
An Integrated Evolutionary Model Approach to Small

Satellite Engineering

by

Joseph B. Robinson

B.S., United States Air Force Academy (2008)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department of Aeronautics and Astronautics

May 14, 2010

Certified by. .
Col John Keesee, USAF, Ret.

Senior Lecturer of Aeronautics and Astronautics
Thesis Supervisor

Certified by. .
Dave Miller

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Eytan H. Modiano

Associate Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

An Integrated Evolutionary Model Approach to Small Satellite

Engineering

by

Joseph B. Robinson

Submitted to the Department of Aeronautics and Astronautics
on May 14, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

A deficiency exists in the use of detailed integrated modeling in the design, fabrication,
and operations of small satellites (<180kg). This need led to the design of the Integrated
Evolutionary Model (IEM) approach to small satellite engineering. The IEM approach uses
integrated modeling throughout the satellite design life cycle to support the verification
and validation of the satellite capabilities and limitations. This thesis describes the IEM
approach and introduces its products: a detailed command-based integrated simulation
(SIM), telemetry and data analyzer (TDA), and a mission assurance tool (MAT). Recently
developed integrated systems models for the MOTV and CASTOR satellites are described
and critiqued against the IEM approach, and a new simulation framework is developed
for CASTOR utilizing the IEM framework. The development and use of a TDA for the
FalconSAT-3 satellite is also described. The thesis presents several FalconSAT-3 operational
events where the TDA was paramount in identifying and characterizing unexpected on-orbit
behaviors during spacecraft and experiment operations. The utility of the IEM products is
demonstrated through the successful use of the FalconSAT-3 TDA in these events.

DISCLAIMER: The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the United States Air Force, Department of Defense, or the
U.S. Government.

Thesis Supervisor: Col John Keesee, USAF, Ret.
Title: Senior Lecturer of Aeronautics and Astronautics

Thesis Supervisor: Dave Miller
Title: Professor of Aeronautics and Astronautics

Acknowledgments

This thesis could not have been written without the advice and support of many individuals.
Col (Ret.) John Keesee advised and supported me through the entire process, and allowed
me the flexibility to focus on topics that I had interest in. Professor David Miller was
vital to pushing the use of integrated modeling and planting a seed in my mind for further
research. The faculty and professors from all the interesting classes I have taken here were
essential in forming some of my conclusions and I am humbled to have learned from the
best.

I would also like to thank the Air Force Space and Missile Systems Center for their
support of the SEA program at MIT. Without their funding, none of this work would have
been possible. Col David Swanson’s initial feedback of my research thoughts was vital in
pushing more towards what I believe is a much more useful product. Thanks to Dr. Kyle
Yang for being a very effective liaison between SSL and SMC.

A large debt is owed to the USAFA Department of Astronautics and the FalconSAT
program personnel for their continued support for the five years that I have worked with
them. While I would have slept much more if the FalconSAT-3 satellite would have never
been built or launched, I would not have the experience and knowledge that I now have.
Thanks to Col Tim Lawrence and Professor Bill Saylor for keeping the program on track and
allowing me a great amount of flexibility with FalconSAT-3. Thanks to the FalconSAT-3
operations team, particularly Cadet Ben Shoptaugh, for performing the tests and supplying
the data that I often desired. Lastly, thanks to Col (Ret.) Jack Anthony, who always
provided colorful emails and was a supportive of all that I did.

Thanks to all of the SSL students and staff. It is great to work with such a knowledgeable
group of people that can quickly tell me when I’m going down the wrong path or find
solutions to problems that I faced. Jake Katz and Jaime Ramirez were vital in the support
of all FS-3 analysis that was done at MIT. Good luck to the SEA class of 2011 in George
Sondecker, Corey Crowell, and Matt McCormack, and thank you for doing the day to day
tasks in the last semester so I could focus on writing. To John Richmond, for pushing me
the whole way and making sure I felt the pressure.

And last but certainly not least, I’d like to thank my family. Without them I know that
I would not have had the opportunities that I have had. Mom and Dad, I greatly appreciate
your unwavering support and pride in all that I do.

6

Contents

1 Introduction 19

1.1 Problem Statement . 19

1.2 Motivation . 19

1.2.1 University Satellites . 20

1.2.2 Mission Assurance . 21

1.2.3 Space Engineering Academy . 21

1.2.4 CASTOR . 22

1.2.5 FalconSAT . 24

1.2.6 Thesis questions . 25

1.3 Approach . 25

2 Background 27

2.1 Modeling, Simulation, and Integrated Modeling 27

2.2 Satellite Engineering Process . 27

2.2.1 Satellite Engineering Life Cycle . 28

2.2.2 Modeling in the Satellite Engineering Process 30

2.3 Background Summary . 32

3 Integrated Evolutionary Model Approach 33

3.1 IEM Framework . 33

3.1.1 Satellite Integrated Model (SIM) . 34

3.1.2 Satellite (SAT) . 35

3.1.3 Telemetry and Data Analyzer (TDA) 36

7

3.1.4 Mission Assurance Tool (MAT) . 37

3.1.5 General IEM Design Approach . 38

3.2 Conceive — Phase A . 42

3.2.1 Phase A Integrated Model Design 42

3.2.2 Phase A Integrated Model Example — ExoplanetSat 49

3.3 Preliminary Design — Phase B . 50

3.3.1 Phase B Integrated Model Design 50

3.3.2 Phase B Integrated Model Example — MOTV 54

3.4 Complete Design — Phase C . 56

3.4.1 Phase C Integrated Model Design 56

3.4.2 Phase C Integrated Model Example — CASTOR 65

3.5 Implementation and Testing — Phase D . 67

3.5.1 Phase D Integrated Model Design 67

3.5.2 Phase D Integrated Model Example — CASTOR 74

3.6 Operations — Phase E . 74

3.6.1 Phase E Integrated Model Design . 74

3.6.2 Phase E Integrated Model Example — FalconSAT-3 77

4 Applied Integrated Model Design 79

4.1 CASTOR Simulation . 79

4.1.1 Simulation Structure . 80

4.1.2 Scheduler, Command List, and Event List Objects 84

4.1.3 Subsystem Models and Data Distribution Overview 87

4.2 FalconSAT-3 Telemetry and Data Analyzer 91

4.2.1 FS-3 Data Overview . 91

4.2.2 Telemetry, Data, and Operational Events 94

4.2.3 FS-3 LimWOD GUI Design . 105

4.2.4 FS-3 Telemetry and Data Analysis Tools Summary 123

4.3 CASTOR MAT Design . 125

8

5 Results and Analysis 129

5.1 Integrated Model Results . 129

5.1.1 Phase A — ExoplanetSat Model Results 130

5.1.2 Phase B — MOTV Results . 133

5.1.3 Phase C — Early CASTOR Simulation Results 136

5.1.4 Phase D — Complete CASTOR Integrated Model Results 142

5.2 FalconSAT-3 TDA Results . 151

5.2.1 FS-3 BSEKF Verification Using LimWOD GUI 151

5.2.2 FS-3 April 2010 Event Analysis Using LimWOD GUI 154

5.3 Discussion . 167

5.3.1 Modeling and Simulation Design Discussion 167

5.3.2 Personnel in the IEM Process . 170

5.3.3 FalconSAT-3 Lessons Applied to IEM 173

5.3.4 Thesis Questions Revisited . 174

6 Conclusion and Future Work 177

6.1 Conclusion . 177

6.2 Future Work . 178

A MATLAB Code Examples 179

9

10

List of Figures

1-1 Space Engineering Academy Timeline . 22

2-1 NSS 03-01 Acquisitions Phases [2] . 28

2-2 NASA Project Life Cycle [25] . 29

2-3 Generic Space System Life Cycle . 30

3-1 Integrated Evolutionary Model Framework 33

3-2 IEM Configuration Control Example . 41

3-3 Example Phase A N2 Diagram for EP Mission 48

3-4 Phase A IEM Design Diagram . 49

3-5 Phase B IEM Design Diagram . 53

3-6 MOTV Simulation Design [32] . 55

3-7 MOTV Graphical User Interface Layout [32] 55

3-8 SIM Command Input and Generation Decision Chart 62

3-9 Phase C IEM Design Diagram . 65

3-10 CASTOR User Interface . 66

3-11 Phase D IEM Design Diagram . 74

3-12 Phase E IEM Design Diagram . 77

4-1 Level of Comparison between SIM and SAT Results 80

4-2 CASTOR Simulation Layout . 82

4-3 CASTOR Satellite Simulation N2 Diagram 83

4-4 Scheduler and Discrete Event Diagram . 85

4-5 Satellite Propagation Subsystem Time Steps and Interrupt Diagram 88

11

4-6 Example Subsystem Time Step and Interrupt Diagram 88

4-7 Initial Analysis of 2 Nov 2007 LTAS Data [31] 95

4-8 Nominal Telemetry of Operating LTAS Tube (8 Nov 2007 LTAS Data) . . . 95

4-9 Initial LTAS Testing Results (9 May 2007 LTAS Data) 96

4-10 Corrected LTAS 2 Nov 2007 Data Plots) . 97

4-11 Comparison Between WOD and Real-Time Magnetometer Values 98

4-12 Torque Rod Current vs. Initial Strength Setting [38] 100

4-13 Torque Rod Current vs. Revised Strength Setting [38] 101

4-14 Torque Rod Polarity Test Results . 101

4-15 Torque Rod and Magnetometer Model . 102

4-16 Initial Comparison of Magnetometer and IGRF ‖B‖ 103

4-17 Comparison of Magnetometer and IGRF ‖B‖ (New Coefficients) 104

4-18 LimWOD GUI Data Import Formats . 109

4-19 LimWOD GUI Magnetometer Coefficients Selection 112

4-20 Comparison Between Ground and Satellite Times 114

4-21 Satellite Time Between Samples . 114

4-22 LimWOD GUI Screenshot of B-dot Commands 117

4-23 FS-3 B-Dot Logic Comparison with Attitude File and Magnetometer Data . 118

4-24 FS-3 STK Visualization . 119

4-25 Initial LimWOD GUI Capabilities . 120

4-26 Updated LimWOD GUI with Enhanced Graphical Interface Options 121

4-27 Final LimWOD Graphical User Interface . 123

4-28 Summary of FS-3 Data Analysis Tools . 124

5-1 MOTV Simulated Mission Output [32] . 133

5-2 CASTOR Integrated Model Attitude Output [7] 138

5-3 Screenshot of MOTV Simulation Output . 141

5-4 Screenshot of CASTOR Simulation Output 141

5-5 MATLAB Profile Results for CASTOR Integrated Model 142

5-6 FS-3 LimWOD GUI Successful Solar Comparison 152

12

5-7 FS-3 LimWOD GUI Unsuccessful Solar Comparison 153

5-8 B-Dot Analysis Script Results for 6 Apr Test 157

5-9 LimWOD GUI Magnetometer Output for 5 Apr Data 157

5-10 LimWOD GUI Solar Current Output for 5 April Data 158

5-11 LimWOD GUI Battery Output for 5 April Data 158

5-12 Magnetometer Difference Before and After 5 Apr LTAS Test 159

5-13 Initial Aliasing Due to Angular Acceleration 160

5-14 Apparent Slow Down Due to Aliasing . 161

5-15 Aliasing Indication Due to Time Jump . 161

5-16 Aliasing Phenomena for Under-Sampled Data 162

5-17 Observed FS-3 Solar Array Data During Slow Rotation 164

5-18 Observed FS-3 Solar Array Data at Apparent Slow-Down 164

13

14

List of Tables

3.1 Integrated Model Elements Decision Selection for Low-Thrust EP Mission . 44

3.2 Example of Integrated Model Requirements by Phase 47

3.3 SIM Input Parameter Classes . 60

4.1 Inits Structure Breakdown . 81

4.2 Simulation Information Classes and Types 91

4.3 FalconSAT-3 File Types . 93

4.4 LimWOD GUI Design Outline . 108

4.5 MATLAB Timing Functions . 115

5.1 ExoplanetSat Integrated Model Elements Decision Selection 132

5.2 CASTOR ADCS Model Timing Results for Telemetry Input 146

5.3 CASTOR Simulation Timing Based on Step Size 147

5.4 Interrupt Timing Identification Method Results 148

5.5 FS-3 April 2010 Summary . 155

15

16

List of Acronyms

ADCS Attitude Determination and Control System (aka ACS)
AF Air Force
ATB Avionics Test Bed
BCR Battery Charge Regulator
BSEKF Backwards-Smoothing Extended Kalman Filter
Cn Mission Constraint Element (1 ≤ n ≤ 4)
CAD Computer Aided Design
CASTOR Cathode Anode Satellite Thruster for Orbital Repositioning
CCSDS Consultative Committee for Space Data Systems
CDR Critical Design Review
CMD Command
CONOPS Concept of Operations
COTS Commercial off the Shelf
∆V Difference in velocity
DCM Direction Cosine Matrix
ECI Earth Centered Inertial
EP Electric Propulsion
EPS Electrical Power System
FM Flight Model
FOM Figure(s) of Merit
FRR Flight Readiness Review
FS-3 FalconSAT-3
FS-5 FalconSAT-5
GEO Geosynchronous Orbit
GNC Guidance, Navigation, and Control System
GPS Global Positioning System
GTO Geotransfer Orbit
GUI Graphical User Interface
GUIDE GUI Development Environment
IEM Integrated Evolutionary Model
IGRF International Geomagnetic Reference Field
INCOSE International Council on Systems Engineering
ISS International Space Station

17

LEO Low Earth Orbit
LimWOD Limited Whole Orbit Data
LTAS Low Thrust Attitude System
LVLH Local Vertical, Local Horizontal
MA Mission Assurance
MAT Mission Assurance Tool
MIT Massachusetts Institute of Technology
NORAD North American Aerospace Defense Command
NASA National Aeronautics and Space Administration
N2 N-Squared
OMG Object Management Group
OOP Object Oriented Programming
OPCAT Object-Process Case Tool
OPM Object-Process Methodology
Pn Primary Element (1 ≤ n ≤ 4)
PDR Preliminary Design Review
PPM Parts Per Million
OPM Object Process Methodology
QM Qualifications Model
sn Supporting Element (1 ≤ n ≤ 4)
Sn Secondary Element (1 ≤ n ≤ 4)
SAT Satellite
SCL Satellite Command Level
SDR Systems Design Review
SEA Space Engineering Academy
SGP4 Simplified General Perturbations 4
SIM Satellite Integrated Model
SMAD Space Mission Analysis and Design [21]
SMC Space and Missile Systems Center
SRR Systems Requirement Review
SSL Space Systems Laboratory (MIT)
SSRC Space Systems Research Laboratory (USAFA)
SPL Space Propulsion Laboratory (MIT)
SVN Subversion
SysML System Modeling Language
TDA Telemetry Data Analyzer
TLE Two Line Element
TLM Telemetry
UML Unified Modeling Language
USAFA United States Air Force Academy
UTC Coordinated Universal Time
WBS Work Breakdown Structure
WOD Whole Orbit Data

18

Chapter 1

Introduction

1.1 Problem Statement

Many modeling tools and techniques are available to support the development of space sys-

tems. However, modeling tools are subject to constraints and limitations and require extra

resources. This resource burden causes many university-built satellites and small satellites

to minimize or even forgo modeling, which can lead to design oversight and improper as-

sumptions. If used effectively, an integrated evolutionary model approach can be used for

small satellite systems to assist mission assurance efforts, enhance operational performance

and flexibility, and indirectly free resources.

1.2 Motivation

Integrated modeling can assist engineers, customers, and stakeholders in all phases of the

space system design sequence by communicating the design and interfaces, simulating the

mission applications, and illustrating design traceability. By increasing the fidelity of the

model through an evolutionary approach, these models can turn into documentation, train-

ing, and mission operations tools. There are a few specific topics that this thesis will discuss

in greater depth to demonstrate the application of the integrated modeling. The motivation

for these topics and a description of how the integrated evolutionary modeling concept can

be applied is described in Sections 1.2.1 to 1.2.5.

19

1.2.1 University Satellites

The term “university satellite” can have many connotations. In this thesis, a university

satellite refers to a stand-alone small satellite that is designed and built by a student

team. The University Nanosat Program (UNP), an Air Force Office of Scientific Research

(AFOSR) funded competition through the Air Force Research Lab (AFRL), provides excel-

lent examples of university satellites. Every other year approximately ten universities enter

UNP, with the goal of winning the two year competition and being sponsored by the Air

Force for a launch. Small satellites can be referred to as a microsat, nanosat, or picosat,

with the mass and the volume providing the distinction between categories. These terms

also have many connotations that disagree between different sources; in this thesis, a uni-

versity satellite will be assumed to have a mass less than 180 kg. Note that these definitions

do not limit the application of this thesis on larger satellites or satellites that do not fit all

criteria of a “university satellite;” they are merely meant to assign a name for a class of

satellites that will be described and referenced throughout the thesis.

Integrated modeling can provide multiple benefits to a university satellite. These satel-

lites and their programs are unique in that their product is not only hardware, but also

personnel. A desired output for any university satellite program is knowledgeable engineers

with real knowledge of a system through hands-on experience on a real project. However

the student-worker environment inherently causes remarkably high turnover to the project

team. If the project encompasses many semester or years, it is necessary to have in place

a continuation and training program for new students. This requirement can force a great

deal of documentation and extra work that will hold back students from focusing on the

satellite design or operations. Integrated modeling can be used throughout the system’s

life cycle to quickly explain the system and its properties. This is very useful for university

students, but it can also be useful for presentations or reviews to demonstrate the concept,

functionality, or operational results of the satellite.

The question that will be addressed regarding integrated modeling and university satel-

lites in this thesis is, “What is the correct role and effort that integrated modeling should

have throughout the design and operational life of a university satellite?”

20

1.2.2 Mission Assurance

Mission assurance is defined as “the disciplined application of general systems engineering,

quality, and management principles towards the goal of achieving mission success, and,

toward this goal, provide confidence in its achievement” [36]. Mission assurance actions

should inherently take place throughout the life cycle of a mission; however, the mission

success cannot be determined until the operations phase of the mission. For this reason,

an ideal end goal of an integrated evolutionary model is to produce a mission assurance

tool to be used on-orbit. As each project and mission has unique parameters and metrics

to measure mission success, this final mission assurance tool can come in many different

forms. The thesis will explore the development of a mission assurance tool through a project

currently in the final design stage.

The question that this thesis will address is, “How can integrated modeling validate mis-

sion assurance requirements without requiring additional commitment of time or manpower

from the design team?”

1.2.3 Space Engineering Academy

The Space Engineering Academy (SEA) is a program currently in development by the Air

Force Space and Missile Systems Center (AF SMC). The pilot program initiated in fall 2008

at the Massachusetts Institute of Technology (MIT). The mission of the SEA is to provide

a comprehensive foundation for junior Air Force space officers through a hands-on satellite

design, build, test, and operate experience; developing leaders with enhanced programmatic

decision making skills to ensure the superiority of Air Force space systems.

The desire to create the SEA program stems from a recurring problem throughout SMC:

Air Force junior officers do not have the experience to effectively manage and procure space

systems. Only 10% of officers entering SMC have an aerospace background, and of those,

even less have actual flight hardware program experience. SEA is meant to provide SMC and

the Air Force with an accelerated way for junior officers to gain flight hardware experience

that incorporates “best practices” with low programmatic risk. In the context of an actual

satellite, the participants of the SEA program will conceive, design, build, integrate, test,

21

and operate flight hardware.

This thesis will explore the possibility of using integrated modeling in the SEA program

to enhance the education of future Air Force officers and their understanding of space

systems as a whole. The thesis will describe how integrated modeling is intended to be

used in the SEA two-year project life cycle. The phases of this cycle as well as a proposed

timeline are shown below in Figure 1-1.

Figure 1-1: Space Engineering Academy Timeline

Therefore the question that this thesis will answer is, “How can integrated modeling be

implemented into a structured satellite design and build curriculum such as SEA?”

1.2.4 CASTOR

A large source of motivation for this thesis comes from the CASTOR satellite. CASTOR,

which stands for Cathode Anode Satellite Thruster for Orbital Reposition, is currently

being designed and built by undergraduate and graduate students in MIT’s Space Systems

Laboratory (SSL). The mission of CASTOR is to validate the performance and application

of Diverging Cusped Field Thruster (DCFT) technology. This mission will be achieved by

taking on-orbit state data to compare the degradation experienced by the DCFT to that of

similar technologies. The DCFT is a low-thrust electric propulsion (EP) system that has

been built and is being finalized by the MIT Space Propulsion Laboratory (SPL).

The CASTOR mission concept is to utilize the DCFT to perform maneuvers once on-

orbit and track with time how effective the thruster is at performing these maneuvers.

However, this is not a trivial task for a low-power, low-thrust electric propulsion system.

22

To get a complete picture of the thruster performance, the following conditions must be

accounted for:

� Power available to thruster

� Flow rate to thruster

� Thruster steering angle

� Attitude knowledge error

� Center of Gravity (CG) and Center of Mass (CM) offset

� Orbital perturbations and disturbances

� Duty cycle and thrust schedule

To simplify this problem, significant design and operational decisions can be made to

make assumptions that will allow for easier analysis of the on-orbit data. An example is

continuously firing the thruster in the velocity direction at a constant flow rate and power

setting in a circular orbit with no disturbances. This maneuver is described in many books

such as An Introduction to the Mathematics and Methods of Astrodynamics [3] by Richard

Battin or Fundamentals of Astrodynamics and Applications [41] by David Vallado. An

analytical solution exists for this maneuver, as well as others for constant thrust, accurate

pointing cases. However, a design of such a system would be very costly. In a small satellite

that has mass, volume, power, and budget constraints, this approach is simply not an

option. It should be noted that direct measurement of the thruster’s output performance is

not possible, and therefore state-based trajectory analysis using position and velocity data

will be the primary source of performance analysis.

If the problem cannot be simplified by a robust and predictable design, the alternative

way to solve it is to utilize vehicle state data and an understanding of the space environment

to predict the expected satellite behavior and compare it to the actual behavior. This

must be done by sending the on-orbit telemetry of interest to the ground and running it

through a tool that accounts for the different conditions to compare against the actual state.

The motivation of using integrated modeling in the CASTOR program is to develop this

analysis tool for on-orbit thruster characterization. Additionally, the integrated modeling

will provide CASTOR operators with a model that not only can analyze the past data, but

23

also predict the future state data. This capability then can compare different expected and

actual behavior, and potentially identify anomalous behavior prior to a large vehicle incident

such as a component or system failure. This thesis will use CASTOR as an example to look

at how an experimental electric thruster can be performance tested on a low-cost spacecraft

with loose pointing and thrusting requirements with proper command based modeling and

simulation techniques.

The question that this thesis will answer regarding the CASTOR satellite is, “How will

integrated modeling be used to ensure that the CASTOR satellite will meet its mission

objectives after launch?”

1.2.5 FalconSAT

FalconSAT is the satellite program at the United States Air Force Academy (USAFA). Run

through USAFA’s Space System’s Research Center (SSRC), the FalconSAT program flies

Air Force payloads on satellites designed, built, and operated by USAFA cadets, who are

all undergraduate students [34]. This program started in the mid 1990’s and has produced

four flight satellites to date, with the fifth satellite, FalconSAT-5 (FS-5), due for launch in

the Summer of 2010.

The FalconSAT program is being analyzed in this thesis due to a large amount of data

available from FalconSAT-3 (FS-3), as well as the similarities between CASTOR and FS-5.

Still operational, FS-3 has provided cadets, faculty, and contractors at USAFA with many

lessons throughout its lifetime. Many of these lessons have come from FS-3 anomalies that

the operations and engineering teams identified and resolved after launch. FS-5’s design

contains a propulsion system containing both cold-gas and electric propulsion units, and

therefore there is a desire to analyze the trajectory of the satellite. As FS-5 will launch

before CASTOR, the techniques and tools utilized for CASTOR may be able to be used on

FS-5 for an additional source of verification.

The question that is being approached in this thesis is, “How can the lessons learned

through FalconSAT-3’s lifetime be applied to future satellite designs such as CASTOR and

FalconSAT-5 so that the on-orbit anomalies can be prevented or resolved more quickly?”

24

1.2.6 Thesis questions

To summarize the different areas of motivation for this thesis, the following is a list of the

main topics and questions that this thesis will attempt to answer.

� University Satellites — What is the correct role and effort that integrated modeling
should have throughout the design and operational life of a university satellite?

� Mission Assurance — How can integrated modeling validate mission assurance
requirements without requiring additional commitment of time or manpower from
the design team?

� Space Engineering Academy — How can integrated modeling be implemented
into a structured satellite design and build curriculum such as SEA?

� CASTOR — How will integrated modeling be used to ensure that the CASTOR
satellite will meet its mission objectives after launch?

� FalconSAT — How can the lessons learned through FalconSAT-3’s lifetime be applied
to future satellite designs such as CASTOR and FalconSAT-5 so that the on-orbit
anomalies can be prevented or resolved more quickly?

1.3 Approach

The thesis will begin by reviewing previous work in Chapter 2. The difference between

“modeling” and “simulation” in regards to the paper will be addressed at the onset, along

with their role in several systems engineering handbooks from NASA, INCOSE, and par-

ticularly the DoD and the Air Force Space and Missile Systems Center (AF SMC). The

background research will also include a discussion of many different modeling architectures,

both general systems modeling approaches (such as UML or OPM) and space specific mod-

eling approaches (dynamic simulations, satellite tool-kits). This section will conclude by

identifying a model-based design and operations gap for small satellites.

Chapter 3 will discuss the Integrated Evolutionary Model (IEM) design approach. This

will begin by defining the different elements in the IEM design (SIM, TDA, MAT) and the

general IEM approach. The chapter will then describe how the model should be used in

all phases of the satellite design, from concept through operations. Examples are given or

referenced for each of the five design phases, and will include ExoplanetSat, CASTOR, and

FalconSAT-3.

25

The IEM elements previously defined are implemented in Chapter 4. The SIM element

design is implemented through additions of a command-based, event driven capabilities in

the CASTOR satellite integrated model. FalconSAT-3 is used to illustrate the operational

development of a TDA tool, and a trajectory analysis tool design is described for the

CASTOR MAT.

The next chapter, Chapter 5, will analyze and discuss the results of the implemented

model described in Chapter 4. It will begin with describing the results of the CASTOR and

FalconSAT-3 models, and then look at general guidelines and lessons that can be applied

to small satellite and university satellite design processes as a whole.

The final chapter concludes the thesis and analyzes areas of improvement and future

work than can be pursued regarding this topic and the work outlined throughout the thesis.

26

Chapter 2

Background

2.1 Modeling, Simulation, and Integrated Modeling

The DOD System Engineering Fundamentals Guide defines a model as “a physical, math-

ematical, or logical representation of a system entity, phenomenon, or process,” and a

simulation as “the implementation of a model over time” [37]. To expand on these defini-

tions, an integrated model is simply defined as a collection of models that interface with

each other through dependencies and relationships. The field of systems engineering in-

cludes many different high-level modeling architectures, frameworks, and methodologies,

such as the Unified Modeling Language (UML) and Object-Process Methodology (OPM).

Software platforms such as SysML (Systems Modeling Language) and OPCAT (Object-

Process CASE Tool) utilize respective UML and OPM methodologies, and can be used to

represent, and therefore model, any system [10]. These modeling methodologies and tools

have many uses throughout all disciplines, including aerospace engineering and satellite

operations. However, this thesis will focus on more specific applications of modeling and

simulation that can be used in greater depth in the satellite engineering process.

2.2 Satellite Engineering Process

The satellite engineering process and general systems engineering process is described by

many different agencies and organizations. Examples of these processes can be found in

27

documents such as the AF SMC Systems Engineering Primer and Handbook (SEP&H) [1],

NSS 03-01 [2], NASA’s System Engineering Handbook [25], and the INCOSE Systems Engi-

neering Handbook [17]. These processes include programmatic and technical specifications,

standards, and methodologies.

2.2.1 Satellite Engineering Life Cycle

Prior to discussing modeling in the satellite engineering process, the general life cycle of a

satellite must be understood. The life cycle is specified by most organizations as lettered

design phases. Figure 2-1 shows the DoD Space Systems Acquisition Timeline as specified

in NSS 03-01, the DoD Space System Acquisition Process document.

Figure 2-1: NSS 03-01 Acquisitions Phases [2]

This figure identifies five distinct phases in the spacecraft life cycle. These phases are

summarized below:

� Pre-Phase A: Concept Studies — Identification of mission objectives, architecture
and key systems and technologies. KDP-A in NSS 03-01 stands for Key Decision
Point-A, which is the approval point to move to Phase A.

� Phase A: Concept Development — Define system requirements and perform trade
studies to identify desired design architecture. Phase A includes two reviews, the
Systems Requirement Review (SRR) and Systems Design Review (SDR).

� Phase B: Preliminary Design — Increased details in design, analyze and reduce
system risk, and test critical technologies. Phase B is concluded by a Preliminary
Design Review (PDR).

28

� Phase C: Complete Design — Finalize any design choices and have a fully verified
design and hardware selected. Test components and assemblies to increase design
confidence and lower risk. Phase C concludes with a Critical Design Review (CDR).

� Phase D: Build and Operations Phase — Manufacture, assemble, and inte-
grate all components, sub-assemblies, and assemblies into complete system. Perform
functional and environmental tests on both ground and space segments to give full
confidence in success of mission. This phase also includes all launch activities and
then transitions to mission operations.

The NSS 03-01 document is just one example of the space system acquisitions life cycle.

Other agencies such as NASA have similar project time lines, although they differ in the

number of reviews, number of phases, and the nomenclature. The NASA timeline is shown

in Figure 2-2.

Figure 2-2: NASA Project Life Cycle [25]

This thesis will use a timeline that is very similar to both the DoD and NASA examples.

It is more general as it does not specify approval points or important documentation, and

it only includes the four reviews. This general design phase is shown in Figure 2-3. This

figure take the majority of the phase names from NSS 03-01, but like the NASA timeline, it

distinguishes between build and operations phases with a Phase E. The fourth review shown

29

is the Flight Readiness Review (FRR). The SRR and SDR reviews are shown together to

culminate Phase A, however it is likely that the SRR would occur prior to SDR. It should be

noted that these phases were also picked to represent the SEA design described in Section

1.2.3.

Figure 2-3: Generic Space System Life Cycle

The design life cycle of a space system can also be referred to as the conceive (Pre-A

and Phase A), design (Phases B and C), implement and test (Phase D), and operate (Phase

E) process. This process, also known as CDIO, is an educational framework created in the

MIT Department of Aeronautics and Astronautics, that has spread to over 50 universities

in more than 25 countries [11].

2.2.2 Modeling in the Satellite Engineering Process

A large amount of work has been done previously in modeling in the satellite engineering

process. This work can be sorted into the following categories, which follow the space

systems life cycle:

� System architecture (Phases Pre-A to A)

� Preliminary design (Phases A to B)

� Detailed design (Phase C to D)

� Operational analysis (Phase E)

Systems architecture studies occur at the very beginning of the system life cycle. In many

cases, these are feasibility studies to perform large scale concept trades in selecting a mission

architecture for complicated constellation or fractionated designs. Example in this class are

Jilla’s master’s thesis on analyzing the trade space for a separated spacecraft interferometry

mission [18], de Weck’s master’s thesis on modeling and simulation for the next generation

space telescope design [8], and Cohan’s master’s thesis on integrated modeling in the control

architecture of lightweight space telescopes [4]. These examples are all highly technical

30

papers that analyze the optimal architecture to meet a specific objective, and all utilize

integrated modeling in the process.

Significant work has also been accomplished in the modeling of satellite preliminary de-

signs. Pannebecker’s thesis compares and contrasts different options for preliminary design

modeling tools [29]. Pannebecker also develops a spreadsheet tool that can be used for

preliminary spacecraft design. All of the tools described involve integrated modeling, as

it is important during the preliminary design to show the effects of different subsystems

on each other. COTS software platforms such as STK (AGI), FreeFlyer (a.i. solutions),

and Satellite Control Toolbox (Princeton Satellite Systems) support conceptual and pre-

liminary designs and come built with common functions for all spacecraft, such as orbital

propagators and coverage analysis.

However, when the satellite moves into more detailed designs, the preliminary models

are typically replaced with detailed subsystem modeling tools. Examples of these modeling

tools are structural Computer Aided Design (CAD) and analysis tools, thermal design

tools, attitude models, and payload models. These models are used to perform the complex

analysis that is expensive or unrealistic to test on the ground. No standard commercial

tool exists that meets the detailed design requirements for all subsystems and demonstrates

the integrated performance of the design. Creation of an integrated performance model for

a complete system is not standard for small satellites due to the large resource cost for a

seemingly minimal benefit.

Finally, operational analysis tools are used to analyze satellite data. While certain exten-

sions of this data can be compared to COTS tools, such as the orbital position or attitude,

the majority of the telemetry is specific to the satellite’s payload data and supporting sub-

system health (bus) sensors. Operational analysis products are typically internally-created

programs or scripts developed during later design phases or even after launch. Only recently

have university satellites become a reality, and the operational analysis methods for these

spacecraft are largely undefined.

The subject of model-based design is gaining momentum in the systems engineering

field. The Object Management Group (OMG), the same organization whose work led to

the adoption of UML, outlined a general Model Based Architecture in 2003 [15]. Noriyasu,

31

et al apply model based design principles to the satellite engineering process [27]. Noriyasu’s

work on the Quasi-Zenith satellite system identifies many of the same principles outlined in

the modeling design explored in this thesis. These principles include not only a model-driven

satellite design, but also a command-based simulation as an operational tool. The increasing

use of model-based design in the satellite life cycle has also led to NASA’s Standard for

Models and Simulations (NASA-STD-7009) [24]. This standard describes the requirements

for the use of modeling and simulation in a system design with an emphasis of how credible

the model and simulation results must be the function that they serve.

2.3 Background Summary

Modeling, simulation, and integrated modeling have been used in all stages of the space

system design process. However, the majority of the integrated modeling tools are only

available in preliminary design phases, as the detail required in complete designs is specific

to a given spacecraft. With university satellites starting to perform complete missions, a gap

is identified in the development of complete integrated performance models and operational

analysis tools. This thesis attempts to move towards filling the gap by providing a model-

based approach to small satellite design and operations. This approach will utilize systems

engineering and mission assurance principles as well as applicable modeling and simulation

standards such as NASA-STD-7009 in the creation of the approach.

32

Chapter 3

Integrated Evolutionary Model

Approach

3.1 IEM Framework

This chapter describes the design of an integrated evolutionary model approach for small

satellite development. The general approach that will be used is shown below in Figure

3-1. There are four main blocks in this diagram: Satellite Integrated Model (SIM), Satellite

(SAT), Telemetry and Data Analyzer (TDA), and Mission Assurance Tool (MAT).

Figure 3-1: Integrated Evolutionary Model Framework

The chapter will first define these blocks, and then describe how the integrated model

will change through the satellite life cycle as given in Section 2.2.1, Figure 2-3. All acronyms

can be found on page 17. Examples are given for many of the different phases of design

(A-E) as well as for each integrated model element (SIM, TDA, and MAT).

Throughout the chapter, certain tasks are written to state that they “should” occur

33

while others are written that they “will” or “must” occur in a certain structure or method.

This is done as this chapter describes a baseline design process and it is expected that

certain elements described may be modified for a specific project. However, to fully track

the progress of the IEM design through all phases, all tasks or decisions that “should” occur

will be assumed to be executed as written.

3.1.1 Satellite Integrated Model (SIM)

The SIM represents the integrated model that is developed through the entire design pro-

cess to represent the system. In the evolutionary model approach, the SIM is created at

the beginning of a program. During the conceptual phase, the SIM can be used to develop

specific requirements and Concepts of Operations (CONOPS), compare major design de-

cisions, model new systems and analyze their effects on the mission, and to assist in the

feasibility and visualization of a new idea. As the mission is defined and requirements are

identified, the SIM can be tailored to specifically look at the design options being analyzed.

Unknown systems or components can be parameterized to allow for more specific subsys-

tem and component trades. Near the end of the design process, the SIM can be used to

demonstrate the feasibility of the design through integrated simulation or similar feasibility

studies. As hardware is acquired and tested, the SIM can be updated to tune the model

prior to operation of the satellite. By launch, the SIM would be complete and ready to be

used to predict the satellite’s behaviors and/or performance.

The SIM interacts with two other blocks: the satellite (SAT) and the Telemetry and

Data Analyzer (TDA). The interaction between SIM and SAT is shown by four two-way

arrows in Figure 3-1. These arrows represent all phases of the satellite design life cycle

other than operations (Phases A-D). During these phases, the SIM would be used to define

what would ultimately become a satellite Flight Model (FM). Additionally changes in the

satellite design, which can occur often during a program due to programmatic or technical

considerations, will need to be fed back into the SIM. The SIM primarily interfaces with the

TDA by providing its output to the TDA to be used as comparison with the SAT. A feedback

loop from the TDA to the SIM represents the operational level of the design process. In

this loop, the SIM would be updated to tune simulation and satellite parameters, assess the

34

feasibility of operational changes, account for new information (e.g. loss of hardware device

or new control software), or fix any inaccuracies.

Additionally, a command input segment exists in the SIM, displayed in Figure 3-1 by

the dashed line between the SAT and the SIM. This represents using the actual commands

executed by the satellite as inputs to the SIM. This allows the integrated model analysis

elements to have a complete comparison between the simulation output and the actual

satellite telemetry. Therefore the SIM can produce two outputs: expected future behavior

of the satellite (a priori) and the post-processed event-based (a posteriori) behavior. Both

outputs are useful and can be fed into the TDA. The a priori results can be compared

to the a posteriori output to see if the satellite’s major events and tasks lines up to the

predicted behavior. Furthermore, the a posteriori generated output is useful to effectively

compare the simulation and satellite data. Without the synchronization of commands and

common baseline, it becomes difficult for the TDA to clearly find any anomalous data.

In this chapter the SIM will be referred to as the “integrated model” in the early phases.

Once the other IEM model elements are created in later stages, “integrated model” will refer

to the SIM, TDA, and MAT.

3.1.2 Satellite (SAT)

The satellite (SAT) block in Figure 3-1 represents both the satellite from its early concept

as only an idea to its final on-orbit flight configuration. The block could be represented

by the generic satellite phases or CDIO description from Section 2.2.1. All design reviews,

prototypes, and engineering models are represented by this as well. The dashed line from

the SAT block to the TDA block represents the telemetry that comes from the satellite.

Although this could represent test data or early functional testing, this primarily represents

the space to ground segment telemetry from the on-orbit satellite. As previously described,

the dashed line that connects the SAT to the SIM represents the commands that the satellite

has executed. The frequency and number of commands sent will depend on the scope of the

mission as well as the importance in simulation on the ground. For the IEM architecture

to succeed, the following requirements are placed on the satellite:

35

� The satellite must send time-tagged commands that it executes

� The satellite must downlink time-tagged telemetry to include bus health, system and
subsystem performance, and payload data at a minimum

The four top arrows in the SAT block represent the conceive, design (preliminary and

complete), and implement stages of the design process, and the right dashed arrow rep-

resents the operate stage. The diagram does not show any feedback to the satellite once

it is in the operational stage, as it is assumed that one cannot change the existing FM

hardware once on-orbit. The exception to this is the case of having redundant hardware

systems, often referred to as “A-side” and “B-side” components. Most small satellites and

university-class satellites do not have these redundant systems in place. Therefore, while

possible to model using an IEM, the on-orbit transition from different hardware elements

is not heavily discussed in this thesis. The most common way to change the FM when

on-orbit is by uploading new software, although this is not necessarily a direct feature in

the SIM or TDA. The SIM will likely be used to test new software or algorithms for the

FM, so there is an indirect relationship with the SIM updating the SAT once on orbit.

3.1.3 Telemetry and Data Analyzer (TDA)

The TDA block represents the juxtaposition of the satellite telemetry data with the inte-

grated model output. A feedback arrow runs back to the SIM block representing possible

updates in the integrated model based on TDA results. No feedback arrow returns to the

satellite as the TDA does not represent the command and control interface with the satel-

lite. The TDA outputs the result from comparing the measured and processed data with

the integrated model data and feeds into the Mission Assurance Tool (MAT). The type and

format of this data is dependent on each mission, and will be discussed in greater detail

with possibilities and examples later in the thesis. In general, the TDA will analyze the

bus health and functionality of the satellite, leaving the analysis of the payloads and major

mission performance characteristics to the MAT. Any post-processing or filtering of teleme-

try is done in the TDA in this framework. One common example is filtering attitude sensor

data to determine the attitude position and angular rates of the satellite.

It should be noted that the TDA is different than an operational telemetry display

36

screen. Often during real-time satellite contacts, the current telemetry is streaming live and

being displayed on an operator’s screen. This is referred to simply as a real-time telemetry

output, or a status of health output. The TDA compares and measures simulation data

with satellite telemetry, whether in real-time or post processed.

Although the TDA and SIM blocks are separated in this diagram, they may be integrated

in one program in reality. This decision will depend on the satellite operations and analysis

plan for the given mission. The blocks are distinguished in the diagram to illustrate the

difference in their function. The SIM is meant to predict the state as well as to run the

commands from the SAT to give an event-based prediction, and the TDA is meant to

take either prediction and compare it to the actual data. The function of comparing and

analyzing data is purely done by the TDA.

3.1.4 Mission Assurance Tool (MAT)

The MAT block represents the final step of analysis of the fully processed data. This block

focuses on measuring the high-level mission of the satellite system. This tool is used to

further process any data to provide to a customer or to track the progress and success of

the mission. As with the TDA, the MAT may be represented in the same tool as the SIM;

however, its function is unique enough to list it separately. Certain missions may have

mission objectives that are very straightforward and easy to measure, which lead to a grays

area in the importance of the MAT. One such fictional mission is to downlink one thousand

images in three months at a minimum frequency of five pictures per day. This mission

is easy to measure, so it is not clear why an additional tool is necessary. The team may

decide that tracking the total number of images and the number of images downlinked per

day is sufficient to meeting its requirements, and the MAT will simply track these values.

However, the intended use for the MAT is to not only track the measurable criteria, but

to analyze the payload and mission performance to get a better look into the interaction

of the different systems. For example, the TDA may output that the actual link margin is

becoming increasingly lower than the expected, leading to the conclusion that a problem

may occur that would force a lower data rate, which in turn will decrease the number of

images that can be downlinked per day. Although the TDA identified this problem, the

37

mission impact is identified through the MAT design and execution.

The MAT is most useful for small satellites that have a mission or payloads that cannot

be fully predicted without taking into consideration the dynamic nature of a multitude of

integrated subsystems. The CASTOR design is a clear example of this case. The mis-

sion objective is to characterize the thruster’s on-orbit performance. Without considering

the operating commands, timing, pointing direction, and power levels, the thruster perfor-

mance could not be fully analyzed. With a significant increase in cost, CASTOR could

be designed to have perfect pointing, operate the thruster continuously and at a constant

power level, making the thrust characterization problem much easier; the implementation

of the integrated model and MAT bypass this cost increase and allow for a much lower

satellite complexity and cost.

3.1.5 General IEM Design Approach

The depth and detail of each part of the the IEM framework will depend greatly on the mis-

sion, as well as the design phase. The next sections will outline the baseline requirements for

using the integrated model throughout the design phases described in Section 2.2.1, Figure

2-3. Examples will be given for each phase for each IEM element (SIM, TDA, and MAT).

However, there are certain elements of the IEM design approach that are consistent through

each of the phases. Three such elements are IEM deliverables timing, documentation, and

configuration and change control.

IEM Deliverables Timing

It is important for the IEM elements (SIM, TDA, MAT) to be delivered in time to ben-

efit the satellite design. The simulation framework and structure is most important to

design and complete earliest, due to its inherent nature with all other elements and models.

Changes are anticipated to occur after this baseline model is created and are discussed in

the configuration and change control section. While important to be completed in time

for analysis, the integrated model must also be understood early in the different phases to

ensure the design team will properly utilize the different functions. Therefore a base set of

documentation must be available.

38

Documentation

Documentation of the IEM design and its products is necessary throughout each phase.

At a minimum, documentation must exist that gives instructions for utilizing the different

tools, so that different teams can perform analysis with the model. The following process

for documentation is recommended, and it creates two sources of documentation: a user’s

manual and a design document.

The user’s manual will describe how to run the integrated model and its different fea-

tures. This includes explaining the types of analysis possible, example outputs, and limita-

tions of the model. The user’s manual is written for individuals who will execute the IEM

products without understanding the programming structure or logic involved. This is most

important in the operations phase, as those using the integrated model may know little

about the development of the model. The user’s manual can also serve a training purpose

to get new individuals familiar with the satellite by analyzing outputs from various simu-

lated operating conditions. The user’s manual must be produced by the time the integrated

model is delivered.

The integrated model design document is written to give a much deeper background and

understanding of the integrated modeling framework. This document will grow through the

different phases as the integrated model evolves. The design document can be outlined as

follows:

1. Overview

� Satellite overview

� Model objectives and purpose

2. Model Organization

� Model structure (e.g. software interactions, functions used, objects and methods)

� Information flow (e.g. N2 diagram)

3. Model Design

� Operational logic

� Individual model functions

– Reasoning/justification and assumptions
– Model verification and validation results
– Shortcomings and updates required

39

The introductory section will include an overview of the satellite and state how the

model will be used in the satellite design and operations.

The model organization section will describe the flow of information through the inte-

grated model. This includes the different inputs, outputs, variables, parameters, functions,

and objects that are contained in the model. In this section, it is acceptable to treat most

functions and objects as black boxes, meaning that the internal behavior of the specific

function is not described. A common organization structure, the N2 diagram, is shown on

page 48. This is done as there may be different authors of specific model elements, and the

interface with other elements must be set to ensure proper functionality upon integration.

The majority of the design document will describe the design and logic of specific model

elements. This is meant to provide a greater level of understanding and reasoning than

basic code comments, although ideally the code will be commented with similar notes. This

logic can be represented by algorithms that specify all formulas, conditional statements,

and assigning of local and global variables. Vallado’s astrodynamics book gives an excellent

example of how different functions are represented by algorithms [41]. This is an excellent

example as the code can be found in many different programming languages for free online

[40]. This section will also describe the motivation and reasoning for any user-created

function or statement, which has great utility in programs with high turnover. This section

should also discuss the verification and validation of the model and simulation elements.

Prior to making any critical design decisions based on a model, it is important to have full

confidence in the model. Model elements may be implemented prior to being verified or

validated, so it is important to understand their effect on the system. The effect on the

user and the limitations for which the model is valid will be specified in the user’s manual

as previously mentioned. Lastly, the limitations and shortcomings of the model should be

described, and necessary model updates should be documented.

Configuration and Change Control

Both the integrated model and documentation deliverables require configuration control due

to their frequent updates and changes. It is recommended to follow a process of producing

the initial deliverables in the model and documentation as early as possible in the design

40

phase, and finalizing the model and documentation at the end of the design phase. There

are several ways to approach the problem of configuration and change control, and this

section will outline one type of approach.

As many individuals and teams may be changing different elements, a SubVersion (SVN)

repository system should be used to ensure that one update does not cause problems for the

entire integrated model. A commonly used freeware SVN client that can accomplish this

task is Tortoise SVN. These model changes should have supporting addendums to both the

user’s manual and design document. At the final deliverable of each phase, these addendums

will be formatted into the user’s manual and design document as necessary. At the beginning

of the next phase, the recently “finalized” model and documentation should be placed in a

“controlled” folder and not be modified (i.e. write permissions locked). Any modifications

should be done in the “working” folder, with addendums to supporting any changes. Note

that modifications done in the “working” folder should still be controlled utilizing SVN

processes, as several personnel may be updating the model elements concurrently.

This structure, displayed in Figure 3-2, would create five different controlled user man-

uals and design documents in each stage. Although this seems to be wasteful, particularly

with a SVN repository in place, this ensures that each phase and its corresponding model

and documentation is clearly discernible. This also allows for a clear example for any

subsequent mission or designs using a similar IEM approach.

Figure 3-2: IEM Configuration Control Example

41

3.2 Conceive — Phase A

3.2.1 Phase A Integrated Model Design

In the early concept studies and development stages, modeling can be utilized to identify any

uncertainties as well as to perform trade studies of major architectural or design changes.

One such example is determining the optimal design of a new payload system, such as

a segmented mirror design for improving the areal density, or mass per unit area of the

primary mirror, in imaging missions [5]. Cohan’s dissertation gives a detailed example of

how integrated modeling can be used in preliminary conceptual studies phase (Pre-Phase

A) to assist in the development and design of a technology.

This thesis is more focused on Phase A and concept development phase as a starting

point, as this is when the integrated system is first developed. This phase begins with the

development of a mission statement, objectives, and success criteria. This mission leads to a

baseline system with certain payloads and primary subsystem. The integrated model can be

used to develop the CONOPS, identify system requirements, and establish the feasibility of

the mission and system architecture identified. The initial integrated model should perform

the following:

1. Quantify mission objectives with Figures of Merit (FOM) and create a plan to measure
and record the FOM

2. Identify major payload specifications and requirements

3. Identify primary subsystem(s) and mission parameters

� Determine the uncertainty and familiarization of each subsystem

� Identify key requirements on each interface or subsystem

� Estimate the intended depth of detail required for each subsystem model to
perform mission

4. Determine integrated model platform and supporting personnel and resources

5. Create initial model of system

� Model must integrate payload and key subsystem(s) to validate mission

The first requirement for the integrated model is to support the development of the

MAT and TDA. The figures of merit (FOM) identified will later be used in the MAT to

42

measure the mission success. Examples of FOM include coverage or collection time, data

downloaded, images taken, or ∆V performed. The FOM should be clearly identified so

that they are measurable and trackable and are not a simple binary measure of whether

something has happened or not. The FOM also will be used later to assist in the TDA

output.

The second requirement is to determine the major payload requirements. Different

payloads require different degrees of support from the spacecraft bus, and this is important

to know to determine which subsystems are most important to mission success. An example

is that a communications satellite with omni-directional antennas may require little attitude

control, but a similar satellite with a high-speed laser communications platform will require

much finer control. Not all payload requirements are fully specified at this point, so this

step is primarily a qualitative assessment based on previous experience or a best estimate

of the driving factors.

The next step is to identify the primary subsystems and interfaces that stem from the

mission objectives and payload requirements. This is one of the most important steps in

forming the outline for the initial integrated model as it is the cornerstone to the scope

and detail of the model through the rest of the design process. Examples of primary

subsystems are the power, attitude control, thermal, guidance, communications, avionics,

and propulsion systems. Additional mission parameters that may be very important are the

orbital characteristics, mass, volume, cost, schedule, lifetime, and operational capabilities.

For each primary subsystem or mission parameter, the team should determine the level

of confidence and uncertainty associated with each. Additionally, in this step, the team

should identify how the different systems interface and depend on each other. Determining

the coupling and integrated nature of the subsystems will depend heavily on the next step,

which is to determine the depth and detail that the model should give for each system.

This intended depth is for the intended flight integrated model, and is not the level of

detail necessary in the Phase A model.

The four measures should be used to determine the initial subsystems and mission

parameters to model. Additionally, secondary subsystems that are important to the mission

but not critical to its success should be noted at this time for future implementation into

43

the integrated model. The decision of which mission elements to model can be done with

a varying degree of effort and planning, depending on the level of understanding of the

mission. If the mission has a clear concept or straightforward objective, it is possible to

pick the subsystems or parameters without any formal quantification of the elements. To

perform a more quantifiable method of choosing which mission elements to model, a rating

or weighting system can be used. Requirements framework such as Quality Functional

Deployment (QFD) [21] can be modified as well to identify major mission parameters.

An example of a quantifiable rating system is shown in Table 3.1. The weights associated

with each are a Boolean flag for the importance of the subsystem or parameter, and then

a integer 0 to 4 for the uncertainty level, detail required, and integrated nature. These

weights could be modified as desired for a particular mission. The basic mission identified

for the example is the on-orbit demonstration and characterization of a low-thrust electric

propulsion system.

Table 3.1: Integrated Model Elements Decision Selection for Low-Thrust EP Mission
Subsystem Importance Uncertainty Detail Level Integration Score

(0 or 1) (0 to 4) (0 to 4) (0 to 4) (Jel)
Power 1 3 3 4 10
Thermal 1 2 3 2 7
Avionics 1 2 1 1 4
Propulsion 1 2 4 3 9
Comm. 1 2 2 2 6
Guidance 1 2 2 1 5
Attitude 1 2 3 2 7
Structure 0 2 1 2 0
Payload Note: Propulsion system represents payload —
Mission Importance Uncertainty Detail Level Integration Score
Parameters (0 or 1) (0 to 4) (0 to 4) (0 to 4) (Jel)
Orbit 1 2 4 3 9
Mass 1 1 1 2 4
Volume 0 1 1 2 0
Cost 0 1 3 1 0
Lifetime 1 2 2 1 5
Operations 1 3 2 3 8

The decision of which mission elements to model by flight can be chosen by formulating

a cost function or weighting equation. The exact equation, like the weighting and scaling

44

factors, can vary. The equation used in this example is shown below, with I representing

importance, U as uncertainty, D as detail required, and C as the coupling or integration

term.

Jelement = I · (U +D + C) (3.1)

The results of equation 3.1 for this example are shown in the last column in Table 3.1.

With each subsystem or mission parameter ranked and weighted, the final action in this

step (Step 3) is to decide which elements will be included in the model. This can be done

by placing cutoff values on numerical scores, by using the numerical data to make a more

detailed qualitative decision, or simply deciding without any formal process as mentioned

before. In this example, the integrated model would consider the effects of everything with

a score greater than 0 by the end of the system development and design (Phase D). To

start, elements with a threshold score of 8 or above would be modeled by the end of Phase

A, which would lead to an initial integrated model with the power, propulsion, orbit, and

operations systems represented. The cut-off value for deciding when each element should

be included in the model will be primarily based on the availability of resources. The model

should be used to support the decision making and mission validation processes in support

of Phase A deliverables like SDR.

To generalize this process, as it should be modified for each mission, the different sub-

systems and mission parameters can be generalized into the following criteria:

� Primary Elements — Payload, essential subsystems, and mission drivers

Example: Propulsion, power, orbit, & operations (Jelement ≥ 8)

� Secondary Elements — Important subsystems that interface with primary elements

Example: Thermal, communications, & attitude (8 > Jelement ≥ 6)

� Constraints — Mission characteristics that affect primary and secondary elements

Example: Mass and lifetime (8 > Jelement ≥ 4)

� Supporting Elements — Other subsystems or parameters that support model elements

Example: Avionics and guidance (6 ≥ Jelement > 0)

To reiterate, these examples are specific to Table 3.1. This general nomenclature will be

used in Table 3.2 later and throughout the rest of this thesis.

45

In Step 4 of the Phase A IEM process, the team must decide which platform the in-

tegrated model will utilize as well as the resources that will be allocated to its develop-

ment. There are two major classes of platforms to choose between: commercial, off-the-shelf

(COTS) software or internally developed software. COTS software packages such as AGI’s

Satellite Tool Kit (STK), a.i. solution’s FreeFlyer, or Princeton Satellite System’s Satellite

Control Toolbox (SCT) come pre-programmed with many tools that are necessary in any

space mission, and usually allow for user-defined functions or add-ons, whereas user-defined

software is developed in-house. There are advantages and disadvantages to both classes of

software, so it is up to the personnel of the team to determine which type is best for their

use. The recommendation of the author is to utilize COTS if it does not have to be greatly

modified to meet the final intended use of the integrated model. An example would be using

STK to perform communication coverage analysis for a communications payload. However,

it is recommended that if the integrated model is being developed to analyze the interaction

between different subsystems and specific mission parameters, a user-defined software that

is built specifically for the mission may be a better choice. An analysis and discussion of this

reasoning can be found in section 5.3.1. The decision of COTS versus internally developed

software is not necessarily black and white. Included in the internally-developed criteria

are basic COTS software packages such as MATLAB® or Microsoft Office Excel®. A

combination or hybrid method of utilizing the maturity of COTS space packages with the

flexibility of internally-developed software is also an advantageous option. Many different

software platforms and solutions exist, therefore it is highly encouraged to utilize the tools

that are familiar to the team, if possible, as the primary decision choice.

The second half of choosing a platform is assigning a workforce and requirements to

the integrated model development. The hypothesis of this thesis is that an integrated

evolutionary model will indirectly free resources through improvement of design choices,

ease of feedback, and lower operational costs. The integrated model itself will require a

significant amount of effort that must be accounted for in the program’s Work Breakdown

Structure (WBS). At this point, the team should outline the intended functionality and

usage of the model through its lifetime in a set of integrated model requirements for each

phase of the satellite. An example of these requirements based on the definitions of elements

46

(primary, secondary, and supporting) and constraints explained previously is shown in Table

3.2.

Table 3.2: Example of Integrated Model Requirements by Phase
Phase Requirements

Phase A Model interaction of primary elements
Concept Create implementation plan for secondary elements

Development Validate mission and demonstrate mission completion
Phase B Incorporate secondary elements in model

Preliminary Update primary element models to PDR design
Design Incorporate constraints into model

Verify any testing data or prototypes with model
Outline plan for implementing supporting elements
Perform trade studies and parameterize majority of inputs
Create TDA and MAT outline
Validate mission and demonstrate mission completion

Phase C Incorporate supporting elements into model
Complete Update primary, secondary, and constraint elements to CDR design

Design Use prototypes, hardware, and testing data to verify model
Limit variables and parameterization to select element characteristics
Create TDA and MAT software tools
Feed in initial command and telemetry formats into SIM and TDA
Validate mission and demonstrate mission completion

Phase D Freeze model parameter selection to match QM or FM design
Build & Simplify any unnecessary elements or model features

Test Verify model and hardware with prototypes and tests
Complete TDA and MAT and test with QM or FM telemetry
Create on-orbit integrated model execution procedures
Incorporate flight software or command structure (if necessary)
Validate mission and demonstrate mission completion with MAT

Phase E Perform any on-orbit calibration or tuning of SIM, TDA, or MAT
Operations Maintain TDA, MAT, and SIM to interface with SAT data

Update SIM for any major operational changes (SW, CONOPS changes)
Update SIM, TDA, MAT to analyze and resolve any anomalous behavior

The requirements in each phase will be further explained in the rest of the chapter

along with examples in Chapter 4. The requirements, workforce, and framework for the

integrated model that are chosen in Phase A can be revisited and modified throughout

the design process as the familiarization with certain concepts changes, new information is

received, or if the mission concept and scope significantly changes.

The fifth and final step in developing the integrated model in the conceptual development

47

phase is to create and execute the first cut of the integrated model. This means that the

primary elements should interact with each other to obtain an output that can validate

the success of the mission. To assist in the software development and model organization,

a N-squared (N2) diagram can be utilized. N2 diagrams illustrate the linking between

different model elements by showing input and output parameters that feed to and from

each element. This allows the work to be separated and the modules created and modified

concurrently. An example of a very simple N2 diagram is shown in Figure 3-3 between the

power, propulsion, orbits, and operations system for the EP characterization mission.

Figure 3-3: Example Phase A N2 Diagram for EP Mission

Arrows that come from the top of a block represent inputs to a function that come from

a previous module, which are shown as arrows that stem from the right of a block. The

arrows that originate from the left of a block represent outputs that need to feedback to

a previous model element that has already been run. These outputs then connect to the

bottom of a block. An ideal N2 model will minimize the feedback paths to simplify the

model. However, in a complex system, many feedback paths become necessary, so it is up

to the model developers to decide on the best arrangement for both software performance

and intuitive nature.

As Phase A is still dealing with a concept and the majority of the satellite performance

parameters will not be defined, the initial integrated model should have a focus on param-

eterization rather than model accuracy. A first order approximation of a primary element

is acceptable for most cases when dealing with major trades. An example of this would

be to use a simplified orbital propagator for determining the orbital characteristics such as

48

coverage time, eclipse time, or thrusting time for a constrained electric propulsion system.

The integrated model can be described by Figure 3-4. This figure is the first building

block of what will turn into Figure 3-1. The SIM block has been represented by the initial

integrated model which consists only of the primary elements, labeled as P1. The subscript

of “1” is used to describe the revision number of the set of elements, and is usually correlated

to the level of detail. The integrated model will produce an output that will specify if the

mission objectives are met; however, this is not as detailed at the MAT will be in future

phases. The SAT block is displayed as an oval, which is used to differentiate a physical

object with an idea. The same labeling and description will be used for the diagrams for

the other phases of design.

Figure 3-4: Phase A IEM Design Diagram

3.2.2 Phase A Integrated Model Example — ExoplanetSat

The Phase A integrated model design outlined was executed on the Exoplanet Cubesat

(ExoplanetSat). The mission of ExoplanetSat is to use a cubesat to detect Earth-like

planets orbiting bright Sun-like stars using the transit method. The team was midway

through Phase A when they implemented the IEM approach. Versions of the requirements

identified on page 42 already existed, albeit not specifically for use with integrated modeling.

The team also had access to the Phase B and C CASTOR integrated models that will be

described later. The results of implementing the IEM design in the ExoplanetSat design

are described in Section 5.1.1.

49

3.3 Preliminary Design — Phase B

3.3.1 Phase B Integrated Model Design

Upon successful completion of SDR or the equivalent milestone, the effort should shift from

concept evaluation to design. Subsystem and assembly requirements will become more

specific as the interfaces become better defined. If integrated modeling was not a part of

the system development, the basic physical relationship and performance verification steps

would begin occurring in this phase. By PDR, a design usually is verified with different

budgets to include mass, data, power, communications, thermal, and others. Therefore the

effort of the integrated model in Phase B is to incorporate the results of the subsystem-

specific studies into an integrated performance model of the mission. This can be done by

taking key parameters from the individual analyses and using these values as the integrated

model variables, or by creating a subsystem model that allows for both stand-alone subsys-

tem analysis as well as is incorporated as a function into the integrated model. The benefit

of using the detailed models directly in the integrated model is that system level trades

can be performed using multidisciplinary optimization techniques much easier than if the

subsystem results were independent of the model.

Before moving directly into the implementation of the subsystem models, the team

should step back and ensure that the plan that was created in Phase A should be imple-

mented as written. Questions to answer include:

� Has the mission significantly changed?

� Are the requirements that were created in Phase A (Table 3.2) still valid?

� Is the platform that was used in Phase A the best for future analysis?

� Are the primary and secondary elements and constraints all important for measuring
mission success?

� Are there any other elements or characteristics that need to be added to the modeling
framework?

If the answer is “yes” to any of these questions, then the team should decide if any of the

integrated model plans need to be adjusted.

50

The primary role of the integrated model in Phase B is to integrate subsystem designs to

verify that the requirements are met and most importantly, the validation of the mission. As

much as possible, the design parameters in the mission and subsystem elements should be

flexible. Additionally, few, if any, subsystem or system behaviors modeled that are passed

up in the design should be scrapped in this phase.

If a N2 diagram or similar diagram exists, it should be updated with the different mission

element interfaces. Even if the input or output parameters are hard-coded and unaffected

by the mission layout, the model structure should contain all possible interfaces between

the model elements and functions. Based on the requirements from Table 3.2, the primary

elements, secondary elements, and constraints should all be included in the Phase B model.

However, the supporting elements will need to be defined, even if they are only constants.

The integrated nature of the model, while assisting in system level trades and mission

assurance tasks, can inhibit a subsystem team’s ability to perform their own trades. One

such solution to this issue is to keep the subsystem models independent of the integrated

model. This allows the team to work independently of other teams, test new designs quicker

and more efficiently, and then upgrade the integrated model later. An alternate approach

is to have in the integrated model the ability to turn “on” and “off” different functions of

the satellite. This allows subsystems to only maintain one model and to analyze the effect

of the other subsystems independent of each other. The major drawback for this method is

increased programming to account for all of the variations of switching functions “on” and

“off,” as the model requires outputs from these modules.

In Phase B, it is recommended that the team outlines the plan for the TDA and MAT.

Although these plans are likely to change, it is important for the team to describe the

envisioned space to ground telemetry segment. The TDA plan consists of the following

elements:

� Telemetry (TLM) specifications

� Ground segment TLM distribution and storage specifications

� Expected subsystem performance tests

� TDA execution and user interface

� TDA output and verification success criteria

51

Telemetry specifications includes the different channels that will be transmitted to the

ground, their frequency of collection and transmission, their format and range of values,

and any other characteristics. Although the word telemetry usually is defined as health

data from the satellite, in this context it also includes data generated on the ground (e.g.

commands sent) or payload data. The ground segment TLM distribution plan describes how

the TLM will be parsed by the ground, and most importantly for the TDA, where it will be

located and how it will be accessed. Ideally the TLM will be stored in a controlled database

that is available to all stakeholders; however, there are many different types of data, and

more simplified ground segment designs may have data stored in different locations or in

many segmented files.

The purpose of the TDA is to verify the performance of the satellite on-orbit, so it is

necessary for the team to create the on-orbit verification plans. These tests can be analyzed

using the TDA. In Phase B, it is only necessary to outline the expected tests and their

quantitative measurement requirements. The TDA execution and its look and feel will

also be considered in this phase. Much like deciding the medium for the SIM, the TDA

format and its operations will depend on the mission and the available resources. Possible

formats include COTS telemetry analyzers with user-defined functions [22], a specialized

interactive Graphical User Interface (GUI) for the specific satellite, or specialized programs

that decode and analyze the telemetry and provide a pre-defined output report. Lastly, the

TDA plan should include the expected output reports, graphs, or messages, as well as the

success criteria for any tests. The first execution of the TDA will take place in Phase C with

subsystem functional or algorithm tests and Phase D with integrated system functionality

testing through a flatsat, qualifications model, and finally the pre-launch flight model. The

TDA plan in Phase B should outline the expected tests to take place in these different

phases.

The MAT plan should also be outlined in Phase B. The mission objectives and success

criteria should have been quantitatively identified in Phase A, and serve as the baseline for

the MAT. The MAT plan describes the input sources, MAT analysis techniques, measurable

output, and execution and user interface used for the final MAT. The MAT input sources

are relatively straightforward and will primarily come from the TDA outputs or directly

52

from flight data. These inputs will then be manipulated as necessary for the mission to

provide an output to the user or stakeholder that is as clear and concise as possible. The

input and outputs should already exist, so the focus of the MAT plan in Phase B is to

specify the inner-workings of the MAT analysis as well as the type of program that it will

look like. Just like the TDA, COTS tools may be available for some missions, and the

execution of the MAT will differ for each mission.

The output of Phase B is a further defined integrated model and simulation with primary

elements, secondary elements, and constraints modeled, as well as a plan for designing

and implementing the TDA and MAT. The simulation will have parametric inputs used

for system and subsystem comparisons, and ideally will have the ability to cycle different

systems “on” or “off.” The integrated model has sufficient output behavior to perform

mission assurance functions and demonstrate that the mission objectives will still be met,

just like in Phase A. Figure 3-5 shows the diagram of the Phase B IEM, and specifically

shows the addition of the new elements, the switching function, and the planning of the

TDA and MAT. This diagram uses the same format as Figure 3-4, although there are a few

new formats. The dotted outlines and lines represent an intended or planned objects and

path of information, whereas the solid lines represent real objects and information flow.

The switch next to the C1 represents the ability to switch the different mission element

models “on” and “off.” The primary element representation has been incremented from P1

to P2, illustrating that this element has been updated since the Phase A model.

Figure 3-5: Phase B IEM Design Diagram

53

3.3.2 Phase B Integrated Model Example — MOTV

The Phase B integrated model can be illustrated through the MOTV simulation that was

created in the Fall 2008 semester of MIT’s graduate satellite engineering course (16.851).

This model, created by MIT masters candidates 2LT Joe Robinson, 2LT John Richmond,

Chris Pong, and Aaron Johnson, was developed to validate the design of the MOTV satellite.

This satellite, which was also called OSMV for a period of time, was being designed and built

by a MIT undergraduate satellite design capstone course (16.83x). The resulting satellite

design and its lessons were the framework for the CASTOR satellite explained throughout

the thesis.

The primary mission of the MIT Orbital Transfer Vehicle (MOTV) satellite in Fall

2008 was to achieve 2 km/s of ∆V utilizing the same DCFT in the CASTOR mission.

Additionally, the team wanted to demonstrate the use of deployable, sun-tracking solar

arrays and a gimbaled engine mount to allow for continuous sunlight operation of the

thruster to achieve both orbital altitude changes and plane changes.

As no earlier model existed, the team started by identifying the key subsystems necessary

in analyzing the integrated performance of MOTV. These systems included the orbits and

thruster operations subsystem to model the DCFT thrust and maneuvers, the EPS system

to model the power balance and available power to the thruster, the ACS/GNC subsystem

to identify the expected pointing and losses from knowledge and pointing errors, and the

thermal subsystem to model the effect of a 200 Watt thruster input power on the rest of

the satellite. Additionally, a simple communications subsystem was modeled as well to do

baseline link margin equations and analyze coverage statistics. Subsystem functions for

each were created in MATLAB and driven by a MATLAB-based GUI that allowed for the

modification of nearly every parameter used in the simulation. Figure 3-6 was presented at

the final presentation in the class, and illustrates the different functions used in the MOTV

model. Additionally, Figure 3-7 shows the design of the GUI used to launch the MOTV

model and display the results.

The outputs from the MOTV simulation can be seen in the right screen shot in Figure

3-7. These are analogous to the mission assurance outputs in the IEM design. While

54

Figure 3-6: MOTV Simulation Design [32]

Figure 3-7: MOTV Graphical User Interface Layout [32]

no additional MAT is present, the MOTV simulation (SIM example) produces the output

necessary to prove that the mission is met. In the case of MOTV, the primary output was

total ∆V produced, with secondary outputs of expendables used, mission duration, and

average thruster Isp. Subsystem performance data from each of the modeled elements was

saved and was easily plotted by selecting a drop-down menu with more than 10 pre-defined

graphs.

55

The MOTV simulation input allowed a user to manually adjust any of the input pa-

rameters for the subsystems. However, no optimization was done to identify the best set of

parameters due to the model being implemented near the end of Phase B and the beginning

of Phase C. Additionally, the subsystem switching feature was not available on this model.

Therefore if a subsystem was desired to be ignored, either the parameters for the other

system must have been set to ensure that the outputs were always in the desired range,

or the user had to go into the code and manually program the desired state. Section 5.1.2

analyzes the results from this model and discusses its role in the IEM design outlined in

this thesis.

3.4 Complete Design — Phase C

3.4.1 Phase C Integrated Model Design

After successful completion of Phase B and the PDR, the satellite moves into the Phase

C, or the complete design phase. The difference from the phases is that while Phase B

produces a preliminary design, Phase C concludes with a complete design that identifies

all necessary components and devices to meet the mission and system requirements. Any

uncertainties or trades should be analyzed and identified by the end of Phase C and prior to

CDR. This distinction leads to a greater emphasis on the Phase C integrated model to be

tailored specifically to the satellite of interest. While many COTS preliminary design tools

exist, few tools exist for a CDR-level design. This is because the tools cannot be as general

or modular as in Phase B. However, if the integrated model and simulation framework

from Phase B is detailed enough, the upgrade to Phase C requires few major architectural

changes. The bulk of the changes will come into the details and lower-level functions of the

different elements.

Like Phase B, the complete design phase starts by reviewing any assumptions and the

previous model architecture. The same questions asked on page 50 should be asked at this

time. Reasons for significant architectural changes to the model design include moving from

a COTS oriented preliminary design tool to a more specialized integrated model due to lim-

itations in the flexibility of the COTS software. Additionally, many of the assumed benefits

56

for a taking a specific approach during the Phase B model design may have been found

to be invalid during the coding of the mission elements, and therefore a more reasonable

or familiar approach may be desirable in Phase C. Through this process, a plan should be

generated for what is the intended integrated model look and feel at CDR, and the steps

from Table 3.2 (or the equivalent) should be revised as necessary to complete these tasks.

The supporting elements, or those subsystems and tasks that were identified as impor-

tant for the mission, but not vital for analyzing key mission decisions, should be added at

this time. These elements should have already be parameterized or have assumed values,

so at this stage the difference will be making more dependent and integrated relationships

that spread across the model. An example of a supporting element identified in the Phase

A example from Table 3.1 is the guidance system. The previous models assume a certain

position accuracy or power demand for certain subsystem models, but they may not have

been integrated as a general GNC model with inputs and outputs like the others. The sup-

porting elements do not necessarily need to be specified at a high level of detail; however,

they should behave as their own functional element or object so that if necessary, they can

be upgraded independent of the rest of the system model.

The primary elements, secondary elements, and mission constraints should be upgraded

as necessary to match the CDR-level of design. As the major system and subsystem trades

have been analyzed, the emphasis is put on modeling the specific hardware and component

details. This includes incorporating any component testing results into the model to change

parameters, as well as establishing detailed models for dynamic properties, or properties

that will change with time and that depend on the behavior of other subsystems or elements.

All elements and constraints should be summarized in a detailed N2 diagram or func-

tional flowchart. Each input and output path should be identified to the lowest level of

detail possible. This means that each dynamic property or variable should be identified,

to include its units and expected range of values. An example of this is that a property

that was previously described as ACS power required may be parsed into component power

levels and duty cycles. Also, global variables and their use should be defined and tracked

to ensure there are not duplicate variables being called by different functions. The com-

plete N2 diagram and architecture process is challenging, and it is expected that it will be

57

repeated occasionally in this phase as the simulation structure is modified.

As the integrated model becomes more detailed to match a more certain satellite design,

it is useful to decrease the amount of variables that are parameterized, along with any major

unnecessary trade study functions. Although useful in the conceptual and preliminary

design phases, few major system trades will occur in Phase C. The emphasis should now

be placed to accurately model the specific satellite design and prepare for component,

subsystem, and system testing to verify the model in Phase D. Certain elements will need to

remain as input parameters, such as the time, orbital characteristics, and system operations

decision logic. Simulation characteristics such as step size, run duration, subsystem on/off

toggles, and reporting options will also be input parameters through the mission duration.

There are a few different classes of input variables or parameters that would have nat-

urally been implemented in the integrated model design by the end of the Phase B design.

The classes of parameters that have been discussed or are inherent to the simulation at this

point are:

� Architectural parameters (i.e. major system trades)

� System design parameters (i.e. types of components or systems)

� Simulation parameters (i.e. SIM operating options)

� Flexible satellite parameters (i.e. will change with time)

Architectural parameters were used exclusively in Phase A, and should be removed from

the Phase C model if still present. The system design parameters are most likely the

design variables used in any Monte Carlo analysis or multi-system design trade. While very

valuable in Phase B, in Phase C, few major design changes occur and they require significant

analysis due to the increasingly integrated nature of the satellite design. Therefore the

ability to easily input these system design parameters should be removed from the model

for all systems that have high confidence. Certain subsystem trades may occur and a limited

number of system design parameters may stay in the model during Phase C for subsystem

designs with high uncertainty. However, by the end of Phase C and for CDR, the satellite

design is assumed to be at a high confidence level, so no system design parameter inputs

will remain in the simulation.

58

The simulation requires several input parameters through all phases of the SIM life

cycle; however, these inputs will change through each phase. An example of a simulation

input that changes is the selection of which subsystems to use in the simulation, referred to

previously as “on” and “off” toggling. In Phase A this is not a feature of the simulation,

and as elements are being added in the different phases, this input will require more options

and user feedback. As subsystem cannot really be turned “off” due to the need for changing

outputs for accurately simulating other subsystems of interest, more simulation inputs may

need to be created to specify the basic behavior for this system. Lastly, the input parameters

described as the “flexible satellite parameters” will be input conditions throughout the SIM

lifetime as well. Like the simulation parameters, these will change throughout the different

phases. A clear example of this is the orbital properties of the satellite. It is possible for

small satellites to not have defined orbits until later satellite design phases. Therefore,

in early phases, the orbital inputs will be nearly completely open-ended. Once into the

operations stage though, the orbit parameters will be much more solidified, and this input

may only be a NORAD TLE file.

Additional input parameters exist that are more important in the later phases of design.

These parameters can be classified into the following classes:

� Semi-flexible satellite parameters (i.e. some change expected in life)

� Tuning parameters (or uncertainty variables) (i.e. adjustable for calibration with test
or on-orbit data)

These classes of parameters are not as straightforward as those previously described.

The semi-flexible satellite input parameters are values that are usually fixed or assumed to

be a value; however, the value may change as either software changes, the configuration of

the satellite changes in testing or on-orbit, or if new information is found. These parameters

are different from previously described input classes because they should not be inputs into

the simulation, but rather anticipated updates to the simulation if any major events occur.

These parameters should be properly annotated through the coding so it is clear how to

maintain and update them in the future. The adjective “semi-flexible” is given as these

should not change often, and therefore are not input conditions to the simulation.

The tuning parameters class is used to describe the properties that affect the dynam-

59

ics and behavior of the different elements. These parameters can be measured or tested

throughout the build, test, and operations phases, and should be updated in the model as

the value is more certain. An example of such a parameter is the efficiency of a power dis-

tribution system. The value can be taken from a hardware specification sheet, but through

component and system testing, and even during operations, this value may be seen to

change. The tuning parameters are very important in using the IEM in Phase D to verify

the design and models, as well as for the TDA once on-orbit. Tuning parameters could also

be described as uncertainty variables, as they are modified as the hardware performance

becomes more and more certain.

Table 3.3 summarizes the different classes of input parameters by identifying their use,

showing a simple example, and describing the phases of the design cycle that they are

used in. As noted by this table and described earlier, in Phase C, all architectural and

almost all system design parameters should be removed from the SIM. The semi-flexible

satellite parameters and tuning parameters should be identified for each component that

will be incorporated and modeled in the SIM in preparation for hardware delivery. Once

these functions are in place, the SIM can be used to do acceptance testing and requirement

verification on hardware components, assemblies, and upon integration, the system. These

steps are described in the Section 3.5.1 as hardware acceptance testing and system function

testing is typically done after CDR.

Table 3.3: SIM Input Parameter Classes
Parameter Class Use Example Phase
Architectural Concept Comparisons Identify # of satellites A
System design System Trade Studies Battery Type A-B
Simulation Run SIM as desired Duration A-E
Flexible satellite Dynamic characteristics Orbit A-E
Semi-flexible satellite Match satellite state Inertia Matrix C-E
Tuning Incorporate testing data Calibrate Magnetometer C-E

Phase C incorporates one of the more important characteristics in the IEM approach,

the command feedback and input feature. As described earlier, the commands generated

from the satellite will be fed back into the SIM to give a common base of comparison, or a

posteriori comparison. This ability may seem arbitrary or unnecessary for certain missions,

60

but this will be a critical part of the TDA and some MAT designs. This feature gives a

wide array of additional capabilities and options for using the SIM, although they come

at a design price. The simulation must be written in a manner to complete the expected

behavior without the command input, yet be flexible enough to allow the commands to

overwrite the programmed behavior. Ideally the design team will have determined the

major commands that will be either autonomously generated on-orbit or uplinked from a

ground station. The depth of commands that will be incorporated into the SIM will depend

on their importance to the mission and their effect on the rest of the system. For example,

the command to turn on a transmitter may not be of great importance to the mission, but

it may be necessary to model the data transfered, the power required for an amplifier, and

therefore an additional thermal heat source. The commands can be separated into the four

levels, labeled as Satellite Command Levels (SCL-#).

� SCL-1 — Mission critical (e.g. operate payload)

� SCL-2 — Major system functions (e.g. point satellite or transmit data)

� SCL-3 — Subsystem specific (e.g. dump momentum or perform diagnosis tests)

� SCL-4 — Hardware or component specific (e.g. fire torque rod or downlink file)

The SIM should first incorporate the mission commands (SCL-1). These commands are

typically straightforward to integrate into the simulation due to their nature of wrapping

around the detailed portion of the model. The SCL-2 system level commands are similar,

and can be implemented and overwrite the anticipated natural dynamic of the SIM. How-

ever, commands at the SCL-3 and SCL-4 levels can become very tedious to code and may

add complexity to the SIM design and its output. One such example is the command to fire

a torque rod or move a reaction wheel. While these commands are generated on-orbit and

are important in modeling the specific attitude health of the satellite, they add significant

computational cost to the integrated model due to their high frequency command laws. To

summarize, the choice of the commands to use in the SIM requires a significant amount

of planning. For the Phase C SIM, the SCL-1 commands should be included as a default.

Certain SCL-2 commands can be included if time permits.

The suggested method of implementing the commands is to utilize the same command

61

string or command variable as given to the satellite. These commands should also be associ-

ated with a time tag to mark their execution time. This list of commands can then be input

into the SIM, which can either directly read the commands or go through a command parser,

and then when the time for the next command is triggered, the command will be executed

in the SIM. When running without command inputs, the SIM will autonomously create

and execute necessary commands. This is done for a few reasons. The first is to create the

command-run dependency for the simulation to execute, which allows the simulation to run

with either internally generated commands or processed satellite commands. Additionally,

when using a command input file, the SIM should ignore internally generated commands

that would conflict with the loaded command file. When the SIM reads a command input

file, it can determine which commands to toggle auto-command generation “off” in the

simulation. Lastly, the command-run dependency and autonomous command-generation

inside the simulation allows for another source of data to compare the SIM data to the SAT

data in the TDA. To clarify the command input and automatic generation logic, refer to

Figure 3-8.

Figure 3-8: SIM Command Input and Generation Decision Chart

This flowchart shows that in all cases, a command list is generated in the SIM output.

The decision to use the command input leads to the possibility of automatically generating

“some” commands, rather than the default value of generating “all” commands. The com-

mand list displayed is shown to be generated by either the SIM or the SAT, however it could

be hand-coded or expanded for use on avionics or software prototypes as well. Although

the command input feature adds complexity to the model, it allows for greater utilization

62

of the SIM in the final design stages, testing stages, and ultimately in the operational phase

and running the TDA.

The TDA and MAT will be created and working to an initial capacity by the end of

the design phase. The plan for creating both tools was outlined in Phase B and should be

revisited prior to execution. These plans will specify the intended behavior for both the

TDA and MAT. There are some basic requirements that are general to all TDA designs in

the IEM approach.

1. The TDA must analyze the TLM and simulation output for readings out of operational
or survival range

2. The TDA shall be composed of subsystem and system processing tools as necessary
for the given mission

3. The TDA must have data-correlation features and the ability to update specified
tuning parameters for the SIM

4. The TDA must be able to launch the SIM in specific subsystem testing modes

The first of these requirements is that the TDA must analyze the telemetry and simu-

lation data for readings that are out of the operational or survival range. This is a basic

requirement and is easily met by either a Graphical User Interface (GUI) that color-codes

TLM values or by automatically generating a report that identifies the time and values for

out-of range readings. Common GUI color coding is to display in-range readings as green,

to color readings that are approaching their boundaries as yellow, and readings out of lim-

its as red [16]. SMC Standard Practice HM-RB-2001-1 is a useful document if starting a

human computer interface from a relatively new starting point.

The second requirement for the TDA to contain TLM processing tools ensures that the

analysis and processing tools often used only by a specific analysis team are available in

the TDA. Certain analysis tools may not be necessary to include in the TDA if they are

not important in the integrated behavior of the system. Such an example is a structural

loads analysis tool in a system that has no on-orbit mechanical operations. An example of

a common processing tool that should be used in the TDA is an attitude filter that reads

attitude sensor TLM and outputs the pointing angles and rates of the satellite.

The third requirement is to have a data-correlation feature for the SIM tuning param-

63

eters. As defined before, the tuning parameters are the conditions that often are assumed

or not entirely certain, and the TDA is used to verify the actual value of these parameters

through ground-based and space-based testing. The data-correlation feature is necessary

for each test or series of data that is expected to use the integrated model and simula-

tion for verification. This is a major decision for the design and testing team, as testing

is expensive in cost, manpower, and time criteria. A tolerance must be specified for each

tuning parameter to ensure that the results meet the expected accuracy and are physically

feasible. Note that care should be taken in adjusting certain tuning parameters to match

data, particularly for autonomous modification or data fits.

Lastly, the TDA should be able to launch the SIM in a specific configuration necessary

to effectively compare detailed subsystem data for verification tests. An example is for

analyzing the expected thermal conditions of the satellite, the attitude and power values of

the satellite fed into the TDA will become inputs into the SIM, which would run with the

attitude and power systems toggled “off.” As there are significant programming challenges

with these increasingly complicated input-types to the SIM, it is important again to recog-

nize which tests or analysis are expected to be verified with the SIM. These details should

have been specified in Phase B in the TDA plan, and should be revisited and finalized prior

to TDA creation.

The initial MAT plan was also created in Phase B. This plan describes the specific

functions necessary for detailed mission analysis. The primary example that is used in this

thesis is the thrust characterization of a low-thrust electric propulsion system. The inner-

workings of the MAT for this example include a high-precision orbital propagator as well

as a thrust and efficiency characterization tool based off of both direct measurement and

position-based extraction. This specific example may also include a thruster plume image

analysis tool to determine the thruster efficiency from the characteristics of the plume during

operations. In Phase C, this plan should be executed to produce a working MAT with the

first iteration of the desired functions included. By CDR, the MAT will utilize the inputs

from the TDA and SIM to output a validated mission as identified in the figures of merit.

By CDR and the end of Phase C, the set of tests necessary to verify the MAT’s analysis

of the expected telemetry from any functional prototype, QM, or ground-based FM testing

64

must be identified. Ground-based testing of space-based payloads is almost always limited

due to the desire for the payload to work in the space environment, so it is very likely that

the ground-based functional testing will not be able to simulate the full range of expected

telemetry from the satellite. The SIM is purposefully designed to allow for an alternate

source of comparison for certain impossible or very costly tests (e.g. six degree of motion

dynamics or microgravity environment), but the mission cannot be validated solely by the

SIM performance. This is a fundamental problem for testing spacecraft, which is why it is

important to decide the scope of the Phase D testing on the design of all IEM elements.

The integrated model status at the end of Phase C is summarized in Figure 3-9. The

major additions since Phase C are the MAT and TDA are real elements and not just plans

(shown as having a solid outline), the command (CMD) input from the SAT to the SIM, the

incorporation of supporting elements (s1), and the increased detail in the other elements.

The dashed lines representing the commands, telemetry, and simulation data all signify that

these sources of data are not finalized. The SIM to MAT arrow is solid as the IEM will still

perform mission validation functions, as it has in every other phase.

Figure 3-9: Phase C IEM Design Diagram

3.4.2 Phase C Integrated Model Example — CASTOR

A CASTOR integrated model was created in the similar framework as the MOTV model de-

scribed in the Phase B section, through the Fall 2009 16.851 Satellite Engineering class. The

authors of this model were all graduate students from the MIT Space Systems Laboratory

who were working on the CASTOR satellite. These members included 2LT Matt McCor-

mack, 2LT George Sondecker, 2LT Corey Crowell, and masters candidate Ryan McLinko.

The task was to update the previous MOTV model to many of the changes that occurred

65

in the nine months of work to what became the CASTOR satellite. These updates included

changing components used in the design, incorporating additional supporting subsystems,

and adding detail. Due to the timing of the class with the CASTOR design time line, the

CASTOR integrated model encompassed the end of Phase B and the beginning of Phase

C.

Although this simulation was created prior to the writing of this thesis, it added many

features described in the Phase C IEM design section. These features include adding a

command input capability into the simulation, modeling supporting elements, and restruc-

turing and simplifying the SIM interactive behavior. The CASTOR simulation allowed for

the equivalent of SCL-1 commands and select SCL-2 commands to be triggered at specified

times. This process was not designed specifically to the method described in this thesis, so

there were no other commands automatically generated during the simulation processing.

The avionics system, which can be described as a supporting element, was added into the

CASTOR simulation as it was not present in the MOTV simulation design. The commu-

nications, ADCS, and thermal models were updated to be more detailed and match the

CASTOR design much more closely. Lastly, as Figure 3-10 displays, the GUI was simplified

to be only one screen, as opposed to allowing a whole screen for each model element as done

in the MOTV design. This was possible as the design was more certain and unnecessary

model inputs were allowed to be removed.

Figure 3-10: CASTOR User Interface

66

Another major update to this simulation was the programming structure. Although

the simulation was still run in MATLAB, the programming style was transfered from the

functional decomposition architecture to object-oriented programing (OOP). This was done

to increase readability and code organizations, as well as to simplify portions of the coding.

The simulation also output an event list that described when components went out of their

expected or operational range, which is a function performed by a TDA. The simulation

also produced limited mission assurance output in measuring the different expendables and

tracking the thruster performance and total firing time. While neither a TDA or MAT were

specifically created or distinguished, they were integrated in the design of the simulation.

The portions of the IEM Phase C model that were not done in the CASTOR simulation

include the switching of subsystems, the command generator, or a TDA design that allows

data and simulation output comparison. The results and discussion of the initial CASTOR

integrated model can be found in Section 5.1.3.

3.5 Implementation and Testing — Phase D

3.5.1 Phase D Integrated Model Design

The completion of Phase C is a vital point in the satellite design cycle as the team will

transition from the design phase to the manufacturing, assembly, integration, and test

phase. Completion of Phase C assumes a technically feasible and validated design, but it

does not assume verification of the components or the integrated performance of subsystem

and system hardware. Therefore the primary goal in Phase D is to successfully execute the

design identified in CDR by performing bottom-up verification during the assembly process.

The integrated model is very important throughout this phase, as it will utilize the testing

data to verify the hardware functionality, validate the mission, and fully prepare for SIM

for the operations phase.

To fully prepare for test data, all SAT elements modeled in the SIM must be updated.

This includes updating any changes to hardware specifications, eliminating any unnecessary

model or simulation components, and finalizing any interface properties between subsystems

or components. Few changes in the satellite hardware occur in Phase D, so these updates to

67

the SIM prior to testing will be minimal. The largest satellite development task that occurs

in Phase D is the implementation of the software design. Therefore the largest updates in the

SIM will be incorporating any satellite software changes or additions. It is possible and may

be advantageous to execute the flight software code in the SIM. This is not a requirement

as the primary task of the SIM is to model and simulate the satellite’s performance with

minimal effort. However, for certain tasks such as testing new controllers, it is valuable to

use the flight software directly in the SIM as the software is already written. Therefore the

major trade becomes whether it is more desirable to spend resources on creating the interface

between the flight software package and the SIM software, or if it is more desirable to modify

the SIM software to mimic the flight software behavior. This decision will primarily depend

on the team’s familiarity and comfort with the different types of software.

The command list and its input and output interfaces with the SIM will also need to be

revised throughout Phase D. Revisions include format changes to the command structure,

addition or removal of commands used in the SIM, and changes to the command parser.

For formatting changes, it is important that the SIM commands will be continually verified

to match the satellite commands in both format and meaning. These changes will likely

occur frequently, therefore the SIM command functions must be vigilantly maintained to

ensure changes to the satellite commands are accurately represented in the SIM.

In the IEM designs for Phases A-C, the SAT block was replaced with conceptual, pre-

liminary, and complete designs. In Phase D, the SAT block can be represented by a real,

physical system for the first time. This satellite system is broken into three building blocks:

the satellite flatsat, a qualifications model, and a flight model. The flatsat, which also

can be referred to as an Avionics Test Bed (ATB), models the satellite design sans struc-

tural elements. That is, all components with data and electronic interfaces are integrated

together. This is the first version of the integrated satellite system, and allows for the

greatest flexibility in running with the SIM and performing hardware tests.

The Qualifications Model (QM) is the first revision of the complete integrated satellite.

It includes the flatsat components and the structural elements, and usually at least one

each flight components for each unit. The QM is used for system integration testing and

environmental qualifications testing, as well as performing a “trial run” for the flight model

68

integration. The QM is a useful ground-based testing platform during operations as it has

almost the exact same hardware and components as the FM. If a satellite programs cannot

afford a QM, it is strongly suggested that a flatsat or ATB is produced for ground-testing

any software upgrades that may come during Phase E.

The Flight Model (FM) is the final, completed satellite that will be launched into or-

bit. This model will be tested to acceptance levels for environmental testing, as well as

similar avionics and software testing as done with the QM. It is important to distinguish

any differences between the FM and QM hardware, as the QM will be the only tangible

representation of the FM upon launch. The QM and FM must use the same flight software

to ensure that any functional testing of software on the QM will respond the same as it will

on the FM.

The IEM development emphasis is different for each hardware configuration (ATB, QM,

FM). Therefore the rest of this section will be separated into a different section for each of

the three hardware phases, labeled D.1, D.2, and D.3, respectively.

Phase D.1 — Flatsat/ATB Development and Component Testing

As components arrive and are tested, the SIM and TDA will be used for mission and

hardware verification purposes for the first time. This process is iterative, as shown in the

following steps of the hardware and SIM verification process:

1. Predict single-scope hardware test result based on expected component characteristics

2. Perform component tests to compare and verify component characteristics

3. Input characteristics into SIM and TDA as applicable

4. Test component in integrated matter using SIM (if possible and necessary)

5. Use TDA to compare hardware performance

6. Modify any SIM or TDA characteristics (e.g. tuning parameters) as necessary to
match reality

7. Repeat as necessary in different operational modes (if applicable)

This sequence is used as part of the requirement verification testing that will already be

in place for the component, only it also updates the SIM and TDA in the process as

69

well. This is advantageous as it documents the actual design in the SIM and begins to

modify the tuning parameters to match the actual design. This experience will also assist

in understanding what telemetry is used and how it will be analyzed in the TDA.

An example of this process is the verification of a battery charging unit. A basic ver-

ification method used is to measure the voltage and current coming from a power source

or solar panel simulator and compare that to the power being provided to the batteries.

The most basic test is to show that the battery charging unit fully charges the batteries.

However, much more detail can be given in this test including the behavior of the power

efficiency and heating profile of the charging device and as well as the change in current

provided to the batteries as the cells change in temperature. The timing of this sequence is

also important in order to verify that the batteries can be charged to their intended amount

in the sunlight portion of the orbit. If it is significant enough to be modeled, the battery

charge dynamics through the sunlight and eclipse cycle will be output in the SIM, using the

basic efficiency results from the simple test. The SIM test conditions can then be performed

in ground testing on the battery charging device to have a similar source of comparison in

the TDA. The TDA can then be used to identify any improper assumptions or correlate

simulation parameters to testing data.

It may be clear that this process can grow to be very expensive. Therefore, it is impor-

tant, as stressed throughout this chapter, to decide the importance and level of detail of

each test in Phase D. A general rule is that as soon as the component or system has met

its requirement, the team should move to the next step, barring any anomalous behavior

that may affect the integrated performance of the system.

In order to perform these tests and gain telemetry to match that used in the TDA,

the avionics system and flight software must be integrated and working into the ATB. The

ATB does not need to have every component and software element integrated to perform

the initial component verification function. However, the ATB does need the following two

basic tasks, particularly for the IEM framework:

� Synchronize clock with desired time (UTC format recommended)

� Sample, store, and downlink telemetry from components in expected format

70

The majority of the flight software is written during flatsat development. Depending on

the role of implementing actual flight code (described in the previous section), this stage can

lead to many disconnects between the software on the satellite and the SIM assumptions.

Once again, it is important to stress the criticality of documenting changes to the flight code

and its decision making logic on that in the SIM. This is especially important for software

functions that have limited ground performance testing, as often only a single data point

exists to validate the functionality of a line of flight code.

In each subset of Phase D, just like all previous phases, the integrated model must

successfully validate the mission. The major difference with the task in Phase D.1 from

that in CDR is that the difference in expected performance is no longer coming from design

changes but rather from a difference in the expected performance of the hardware and

the actual performance. This mission validation process may be trivial to run if the only

changes to the SIM are in tuning parameter values. If this is the case, the Phase C SIM

and MAT can perform the MA function and give the expected mission output. Even if

this process is trivial, the output may not be; the integration of component testing and

verification data may lead to degraded performance measures. If this is the case, the team

must decide whether to accept a loss of performance, or to try to mitigate this loss with

either new hardware or different operating characteristics.

The last IEM feature that needs to be updated in the Phase D.1 is the MAT data

analysis function. The expected telemetry providing the mission assurance details, such

as the thrust details and images given in the CASTOR example, may be created by their

respective hardware units at this time. The MAT must be able to read and process the

data from these components or assemblies and perform their intended mission assurance

functions. Specific analysis and processing functions in the MAT will be updated throughout

Phase D as the data output is understood more in the framework of the integrated system.

As more components are incorporated into the flatsat, the integrated performance of

the flatsat can be tested following the same procedures as with individual components. The

SIM eventually will be directly fed by the flatsat commands. At this point, the satellite

enters Phase D.2.

71

Phase D.2 — Qualifications Model Development and System Testing

The difference between Phases D.2 and D.1 is not as obvious as those between the other

major phases, due to the lack of a scheduled review to signify the end of the phase. The

systems testing often will take place during the flatsat fabrication and testing phase, leading

to confusion in distinguishing these phases. The primary distinction for the purpose of

discussion and comparison in this thesis is when mission and system level commands (SCL-

1 and SCL-2) are given to the functional satellite model, whether the ATB or QM, and these

commands lead to a response by the majority of the satellite hardware elements. Component

verification will still occur as additional parts come in, but the primary emphasis is on the

systems testing. The components verification still will be performed by the instructions

given at the beginning of Phase D.1.

The command input to the SIM will be used frequently in Phase D.2 to verify the system

performance and behavior of the subsystem components. The system testing must be done

after verifying the component, subassemblies, assemblies, and subsystems in a sequential

manner to properly tune the correct parameters and identify the culprit for any unexpected

behavior. If used throughout this entire process, the command input tool in the SIM will

automatically be validated through the full range of commands expected. The benefit for

the programming of this tool will be apparent when open-loop commands are given to the

satellite testbed, and the performance can be analyzed in real-time with direct measurement

units such as multimeters or analog sensors, along with post-processing analysis using the

SIM and TDA results generated from the command file input and test telemetry.

Upon completion of the QM, the SIM will be used to perform a mock operations se-

quence. Although not all systems will always be available or working due to limitations

in hardware or delayed delivery of flight software, it is important to identify how the SIM

will be used in the operations phase. At this point, it is advantageous to involve other

portions of the mission such as the ground segment hardware or operations team to test the

SIM and QM. The SIM can be used to run any early mission tasks, particularly subsystem

health verification tasks, and then the QM and TDA can be used to verify that the SIM

output produces the results observed and expected. These procedures will be updated and

72

improved as necessary and repeated in the final acceptance testing of the flight model.

Lastly, the mission assurance tool should once again be revised and run with the SIM

to ensure that the satellite still meets its intended mission. Upon successful validation of

the mission using a fully verified SIM, the team is prepared to build the final flight unit.

Phase D.3 — Flight Model Development and Final Testing

Phase D.3 will execute the same procedures used in Phases D.1 and D.2 for both compo-

nents, subsystems, and the integrated system. It is recommended that the QM SIM from

Phase D.2 is kept separately from the FM SIM, as the hardware may have some slight

differences. At each stage in the final FM component verification, the results should be

compared to the QM SIM. This may be as simple as keeping the QM tuning parameters

saved and readily available to run into the TDA against the FM telemetry. Any difference

in performance between the FM and QM must be annotated clearly and in detail to ensure

that any ground-testing during operations includes the differences.

The same initial operations tests will be performed on the FM to ensure that any

addition of hardware (e.g. three reaction wheels instead of one) properly works in the

integrated system. This is also another time to incorporate alternate mission elements into

the testing to perform another dry-run for the post-launch operations.

An additional requirement in Phase D is that the IEM operational users guide needs

to be completed. Portions of this document should have been created in earlier phases (as

described in page 39) to ensure that the team could effectively utilize it as a design tool.

Phase D is summarized Figure 3-11. This figure shows the major change in the SAT

block to go from a completed design to a series of real-life systems. Additionally, it shows

the TDA in between all of the other elements, as it takes a primary role in the verification of

the satellite hardware. The telemetry and command lines (TLM and CMD) are represented

as different lines than before as the data can be transmitted wirelessly to the ground station,

or through a wired RF link straight to the satellite. There is a two-sided arrow for both of

these as the output from each can still affect the design and configuration of the satellite.

In the SIM block, each element has been incremented in its detail level to represent the

additional details added to the components and finalizing any subsystem behavior modeled.

73

Lastly, the line between the TDA and MAT is solid as the MAT is now completely functional

and will produce its expected output when satellite telemetry is input.

Figure 3-11: Phase D IEM Design Diagram

3.5.2 Phase D Integrated Model Example — CASTOR

A Phase D model does not exist at the time of this thesis. The development of the Phase

D CASTOR SIM is the primary topic of Section 4.1, and the development of the CASTOR

MAT through a low-thrust trajectory tool design is the discussed in Section 4.3.

3.6 Operations — Phase E

3.6.1 Phase E Integrated Model Design

The purpose of all IEM design efforts prior to launch was to maximize operational efficiency

and productivity in the mission. Ideally, the satellite arrives into orbit in perfect health and

functions as expected, with the SIM producing results that are shown by the TDA to match

the satellite telemetry to the expected levels. Upon on-orbit checkout and commissioning

of all subsystems, the MAT can be used with the entire simulation and analysis package to

display the success of the mission.

However, this is a very ideal case and is not plausible due to the number of uncertainties

that will still be looming at launch. It is important to anticipate these challenges and coor-

dinate proper manpower to the operations phase in order to properly manage the satellite

and all the analysis tools available. The first area to expect challenges is in the on-orbit

checkout and commissioning of each component and sub-system. It is vital to completely

verify that the components and software is performing as expected. Through the IEM se-

quence and Phase D testing, this should have been accomplished no less than two times,

74

and likely will have been done with the QM in the final operations readiness sequence prior

to launch. All of the capabilities built into the SIM and TDA to include command input,

subsystem switches, and tuning parameter calibration, were designed to facilitate smooth

debugging by identifying the root cause of any anomalous behavior that may be observed

in commissioning.

If any hardware element is found to be unresponsive or perform to a limited capability,

the SIM can be updated to match the new satellite state. Depending on the hardware

element, this can be either a simple change in a parameter, or it may involve modifying

many of the underlying logic elements in the code. Assuming that on-orbit repair is out of

the realm of any small satellite, the only option available for correcting the errors is through

the modification of the software or CONOPS. If the CONOPS is changed, the SIM must

be updated if it is intended for any future prediction capabilities, though it may not be

necessary to update the SIM if the primary mode is to run it via the command input.

Even if there are no major failures, significant software modifications should be expected

and anticipated. As soon as desired change in the software or operations of the satellite is

specified, the SIM must be used to show that the change will perform the intended function.

After the SIM prediction, the change will be implemented in the QM, and the output will

be compared to the SIM with the TDA. After successful verification of expected behavior

on both the SIM and the QM, the new software or commands can be uploaded to the FM.

It is recommended that this is done for relatively small changes in software or command

processes as well, as small changes in the flight code will be relatively simple to implement

in the SIM.

The primary task for the integrated model during Phase E is to continually monitor

the bus performance while also measuring the mission success and tracking the payload

performance. The TDA will be used to monitor the bus performance and produce reports

on the health of certain systems. The space environment is not constant and sensors are

not always perfect, so it is possible to show very accurate results in the TDA one day and

a disparity a few days later. It is important to not over-analyze the tuning parameters

in the TDA and understand the accuracy of the sensors and the fluctuations in the space

environment. One such example is calibrating magnetometers to the magnetic field of the

75

earth in LEO. The IGRF magnetic model of the earth will not perfectly match the actual

magnetic field vector at any given location in orbit as it fluctuates with time, and the

magnetometer characteristics may change with temperature. Both of these can cause the

magnetometer strength to not match the IGRF field strength at any point in time. This

specific example is explored in Section 4.2.2. The mission success measurements will require

effort and vigilance as well. The MAT is used in the mission operations phase to measure

and track the mission performance data and ultimately to measure that the satellite has

met its objectives. Changes in the SIM or operational plans can be analyzed to see how

they affect the MAT trends.

Any updates or modifications to any elements of the integrated model in Phase E should

be documented and saved for later projects. While this feedback loop is not shown in any

of the diagrams, it is beneficial for the organization to increase their corporate memory of

the IEM process so that it can be done easier and at a lower cost for the next mission. If a

follow-up satellite is expected to be produced, it is very important to identify what elements

could not be tested or successfully modeled prior to launch.

The Phase E IEM diagram is shown in Figure 3-12. This shows each block as working

and real elements in the process. The only lines that are not solid are those that represent

the telemetry and commands coming from the satellite and going to the TDA and SIM,

respectively. Both of these arrows have changed to be uni-directional, as the satellite is not

changed as it had been in previous phases. The different elements and their detail level has

been removed, as the SIM is in its intended final level throughout the Phase E design. The

switching element is still present in the SIM. The TDA is shown to feedback into the SIM

for the first time, signifying that this is the only available feedback path to match the SIM

output with the data. Software uploading capabilities are not shown in this figure as they

are not directly a part of the IEM and are intended to be minimized.

76

Figure 3-12: Phase E IEM Design Diagram

3.6.2 Phase E Integrated Model Example — FalconSAT-3

The development and application of an on-orbit modeling and simulation tool in the FalconSAT-

3 satellite is described in Section 4.2 . This section primarily focuses on the TDA design,

as no integrated model exists at the time of this thesis.

77

78

Chapter 4

Applied Integrated Model Design

This chapter describes the implementation of the different software elements in the IEM

design (SIM, TDA, MAT). Many elements of the Phase D IEM design are implemented in

the MIT CASTOR satellite simulation and are described in Section 4.1. This section details

the scheduling aspect of the simulation necessary to meet the IEM principles, describes

the handling of different model and simulation data, and explores many basic subsystem

models necessary for full system interaction in the simulation. Section 4.2 uses the USAFA

FalconSAT-3 satellite and its data to explore the design and implementation of a TDA

created during the third year of on-orbit operations. Section 4.3 baselines the design of the

CASTOR MAT.

4.1 CASTOR Simulation

The CASTOR simulation described in Chapter 3 was revised to provide more features in-

herent to the IEM design. The main features added or modified from the legacy simulations

(see Sections 3.3.2 and 3.4.2) are the scheduling, data input, and subsystem detail level. The

scheduling task was added to create a robust and flexible command-based and event-based

simulation, and is described in Section 4.1.2. The data input capabilities and a description

of the methods for passing data, values, and states throughout the simulation is described

in Section 4.1.3. A high level overview of the entire simulation structure and its input and

output behavior to a planned CASTOR TDA is described first in Section 4.1.1.

79

4.1.1 Simulation Structure

The CASTOR IEM-based simulation overview is most clearly described through a user’s

point of view. This section will look at the simulation from the most external structure,

and work into the handling of information and conclude with a full description of the model

information flow via a N2 diagram.

As mentioned in the IEM description, two general types of information can be output

from the simulation: a priori and a posteriori behavior of the satellite. The difference be-

tween the two is the use of actual commands that the satellite executed. While constructing

the simulation, it became clear that two forms of a posteriori results exist. There are three

main types of SIM outputs that are useful to analyze, shown in Figure 4-1 as S-1, S-2, and

S-3.

Figure 4-1: Level of Comparison between SIM and SAT Results

Figure 4-1 associates names with the S-1 through S-3 levels to attempt to distinguish

the level of certainty in the results based on the SIM inputs. The first SIM instance, S-1,

represents the a priori case. This is described as the anticipated case, and does not use

any flight commands or telemetry. The next instance, S-2, is the a posteriori case with

commands only. This is described as the predicted case, and the SIM will produce an

output that should match the flight telemetry much closer. Lastly, the S-3 case is another

a posteriori case, with the addition of telemetry being fed into the SIM. This is described

as the expected case, as it is expected that the SIM output will match the actual results

(TLM). The different cases each have important applications to the mission in the TDA

architecture. The S-1 instance is used in all prediction cases, and is also useful in comparing

80

expected commands generated versus those from the satellite for post-processing. The S-2

case is useful for matching predicted and actual telemetry. Lastly, the S-3 case can be

used for verifying one specific model, by using actual telemetry values in place of typical

subsystem models.

Therefore the SIM must be able to generate results for a flexible set of input parameters.

It is the job of the TDA and the user to select the proper settings for the SIM. The rest of

this section is based off of one generic case, meaning that the SIM is executed only once,

with the understanding that it is possible to run the SIM multiple times in the TDA. The

input parameters to the simulation, including all types specified in Table 3.3, are assigned

to the inits structure in the SIM MATLAB code. This structure is defined in Table 4.1.

Table 4.1: Inits Structure Breakdown

Nomenclature Description
inits.state Satellite and environment states
inits.data Any telemetry or data to pass into satellite or subsystem objects
inits.values Initial conditions for satellite subsystem properties
inits.sim Simulation settings*

*Includes time, command list, event list, and scheduler settings

The SIM and most of its underlying elements are coded using Object Oriented Pro-

gramming (OOP) techniques. The very basic behavior of object oriented programming and

design is to create so-called “objects,” which have two attributes: properties and methods.

Properties are values, data, or states, and are associated with the object. Methods are func-

tions that are specific to an object, and represent the dynamics and behavior of the object.

Many sources exist for a complete description of OOP, and MATLAB has an assortment of

documentation and examples available on the Internet [9]. While helpful in understanding

certain nomenclature used, OOP understanding is not vital in this thesis. One method

that all objects use is the constructor function. This function instantiates, or creates, the

object. In the case of the simulation, the constructor function instantiates the command

list, event list, scheduler, and satellite objects as well. All of these are saved as properties

of the simulation object. Of these, the satellite object is the only property of the simulation

that has additional objects to instantiate. These objects are the different subsystems of

81

the satellite that are modeled in the simulation. Therefore the inits structure described

previous is used to instantiate all of these objects. A graphical description of the SIM layout

is shown in Figure 4-2.

Figure 4-2: CASTOR Simulation Layout

Figure 4-2 outlines the major run function in the simulation with a dashed line. The

sim.run() represents the syntax of the simulation method called “run.” This method is

called by the driver script or object (such as TDA or GUI), and then the simulation runs

through the loop identified in the right half of the picture. The loop’s stopping conditions

is controlled by the local variable go, which is computed in each simulation step with the

method sim.go(). The while-loop begins with executing any commands or events that

occur at the current time, and determining the intended length of the next simulation step.

This process, the Scheduler.next_step() method, is discussed in greater detail in Section

4.1.2. The simulation may have a fixed step size or a dynamic, event-based step duration.

The scheduler object uses both the command list and event list objects, and this is the only

82

point where the satellite state is modified.

Upon completion of the Scheduler.next_step() method, the satellite object’s method

Satellite.forward() is called. This method calls in the scheduler, which contains infor-

mation of the current expected simulation step size, and any subsystem step sizes needed

to run through the subsystem models. At this point, the subsystem models are called as

necessary to propagate the satellite’s state forward. The N2 diagram best explains this flow

of information through models, and can be seen in Figure 4-3. This diagram only shows

the dynamic properties that will change. Any state changes, component or system values,

or other properties are handled internally in the subsystem models or externally via state

changes called from the scheduler object.

Figure 4-3: CASTOR Satellite Simulation N2 Diagram

The passing of data between the models is explained further in Section 4.1.3. In the

propagation forward, any new events or commands triggered will be passed through to the

scheduler and saved into the property Scheduler.temp. When the Satellite.forward()

method is completed, the simulation calls the Scheduler.execute_temp() method to add

the new commands and events to the proper list for calling at the next time step. The

simulation and scheduler settings for fixed or dynamic step sizes will affect how accurate

the timing is executed.

After the necessary commands and events are added to their respectful lists, the property

83

Scheduler.temp is cleared. This ensures that no commands or events are executed multiple

times. At this point, the simulation runs an internal method sim.go() to determine if the

exit conditions from the loop are met. These exit conditions can include reaching the

simulation end time, running out of a consumable, or being interrupted by a user. If the

go() local variable returns “false” (0), then the simulation object will return to the driver

script, which will execute the sim.end() method. While it is possible to add this to the

sim.go() method, it is left in the driver script in case there is any potential to have a

user call it directly. The sim.end() method currently only formats the command list and

event list to have readable summaries. This method could have other autonomous data or

simulation operations if desired to be run at the end of every simulation. It is assumed that

the analysis and representation of data (via graphs and reports) is handled by the TDA.

4.1.2 Scheduler, Command List, and Event List Objects

The first revision of the CASTOR simulation described in Section 3.4.2 included the ability

to use an external command file to alter the satellite’s state in the simulation. This was

done by creating a command list object, which stored the commands from the input list,

and a command object, which collected the commands for each time interval ti to ti+1. In

this simulation, a constant time step of ∆T = ti+1 − ti was used. At the beginning of each

time step, the command object was created and passed into each of the subsystem models.

The individual models were written to search for specific command strings in the current

command object. If the command string was found, the satellite state was changed.

One such example of the use of commands is the operation of the thruster. A variable

thruster_on existed and was assigned in the propulsion model. If the command list was

being utilized, the propulsion model searched the list for the correct string; if no command

existed in the current time step, thruster_on was assigned as false. If no command list was

used, a set of criteria based on the orbit was used to determine the value of thruster_on.

This logic is straightforward and accurate when implemented using certain assumptions.

However, these assumptions do not meet IEM design principles and objectives and constrain

the flexibility of the simulation. In the new design, the command-based nature of the

simulation led to a change in the general model structure. A new scheduling task was

84

added to allow for the event-based execution of the SIM.

By using a scheduler and a strict event-based and command-based simulation, the as-

signment of the thruster_on variable is done at the precise time that it was sent. If no

command file input exists, the propulsion subsystem model will perform the same logic to

ensure that it is the proper time to operate the thruster, and at that time, a command will

be sent to the scheduler and eventually passed into the command list object.

A graphical depiction of the implemented scheduler and command based design is shown

in Figure 4-4.

Figure 4-4: Scheduler and Discrete Event Diagram

This figure shows a fixed time step of ∆T , which was assumed in the previous simu-

lations. While this option is still available, the discrete event approach is suggested. In

both methods, the scheduler will determine the future time, called tnext, that the satellite

(and therefore each subsystem model) will be propagated to. In the fixed ∆T case, tnext is

simply ti+∆T , or as Figure 4-4 shows, ti+1. In the discrete event approach, the scheduler

decides tnext based on when the next event (command or state change) will occur. If no

interruptions occur (i.e. no new events or commands), the scheduler simply identifies the

next event and propagates forward to this time and repeats. In Figure 4-4, this means that

the simulation time would go between ti → tC1 → tE1 → tC1−1 . The unplanned event, E2,

would interrupt the simulation’s satellite propagation method while it was propagating to

tC1−2 . The interrupt will be sent to the scheduler object, which will add the new event or

command to a temporary list, as well as reassigning tnext to be the interrupt time. The

satellite propagation method will continue with a new tnext value, and any other interrupts

will continue in a similar fashion until all models have reached tnext. At this time, the

scheduler will add the new event or command to the respective list, and then will continue

85

in the while loop outlined previously in Figure 4-2. Figure 4-5 on page 88 clarifies this

interrupt process further after discussing the use of time steps and data flow in greater

detail.

The derived command is another addition made possible with the new simulation struc-

ture. Certain high level commands, such as the firing of a thruster, will produce a sequence

of additional commands that take a finite amount of time to execute. An example is turning

on the Xenon flow to the DCFT prior to providing power to the anode. This finite time, if

known, can easily be added to the command callback method. This is the function executed

in the simulation that changes the satellite’s state based on the execution of a command.

Any additional commands (called derived commands) can be added to the command list.

If the delay time is shorter than the simulation step size (fixed time step), or zero (discrete

events), then the command will be executed at the same time as its parent.

The event list object performs very similarly to the command list object, with the

distinction that events do not directly change the behavior or state of the satellite. When

executing the event list callback methods, any state changes for the satellite are called by

executing commands. In the case of operating the thruster autonomously when a certain

orbital event is triggered (such as reaching the desired firing angle with respect to local

noon), the event will add the thruster_on command to the command list, which will then

be executed using the command list callback method as previously discussed. Events can

trigger state changes to the satellite’s environment; however, all changes to the satellite

state that would occur in flight software or through ground commands will occur through

the execution of commands.

The advantages of using discrete events is that the timing is much more accurate, and

it increases the computational efficiency of the simulation by not needing to save the state

at a fixed time step. Additionally, this method is improved over the initial CASTOR model

as there are fewer assumptions in the execution of the commands. Previously, the start

and stop times for each command needed to be defined, and in the new method, only start

times are necessary, which is more realistic to the actual format of flight command files.

86

4.1.3 Subsystem Models and Data Distribution Overview

The scheduler object has three major output properties that are used by all systems: the

current time (ti), the future time (tnext), and the subsystem step sizes (δtsub). The current

time and future time, as described in the previous section, are inputs to each subsystem

function, and are used to propagate the state forward. In the discrete event case, if a new

event occurs between these times, an interrupt is triggered and the simulation returns to

the scheduler with a new command or event being added and causing the tnext property to

be changed.

However, to put this into practice, it is necessary to delve into the details of the subsys-

tem models. Satellite subsystems can have much different response times and properties,

requiring significantly different step-sizes during propagation. Certain subsystems are linear

and can do the entire propagation in one step (such as modeling fuel mass using a constant

flow assumption), whereas other subsystems require a high frequency sample rate to ensure

accuracy (e.g. ADCS). This is where the parameter δtsub is used. This parameter is the

step size used within the individual subsystem model. It allows for the simulation to retain

accuracy in the high frequency parameters, while allowing for long duration simulation runs.

Figure 4-5 illustrates the different δtsub steps for the different satellite subsystem models

for propagating to the time of the next command. This diagram “zooms in” to the case

of propagating from tC1−1 to tC1−2 in Figure 4-4, with E2 interrupting the propagation.

The gray box represents the update in the tnext property after triggering the event in the

preliminary orbits model. This illustrates the fact that the rest of the models will propagate

for less time, and thus collect and save less data.

An example of the subsystem sampling parameter and how it will be modified is by

looking at the communications subsystem. For the CASTOR satellite, the communications

subsystem is mostly inactive, unless the satellite is in view of the ground station. There-

fore δtcomm could be set to a relatively high step size, such as 2 or 3 minutes, when not

communicating. In this time, the subsystem would only look at the orbital position and

find if the ground station is in view of the satellite. If it is in view, the exact time of initial

communications would be found, and an event would be triggered for that time. When the

87

Figure 4-5: Satellite Propagation Subsystem Time Steps and Interrupt Diagram

scheduler sees that the satellite is in view of the ground, it will move back one time step

and update or propagate at a rate much faster than δtcomm, on the order of 5 to 10 seconds

in this case. A bisecting method can be used to minimize the convergence time. Once the

viewing event is triggered and a command is executed signifying an actual communications

period, δtcomm will be changed in the event callback to a higher rate to obtain proper cov-

erage and signal strength details. Upon exiting a satellite contact, the time step will be

changed back to a lower sampling rate in.

Figure 4-6 shows an even further zoomed-in instance of Figures 4-4 and 4-5 for the com-

munications subsystem interrupt just described. This figure shows the actual interrupt time

as �, and demonstrates how the time steps along δtC until the event flag is triggered. Once

the flag is tripped, a while loop is executed until the event resolution meets its requirement,

τcrit, which is generally 1 to 5 seconds in this simulation. The gray box on the right of the

diagram represents the same excess area as Figure 4-5 that was truncated by a previous

model updating for an event.

Figure 4-6: Example Subsystem Time Step and Interrupt Diagram

88

The bisecting algorithm used to find the precise time of the event is shown below. Note

that for a fixed time step, the event timing is given simply by tnext.

τ = δtsub

while τ ≥ τcrit

check = f(t+ τ
2)

if check = false

t = t+ τ
2

end

τ = τ
2

end

The data distribution between subsystems and the simulation output is another signif-

icant topic that may not be trivial. This process can be simplified by fixing the ∆T and

passing all of the state data between subsystems, as was done in the MOTV and initial

CASTOR models. However, as Section 5.1.3 will show, this becomes costly as the detail of

the model increases.

It is important to carefully track the data input and output into each subsystem model,

and the overall data saved in the simulation. This is done with the assistance of the detailed

N2 diagram shown in Figure 4-3. It also requires an understanding of the telemetry format

and individual channels created by the satellite. The design of the data distribution for an

individual subsystem function is summarized by the following:

� Read time step from scheduler and generate expected time-tagged data matrix

� Check subsystem mode (pass through if in telemetry mode)

� Read relevant data from other systems necessary for subsystem of interest

� Perform any interpolation or manipulation of input data

� Run subsystem model (propagate to tnext)

� Pass detailed, relevant data needed by other subsystems out

The relevant data used in the subsystem could be either a single value or a list of times

and values passed from another subsystem. The source of this will always be the simulation

89

subsystem functions, although the flight telemetry could be included in this output, if

desired. The data will be converted, if necessary, to a usable format for the subsystem

after it is read in. An example of this would be converting an attitude format (such as

quaternions or DCM) from the ADCS subsystem into a more usable angle-off-sun format

for the power subsystem. Any interpolation of values is done at this point, as it is likely

that the sampling will be different for each subsystem.

If a telemetry file exists with the specific subsystem data, it will have been read at the

beginning and will already be stored in the subsystem object. The telemetry of interest for

the given time will be read into the subsystem function and the data can either be passed

straight through, or used to run through more detailed models. An example is the actual

attitude position and rates from the satellite. If the only output required from the ADCS

model is to provide the angular position and rates, the data can be simply passed through.

Some changes in format or sampling may be desired, and additional calculations may be

required to get local intermediate variables or global variables not included in the telemetry

file.

The subsystem is then propagated with the data of interest at the defined step size,

δtsub. If an event or command occurs, the subsystem will interpolate as necessary to find

the time of the change as detailed previously. If no event occurs, resulting data will be saved

in two formats. The data of interest to the TDA or user (as defined previously) will be

saved to the subsystem object as a property, and the data necessary for accurate simulation

results will be passed locally to the other subsystems in the data structure. This data

will only include the state data between ti and tnext, which is important for long-duration

simulations that have growing data matrices.

The default data saved into each subsystem object’s telemetry property are the same

measurements and calculations collected in the telemetry files on-board the satellite. This

is done to make comparison easy between SIM and SAT data in the TDA. At the end of

the simulation, the data matrices (structures or objects) will be saved in a usable format

for the TDA.

In summary, it has been discussed how the simulation and all of its elements are initial-

ized (inits structure), how the satellite state changes (command callbacks), how data is

90

passed during the propagation (N2 diagram), and how telemetry is saved (subsystem object

property). This is a complete set of information necessary to fully represent the satellite.

Table 4.2 summarizes all the different information types. Section 5.1.4 describes the results

of implementing this design on the CASTOR satellite.

Table 4.2: Simulation Information Classes and Types

Information Description Nomenclature
Initial Conditions Create all simulation objects inits structure

State Current Satellite and Environment Conditions state structure
Data Temporary time tagged subsystem values data structure

Telemetry Subsystem specific data storage subs.tlm property

4.2 FalconSAT-3 Telemetry and Data Analyzer

The discussion of developing a TDA is done with the FalconSAT-3 (FS-3) satellite. FS-3 was

designed, built, and is still operated by USAFA’s SSRC, and has provided a large quantity

of both technical and programmatic data through its over three years of operations. This

section will describe the development and progression of different on-orbit data analysis tools

through many FS-3 unplanned operational events. This discussion will identify technical

and programmatic lessons that can be applied to the IEM design, as well as general design

and operations of small satellites. The FS-3 case study will show the evolution of the FS-3

telemetry and data analysis tool (FS-3 TDA). Section 5.2 will identify the importance of

this tool in recent FS-3 events. The overall lessons from the FS-3 program that can be

applied to small satellites will be discussed in Section 5.3.3.

4.2.1 FS-3 Data Overview

FalconSAT-3 (NORAD Catalog #30776) was launched on 9 March 2007 as a secondary

payload aboard an Atlas-5 rocket [12]. To properly discuss its telemetry, the different

sources of data for FS-3 must be described at the onset. The satellite was launched with a

multiple data formats that could be collected and sent to the ground. These primary data

formats used are:

91

� Real Time — All sensors, file system health, command and events

� Whole Orbit Data (WOD) Files — All sensor values

� PLANE Files — PLANE Payload files

� Attitude Files – Attitude Subsystem Files

The real time data is sent every time the satellite is in contact with the ground station.

The sensor TLM is sent at a rate determined by operators, usually 5 to 30 seconds between

samples. This data is saved by ground tools as it comes in. However, the data is sent only

once by the satellite, so if the ground software is not running or the signal strength is not

sufficient (e.g. antennas not pointed at satellite), this data can be incomplete. Two different

TLM packets are sent individually, and it is possible for only one to be read and the other

missed. Additionally, the satellite’s avionics system sends health and status updates such

as time, file system status, and acknowledgments of commands that have been processed

by the satellite. These are all logged as ASCII data into a text file; however, these messages

are also sent open loop as before, so they are only recorded if the signal strength is sufficient

and the ground software is actively logging the data.

The other three types of data are started, stopped, and downloaded by operators upon

request and they are saved into the satellite’s memory during collection. WOD data is

collected when telemetry data is requested between satellite contacts, PLANE files are

created when running the PLANE payload, and attitude files are created when a more

detailed attitude analysis is desired.

A little over a half year into the mission, it became clear that the data collection system

in place was not sufficient. There was a significant trade-off in collecting the WOD files. If

no WOD files were created, data is only collected during ground contacts, which is no more

than 40 minutes a day for the FS-3 mission. If WOD files were written continuously, the

data budget quickly goes into a negative margin, i.e. the data is being collected at a higher

rate than can be transmitted. The original mode of operations is to only collect WOD

files for a limited amount of time, such as one or two orbits, so the data budget stayed

positive and an snapshot of the health and status was given. However, this process made

any analysis challenging, as data still came at somewhat sporadic intervals. It was decided

92

to create a new data format, which only recorded 12 critical telemetry channels versus the

137 collected before. This format, called Limited WOD (LimWOD), allowed for continuous

data collection and improved analysis and monitoring capabilities. The channels collected in

LimWOD are battery voltage, battery temperature, solar panel currents, magnetometers,

and time. Table 4.3 summarizes the different data types and their typical frequency of

collection.

Table 4.3: FalconSAT-3 File Types

File Type Description Collection Frequency
WOD All sensor readings Only during significant tests
LimWOD Critical sensor readings Continuously
PLANE PLANE payload data Only during PLANE operations
Attitude Attitude calculations During control mode activation

The LimWOD file format was implemented in January 2008, and files have been nearly

continuously collected since that time. Prior to this, WOD files were primarily analyzed

using Microsoft Excel. This was done as the data could quickly be manipulated and graphs

could be made and formatted as desired for the given test. As the LimWOD files came in

at a much greater frequency and with only a limited set of data, a general analysis tool in

Excel was created. This tool allowed the data to be analyzed via graphs by pasting in the

raw LimWOD data. As too much data became hard to visualize, a new spreadsheet was

created for each calendar day of data. However, this method also had limitations. The first

limitation was the forced human intervention in adding the data. Operators or analysis were

forced to open the LimWOD file (Comma Separated Value (CSV) format), and copy and

past the data from the files into the excel template. Depending on the sampling rate, 12 to

60 files are created each day, so this became a tedious activity. The next major limitation

was the ability to quickly and easily find or analyze desired data. The LimWOD data was

sorted by day in individual files. Not only was this excessive from a data storage standpoint

(CSV files much smaller than Excel files with graphs), it was also not very useful for data

analysis. For example, when data for a specific set of time was desired to view, a common

practice was to temporarily delete the data that outside the specific time range.

93

After a few months of utilizing the LimWOD Excel analysis tool, a MATLAB based

tool was created to process and analyze the data. While taking a much greater level of

programming competency, the MATLAB LimWOD reader tool allowed multiple days of

files to be read and saved into MATLAB. This was primarily developed in support of

gathering data for an altitude filter that required an easy way to gather data for long date

ranges. While useful in this, the MATLAB LimWOD reader did not overcome the limitation

of flexibility in data manipulation also present in the Excel analysis tool.

In the summer of 2009, MIT SSL partnered with USAFA SSRC to assist in the analysis

of FS-3. At this time, the author quickly pursued the design of a new analysis tool. With

over a full year of near continuous LimWOD file collection, this tool needed to quickly look

at telemetry over many different time ranges. This led to the creation of the LimWOD

Analysis GUI discussed in Section 4.2.3.

4.2.2 Telemetry, Data, and Operational Events

FalconSAT-3 has had many operational events in its three year history. An operational event

is used in this context as any significant change in satellite state (hardware or software), as

well as any off nominal behavior or anomaly. The purpose of this section is to guide through

how the telemetry and data was used to analyze these operational events, and relate how

these events can be discussed in the general IEM context.

LTAS Event

An operational event in FS-3’s Low Thrust Attitude System (LTAS) occurred on 2 Novem-

ber 2007. Four 3-axis stacks of thrusters are located on FS-3, and one axis in one of the

stacks was being tested to ensure that the it was still operational on the day of the event.

The thruster was turned on for six minutes, which was at the time the longest duration of

the mission. The initial analysis of the data using excel provided a graph shown in Figure

4-7.

It appeared from this graph that the thruster initially fired as expected, shown by the

blue spikes in the main capacitor sensor. At t=2 minutes, the current from the 9 Volt

regulated line suddenly jumped and remained continuously high until the command was

94

Figure 4-7: Initial Analysis of 2 Nov 2007 LTAS Data [31]

sent to turn off the LTAS thruster six minutes later. This constant current was not seen

in any of the other thrusters, as they all show a somewhat random draw of current from

LTAS as the sensor is sampled at different points along the pulse. For this reason, it was

concluded that this thruster malfunctioned and likely shorted at the time of the event. A

comparative graph for what nominal operations of a working LTAS thruster is shown in

Figure 4-8.

Figure 4-8: Nominal Telemetry of Operating LTAS Tube (8 Nov 2007 LTAS Data)

This conclusion was also based on the results of the first LTAS test that occurred on 9

May 2007. In this test, multiple LTAS clusters and thrusters were tested to demonstrate that

95

the payload survived launch and was operating as expected. The method for verification was

showing the peaks in both the 9V regulator’s current sensor and capacitor values. Originally

it was determined that the thruster in question (+X, thruster 2) fired successfully due to

the increase in the current drawn by LTAS. This can be seen in Figure 4-9. Therefore, after

acceptance that the thruster fired successfully on orbit and looking at Figure 4-7, it was

concluded that the LTAS +X cluster thruster 2 failed shortly into testing.

Figure 4-9: Initial LTAS Testing Results (9 May 2007 LTAS Data)

This event is relevant to this thesis as the data produced in Figure 4-7 was incorrectly

created. Figure 4-10 shows the actual results from the event. This figure clearly shows

that there was a jump in the current, and that the capacitors do not reach the voltage that

would be expected (seen by Figure 4-8).

The extra data in the initial results is from a plotting issue with the Excel spreadsheet

used for data analysis. The data was copied and pasted to create the graphs, and the

graph plotted both the correct data and data from a different day. Once this was found,

the initial conclusion of this thruster functioning after launch was questioned. When re-

analyzing the data and reviewing Figure 4-9 again, it became clear that the one data point

showing a jump did not meet the criteria for a working LTAS. Additionally, the capacitance

values recorded are significantly lower than those recorded during the firing of the other two

thrusters on that cluster, and match the order of magnitude shown in Figure 4-10. With a

better understanding of the data and reanalyzing the original verification tests from May

96

Figure 4-10: Corrected LTAS 2 Nov 2007 Data Plots)

2007, the FS-3 team concluded that the LTAS +X thruster 2 did not malfunction during

the November test, but rather it never worked on-orbit.

The lessons from this example are the following:

� It is possible to misdiagnose a system with limited data

� Repeatable analysis processes are desired to compare data in the same way each time

� Spreadsheet tools such as Excel are susceptible to human error

� Re-analyzing data can be productive, even if the results seemed clear at the time, as
the previous analysis may have not had the amount of data or understanding of the
system

WOD Timing Event

In November 2007, the gravity gradient boom on FS-3 was deployed. In this time, many

WOD data collections were performed to look at the rotation rate of the satellite between

contacts. The WOD data seemed to have strange gaps between the stop time of one file and

the start time of another and was attributed initially to processor and file system issues.

However, when one analysis of the spin rates was done by looking at the magnetometer

data in both the real-time sensor TLM and the WOD downloaded TLM, it became clear

that the WOD files had a timing problem. This data comparing both sensor readings for

the same timescale are shown in Figure 4-11.

97

Figure 4-11: Comparison Between WOD and Real-Time Magnetometer Values

Figure 4-11 shows how each WOD magnetometer value begins at the same point as

the real-time values, which is due to the WOD file being initialized at that time. As time

moves forward, the WOD data lags the real-time data. The data for the same value, such

as the minimum value in the X magnetometer, happens earlier in the real-time data than

in the WOD data (as shown by the black line). Upon investigation of this mismatch, it was

determined that the problem was not with the WOD collection on-board the satellite, but

primarily with the ground processing of the data. The header in the WOD file contains

the start time for data collection and intended sample rate of the data at this time. The

ground processing tool assumes that the data is always collected at this requested interval

and that it never changes. This assumption is not valid, as the data rate is often modified

by operators. Even if the desired sample rate is fixed, the actual sampling of the data is not

constant. The issue was resolved by adding the sample time to the WOD data by treating

it like a sensor. The ground processing program has not been updated, leading the CSV

file generated by the decoder to still have incorrect time steps. Therefore it is necessary to

have a processing tool take the CSV files and manipulate the time to produce correct time

tags.

98

This event and the issue of timing in general invoke several themes that relate to the

IEM design:

� Timing sources between all satellite telemetry formats should be verified on the ground
and after launch

� The satellite clock should match all ground clocks (correct for any processor drift or
ground timing issues)

� A central database that stores all the TLM and data formats with correct time tags
is preferred

Torque Rod Strength Event

FalconSAT-3 has three magnetic torque rods fixed to the orthogonal body axes. These

torque rods are the primary source of attitude actuation in FS-3. They were individually

tested prior to integration to determine their effective dipole, which ranged between 0 and

5 Am2. Upon integration with the system, acceptance testing was done by testing the

highest strength setting and showing a change in the magnetic field with a compass, as well

as looking at the power draw and current used by the individual torque rods.

In Fall 2007, a B-dot controller was run to slow the rotation rate of the satellite. The

B-dot algorithm implemented on FS-3 simply outputs a command to a torque rod that

is opposite of the change in direction of the sensed magnetic field from the Earth. That

is, if the x-axis magnetometer shows an increasing magnetic field, the command would be

given to the x-torque rod to create a dipole in the -X direction. While there are additional

proportionality and multi-axis options in the general B-dot logic, this B-dot controller was

utilized on FS-3 for simplicity in implementation. When implemented on orbit, the B-

dot algorithm had little effect on the satellite. Commands were generated by the satellite

showing the switching polarity of the torque rods as the satellite rotated through the Earth’s

magnetic field; however, no significant change in rotation was observed.

The cause for this issue was found in January 2008 when a contractor who supports FS-3

was performing tests on the FS-3 Qualifications Model (QM). The individual found that

the different strength settings on the torque rods produced nearly random current values

in both the sensed current to the torque rod and the power distribution unit. These results

99

are shown in Figure 4-12. The test was done on both torque rods available and in both

directions.

Figure 4-12: Torque Rod Current vs. Initial Strength Setting [38]

The cause for the random appearance in Figure 4-12 was an inversion of the strength

setting, represented by a 4-bit nibble. The strength setting that was used in the B-dot

controller was the setting of 8, or 1000 in binary. The inversion caused this to be represented

as 0001, or the second lowest strength setting. At this strength, negligible torque were

created, and thus no change in dynamics was observed. Figure 4-13 shows that when

accounting for the nibble inversion, the current from the torque rods increases monotonically

as expected. Testing on the FM verified that this inversion existed and behaved on the

ground.

This event has a few lessons that can be applied to the IEM design:

� Verification steps should test through the range of possible commands and not just
extremes

� Verification done on the ground that can also be performed on orbit should also be
done on orbit, and with the same tools

� Utilizing telemetry and analysis tools for verification both in testing and on-orbit
checkout can assist in complete analysis

100

Figure 4-13: Torque Rod Current vs. Revised Strength Setting [38]

Torque Rod Polarity Tests

Although the strength issues were fixed, uncertainty existed in the polarities of the different

torque rods. As the polarity is critical to lower the rotation rate using the B-dot controller,

this topic was one of the first examined by the SSL team. Figure 4-14 shows the results from

this test. This data was created using a MATLAB script and previously saved processed

data sets. The test set-up consisted of commanding torque rods on and off at different

strength and polarity settings to see the effective change in the magnetometers.

Figure 4-14: Torque Rod Polarity Test Results

The data shown in Figure 4-14 showed that each torque rod displayed different relative

magnitudes for a given strength. A magnetic model was created by SSL PhD candidate

Jaime Ramirez utilizing the geometry and placement of the torque rods with respect to

the magnetometer to show the expected results for a given strength. The output of this

model is shown in Figure 4-15. This figure shows that the general response seen on the

101

magnetometers from the open loop torque rod commands matches the predicted model in

all cases.

Figure 4-15: Torque Rod and Magnetometer Model

This testing sequence validated that the torque rod polarity was correct in all cases.

Using a MATLAB script to perform the analysis allows the results to be re-created or

modified as necessary. Since this was a one-time test, it was not necessary to implement

this feature in a repeatable medium.

Magnetometer Calibration Event

FalconSAT-3 uses a 3-axis magnetometer as its primary source of attitude knowledge. This

magnetometer outputs a voltage that corresponds to an observed magnetic field (B-field)

in the three body axes. A team of SSL students and faculty investigating the FS-3 attitude

system in June 2009 found that the coefficients for converting voltage to measured B-field

(in Tesla) were not accurate. This was found by finding the magnitude of B in both the

body and Earth Centered Inertial (ECI) coordinate frames. While direction of B will be

different between the two frames, the magnitude should be equal. The expected magnitude

of the BECI comes from the International Geomagnetic Reference Field (IGRF) model of

the Earth’s magnetic field, and the magnitude of Bbody comes from the magnitude of the

converted magnetometer strength readings.

An overlay of the plots of the two magnitudes with time is shown in Figure 4-16. This

shows that Bbody deviates significantly and periodically from the expected IGRF-based

magnitude. While the IGRF is only a model of the Earth’s magnetic field and has a error

associated with it, the deviation from the magnetometer outputs is orders of magnitude

greater than this error. The MIT team hypothesized that either the magnetometer was

improperly calibrated or an unexpected magnetic source exists in FS-3. In the case of

102

improper calibration coefficients, new coefficients could be tested to see if the data fits

better for all ranges of time. This method will also work assuming any magnetic source

was body fixed and constant. While these assumptions may not be valid, they were made

initially as the problem becomes much more complex with dynamic magnetic sources.

Figure 4-16: Initial Comparison of Magnetometer and IGRF ‖B‖

A non-linear least squares method was developed by SSL PhD candidate Jacob Katz to

determine the magnetometer conversion coefficients that fit the IGRF best. Each magne-

tometer axis (̂i) outputs a voltage (vî) which is multiplied by a constant (aî) and added to

a bias term (bî) to obtain the magnetic strength reading in Tesla (T) or µT. An error term

ek is found by taking the difference between the magnitude in the body-axis B-field and the

inertial B-field. The least squares method minimizes the error for each term to output the

three components of a and b. These steps are represented mathematically in equations 4.1

to 4.3.

103

Bbody = aTv + b (4.1)

ek = ‖Bbody‖k − ‖BIGRF ‖k (4.2)

(a, b)opt = argmina,b

∑
k

e2k (4.3)

The least squares method was implemented for different date ranges, outputting several

values for a and b. While the method did not always output the same values, a general

set was found that matched all data sets well. The results with the new coefficients are

seen in Figure 4-17. These results are not expected to match completely due to uncertainty

in satellite position based on TLE propagation, uncertainty in the IGRF model, and time

varying properties of the magnetometer (such as changes in reading with temperature).

Figure 4-17: Comparison of Magnetometer and IGRF ‖B‖ (New Coefficients)

The magnetometer coefficients are significant for any filter to determine the attitude of

FS-3. If the coefficients are wrong, the accuracy of any knowledge estimate will be affected,

and it is possible that the filter could diverge, even if the satellite was stable. For this

reason, the discovery that the magnitude created with the initial coefficient values did not

sufficiently match the expected IGRF magnitude is significant.

The major lessons from this event that relate to the topic of IEM are the following:

104

� Tuning parameters can be tested before flight, but should be verified on-orbit as well

� Like torque rod testing, the same logic or algorithms used for verification on the
ground can be used on orbit

� Certain tests need to be repeatable on sets of data from different dates.

Additionally, this event was described as it led to the development and use of the

LimWOD Analysis GUI. The design and implementation of this GUI is described in Section

4.2.3.

4.2.3 FS-3 LimWOD GUI Design

LimWOD GUI Motivation and Development History

The previous section showed several examples of graphical analysis tools used in FS-3 op-

erations. The addition of continuous LimWOD collections led to the development of a

repeatable process for analyzing the large amounts of data. While an Excel template pro-

vided a short-term solution, it was easy to unintentionally manipulate, and did not effec-

tively display long term trends or short term dynamics of the system. The MATLAB-based

LimWOD GUI was developed to leverage the previous experience with the Excel-based

template and several MATLAB-based data processing tools to allow for greater availability

to visualize and process data. This section describes the initial design and further add-ons

made since July 2009.

The FS-3 LimWOD GUI analysis tool was created initially to support the long-term

analysis of magnetometer data by the MIT SSL team. As 18 months of near-continuous

LimWOD data existed (February 2008 to July 2009), the SSL team needed a tool to quickly

parse through this data. As mentioned previously, an assortment of tools were available

that processed the LimWOD files for a specific range of dates and returned data matrices

and graphs of the data through the range of dates. These tools were utilized as the input

source to the GUI, and then the rest of the GUI was used for data processing and flexible

graphical analysis.

The initial data processing tools built into the GUI were a SGP4 TLE propagator and

IGRF magnetic model. These were implemented to create the graphs shown in Figures 4-16

105

and 4-17. These tools existed and were used previously to support attitude analysis, but

the magnitude of the vectors was not looked at until July 2009.

Within two weeks, a data processing tool was created that performed the following

functions. These functions are described in further detail on page 108.

� Collect data for a range of dates and store it with correct time steps in large data
array

� Allow for graphical depiction of each channel of data with start and stop time limits
down to the second

� Propagate TLE through time to generate the IGRF magnetic model of the satellite
through its orbit

� Compare converted magnetometer strength with IGRF magnetic field strength

� Perform best-fit of IGRF strength to find acceptable a and b coefficients

� Modify coefficients manually to compare strengths

Several upgrades have occurred since the initial development of the GUI. These updates

can be classified into the following different categories: maintenance, additional analysis

features, and enhanced user interaction.

The maintenance category represents any modifications needed to be able to successfully

run the analysis tool. While this can couple with unintentional changes from additional

analysis or user interaction features, it is mostly a function of improper assumptions on

the long-term input set. Examples of such assumptions can be the date format or data file

structure. When analyzing data that passes between months or years, certain tools assumed

either a location or an improper structure of the date, leading to errors or unintended data

being created. These improper assumptions are addressed at the lowest level, if possible, to

lead to more robust and portable analysis tools. Additional maintenance functions include

a changing environment in either the satellite or ground segment, such as changing the data

structure collected by the satellite or the ground handling of the data.

Maintenance changes and actions should fix improper assumptions necessary to run

analysis, or identify any assumptions that limit the analysis capabilities. One such example

of the latter is that the LimWOD GUI is only meant to analyze the channels of telemetry

collected in the LimWOD format. Originally, the full WOD files were not even read by the

106

analysis tool; however, upon testing campaigns that led to collection of many full WOD

files, the supporting tools to read the data were modified so that full WOD files were read

and able to be analyzed in the LimWOD GUI. Only those channels normally collected in

the LimWOD format are available for analysis in the LimWOD GUI, even though a much

larger set of data exists. Therefore an important restriction made is to have the LimWOD

GUI tool only analyze the select channels collected in LimWOD format, even if more data

is available.

The next type of update to the GUI is adding additional analysis features. This is done

to support different operational tests or further studies of existing FS-3 data. Examples of

additional features added are the expected B-dot logic commands, viewing the length of the

time step between data samples, running attitude filters, and calculating the expected solar

panel angles off the filtered attitude results. This class of updates utilizes the investment of

data processing and aggregation of analysis tools to build more and more defined analysis

capabilities. These analysis features will be described in further detail in page 108.

The final class of updates to the GUI are used to enhance the utility and user interaction

with the tool. A significant amount of analysis comes from visual identification of graphical

data, leading to the necessity to clearly depict the data in graphs. This includes proper

time labels, axis labels, legends, and titles for each graph. While it is possible to perform

analysis without these cosmetic properties, there are many short-term and long term benefits

to having readable and presentable graphs output such as clear communication of data to

stakeholders and additional analysts. Another form of user interaction updates comes from

the ability to sort through the data quickly. This has been accomplished in many ways

through the GUI development to enhance the user’s interaction and ease to access data,

as described on page 119. Another example of user interaction is the selection of input

conditions such as TLE files to use, selection of dates to analyze, computer path of the

data, and satellite or analysis files to analyze. This has been done in different ways such as

text-based input dates, a string of the path or files, and interactive selection tools. While

these updates do not affect the results in any way, enhanced user interaction and a more

robust source of inputs allows a greater amount of personnel to utilize the GUI’s features.

107

LimWOD GUI Features

With an overview of the GUI and its modifications, this section describes the actual imple-

mentation of the different analysis and interactive techniques. Many of these are specific to

the MATLAB GUI framework and FS-3 mission; however, many of the techniques can be

approached in a broader viewpoint for general TDA design practices. The different topics

described in this section is summarized in Table 4.4

Table 4.4: LimWOD GUI Design Outline

Topic Page
Loading Data and Files 108
SGP4 and IGRF Model 111
Magnetometer Analysis Tools 111
Time and Sampling Techniques 113
FS-3 Attitude Analysis Tools 116
Graphing Techniques 119

Importing and Loading Data and Files in LimWOD GUI Design

The LimWOD GUI requires several different input files to perform all of its functions.

At a minimum, the GUI needs to pass the location of the data files, the start date, and

the stop date to the function wod_search. This function searches for the files that are in

the directory between the dates. The files are saved into a character array and a “for”

loop calls wod_lim_process for each file to save the data into a numeric data matrix.

Maintenance modifications made in this process include calling wod_full_process inside

of the pre-written wod_lim_process function in the case of full WOD collections, along

with ensuring only the data between the dates is saved by calling the previous day’s last

data file and saving data that was written into the start date of interest, and truncating

after midnight on the stop date of interest. The data is found after the button “Generate

Data” is pressed, as shown in Figure 4-18. Additionally, this figure shows the data location,

shown to the right of the “CSV Path” text. This path is defined due to the data structure

being undefined during the initial development. A later modification (user enhancement)

ensured this path is defined correctly upon launching the GUI, as all analysis software and

satellite data is now linked in a subversion repository accessed by both MIT and USAFA.

108

Figure 4-18: LimWOD GUI Data Import Formats

The Two Line Element (TLE) file is selected in a similar way as the data folder, with

the exception that it assumes the TLE is in the correct location already. Using the correct

TLE file is important as the SGP4 propagation method used is only accurate for a limited

amount of time. The TLE is used to propagate the satellite’s position forward in time, and

is primarily used in the FS-3 satellite for comparison with the IGRF model. As analysis can

take place for a wide variety of times, it is important to have a flexible input file. The GUI

has a search function that assumes that the files are named “fs3tleYYDDD.txt”, where the

day (DDD) is in increments of 20 days, and it will automatically display the name of the

file if the “Auto search” button is selected. This is not ideal as it forces a user to create

and name the different TLE files, and a user enhancement modification could be made to

automate this process; however, the accuracy is sufficient with a 10 day maximum lag and

TLE files are maintained by those frequently doing analysis.

The two pop-up windows shown in the bottom half of Figure 4-18 represent modifications

in both analysis features and user enhancement that occurred later in the LimWOD GUI

109

development. The left graphic shows a collection of data files created by the BSEKF

Attitude Filter that will be described later (page 116). The user has the option of analyzing

these files to compare the solar panel currents to the estimated solar angle for each panel

given the attitude estimate from the filter. This was done in the verification process of

the BSEKF filter, and since many data sets existed, it was added to the LimWOD GUI

capabilities. The user enhancement was made in the discovery of the MATLAB uigetfile

function, which allows the user to select file(s) from a standard pop-up window. This is

advantageous as it is much more intuitive than typing the file name and path into a box,

along with creating a simpler graphical interface with the user. The same import option is

done with the addition of reading satellite attitude files for controller verification, which will

be described further (page 116). MATLAB code in Appendix A, page 181 shows how the

function uigetfile is used to produce a cleaner, user interactive import option for FS-3

attitude (CSV format) files.

The current procedures to analyze the data begin with loading in the data for the day of

interest. This was the initial purpose of the LimWOD GUI, although with the addition of

different data sets, it is not always necessary to load an entire day of data. Future revisions

could have the analysis files (such as satellite-created attitude files or BSEKF output files)

initiate the satellite data search so only the data from that time is compared. Additionally,

if all LimWOD and WOD data was placed into a database with correct timestamps, the data

searching function would be much more intuitive and quicker. This was initially performed

prior to launch with WOD files and real-time TLM, but the WOD timing event caused this

feature to become obsolete.

To summarize, multiple sources of data are used in the LimWOD GUI. The ability to

import this data has improved throughout the use of the LimWOD analysis GUI. The TLE

file importing process is semi-automated, although it still uses assumptions that users create

proper filenames in the correct folder. Data searching could be improved in future revisions

to allow for analysis files to call the data required, or to have a central database for all

WOD data.

110

SGP4 Propagator and IGRF Model

The IGRF magnetic model of the Earth is necessary in order to properly analyze the

FS-3 magnetometer data. As the magnetic field of the Earth is a function of longitude,

latitude, and altitude, the satellite’s position vector must be known for proper analysis. The

requirement to know the satellite’s position leads to utilization of the Simplified General

Perturbations 4 (SGP4) propagation technique. This propagation method utilizes mean

elements and a general perturbation technique to find the satellite’s position and velocity

at a future time [41]. TLE provided by NORAD/DoD are used as the orbit epoch, and are

loaded as text files as explained earlier. Multiple files from the Aerospace Mission Analysis

MATLAB (amam) set are used to load the TLEs and run the SGP4 technique.

The SGP4 propagation and IGRF model require a significant amount of computation

when compared to other elements of the LimWOD GUI. For this reason, the GUI is designed

so this calculation only occurs once for each given set of input dates and data. Neither the

satellite position vector or IGRF vector in the inertial reference frame will change for a

given set of dates and TLE, so this assumption is valid. The magnetic readings derived

from the FS-3 magnetometers are possible to change with modifications to the coefficients

(a and b), but this will only save over the previous data, and not re-run the IGRF model.

One element of the IGRF that has not been applied to the LimWOD GUI is the transi-

tion from the IGRF, a predictive model, versus the DGRF (Definitive Geomagnetic Refer-

ence Field), a retrospective collection of data based on measurements [39]. This is a research

area available for further work, especially in the area of magnetometer calibration, as the

figures shown (Figures 4-16 and 4-17) do not give the indication that the new coefficients

represent the true magnetic field.

Magnetometer Analysis Tools

The FS-3 magnetometers provide the best measurement of the FS-3 attitude by sensing

the strength of the magnetic field in each of the three orthogonal body axes. Preliminary

analysis of one orbit of data from June 2009 showed that the magnitude of the magnetic

field output by the magnetometers oscillated at a much higher frequency then expected.

The development of the LimWOD GUI analysis tool allowed this magnitude to be compared

111

to the expected magnitude output from the IGRF model. Figures 4-16 and 4-17 showed

two such outputs of these graphs that were taken from screenshots of the GUI. This graph

was produced by plotting two columns of the matrix Bdata against each other, given the

same time. Bdata consists of eight columns: three IGRF components in the orbital ref-

erence frame (LVLH frame), the IGRF magnitude, three body-axes components from the

magnetometers, and the magnetometer magnitude. All columns are in Tesla units.

Whenever the IGRF data is needed, all columns of Bdata are calculated. When cal-

culating the magnetic field relative to the body axes as sensed by the magnetometer, the

GUI uses values of a and b that are shown in Figure 4-19. The user can manually adjust

these parameters or default to the original or revised set of coefficients used. The least

squares method described in equations 4.1 to 4.3 is performed when the “Calculate New

Values” button is pressed. Additionally, a flag is tripped if the magnetometer coefficients

are ever changed, either manually or by pressing one of the buttons. Whenever the data

is to be plotted, the last four columns of the Bdata matrix are recalculated using the new

coefficients. As stated before, the IGRF data is not recalculated as it will not change, and

due to its large computational nature.

Figure 4-19: LimWOD GUI Magnetometer Coefficients Selection

Another feature of the LimWOD GUI is to fit the IGRF data for a limited time span.

If periods of time are missing, either from not being collected by the satellite, or not

being downloaded from the satellite, the least squares algorithm will not converge correctly.

Therefore whenever the “Calculated New Values” button is pressed, it will utilize the date

and time range used by the plotting function to determine the best coefficients. This

creates a problem if the time span is too short, as the best fit of the data may only be a

112

local optimum, and not a global fit that would work for all values of time. This feature is

also useful if magnetic disturbances are present, such as during open loop firing of torque

rods.

Time and Sampling Techniques

The issue of timing is critical in analyzing data from several sources. The WOD timing

event described on page 97 was one instance of improper time tags. Additional care needs

to be placed between any comparison of ground time and satellite time. The FS-3 processor

clock has a drift of approximately 5 seconds a day, and during the first contact of the day,

the satellite clock is synchronized with the ground station time. This procedure assumes

the ground station time being sent is the correct GMT time, which is not always the case.

It is possible for the computer sending the time to have a different value of time than the

computer logging the real-time data. The function craread was written to analyze the

real-time text log files (CRA files) in MATLAB. This function outputs the time difference

between the ground clock and the computer clock, both graphically and in a data array.

An example of a standard analysis showing four contacts within a 24 hour period is shown

in Figure 4-20. This data is useful as significant offsets in the time can disrupt analysis,

especially for looking at the timing of commands generated based on dynamic readings such

as torque rod commands generated during the B-dot logic algorithm. It should be noted

that the craread function is independent of the LimWOD GUI, as it deals with another

data type. However, this analysis tool could be transitioned into the GUI if desired.

Another issue of timing that was unexpected at launch was the dynamic nature of the

sample size. This was the critical assumption that led to the invalidation of the original

ground-based sample size. The sample size can change significantly with a ground based

command. The sample rate can be modified in five second increments between five seconds

and one minute in duration. This change in timing is very predictable, as it is only triggered

by a ground-based command. However, The sample time can also change on its own, due

to higher priority taskings with the flight processor or due to processor clock drift. These

changes are shown with 6 April 2010 data in Figure 4-21. This graph is generated by the

GUI and was plotted externally to allow for additional labeling on the Y-axis.

113

Figure 4-20: Comparison Between Ground and Satellite Times

Figure 4-21: Satellite Time Between Samples

The ability to plot the time between samples was a late add-on to the GUI that will

become important in analyzing aliased data on FS-3. Aliasing challenged analysts several

time during FS-3’s lifetime, and was identified as the cause for several unexplained behaviors

in April 2010. In general, dynamics in the space environment are very slow, especially for

relatively simple satellites like FS-3. For this reason, aliasing of data and sensor readings

114

is generally not a problem. In the case of FS-3, a number of spin-up events occurred that

led to time segments with aliasing of attitude sensor data. The timing jumps can assist in

identifying aliasing and determining how badly aliased a signal is. This will be discussed

further in Section 5.2.2.

The satellite time written to LimWOD and WOD files is in Unix time. This time,

which is in the format of seconds since January 1 1970, is not understandable and must be

converted. MATLAB has several built-in functions that allow for representation of dates.

Additionally, the date format of Julian Date is also used when propagating the satellite or

other astronomical bodies. Therefore it became necessary to carefully ensure that the time

being used is in the proper format. Table 4.5 following functions are used to deal with time

in MATLAB, their use, and their developer.

Table 4.5: MATLAB Timing Functions

Function Use Developer
time Conversion of different time formats Author
datenum Converts date string to MATLAB number MATLAB
datevec Converts MATLAB date number to date vector MATLAB
datestr Converts MATLAB date number/vector to string MATLAB
datetick Auto-formats x-axis labels to string MATLAB

The function time was developed to convert between many different formats used. These

formats include a date string (e.g. 5/14/2010 05:30:00), Julian Date (days since 4713 BCE),

GFSC Modified Julian Date (days since Jan 5 1941), USNO Modified Julian Date (days

since Nov 17 1858), Unix Time (seconds since Jan 1 1970), Day of Year (doy.xxx), Year &

DOY (YYdoy.xxx), and MATLAB time (days since 1 Jan 0000). This function was written

to allow for a general conversion between all formats, and is not optimized for run time.

Therefore, datenum and datevec should be used for converting any large array of MATLAB

time. If time is necessary to call often, it should be modified for optimum performance by

identifying input and output type prior to performing any manipulations. The code for the

function time is provided in Appendix A on page 179.

The MATLAB provided function datetick is very useful for graphing purposes. This

115

led the general time format in all FS-3 MATLAB-based analysis to be in the MATLAB date

number format. By using this time as the x-axis data and running the datetick function,

the x-axis is automatically formatted to an understandable format. If any zooming or

panning functions are added, the datetick function should be automatically called when

the data is panned or zoomed. This will be discussed further in the graphical interaction

section beginning page 119.

FS-3 Attitude Analysis Tools

Several tools were developed by MIT SSL to analyze the attitude behavior of FS-3. These

tools supported the verification of sensors, actuators, and software, as well as analyzing

attitude data to obtain estimates and visualizations of the vehicle’s attitude. This section

will describe the different types of analysis done, and the use of the MATLAB tools to

provide the results. Sensor verification will not be described as the magnetometer calibration

methods have been discussed already, and actuator verification was explained previously

when describe torque rod strength and polarity checks on page 99.

The SSL analysis team created several tools to verify the logic and commanding of

the B-dot algorithm. An initial MATLAB script looked at the magnetometer data and

performed the equivalent B-dot logic through a range of data. This logic included a five

point averaging filter used on the satellite for filtering high frequency oscillations. As it was

possible that this filter invoked a timing delay in the logic, it was important to demonstrate

how the commanded output from the B-dot algorithm would relate to the actual rotation

of the satellite. This B-dot script was implemented into the LimWOD GUI framework,

and a button was added to allow for the visualization of changing B-dot commands in the

graphical display window. This button calls the B-dot analysis program and identifies the

time that the command to the torque rods would change if the B-dot algorithm was running.

In this specific mode, this is only based off of the Z-axis magnetometer, so the commands

will change upon a slope change in the Z-axis signal. Figure 4-22 shows the addition of

the solid and dashed lines in the magnetometer graph display in the LimWOD GUI. This

figure identifies both the button used to plot the lines, as well as the noticeable offset in

the timing between the slope change and the command.

116

Figure 4-22: LimWOD GUI Screenshot of B-dot Commands

The satellite software was changed to lower this timing delay, as it is significant during

periods of faster rotation. Additionally, the software was modified so that attitude log files

were written to give the actual commands that the B-dot algorithm produces on orbit. This

allows for verification of the command logic. A button was added in the GUI that allowed

a user to select a set of attitude files to analyze. Upon selection, the attitude files were

read into MATLAB and stored into a data matrix with the correct time tags to allow for

comparison with magnetometer data and the previous prediction of B-dot commands. This

was successfully implemented in March 2010, although the visualization of the data was

performed in an external script that uses the data provided by the GUI. This comparison

is shown in Figure 4-23. The solid line represents the expected command based on the

magnetometer data, and the solid dots represent actually instances of commands as written

in the attitude file. The results show that the commands are nearly exact between the two

sources, with a small exception near the transition points.

It is important to note that although Figure 4-23 was created in a script, it relied on

output generated from using the LimWOD GUI. This was done to ensure the analysis and

graphing methods were accurate prior to implementing them in the GUI.

Attitude determination techniques to determine the angular position and angular veloc-

ity of the satellite were also performed on the FS-3 data by the SSL team. Katz developed a

117

Figure 4-23: FS-3 B-Dot Logic Comparison with Attitude File and Magnetometer Data

Backwards-Smoothing Extended Kalman Filter (BSEKF) that sought to determine the at-

titude position and rates based solely on magnetometer data. The FS-3 BSEKF design was

based on a BSEKF implemented on radar imaging described by Volpe [43]. This technique

was very computationally expensive and was therefore written in a stand-alone MATLAB

script; this script utilizes the common functions used in the GUI for loading data, prop-

agating the TLE, and calling the IGRF model. The output of the BSEKF was analyzed

visually in two ways: visualization through STK and with solar current comparisons in the

LimWOD GUI. The STK visualization was performed by saving the time history of the

attitude quaternion, angular velocity output by the BSEKF. This data was used to create

STK attitude (‘*.a’) files. These files were loaded into a predefined STK scenario and the

scenario was animated forward in time to see if the resulting attitude seemed plausible.

Figure 4-24 shows a snapshot of this visualization technique.

The visual analysis performed in STK was limited to concluding when the filter clearly

did not converge properly. This would be represented by sudden jumps in angular velocity,

and could have been visualized equally well by looking at the continuity in the quaternions.

The additional analysis of the BSEKF output was done in the LimWOD GUI; this anal-

ysis method provided an improved source of verification versus the STK inspection. The

LimWOD GUI was modified to read in the BSEKF output and then perform analysis to

118

Figure 4-24: FS-3 STK Visualization

determine the expected angle between the sun and each solar panel face. In short, this cal-

culation determines which solar panel should be receiving current at any given time. This

data is useful as it can be compared to the solar panel current telemetry for an indepen-

dent verification of the magnetometer-based attitude filter; this comparison is performed in

Section 5.2.1.

Graphical Interaction

The graphical analysis of FS-3 data had proved to be of great importance by both un-

successfully and successfully identifying and characterizing events. Therefore the LimWOD

GUI was designed with usability, flexibility, and ease of graphical analysis in mind. The first

requirement for the LimWOD GUI was to display and easily navigate through the different

channels of telemetry in the Limited WOD files. In the initial GUI design, this was done

by allowing the user to select the individual channels of telemetry desired to plot on the

y-axis. The time axis (x-axis) limits were modified by inputting start and stop time limits

in editable text boxes. As the graphs generated were not customized, an external plotting

option allowed the figure to be generated outside of the GUI. This allows the user to use

an assortment of plotting customization tools available with any MATLAB figure. Figure

4-25 identifies these options.

Figure 4-25 shows an example of graphing battery voltage along with magnetometer

119

Figure 4-25: Initial LimWOD GUI Capabilities

data. The graph shows that the legend and Y-axis are not specified, which can lead to

confusion to a user. While it is desirable to have flexibility in plotting the individual

channels, the developer was not able to design a flexible yet detailed design in a short

amount of time. While this was partly solved with the external plotting option, it had

two major downfalls: the lack of changing resolution in the timescale during zooming and

the amount of effort necessary to create repeatable graphs. This inspired the addition of

selectable times and pre-made graphs, which were added in the next version. The ability

to change the time of the data was improved in the second revision by adding two check

boxes, representing the minimum and maximum desired time, which allowed the user to

click on the graph at the desired start or stop time to set the respective time in the same

editable text boxes. The pre-made graphs were added to quickly generate common sets of

graphs that were used by analysts at USAFA and MIT. The results of the second revision

are seen in Figure 4-26.

The second revision included the addition of many basic MATLAB plotting functions

to make the graphs generate clear, detailed results automatically. A summary of these

modifications, numbered in Figure 4-26 is included. While not shown in this graph, this

120

Figure 4-26: Updated LimWOD GUI with Enhanced Graphical Interface Options

version also created data points on each value if there were under 300 points in the graph so

that the detailed points could be displayed for small amounts of data while not saturating

large amounts of data.

1. Pre-loaded templates of graphing. Includes basic collection of common telemetry plots
along with graphs created with additional analysis techniques not available with the
previous functions

2. Slider and check box to automatically set start/stop date by clicking on the graph

3. Formatted legend specific to the graph

4. Title with automatic start and stop date text generation for clear results

5. Specific y-axis label for data selected

6. Set axis limit within bounds of sensors to allow for clear comparison in values between
different dates

This revised GUI allowed users to quickly produce graphs for the three basic sets of

data (battery, magnetometer, and solar currents) clearly and in a repeatable format. Addi-

tionally, the ability to click on the graph and reset the time limit allowed for much quicker

analysis of a large amount of data.

121

Most updates made in the GUI after this revision were to increase the analysis ca-

pabilities with the B-dot logic, BSEKF loading and solar panel comparison, and attitude

file loading and processing. However, a few small yet significant changes were made that

allowed the GUI to be greatly improved in usability. These changes were made after the

developer discovered the MATLAB toolbar menu in the GUI options. The GUI was created

with MATLAB’s GUI Development Environment (GUIDE), and while the developer had

developed MATLAB GUI’s in the past (such as the MOTV GUI), a few capabilities were

not realized until after the second version of the LimWOD GUI was finished. This toolbar

menu allows the option to zoom in/out, pan, and select data with the data cursor. While

these tools are available by plotting data external of the GUI, the time formatting produced

issues with zooming and data labeling. Previously when data was zoomed in or out, the

time limits would not be updated. This made identifying the time step of large quantities

of data to be difficult. The clickable time limit option made it possible to identify the data

and re-plot it in the GUI, but was not desired to be a standard procedure for all users. The

data labeler also was not desirable, as it shows the MATLAB date number instead of a date

string in the tooltips.

The updates to the final GUI therefore were the addition of the zooming, panning,

and data identification features into the GUI, as well as fixing all of the issues with the

time. Several functions were added as callbacks so that both zooming and panning the data

updated the x-axis labels and date ticks, as well as changing the datatips to display the

date, time, and y-axis output. These timing properties are also passed to the external plots,

allowing for full flexibility to the user to sort through data and create the desired graphical

products. The only addition of future work that has not been satisfied is the updating of

the x-axis time label as the date changes. Currently it attempts to display the a selected

format of MM/DD HH:MM:SS based on the amount of time being graphed, but this is not a

robust method and could be improved to make the graphs as detailed as possible. The final

version of the GUI with additional features displayed is shown in Figure 4-27. Appendix

A, page 181 provides the MATLAB code that can be used to set the graphical time, zoom,

and pan features.

122

Figure 4-27: Final LimWOD Graphical User Interface

The development of the interactive and graphical nature of the LimWOD GUI has

several broad lessons that can be used in a general TDA design. These include:

� At a minimum, the TDA should be able to plot different data channels over time

– Desire to have an ability to quickly sort through a large array of time

– Critical to use correct time steps in plotting data

– Leverage COTS SW products such as Excel or MATLAB that have built-in tools

� An interactive GUI design allows for easy graphical production by many users

� The development time and features of the TDA graphical design are a function of
developer’s knowledge and abilities

4.2.4 FS-3 Telemetry and Data Analysis Tools Summary

This section began by discussing the different data analysis tools used in the FS-3 program

during operations, and then described several major operational events. The relevance of

these events to the IEM topic, especially the TDA, is the decision of the type of analysis

tool to use. A trade off occurs between the ease of use, accuracy, and the amount of

effort necessary to generate results. This section has identified how three years of on-orbit

123

operations and experience has yielded a variety of telemetry display and analysis tools, from

basic Excel plots to a interactive GUI design. An overview and of these tools is shown in

Figure 4-28.

Figure 4-28: Summary of FS-3 Data Analysis Tools

It must be stressed that data analysis programs were available and ready for use for

FS-3 prior to its launch, and the analysis plan met the requirements for the FS-3 mis-

sion. However, due to improper time stamps, the primary database that stored and plotted

telemetry was not sufficient to analyze data. Additionally, the addition of continuous Lim-

WOD collection and the growing duration of the mission created a significant amount of

data to parse through. The additions of new analysis tools such as the Excel templates,

the MATLAB tools, and eventually the LimWOD GUI were done to create data products

quicker and easier, as well as to allow for greater analysis of the data.

In summary, previous successful and unsuccessful graphical analysis techniques and

lessons were used to develop an accurate, usable, and flexible graphical tool through the

LimWOD GUI. Through nine months, the GUI has been upgraded to allow for improved

analysis techniques and enhanced usability. The final version allows a user to quickly go

through days of data in a matter of seconds. An unintended final test of all FS-3 analysis

tools occurred to analyze a major FS-3 event in early April 2010, and is discussed in Section

5.2.2.

124

4.3 CASTOR MAT Design

The CASTOR mission success will be measured by analyzing the trajectory of the satellite

through time. However, as previously stated, this is not a trivial task due to performance

limitations on the CASTOR satellite. This section will describe the baseline MAT design

and the intended methods used to determine the thruster’s performance. It will also explore

a general design of a low thrust trajectory tool that could be useful for similar classes of

satellites.

The topic of low-thrust and electric propulsion trajectories has been researched at an

increasing frequency over the last thirty years. A significant amount of this work has been

performed on optimization methods for low-thrust transfers. The first and simplest class of

these transfers is the constant thrust, spiral trajectory case. This is one of the only closed

form solutions, and can be completed utilizing the method of variation of parameters [3, 41].

Kimbrel described additional analytical solutions to the three-dimensional GTO to GEO

trajectory case, assuming constant thrust and no disturbances [20]. Kimbrel’s thesis also

lists a variety of documents focused on low-thrust optimization.

Software tools have also been created through the years to provide flexible numeric

simulations to optimize different trajectories, such as SEPSPOT (or SECKSPOT) [33],

MITEOR [20], or recently Copernicus [28, 19]. NASA’s Copernicus software represents one

of the leading trajectory optimization tools, as it allows a user to select the wide variety

of vehicle, environmental, thruster, and operational conditions and constraints for a given

problem.

Each of these optimization tools and techniques have a driving assumption that the

satellite will be designed to meet the given conditions assumed in the case. This assumption

is not always true, as is the case for CASTOR. The CASTOR satellite is designed with the

understanding that certain assumptions that are typical of more complex satellites, such as

accurate pointing, are not designed in the system due to a resource burden. Additionally,

the power system limitations of the satellite do not allow for continual thrust over the entire

orbit or even the sunlit portion of the orbit. These assumptions also do not hold in the

case of FS-5, where the purpose of the propulsion systems on board is to create the source

125

for characterization sensors for its plasma sensors. The ∆V created from the operations of

the propulsion system is significant nonetheless, and must be predicted and measured for

successful operations. In these cases, an optimal control technique is less important, and a

trajectory prediction or estimation tool is more important.

The trajectory analysis tool for the CASTOR MAT should perform the following two

main functions:

� Orbit Prediction:

– Feed dynamic thrust and attitude data into the model

– Utilize models of the LEO environment and its disturbances

– Predict new orbit

� Thruster Characterization:

– Feed actual thruster state and attitude data into model

– Accurately model the actual LEO environment

– Characterize thruster performance (i.e. thrust, efficiency)

Inherent in this tool are the satellite properties, which includes the mass, area, and drag

properties necessary to ensure an accurate prediction of the disturbances on the spacecraft.

The predictive model aspect of the tool is used to predict where the satellite will be at

any point in time given its thrust and attitude inputs. This is equivalently the same as

the SIM with command and attitude input into the detailed orbits model. The thruster

characterization function is different than the SIM, as it is used to determine the thrust.

It is possible to utilize tuning parameters and multiple runs of the SIM to attempt to

match the thruster properties to the actual orbital changes if the capabilities exist in the

TDA/SIM environment. A stand-alone MAT tool was initially planned to perform these

tasks independent of the SIM, so that it could be tested on different satellites (such as FS-5).

Additionally, it is important to calibrate the disturbance models on-orbit based on actual

observed changes to the orbit during periods without thrusting (such as commissioning).

This will allow for increased resolution in the distinction between orbital changes caused by

the thruster and those caused by the orbital environment.

The CASTOR MAT should also contain a plume image analysis tool, which will store

and process images taken of the DCFT’s plume during operations. It is expected that

126

analysis methods will be created to study the properties of the image, such as the plume

divergence angle and color. These analysis methods should be contained in the MAT, and it

may be useful to create expected environment images as a function of time (orbit location)

and attitude, to quickly check if the camera is pointing at a bright light source like the sun

or the Earth.

Verification of the trajectory tool should be done utilizing either COTS programs or

flight data from pre-existing LEO low-thrust missions. COTS programs such as FreeFlyer or

STK will allow input of maneuvers and attitude through programming interfaces and user-

defined scripts. The biggest factor in these results is the model of the orbital environment

and propagation methods. The trajectory tool can also be verified with flight data from

another mission, although one must find an existing mission that provides the data openly.

In conclusion, a stand-alone MAT tool for CASTOR is still in the very early stages of

design. This tool would not optimize the trajectory of CASTOR, but rather attempt to

determine the thruster’s performance for the given attitude and propulsion system inputs.

While no stand-alone tool exists, the SIM is able to perform many of the tasks with its

command-driven and telemetry-input capabilities. This is not as desirable as a stand-alone

and modular tool, but it should be enough to successfully determine the performance of the

thruster. Additionally, any development of an image analysis tool should be incorporated

in the CASTOR MAT and SIM.

127

128

Chapter 5

Results and Analysis

The IEM design approach uses integrated modeling throughout a satellite design and oper-

ations sequence. This chapter looks at the results of IEM applied principles or applicable

examples throughout the satellite life cycle. The use of integrated modeling in the design

is described in Section 5.1 through previous integrated model results, as well as IEM-based

results. Section 5.2 uses FalconSAT-3 to show the applicability of a basic TDA element

in the operations phase. Section 5.3 will provide a discussion of key principles and lessons

learned through the IEM development and implementation.

5.1 Integrated Model Results

This section will describe the results of the integrated models described previously in Chap-

ters 3 and 4. This includes the results of models performed prior to IEM creation (MOTV

and initial CASTOR models), as well as models utilizing the IEM approach (ExoplanetSat

and new CASTOR model). The results will describe how the integrated models assisted in

the satellite development effort, how well they met the IEM principles, and if there are any

additional lessons that can be taken relating to the use of modeling and simulation in the

design process.

129

5.1.1 Phase A — ExoplanetSat Model Results

The ExoplanetSat example represents the only implementation of the IEM design by a

party other than the author. This was done to both support the ExoplanetSat team as well

as gain one data point of validation in the IEM design. As described in Section 3.2.2, the

mission of ExoplanetSat is to detect Earth-like planets orbiting bright Sun-like stars using

the transit method. This mission is being designed in the volume constraints of a standard

3U cubesat (10x10x34 cm) [26].

The first step in the Phase A IEM process is to quantify the mission objectives with FOM

and subsequently create a plan to measure and record the FOM. The ExoplanetSat team

determined that the key figure of merit for the mission to be the total system intensity noise

for the target star [35]. Specifically, the maximum total system intensity noise threshold

was set at 10 parts per million (ppm). This FOM was chosen as the transit of an Earth-like

planet around the star of interest would create a temporary decrease in the intensity of the

star. The figure of 10 ppm was chosen as it is ten times lower than the expected intensity

decrease needed to identify the star. If the noise floor is too close to the identification limit,

it is not possible to decisively state that a planet has been found.

These FOM are specified into the different noise sources that must be characterized to

determine the value for the FOM for different designs. These primary noise sources include

shot noise, read noise, dark current noise, and jitter noise. The first three noise sources are

due to the optical properties and uncertainties of the imaging system or light intensity, and

the jitter noise is a function of the spacecraft’s stability while imaging. The ExoplanetSat

team has identified these different sources and is performing both modeling and testing on

the different aspects of these noises.

The second step of the IEM Phase A process is to identify the major payload specifi-

cations and requirements. The ExoplanetSat team identified a COTS Single Lens Reflex

(SLR) camera lens with a CCD detector. The specifications desired for the lens and detector

were known prior to performing the IEM process and are shown below.

� The lens shall have an outer diameter no greater than 90 mm

� The lens will ideally be less than 100 mm long

130

� The lens aperture will need to have as large an aperture as possible; this translates
to a low F-number lens

� The lens mass will ideally be less than 600 g

� The CCD will have as low dark current noise as possible

� The CCD will have as low read noise as possible

� The CCD will have at least 25 square degrees of sky coverage

These specifications include volume, mass, and performance specifications. However, not all

specifications are fully defined, as the total system is still in the late concept and early design

phase. Ideally, these specifications would be requirements with clear numbers rather than

“ideally” and “as low as possible;” however, the payload team understands the challenges

of integrating the entire system in the small size of a cubesat, so they identified their

preferences. By putting these specifications on paper, others are able to give feedback to

the team, such as the necessity to define threshold requirements for certain interfaces (e.g.

the lens mass shall not be greater than 700g).

The third step in the IEM process is to identify the primary subsystems and mission

parameters. This was explained as having three main steps: determination of uncertainty

for each system, identification of interface requirements, and an estimation of the detail

required in the model. The ExoplanetSat utilized the same rating and selection metrics

shown in this thesis to determine which subsystems and parameters to model first. Table

5.1 shows these results.

The ExoplanetSat team realized it had many technical challenges that it must solve.

The two paramount systems that have been worked on longest are the detection (payload)

system and the ADCS system. These two scored very high as expected. However, due to

the experience that the team already had with these subjects, the highest scoring subsystem

or parameter was the thermal subsystem. Although the importance of the thermal char-

acteristics was a topic being investigated by the team, the results of this weighting were

nonetheless surprising. The team decided on setting a threshold score of ten to model for

the initial integrated model, which includes the thermal, ADCS, and payload systems. It

should also be noted that this rating system identified a key programmatic issue of having

many complex and important integrated systems with very little experience or background

131

Table 5.1: ExoplanetSat Integrated Model Elements Decision Selection
Subsystem Importance Uncertainty Detail Level Integration Score

(0 or 1) (0 to 4) (0 to 4) (0 to 4)
Power 1 4 2 2 8
Thermal 1 4 3 4 11
Avionics 1 4 1 4 9
Comm. 1 3 1 1 5
Guidance 0 4 1 1 0
Attitude 1 2 4 4 10
Structure 0 3 1 3 0
Payload 1 2 4 4 10
Mission Importance Uncertainty Detail Level Integration Score
Parameters (0 or 1) (0 to 4) (0 to 4) (0 to 4)
Orbit 1 1 3 2 6
Mass 1 1 4 4 9
Volume 0 1 4 4 9
Cost 0 1 3 1 0
Lifetime 1 1 3 1 5
Operations 1 1 2 4 7

knowledge on them. While this was known to certain team members, it was never numeri-

cally rated until this study.

The fourth requirement in the five-step list is to determine the integrated model platform

and supporting personnel and resources. The ExoplanetSat team chose MATLAB as the

primary analysis platform. The first cited reason for this choice is that the optical simulation

frequently performs many operations, such as FFT’s, convolution, and rotations, during

any simulation run. Additionally, many different students have access to MATLAB and it

can be run on nearly everyone’s computer system. Lastly, the ADCS model and optical

models developed by SSL Graduate Students Chris Pong and Matt Smith were already

being developed in MATLAB. Note that this reasoning was last, as it is still early in the

program, and alternative simulation and modeling tools exist. Some of these other tools

that have been researched and are under consideration from the team for use are Zemax

and Code V for optical simulations and Simulink for attitude simulations.

The final step is to complete the first integrated model. The ExoplanetSat team cur-

rently has a quasi-integrated model, meaning the results of the attitude model into the

optical model. While this may be sufficient if no feedback exists between the imaging sys-

132

tem and the attitude system, this framework is very limited to future growth. Lastly, the

thermal subsystem was identified as a major element for the model, and therefore a pre-

liminary thermal model should be included in the integrated model. Two types of thermal

modeling routines are being looked at by the ExoplanetSat team: utilizing COTS thermal

software such as Thermal Desktop, or utilizing a MATLAB-based thermal design code for

small satellites created by MIT masters student John Richmond [30].

5.1.2 Phase B — MOTV Results

Introduced in Section 3.3.2, the MOTV model provided the first integrated verification of

student-designed MOTV satellite. Preliminary models in the ADCS, GNC, thermal, and

power subsystems and a orbits model allowed for many operational scenarios to be run.

Major input options included the desired attitude or pointing mode for the satellite, the

frequency of guidance updates necessary, and the types of maneuvers desired. Additional

subsystem characteristics such as solar panel area or thermal properties also greatly affected

the final results. An example of the full mission lifetime is shown in Figure 5-1. The total

satellite lifetime in this run was 186 days with a total expected ∆V of 625 m/sec utilizing

2.6 kg of Xenon fuel.

Figure 5-1: MOTV Simulated Mission Output [32]

133

Design Impact

The MOTV model identified two major design issues with the satellite. The first issue iden-

tified involved the attitude system’s lifetime and performance characteristics. The design

called for a set of nitrogen thrusters, one reaction wheel, and a gimbaled engine to provide

pointing control to the satellite. The large magnetic dipole from the permanent magnets

in the DCFT (≈ 24 Am2) led to a large disturbance torque that the nitrogen thrusters

had to fight at a much higher rate than expected. Without any cancellation of the engine’s

magnetic dipole, the simulation showed that nominal operations would lead to depletion of

the 1000 grams of nitrogen gas within three days. This result led to a design change, as

well as a change in the CONOPS. The design change called for a permanent magnet with

an equivalent dipole mounted in the opposite direction to cancel out the magnetic effects.

Additionally, the satellite CONOPS was modified to eliminate control during eclipse and

to use the engine gimbal as the primary source for pointing.

The second major design issue involved the thermal design for MOTV. The prelimi-

nary thermal results showed that the satellite temperatures greatly exceeded their bounds.

Some question was placed in the validity of certain model elements, as it was not validated

against any standard software. Regardless of the validity of the model’s result, the model-

ing process and interaction with the team indicated that the thermal design of the satellite

had a large amount of uncertainty. An example was determining the thermal coefficients

of absorptivity or emissivity used for the composite solar panel structure. This design was

largely unknown, as the carbon-fiber face sheets, aluminum honeycomb, solar cells, and

epoxies all had different properties, many of which were unknown. By attempting to model

this system, it became clear that more work needed to be done on this assembly, as well as

the thermal analysis as a whole.

As seen in Figure 5-1, the inclination change maneuvers forced slew maneuvers about

the axes orthogonal to the reaction wheel, causing a large consumption of nitrogen for a

0.5 degree inclination raise. The nitrogen usage caused the satellite (via the simulation) to

initiate it’s de-orbit procedures (when nitrogen remaining fell under 10%), even though over

40% of the xenon gas remained. This result forced the question of the utility of performing

134

inclination changes in the mission.

These results all affected the CASTOR satellite design. The attitude system changed

to three reaction wheels, with magnetic torque rods used for momentum dumping instead

of nitrogen thrusters. The thermal system was identified as a critical system, motivating

students to pursue aggressive modeling and thermal testing campaigns at the component,

assembly, and integrated system levels. Lastly, inclination changes were eliminated from the

mission to simplify operations as well as providing more time to characterize the thruster

over many repeatable sets of maneuvers.

Modeling and Simulation Results

The MOTV model accomplished the majority of its initial requirements. It established the

feasibility of the satellite design through integrated modeling. Additionally, simply asking

detailed design questions to the undergraduate team led to the identification of unknown

issues. The simulation was executed inside of an interactive MOTV GUI, which allowed the

user to select the different simulation cases, change subsystem parameters, and eventually

analyze results. These results included a summary of mission data including average specific

impulse (Isp), total ∆V, and ∆V lost due to drag. Additional preloaded graph templates

of subsystem health were also available to easily display results.

While accomplishing its requirements, many lessons were learned in the implementation

of modeling and simulation during the design process. One of the first issues that had to be

solved is the separation of work and the integration methods for ensuring that individuals

could work independently on their subsystem and re-integrate into the simulation. The

process in place was for each subsystem model to be in a stand-alone MATLAB m-file and

to set all parameters that a user could select in the initial GUI as global variables. This

process worked fairly well, as long as only one person performed model integration tasks.

However, one certain integration issue was found that occurred even when all errors were

fixed in the simulation. Certain simulation cases were desired to be run to test updates

to a model, such as an upgraded ADCS model, were impacted by other models, such as

a temperature going out of limits in the thermal model. These issues made it much more

difficult to test new methods or detail in certain models. The first solution to this class of

135

problems was to change the input conditions to make the model perform as desired. This

was done in the lifetime simulation shown by modifying all thermal properties to ensure

the system stayed in an acceptable temperature and changing the engine dipole to 0.1% of

the original strength. The second type of solution, which also allowed for faster run-times,

was to hard code in values inside the while loop that runs the simulation, and commenting

out the undesireable subsystem or model in the code. This solution, while temporarilly

effective, created unclear code and often negatively affected results two or three days after

the temporary fix was implemented.

This integration issue was one of the driving factors for adding the switching function

early into the IEM design. The ability to switch models “off” allows users to have flexibility

in implementing new features as well as improving the run-time for specific simulation cases.

5.1.3 Phase C — Early CASTOR Simulation Results

The MOTV integrated model was rewritten for the CASTOR satellite in Fall 2009. This

objective for this model was to update the MOTV model to the CASTOR design and

increase the depth of the model. As mentioned in Section 3.4.2, this model added several

features and details that were not present in the MOTV simulation design. This section will

describe several of the added capabilities and a description of how the results from these

additions impacted the IEM design framework.

Added Simulation Features

The first class of updates are modifications to match the new design. One example is the

change in solar panel configurations between the two designs. The previous design featured

sun-tracking solar panels, which allowed for certain assumptions in the model. With the

lower risk CASTOR satellite design with fixed solar panels, the power system now needed

the solar panel incidence angle to calculate the available solar power. Similar updates were

necessary in the ADCS configuration change from nitrogen thrusters to reaction wheels and

torque coils.

The addition of new subsystem models is the next type of updates to the previous MOTV

model. Communications and avionics models were added in the simulation upgrade. The

136

communications model was used heavily in selecting the best configuration of antennas and

their placement on the satellite. This model used the ADCS output to determine commu-

nications coverage during nominal operations as well as tumbling cases. This integrated

simulation allowed the CASTOR communications team to identify the best antenna se-

lection and configuration. This configuration is not intuitive as it utilizes a higher gain

antenna with a more directional radiation pattern as the primary antenna for the tumbling

case. Only with the integrated simulation could it be shown that the average coverage time

increased with the higher gain antenna. An avionics model was also added to support the

design decision to lower the amount of computational power available on the satellite to save

on mass, volume, and complexity. This model tracked the number of processor operations

necessary for each time step based on subsystem activity. Additionally, a data and memory

budget were added to the model to support the implementation of an imaging system on

CASTOR.

Existing subsystem models from the MOTV simulation were enhanced to include a

greater amount of depth in the CASTOR model. The attitude subsystem will be described

to show the further amount of depth in the model. Figure 5-2 shows the angle between

the axes normal to the solar panel face (+Z axis) and the sun. This graph illustrates the

dynamic nature of the controller modeled in the CASTOR simulation. Additionally, this

graph also shows how the satellite is modeled to rotate into a velocity-fixed orbit during

thrusting, and how the angle difference approaches zero at local noon. The attitude model

grew off of the previous model with disturbance torques with one reaction wheel, and added

the additional reaction wheel and torque coil actuators into a closed loop controller.

Another feature added to the simulation design was the command input capability. This

capability allowed certain commands to be read and executed in a defined time window.

Described in Section 4.1.2, this feature operated fully “on” or “off” for a select number

of major mission commands. If a command input file was loaded, the pointing mode and

thruster state would be decided based on the command intervals listed. If no command file

was loaded, the simulation would utilize the operational logic coded into each subsystem

to change these states. The reason for adding the command input feature was the same

as the reason it was placed into the IEM design: to allow actual satellite behavior to be

137

Figure 5-2: CASTOR Integrated Model Attitude Output [7]

simulated most accurately. The addition of this feature allowed for the identification of

its challenges and limitations. These challenges resulted in the significant re-design in the

simulation architecture to meet the IEM requirements.

Lastly, a log was added to the model that stored all data that deviated its bounds. This

can be seen in Figure 5-4 in the next section describing model output. This addition was

expanded with the event log in the IEM-motivated CASTOR simulation.

Model Development Feedback and Observations

This example is unique as the author did not have any direct involvement with the model

creation or coding. This section is used to discuss feedback of the model developers on

both the utility and challenges of the simulation development. All four of the developers

were CASTOR team graduate student mentors and therefore all of the developers were

knowledgeable with the satellite design. This was advantageous as the simulation features

were built directly to support the design of CASTOR, allowing the developers to perform

design trades during model creation and modification.

The communications and avionics model developer, 2LT Matt McCormack, discussed

the benefits of creating the integrated model in support of the CASTOR teams he mentored

138

[23]. The communications analysis was significantly affected by changes in the satellite’s

attitude, and therefore the integration with an attitude simulation was critical to verifying

the design. Additionally, the avionics model assisted in determining the type and number of

processors necessary to complete the mission with necessary margin. However, discussions

with 2LT McCormack regarding the future IEM design led to the omission of the avionics

model in the final version. It was decided that while important in identifying the proper

design of the avionics system, the avionics model would not have added any detail to the

model in its current form. The options were to increase the fidelity and detail of the avionics

model to characterize the software and hardware interaction, keep the current model in the

simulation, or remove the system from the model. The personnel cost necessary to improve

the model exceeded the expected utility, and since the existing model would output the

same results for each orbit, the model was removed.

The ADCS model developer, 2LT Corey Crowell, described the benefits of writing the

ADCS model as part of the integrated model. He stated that an ADCS model was necessary

to create at the time, even if the integrated model was not being assembled [6]. 2LT

Crowell cited the sizing of the reaction wheel and the torque coils as one of the primary

design decisions requiring an ADCS model. While certain preliminary design references and

techniques exist, such as referencing SMAD, the team needed to show that its design was

feasible for their particular mission. However, 2LT Crowell readily acknowledged that the

integration of the ADCS model into the simulation framework was difficult. In particular,

the change to object-oriented MATLAB forced him to make his model compatible with the

new structure. His process for making any changes in the integrated model was to test

his new methods in a stand-alone ADCS script first, and then attempt to copy and paste

into the integrated simulation object-oriented model. The code could not be simply copied

and pasted, requiring significant debugging effort for each update. While the resulting

code successfully worked with in the simulation framework, the transition from a functional

programming technique to object-oriented actually resulted in more confusing and slower

code.

The MATLAB introduction to Object-Oriented Programming describes how OOP is

is used to manage software complexity by using classification systems and design patterns

139

in programming [9]. OOP is meant to simplify the structure and readability of code and

therefore allow for ease of modification or maintenance. However, past studies have shown

that OOP is not necessarily easier for novice programmers, such as those found in the uni-

versity environment [42]. The initial CASTOR design demonstrated that OOP advantages

are not realized if the developers of the code are not familiar with the programming tech-

niques. A discussion summarizing all lessons learned with OOP and changing programming

techniques during the program is given in Section 5.3.1.

A few general comments can be made from the CASTOR simulation’s code and its

comparison to the previous MOTV model. The first comparison deals with the run-time

between the models. Both simulations were given same initial conditions, specifically with

start time, stop time, and step size. A step size of 20 seconds was used for a 12 hour

duration. The MOTV model was over 8 times faster than the CASTOR, a comparison of

0.8 minutes and 6.8 minutes. These were completed on the same machine one after the

other to try to keep the simulation computer’s resources identical. The results clearly show

that the MOTV simulation runs faster than the CASTOR simulation. Figures 5-3 and 5-4

display the differences in the resulting output from the MOTV and CASTOR simulations,

respectively.

The slower run time can be attributed to the added depth in the models as well as the

programming structure. Of these two, the programming structure and simulation architec-

ture was the driving factor to the increased run time. The model used OOP techniques

in a way to maximize readability and clarity in the code, but it sacrificed performance as

a result. Through the semester of coding, it became increasingly important to generate

accurate results and less important to produce efficient code. To solve integration concerns,

it was decided to pass all subsystems objects as inputs to each other, and to store all data

in two data-output objects. These objects, called Tagged List and State Vect were iden-

tified using the MATLAB profiler tool as the most costly in terms of performance, shown

in Figure 5-5.

The cause for these slow performance is that these objects called lower-level operators,

such as opening and writing to a file, over 1 million times in the 12 hour time simulation.

Figure 5-5 show that six of the top eight slowest functions were due to data distribution.

140

Figure 5-3: Screenshot of MOTV Simulation Output

Figure 5-4: Screenshot of CASTOR Simulation Output

The slow run time results led to significant simulation changes in data distribution and

storage in the updated CASTOR design.

The increased run time is also due to the added depth of the model. In general, this

increase is inherent as increased fidelity will add a larger amount of operations necessary

to perform. To speed up the simulation time, one would need to simplify the model and

reduce the amount of operations performed. This is done in the general IEM method and

141

Figure 5-5: MATLAB Profile Results for CASTOR Integrated Model

specifically in the CASTOR design by having different time steps for different subsystem

models, as well has having the switching ability to increase or decrease the amount of detail

in each model. The initial CASTOR simulation was primarily a design verification tool used

for short-duration studies. No entire mission studies were performed with this simulation

like those done with MOTV due to this excessive run time.

5.1.4 Phase D — Complete CASTOR Integrated Model Results

The IEM design framework outlined in Section 4.1 was implemented in a new CASTOR

simulation. The simulation framework was set up to support the Phase D development

of CASTOR and is intended to remain through operations. This section will summarize

these architectural changes, describe their results, and describe how the simulation must be

managed, updated, and maintained.

Summary of Changes

Section 4.1 described the design of the changes to the CASTOR simulation. To summa-

rize, the new simulation successfully implemented IEM SIM design principles: command

input/output and intelligent auto-generation, incorporation of subsystem switching, and

142

telemetry input. Additionally, while not inherent in the IEM, changes also occurred in

the scheduling and data management to improve the simulation performance. Lastly, STK

outputs were also added for further analysis, verification, and visualization capabilities.

Command-Based Simulation Results

The command-based architecture was successfully implemented in the new simulation de-

sign. The verification test performed was to test all command input conditions and show

that the simulation output the desired data. The following simulation input parameters

were modified during the test:

� Command input file — Load file or no file

� Autogeneration settings — Default, never, or always (for each command type)

� Step size — Fixed step or event-driven

The test demonstrated that all twelve cases behaved as expected. The most important case

is loading a command file and showing the that default autogeneration settings correctly

turned off the command generation for the command types located in the file. The two

additional autogeneration settings (never and always) are written into the simulation to

allow the user to fully control the behavior of the simulation. The primary verification

source is the command matrix output, which shows the time of execution, command string,

command source (e.g. file or event), and a Boolean identifying if the command was executed

in the simulation. Additionally, each executed command is written to a command file in a

more readable format, and this represents that the commands were successfully executed.

The step size settings are not important for showing the autogeneration capability, but they

were both tested to ensure the command changes did not create an infinite time loop in the

scheduler.

Implementation of the command-based simulation also identified an unexpected benefit

of the IEM design approach: the ability to identify and furthermore develop areas of the

design that are not at the necessary maturity level. The CASTOR commanding structure

was not defined at the time of the latest simulation development, so a structure and format

of commands was developed by the author. Since this is the first attempt at creating the

143

command format, it is expected that commands structure and specific strings utilized by the

ground and satellite will be modified prior to launch. With this expectation, the simulation

command handling was written to clearly identify where the interface between real-world

command and simulation command is performed.

The maintainability of the simulation command handling is a very important charac-

teristic in the CASTOR SIM. Whether the command strings or formats change, additional

classes of commands are created, or a desired command callbacks are added, a member of

the CASTOR team must update the simulation. The use of OOP methods should assist

in improving the maintainability to an extent, but the command handling is still a highly

coupled and complex interaction of many of the different simulation objects. Therefore it

is recommended to any future personnel working with the simulation to not modify the

command list, event list, or scheduler objects other than in the identified methods.

In summary, the CASTOR simulation command-input structure was greatly modified

to meet the broad IEM objectives. The new simulation has a working command-based

architecture that utilizes the same commands as the satellite to modify the satellite’s state.

Commands executed are time tagged and saved to a command file throughout the simu-

lation, and can be used eventually to feed into an integrated avionics flatsat configuration

or compare to actual satellite commands. A command input ability allows simulation or

satellite command files to be read and used in the simulation. Results have shown that the

simulation will intelligently turn on and off the automatic generation of different command

types based on their existence in the input file.

Subsystem Switching Results

The subsystem switching method was described as an issue in both the MOTV and initial

CASTOR simulations. The newest simulation deals with this issue by having different

modes in each subsystem model. These modes are integers greater than -1, with each

integer representing a higher level of detail. The -1 mode is reserved for telemetry input,

where the model is passing the telemetry through. The zero (0) mode represents the “off”

conditions of the subsystem, where only the necessary pass-through data is created. The

other mode settings are up to the designers of the subsystem models. However, all modes

144

must save data to the data structure to be used by other subsystems, so therefore no

subsystems are really ever off.

The orbits model can be used to show how the subsystem switching should be analyzed

to ensure it is worth the programming effort. The new minimized feedback N2 diagram

shown in Figure 4-3 called for two different orbital models. The first was intended to be a

simple, quick method to determine the position, velocity, and orbital conditions, and the

second was to be a more accurate model of the orbital environment and include the effects of

the thruster and attitude subsystems. This is somewhat related to the subsystem switching,

as there are two different ways to create the same output. After running the simulation, it

was shown that the initial orbital model is actually more computationally demanding than

the more detailed model (shown in Table 5.3). This result is an element of the programming

and number of additional functions called for checking thruster logic, and is an area of the

model that needs improvement. The lesson that comes from this result is to ensure that

the additional work of adding different subsystem modes is worth the investment in terms

of performance or accuracy.

The implementation of all subsystem models with multiple modes has not been per-

formed at this time, and this is one of the two largest areas for further work. A simplified

ADCS model has been implemented in the new model, as the complex model has not been

completely converted. Programmers of the future models are encouraged to program dif-

ferent methods in their respective subsystem model objects at the beginning. This will

produce code that is easy to maintain and enhance.

Telemetry Input and Data Management Results

The ability to load in and utilize telemetry was successfully shown through the ADCS model.

The initial telemetry used was the time-stamped attitude values for CASTOR created from

a previous simulation run. This was input into the inits input structure, and the ADCS

mode was changed to telemetry input and pass-through mode (mode -1). The telemetry

input was saved into the ADCS.tlm property upon instantiation of the ADCS object and

this property was used to fill the data.adcs structure during each call of the sim.run()

loop.

145

As expected, the simulation performance increased, shown by a lower total run-time.

The ADCS step size was set to 5 seconds for a 12 hour simulated duration. Table 5.2

shows the timing results of the ADCS subsystem methods in comparison to the simulation

as a whole for the two cases. While the timing is a function of many other simulation

and subsystem input conditions, it is clear that the loading of telemetry improved the

performance and run-time of the simulation.

Table 5.2: CASTOR ADCS Model Timing Results for Telemetry Input
ADCS ADCS ADCS Total

Constructor Model Object Simulation % ADCS
No TLM 0.52 s 2.42 s 2.94 s 14.3 s 20.6%
TLM-fed 0.53 s 0.13 s 0.66 s 12.0 s 0.66%

The telemetry input conditions assumed in this analysis were that the telemetry will be

available for the entire simulation duration and it is a one to one match with the simulation

data format. Neither of these assumptions are valid for actual implementation of the sim-

ulation with real telemetry, so additional work must be done on each subsystem model to

ensure that the telemetry input will be formatted into the correct simulation output. It is

also possible to keep these assumptions, and perform the analysis and conversions necessary

in the TDA. The operational implementation of comparing telemetry to simulation data is

a major area of discussion, and is dealt with in the FS-3 solar panel comparison description

in Section 5.2.1.

The modifications made to the data structuring of the CASTOR simulation also greatly

improved the performance. The previous CASTOR profile results shown in Figure 5-5

highlighted how the data passing structure was the most significant factor in the simulation

run time. The improvements came from having a more efficient model-to-model input-

output structure, shown through a reduced N2 diagram, as well as using temporary data

storage instead of global data storage. The improvements have come at the cost of losing a

centrally located state matrix that could be called by any model at any time; this loss was

accepted once a clear N2 structure was set and each model uses only what it requires from

the other models.

146

Scheduling Results

The scheduling task was initially added to facilitate the command-driven simulation frame-

work. It was identified that the command-driven simulation could be done in two ways:

fixed time step and event-driven, where events included any state change in the natural

environment (e.g. orbit) or command. The CASTOR scheduling object was written to

allow for both types of cases and to ensure the new framework was compatible with the

previous models. The results clearly show that the event-driven simulation is advantageous

over the fixed time step in nearly all areas.

The results given in this chapter are for a simplified satellite model. The simulation

architecture is complete and fully functional; however, for ease of analysis, the satellite is

only modeled with an orbits, ADCS, and propulsion model. Table 5.3 breaks down the

different step sizes used for each model, the individual models’ respective run-times, and

the total run-time for the satellite. Two orbit times are displayed as the orbits model is

called twice, as previously discussed.

Table 5.3: CASTOR Simulation Timing Based on Step Size
Run δorbit δADCS δprop Torbit TADCS Tprop Total Overhead

1 50 5 60 3.3 + 2.0 2.4 0.09 9.7 1.91
2 25 5 60 5.9 + 3.5 2.5 0.08 13.9 1.92
3 5 5 5 27.3+16.9 2.5 0.09 48.7 1.91
4 ∆T = 60 3.2 + 2.5 0.72 0.39 13.0 6.19
5 ∆T = 30 5.5 + 4.7 1.33 0.65 24.1 11.92
6 ∆T = 5 53.6+42.9 18.25 7.58 175.8 53.47

Note: 12 hour simulation run. All times are in seconds

These results provide insight into what areas of the code are degrading the performance

of the simulation. While it is clear that the orbital model is taking a significant amount

of time relative to the other models, the purpose of this comparison is not to critique the

efficiency of the models, but show how the step sizes affect the entire simulation’s output.

The last column shows that for the event-based cases (1-3), the simulation overhead is

independent of the individual subsystem sample times. This is inherent in the event-based

design, as the number of calls to each subsystem model is the same for all cases. However,

in the constant time step case, the simulation overhead (total time minus model time)

147

increases as the time step decreases. This is intuitive, as the number of times each function

is called has greatly increased. Additionally, the magnitude of the overhead time for fixed

step is significantly higher than the event-based case.

The clear conclusions from these results show that the event-driven CASTOR simu-

lation is preferable over the constant time step method. The addition of the scheduling

task, event list, and command list added a large deal of overhead for the fixed time step

method, so it is necessary to constrain this conclusion to event and command-driven sim-

ulations. Additionally, if several additional models are added that frequently interrupted

the propagation to the next time step, the run-time in the event-based case would increase

whereas the run-time in the fixed time step case would remain the same. Despite this, the

discrete scheduler will still likely be faster in any case where accurate and detailed data is

required due to the individual time steps for each model. Further work could be done to

intelligently save data that is usually lost during event-interrupts to minimize the effects of

the interrupts.

A less significant trade study was also performed comparing the performance of the

bisector method, illustrated in Figure 4-6, to a stepping method. This trade was used to

identify the best way to find the time of an interrupt in the event-based case. The test was

performed on the sun/eclipse boundary event interrupt in the orbits model. Table 5.4 shows

the results of the two cases. The given input conditions were a 6 hour simulation duration

with a 25 second orbit initial time step and a one second step or bisector convergence

threshold.

Table 5.4: Interrupt Timing Identification Method Results
Method Mean (ms) σ (ms)
Stepping 14.0 2.0
Bisector 3.5 0.1

These results are not surprising. Nearly the only difference in run time is the number

iterations in the given search loop. The number of iterations needed in the bisector method

can be predicted from the subsystem time step and bisector convergence using the following:

n = ceil

(
log δtsub

τ

log 2

)
(5.1)

148

The number of steps needed in the stepping method is not known, and can be treated

like a discrete uniform distribution between 0 and δtsub. The calculation of the expected

value and variance of the discrete uniform distribution is simply the midpoint of the time

interval, as shown in equation 5.2.

E(n) =
δtsub
2τ

(5.2)

These results led to the implementation of the bisector method in the simulation over

the stepping method. This method is performed inside of the individual subsystem models.

This is advantageous to make the simulation efficient and minimize the pass-through of

data and objects. However, this comes with a cost at the readability and maintainability

in the code. The bisector interrupt identification method would be better maintained and

organized in the scheduler object. It was decided to keep this interrupt identification in

the subsystem model and ensure that any future programmers know how to deal with the

interrupts. This is not a major source of additional work, as the event-based nature of the

simulation forces subsystem model programmers to deal with interrupts.

The addition of a scheduler object and its event-based methods in the CASTOR sim-

ulation has improved the simulation in terms of both performance and structure. The

scheduler successfully controls the simulation time and ensures that every command and

event is processed in all simulation cases. In regards to the IEM design principles, the

scheduler provides the simulation with an efficient method for handling the various com-

mands and events in the simulation. The scheduler design in its current form could be

implemented successfully through Phase E and satellite operations.

STK Output Results

The simulation added the ability to generate STK ephemeris and attitude files from the

satellite’s orbit and ADCS telemetry. This addition allows for the utilization of STK’s vi-

sualization and analysis tools. The visualization is helpful for identifying any abnormalities

in the ephemeris or attitude data, but is mainly used as a presentation, training, and ed-

ucation tool. The analysis tools available in STK such as coverage statistics, reports, and

149

graphs allow users to either verify certain model results with a correspond STK model or

to use the additional tools to generate further results.

A MATLAB to STK interface exists in the simulation to automatically launch a scenario

with newly generated ephemeris and attitude data. This feature allows MATLAB to call

STK methods and control any feature of STK. While this feature could be used to run

the STK engine throughout the simulation, this is not an active interest in the CASTOR

model. Future work could be done to compare STK orbital propagation methods to those

utilized in MATLAB for accuracy and performance.

Summary and Remaining Work

This section has demonstrated two major points: the new simulation successfully meets the

IEM principles and the new architecture greatly improves the performance in the simulation

run-time. There are a few significant areas of work left in the CASTOR simulation, as shown

below.

� Subsystem Model Completion — The subsystem models have been unchanged
from the previous CASTOR simulation, and only outlines exist for most models in
the new simulation. The orbits, ADCS, and propulsion models do exist, but work
remains on each of these models.

� Simulation Accuracy — The discussion has been primarily on performance, as that
was a major deliverable for the new model; however, the accuracy of the simulation
must also be shown. The new simulation structure, specifically different subsystem
step sizes, should assist in meeting accuracy requirements.

� Command and Event Implementation — The commands and events features
have successfully been demonstrated in the simulation, but work remains to match
the real CASTOR system with the simulation. This requires a large initial effort as
well as periodic maintenance as the commands and event characteristics change in the
CASTOR hardware or software designs.

Lastly, the full implementation of the TDA and MAT elements of the IEM has not been

completed in this thesis. This is an area of work that has been baselined but not performed.

Emphasis was put on demonstrating an actual flight TDA design in FS-3 to gather lessons

for future tools. These results are shown in the next section.

150

5.2 FalconSAT-3 TDA Results

The FalconSAT-3 TDA, or the FS-3 LimWOD GUI, was described extensively in Section

4.2.3. Two examples are given in this section to illustrate how the GUI’s tools were used.

Each example discusses how the results apply to the IEM process, particularly the TDA

design.

5.2.1 FS-3 BSEKF Verification Using LimWOD GUI

The BSEKF attitude filter written by MIT PhD candidate Jacob Katz processed magne-

tometer data to produced attitude positions and rates for FS-3. Described previously on

page 117, the filter output was viewed in a STK animation as well as with solar panel

currents in the LimWOD GUI. While neither of these methods gave quantitative results,

they were an independent source of analysis. The solar panel current comparison in the

LimWOD GUI was thought to be a better source of independent verification, as it utilized

a different source of telemetry that was not used in the filter.

The solar panel currents are not a reliable source of accurate attitude information in

periods of low power draw. The Battery Charge Regulator (BCR) on FS-3 will regulate

the amount of current drawn from each solar panel based on the power required by the

batteries and the bus. The nominal power draw from the satellite is much lower than the

available solar panel power, and therefore the current from the solar panel providing power

is much lower than its maximum. In these periods of time, the only comparative analysis

that can be performed between the solar panel currents and the BSEKF attitude output

is to see if the solar panel that should be in the sun is the one providing current. The

switching from one panel to the next as the sun moves around the body-fixed coordinate

system (due to spinning and orbital motion) is not entirely predictable in the BCR’s logic,

and therefore the accuracy of the angular measurement of the body axes to the sun is low.

If the power required by the satellite is much higher, the solar panels will give a much

better resolution on the incidence angle between the satellite’s body and the sun. This is

generally not desirable, as it is pushing the limits of the power system of the satellite and

the accuracy is best when there is zero or negative margin in the power budget. These cases

151

of high power draw are most prevalent during communication, as the transmitter requires

a large amount of power.

The LimWOD GUI was used to visualize BSEKF output in both power cases. The

results shown here are focused on the high power case, as it provides more insight to the

attitude output. Figure 5-6 shows the solar panel comparison results for a case in mid-

January 2010.

Figure 5-6: FS-3 LimWOD GUI Successful Solar Comparison

Figure 5-6 shows that the solar array angle estimate represents the actual readings very

well. The results are not ideal, as the primary (left) y-axis is in amps and the secondary

(right) y-axis is in degrees, but the purpose of the graph is to show the general trend

in switching between the different panels. The graph shows that the switching between

actual solar panel currents (solid lines with markers) matches the switching between the

expected solar panel angles. The conclusion from this is that the BSEKF output seems

to give a reasonable attitude estimate despite using magnetometer input only. The graph

also shows that as the expected panel angle reached a minimum, or the satellite’s rotation

axis was nearly parallel to the relative sun vector, the measured solar panel current reached

a minimum. This is harder to see from this figure, but the maximum solar current for

each panel is over 1 amp. The comparison at this minimum is not as good, shown by the

half-sinusoids for each axes becoming out of phase; however, the graph shows the curves

152

converge upon reaching higher angles to the sun.

The BSEKF output did not always match the solar panel currents, as shown in Figure

5-7. This case is shown in a later date during a significant power draw as well.

Figure 5-7: FS-3 LimWOD GUI Unsuccessful Solar Comparison

Figure 5-7 shows that the BSEKF output behavior does not match the actual solar

currents. Specifically this is shown through the rate and the axis that should be receiving

sunlight. The -Y and -X panels are expected to be in the sun for the entire 10 minute

window, but the actual solar panel data shows that the +Y and +X panels were in the sun

in this period. While it is much harder to qualitatively verify that the filter is providing an

accurate knowledge estimate of the attitude, it is much easier to state that it is not correct

by only looking at Figure 5-7.

The addition of the solar panel comparison in the LimWOD GUI allowed for quick

visual verification of the filter’s accuracy. While it did not quantitatively verify the results

due to a large uncertainty caused by the BCR’s management of solar panels, it allowed

for easy identification of infeasible data. This led to the conclusion that the BSEKF did

not provide accurate attitude solutions for all cases and needs improvement prior to full

implementation.

This example is relevant to the IEM discussion as it gives an example of a comparison

between real data and expected data in the TDA. The concept of comparing actual and

153

expected is simple, but each type of comparison may have different intricacies. These

intricacies are a major resource burden and should be considered prior to setting lofty goals.

Specific to the BSEKF verification example, it is possible to look only at the time periods

of negative power margin, which would therefore give a reasonably accurate incidence angle

for each solar panel. This angle could then directly be compared to the BSEKF output

and a quantitative measure of error could be performed. While this is a much better result,

the majority, if not all, of the solar panel data occurs during positive power margins. It

was decided that resources were better spent on creating a quick verification of solar data

showing that the BSEKF was plausible or not.

5.2.2 FS-3 April 2010 Event Analysis Using LimWOD GUI

A series of unexpected results were observed in early April 2010. This event tested utilized

all of the FS-3 analysis tools and techniques available, as well as provided motivation to

create new tools. This section will describe first the timeline of events and then describe

how a range of analysis tools were used to determine what occurred. Without these tools,

it is likely that this event would not have been identified, which would have jeopardized the

FS-3 mission and the vehicle’s safety.

The underlying result of this event was a major spin-up of the FS-3 satellite about

its yaw (minor) axis. While different hypotheses are currently being investigated for the

exact cause of this spin-up, the most likely is a significant (multiple orders of magnitude)

increase in the amount of torque imparted by the Low-Thrust Attitude System (LTAS).

This system consists of four clusters of three-axis thrusters, which are expected to generate

≈100 µN of thrust in a series of short, ≈15 µs pulses at a rate of 2 Hz. On the 5th and 8th

of April, a long-duration test was performed on two LTAS thrusters firing simultaneously.

It is hypothesized that rather than an equivalent 30 µs per second of equivalent thrusting

time (duty cycle of 0.003%), the LTAS thrusters both went into a mode that caused the

duty cycle to be increased by several orders of magnitude. The expected change in angular

velocity for the first test was less than 1 ∗ 10−5 rad/sec, or 0.0005 deg/sec, whereas the

observed change in velocity was greater than 0.5 rad/sec, at least four orders of magnitude

greater. This great difference is the cause for technical skepticism that the LTAS actually

154

caused this torque, but as the data will show, this is the most likely out of all options.

With an understanding that the events in early April sped the satellite up significantly,

the following timeline of events is presented in Table 5.5. Events in italics represent data

being available for analysis, and events in bold identify unexpected or unplanned events.

Table 5.5: FS-3 April 2010 Summary
Date &

Time(Z) Event
1 4/5 0605 Began operations of two LTAS thrusters for 5 hr test
2 4/5 0605+ Significant angular acceleration about yaw axis
3 4/5 0924 SW shuts off LTAS due to battery voltage limit reached
4 4/5 1104 Command sent and acknowledged to turn off LTAS thrusters
5 4/6 0600 B-dot algorithm tests with active torque rods (off at 0920Z)
6 4/6 1120 Real time log file (CRA file) saved and placed in SVN
7 4/8 0127 MIT email that CRA files show unexpected change in torque rod polarities
8 4/8 0913 Began operations of two LTAS thrusters for 20 hr test
9 4/8 0913+ Significant angular acceleration about yaw axis
10 4/8 1520 SW shuts off LTAS due to battery voltage limit reached
11 4/12 1613 Initial WOD files (6Apr) and attitude files placed in SVN
12 4/12 1722 MIT email recommending hold on further tests due to high rotation rates
13 4/14 1702 5 Apr WOD files placed in SVN
14 4/14 1906 MIT email identifying off-nominal magnetometer and power readings
15 4/14 2214 Addition of new MATLAB analysis tools specific to 5 Apr
16 4/15 0336 Test to verify both thrusters of interest individually produce same result
17 4/15 0516 Test to show other thrusters in clusters function nominally
18 4/15 2329 USAFA email to LTAS provider to provide situation report
19 4/16 0213 Small amount of 8 Apr WOD files placed in SVN
20 4/16 2131 USAFA ID of 1 March 2010 short-duration LTAS test with similar results
21 4/17 0238 MIT email describing uncertainty and confusion due to new data
22 4/20 0242 Remaining 8 Apr WOD files placed in SVN
23 4/20 2137 MIT email summary identifying aliasing issue and 4/8 1520Z event
24 4/22 2325 USAFA email summary identifying 4/5 0924Z event

This table shows the wide variety of response time to the different events. The amount

of data collected between the 5th and the 8th required multiple days to downlink, and

ground station issues at USAFA such as high winds prevented this data from coming down

sooner. The table shows how very soon after data was posted to the SVN (shared and

controlled subversion repository between MIT SSL and USAFA SSRC), it was analyzed

and a resulting assessment was made. While these assessments did not describe the whole

picture, slowly different elements were pieced together to determine what is believed to be

155

the best explanation for each of the events. The next section is devoted to showing the data

for the different events that led to these conclusions.

FS-3 Data from April Spin-up Event

This section will describe in order the data used to analyze the events of April 5-8. This

order is based on the data analyzed and assessments made, and the dates of the data

presented are not necessarily chronological due to the availability of different data sources.

The first data source analyzed was the CRA file from 6 April (#6 in Table 5.5). This

text file contains the commands acknowledged by the satellite, including the individual

torque rod commands. These commands identify the torque rod axis fired, as well as the

direction of the current in the torque rod (also described as polarity). By looking at how

frequently the current direction is changing for a given torque rod, one can gain a general

idea of the rotation rate calculated by the B-dot algorithm.

After the corresponding WOD and attitude data (Table 5.5 #11) arrived, it was clear

that it was not that the controller misbehaved, but rather that the satellite was spinning

faster than expected. This was shown both through magnetometer and solar panel current

data. This was shown very quickly through the LimWOD GUI and also through the attitude

file script written specifically for this test, with results shown in Figure 5-8 (can be compared

to 4-23).

The data from the LTAS tests that arrived (Table 5.5 #13) was not in the usual Lim-

WOD form, but the full WOD form. No analysis tool had been written for this data type,

as very little full WOD data had been collected since the implementation of full WOD.

Therefore two MATLAB functions were quickly written: one to read the full WOD CSV

files and fix the timing, and the other to format the full WOD data into the usual LimWOD

format so that the data could be analyzed by the GUI. This allowed all previous features

on the data to be available. The LimWOD GUI quickly produced the magnetometer, solar

current, and battery graphs that can be seen in Figures 5-9 to 5-11.

Figure 5-9 shows a large disturbance in the X-axis magnetometer at the start of the

test. Additionally, the Y-axis magnetometer frequency increases at the this time. The

Z-axis magnetometer rate is not significantly affected, but a high frequency noise is seen in

156

Figure 5-8: B-Dot Analysis Script Results for 6 Apr Test

Figure 5-9: LimWOD GUI Magnetometer Output for 5 Apr Data

the signal. The increase in the rotation rate seen in the Y-axis magnetometer is also seen

in the solar array currents, shown in the Figure 5-10.

The solar array current in Figure 5-10 also show a significant increase in the amount of

current pulled from the solar arrays. It appears that the satellite is drawing more power

than it is producing, shown by the total current (black line) being significantly higher than

any individual channel (BCR pulling from both panels to produce power). This is also seen

in Figure 5-11, which shows the battery voltage and temperature.

157

Figure 5-10: LimWOD GUI Solar Current Output for 5 April Data

Figure 5-11: LimWOD GUI Battery Output for 5 April Data

The battery data shown in Figure 5-11 shows how the batteries are not able to be fully

charged during the LTAS test. The voltage will usually only go down in eclipse and then

nearly instantly increase upon entering the sun (as shown in the left of the figure). The

graph shows that the batteries are still supplying power while in the sun, showing that the

power margin is negative overall.

This quick analysis led to the MIT email identified by #14 in Table 5.5. Also, as

additional channels of data were available in the full WOD file, an analysis script was

quickly written to view different telemetry channels, such as the LTAS power lines (#15).

158

These results showed that as the command to LTAS was sent, the power going through

the LTAS line increased quickly, therefore summarizing that power was being drawn by the

LTAS units. Additionally, the capacitance readings from LTAS were shown to cycle upon

sending the commands, representing the charging and discharging of the capacitors.

The resulting data that came in for 5 April and 8 April showed major changes in the

satellite magnetometer and solar array data, leading to the conclusion of a major event

changing the rotation of FS-3. Figure 5-12 shows how the magnetometer data changed

before and after the 5 Apr LTAS test.

Figure 5-12: Magnetometer Difference Before and After 5 Apr LTAS Test

The latter observed magnetometer readings (right plot) were described to be aliasing.

This topic and additional background information is given below as it is relevant to the

discussion of the spin-up event.

Aliasing and Under-Sampled Sensors

When dealing with rotational dynamics, aliasing can be described as a function of rotational

period and sampling rate. In general, the Nyquist frequency is the minimum frequency that

a signal (i.e. sensor) can be sampled at to allow reconstruction of the dynamics [44]. This

frequency is defined as fny ≡ 2
T , where T is the period (or bandwidth). Thus the sampling

rate fs must be greater than fny to prevent aliasing. This is the theoretical limit for

a known waveform, and in the case of a three dimensional rotation through a changing

reference frame, this becomes much more difficult to model. FS-3 has this problem with

159

both magnetometer readings when compared to a rotating IGRF (relative to the orbit),

along with solar panel currents compared to a rotating sun (again, relative to the orbit).

In short, aliasing was a problem when data was sampled less than twice in a given

rotation. This problem can be solved easily by increasing the frequency of sampling, but

in certain cases this leads to too much data for continuous collection or is not possible

for the hardware available. Yet, this seemed to be a straightforward occurrence that was

understood that if the data from the magnetometers or solar panels showed choppy data,

the data was aliasing and the sampling frequency needed to increase. Figure 5-13 shows an

example of the data starting to alias on 5 April due to angular acceleration in the positive

yaw (+Ẑ) direction (Table 5.5 #2).

Figure 5-13: Initial Aliasing Due to Angular Acceleration

The problem that perplexed analysts for well over a year is the appearance of slower

rotation that can be seen during periods of aliasing. This problem occurs when the sampling

frequency is near the period of rotation. Numerous times analysts believed that the satellite

rotation rate slowed down based on both magnetometer and solar current readings, when

in fact the satellite was rotating significantly faster. An event on 8 April 2010 led to the

discovery that the satellite in fact was not slowing down, but in this case, increasing its

rotation rate. Figure 5-14 shows this phenomenon, which initially was read as an opposite

angular acceleration about the yaw axis (Table 5.5 #21).

The major issue with the description of an opposite body-fixed acceleration is that the

160

Figure 5-14: Apparent Slow Down Due to Aliasing

same sequence of commands that caused an acceleration shown in Figure 5-13 was performed

in this case as well. Therefore, it seemed extremely unlikely that the satellite was actually

slowing down. Upon further analysis, two additional sources of telemetry provided data

supporting a theory of an illusion of slowing due to aliasing and the reality of an increase

in the rate of rotation. The first source is a combination of the time difference between

samples and unexplained jumps in the magnetometer reading. As displayed previously in

Figure 4-21, the sampling time of the satellite is not necessarily constant. When looking

at the Y-axis magnetometer channel in both cases in Figure 5-15, it can be seen that when

the time step changes, the magnetometer reading jumps and no longer looks as smooth or

periodic.

Figure 5-15: Aliasing Indication Due to Time Jump

Originally, these magnetometer jumps were thought to have occurred due to the same

unknown reason that causes occasional changes in sample frequency, but this hypothesis

161

had no basis of fact. The hypothesis that these jumps occurred due to an unrealized state of

aliasing fits all data much better. The aliasing phenomena when the sampling rate is nearly

equal to the rotation rate (or an integer multiple thereof) can be visualized as a strobe

light on a periodic mechanism, such as a pendulum. The strobe light represents the sample

rate, and the pendulum represents the rotational period of the satellite. Imagining a fixed

inertial viewpoint above the pendulum and a strobe light facing towards the ground, one

could plot the strobes as a function of the sample frequency multiplied by the period. This

variable, fsT is equivalently the average number of samples per revolution. Figure 5-16

displays a range of fsT for a case where the period is one second and for 20 revolutions.

Figure 5-16: Aliasing Phenomena for Under-Sampled Data

Figure 5-16 demonstrates that near an integer of (fsT)−1, or 1
fsT

, the data will appear

to be sinusoidal, although at a frequency much less than the actual frequency. The first

case shown of fsT = 2.4 is actually not aliased, but shows how choppy data can be seen as

the fsT initially approaches the Nyquist limit of 2. The next two cases shown on the top

(fsT = 1.1 and fsT = 1.05) demonstrate how the observed undersampled signal creates a

signal that can be represented as a sinusoid. These images show that by approaching the

first integer of 1
fsT

, the frequency of the apparent sinusoid decreases. This is also shown

in the case where fsT = 0.97, only the apparent signal now moves the opposite direction

than those when fsT > 1. The last two examples demonstrate that this low-frequency

162

apparent behavior also occurs in integer multiples of 1
fsT

. The fsT = 0.525 case show that

it is possible for an observed signal to be represented by multiples of the true rotational

frequency.

If the sample size was fixed on FS-3, it would be impossible to tell that the data was

aliased for a fixed rotational period; however, by having a sample size that is not completely

fixed, the jumps in the data show that the low frequency observed dynamics are actually

undersampled representations of a much higher frequency. This explained the apparent

slow-down as the changes in the rotational period, T , led to the transition of the 1
fsT

fraction to pass an integer value.

The validation source for aliased data came from the solar arrays. The solar array

currents are sampled at the same rate as the magnetometers and therefore display the same

type of results showing a slow down and spin up as the satellite accelerates. However,

the solar panel temperature sensors, while sampled at the same rate, have much different

measuring characteristics as the temperature dynamics have large time responses. Figure

5-17 shows a comparison between the solar currents and temperatures at the beginning of

the first test, where the rotation period was assumed to be relatively slow. These results

were created using the new WOD processing and analysis script (#15).

Looking between the currents and the temperatures, one can see that the panel temper-

atures increase and decrease as a function of current draw from the panel. The rotational

direction and rates in the solar panels currents are seen to be approximately the same as

the those of the temperatures. It should be noted that this is one of the few cases where

the power margin is negative, so the solar panels are producing their maximum available

power. The decrease seen around 0645 is due to the angle of rotation being parallel with

the sun.

These results can be compared to the point of the slowest observed rotation on 8 April,

shown in Figure 5-18 to prove the effects of aliasing.

Figure 5-18 shows that the solar array currents appear to be at a much lower rate than

shown in Figure 5-17. The currents appear to show that the rotation switches from the +Z

direction to the -Z direction, as the solar panels progress from +X to +Y to -X, and then

turns back to +Y. Jumps in the solar data are also seen, and correspond to the timing jumps

163

Figure 5-17: Observed FS-3 Solar Array Data During Slow Rotation

Figure 5-18: Observed FS-3 Solar Array Data at Apparent Slow-Down

164

just like the magnetometer. The true validation source in these graphs is the temperature

data, which shows that although the current shows a slow rotation, the temperatures are all

increasing at an approximately equal rate. This represents a rotisserie mode characteristic

of a spinning satellite.

The reason for discussing this apparent slow down phenomena due to aliasing is to

understand that once a signal is under the Nyquist sampling rate, it is usually thought

to be indistinguishable. For FS-3, this infers that unless the sample rate can be increased

further, the true rotation will not be able to be observed. The minimum resolution sample

size in FS-3 is 5 seconds, which would represent a Nyquist limit of a 10 second rotation;

however, all data during the tests was collected at a minimum of 25 seconds. The question

desired to be answered was how fast the satellite is spinning. This question led to an effort

to determine the rotation rate based off of data that was usually determined to be thought

of as aliased.

This characterization effort has led to several interesting discoveries for sampling sensor

data near or slower than the spin rate. Firstly, it was determined that the Nyquist criteria

of a minimum two samples per rotation did not accurately represent the specific situation

for FS-3, and the true criteria for determining the spin rate requires only one sample per

rotation prior to aliasing. The cause of this is the fact that two sensors with a known phase

shift are measured at the same point in time. This allows for the determination of the exact

quadrant that a representative angle is defined in, as long as the phase between the sensors

is known. If the phase is not known to be positive or negative (i.e. the direction of spin),

then the typical sampling criteria apply. Secondly, the time jumps in the sample rate allow

for a different way of meeting the Nyquist criteria. Even though the data is theoretically

undersampled, it is hypothesized that a deviation in the sample rate that is under the new

criteria of once a sample can be used to determine the true angular velocity. That is, if

the satellite is spinning with a 4 second rotation rate, it would be possible to determine

with three data points spaced 25 and 26 seconds apart. This case has been shown to be

theoretically possible, but there is still ambiguity in both the direction rate and multiples

of the frequency that limit the current results. The determination of spin rate based on

undersampled data is an active area of research being pursued by MIT and USAFA.

165

Conclusions from Spin-up Event

This section began by identifying a timeline for the different events operational, analysis, and

communication event that occurred in support of the April 2010 spin-up event. This table

illustrated how quickly data was analyzed and recommendations and conclusions were made

on characterizing the unexpected events. USAFA FS-3 operations staff have acknowledged

that without these tools and the identification of the LTAS problem, further tests would have

likely have occurred. These tests would have potentially damaged the spacecraft mission

and lifetime. A few lessons and applications to the topics of IEM, TDA, and satellite

operations from this event are given below:

� TDA Design — The event demonstrated that a telemetry analysis tool proves to
be very useful in characterizing an unknown event. The ability to quickly graph the
accumulated data made it apparent that the satellite spun-up and drew a higher
amount of power than desired. The ability to zoom and pan through the data allowed
for identification of major events with accurate time tags.

TDA Design Recommendation: At a minimum, be able to generate graphs for a spec-
ified period of time; the ability to dynamically change the time window of the data is
beneficial.

� Implementation of New Tools — Despite having the LimWOD GUI ready, addi-
tional tools were still necessary to analyze the full WOD data format. Additionally,
the work being done due to determine the spin rate despite under-sampled data will
create new tools. These new tools will be developed first as individual scripts and
then implemented in the GUI for past, present, and future analysis.

TDA Design/Personnel Recommendation: Understand that maintenance and upgrades
in the data analysis programs are required for a satellite after launch. If source code
exists, it must be commented and documented well to allow for successful maintenance.
The fastest resolution is to contact the original developer, which is far less costly if
done in-house.

� Satellite Operations Procedures — The spin-up and power draw from LTAS was
completely unexpected. As Table 5.5 #20 describes, when looking back at the previous
data, the same result was shown. Had this been identified prior to the tests, no long
duration tests would have been planned. Additionally, operators receive real-time
data from the satellite during all contacts, which should have shown a few indicators
of off-nominal performance. The real-time analysis is difficult; however, it is possible
that between starting the 5 April test and starting the 8 April test, an operator could
have spotted a problem and possibly stopped either test. A more concrete lesson is
to download and analyze data from a significant test prior to starting the next test.
In hindsight, the 20-hour test planned on 8 April should only have occurred after
successfully showing the 5-hour test was successful.

Operational Recommendation: For any test, be vigilant for off-nominal data readings

166

or trends that occurs immediately after the start of the test, during the test, or in
conclusion of the test. Additionally, analyze a sufficient amount of data showing that
the test was successful and the satellite behaved as expected prior to starting the next
test.

5.3 Discussion

5.3.1 Modeling and Simulation Design Discussion

The subject of modeling and simulation has been discussed throughout the design and

implementation of the IEM approach. This section discusses the lessons learned in the last

two years in the topic of modeling and simulation for small satellites.

Choosing a Modeling and Simulation Platform

A spectrum of tools are available to perform the modeling and simulation in the IEM

process, from specifically developed home-built tools to the full utilization of COTS software

platforms. A trade exists between the performance, capabilities, accuracy, and resources

(cost, time, personnel) required for the given architecture. The spectrum is full of hybrid

methods that utilize COTS programs calling user-functions as well as user-defined programs

calling COTS functions, and no point on the spectrum can be considered “best” for all

cases. This thesis has demonstrated that flexibility is essential to any architecture, so

COTS products utilized must allow for user-defined programs or scripts to be run.

COTS platforms like STK and FreeFlyer are advantageous to use as they come with an

assortment of pre-defined functions that are common to the space environment. They both

allow for external or internal programming to utilize their simulation engine and capabilities

by other tasks, which is important for model flexibility. Additionally, support is available via

tutorials, training, and customer service. COTS platforms are likely the best way to verify

the general mission concept in Phase A or even Phase B; however, these programs lack the

specificity required for meeting the later IEM requirements. The command-input, detailed

models, and TDA elements of the IEM design require a large amount of programming

specific to the given mission. While it is possible to do this in these COTS platforms,

especially FreeFlyer with its programming interface, it is not a trivial task. Lastly, COTS

167

platforms require licenses, which may come at a cost to the organization, or, if donated,

require maintenance to keep current. At critical timing junctions such as before major

design reviews, the inability to access or modify the simulation or models can create a

single point of failure for model-based design.

Perhaps the largest trade in the platform decision making process deals with the avail-

able resources and programming experience of the design team. Assuming that the models

and simulations created will change throughout the program, it becomes clear that pro-

grammers are required in each phase. It is therefore recommended to use the experience

of the personnel as the primary factor for choosing the modeling and simulation platform.

The examples given in this thesis utilize MATLAB primarily because of the experience of

all programmers with MATLAB. Additionally, common astrodynamics functions and tools

have been written for MATLAB and available open source.

Another factor in the decision process is whether to reuse existing software tools (to

include COTS platforms) or to establish a new set of tools. Reuse almost always appears as

a better option, as the tool already exists and works. However, reuse has a large potential to

push the schedule back due to unrealized changes in the software, as well as hiding improper

assumptions that will affect the accuracy of the model. Robert Glass wrote that the software

field generally considered the point where more than 10%-20% of the software had to be

modified as the benchmark for when it is better to start from scratch [13]. An additional

example with COTS software reuse issues can be shown through Global Positioning System

(GPS) issues on the International Space Station (ISS) [14]. In short, reuse of software can

have surprising costs if not done carefully on any software project, to include modeling and

simulation.

Programming Methods

The evolution of the CASTOR model from the original MOTV model to its current form

demonstrates how even for a given programming language, the methods used can change

significantly over time. Specific to the MATLAB example, the transition from a functional

architecture to OOP proved to be a challenge for many of the team members. This lesson

showed that the programming methods and architecture changes become more costly as the

168

design matures. This lesson can be applied to changing software platforms or merging two

capabilities together as well. If identified and done early in the program, these methods can

be learned and implemented; however, after integrating many of the different capabilities

together and writing certain design assumptions into a simulation or modeling architecture,

these changes can cause setbacks to a program’s resource budget.

If multiple developers are involved in the model development, it is important to identify

how the work will be divided between the members. The experience over the last two years

has shown that regarding different programming abilities, the best choice is to allow the

programming to be near the lowest skill level. In the case of MATLAB programming, this

meant to either train the personnel on OOP or to allow the personnel to create their models

at the level of understanding that they had. One “architect” (or a simulation team) should

be chosen to manage integration of the simulation and ensure personnel understand how to

program as needed.

Model Verification and Validation

The subsystem, environmental, and orbital models used must be verified and validated

prior to use for design analysis. The most common verification methods include hand-

calculation, test cases on analytical or closed-form solutions, as well as comparison with a

common COTS software tool. The ground testing and operations campaigns identified in

the Phase D IEM design are the primary validation sources. This validation is not a perfect

case, as the environment of the tests will likely not match the orbital conditions assumed in

the simulation. For this reason, the initial commissioning sequence during operations will be

the primary validation source of the completely integrated model. By allowing subsystem

on/off switching and telemetry input, the simulation can still be effective even if a certain

model does not match the real data.

Certain verification and validation checks can be performed on the functional structure of

the models and simulation well before launch. All command, telemetry, and events should be

tested to ensure all use cases and operational modes are represented. This testing sequence

should occur throughout Phase D, and should be performed for both the actual satellite

software and hardware as well as the simulation for the different cases. The command input

169

and output files and TDA design allows for a clear comparison between real and simulated

system.

5.3.2 Personnel in the IEM Process

This thesis has a central theme of the importance of personnel throughout the life cycle of a

small satellite design. It has just been suggested that the personnel expertise should drive

the choice of modeling platform and approach. It has also been suggested that there should

be a central modeling and simulation “architect,” who is responsible for the integration and

use of the integrated model and its elements. These suggestions may seem infeasible for

smaller programs, especially university satellite programs, as personnel may not be readily

available with the experience or even time to work on systems modeling. A rebuttal to this

argument on resource allocation is that the activities described in the IEM design will pay

off later in the design and operations of a satellite.

Lack of Time to do IEM

If skilled personnel exist and time is the driving factor to not perform modeling, then it is

likely that time will not be available to solve problems seen in testing or operations. The

IEM process invests time early in a project to assist with critical decisions throughout the

design cycle, with a large emphasis on Phases D and E returns on this investment. Modeling

and simulation re-work and restructuring is also costly in time, as seen through the MOTV

and CASTOR examples. This thesis has attempted to give a large amount of background

information to future satellite design teams so that they can look towards operational use

early in the design process. The argument that there is not enough time to implement basic

IEM modeling methods in the design process uses a faulty assumption: the satellite will

operate as expected.

Lack of Personnel or Expertise to do IEM

The second reason for not performing modeling in the design phase is not having the

personnel or expertise to perform modeling. If the program cannot create a model, it is

unlikely that they can create an operational satellite. An inherent requirement of designing

170

a satellite is an understanding of the different components, assemblies, subsystems, and

complete system. Therefore this class of reasoning is likely not that personnel do not

exist, but rather skilled programmers do not exist in the program. This reasoning is also

questionable, as software is critical to the successful operations of the satellite, so competent

programmers must exist at some point in the program.

The IEM approach actually attempts to bring in and develop these programmers much

earlier in the design process on purpose. A common theme heard and observed in the uni-

versity satellite development is that software programmers do not understand the system

implications, and the system engineers and program managers do not understand the soft-

ware implications on their respective choices. It can be argued that this is a general theme

throughout the aerospace industry, but this thesis will focus on the smaller organizations

and universities. By investing the time in Phase A to find skilled programmers and attempt

to model the mission and its major elements, early interaction is forced between the soft-

ware personnel and mission personnel. Experience has shown that both classes of personnel

perform better when they understand the other’s area of responsibility. Programmers are

most useful in Phase C and D of the program, when the flight software is written and mod-

ified. At this point, the simulation framework should be sufficient that no major simulation

re-designs are necessary. Therefore, it is explicitly recommended that skilled programmers

are used in Phases A-C to create the SIM, MAT, and TDA framework and thereby getting

a better systems-level concept of the mission before they begin flight and ground software

design and coding.

A more specific case for not performing certain IEM design items is in the detail of

the subsystem models. The design team should strive for correct level of detail in a SIM

subsystem model due to its importance in the mission and not on previous experience;

however, the lack of experience in a major design element may be a programmatic issue

with the satellite. If the team cannot model a subsystem successfully, most likely it is

not well enough understood by the team. The solution is to either removed the subsystem

complexity from the design or invest more time to understand it better and be able to model

it. A prime example for this is the ExoplanetSat identification of the thermal model being

a major element in their design. The team must decide to either modify the entire design so

171

that the thermal effects are not as critical or invest the time in researching, understanding,

and modeling the thermal effects.

Turnover

Personnel turnover is a issue in the IEM process as well as in the design team in general.

USAFA has an especially unique situation where its entire development team, sans a small

number of faculty, leaves at the end of each May. The workforce is not replaced until August,

when a new senior class enters the program. The IEM products can be used to train and

develop unfamiliar or unskilled personnel. Originally conceived as operator training tools,

these products are much more interactive than documents and presentations, and thus can

be used by multiple types of users to gain familiarity with the system. It is recommended

that a program limits critical turnover (i.e. greater than 75+% of workforce) as much as

possible, to allow for direct knowledge transfer between personnel. In universities, this is

done by utilizing graduate students on programs, having a diverse class breakdown (i.e.

Senior, Junior, etc.), and having independent research activities during periods without

class.

While it is important for all areas of the satellite design, turnover can cripple IEM

process. It has been shown that the IEM products and design can assist throughout the

design process, but the return on the early investment of time and effort comes in the

Phase D and E implementation of the IEM elements. If a successful IEM architecture is

produced, but the personnel who are familiar with it leave the design team, it is likely that

the IEM tool will not be used. This can be prevented by the program utilizing the IEM

approach throughout the design and planning personnel accordingly. Specifically, the IEM

“architect” described should have the IEM development as his or her main responsibility,

and a “architect protégé” should assist in the IEM development and serve as the replacement

for the primary upon graduation or another event.

Personnel Discussion Summary

The modeling and simulation examples in this thesis have demonstrated how the products

have been used. The MOTV design produced two outputs: verification results of the

172

design from integrated results (intended output), and identification of issues that had not

been identified through interactions with the design team in support of model development

(unintended). Additionally, the recent CASTOR design work implementing the commands

and telemetry input into the simulation identified that both did not exist, and therefore the

initial formats were created. The IEM process is meant to provide products and verification

to the design; however, by asking the right questions, the process also identifies unknown

areas and assists in their development.

5.3.3 FalconSAT-3 Lessons Applied to IEM

FalconSAT-3 has been discussed at great length in Sections 4.2 and 5.2. The following list

describes lessons learned for consideration in small satellite or university satellite design.

� Predict the expected — No prediction capabilities existed for FS-3 at launch.
The primary data analysts (cadets) joined the program after the previous knowledge
source graduated shortly after launch. The IEM design uses the SIM, TDA, and
MAT as a predictive tool in support of operations, and had such a tool been available,
many operational anomalies in FS-3 would have been discovered or predicted early
on. These products also can serve as training and familiarization tools. Even without
fully understanding the satellite’s behavior, a new analyst should be able to see if
data is in bounds or deviates unexpectedly.

� Prepare for the unexpected — FS-3 operations and analysis has proved to be
challenging, even three years after launch. Not everything will work as designed nor
will every assumption used in the satellite and simulation design be true. Flexibil-
ity and a broad TDA visualization assist in quick identification and investigation of
anomalous behavior.

� Collect data continuously — The communications and data budgets and avionics
design should allow for continuous data collection of critical health data. Understand-
ing early in the design process that data will be saved continuously allows the design
team to prepare better for a data management and telemetry analysis plan, rather
than adding it after launch like in FS-3.

� Timing — Ensure time stamps are correct and synchronized for all types and formats
of data. Limit assumptions on timing and time stamps as much as possible, and if
assumptions are made (e.g. constant time step), verify in ground testing and on-orbit
operations that they are true.

173

5.3.4 Thesis Questions Revisited

Section 1.2.6 provided a list of the main topics and questions that this thesis set to an-

swer. This section describes how the questions have been addressed through the design,

implementation, and results of the IEM approach.

University Satellites

What is the correct role and effort that integrated modeling should have throughout the design
and operational life of a university satellite?

The thesis has suggested an approach for using integrated modeling throughout the

design cycle. Specific to university satellites, this approach is thought to verify the design,

assist in identification of unknown technical problems, serve as a training, familiarization,

and documentation source, and serve a critical role in the functional testing and operations

of the satellite. The IEM approach identified a general architecture to follow and stressed

that the specific details for the models will depend on the application and mission. A

event-based MATLAB approach was described in Section 4.1 for an example of a simulation

that met the IEM architecture. The personnel discussion section describes how integrated

modeling is an investment of time, and programmers can be utilized earlier in the program to

build the simulation platform and become knowledgeable with the mission prior to writing

flight software. The benefits of a IEM can be seen through the FalconSAT-3 examples,

where only partial elements of the IEM design, such as a basic TDA plotting tool, assisted

greatly in the rapid identification and analysis of anomalous data.

Mission Assurance

How can integrated modeling validate mission assurance requirements without requiring ad-
ditional commitment of time or manpower from the design team?

The IEM method suggested in this thesis is centered around mission assurance, whether

in the design process or during operations. The purpose for spending the time, effort, and

money on a satellite is to perform a certain mission. Therefore at each phase of design in

the IEM approach, a mission assurance output is produced, to include building the specific

MAT by Phase C. While this question cannot be successfully answered, as the necessary

tools developed in the IEM process require time and manpower from the design team, the

time invested into the integrated modeling process is used to ensure mission success.

174

Space Engineering Academy

How can integrated modeling be implemented into a structured satellite design and build
curriculum such as SEA?

The IEM design approach is well-matched to the SEA curriculum. By implementing the

IEM approach in the SEA program, SEA participants will be able to ensure their satellite

design is meeting the intended mission. The operational tools developed will allow future

SEA classes to quickly analyze orbital data and focus on the next satellite design. The

existing tools and their respective developmental lessons will assist in the development of

the next iteration of the integrated model. This process, while foreign at the onset, will

become standard practice in the SEA satellite design.

CASTOR

How will integrated modeling be used to ensure that the CASTOR satellite will meet its
mission objectives after launch?

The IEM process described in this thesis has been implemented in the CASTOR satel-

lite program. Successful completion of the CASTOR SIM, TDA, and MAT elements will

allow for complete systems testing and successful operational analysis. The difficulties in

predicting and measuring the thruster’s performance will be overcome by utilizing an inte-

grated performance model and MAT throughout the CASTOR operations. The TDA and

SIM elements will also allow for the subsystem and component health to be monitored to

identify and characterize anomalous behavior. Using the IEM process and its resulting tools

will allow for on-orbit characterization of a new electric propulsion technology (DCFT) with

a relatively low-cost spacecraft.

FalconSAT

How can the lessons learned through FalconSAT-3’s lifetime be applied to future satellite
designs such as CASTOR and FalconSAT-5 so that the on-orbit anomalies can be prevented
or resolved more quickly?

The overall lessons learned from FS-3 that apply to the IEM process were summarized

in Section 5.3.3, and those specific to the TDA design were described in Section 5.2.2. FS-3

has shown that at a minimum, a graphical analysis tool should exist to quickly view and

analyze telemetry, and was proven to be critical in the April 2010 event. The IEM design

is much more extensive, and would have been of great use in the FS-3 mission.

175

176

Chapter 6

Conclusion and Future Work

This thesis has outlined an Integrated Evolutionary Model (IEM) approach for developing

small satellites. This approach suggests that an integrated performance model developed

and maintained through each phase of the design sequence greatly assists in design ver-

ification and mission assurance. A MATLAB discrete event, command-based simulation

framework was developed and for the CASTOR satellite and used as an example of the

IEM SIM element. FalconSAT-3 data analysis tools were described to support the discus-

sion of the TDA design. A discussion was completed on how the IEM approach can be

applied to the SEA program and university satellites.

6.1 Conclusion

This thesis developed a model-based approach to small satellite engineering with a hypoth-

esis that this approach will save resources. This will be verified through the SEA program

as well as future MIT SSL satellites implementing the IEM approach. Feedback on IEM use

and applicability will be obtained, although it will likely not be clear if the IEM approach

truly saves resources in these arenas. This thesis has highlighted how IEM tools developed

for FS-3 operations (i.e. TDA in the LimWOD GUI) were critical in the identification,

investigation, and resolution a serious attitude dynamics and power system event that oc-

curred in April 2010. These tools saved time and energy for the supporting personnel, as

well as limited the risk to the satellite, as the satellite would likely have been tested beyond

177

its design limits had the event not been identified. For this reason, the SSRC is now per-

forming changes to utilize the IEM approach in operations and design. While this is only

one event, it was performed with a simplified TDA design, and shows the potential of using

the IEM approach for future satellite development.

6.2 Future Work

The IEM approach was developed from the experience and lessons of several small satellite

programs. However, the method identified in the IEM approach has never been fully tested

from Phase A to Phase E. Therefore a major area of future work is to implement IEM at

the start of a program and attempt to measure its utility throughout the program’s lifetime.

This is planned to be performed in the SEA program.

Additionally, a significant amount of work remains for the CASTOR satellite integrated

model. For the SIM design, the subsystem models must be completed, and the command

and telemetry designs, once complete, must be implemented and maintained. Adding the

ability to add commands and callbacks with a clean interface rather than in the source code

is a potential area of improvement. The TDA structure needs designed and created, then

used in ground testing to verify the satellite software and hardware. The CASTOR MAT

needs to be created by either adding elements to the propulsion system in the SIM design

or by creating a stand-alone program as outlined in Section 4.3. This tool should be tested

to show that the thruster can be characterized given a given set of expected attitude and

thruster data. The MAT should also be able to analyze the pictures taken of the DCFT

plume. The completed set of tools must be integrated to show the complete verification of

the CASTOR satellite mission as well as for verification with flatsat hardware and software

tests.

178

Appendix A

MATLAB Code Examples

This appendix gives several applied examples of MATLAB code used throughout the thesis.
The purpose of showing these examples is to assist a user unfamiliar with MATLAB to
perform certain functions. The MATLAB help tools and online support are very useful
resources to gain additional information on any of the functions or methods used. An
electronic copy of all code used in this thesis is available upon request from MIT SSL or
the author.

Time Code

%***Begin time.m function ***
function [tout] = time(time, intype, outtype)
% function [tout] = time(time, intype, outtype)
% Time.m changes the time for different inputs to different outputs,
% primarily by using the MATLAB built in timing functions
%
% List of types:
% 1 − Date string (example: 'MM/DD/YYYY HH:MM:SS')
% 2 − Julian Date (days since 4713 BCE)
% 3 − GSFC Modified Julian Date (days since Jan 5 1941) (JD−2400000.5−29999.5)
% 4 − USNO Modified Julian Date (days since Nov 17 1858) (JD−2400000.5)
% 5 − Unix Time (seconds since Jan 1 1970)
% 6 − Day of Year (decimal) (output only)
% 7 − Year, Day of year (YYDOY.xxxx) (output only, string of 10 characters)
% 0 − Matlab time (days since 1 Jan 0000)
%
% Inputs: time −number or string of input time (can be vector or struct of
% strings)
% intype− Format of input
% outtype− Format of output
% Output: tout − Converted time

%Conversions
matlab jd=1721423.5−365;
unix matlab=719529;

179

switch intype
case 1 % String input

mattime=datenum(time);
case 2 %Julian date input

mattime=time−matlab jd;
case 3 % GSFC Modified Julian Date input

mattime=time+2400000.5+29999.5−matlab jd;
case 4 %USNO Modified Julian Date Input

mattime=time+2400000.5−matlab jd;
case 5 %Unix Input

mattime=time/86400+unix matlab;
case 0 %Matlab time input

mattime=time;
otherwise

error('Improper input type, see time.m documentation')
end

switch outtype
case 1 % String output
tout=datestr(mattime);

case 2 %Julian date output
tout=mattime+matlab jd;

case 3 % GSFC Modified Julian Date output
tout=mattime−2400000.5−29999.5+matlab jd;

case 4 %USNO Modified Julian Date output
tout=mattime−2400000.5+matlab jd;

case 5 %Unix output
tout=(mattime−unix matlab)*86400;

case 6 %DOY output
[Y M D h m s]=datevec(mattime);
tout=mattime−datenum(Y,1,1,0,0,0);

case 7 % YYDOY output
tout=yydoy(mattime);

case 0 %Matlab output
tout=mattime;

otherwise
error('Improper output type, see time.m documentation')

end

function tout=yydoy(mattime)
%Gets the time in yydoy.xxxx format for a given set of matlab times
[Y M D h m s]=datevec(mattime);
doy=mattime−datenum(Y,1,1,0,0,0);
yyyy=num2str(Y);
tout={};
for i=1:size(mattime,1)

if doy(i)<10
str=['00' num2str(doy(i))];

elseif doy(i)<100
str=['0' num2str(doy(i))];

else
str=num2str(doy(i)); %three character or more array

end
str=[yyyy(i,3:4) str];
if size(str,2)==5; %if exactly on day (no fraction)

str=[str '.0000'];
elseif size(str,2)==7 %tenth of day

str=[str '000'];
elseif size(str,2)==8 %hundredth of day

180

str=[str '00'];
elseif size(str,2)==9 %thousandths of day

str=[str '0'];
elseif size(str,2)>10 % many digits

str=str(1:10);
end

tout{i,1}=str;
end
tout=char(tout);

%***End time.m function ***

Selecting Files with MATLAB

%*** Example of Using "uigetfile" in limwodGUI.m code ***
curdir=cd; %Get string of current directory

%Set the default path for attitude files (using SVN file structure)
afdir=[curdir(1:(length(curdir)−7)) '\data\af files\'];

%Use uigetfile.m to select the file(s)
[filename, pathname]=uigetfile([afdir '*.csv'], 'Select attitude file(s)',...

'MultiSelect','on');
if isequal(filename,0)

return %Return if user cancel
end

addpath(pathname) %Add attitude file path to directory

%Perform analysis on files given by "filename" (not shown)

%*** End uigetfile example ***

Zooming and Panning with Datetick

%**** Begin set graphs.m function ****
function set graphs()
% set graphs automatically sets zooming, panning, and data cursor callbacks
% for plots using matlab time on the x−axis. Call after the plot function

datetick
h=zoom;
set(h,'ActionPostCallback',@redo tick)
f=pan;
set(f,'ActionPostCallback',@redo tick)
fig=gcf;
dcm obj = datacursormode(fig);
set(dcm obj,'UpdateFcn',@data fcn)

function redo tick(obj,evd)
%For updating the ticks when zooming or panning
datetick('x','keeplimits')

function txt = data fcn(empt,event obj)

181

pos = get(event obj,'Position');
txt = {['Date: ',datestr(pos(1),'mm/dd/yyyy')],...

['Time: ',datestr(pos(1),'HH:MM:SS')],...
['Output: ',num2str(pos(2))]};

%**** End set graphs.m function ****

Basic Plotting

% **** Begin example.m ****
% example.m provides a script to demonstrate the time and set graphs
% functions as well as basic plotting functions in MATLAB

%Create data to plot
to=now; %current time (in matlab time)
t=to:1/86400:(to+10/24/60); %1 second samples for 12 minutes
w=2*pi/(1/24/60); %angular frequency for 1 minute period
y=sin(w*(t−to));

%Plot
plot(t,y)
set graphs %Call set graphs function
doy start=time(t(1),0,7); %Get YYDOY string function
title({'Example output of sinusoid';['Start Time: ' datestr(t(1),21)...

', YYDOY: ' doy start]})
ylabel('Amplitude')
xlabel('Time')
legend('Y {example}','Location','SouthOutside')

% **** End example.m ****

182

Bibliography

[1] SMC Systems Engineering Primer & Handbook. Space and Missile Systems Center,
third edition, April 2005.

[2] NSS 03-01. Guidance for DoD Space System Acquisition Process. Department of
Defense, December 2004.

[3] Richard H. Battin. An Introduction to the Mathematics and Methods of Astrodynamics.
Reston: AIAA, 1999.

[4] Lucy E. Cohan. Integrated Modeling to Facilitate Control Architecture Design for
Lightweight Space Telescopes. Master’s thesis, Massachusetts Institute of Technology,
2007.

[5] Lucy E. Cohan. Integrated Modeling and Design of Lightweight, Active Mirrors for
Launch Survival and On-Orbit Performance. PhD thesis, Massachusetts Institute of
Technology, 2010.

[6] Corey Crowell. Personal Interview Regarding CASTOR Model Development, April
2010.

[7] Corey Crowell, Matt McCormack, George Sondecker, and Ryan McLinko. CASTOR
16.851 Final Presentation, November 2009.

[8] Olivier de Weck. Integrated Modeling and Dynamic Simulation for the Next Generation
Space Telescope. Master’s thesis, Massachusetts Institute of Technology, 1999.

[9] MATLAB Digest. Introduction to Object-Oriented Programming in MATLAB
<http://www.mathworks.com/company/newsletters/digest/2008/mar/matlab_
oop.html>, March 2008.

[10] Dov Dori and Edward F. Crawley. Object-Process Methodology: A Holistic Systems
Paradigm. Springer-Verlag New York, Inc, 1999.

[11] Worldwide CDIO Initiative: A Framework for the Education of Engineers. <http:
//www.cdio.org>.

[12] Samuel Gay and Nicholas A. Schmiegel. Falconsat-3 and the Space Environment.
In 48th AIAA Aerospaces Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, number AIAA 2010-182, 2010.

[13] Robert L. Glass. Reuse: What’s Wrong with This Picture? IEEE Software,
March/April 1998.

183

http://www.mathworks.com/company/newsletters/digest/2008/mar/matlab_oop.html
http://www.mathworks.com/company/newsletters/digest/2008/mar/matlab_oop.html
http://www.cdio.org
http://www.cdio.org

[14] Susan F. Gomez and Michael L. Lammers. Lessons Learned from Two Years of On-
Orbit Global Position System Experience on International Space Station. In ION
GNSS 2004, Long Beach, CA, September 2004. NASA Johnson Space Center.

[15] Object Modeling Group. MDA Guide Version 1.0.1. June 2003.

[16] HM-RB-2001-1. Human Computer Interface Display Conventions for Space Systems
Operations. Space and Missile Systems Center Standard Practice, 1 January 2001.

[17] INCOSE-TP-2003-002-03. Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities. International Council on Systems Engineering (IN-
COSE), June 2006.

[18] Cyrus D. Jilla. Separated Spacecraft Interferometry — System Architecture Design
and Optimization. Master’s thesis, Massachusetts Institute of Technology, 1998.

[19] Greg Johnson and Sebastioan Munoz. Copernicus, A Generalized Trajectory Design
and Optimization System. Presentation, November 2003.

[20] Michael S. Kimbrel. Optimization of Electric Propulsion Orbit Raising. Master’s thesis,
Massachusetts Institute of Technology, 2002.

[21] Wiley J. Larson and James R. Wertz, editors. Space Mission Analysis and Design. El
Segundo: Microcosm, third edition, 1999.

[22] Andrew W. Lewin. Streamlining Satellite Development, Testing, and Operations Using
a COTS Command and Telemetry Package. In Small Satellite Conference, 2010.

[23] Matt McCormack. Personal Interview Regarding CASTOR Model Development, April
2010.

[24] NASA-STD-7009. Standard for Models and Simulations. National Aeronautics and
Space Administration, July 2008.

[25] NASA/SP-2007-6105. NASA Systems Engineering Handbook. National Aeronautics
and Space Administration, December 2007.

[26] Isaac Nason, Jordi Puig-Suari, and Robert Twiggs. Development of a Family of Pi-
cosatellite Deployers Based on the Cubesat Standard. In Proceedings of the IEEE
Aerospace Conference, Inst. of Electrical and Electronics Engineers, volume 1, pages
457–464, Piscataway, NJ, 2002.

[27] Inaba Noriyasu, Hidemi Hase, Hiroyuki Miyamoto, Yoshiyuki Ishijima, and Shiro
Kawakita. A Satellite Simulator and Model Based Operations in Quasi-Zenith Satellite
System. In AIAA Modeling and Simulation Technologies Conference, number AIAA
2009-5813, 2009.

[28] Cesar Ocampo. An Architecture for a Generalized Spacecraft Trajectory Design and
Optimization System, 2003.

[29] Troy W. Pannebecker. Integrated Spacecraft Design Tools. Master’s thesis, Naval
Postgraduate School, 1999.

184

[30] John Richmond. An Adaptive Thermal Model Architecture for Small Satellite Appli-
cations. Master’s thesis, Massachusetts Institute of Techonlogy, 2010.

[31] Joseph Robinson. The Relationship between Engineering and Operations in a Small
Satellite Program. In AIAA Region V Student Conference, 2008.

[32] Joseph Robinson, John Richmond, Chris Pong, and Aaron Johnson. MOTV 16.851
Final Presentation, December 2009.

[33] Lester L. Sackett, Harvey L. Malchow, and Theodore N. Eduelbaum. Solar Electric
Geocentric Transfer With Attitude Constraints: Analysis. Technical Report NASA
CR-134927, The Charles Stark Draper Laboratory, Inc., Cambridge, MA, August 1975.

[34] K.E. Siegenthaler, J.J. Sellers, D.A. Miller, T.J. Lawrence, D.J. Richie, , and D.J. Barn-
hart. The Undergraduate Satellite and Rocket Design, Fabrication and Launch Pro-
gram at the US Air Force Academy. In International Symposium IGIP/IEEE/ASEE,
Fribourg, Switzerland, September 2004.

[35] Matt Smith. Written Communications on ExoplanetSat IEM Process, April 2010.

[36] TOR-2007(8546)-6018. Mission Assurance Guide. The Aerosapce Corportation, July
2007.

[37] Defense Acquistions University. Systems Engineering Fundamentals. 2001.

[38] USAFA CSOPS. FalconSAT-3 On-Orbit Handbook, May 2008.

[39] IAGA Division V-MOD Geomagnetic Field Modeling: IGRF Proper Use. <http:
//www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html>, January 2010.

[40] David Vallado. Fundamentals of Astrodynamics and Applications Software Routines.
<http://www.smad.com/vallado/>.

[41] David A. Vallado. Fundamentals of Astrodynamics and Applications. El Segundo:
Microcosm, third edition, 2001.

[42] Iris Vessey and Sue A. Conger. Requirements Specifications: Learning Object, Process,
and Data Methodologies. Communications of the ACM, 37(5), May 1994.

[43] Kyle Volpe. Application of the Backward-Smoothing Extended Kalman Filter to At-
titude Estimation and Prediction using Radar Observations. Master’s thesis, Mas-
sachusetts Institute of Technology, 2009.

[44] Rodger E. Ziemer and William H. Tranter. Principles of Communications: Systems,
Modulation, and Noise. Wiley, 2002.

185

http://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html
http://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html
http://www.smad.com/vallado/

	Introduction
	Problem Statement
	Motivation
	University Satellites
	Mission Assurance
	Space Engineering Academy
	CASTOR
	FalconSAT
	Thesis questions

	Approach

	Background
	Modeling, Simulation, and Integrated Modeling
	Satellite Engineering Process
	Satellite Engineering Life Cycle
	Modeling in the Satellite Engineering Process

	Background Summary

	Integrated Evolutionary Model Approach
	IEM Framework
	Satellite Integrated Model (SIM)
	Satellite (SAT)
	Telemetry and Data Analyzer (TDA)
	Mission Assurance Tool (MAT)
	General IEM Design Approach

	Conceive --- Phase A
	Phase A Integrated Model Design
	Phase A Integrated Model Example --- ExoplanetSat

	Preliminary Design --- Phase B
	Phase B Integrated Model Design
	Phase B Integrated Model Example --- MOTV

	Complete Design --- Phase C
	Phase C Integrated Model Design
	Phase C Integrated Model Example --- CASTOR

	Implementation and Testing --- Phase D
	Phase D Integrated Model Design
	Phase D Integrated Model Example --- CASTOR

	Operations --- Phase E
	Phase E Integrated Model Design
	Phase E Integrated Model Example --- FalconSAT-3

	Applied Integrated Model Design
	CASTOR Simulation
	Simulation Structure
	Scheduler, Command List, and Event List Objects
	Subsystem Models and Data Distribution Overview

	FalconSAT-3 Telemetry and Data Analyzer
	FS-3 Data Overview
	Telemetry, Data, and Operational Events
	FS-3 LimWOD GUI Design
	FS-3 Telemetry and Data Analysis Tools Summary

	CASTOR MAT Design

	Results and Analysis
	Integrated Model Results
	Phase A --- ExoplanetSat Model Results
	Phase B --- MOTV Results
	Phase C --- Early CASTOR Simulation Results
	Phase D --- Complete CASTOR Integrated Model Results

	FalconSAT-3 TDA Results
	FS-3 BSEKF Verification Using LimWOD GUI
	FS-3 April 2010 Event Analysis Using LimWOD GUI

	Discussion
	Modeling and Simulation Design Discussion
	Personnel in the IEM Process
	FalconSAT-3 Lessons Applied to IEM
	Thesis Questions Revisited

	Conclusion and Future Work
	Conclusion
	Future Work

	MATLAB Code Examples

