        Y_Cpower = outputData.Y_Cpower./1000; 
        try maxCpower = outputData.maxCpower./1000; catch end 
        Punit = '(MW)'; 
    else 
        Y_Cpower = outputData.Y_Cpower; 
        try maxCpower = outputData.maxCpower; catch end 
        Punit = '(kW)'; 
    end 
catch 
end 
% Select appropriate monetary units: 
try 
    if(max(max(abs(outputData.Z_NPV)))>1000000) 
        Z_NPV = outputData.Z_NPV./1000000; 
        try NPVoriginal = outputData.NPVoriginal./1000000; catch end 
        Munit = '(Million $)'; 
    elseif(max(max(abs(outputData.Z_NPV)))>1000) 
        Z_NPV = outputData.Z_NPV./1000; 
        try NPVoriginal = outputData.NPVoriginal./1000; catch end 
        Munit = '(Thousand $)'; 
    else 
        Z_NPV = outputData.Z_NPV; 
        try NPVoriginal = outputData.NPVoriginal; catch end 
        Munit = '($)'; 
    end 
catch 
end 
% Generate the figure: 
try 
    figure 
    [Colors,handle] = contour(X_Cenergy,Y_Cpower,Z_NPV,'LineWidth',1.5); 
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    clabel(Colors,handle,'labelspacing',200,'rotation',0) 
    xlabel(['Energy Capacity ',Eunit],'fontsize',12,'fontname','arial') 
    ylabel(['Power Rating ',Punit],'fontsize',12,'fontname','arial') 
    zlabel(['NPV ',Munit]) 
    title({['Energy and Power Effects on Net Present Value ',Munit],... 
        ['Technology = ',outputData.technology{1}]},... 
        'fontsize',12,'fontweight','bold','fontname','arial') 
    text(maxCenergy,maxCpower,'O','BackgroundColor',[.7 .9 .7]) 
    text(maxCenergy,maxCpower,'+') 
    text((max(X_Cenergy)-min(X_Cenergy))/2 + min(X_Cenergy),... 
        (max(Y_Cpower)-min(Y_Cpower))/2 + min(Y_Cpower),... 
        {['Energy = ',num2str(maxCenergy)],... 
        ['Power = ',num2str(maxCpower)],... 
        ['NPV = $',num2str((Z_NPV((Y_Cpower==maxCpower)>0,... 
        (X_Cenergy==maxCenergy)>0)))]},'BackgroundColor',[.7 .9 .7]) 
catch 
    close 
end 
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IV. MATLAB Code for Integration and Visualization – Baseload 

Generation 

 
Figure IV-1: Schematic of MATLAB Code – Baseload Generation 

a. DispatchMasterCall.m 

% THIS IS THE MASTER CALL FUNCTION FOR THE BASELOAD SERVICE REQUIREMENT  
% SCENARIOS: INTEGRATING THE GAMS OPTIMIZATION MODEL AND THE EXCEL FINANCIAL  
% MODEL; AND FOR VISUALIZING THE RESULTS. 
 
%% Service Requirement Model 
% Clear the workspace: 
clear 
close all 
clc 
  
% Declare global variables: 
global inputs excelInputs 
  
% Generate the inputs structure: 
inputs.systemSize = 10000;  % Must match insolation data file below (kW) 
inputs.peakDemand = 10;     % peak demand requirement in MW 
% hour in which to start the demand requirement: 
inputs.demandStartHour = 1:24; 
% duration of demand requirement for each day (hours): 
inputs.demandDuration = 1:24;         
inputs.generationType = 'PV_dispatch';  % 'PV_dispatch', or 'CSTP_dispatch' 
inputs.storageTechnology = 'CAES';  % 'Thermal', 'Lead-Acid', 'LiIon' 
                                    % 'NiCd', 'CAES', 'H2' 
                                    % 'VRB', 'ZnBr', 'PHES', 'NaS', 'Tech1' 
inputs.PVsystemLifetime = 30;   % PV system lifetime in years 
inputs.discountRate = 0.1;      % Discount rate (%) 

Child functions
Master function sets initial 
conditions and calls child 
functions as appropriate

DispatchMasterCall.m

getStorageEff.m

callGAMScstpDispatch.m

callGAMSpvDispatch.m

getNPVFromExcel.m

plotResults.m
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inputs.PCScost = 230;           % Cost of power control system ($/kW) 
inputs.PCSlifetime = 7;         % Lifetime of power control system (years) 
inputs.plots = 'yes';           % Whether or not to generate plots 
inputs.startHour = 1;           % First hour to generate plots for 
inputs.duration = 8759;         % Duration to generate plot preview (hours) 
inputs.writeResults = 'no';     % Whether or not to write results to excel 
 
%% Costs 
switch inputs.generationType 
    case 'CSTP_dispatch' 
        % CSTP Costs 
        powerDensity = 160; % W/m^2 - Power density of the solar field 
        colectionSystem = 234;  % $/m^2 
        supportStruct = 61;     % $/m^2 
        heatElements = 43;      % $/m^2 
        mirrors = 43;           % $/m^2 
        powerBlock = 0.367;     % $/W-turbine 
        BOS = 0.193;            % $/W-turbine 
        storageCost = 27.1;     % $/kWh 
        solarFieldCost = (colectionSystem + supportStruct +... 
            heatElements + mirrors)/powerDensity;  % $/W-field 
  
        inputs.turbineCost = (powerBlock + BOS)*1000;  % $/kW-turbine 
        inputs.fieldCost = solarFieldCost*1000;        % $/kW-field 
        inputs.storageCost = storageCost;              % $/kWh 
  
    case 'PV_dispatch' 
        if(strcmp(inputs.storageTechnology,'Thermal')) 
            disp('Error - PV Cannot Use Thermal Storage!') 
            disp('Exiting Simulation...') 
            return 
        end 
        % PV Cost: 
        inputs.PVcost = 3500;   % $/kW 
end 
 
% Name of file containing production, consumption, and price vectors: 
switch inputs.generationType 
    case 'PV_dispatch' 
        % Central real-time Global: 
        inputs.fileName = '10MW_BlytheCA_PV.xls';  
    case 'CSTP_dispatch' 
        % Central real-time Direct: 
        inputs.fileName = '10MW_BlytheCA_CSTP.xls'; 
end 
  
% Select appropriate input/output directories: 
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inputs.dir = ['xxxxxxx\',inputs.fileName];   
inputs.outputDir = 'xxxxxxx\';  
inputs.File = 'xxxxxxx\storageEconomics_FINAL.xlsx'; 
inputs.loadFile = 'xxxxxxx\CAISOsystemLoad.xlsx'; 
inputs.sensitivityFile = 'xxxxxxx\storageEconomics_Sensitivity.xlsx'; 
  
% Option to define efficiencies manually: 
if(strcmp(inputs.storageTechnology,'custom')) 
    inputs.efficiency = sqrt(0.95); % Storage Efficiency 
    inputs.selfDis = 0;             % Self discharge rate 
else 
    % Retrieve efficiencies and unit costs from excel file 
    disp('Retrieving Storage Efficiencies and Costs...') 
    [inputs] = getStorageEff(inputs); 
end 
  
%% Extract Production and Prices from Excel File 
disp('Loading Production and Pricing Data...') 
[inputs.values,inputs.strings] = xlsread(inputs.dir); 
  
%% Extract System Load Profile from Excel File 
disp('Loading System Service Requirement (Demand Profile)...') 
[inputs.loadValues,stringPlaceholder] = xlsread(inputs.loadFile); 
% Convert to kW from MW and scale to peak demand: 
inputs.loadValues = inputs.peakDemand*(inputs.loadValues(:,2)/10)*1000;     
 
% Compile inputs for Excel financial model: 
excelInputs.MULTIPLE = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
excelInputs.annualDischarged = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
excelInputs.totalGen = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
excelInputs.avgDOD = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
excelInputs.annualCycles = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
excelInputs.energyCapacity = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
excelInputs.powerCapacity = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
excelInputs.turbinePower = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
excelInputs.annualSavings = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
excelInputs.capFactor = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
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excelInputs.feasible = zeros(length(inputs.demandStartHour),... 
    length(inputs.demandDuration)); 
 
% Define the service requirement (demand profile) 
durationOriginal = inputs.demandDuration; 
for t = 1:length(inputs.demandStartHour) 
    for u = 1:length(inputs.demandDuration) 
        if(inputs.demandDuration(u)+inputs.demandStartHour(t)>24) 
            disp('Demand Profile Too Long. Skipping to Next Simulation...') 
        else 
            clear inputs.demand aggResults 
  
            disp(['System #',num2str(length(inputs.demandStartHour)*... 
                (t-1)+u),'/',num2str(length(inputs.demandStartHour)*... 
                length(inputs.demandDuration))]) 
            inputs.demand = zeros(1,8760); 
            for n = 2:365 
                inputs.demand((n-1)*24+(inputs.demandStartHour(t)+1):... 
                    (n-1)*24+(inputs.demandStartHour(t)+... 
                    inputs.demandDuration(u))) =... 
                    inputs.loadValues((n-1)*24+(inputs.demandStartHour... 
                    (t)+1):(n-1)*24+(inputs.demandStartHour(t)+... 
                    inputs.demandDuration(u))); 
            end 
            if(strcmp(inputs.generationType,'CSTP_dispatch')) 
                [aggResults] = callGAMScstpDispatch(t,u); 
            else 
                [aggResults] = callGAMSpvDispatch(t,u); 
            end 
        end 
    end 
end 
outputData.excelInputs = excelInputs; 
outputData.technology = {inputs.storageTechnology}; 
outputData.inputs = inputs; 
  
%% Get NPV from Excel 
disp('Calculating Storage NPV...') 
Excel = actxserver ('Excel.Application'); 
if ~exist(inputs.File,'file') 
    ExcelWorkbook = Excel.workbooks.Add; 
    ExcelWorkbook.SaveAs(inputs.File,1); 
    ExcelWorkbook.Close(false); 
end 
invoke(Excel.Workbooks,'Open',inputs.File); 
  
for t = 1:length(outputData.inputs.demandStartHour) 



137 
 
 

    for u = 1:length(outputData.inputs.demandDuration) 
        disp(['System #',num2str(length... 
            (outputData.inputs.demandStartHour)*(t-1)+u),'/',num2str... 
            (length(outputData.inputs.demandStartHour)... 
            *length(outputData.inputs.demandDuration))]) 
        if(outputData.inputs.demandDuration(u)+... 
                outputData.inputs.demandStartHour(t)>24) 
            outputData.storageNPV(t,u) = NaN; 
        else 
            outputData.storageNPV(t,u) =... 
                getNPVFromExcel(inputs,outputData,Excel,t,u); 
        end 
  
        disp(['NPV = $',num2str(outputData.storageNPV(t,u))]) 
    end 
end 
  
Excel.ActiveWorkbook.Save; 
Excel.Quit 
Excel.delete 
clear Excel 
  
%% Retrieve sensitivity data 
if(strcmp(inputs.generationType,'PV_dispatch')) 
    disp('Generating NPV Sensitivity Plot') 
    [outputData.sensitivity] = getSensitivityFromExcel(outputData); 
end 
  
%% Plot Results 
plotResults(outputData) 

b. getStorageEff.m 

See section III-b. 

c. callGAMScstpDispatch.m 

% This function compiles the inputs and calls the appropriate GAMS 
% optimization model.  The results are then compiled to be sent back to 
% MATLAB for processing 
 
function [aggResults] = callGAMScstpDispatch(t,u) 
  
% Declare global variables 
global inputs excelInputs 
  
%% Compile GAMS Variables 
% Generate label set: 
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h1 = 8760; 
labelSet = cell(1,h1); 
for n = 1:h1 
    labelSet{n} = ['t',num2str(n)]; 
end 
  
% Efficiency of Storage Device 
eff.name = 'eff'; 
eff.val = inputs.efficiency; 
  
% Self-Discharge of Storage Device 
disch.name = 'disch'; 
disch.val = inputs.selfDis; 
  
% Demand 
d.name = 'd'; 
d.labels = labelSet; 
d.val = inputs.demand; 
  
% Generation 
gen.name = 'g'; 
gen.labels = labelSet; 
gen.val = inputs.values(1:h1,3)'; 
  
% Price of electricity 
price.name = 'p'; 
price.labels = labelSet; 
price.val = inputs.values(1:h1,5)'; 
  
% Unit price of turbine 
turbineCost.name = 'turbineCost'; 
turbineCost.val = inputs.turbineCost; 
  
% Unit price of field 
fieldCost.name = 'fieldCost'; 
fieldCost.val = inputs.fieldCost; 
  
% Unit price of storage capacity 
storageEnergyCost.name = 'storageEnergyCost'; 
storageEnergyCost.val = inputs.energyCost; 
  
%% Call GAMS Solver 
% Step 1 - find minimum system size to satisfy demand: 
disp('Calculating Minimum System Size...') 
[storageCapacity,maxTurbineOutput,genMultiple,turbineOutput,... 
    discharged,stored,cost] = gams('CSTPloadFollow_Step1',eff,disch,... 
    turbineCost,fieldCost,storageEnergyCost,gen,price,d); 



139 
 
 

disp(['Storage Size = ',num2str(storageCapacity.val),' kWh']) 
disp(['Turbine Size = ',num2str(maxTurbineOutput.val),' kW']) 
disp(['Field Multiple = ',num2str(genMultiple.val)]) 
disp(' ') 
disp(['Charge/Discharge Product = ',... 
    num2str(max(discharged.val.*stored.val))]) 
disp(['Total System Cost = ',num2str(cost.val)]) 
if(sum((turbineOutput.val' - d.val) > 1e-5)>0) 
    disp(['ERROR - DEMAND PROFILE NOT MET FOR ',... 
        num2str(sum((turbineOutput.val' - d.val) > 1e-5)),' HOURS']) 
end 
clear turbineOutput discharged stored cost storageLevel 
  
% Energy Capacity of Storage 
Cenergy.name = 'storageCapacity'; 
Cenergy.val = storageCapacity.val; 
  
% Turbine maximum output 
turbineMax.name = 'turbineMaxOutput'; 
turbineMax.val = maxTurbineOutput.val; 
  
% Field Multiple 
genMultipleVar.name = 'genMultiple'; 
genMultipleVar.val = genMultiple.val; 
  
% Step 2 - find maximum revenue attainable with 
%         this system (still satisfying demand): 
disp('Calculating Maximum Revenue...') 
[totalRevenue,hourlyRevenue,storageLevel,dischargedFromStorage,... 
    usedDirectly,sentToStorage,turbineOutput] = ... 
    gams('CSTPloadFollow_Step2',eff,disch,turbineMax,Cenergy,... 
    genMultipleVar,gen,price,d); 
aggSavings = sum(hourlyRevenue.val)-sum(price.val.*gen.val*genMultiple.val); 
disp(['Total Revenue = $',num2str(totalRevenue.val)]) 
disp(['First Year Savings with Storage = $',num2str(aggSavings)]) 
  
% Form results structure: 
aggStorageLevel = storageLevel.val; 
aggDischargedFromStorage = dischargedFromStorage.val; 
aggUsedDirectly = usedDirectly.val; 
aggSentToStorage = sentToStorage.val; 
aggTurbineOutput = turbineOutput.val; 
aggHourlyRevenue = hourlyRevenue.val; 
aggPrice = price.val; 
aggGen = gen.val; 
aggRevenue = sum(hourlyRevenue.val); 
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%% Compile Excel Inputs File 
excelInputs.serviceReqRevenue(t,u) = sum(d.val.*aggPrice); 
excelInputs.optimizedRevenue(t,u) = sum(aggTurbineOutput'.*aggPrice); 
excelInputs.MULTIPLE(t,u) = genMultiple.val; 
excelInputs.annualDischarged(t,u) = sum(aggDischargedFromStorage); 
excelInputs.totalGen(t,u) = sum(aggTurbineOutput); 
if(max(aggStorageLevel)>0) 
    excelInputs.avgDOD(t,u) = mean(aggDischargedFromStorage... 
        (aggDischargedFromStorage>0)./max(aggStorageLevel)); 
else 
    excelInputs.avgDOD(t,u) = 0; 
end 
excelInputs.annualCycles(t,u) = length(aggDischargedFromStorage... 
    (aggDischargedFromStorage>0)); 
excelInputs.energyCapacity(t,u) = storageCapacity.val; 
excelInputs.turbinePower(t,u) = turbineMax.val; 
excelInputs.annualSavings(t,u) = aggSavings; 
excelInputs.capFactor(t,u) = sum(aggTurbineOutput)/(turbineMax.val*8760); 
  
% Default, solution is feasible: 
excelInputs.feasible(t,u) = 1;  
try 
    if(min(aggDischargedFromStorage+aggUsedDirectly-inputs.demand)<-1e5) 
        excelInputs.feasible(t,u) = 0; 
    end 
catch 
end 
try 
    if(max(aggStorageLevel) > Cenergy.val || min(aggStorageLevel) < 0) 
        excelInputs.feasible(t,u) = 0; 
    end 
catch 
end 
try 
    if(min(min(aggDischargedFromStorage),min(aggSentToStorage)) < 0) 
        excelInputs.feasible(t,u) = 0; 
    end 
catch 
end 
try 
    if(max(aggTurbineOutput) > turbineMax.val || min(aggTurbineOutput) < 0) 
        excelInputs.feasible(t,u) = 0; 
    end 
catch 
end 
try 
    if(min(aggRevenue) < 0) 
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        excelInputs.feasible(t,u) = 0; 
    end 
catch 
end 
  
if(length(inputs.demandStartHour)*length(inputs.demandDuration) == 1) 
    excelInputs.storageLevel = aggStorageLevel; 
    excelInputs.dischargedEnergy = aggDischargedFromStorage; 
    excelInputs.usedDirectly = aggUsedDirectly; 
    excelInputs.turbineOutput = aggTurbineOutput; 
    excelInputs.storedEnergy = aggSentToStorage; 
    excelInputs.price = aggPrice; 
    excelInputs.gen = aggGen; 
end 
  
aggResults.aggStorageLevel = aggStorageLevel; 
aggResults.aggDischargedFromStorage = aggDischargedFromStorage; 
aggResults.aggUsedDirectly = aggUsedDirectly; 
aggResults.aggSentToStorage = aggSentToStorage; 
aggResults.aggTurbineOutput = aggTurbineOutput; 
aggResults.aggHourlyRevenue = aggHourlyRevenue; 
aggResults.aggPrice = aggPrice; 
aggResults.aggGen = aggGen; 
aggResults.aggRevenue = aggRevenue; 
aggResults.aggSavings = aggSavings; 
aggResults.aggStorageCapacity = max(aggStorageLevel); 
aggResults.aggStoragePower = max(max(aggSentToStorage),... 
    max(aggDischargedFromStorage)); 
  
end 

d. callGAMSpvDispatch.m  

% This function compiles the inputs and calls the appropriate GAMS 
% optimization model.  The results are then compiled to be sent back to 
% MATLAB for processing 
 
function [aggResults] = callGAMSpvDispatch(t,u) 
  
% Declare global variables 
global inputs excelInputs 
  
%% Compile GAMS Variables 
% Generate label set: 
h = 8760; 
set = cell(1,h); 
for n = 1:h 
    set{n} = ['t',num2str(n)]; 
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end 
  
% Efficiency of Storage Device 
eff.name = 'eff'; 
eff.val = inputs.efficiency; 
  
% Self-Discharge of Storage Device 
disch.name = 'disch'; 
disch.val = inputs.selfDis; 
  
% Demand 
d.name = 'd'; 
d.labels = set; 
d.val = inputs.demand; 
  
% Generation 
gen.name = 'g'; 
gen.labels = set; 
gen.val = inputs.values(1:h,3)'; 
  
% Price of electricity 
price.name = 'p'; 
price.labels = set; 
price.val = inputs.values(1:h,5)'; 
  
% Unit price of power 
powerCost.name = 'powerCost'; 
powerCost.val = inputs.powerCost; 
  
% Unit price of field 
energyCost.name = 'energyCost'; 
energyCost.val = inputs.energyCost; 
  
% Unit price of capacity 
PVcost.name = 'PVcost'; 
PVcost.val = inputs.PVcost; 
  
%% Call GAMS Solver 
% Step 1 - find minimum system size to satisfy demand: 
disp('Calculating Minimum System Size...') 
[storageCapacity,storagePower,genMultiple]... 
    = gams('PVloadFollow_Step1',eff,disch,powerCost,energyCost,... 
    PVcost,gen,price,d); 
disp(['Storage Size = ',num2str(storageCapacity.val),' kWh']) 
disp(['Power Rating = ',num2str(storagePower.val),' kW']) 
disp(['PV Multiple = ',num2str(genMultiple.val)]) 
totalCost = inputs.PVcost*genMultiple.val*inputs.systemSize + ... 
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    inputs.energyCost*storageCapacity.val + ... 
    inputs.powerCost*storagePower.val; 
disp(['Total Upfront Capital Cost = $',num2str(totalCost)]) 
disp(' ') 
  
% Energy Capacity of Storage 
Cenergy.name = 'storageCapacity'; 
Cenergy.val = storageCapacity.val; 
  
% Storage Power Rating 
Cpower.name = 'storagePower'; 
Cpower.val = storagePower.val; 
  
% Field Multiple 
genMultipleVar.name = 'genMultiple'; 
genMultipleVar.val = genMultiple.val; 
  
% Step 2 - find maximum revenue attainable with 
%         this system (still satisfying demand): 
disp('Calculating Maximum Revenue...') 
[totalRevenue,hourlyRevenue,storageLevel,dischargedFromStorage,... 
    usedDirectly,sentToStorage] = gams('PVloadFollow_Step2',eff,disch,... 
    Cpower,Cenergy,genMultipleVar,gen,price,d); 
aggSavings = sum(hourlyRevenue.val)-sum(price.val.*gen.val*genMultiple.val); 
disp(['Total Revenue = $',num2str(totalRevenue.val)]) 
disp(['First Year Savings with Storage = $',num2str(aggSavings)]) 
  
% Form results structure: 
aggStorageLevel = storageLevel.val; 
aggDischargedFromStorage = dischargedFromStorage.val; 
aggUsedDirectly = usedDirectly.val; 
aggSentToStorage = sentToStorage.val; 
aggHourlyRevenue = hourlyRevenue.val; 
aggPrice = price.val; 
aggGen = gen.val; 
aggRevenue = sum(hourlyRevenue.val); 
  
%% Compile Excel Inputs File 
excelInputs.serviceReqRevenue(t,u) = sum(d.val.*aggPrice); 
excelInputs.optimizedRevenue(t,u) = sum((aggUsedDirectly+... 
    aggDischargedFromStorage)'.*aggPrice); 
excelInputs.MULTIPLE(t,u) = genMultiple.val; 
excelInputs.annualDischarged(t,u) = sum(aggDischargedFromStorage); 
excelInputs.totalGen(t,u) = sum(aggDischargedFromStorage + aggUsedDirectly); 
if(max(aggStorageLevel)>0) 
    excelInputs.avgDOD(t,u) = mean(aggDischargedFromStorage... 
        (aggDischargedFromStorage>0)./max(aggStorageLevel)); 
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else 
    excelInputs.avgDOD(t,u) = 0; 
end 
excelInputs.annualCycles(t,u) = length(aggDischargedFromStorage... 
    (aggDischargedFromStorage>0)); 
excelInputs.energyCapacity(t,u) = storageCapacity.val; 
excelInputs.powerCapacity(t,u) = storagePower.val; 
excelInputs.annualSavings(t,u) = aggSavings; 
excelInputs.capFactor(t,u) = sum(aggDischargedFromStorage + ... 
    aggUsedDirectly)/(inputs.systemSize*8760); 
  
% Default, solution is feasible: 
excelInputs.feasible(t,u) = 1;  
try 
    if(min(aggDischargedFromStorage + aggUsedDirectly - ... 
            inputs.demand) < -1e5) 
        excelInputs.feasible(t,u) = 0; 
    end 
catch 
end 
try 
    if((max(aggStorageLevel) - Cenergy.val) > 1e5 || ... 
            min(aggStorageLevel) < -1e5) 
        excelInputs.feasible(t,u) = 0; 
    end 
catch 
end 
try 
    if(min(min(aggDischargedFromStorage),min(aggSentToStorage)) < -1e5) 
        excelInputs.feasible(t,u) = 0; 
    end 
catch 
end 
  
try 
    if(min(aggRevenue) < -1e5) 
        excelInputs.feasible(t,u) = 0; 
    end 
catch 
end 
  
if(length(inputs.demandStartHour)*length(inputs.demandDuration) == 1) 
    excelInputs.storageLevel = aggStorageLevel; 
    excelInputs.dischargedEnergy = aggDischargedFromStorage; 
    excelInputs.usedDirectly = aggUsedDirectly; 
    excelInputs.storedEnergy = aggSentToStorage; 
    excelInputs.price = aggPrice; 
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    excelInputs.gen = aggGen; 
end 
  
aggResults.aggStorageLevel = aggStorageLevel; 
aggResults.aggDischargedFromStorage = aggDischargedFromStorage; 
aggResults.aggUsedDirectly = aggUsedDirectly; 
aggResults.aggSentToStorage = aggSentToStorage; 
aggResults.aggHourlyRevenue = aggHourlyRevenue; 
aggResults.aggPrice = aggPrice; 
aggResults.aggGen = aggGen; 
aggResults.aggRevenue = aggRevenue; 
aggResults.aggSavings = aggSavings; 
aggResults.aggStorageCapacity = max(aggStorageLevel); 
aggResults.aggStoragePower = max(max(aggSentToStorage),... 
    max(aggDischargedFromStorage)); 
  
end 

e. getNPVFromExcel.m 

See section III-e. 

f. plotResults.m 

See section III-f. 
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