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Abstract

We use the obstruction theory of Blanc-Dwyer-Goerss to study the realization space of certain Π-
algebras with 2 non-trivial groups. The main technical tool is a result on the Quillen cohomology
of truncated Π-algebras, which is an instance of comparison map induced by an adjunction. We
study in more generality the behavior of Quillen (co)homology with respect to adjunctions. As a
first step toward applying the obstruction theory to 3-types, we develop methods to compute Quillen
cohomology of 2-truncated Π-algebras via a generalization of group cohomology.
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Introduction

In this thesis, we study the problem of realizing a Π-algebra using the obstruction theory presented

in [BDG04]. Since the obstructions to existence and uniqueness live in certain Quillen cohomology

groups of Π-algebras, we will first adopt a purely algebraic point of view and try to better understand

these groups. From there, we will use the obstruction theory to obtain information about realizations

of Π-algebras.

In a sense, we are approaching the problem from the opposite direction of [Bla95], where the

obstruction theory is set up from a topological point of view, using higher homotopy operations.

Some connections between the topological and algebraic formulations of the obstruction theory are

explored in [Bla99] and [BJT09].

Organization The first two chapters contain background material. Chapter 1 is about Quillen

cohomology and some of its properties. In chapter 2, we review the basics of Π-algebras and

discuss the truncated ones.

New material starts in the third chapter. Chapter 3 clarifies the categorical background related

to Quillen cohomology and proposes a good setup where we can work with it (proposition 3.4.14).

Chapter 4 studies the behavior of Quillen (co)homology with respect to adjunctions. Theorem 4.3.1

checks that the aforementioned setup is good enough to deal with adjunctions, while identifying

exactly the condition required of the original adjunction. Section 4.4 works out the various com-

parison maps that arise from a nice adjunction. Chapter 5 uses the Postnikov truncation adjunction

to describe Quillen cohomology of truncated Π-algebras. The result is theorem 5.2.2. In section

6, we use that result and the obstruction theory of [BDG04] to classify realizations of Π-algebras

concentrated in dimensions 1 and n, including in particular 2-types. The main results are 6.3.5 and

6.3.6.

If one wanted to study 3-types using the obstruction theory, the primary obstructions to existence
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and uniqueness would lie in Quillen cohomology of 2-truncated Π-algebras. Chapter 7 proposes a

program to compute the latter. First we describe Beck modules (7.1.3), abelianization (7.2.2), and

pushforwards (7.3.3). Then we reduce the problem to computing the derived functors of a type of

indecomposables functor (steps 7.4.1, 7.4.2, and 7.4.5).
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Chapter 1

Quillen cohomology

1.1 Beck modules

Let C is a category with finite products, including a terminal object. Recall that a Beck module

over an object X of C is an abelian group object in the slice category C/X.

Proposition 1.1.1. If F : C → D is a pullback-preserving functor , then for any object X in C, it

induces a functor on modules

FX : Ab(C/X)→ Ab(D/FX).

Moreover, FX is additive.

Proof. F induces a functor C/X → D/FX, which automatically preserves the terminal object

(namely, the identity). This functor preserves finite products iff F preserves pullbacks over X, hence

it suffices to prove the “absolute” version, i.e. if F : C → D preserves finite products (including the

terminal object), then it induces an additive functor

F : Ab(C)→ Ab(D).

If A is an abelian group object in C, then F applied to the structure maps of A yields structure maps

for FA, and F applied to the structure (condition) diagrams of A yields structure diagrams for FA.

Addition in HomAb(D)(FM, FN) is given by (µFN)∗ = (F(µN))∗, hence F is additive. In other

11



words, for f , g ∈ HomAb(C)(M,N), we have

F( f + g) = F(µN( f × g)∆N)

= F(µN)F( f × g)F(∆N)

= µFN(F f × Fg)∆FN

= F f + Fg. �

Remark 1.1.2. By abuse of notation, we called the induced functor F also. The notation Ab(F) or

F∗ might have been more appropriate, although more cumbersome.

In fact, the condition of preserving pullbacks (including finite products and the terminal object)

is too strong. Recall that equalizers are a special case of pullbacks. If f , g : X → Y are two maps,

their equalizer is the pullback

Eq( f , g)

��

// X

(id,g)
��

X
(id, f )

// X × Y

which can be thought of as the “intersection of the graphs of f and g”. Thus preserving pullbacks is

the same as preserving finite limits (assuming there is a terminal object). In particular, the induced

functor is then left exact.

In order for F to induce a functor F : Ab(C/X)→ Ab(D/FX) on Beck modules, it suffices that

F preserve kernel pairs of split epimorphisms. By kernel pair of a map, we mean the pullback of

the map along itself.

Non-example 1.1.3. Consider the functor F : Gp → Gp that associates to a group the free group

on its underlying set, i.e. the comonad of the Free/Forget adjunction. Then F does NOT induce a

functor on Beck modules.

To see this, use the fact (A.1.1) that a Beck module over a group G is a split extension p : E → G

(plus the data of the splitting) with abelian kernel, which can be viewed as the semi-direct product

G n M → G. Take the trivial group 1 and the module A → 1 over it, where A is any abelian group.

Apply F to it. The resulting split extension

F(A)→ F(1)

12



does NOT have an abelian kernel. Indeed, F(A) is the group of words on elements of A and their

formal inverses, and the kernel of the map is the subgroup of words whose exponents add to zero,

e.g. a2b−3c. That subgroup is highly non-abelian (as long as A is non-trivial), e.g. the elements

ab−1 and a−1b do not commute.

Proposition 1.1.4. If C has all pullbacks, then any map f : X → Y in C induces a pullback functor

on Beck modules

f ∗ : Ab(C/Y)→ Ab(C/X).

Moreover, f ∗ is additive.

Proof. First note that f induces a pullback functor on the slice categories

f ∗ : C/Y → C/X

which is right adjoint to the so-called direct image functor

f! : C/X → C/Y

given by postcomposition. Indeed, consider the following commutative diagram:

W
ϕ //

g
&&LLLLLLLLLLLL f ∗Z = X ×Y Z

π1

��

π2 // Z

p
��

X
f

// Y

We have the following correspondence:

HomC/X
(
W

g
→ X, f ∗(Z

p
→ Y)

)
= HomC/X

(
W

g
→ X, f ∗Z

π1
→ X

)
= {ϕ : W → f ∗Z | g = π1ϕ}

= {ϕ1 = π1ϕ : W → X, ϕ2 = π2ϕ : W → Z | fϕ1 = pϕ2, ϕ1 = g}

= {ϕ2 : W → Z | f g = pϕ2}

= HomC/Y

(
W

f g
→ Y,Z

p
→ Y

)
= HomC/Y

(
f!(W

g
→ X),Z

p
→ Y

)
.

13



As we’ve seen in the proof of 1.1.1, any limit-preserving functor induces an additive functor on the

categories of abelian group objects, hence the conclusion. �

Definition 1.1.5. When f ∗ has a left adjoint, we call it the pushforward

f∗ : Ab(C/X)→ Ab(C/Y).

Definition 1.1.6. When the forgetful functor UX : Ab(C/X)→ C/X has a left adjoint, we call it the

abelianization functor AbX : C/X → Ab(C/X).

It is convenient to work with categories C that have all pushforwards and all abelianizations AbX;

we will assume they exist whenever we need to. It is also convenient when the module category

Ab(C/X) is an abelian category for every object X, which holds for example when C is exact [Bar02,

chap 2, thm 2.4].

Proposition 1.1.7. Let f : X → Y be a morphism in C and assume f has a pushforward f∗. Then

we have:

AbY (X
f
→ Y) = f∗AbX(X

id
→ X).

More generally, the following diagram commutes.

C/X

AbX
��

f! // C/Y

AbY
��

Ab(C/X)
f∗
// Ab(C/Y).

Proof. All the functors in this diagram are left adjoints of the following functors:

C/X C/Y
f ∗

oo

Ab(C/X)

UX

OO

Ab(C/Y)
f ∗oo

UY

OO

This diagram commutes on the nose, by construction. Since adjoint pairs compose, and adjoints are

unique up to unique iso, we conclude that the diagram of left adjoints also commutes. (Technically,

it only commutes up to natural iso, but the abelianization and pushforward functors can be chosen

so that it commutes on the nose). �
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Notation. When it’s clear which category C we’re working in, the category Ab(C/X) of Beck mod-

ules over X will be denoted ModX .

1.2 Quillen (co)homology

In this section, we recall the basics of Quillen homology and cohomology. For more details, see e.g.

[Qui67, II.5] or [GS07, 4.4].

The idea is that derived functors of “global sections” are somehow a good notion of cohomology.

Note that the global sections of a module M over an object X are precisely:

Γ(X,M) = HomC/X(X
id
→ X,M → X) � HomAb(C/X)(AbXX,M → X).

As a first try in defining derived functors thereof, we can use homological algebra.

Definition 1.2.1. For an object X of C and a Beck module M over X, we define the Hochschild

cohomology of X with coefficients in M as:

HH∗(X; M) B Ext∗(AbXX,M)

taken in the abelian category Ab(C/X) of modules over X.

However, homotopical algebra allows us to take derived functors in a non-abelian context, where

cofibrant replacements play the role of projective resolutions. We can obtain more interesting con-

structions that way. Quillen showed that starting from a nice category C, the simplicial categories

sC and sC/X have a standard model structure, and we want the (prolonged) adjunction

sC/X
AbX // sAb(C/X)
UX

oo (1.2.1)

to be a Quillen pair. We’ll study the conditions more carefully in chapter 3. There are additional

assumptions on Ho Ab(sC/X•); see [Qui67, II.5] for details.

Remark 1.2.2. There is no ambiguity in the notation sC/X, by the natural isomorphism s(C/X) �

(sC)/X, where X is viewed as a constant simplicial object. We use the model structure on the slice

15



category (sC)/X induced by that on sC. A map in the slice category

Y

��???????
f // Z

���������

X

is a weak equivalence, fibration, or cofibration iff f is one. See e.g. [Qui67, II.2 prop 6] or [GS07,

ex 1.7].

Let C• → X be a cofibrant replacement of X in sC, which is the same as a cofibrant replacement

of X
id
→ X in sC/X.

Definition 1.2.3. The Quillen homology object or cotangent complex of X is the left derived

abelianization of X, given by

LX B LAbX(X
id
→ X) = AbX(C•) ∈ sAb(C/X).

In other words, it is a simplicial Beck module over X, defined up to weak equivalence.

Remark 1.2.4. As a derived functor, it depends (up to weak equivalence) on the choice of cofibrant

replacement, and LX is defined up to iso in Ho sAb(C/X). However, as noted in [Hov99] after

definition 1.3.6, if our model structure comes with functorial factorizations, then there is no choice

involved.

Definition 1.2.5. The Quillen homology of X is the homotopy of its Quillen homology object:

HQi(X) B πiLX ∈ Ab(C/X).

Definition 1.2.6. Let M ∈ Ab(C/X) be a Beck module over X. The Quillen cohomology of X with

coefficients in M is given by the (simplicially) derived functors of global sections, that is

HQi(X; M) = πi HomC/X(C•,M)

= πi HomAb(C/X)(AbXC•,M) ∈ Ab.

Here π∗ denotes the cohomology of a cosimplicial abelian group.

16



Note that Quillen cohomology is the derived functors of the composite

HomAb(C/X)(−,M) ◦ AbX : sC/X → sAb(C/X)→ sAb

applied to X
id
→ X. The first functor is a left adjoint (hence “right exact”) and sends projectives to

projectives. The second functor is contravariant left exact. Hence we have a Grothendieck compos-

ite spectral sequence

Es,t
2 = Rs HomAb(C/X)(−,M) ◦ LtAbX(idX)⇒ Rs+t (HomAb(C/X)(−,M) ◦ AbX

)
(idX)

where LtAbX means πtLAbX , so that LtAbX(idX) is HQt(X). We can rewrite the spectral sequence as

Es,t
2 = Exts

Ab(C/X)(HQt(X),M)⇒ HQs+t(X; M) (1.2.2)

which is as a universal coefficients spectral sequence (UCSS) for Quillen cohomology. For a

detailed exposition of composite spectral sequences in a non-abelian setup, see [BS92].

The replacement map C•
∼
→ (X

id
→ X) induces AbX(C•) → AbXX, which is not an equivalence

anymore, but the source is still cofibrant. Hence there is a map AbX(C•) → P•
∼
→ AbXX to a

cofibrant replacement (= projective resolution) of AbXX, which upon applying Hom(−,M) yields a

map

HomAb(C/X)(P•,M)→ HomAb(C/X)(AbXC•,M)

in sAb. Upon passing to cohomology, we obtain a well defined map

HH∗(X; M)→ HQ∗(X; M)

which is in fact an edge morphism in the UCSS. More precisely, the spectral sequence is cohomo-

logically graded, and there is an edge morphism

HHs(X; M) = Es,0
2 � Es,0

∞ ↪→ HQs(X; M).

In that sense, Hochschild cohomology can be thought of as an abelian approximation of Quillen

cohomology, and the discrepancy between the two is controlled by Quillen homology.
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1.3 Simplicial base object

We focused our attention on the Quillen homology of a base object in C, but in fact one can talk

about the Quillen homology of any simplicial object X• ∈ sC, and the Quillen cohomology of X•

with coefficients in a simplicial module M• ∈ Ab(sC/X•). More generally, one need not work with

sC, but any nice enough model category C, where Quillen’s assumptions hold. We first describe

modules over simplicial objects.

Proposition 1.3.1. Let C be a category with finite limits and X• a simplicial object in sC. Then a

Beck module p : E• → X• over X• is the data of a Beck module pn : En → Xn in each simplicial

degree, such that the faces and degeneracies of E• cover those of X• and respect the abelian group

object structure maps.

Proof. The “nth degree” functor sC → C preserves limits, since it is the restriction along n ↪→ ∆op.

Hence it induces a functor on Beck modules and we get a Beck module pn : En → Xn in each

simplicial degree. This determines the constituent objects of E, the map p, and the abelian group

structure maps of E. The remaining conditions are that p : E• → X• is a map in sC and the structure

maps are maps in sC/X•. Those are exactly the conditions mentioned in the claim. �

In fact, we didn’t use anything special about ∆op and the statement holds for any indexing

category I. Let ModC denote the fibered category of Beck modules over C and U : ModC → C

the “base object” forgetful functor, as in section B.1. Consider the category CI = Fun(I,C) of

I-diagrams in C.

Proposition 1.3.2. Given a diagram F : I → C, the category ModF = Ab(CI/F) of Beck modules

over F is the category of I-diagrams like this: the ith entry is a Beck module over F(i) and maps

respect the structures of Beck modules (i.e. are maps in ModC). In other words, ModF is the

category of I-diagrams in ModC whose base diagram is F and where morphisms fix the base, i.e.

the fiber over F of the forgetful functor:

U I : ModCI → CI .

As this point it is worth noting something we swept under the rug. When our base object is a

constant simplicial object, we have prolonged the abelianization functor AbX : C/X → Ab(C/X) to

sC/X → sAb(C/X). In the general setup, we take the abelianization C/X → Ab(C/X). The two

coincide, by the following lemma.
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Lemma 1.3.3. For any category C, we have Ab(sC) = sAb(C). More generally, for any category I,

we have Ab(CI) = Ab(C)I .

Proof. Since limits are computed objectwise in a functor category, the constituent objects of an

abelian group simplicial object X• in Ab(sC) are abelian group objects in C and together they de-

termine the abelian group object structure of X•. By definition, the abelian group object structure

maps commute with the simplicial structure maps. This is the same data as a simplicial abelian

group object, i.e. an object in sAb(C). Morphisms also match. �

After Beck modules, let’s identify the abelianization.

Proposition 1.3.4. Let X• be a simplicial object in sC. Then the abelianization AbX•X• is {AbXn Xn}n,

in other words we abelianize each constituent object (over itself).

Proof. Let E•
p
→ X• be a Beck module over X•. A map in HomsC/X•

(
X•

id
→ X•,U(E•

p
→ X•)

)
is a section s : X• → E• which is a map of simplicial objects, i.e. commutes with faces and

degeneracies. This is the same data as a map of Beck modules in ModX• formed by taking the

adjunct map AbXn Xn → (En
p
→ Xn) of the section sn : Xn → En in each simplicial degree. Indeed,

the compatibility condition with simplicial structure maps is the same in both cases. For example,

the diagram:

Xn

di

��

sn // UXn(En)

di
��

Xn−1 sn−1
// UXn−1(En−1)

commutes iff the “adjoint” diagram (in a fibered category sense):

AbXn Xn

di
��

// En

di

��
AbXn−1 Xn−1 // En−1

commutes. �

There is also an “absolute” version of Quillen homology, as presented in [Qui67, II.5], examples

1 and 2, or [GS07], definition 4.24 and examples 4.25 and 4.26. It can be particularly useful when

dealing with a simplicial base object which is not constant, for example the Quillen homology of

simplicial sets. In this setup, C is a model category (typically of the form sC) and the abelianization
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Ab : C → Ab(C) is a left Quillen functor. The (absolute) Quillen homology object is defined as:

Labs
X B LAb(X) = Ab(C)

where C is a cofibrant replacement of X. However, since C is the slice category C/∗ over the

terminal object, we can recover the absolute version from the “relative” version presented here, in

the following way.

Proposition 1.3.5. The absolute Quillen homology object is the pushforward:

Labs
X = t∗LX

where τ : X → ∗ is the unique map to the terminal object.

Proof. Let q : C → X be a cofibrant replacement of X in C. Then

C
q //

q
��??????? X

id
��

X

is a cofibrant replacement of X
id
→ X in C/X and

C
q //

  @@@@@@@@ X
τ

��
∗

is a cofibrant replacement of X
τ
→ ∗ in C/∗. Considering the diagram:

C
q //

q
��??????? X

id
��

X

��
X τ

// ∗
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an easy computation gives the result:

LX = LAbX(X
id
→ X)

= AbX(C
q
→ X)

= q∗AbC(C
id
→ C)

τ∗LX = τ∗q∗AbC(C
id
→ C)

= (τq)∗AbC(C
id
→ C)

= Ab{∗}(C → ∗)

= Labs
X . �

1.4 Homotopy invariance

We investigate to what extent, and in what sense, is Quillen homology a “homotopy invariant”. In

other words, how does it transform under a weak equivalence?

Lemma 1.4.1. Let f : X → Y be a map in a nice model category C. Then the adjunction

ModX

f∗ //ModY
f ∗
oo

is a Quillen pair.

Proof. Let us show that f ∗ preserves fibrations and acyclic fibrations. A map

E

��3
33333
ϕ // E′

��







Y

in ModY = Ab(C/Y) is a fibration (resp. acyclic fibration) iff it is one in C/Y [I need to check the
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“if” direction] iff ϕ : E → E′ is one in C. Consider the commutative diagram that defines f ∗:

E

��+
++++++++
ϕ // // E′

�����������

f ∗E

44jjjjjjjjjjjjjj f ∗ϕ //

��/
//////// f ∗E′

�����������

55kkkkkkkkkkk

Y

X
f

44jjjjjjjjjjjjjj

The right-hand and left-hand squares are pullbacks, hence the top square is a pullback. Since fibra-

tions and acyclic fibrations are preserved under base change, f ∗ϕ is also a fibration (resp. acyclic

fibration). �

Question. If f is a weak equivalence, is this Quillen pair a Quillen equivalence? What if f is an

acyclic fibration?

Proposition 1.4.2. A weak equivalence f : X
∼
→ Y in C induces a natural weak equivalence

f∗LX
∼
→ LY

in Ab(C/Y).

Proof. Assuming we have a functorial cofibrant replacement qX : QX → X (notation of [Hov99],

introduced right before lemma 1.1.9), we get the following commutative diagram:

QX

∼Q f
��

∼

qX // X

∼ f
��

QY ∼

qY
// Y

We have LX = AbX(QX
qX
→ X) = qX∗AbQX(QX

id
→ QX) and likewise for Y . Now we compute:

f∗LX = f∗qX∗AbQX(QX
id
→ QX)

= ( f qX)∗AbQX(QX
id
→ QX)

= (qY Q f )∗AbQX(QX
id
→ QX)

= qY∗AbQY (QX
Q f
→ QY).
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Now the map

QX

Q f !!CCCCCCCC ∼

Q f // QY

id}}{{{{{{{{

QY

is a weak equivalence between cofibrant objects. Upon applying the two left Quillen functors

qY∗AbQY , it induces a weak equivalence

f∗LX
∼
→ LY

which is natural in X
f
→ Y , since q : Q→ 1 is a natural transformation. �

Corollary 1.4.3. In the same context, there is a first quadrant spectral sequence

E2
s,t = (Ls f∗) HQt(X)⇒ HQs+t(Y).

Proof. Consider the composite of left adjoints

C/X
AbX
→ Ab(C/X)

f∗
→ Ab(C/Y)

The first functor sends cofibrants to cofibrants (projectives), so we get a composite spectral se-

quence:

E2
s,t = Ls f∗ ◦ LtAbX ⇒ Ls+t( f∗ ◦ AbX)

For the object id : X → X, the spectral sequence becomes

E2
s,t = (Ls f∗) HQt(X)⇒ HQs+t(Y).

The natural map

f∗HQt(X) = f∗πtLX → πt( f∗LX) � πtLY = HQt(Y)

is the edge morphism

f∗HQt(X) = E2
0,t � E∞0,t ↪→ HQt(Y)

in this spectral sequence. �
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Remark 1.4.4. Perhaps we can get a stronger statement. A priori, it is not obvious that the higher de-

rived functors of f∗ should vanish when f is a weak equivalence, but there might be some additional

assumptions that guarantee it, or guarantee that f∗ preserves all weak equivalences.

Corollary 1.4.5. A weak equivalence f : X
∼
→ Y induces a weak equivalence on the “absolute”

Quillen homology objects Labs
X

∼
→ Labs

Y , and hence an isomorphism on absolute Quillen homology.

Proof. Using proposition 1.3.5 and the commutative diagram

X

τX   @@@@@@@
f // Y

τY

��
∗

we obtain:

Labs
X = τX∗LX = τY∗ f∗LX

∼
→ τY∗LY = Labs

Y .

We used the fact that τ∗ preserves weak equivalences between cofibrant objects. �
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Chapter 2

Π-algebras

Let Π denote the homotopy category of pointed spaces with the homotopy type of a finite (possibly

empty) wedge of spheres of positive dimensions. Recall the following [BDG04, § 4].

Definition 2.0.6. A Π-algebra is a contravariant functor A : Π → Set that sends wedges to prod-

ucts, i.e. a product-preserving functor Πop → Set.

Note that Π is a pointed category, and the definition of Π-algebra is the same if the functor A

takes values in Set∗ instead, the category of pointed sets. Indeed, since A sends wedges to products,

it must send the zero object ∗ to a singleton, and thus the set A(S ) is automatically pointed via

A(∗) → A(S ) induced by the crushing map S → ∗. Note also that the definition is the same if we

pick a representative space in each homeomorphism class in order to make Π small, as in [Sto90, §

4].

Notation. LetΠAlg denote the category of Π-algebras, that is Fun×(Πop,Set), where Fun× denotes

product-preserving functors.

2.1 Abelian Π-algebras

The following tidbit is essentially in [Bla93, § 3] or [BDG04, § 4.8]. We explain it here in more

detail.

Proposition 2.1.1. The category of abelian Π-algebras is the full subcategory of Π-algebras whose

Whitehead products all vanish.
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Proof. The forgetful functors π1 : ΠAlg → Gp and πn : ΠAlg → Ab (for each n ≥ 2) preserve

finite products and the terminal object. Hence they induce functors on abelian group objects:

π1 : Ab(ΠAlg)→ Ab(Gp) � Ab

πn : Ab(ΠAlg)→ Ab(Ab) � Ab.

If we start with an object in Ab(ΠAlg), its structure of abelian group object must be the levelwise

group multiplication (and unit and inverse). Therefore, a Π-algebra admits at most one structure of

abelian group object, and it admits one iff the levelwise multiplication map A × A → A is a map of

Π-algebras. This shows that the faithful forgetful functor Ab(ΠAlg) → ΠAlg is the inclusion of a

subcategory, and it is full since any map of Π-algebras is in particular a map of graded groups.

It remains to show that the levelwise multiplication map µ : A × A → A is a map of Π-algebras

iff all Whitehead products of A vanish.

(⇒) Since µ1 is a map of groups, A1 is an abelian group, i.e. its commutators vanish. (We

still write its group operation multiplicatively though.) Next, µ is equivariant with respect to the

π1-action, which amounts to the following condition:

µ
(
(a, a′) · (x, x′)

)
= µ(a, a′) · µ(x, x′)

µ(a · x, a′ · x′) = aa′ · (x + x′)

a · x + a′ · x′ = aa′ · x + aa′ · x′

for all a, a′ ∈ A1 and x, x′ ∈ An, n ≥ 2. In particular, setting x′ = 0 and a = 1, we obtain x = a′ · x,

i.e. the π1-action is trivial. Thus all Whitehead products involving elements of A1 vanish.

For p, q ≥ 2, let us write W : S p+q−1 → S p ∨ S q for the attaching map that defines Whitehead

products, via

Ap × Aq = A(S p ∨ S q)
A(W)
→ A(S p+q−1) = Ap+q−1.

Since µ is a map of Π-algebras, the following commutes:

(A × A)p × (A × A)q
(A×A)(W) //

µp×µq

��

(A × A)p+q−1

µp+q−1

��
Ap × Aq

A(W)
// Ap+q−1
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which translates into the condition:

[x, y] + [x′, y′] = [x + x′, y + y′]

= [x, y] + [x, y′] + [x′, y] + [x′, y′]

for all x, x′ ∈ Ap and y, y′ ∈ Aq, i.e. all Whitehead products must vanish.

(⇐) If Whitehead products vanish for A, then so do they for A × A. Hence µ : A × A → A is a

map of graded groups (since A1 is abelian) which respects the π1-action, since it is trivial on both

sides, and which commutes with Whitehead products since they all vanish.

It remains to show that µ commutes with precomposition products, i.e. for any α ∈ πm(S n) and

x, x′ ∈ An, the condition

α∗(x + x′) = α∗x + α∗x′

holds. We can use Hilton’s formula to compute α∗(x + x′); see [Bla93], remark 2.1 (c). Since all

Whitehead products vanish, the formula yields exactly that condition. �

Remark 2.1.2. By C.0.7, the functor πn preserve (small) limits, since it is the restriction along a

product-preserving functor, namely the inclusion of all wedges of spheres of dimension n. It does

NOT preserve colimits though.

In other words, by C.0.5 we know that limits inΠAlg are computed objectwise (in the “product-

preserving functor” picture), and hence levelwise (in the “graded group” picture), so the functors πn

preserve them.

Proposition 2.1.3. If A is any Π-algebra, then ΩA is an abelian Π-algebra.

Proof. We want to show that the map ΩA ×ΩA→ ΩA which corresponds to levelwise (or “object-

wise”) multiplication is a map of Π-algebras, i.e. that for any map f : S → S ′ inΠ between wedges

of spheres, the following diagram commutes:

(ΩA)(S ∨ S ) (ΩA)(S ′ ∨ S ′)

(ΩA ×ΩA)(S )

(ΩA)(pinchS )
��

(ΩA ×ΩA)(S ′)
(ΩA)( f∨ f )

=(ΩA×ΩA)( f )
oo

(ΩA)(pinchS ′ )
��

(ΩA)(S ) (ΩA)(S ′)
(ΩA)( f )

oo
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By definition of ΩA, we can rewrite it thus:

A(Σ(S ∨ S )) A(Σ(S ′ ∨ S ′))

A(ΣS ) × A(ΣS )

A(ΣpinchS )
��

A(ΣS ′) × A(ΣS ′)
A(Σ( f∨ f ))

=A(Σ f )×A(Σ f )
oo

A(ΣpinchS ′ )
��

A(ΣS ) A(ΣS ′)
A(Σ f )

oo

Up to homotopy, we can pinch spheres along any equator we want; in particular, we can pinch along

the suspension coordinate, so that Σpinchs = pinchΣS holds in Π. Hence the previous diagram is

obtained by applying A to the following diagram in Π:

ΣS ∨ ΣS
Σ f∨Σ f // ΣS ′ ∨ ΣS ′

ΣS

pinchΣS

OO

Σ f
// A(ΣS ′)

pinchΣS ′

OO

which is seen to commute in Π, since we can pinch along the suspension coordinate on both sides.

�

Corollary 2.1.4. The Whitehead map W : S p+q−1 → S p ∨ S q suspends to zero, i.e. ΣW is null-

homotopic.

Proposition 2.1.5. If A is any Π-algebra, then ΩA is not necessarily strongly abelian.

Proof. Take A = π∗(S 3), so that ΩA = π∗(ΩS 3). Take x the canonical generator in π2(ΩS 3) �

π3(S 3) � Z, in other words, the map adjoint to the identity S 3 → S 3. Let η : S 3 → S 2 denote the

Hopf map. Then x ◦ η ∈ π3(ΩS 3) � π4(S 3) � Z/2 is adjoint to Ση, so is the non-zero element. �

2.2 Truncated Π-algebras

Thinking of Π as the category of “all spheres”, it admits a nice filtration by sphere dimension.

This filtration is made into a tower, by removing spheres above a certain dimension. Dualizing

this filtration/tower yields the usual tower/filtration of Π-algebras by truncated Π-algebras. In this

section, we make all this precise.

28



Definition 2.2.1. A Π-algebra A is called n-truncated if for all i > n, we have A(S i) = ∗, the trivial

pointed set.

Notation. Denote by ΠAlgn
1 the full subcategory of ΠAlg consisting of n-truncated Π-algebras.

Notation. Denote by Πn the full subcategory of Π consisting of spaces with the homotopy type

of a wedge of spheres of dimension at most n, and let In : Πn → Π be the inclusion functor. We

allow n = ∞, where Π∞ means Π. More generally, for any i < j, we have an inclusion functor

Ii, j : Πi → Π j, and they all commute, i.e. they satisfy Ii,k = I j,kIi, j.

This way we get a filtration of Π:

∗ = Π0
I0,1 // Π1

I1,2 // Π2
I2,3 // · · · I // Π

We can go the other way, by removing spheres above a certain dimension. Define a “truncation”

functor Tn : Π→ Πn as follows:

Tn

 k∨
i=1

S ni

 =
∨
ni≤n

S ni

Remark 2.2.2. Depending on how we define the category Π, this could be technically ambiguous.

We can work with a version of Π where each object X is equipped with a given homotopy equiva-

lence to (and from) a finite wedge of spheres.

Tn send a map f :
∨

i S ni →
∨

j S m j to the composite

∨
ni≤n

S ni ↪→
∨

i

S ni
f
−→

∨
j

S m j �
∨

m j≤n

S m j ,

where the map on the left is summand inclusion and the map on the right is summand collapse.

Note that we didn’t really need to collapse: since the inclusion
∨

m j≤n S m j →
∨

j S m j is n-connected

and admits a retraction, it induces an iso on πi for i ≤ n. Hence up to homotopy, there is a unique

factorization of the map ∨
ni≤n

S ni →
∨

i

S ni
f
−→

∨
j

S m j

through
∨

m j≤n S m j .

More generally, for any i < j, we have an analogously defined truncation functor T j,i : Π j → Πi,

and they all commute. Note that all functors Ii j and Ti, j preserve coproducts (wedges).

Proposition 2.2.3. For any i < j, Ii, j is left adjoint to T j,i.
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Proof. Let S i be an object of Πi (a wedge of spheres of dimension at most i) and likewise for S j.

As we noted above, up to homotopy, any map S i → S j has a unique factorization through T j,iS j,

hence we conclude:

HomΠ j(Ii, jS i, S j) � HomΠi(S i,T j,iS j)

�

In fact, this is a particularly nice adjunction. The unit is an equality, i.e. the composite T I is the

identity functor (we omitted subscripts for T and I). The counit IT (S )→ S is the inclusion of small

spheres in the wedge: ∨
ni≤n

S ni ↪→
∨

i

S ni .

Therefore, our filtration of Π is also a tower over ∗:

∗ = Π0

I0,1 //
Π1

T1,0

oo
I1,2 //
Π2

T2,1

oo
I2,3 //
Π3

T3,2

oo
//
· · ·oo

I //
Π

T
oo

Now, let us study what happens when we “dualize” it by applying Fun×(−,Set).

Lemma 2.2.4. If A is an n-truncated Π-algebra, then A = (IT )∗A. In other words, A is determined

by what it does on Πn.

Proof. The counit IT → 1 induces a natural transformation A → AIT (since A is contravariant).

For a wedge of spheres S , we know that IT (S )→ S is the inclusion:

∨
ni≤n

S ni ↪→
∨

i

S ni .

Applying A yields:

A

∨
i

S ni

→ A

∨
ni≤n

S ni

 .
Since A sends wedges to products, this map is the projection:

∏
i

A(S ni)→
∏
ni≤n

A(S ni).

But since A is n-truncated, this map is the identity (or rather a natural iso). Thus our natural trans-

formation A→ AIT = (IT )∗A is a natural iso. �
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In particular, we see that a Π-algebra A is n-truncated iff it factors through T , i.e. A = A′T = T ∗A′

for some A′ : Πn → Set. Note that such a factorization A′ is unique (and sends wedges to products),

since it is determined by A in the following way: A′ = A′T I = AI = I∗A.

Proposition 2.2.5. There is an equivalence of categories:

I∗ : ΠAlgn
1 � Fun×(Πop

n ,Set) : T ∗

Proof. If F is a product-preserving functor Πop
n → Set, then we have I∗T ∗F = (T I)∗F = F, since

T I is the identity. On the other hand, if A is an n-truncated Π-algebra, we have T ∗I∗A = (IT )∗A = A,

by lemma 2.2.4. �

Lemma 2.2.6. For a fixed category C, the association Fun(C,−) : Cat→ Cat is a (strict) 2-functor.

Likewise, the association Fun(−,C) : Catop → Cat is a (strict) 2-functor.

Proof. Let us prove the first assertion; the second has a similar proof. The association is clearly a

1-functor. Let us check that it respects 2-cells and all the structure, or equivalently, the enrichment

over Cat. Given categories X and Y , we want to show that

HomCat(X,Y)→ HomCat (Fun(C, X),Fun(C,Y))

is a map of categories. Given a morphism in the left-hand side, i.e. a natural transformation

X
F
%%

G
99

�� ��
�� α Y

we obtain a morphism on the right-hand side, i.e. a natural transformation

Fun(C, X)
F∗ ,,

G∗
22

�� ��
�� α∗ Fun(C,Y)

defined as follows. Given an object ϕ of Fun(C, X), i.e. a functor ϕ : C → X, we need a comparison
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map α∗ϕfrom F∗ϕ = Fϕ to G∗ϕ = Gϕ. It is given by this diagram:

Fϕ(c)

αϕ(c)

��

c
9

Fϕ
<<yyyyyyyy

�

Gϕ ""EEEEEEEE

Gϕ(c)

This respects identities and composition, i.e. if we take F = G and α = idF , then (idF)∗ = idF∗ and

also (βα)∗ = β∗α∗. �

Notation. For i < j, denote τ j,i = I∗i, j, where the “dualizing” means applying Fun×(−,Set). Denote

ιi, j = T ∗j,i. In words, the dual of “inclusion of spheres” is “truncation of Pi-algebras”, and the dual of

“truncation of spheres” is “inclusion of Π-algebras”. Yes, it’s awkward notation and terminology.

In fact, τ j,i (or ιi, jτ j,i) deserves to be denoted Pi, since it corresponds to the ith Postnikov truncation.

Proposition 2.2.7. For i < j, the functors

ΠAlg j
1

τ j,i //
ΠAlgi

1ιi, j
oo

form an adjoint pair, where τ j,i is the left adjoint.

Proof. Since Ii, j and T j,i preserve wedges of spheres, they induce functors as in the statement upon

dualizing. By lemma 2.2.6, τ j,i = I∗i, j is still left adjoint to ιi, j = T ∗j,i. �

Remark 2.2.8. One can easily check this adjunction directly, using the description of (truncated)

Π-algebras as graded groups with extra structure. Indeed, for A ∈ ΠAlg and B ∈ ΠAlgn
1, we have:

HomΠAlgn
1
(PnA, B)

=
{
maps of graded groups PnA→ B respecting the extra structure

}
=

{
maps of graded groups A→ ιnB respecting the extra structure

}
= HomΠAlg(A, ιnB).

The next to last equality holds because the additional data is trivial (maps of groups Am → Bm = 0,

for m > n) and the additional conditions are vacuous (equations holding in groups Bm = 0).
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Notation. Denote by nTypes the homotopy category of connected, pointed n-types, i.e. spaces

whose homotopy groups vanish above n.

We obtain a tower/filtration a categories for connected, pointed spaces (up to weak equivalence)

and one for Π-algebras, and they are related by the functor π∗. In other words, we obtain a commu-

tative diagram of categories:

Spaces

P
��

π∗ // ΠAlg

P
��

...

P
��

ι

OO

...

P
��

ι

OO

3Types

P
��

ι

OO

π∗ // ΠAlg3
1

P
��

ι

OO

2Types

P
��

ι

OO

π∗ // ΠAlg2
1

P
��

ι

OO

1Types

P
��

ι

OO

π∗ // ΠAlg1
1

P
��

ι

OO

∗

ι

OO

π∗ // ∗

ι

OO

where each functor P is left adjoint to the respective ι.

For small values of n, the category ΠAlgn
1 has a very simple algebraic description.

Proposition 2.2.9. 1. ΠAlg1
1 is equivalent to Gp, the category of groups.

2. ΠAlg2
1 is equivalent to ModGp, whose objects consist of a group and a module over it (cf.

section 7.0.7).

3. ΠAlg3
1 is equivalent to the category whose objects are (π1, π2, π3; q : π2 → π3), where π1 is a

group, π2 and π3 are (left) modules over π1, and q is a quadratic map which is π1-equivariant.

Morphisms are what they should be.

Proof. Recall that a Π-algebra can be described explicitly as a graded group, abelian above dimen-

sion 1, with a π1-action on the higher groups, Whitehead products, and precomposition products by

πm(S n) (for m > n), satisfying certain relations.

1. Clear.

2. There is no room for Whitehead products (not involving π1), nor for precomposition products

since πm(S 1) = 0 for all m > 1. Therefore, the only structure is that of the group π1 and the
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π1-module π2.

3. In addition to the group π1 and the π1-modules π2 and π3, there is room for the Whitehead

product

π2 ⊗ π2 → π3

as well as the precomposition product

π3(S 2) × π2 → π3.

Since the latter is linear in π3(S 2) � Z, it suffices to know the precomposition by the Hopf map

η ∈ π3(S 2), i.e.

η∗ : π2 → π3.

Moreover, we have the classic formula [Bau91, I.4.10] [Whi78, XI.1.16]:

η∗(x + y) − η∗(x) − η∗(y) = [x, y],

which is a bilinear map. Hence the Whitehead product map can be recovered from η∗. Also, there

is no additional condition on η∗ other than being quadratic and π1-linear. �

Note that when we say that η∗ is “quadratic”, we don’t mean only that η∗(x + y) − η∗(x) − η∗(y) is a

bilinear map, but also the following.

Proposition 2.2.10. For any space X, the map η∗ : π2(X)→ π3(X) satisfies

η∗(kx) = k2x

for any k ∈ Z and x ∈ π2(X).

Proof. Considering the universal example for Whitehead products, we have a commutative diagram

S 3

[ι2,ι2] ##GGGGGGGGG
W // S 2 ∨ S 2

∇

��

(x,x) // X

S 2

x

;;xxxxxxxxxx

where ιn ∈ πn(S n) denotes the class of the identity, and the top composite is the Whitehead product

[x, x]. Now a Hopf invariant argument [Whi78, XI.2.5] tells us that [ι2, ι2] is equal to 2η. Hence we
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have

[x, x] = (x, x) ◦W

= (2η)∗(x)

= 2η∗(x)

and therefore

η∗(2x) = η∗(x + x) = η∗(x) + η∗(x) + [x, x]

= 4η∗(x).

By induction, the claim holds for all positive integers:

η∗ ((k + 1)x) = η∗(kx) + η∗(x) + [kx, x]

= k2η∗(x) + η∗(x) + k(2η∗(x))

= (k + 1)2η∗(x).

The claim clearly holds for k = 0, and also for negative integers, using the equality η∗(−x) = η∗(x).

Indeed, we have:

0 = η∗(x − x) = η∗(x) + η∗(−x) + [x,−x]

= η∗(−x) − η∗(x).

�
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Chapter 3

Setup for Quillen cohomology

In this chapter, we study in more detail the categorical assumptions needed in order to work with

Quillen cohomology. More specifically, we want the (prolonged) adjunction (1.2.1) to be a Quillen

pair. For future applications, we also want four Quillen pairs in diagrams (4.4.1) and (4.4.6).

3.1 Prolonged adjunctions as Quillen pairs

Lemma 3.1.1. The simplicial prolongation of an adjunction is still an adjunction.

Proof. We have an adjunction

C
L //
D

R
oo

Prolonging it to the categories of simplicial objects means applying Fun(∆op,−) to the diagram. By

lemma 2.2.6, this preserves adjunctions. �

Proposition 3.1.2. Assume we have an adjunction as denoted above.

1. If R preserves effective epis, then L preserves projectives.

2. If, moreover, the category C has finite limits and enough projectives, then the converse holds

as well.

Proof. 1. Let P be a projective in C. We want to show LP is projective inD. Let f : d → d′ be any
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effective epi inD. The we have:

HomD(LP, d)

�

��

f∗ // HomD(LP, d′)

�

��
HomC(P,Rd)

(R f )∗
// HomC(P,Rd′).

By assumption, R f : Rd → Rd′ is an effective epi in C, and P is projective, hence the bottom (and

top) map is a surjection. Thus LP is projective.

2. Under the additional hypotheses, effective epis and projectives determine each other. Indeed,

[Qui67, II,4 prop 2] asserts that f : c→ c′ is an effective epi iff the map

f∗ : Hom(P, c)→ Hom(P, c′)

is a surjection for all projective P (the “if” direction is non-trivial here). Now we start with an

effective epi f : d → d′ in D and want to show R f : Rd → Rd′ is an effective epi in C. Let P be

any projective in C and consider:

HomC(P,Rd)

�

��

(R f )∗ // HomC(P,Rd′)

�

��
HomD(LP, d)

f∗
// HomD(LP, d′).

By assumption, LP is projective and f is an effective epi, hence the bottom (and top) map is a

surjection. Thus, by the criterion given above, R f is an effective epi. �

Proposition 3.1.3. Assume C and D have finite limits and enough projectives, and satisfy extra

assumptions so that Quillen’s theorem 4 applies (e.g. they are cocomplete and have sets of small

projective generators). Assume we have an adjunction as above, and hence an induced adjunction

sC
L // sD
R
oo (3.1.1)

between model categories. If L preserves projectives, or equivalently, if R preserves effective epis,

then this is a Quillen pair.

Proof. We show a slightly stronger statement: R preserves fibrations and weak equivalences. Recall
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that a map f : X• → Y• is a fibration (resp. weak eq) if the induced map

f∗ : Hom(P, X•)→ Hom(P,Y•)

is a fibration (resp. weak eq) of simplicial sets for all projective P. Take P a projective in C and

consider:

HomC(P,RX•)

�

��

(R f )∗ // HomC(P,RY•)

�

��
HomD(LP, X•) f∗

// HomD(LP,Y•).

By assumption, LP is projective in D and f is a fibration (resp. weak eq) in sD, hence the bottom

and top maps are fibrations (resp. weak eq) of simplicial sets. Thus R f : RX• → RY• is a fibration

(resp. weak eq). �

Proposition 3.1.4. The converse also holds: If the prolonged adjunction (3.1.1) is a Quillen pair,

then R preserves effective epis.

Proof. Take an effective epi f : X → Y in D and extend it to an acyclic fibration f• : X• → Y• as

in the lemma below. Since R prolongs to a right Quillen functor, R f• is an acyclic fibration in sC,

and hence an effective epi in each level (prop E.0.18). In particular, R f = R f0 is an effective epi in

C. �

Lemma 3.1.5. Under the same assumptions (such that sC has a standard Quillen model structure),

if f : X → Y is an effective epi in C, then there exist simplicial objects X• and Y• in sC with X0 = X

and Y0 = Y, and an acyclic fibration f• : X• → Y• with f0 = f .

Proof. Denote by c : C → sC the embedding of C as constant simplicial objects and view f as a

map between constant simplicial objects c( f ) : c(X) → c(Y). Factor it as a cofibration followed by

an acyclic fibration:

Z

∼

p

!! !!BBBBBBBB

c(X)
. �

i
=={{{{{{{{

c( f )
// c(Y)

specifically using Quillen’s construction [Qui67, II.4, prop 3]. Recall that the construction consists

of attaching cells in successive dimensions to “make the map look more and more like an acyclic
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fibration”:

c(X)

c( f ) ""FFFFFFFF
j0 // Z0

p0

��

j1 // Z1

p1}}{{{{{{{{

j2 // . . .

c(Y)

where Zn is obtained from Zn−1 by attaching certain n-cells. Since f is an effective epi, we don’t

need additional 0-cells, i.e. we can take P0 = ∅. Then we have Z0 = c(X), j0 = id, p0 = c( f ).

Beyond that point, we don’t change level 0. Indeed, the cell attachment is a pushout:

Pn−1 ⊗ ∂∆[n]

��

// Pn−1 ⊗ ∆[n]

��
Zn−1

jn
// Zn

and the inclusion of simplicial sets ∂∆[n] ↪→ ∆[n] is the identity (or an iso) in simplicial level

≤ n − 1. In particular, for n ≥ 1, we are pushing out along the identity in level 0, hence not doing

anything; we used the fact that colimits of simplicial objects are computed levelwise. Thus we have

(Zn)0 = (Zn−1)0 = X and (pn)0 = (pn−1)0 = f for all n. Then Z is obtained as colimn Zn and

p : Z → c(Y) is induced by the maps pn. Again, since colimits in simplicial objects are computed

objectwise, we conclude Z0 = X and p0 = f , and thus p : Z → c(Y) is a map as we were looking

for. �

Remark 3.1.6. We’ve seen that a prolonged right Quillen functor in 3.1.3 is particularly strong, in

that it preserves fibrations and ALL weak equivalences (not just between fibrant objects). However,

the prolonged left Quillen functor does not enjoy this additional property in general, i.e. it need not

preserve all weak equivalences, only those between cofibrant objects.

Example 3.1.7. Let R be a commutative ring, and consider the adjunction:

Ab
R⊗Z− //

R-Mod
U
oo

between categories of universal algebras. Clearly R ⊗Z − preserves projectives (i.e. frees); equiva-

lently, U preserves effective epis (i.e. surjections). Prolonging the adjunction and using the Dold-

Kan correspondence sA � Ch(A) for any abelian categoryA (where Ch denotes chain complexes
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bounded below at zero), we get the Quillen pair:

Ch(Ab)
R⊗Z− // Ch(R-Mod).

U
oo

On both sides, weak equivalences are homology isos. If the left adjoint preserves all weak equiv-

alences, in particular it preserves acyclic complexes (= exact sequences), i.e. R ⊗Z − is an exact

functor, i.e. R is flat over Z. But there exist commutative rings that are not flat over Z.

For more details on the model category Ch(A), see [Qui67], remark 5 at the end of II.4; see

section 2.3 in [Hov99] for the unbounded version.

3.2 Slice category

Proposition 3.1.3 gives a simple criterion for when a prolonged adjunction is a Quillen pair. In

our setup, let us assume the original adjunction L : C � D : R prolongs to a Quillen pair, i.e. L

preserves projectives or R preserves effective epis. Now we investigate if that is in fact enough. Let

us first describe effective epis and projectives in the slice category.

Proposition 3.2.1. If f : Y → Z is an effective epi in C, then

Y

��???????
f // Z

��
X

is an effective epi in C/X. The converse also holds if C has coequalizers.

Proof. The map being an effective epi means that

(Y → X) ×(Z→X) (Y → X)
pr1 //
pr2
// (Y → X) // (Z → X)

is a coequalizer diagram. Rewrite the diagram as

Y ×Z Y

##FFFFFFFFF
//
// Y

��

// Z

���������

X

and recall that the “source” functor C/X → C creates colimits, and hence preserves those that exist
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in C. The colimit of

Y ×Z Y

##FFFFFFFFF
//
// Y

��
X

in C/X is

colim(Y ×Z Y ⇒ Y)

wwooooooooooooo

X

(assuming the latter exists), which is Z → X iff f : Y → Z is an effective epi. �

In words: A map in C/X is an effective epi iff the map of total spaces is. This is also proved in

[Bar02, chap 1, prop 8.12].

Remark 3.2.2. It is NOT a general fact that C/X → C preserves colimits. For example, take C to

be the poset {a → b} q {c}, which has no initial object. Taking X = b, the functor C/X → C is the

inclusion {a→ b} ↪→ {a→ b} q {c} and {a→ b} has an initial object, namely a.

Proposition 3.2.3. 1. If P is projective in C, then P
p
→ X is projective in C/X.

2. The converse also holds if C has enough projectives.

Proof. 1. Start with an effective epi

Y

y
��???????

f // Z

z
��

X

in C/X, which means f : Y → Z is an effective epi in C (by prop 3.2.1). We want to know if the

map

HomC/X(P
p
→ X,Y

y
→ X)→ HomC/X(P

p
→ X,Z

z
→ X)

is surjective. Let α be a map in the right-hand side which we are trying to reach and consider the

diagram:

Y

y

��/
/////////////

f // Z

z

����������������

P

α̃
??�

�
�

�

α

44jjjjjjjjjjjjjjjjjjjjj

p
''OOOOOOOOOOOOOO

X
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Since P is projective in C, there is a lift α̃ in the top triangle, meaning f α̃ = α. If α̃ is in fact a map

in HomC/X(P
p
→ X,Y

y
→ X), then it will be our desired lift. So it suffices to check that the triangle

on the left commutes:

yα̃ = z f α̃ = zα = p.

2. Let E
e
→ X be projective in C/X. Since C has enough projectives, pick an effective epi P

π
→ E

from a projective P. Consider the diagram

P

eπ

��/
/////////////
π // E

e

����������������

E

s
??�

�
�

�

id

44jjjjjjjjjjjjjjjjjjjjj

e
''OOOOOOOOOOOOOO

X

where there exists a lift s since E
e
→ X is projective in C/X. The relation πs = idE exhibits E as a

retract of a projective in C, hence itself projective. �

In words: An object of C/X is projective iff the total space is.

Now that we know more about C/X, we can describe the standard Quillen model structure on

s(C/X) � sC/X. A map

Y•

y
  AAAAAAAA

f // Z•
z
��

X

(3.2.1)

is a fibration (resp. weak equivalence) in s(C/X) iff the map

HomC/X(P
p
→ X,Y•

y
→ X)

f∗
−→ HomC/X(P

p
→ X,Z•

z
→ X)

is a fibration (resp. weak equivalence) of simplicial sets for all projective P
p
→ X in C/X. By

proposition 3.2.3, we can rephrase that as: for all projective P in C and map p ∈ HomC(P, X).

However, in the framework of Quillen (co)homology, we decided to work with the “slice” model

structure on sC/X, where the map (3.2.1) is a fibration (resp. weak equivalence) iff the map

HomC(P,Y•)
f∗
−→ HomC(P,Z•)

is a fibration (resp. weak equivalence) of simplicial sets for all projective P in C. In fact, let us
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check that the two model structures agree.

Proposition 3.2.4. There is a natural isomorphism of simplicial sets

∐
p∈HomC(P,X)

HomC/X(P
p
→ X,Y•

y
→ X)

�
−→ HomC(P,Y•).

Proof. Idea : For a fixed y : Y → X, the data of a map g : P → Y is the same as the data of the

commutative diagram:

P

p
��???????

g // Y
y
��

X

and thus we can partition all maps g : P → Y according to their composite p = yg : P → X. More

precisely, we take the map:

∐
p∈HomC(P,X)

HomC/X(P
p
→ X,Y

y
→ X)→ HomC(P,Y)

which is readily seen to be surjective and injective, i.e. an iso of sets. Moreover, it is natural in

y : Y → X, i.e. we have a natural iso:

(Y
y
→ X)

� // Y � // HomC(P,Y)

C/X 55� �� �KS
�

// C // Set.

(Y
y
→ X)

� //∐
p∈HomC(P,X) HomC/X(P

p
→ X,Y

y
→ X)

By naturality, it prolongs to a natural iso of simplicial sets. Since colimits of simplicial objects are

computed levelwise, we have an equality of simplicial sets:

 ∐
p∈HomC(P,X)

HomC/X(P
p
→ X,Yn

yn
→ X)


n

=
∐

p∈HomC(P,X)

HomC/X(P
p
→ X,Y•

y
→ X)

which concludes the proof. �

Proposition 3.2.5. The standard model structures on s(C/X) and sC/X are the same.
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Proof. The top row in the diagram

HomC(P,Y•)
f∗ // HomC(P,Z•)

∐
p HomC/X(P

p
→ X,Y•

y
→ X) f∗

//∐
p HomC/X(P

p
→ X,Z•

z
→ X)

is a fibration (resp. weak equivalence) of simplicial sets iff each summand is so. This means f is a

fibration (resp. weak equivalence) in sC/X iff it is so in s(C/X). Moreover, the model structures are

closed i.e. cofibrations are determined by fibrations and weak equivalences (as having the LLP with

respect to acyclic fibrations). Therefore the two model structures agree. �

3.3 Abelianization adjunction

In this section, we study the properties of the forgetful functor U : Ab(C)→ C. We usually assume

it has a left adjoint Ab : C → Ab(C), called abelianization.

Proposition 3.3.1. U reflects isos.

Proof. Start with a map f̃ : X̃ → Ỹ in Ab(C) and assume f = U f̃ : X → Y is an iso in C, where

X = UX̃ and Y = UỸ . Then its inverse f −1 : Y → X lifts to a map Ỹ → X̃ (uniquely since

U is faithful). This is the standard argument that the set-inverse of a map of groups/rings/vector

spaces/etc. automatically respects the structure. For example, let’s show it for the addition map. We

want to show that the diagram:

Y × Y
µY

��

f −1× f −1
// X × X

µX

��
Y

f −1
// X

commutes, i.e. f −1µY = µX( f −1× f −1). This holds iff equality holds after applying f , which it does:

f f −1µY = fµX( f −1 × f −1)

µY = µY ( f × f )( f −1 × f −1) = µY .

The resulting map f̃ −1 is the inverse of f̃ . �

Proposition 3.3.2. Assume C has kernel pairs. Then U preserves monos.
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Proof. Let f̃ : X̃ ↪→ Ỹ be a mono in Ab(C). We want to show that f = U f̃ is a mono in C. Let

α, β : W → X be two maps coequalized by f , or equivalently, a map from W to the kernel pair of f :

X ×Y X
pr1

##GGGGGGGGG

pr2
##GGGGGGGGG

W
α //

β
// X

f // Y.

We want to conclude that α and β are equal. It suffices to show that the projections pr1 and pr2 are

equal. Since U creates limits, the kernel pair diagram lifts (uniquely) to Ab(C):

X̃ ×Ỹ X̃
pr1 //
pr2
// X̃

� � f̃ // Ỹ .

Since f̃ is a mono, the projections pr1 and pr2 are indeed equal. �

Proposition 3.3.3. Assume C is regular. Then U lifts the regular epi - mono factorization in C

uniquely (to something that is a priori not a regular epi - mono factorization, although we will show

that it is). In other words, if f̃ : X̃ → Ỹ is a map in Ab(C) and X � Z ↪→ Y is a regular epi - mono

factorization of the underlying map, then we can lift it uniquely to a factorization X̃ → Z̃ → Ỹ in

Ab(C).

Proof. [Bar02, chap 6, prop 1.7]. �

From there, Barr concludes the following proposition; we fill in the details of the proof.

Proposition 3.3.4. If C is regular, then U preserves regular epis.

Proof. Start with a regular epi f̃ : X̃ � Ỹ in Ab(C). We want to show that U f̃ = f : X → Y is

a regular epi in C. A priori it might not be, but since C is regular, we can factor it as a regular epi

followed by a mono:

X

f

%%
e
// // Z � �

m
// Y.

By proposition 3.3.3, we can lift the factorization to Ab(C):

X̃

f̃

%%

ẽ
// Z̃ m̃

// Ỹ .
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Since U is faithful, it reflects epis and monos, therefore ẽ is an epi and m̃ is a mono. Since f̃ = m̃ẽ

is a regular epi and ẽ is an epi, m̃ must be a regular epi (prop D.0.13). Now m̃ is a regular epi and a

mono, hence an iso (prop D.0.12). Therefore m = Um̃ is an iso and f is a regular epi. �

Now we’d like to know if U reflects regular epis.

Proposition 3.3.5. If C is regular, then Ab(C) has coequalizers of kernel pairs, created by U.

Proof. Let f̃ : X̃ → Ỹ be any map in Ab(C) and take its kernel pair:

X̃ ×Ỹ X̃
pr1 //
pr2
// X̃

f̃ // Ỹ .

Since U preserves limits, the underlying diagram is still a kernel pair, and we can take its coequal-

izer:

X ×Y X
pr1 //
pr2
// X

�� ��????????
f // Y.

C

h

OO

Since C is regular, the map h : C → Y is a mono [Bar02, chap 1, prop 8.10]. By 3.3.3, there is a

unique lift X̃ → C̃ → Ỹ of that regular epi - mono factorization. We claim that C̃ is a coequalizer in

Ab(C). Indeed, if there is another map X̃ → W̃ coequalizing the projections:

X̃ ×Ỹ X̃
pr1 //
pr2
// X̃

��.
..............

��<<<<<<<< f̃
// Ỹ .

C̃

OO

γ

���
�
�

W̃

then there is a unique underlying map γ : C → W since C is a coequalizer in C. It remains to check

that γ respects the structure maps. Let us check it for the addition map; the argument is the same

for other structure maps. In the diagram:

X × X
µX

��

// // C ×C
µZ

��

γ×γ // W ×W
µW

��
X // // C γ

// W

the left square and the outer rectangle commute, by assumption. We want to show the right square
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commutes. It does, since the top left map is an epi. �

Corollary 3.3.6. The lifted factorization of 3.3.3 is a regular epi - mono factorization in Ab(C).

Proposition 3.3.7. If C is regular, then U reflects regular epis.

Proof. Let f̃ : X̃ → Ỹ be a map in Ab(C) such that f = U f̃ is a regular epi in C. We want to show

that f̃ is a regular epi.

Proof 1: Since U creates limits, the kernel pair of f̃ :

X̃ ×Ỹ X̃ ⇒ X̃

is the unique lift of the kernel pair of f :

X ×Y X ⇒ X

and the latter has a coequalizer, namely X
f
→ Y . Since U creates coequalizers of kernel pairs, there

is a unique cocone lifting X
f
→ Y and it is a coequalizer of X̃ ×Ỹ X̃ ⇒ X̃. But X̃

f̃
→ Ỹ is such a lift,

so f̃ is a regular epi.

Proof 2: Factor f̃ as a regular epi followed by a mono, f̃ = m̃ẽ. By 3.3.5, we can assume the

underlying factorization f = me is also a regular epi - mono factorization. (Alternatively, use 3.3.2

to ensure m is a mono.) Since f = me is a regular epi, so is m, and hence m is an iso. Since U

reflects isos, m̃ is also an iso and therefore f̃ is a regular epi. �

Corollary 3.3.8. If C is regular, then Ab(C) is regular (in the weaker sense).

Proof. Ab(C) has kernel pairs (or any limits that C has) and coequalizers of kernel pairs. It remains

to check that the pullback of a regular epi is a regular epi:

P

f ∗e
��

// X

e
����

W
f
// Y.

Since U preserves regular epis, Ue is a regular epi. Since pullbacks are computed in C (U creates

limits), we have U( f ∗e) = (U f )∗(Ue), which is a regular epi since C is regular. Since U reflects

regular epis, f ∗e itself is a regular epi in Ab(C). �
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3.4 Algebraic categories

Definition 3.4.1. A category C is called algebraic if it has finite limits, small colimits, and a set of

small projective generators (in particular enough projectives).

The interest in such categories is Quillen’s theorem that if C is algebraic, then sC has a stan-

dard simplicial model structure [Qui67, II.4 thm 4]. Objects of C may not have underlying sets,

but morally, the data of Hom(P,−) from all projectives (or from the generators) plays the role of

underlying set.

Proposition 3.4.2. Let C be an algebraic category with generator set S and let f : X → Y be a

map in C.

1. f is a mono iff f∗ : Hom(P, X)→ Hom(P,Y) is a injective (i.e. a mono in Set) for all P ∈ S .

2. f is a regular epi iff f∗ : Hom(P, X) → Hom(P,Y) is surjective (i.e. a regular epi in Set) for

all P ∈ S .

In particular, the family of functors Hom(P,−) (for all P ∈ S ) collectively reflects isos, since

isos are exactly maps that are monos and regular epis. In the terminology of [Bor94a, def 4.5.13],

S is a strong family of generators.

Proof. (1) By definition, f is a mono iff f∗ : Hom(A, X) → Hom(A,Y) is injective for all object

A of C. Let π : qPi � A be a (regular) epi from a coproduct of generators Pi ∈ S . Consider the

diagram:

Hom(A, X)

π∗

��

f∗ // Hom(A,Y)

π∗

��
Hom(qPi, X)

f∗
// Hom(qPi,Y)

∏
Hom(Pi, X) � � ∏

f∗
//∏ Hom(Pi,Y)

where the maps π∗ are injective since π is an epi. The bottom map is a mono since it is a product of

monos. Hence f∗π∗ = π∗ f∗ is a mono, and so is the top f∗, since it is the first map of a composite

which is a mono.

(2) We know f is a regular epi iff f∗ : Hom(P, X)→ Hom(P,Y) is surjective for all projective P

of C. The class of objects having the lifting property with respect to effective epis is closed under
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coproducts and retracts. Thus is contains all projectives, since it contains the generators, and any

projective is a retract of a coproduct of generators.

More explicitly, let g : P → Y be a map we’re trying to lift along f . Let π : qPi � P be a

regular epi from a coproduct of generators Pi ∈ S , and let s : P→ qPi be a section of π (since P is

projective and π is a regular epi).

P
s

}}||||||||

qPi

g̃ !!BBBBBBBB
π // // P

���
�
�

g

��>>>>>>>

X
f
// Y

By assumption, π∗g = gπ admits an f -lift g̃. Now we check that s∗g̃ = g̃s is the desired f -lift of g:

π∗ f∗(s∗g̃) = π∗s∗ f∗g̃

= π∗s∗π∗g

= π∗(πs)∗g

= π∗g

which implies f∗(s∗g̃) = g since π∗ is injective. �

Proposition 3.4.3. In an algebraic category C, filtered colimits commute with finite limits.

Proof. Let L be a filtered category, N a finite category, and F : L × N → C a functor. There is a

natural comparison map

ϕ : colim
L

lim
N

F → lim
N

colim
L

F

which is given on each factor by

colim
L

lim
N

F → colim
L

F(−, n)

i.e. the map obtained by applying colimL to the L-diagram given by projection limN F → F(−, n).

We want to show the comparison map ϕ is an iso. By 3.4.2, it suffices to show Hom(P, ϕ) is an iso

(of sets) for all generator P. From the definition of limit and the smallness of our generators, we

50



obtain:

Hom(P, colimL limN F)
ϕ∗ // Hom(P, limN colimL F)

colimL Hom(P, limN F) limN Hom(P, colimL F)

colimL limN Hom(P, F) � // limN colimL Hom(P, F)

The bottom map (and hence ϕ∗) is an iso, since filtered limits commute with finite limits in Set. �

Proposition 3.4.4. Let C be an algebraic category. Then U : Ab(C) → C creates filtered colimits.

In particular, Ab(C) has filtered colimits and U preserves them.

Proof. Essentially the same as B.3.1. Let L be a filtered category and F̃ : L → Ab(C) a diagram

whose underlying diagram F = UF̃ : L → C admits a colimit. Then there is a unique lift of the

colimiting cocone in C to a cocone in Ab(C). Indeed, there is at most one way to endow colimL F

with structure maps, since they are prescribed on each summand:

colimL F × colimL F � colimL(F × F) // colimL F

F(l) × F(l)

OO

µ
// F(l).

OO

Applying colimL to the structure maps of F produces those (unique) structure maps for colimL F.

The result is the colimit of F̃ in Ab(C). Indeed, let F̃ → ∆Z̃ be a cocone on F̃ and colimL F → Z

the corresponding unique underlying map in C. The latter map has to commute with the structure

maps, since it does for each summand of the colimit. �

Proposition 3.4.5. Let C be an algebraic category and X an object of C. Then the slice category

C/X is algebraic.

Proof. 1) C/X has finite limits, since they are computed in C (by viewing diagrams in C/X as

diagrams in C).

2) C/X has small colimits, since they are created by the “source” functor C/X → C.

3) Let S be a set of small projective generators for C. Then

{
P

p
→ X | P ∈ S , p ∈ HomC(P, X)

}
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is a set of small projective generators for C/X. It’s a set since it’s a union of sets HomC(P, X) indexed

over a set S . Each object P → X is projective since the total space P is projective in C. Moreover,

they form a family of generators. Indeed, let Y → X be any object of C/X, and let qPi � Y be a

regular epi in C from a coproduct of generators Pi ∈ S . Then

qPi

!!BBBBBBBB
// // Y

��
X

is a regular epi in C/X and (qPi)→ X is the coproduct q(Pi → X) in C/X. (By the same argument,

if C has enough projectives, then so does C/X.)

Lastly, each P
p
→ X is small. Let I be a filtered category and Y : I → C/X an I-diagram in C/X.

We have:

Hom
(
P

p
→ X, colim

I
(Yi

yi
→ X

)
= Hom

(
P

p
→ X, (colim

I
Yi)

y
→ X

)
=

{
ϕ ∈ HomC(P, colim

I
Yi) | yϕ = p

}
=

{
ϕ ∈ colim

I
HomC(P,Yi) | yiϕi = p for all representatives ϕi : P→ Yi

}
= colim

I
Hom

(
P

p
→ X,Yi

yi
→ X

)
.

The next to last equality comes from the fact that all the Yi map into colimI Yi

P

p

��

ϕi

��

ϕ

$$HHHHHHHHHH

Yi

yi

��

// colimI Yi

y
zzvvvvvvvvvv

X

and we have the equality p = yϕ = yiϕi. �

Our next goal is to show that C algebraic implies Ab(C) algebraic, or rather find additional

conditions on C to guarantee such a result. Cocompleteness is the most problematic issue here, so

we deal with it first.

Proposition 3.4.6. Let C be a category with finite limits and assume the forgetful functor U :

Ab(C) → C has a left adjoint Ab : C → Ab(C). Then U is strictly monadic, i.e. the comparison
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functor Ab(C) → CT is an iso of categories, where CT denotes the category of algebras over the

monad T = UAb.

Proof. Same as [Mac98, VI.8 thm 1]; the proof never uses anything special about Set, except the

availability of finite products. Let us write it here for completeness’ sake.

By Beck’s monadicity theorem [Mac98, VI.7 thm 1] [Bor94b, thm 4.4.4], the assertion is equiv-

alent to saying U creates coequalizers of U-split pairs. Let f̃ , g̃ : X̃ ⇒ Ỹ be a U-split pair in Ab(C)

and let

X
f //
g
// Y

t
�� e // C

s
��

be a split fork in C, i.e. es = id, f t = id, gt = se. In particular, e is a coequalizer. We want to endow

C with structure maps to make it a coequalizer in Ab(C). Let us do it explicitly for the addition map;

the argument is the same for any operation, including of arity 0.

X × X
µX

��

f× f //
g×g
// Y × Y
µY

��

e×e // C ×C
µC

���
�
�

X
f //
g

// Y
e // C

The top fork is still split, and in particular, e×e is still a coequalizer. For µC , we propose the formula

µC B eµY (s × s) and check that e now commutes with the structure maps:

µC(e × e) = eµY (s × s)(e × e)

= eµY (se × se)

= eµY (gt × gt)

= eµY (g × g)(t × t)

= egµX(t × t)

= e fµX(t × t)

= eµY ( f × f )(t × t)

= eµY ( f t × f t)

= eµY .

Moreover, since e × e (or en for any n ≥ 0) is an epi, there is at most one way to endow C with
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structure maps. A similar argument shows that the structure maps defined above satisfy the identities

they should satisfy (associativity and so on), so we get an object C̃ in Ab(C).

We’ve shown there is a unique U-lift of the cocone to C. It remains to show the lift ẽ : Ỹ → C̃

is a coequalizer in Ab(C). If a map Ỹ → W̃ coequalizes f̃ and g̃, it induces a unique underlying map

γ : C → W

X
f //
g
// Y

�� ��@@@@@@@
e // C

γ

��
W

and γ must commute with all structure maps, by the argument used in 3.3.5. �

Remark 3.4.7. The comparison functor K : Ab(C) → CT sends an abelian group object X̃ to the

T -algebra (UX̃,UεX̃ : UAbUX̃ → UX̃). The inverse equivalence is the functor S : CT → Ab(C)

which to a T -algebra (Z,TZ
ξZ
→ Z) associates Z equipped with an addition map defined by:

Z × Z
ηZ×ηZ // UAbZ × UAbZ

µAbZ // UAbZ
ξZ // Z

and likewise for the other structure maps. One readily checks S KX̃ = X̃. The real question is to

determine if KS Z is isomorphic to Z.

Proposition 3.4.8. Assume C is algebraic and U : Ab(C) → C has a left adjoint Ab : C → Ab(C).

If moreover C is complete, then Ab(C) is cocomplete (and of course complete).

Proof. By 3.4.6, Ab(C) is isomorphic – “equivalent” would suffice – to the category CT of alge-

bras over the monad T = UAb. By 3.4.4, T preserves filtered colimits. Filtered colimits are just

ℵ0-filtered colimits, and ℵ0 is a regular cardinal. Thus [Bor94b, prop 4.3.6] applies and CT is

cocomplete. �

To foster diversity of viewpoints, here is an alternate proof.

Proof. Since C is cocomplete, it suffices to show that CT has coequalizers, by [Bor94b, prop 4.3.4].

Now the monad T preserves filtered colimits, in particular colimits along countable chains. Since C

is complete, [MB05, chap 9, thm 3.9] applies and CT has coequalizers. �

Here is yet another proof. In the case at hand, an easy argument allows us to bypass the more

powerful but more complicated [Bor94b, prop 4.3.4].
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Proof. Ab(C) has an initial object, namely the terminal object ∗ of C with identity structure maps.

Now we show that finite coproducts can be obtained from coequalizers. Let X, Y be objects in

Ab(C). Their coproduct is the colimit of the diagram:

AbUX

εX
���� ''PPPPPPPPPPPP AbUY

wwnnnnnnnnnnnn
εY
����

X AbUX q AbUY Y.

Indeed, a map from this diagram into an object Z is the data of maps f : X → Z, g : Y → Z, and

ϕ : AbUX q AbUY → Z satisfying ϕ = ( f εX , gεY ), which is exactly the data of the pair of maps f

and g. Now the colimit of the diagram can be obtained by two successive pushouts, both along a

regular epi, namely the counit maps εX and εY (3.4.9). By D.0.15, we conclude that X q Y can be

built using coequalizers.

Lastly, an arbitrary (non-empty) coproductqiXi is the filtered colimit of its finite subcoproducts.

Since U : Ab(C)→ C creates filtered colimits and C is cocomplete, Ab(C) has arbitrary coproducts,

assuming it has coequalizers. �

Lemma 3.4.9. If a map f : X � UỸ is a regular epi in C, then its adjunct map f ] : AbX → Ỹ is a

regular epi in Ab(C). In particular, the counit AbUX̃ � X̃ is always a regular epi.

Proof. Recall that AbX → Ỹ is a regular epi in Ab(C) iff UAbX → UỸ is a regular epi in C. Now

we have:

X
ηX //

f

66 66UAbX // UỸ

where the composite is a regular epi. By D.0.13, UAbX → UỸ is a regular epi since C is regular. �

Remark 3.4.10. The converse is false in general. For example, take C = Set, X = {∗}, Y = Z, and

f (∗) = 1. The map f is far from being a regular epi (i.e. surjection), but its adjunct f ] : Ab(∗) =

Z
'
→ Z is a regular epi, even an iso.

Lemma 3.4.11. An object X̃ of Ab(C) is projective iff it is a retract of Ab(P) for some projective P

of C.
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Proof. (⇐) Let’s try to lift a map Ab(P)→ Ỹ along a regular epi X̃ � Ỹ:

Ab(P)

}}z
z

z
z

z

��
X̃ // // Ỹ .

Look at the adjoint diagram

P
∃

||yyyyyyyy

��
UX̃ // // UỸ .

where the bottom map is a regular epi since U preserves them, and thus the lift exists. This proves

Ab(P) is projective, and we know a retract of a projective is projective.

(⇒) Let X̃ be a projective in Ab(C). Since C has enough projectives, there is a projective P of

C with a regular epi P� UX̃. Take its adjunct map AbP� X̃, which is still a regular epi by 3.4.9.

Now lift the identity of X̃ along that regular epi:

X̃
∃

}}|||||||||

id
��

AbP // // X̃.

and conclude X̃ is a retract of AbP. �

Remark 3.4.12. In the proof of (⇒), we could not have used the counit AbUX̃ � X̃, since U of a

projective X̃ in Ab(C) is in general not projective in C, not even if X̃ is of the form AbP for some

projective P of C. For example, take C = Gp and Ab(C) = Ab, in which projective objects are free

groups and free abelian groups, respectively. A free abelian group is far from being a free group.

Proposition 3.4.13. Assume C is algebraic and complete, and U : Ab(C) → C has a left adjoint

Ab : C → Ab(C). Then Ab(C) is also algebraic.

Proof. 1) Ab(C) has finite limits since U : Ab(C)→ C creates limits.

2) Ab(C) has small colimits by 3.4.8.

3) Let S be a set of small projective generators for C. Then

{Ab(P) | P ∈ S }
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is a set of small projective generators for Ab(C). It’s clearly a set, and each Ab(P) is projective.

Moreover, they form a family of generators. For any object X̃ of Ab(C), take an effective epi qPi �

UX̃ from a coproduct of generators in S . Then the adjunct map

qAb(Pi) = Ab (qPi)� X̃

is a regular epi. (By the same argument, if C has enough projectives, then so does Ab(C).)

Lastly, each Ab(P) is small. Let I be a filtered category and X̃i be an I-diagram in Ab(C). We

have:

HomAb(C)

(
Ab(P), colim

I
X̃i

)
= HomC

(
P,U colim

I
X̃i

)
= HomC

(
P, colim

I
UX̃i

)
by 3.4.4

= colim
I

HomC
(
P,UX̃i

)
= colim

I
HomAb(C)

(
Ab(P), X̃i

)
. �

Putting all the ingredients together, we obtain a good setup for Quillen cohomology. It is essen-

tially an observation of Quillen [Qui67, II.5 (4) before thm 5], which we state and prove in more

detail.

Proposition 3.4.14. Let C be a complete algebraic category with all abelianizations, and let X be

an object of C. Then C/X and Ab(C/X) are algebraic and the prolonged adjunction

sC/X
AbX // sAb(C/X)
UX

oo

is a Quillen pair.

Proof. Both C/X and Ab(C/X) are algebraic, by 3.4.5 and 3.4.13. Moreover, C is regular [Qui67,

II.4, cor of prop 2], and therefore C/X is also regular [Bar02, chap 1, prop 8.12]. By proposition

3.3.4, the right adjoint UX : Ab(C/X)→ C/X preserves regular epis, hence the prolonged adjunction

is a Quillen pair, by 3.1.3. �

A category of universal algebras, i.e. monadic over (possibly graded) sets, satisfies the as-

sumptions of 3.4.14. However, the proposed setup avoids requiring underlying sets, in the spirit of
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Quillen’s original work [Qui67, II.4 thm 4].

Remark 3.4.15. The setup above is not quite enough to do Quillen cohomology. There are additional

assumptions on the homotopy category Ho Ab(sC/X•): conditions (A) and (B) at the beginning of

[Qui67, II.5].
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Chapter 4

Behavior with respect to adjunctions

In this chapter, we study the effect of an adjunction on Quillen cohomology.

4.1 Effect on Beck modules

Under mild assumptions, an adjunction passes to the categories of abelian group objects.

Proposition 4.1.1. Assume L : C → D preserves finite products and has a right adjoint R : D → C.

Then the induced functors L : Ab(C)→ Ab(D) and R : Ab(D)→ Ab(C) still form an adjoint pair.

Proof. HomAb(C)(̃c,Rd̃) is the subset of HomC(c,Rd) � HomD(Lc, d) consisting of maps c → Rd

which commute with the structure maps. So we need to show that this holds iff the adjoint map

Lc → d commutes with structure maps. This is true by the naturality of the adjunction, and the

fact that L̃c and Rd̃ have structure maps induced by those of c̃ and d̃, respectively. For example, the

diagram of multiplication maps:

c × c

��

µc // c

��
R(d × d) � Rd × Rd

Rµd

// Rd

commutes iff the adjoint diagram:

L(c × c) � Lc × Lc

��

Lµc // Lc

��
d × d µd

// d
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commutes. �

The point of that proposition was to identify the induced left adjoint. The right adjoint R : D →

C always passes to abelian group objects R : Ab(D) → Ab(C), since it preserves limits. A priori,

we don’t know what its left adjoint L̃ : Ab(C)→ Ab(D) will look like.

Now we’ll see how an adjunction passes to slice categories. There are two versions, depending

if one starts with a ground object in C or inD. Choose a ground object c in C and consider:

C/c
L
→ D/Lc

R
→ C/RLc

η∗c
→ C/c

where ηc : c→ RLc is the unit map.

Proposition 4.1.2. We get an induced adjoint pair:

C/c
L //
D/Lc

η∗cR
oo (4.1.1)

Proof.

HomC/c
(
c′ → c, η∗cR(d′ → Lc)

)
= HomC/c

(
c′ → c, η∗c(Rd′ → RLc)

)
= HomC/RLc

(
ηc!(c′ → c),Rd′ → RLc

)
These consist of maps c′ → Rd′ in C making the following diagram commute:

c′

��

// Rd′

��
c

ηc
// RLc

which is equivalent to the commutativity of the adjoint diagram:

Lc′

��

// d′

��
Lc

id
// Lc.
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But the data of a map Lc′ → d′ inD making this diagram commute is precisely a map in

HomD/Lc
(
L(c′ → c), d′ → Lc

)
. �

For the second way, choose a ground object d inD and consider:

D/d
R
→ C/Rd

L
→ D/LRd

εd!
→ D/d

where εd : LRd → d is the counit map.

Proposition 4.1.3. We get an induced adjoint pair:

C/Rd
εd!L //

D/d
R
oo (4.1.2)

Proof. Essentially the same. A map in HomD/d (εd!L(c′ → Rd), d′ → d) is a map Lc′ → d′ making

the following diagram commute:

Lc′

��

// d′

��
LRd εd

// d

which is equivalent to the commutativity of the adjoint diagram:

c′

��

// Rd′

��
Rd

id
// Rd.

The top map c′ → Rd′ in such a commutative diagram is precisely a map in

HomC/Rd
(
c′ → Rd,R(d′ → d)

)
. �

These adjunctions pass to categories of abelian group objects if the left adjoint preserves finite

products. In the case 4.1.2, this holds iff L : C → D preserves pullbacks over c (proposition

1.1.1). In 4.1.3, the left adjoint εd!L preserves finite products (in particular the terminal object) iff

L : C → D preserves pullbacks over Rd and εd : LRd → d is an iso, in which case εd! is an iso

of categories. Of course, the latter condition is unreasonably strong and happens rarely. In general,

we’ll need to use the pushforward εd∗.

61



Proposition 4.1.4. If L : C → D preserves kernel pairs of split epis over Rd, we get an induced

adjoint pair:

Ab(C/Rd)
εd∗L // Ab(D/d).

R
oo

Proof.

HomAb(D/d)
(
εd∗L(c′ → Rd), d′ → d

)
= HomAb(D/LRd)

(
Lc′ → LRd, ε∗d(d′ → d)

)
These consist of maps Lc′ → d′ that make the diagram

Lc′

��

// d′

��
LRd εd

// d

commute AND respect the structure maps of the columns. This is equivalent to maps c′ → Rd′ that

make the adjoint diagram

c′

��

// Rd′

��
Rd

id
// Rd.

commute AND respect the structure maps (by definition of the structure maps of Lc′ → LRd and

Rd′ → Rd). These are precisely maps in

HomAb(C/Rd)
(
c′ → Rd,R(d′ → d)

)
. �

Corollary 4.1.5. Assume L : C → D preserves kernel pairs of split epis.

1. For any object c in C, there is an induced adjunction on Beck modules:

Ab(C/c)
L // Ab(D/Lc).
η∗cR
oo

2. For any object d inD, there is an induced adjunction on Beck modules:

Ab(C/Rd)
εd∗L // Ab(D/d).

R
oo
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Remark 4.1.6. We don’t really care whether or not the left adjoint L passes to Beck modules. The

right adjoint certainly does, and we can work with the left adjoint of the induced functor η∗cR :

Ab(D/Lc)→ Ab(C/c), assuming it exists. However, the situation simplifies when L passes to Beck

modules, since the induced left adjoint is essentially L itself; we obtain it for free.

4.2 Effect on Hochschild cohomology

When two categories are related by an adjunction, what relationships do we get on Hochschild

cohomology? Assume we have an adjunction

C
L //
D

R
oo

where the left adjoint L passes to Beck modules. As we have seen in corollary 4.1.5, we get two

induced adjunctions, depending if one starts with a base object in C orD.

4.2.1 Base object in C

Pick a base object c in C. The induced adjunction on Beck modules fits into the diagram

C/c

L

��

Abc // Ab(C/c)
Uc

oo

L

��
D/Lc

η∗cR

OO

AbLc // Ab(D/Lc).
ULc

oo

η∗cR

OO (4.2.1)

where the diagram of right adjoints commutes (on the nose), and thus the diagram of left adjoints

commutes as well. In particular, applying that to idc, we obtain:

LAbcc = AbLcLc.

Take a module N over Lc. On the one hand, we have:

HH∗(c; η∗cRN) = Ext∗(Abcc, η∗cRN)

= H∗HomModc(P•, η
∗
cRN)

= H∗HomModLc(LP•,N)
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where P• → Abcc is a projective resolution. We want to compare this to:

HH∗(Lc; N) = Ext∗(AbLcLc,N)

= H∗HomModLc(Q•,N)

where Q• → AbLcLc is a projective resolution. Assume the induced left adjoint L : Modc →ModLc

preserves projectives (which is the case for example when its right adjoint η∗cR preserves epis, i.e. is

exact). Then LP• is projective but is not a resolution of LAbcc. However, the map factors as:

LP• ↪→ Q•
∼
→ LAbcc = AbLcLc

and that first map induces:

HomModLc(Q•,N)→ HomModLc(LP•,N)

which, upon passing to cohomology, induces a well defined map. We sum up the argument in the

following proposition.

Proposition 4.2.1. If the left adjoint L induces a functor on Beck modules which preserves projec-

tives, then we get a comparison map in Hochschild cohomology:

HH∗(Lc; N)→ HH∗(c; η∗cRN)

The computation above exhibits HH∗(c; η∗cRN) as the derived functors of HomModLc(−,N) ◦ L

applied to Abcc. Since L sends projectives to projectives, we obtain a Grothendieck composite

spectral sequence:

Es,t
2 = Exts(LtL(Abcc),N)⇒ HHs+t(c; η∗cRN)

which is first quadrant, cohomologically graded. The comparison map is the edge morphism

HHs(Lc; N) = Exts(LAbcc,N) = Es,0
2 � Es,0

∞ ↪→ HHs(c; η∗cRN).

If L : Modc →ModLc happens to be exact, then LP• is a projective resolution of LAbcc = AbLcLc,

and the comparison map is an iso.
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Now take a module M over c. Since there is a map HomModc(Abcc,M)→ HomModLc(LAbcc, LM)

given by applying L, one might want to compare HH∗(c; M) with HH∗(Lc; LM), but it’s not clear

that we can. One thing we can do is use the unit of the induced adjunction

M → η∗cRLM

to obtain the diagram

HH∗(c; M)
unit∗ // HH∗(c; η∗cRLM)

HH∗(Lc; LM)

comparison

OO

which, in degree ∗ = 0, becomes

HomModc(Abcc,M)

L **UUUUUUUUUUUUUUUU
unit∗ // HomModc(Abcc, η∗cRLM)

HomModLc(LAbcc, LM)

4.2.2 Base object inD

Pick a base object d inD. The induced adjunction on Beck modules fits into the diagram

C/Rd

ε!L

��

AbRd // Ab(C/Rd)
URd

oo

εd∗L

��
D/d

R

OO

Abd // Ab(D/d)
Ud

oo

R

OO

where the diagram of right adjoints commutes (on the nose), and thus the diagram of left adjoints

commutes as well.

Take a module N over d. On the one hand, we have:

HH∗(d; N) = Ext∗(Abdd,N)

= H∗HomModd (P•,N)
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where P• → Abdd is a projective resolution. We want to compare this to:

HH∗(Rd; RN) = Ext∗(AbRdRd,RN)

= H∗HomModRd (Q•,RN)

= H∗HomModd (εd∗LQ•,N)

where Q• → AbRdRd is a projective resolution. Here again we assume the induced left adjoint

εd∗L : ModRd →Modd preserves projectives. Then εd∗LQ• is projective and we have a map:

εd∗LQ• → εd∗LAbRdRd = εd∗AbLRdLRd = Abd(Lrd
εd
→ d)

Add(εd)
−→ Abdd.

It has a factorization:

εd∗LQ• ↪→ P•
∼
→ Abdd

and this first map induces:

HomModd (P•,N)→ HomModd (εd∗LQ•,N)

which, upon passing to cohomology, induces a well defined map:

HH∗(d; N)→ HH∗(Rd; RN)

which is the comparison map. The computation above exhibits HH∗(Rd; RN) as the derived functors

of HomModd (−,N) ◦ εd∗L applied to AbRdRd. Since εd∗L sends projectives to projectives, we obtain

a Grothendieck composite spectral sequence:

Es,t
2 Exts (Lt(εd∗L)(AbRdRd),N)⇒ HHs+t(Rd; RN)

which is first quadrant, cohomologically graded. The comparison map is Abd(εd)∗ followed by an

edge morphism:

HHs(d; N) = Exts(Abdd,N)
Abd(εd)∗
−→ Exts(εd∗LAbRdRd,N)

= Es,0
2 � Es,0

∞ ↪→ HHs(Rd; RN).
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If εd∗L : ModRd →Modd happens to be exact, then εd∗LQ• is a projective resolution of εd∗LAbRdRd,

and we get an iso:

Ext∗(εd∗LAbRdRd,N) � HH∗(Rd; RN).

Now take a module M over Rd. Is there a way to compare HH∗(d; εd∗LM) and HH∗(Rd; M)?

Again, the only obvious thing one can do is use the unit of the induced adjunction

M → Rεd∗LM

to obtain the diagram

HH∗(Rd; M)
unit∗ // HH∗(Rd; Rεd∗LM)

HH∗(d; εd∗LM).

comparison

OO

Note that in degree ∗ = 0, the comparison map becomes:

HomModd (Abdd,N)
Abd(εd)∗// HomModd (εd∗LAbRdRd,N) ∼ HomModRd (AbRdRd,RN)

HH0(d; N) HH0(Rd; RN).

4.3 Good setup for adjunctions

Let us check that a nice adjunction between ground categories behaves well at the level of Quillen

(co)homology.

Theorem 4.3.1. Let C and D be complete algebraic categories with abelianizations. Let L : C �

D : R be an adjunction that prolongs to a Quillen pair (⇔ R preserves regular epis⇔ L preserves

projectives). Then diagrams (4.4.1) and (4.4.6) consist of four Quillen pairs.

Proof. Case 1: Ground object c in C (4.4.1). The induced right adjoint on slice categories is

η∗cR : D/Lc → C/c and it preserves regular epis. Indeed, R : D/Lc → C/RLc preserves regular

epis by assumption and 3.2.1. The pullback η∗c also preserves regular epis since C is regular and

again by 3.2.1.

The induced right adjoint on Beck modules η∗cR : Ab(D/Lc)→ Ab(C/c) preserves regular epis.

It follows from the same argument, and the fact that regular epis in Ab(−) are preserved and reflected

by the forgetful functor U, by 3.3.4 and 3.3.7.
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Case 2: Ground object d in D (4.4.6). The induced right adjoint on slice categories is just

R : D/d → C/Rd, which preserves regular epis. The induced right adjoint on Beck modules

R : Ab(D/d)→ Ab(C/Rd) also preserves regular epis. �

Remark 4.3.2. The result holds whether or not the left adjoint L passes to Beck modules, since the

proof only relies on properties of the induced right adjoints.

4.4 Effect on Quillen (co)homology

We look at the behavior of Quillen homology with respect to adjunctions. As in section 4.2, start

with an adjunction

C
L //
D

R
oo

where the left adjoint L passes to Beck modules, and the prolonged adjunction is a Quillen pair

(3.1.3 and 3.1.4).

4.4.1 Base object in C

Pick a base object c in C. The induced adjunction on Beck modules fits into the diagram

sC/c

L

��

Abc // sAb(C/c)
Uc

oo

L

��
sD/Lc

η∗cR

OO

AbLc // sAb(D/Lc).
ULc

oo

η∗cR

OO (4.4.1)

where everything has been simplicially prolonged, and we have four Quillen pairs (by 4.3.1). The

diagram of right adjoints commutes and so does diagram of left adjoints. Starting with a cofibrant

replacement qc : Qc
∼
→ c of idc, we can apply L to obtain LQc → Lc, where the source is still

cofibrant but the map is not a weak equivalence anymore. We can factor this map as

LQc
ψ
→ QLc

∼
→ Lc (4.4.2)
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and we obtain

LAbc(Qc→ c) = AbLcL(Qc→ c)

L(Lc) = AbLc(LQc→ Lc)

→ AbLc(QLc→ Lc) = LLc.

So we get a map

L(Lc)→ LLc (4.4.3)

which is in fact AbLc(ψ). The composite spectral sequence (of left derived functors) for L ◦ Abc

applied to idc is

E2
s,t = LsL

(
HQt(c)

)
⇒ πs+tL(Lc) = πs+tAbLcL(Qc→ c). (4.4.4)

There is an edge morphism

E2
0,t = L

(
HQt(c)

)
� E∞0,t ↪→ πtL(Lc)

which is simply the homology comparison map of the right exact functor L, applied to the chain

complex Lc (using implicitly the Dold-Kan correspondence):

L
(
HQt(c)

)
= LHt(Lc)→ HtL(Lc) = πtL(Lc).

For a detailed study of homology comparison, see [Bar06, thm 2.2 and 2.6]. Following this homol-

ogy comparison by the effect of the comparison map (4.4.3) on π∗, we obtain the Quillen homology

comparison:

L
(
HQt(c)

)
→ πtL(Lc)→ HQt(Lc).

If the original functor L preserves pullbacks then the induced L on Beck modules also preserves

finite limits, hence is left exact (and thus exact). In that case, the homology comparison is an iso

and the (silly) spectral sequence (4.4.4) is just that iso. So really, the Quillen homology comparison

measures the failure of L to preserve cofibrant replacements.

In the special case where L preserves all weak equivalences (or equivalently, all weak equiva-

lences with cofibrant source), then the map ψ is a weak equivalence. Since AbLc is a left Quillen

functor, the comparison map (4.4.3) is also a weak equivalence, and we obtain an iso in Quillen
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homology:

L
(
HQ∗(c)

) ∼
→ HQ∗(Lc).

Effect on Quillen cohomology Given a module N over Lc, we can apply the functor

HomModLc(−,N)

to the comparison map (4.4.3):

HomModLc(LLc,N)→ HomModLc(L(Lc),N) � HomModc(Lc, η
∗
cRN)

and upon passing to cohomology, we obtain a comparison map in Quillen cohomology:

HQ∗(Lc; N)→ HQ∗(c; η∗cRN). (4.4.5)

In the special case where L preserves all weak equivalences, LQc → Lc is a cofibrant replacement

(i.e. the map ψ in (4.4.2) is a weak equivalence) so the comparison in Quillen cohomology (4.4.5)

is an iso. In fact, if the comparison of cotangent complexes (4.4.3) is a weak equivalence, then the

Quillen cohomology comparison is an iso, since L(Lc) and LLc are cofibrant. This fact can also be

expressed using the UCSS (1.2.2).

4.4.2 Base object inD

The reasoning is very similar when we pick a base object d in D. The induced adjunction on Beck

modules fits into the diagram

sC/Rd

ε!L

��

AbRd // sAb(C/Rd)
URd

oo

εd∗L

��
sD/d

R

OO

Abd // sAb(D/d)
Ud

oo

R

OO (4.4.6)

and again, everything has been simplicially prolonged, we have four Quillen pairs, and the diagrams

of right and left adjoints commute. Starting with a cofibrant replacement qRd : Q(Rd)
∼
→ Rd of idRd,

we can apply εd!L to obtain LQ(Rd) → d, where the source is still cofibrant but the map is not a
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weak equivalence anymore. We can factor this map as

LQ(Rd)
ψ
→ Qd

∼
→ d

and we obtain

εd∗LAbRd(Q(Rd)→ d) = Abd(LQ(Rd)→ LRd
εd
→ d)

εd∗L(LRd) = Abd(LQ(Rd)→ d)

→ Abd(Qd
∼
→ d) = Ld.

So we get a map

εd∗L(LRd)→ Ld (4.4.7)

which is in fact Abd(ψ). The composite spectral sequence (of left derived functors) for εd∗L ◦ AbRd

applied to idRd is

E2
s,t = Ls(εd∗L)

(
HQt(Rd)

)
⇒ πs+tεd∗L(LRd) = πs+tAbd(LQ(Rd)→ d). (4.4.8)

Again, there is an edge morphism

E2
0,t = εd∗L

(
HQt(Rd)

)
� E∞0,t ↪→ πtεd∗L(LRd)

which is the homology comparison map of the right exact functor εd∗L, applied to the chain complex

LRd. Following this homology comparison by the effect of the comparison map 4.4.7 on π∗, we

obtain the Quillen homology comparison:

εd∗L
(
HQt(Rd)

)
→ πtεd∗L(LRd)→ HQt(d).

If the original functor L preserves pullbacks, then the induced L on Beck modules is exact and the

homology comparison for εd∗L becomes that of εd∗ only. If additionally εd∗ is exact as well, then

the homology comparison is an iso and the spectral sequence (4.4.8) is just that iso.

In the special case where εd!L preserves all weak equivalences, then the map ψ is a weak equiv-

alence. Since Abd is a left Quillen functor, the comparison map (4.4.7) is also a weak equivalence,
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and we obtain an iso in Quillen homology:

εd∗L
(
HQ∗(Rd)

) ∼
→ HQ∗(d).

Effect on Quillen cohomology Given a module N over d, we can apply the functor HomModd (−,N)

to the comparison map (4.4.7):

HomModd (Ld,N)→ HomModd (εd∗L(LRd),N) � HomModRd (LRd,RN)

and upon passing to cohomology, we obtain a comparison map in Quillen cohomology:

HQ∗(d; N)→ HQ∗(Rd; RN). (4.4.9)

As above, if the comparison of cotangent complexes (4.4.7) is a weak equivalence, then the Quillen

cohomology comparison (4.4.9) is an iso.

4.5 Example: Commutativization of groups

Consider the “commutativization” functor Com : Gp→ Ab that kills commutators, i.e.

Com(G) = G/[G,G].

Note that Com is left adjoint to the inclusion functor ι : Ab → Gp. We will check that Com passes

to Beck modules even though it is not limit-preserving.

Proposition 4.5.1. Com does NOT preserve pullbacks in general.

Proof. Denote by F(S ) be the free group on the set S . Consider the “sink” diagram

F(v) ' Z

��

v_

��
Z ' F(u) // F(x, y) [x, y] = xyx−1y−1

u � // 1
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whose pullback in Gp is F(u) × 1 � F(u) ' Z. Once we apply Com to the diagram, we get

FAb(v) ' Z

��

v_

��
Z ' FAb(u) // FAb(x, y) ∼ Z2 0

u � // 0

whose pullback in Ab is FAb(u) × FAb(v) ' Z2. The natural map

Z ' Com
(
F(u) ×F(x,y) F(v)

)
→ Com(F(u)) ×Com(F(x,y)) Com(F(v)) ' Z2

is NOT an iso. �

Proposition 4.5.2. Com does NOT preserve kernel pairs in general.

Proof. Take a non-trivial group G whose commutator subgroup [G,G] is equal to the whole group

G, e.g. take G = A5. Now take as map the inclusion of a non-trivial abelian subgroup C ↪→ G, e.g.

take C to be the cyclic subgroup generated by a non-identity element. The kernel pair diagram

C� _

��
C � � // G

has pullback C, viewed as the diagonal subgroup of C ×C. Once we apply Com to the diagram, we

get

C

��
C // 0

whose pullback in Ab is C ⊕C. Therefore Com does NOT preserve this pullback. �

Nevertheless, let us show that Com does pass to Beck modules. Recall that for a (left) G-module

M, the semidirect product G n M is the group with underlying set G × M and multiplication

(g,m)(g′,m′) = (gg′,m + gm′).
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Proposition 4.5.3. Com(G n M) � Com(G) ⊕ MG.

Proof. Commutators in G n M are given by

[
(g1,m1), (g2,m2)

]
=

(
[g1, g2],m1 − g1g2g−1

1 m1 + g1m2 − g1g2g−1
1 g−1

2 m2
)
.

Applying Com to the split extension G n M → G yields a split extension Com(G n M) → Com(G)

in Ab whose kernel is M modulo the subgroup

〈
m1 − g1g2g−1

1 m1 + g1m2 − g1g2g−1
1 g−1

2 m2 | gi ∈ G,mi ∈ M
〉

= 〈m − gm | g ∈ G,m ∈ M〉

so it is MG, the abelian group of coinvariant of M. �

Corollary 4.5.4. Com passes to Beck modules, on which it induces the coinvariants functor (−)G :

ModG → Ab.

Proof. Com preserves the pullback that defines the multiplication structure map:

Com ((G n M) ×G (G n M)) = Com (G n (M × M))

= Com(G) ⊕ (M × M)G

= Com(G) ⊕ (MG ⊕ MG)

= (Com(G) ⊕ MG) ×Com(G) (Com(G) ⊕ MG)

= Com(G n M) ×Com(G) Com(G n M).

In Gp as well as in Ab, we think of the module as the kernel of the split extension, and in this case,

we see that a G-module M is sent to the abelian group MG. �

Remark 4.5.5. In Ab, a Beck module consists only of a split extension with the data of the splitting

(cf. A.2.1). Therefore, ANY functor F : C → Ab passes to Beck modules. We’ve shown it

explicitly for Com and identified the induced functor.

Now let us see what the adjunction

Gp
Com // Ab
ι

oo
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does on Quillen homology. First, note that the right adjoint ι preserves regular epis, which are just

surjections. Hence the prolonged adjunctions are Quillen pairs. Moreover, the left adjoint Com

passes to Beck modules and induces the coinvariants functor (−)G.

Note also that the unit of the adjunction is ηG : G � G/[G,G] and the counit is the identity

εA : A
id
→ A. We’ll work with a base object G in Gp, since we get nothing new from a base object

in Ab. Diagram (4.4.1) becomes:

sGp/G

Com

��

AbG // sModG
Gn−

oo

(−)G

��
sAb/Com(G)

η∗Gι

OO

S rc // sAb.
Com(G)⊕−
oo

Triv

OO (4.5.1)

where S rc is the “source” functor, as in proposition A.2.4, and Triv is the functor assigning to an

abelian group the trivial G-action. Indeed, we know that the right adjoint on Beck modules is η∗Gι.

From a Beck module Com(G) ⊕ A, we first view it as a split extension of groups, which means A

has a trivial Com(G) action, and then pull it back along ηG : G → G/[G,G], which endows A with

the trivial G-action.

Remark 4.5.6. In 4.5.4, we’ve checked explicitly that Com passes to Beck modules and shown that

the induced functor is coinvariants (−)G. Per remark 4.1.6, we could also look at the induced right

adjoint η∗Gι = Triv and use its left adjoint to complete the diagram above. The left adjoint of Triv is

indeed (−)G, which confirms that our computation was correct.

We can now formulate the result about Quillen homology.

Proposition 4.5.7. Let C• → G be a cofibrant replacement of G in groups and let LG denote the

cotangent complex of G. Then we have

π∗ (C•/[C•,C•]) = π∗ ((LG)G) .

Proof. Starting from a cofibrant replacement of G in Gp (or equivalently, of idG in Gp/G) in the

upper left corner of the commutative diagram (4.5.1), going down then right yields:

S rc ◦Com(C• → G) = S rc (Com(C•)→ Com(G))

= Com(C•) = C•/[C•,C•]
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whereas going right then down yields:

(AbG(C• → G))G = (LG)G

by definition of the cotangent complex. The two simplicial abelian groups are weakly equivalent,

whence the claim. �

In fact, one can compute both sides explicitly and show that they coincide. By proposition

A.1.6, we know that LG → IG is a cofibrant replacement, in particular a flat resolution, so taking

coinvariants yields the derived functors thereof, also called group homology:

π∗ ((LG)G) = L∗(−)G(IG) = H∗(G; IG).

From the long exact sequence associated to the short exact sequence of G-modules

0→ IG → ZG → Z→ 0

we conclude that the connecting morphism Hi+1(G;Z)→ Hi(G; IG) is an iso for all i ≥ 0. For i ≥ 1,

it follows from the flatness of ZG, and for i = 0, it follows from the iso

Z � (ZG)G = H0(G;ZG)
�
→ H0(G;Z) = (Z)G = Z.

We conclude the following:

πi ((LG)G) = Hi+1(G;Z)

for all i ≥ 0. On the other hand, [GS07, ex 4.26] uses a different argument to show:

πi (C•/[C•,C•]) = Hi+1(G;Z)

for all i ≥ 0. Thus our proposition is consistent with these computations.

In particular, for i = 0, we obtain H1(G;Z) = G/[G,G]. This is the usual Hurewicz theorem

since π1(BG) = G. Here is a fun way to prove it using only simple methods from the present

document.

Proposition 4.5.8. Indeed, we have H1(G;Z) = G/[G,G].
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Proof. First note that over the terminal object in Gp, i.e. the trivial group {1}, the forgetful functor

U{1} : Ab(Gp/{1})→ Gp/{1}

is just the embedding Ab→ Gp. Therefore, its left adjoint Ab{1} is Com. Using this, we compute:

H1(G;Z) � H0(G; IG)

= (IG)G

= Z ⊗ZG IG

= τ∗(IG), where τ : G → {1}

= τ∗(AbGG)

= Ab{1}(G → {1})

= Com(G) = G/[G,G]. �

4.6 Example: Commutativization of algebras

Using the notation of A.3 and A.4, consider the “commutativization” functor

Com : AlgR → ComR

A 7→ A/[A, A]

which kills the 2-sided ideal generated by commutators. It is left adjoint to the inclusion functor

ComR → AlgR.

Proposition 4.6.1. 1. The functor Com : AlgR → ComR passes to Beck modules.

2. It induces the “central quotient” functor

HH0 : A − BimodR → Com(A) −Mod

which coequalizes the two actions.

Proof. We use the “split extension” picture of Beck modules. Start with a Beck module over A

in AlgR, i.e. a split extension A ⊕ M → A satisfying M2 = 0. Applying Com to it yields a split
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extension

0 // K // Com(A ⊕ M)
Com(p)// A
Com(s)
oo // 0

in ComR. It remains to show that its kernel has square zero.

Commutators in A ⊕ M Using the decomposition (a,m) = (a, 0) + (0,m), commutators will be

generated by those of the forms

[(a, 0), (a′, 0)] = ([a, a′], 0)

[(a, 0), (0,m′)] = (a, 0)(0,m′) − (0,m′)(a, 0)

= (0, a · m′) − (0,m′ · a)

= (0, a · m′ − m′ · a)

[(0,m), (a′, 0)] = −[(a′, 0), (0,m)] nothing new

[(0,m), (0,m′)] = 0

and hence the kernel is

K ' M/ 〈a · m − m · a〉 (4.6.1)

where we kill the sub-A-bimodule generated by all elements of that form.

K has square zero Take two elements x, x′ ∈ K = ker Com(p) ⊂ Com(A ⊕ M) and choose

representatives (c,m) and (c′,m′) in A ⊕ M, where c, c′ ∈ [A, A]. Then xx′ is represented by

(c,m)(c′,m′) = (cc′, c · m′ + m · c′)

∼ (0, c · m′ + m · c′).
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Thus it suffices to check that all elements of the form c · m and m · c are zero in Com(A ⊕ M), for

any m ∈ M and c ∈ [A, A]. Suffices to check it for c = [a, a′] = aa′ − a′a.

(aa′ − a′a) · m = aa′ · m − a′a · m

= a · (a′ · m) − (a′ · m) · a + (a′ · m) · a − a′ · (a · m)

= a · (a′ · m) − (a′ · m) · a + a′ · (m · a − a · m) ∈ [A ⊕ M, A ⊕ M]

m · (aa′ − a′a) = m · aa′ − m · a′a

= (m · a) · a′ − a′ · (m · a) + a′ · (m · a) − (m · a′) · a

= (m · a) · a′ − a′ · (m · a) + (a′ · m − m · a′) · a ∈ [A ⊕ M, A ⊕ M].

This proves the first assertion, and the computation (4.6.1) proves the second. �

The adjunction

AlgR
Com // ComR
ι

oo

allows us to compare the two categories. According to 4.6.1, the comparison diagram 4.2.1 becomes

AlgR/A

Com

��

A⊗I(−)⊗A // A − BimodR
A⊕−

oo

HH0

��
ComR/Com(A)

η∗Aι

OO

Com(A)⊗Ω(−)/R// Com(A) −Mod
Com(A)⊕−
oo

same action

OO (4.6.2)

where “same action”, the right adjoint on the right, means that we view a Com(A)-module as an

A-bimodule by acting via the counit A → Com(A) = A/[A, A] both on the left and the right. The

abelianizations are described in A.3.4 and A.4.4.

Two special “extreme” cases are of particular interest.

1. A = R When the R-algebra A is just R itself – and is in particular commutative – the comparison

diagram becomes

AlgR/R

Com

��

R⊗I(−)⊗R // R − BimodR
R⊕−

oo

id

��
ComR/R

ι

OO

R⊗Ω(−)/R //
R −Mod.

R⊕−
oo

id

OO (4.6.3)
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Essentially, the diagram says that killing all products can be done in two steps, by killing all commu-

tators first. One could try to use the Grothendieck composite spectral sequence for the non-abelian

setting [BS92, thm 4.4] to relate the Quillen homology in AlgR to the Quillen homology in ComR,

i.e. André-Quillen cohomology.

2. R = Z When R is Z, AlgR and ComR are just rings and commutative rings, respectively, and

A − BimodR becomes A − Bimod.
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Chapter 5

Quillen cohomology of truncated

Π-algebras

In this chapter, we describe explicitly the standard model structure on sΠAlgn
1, the category of

simplicial n-truncated Π-algebras. Then we use the truncation adjunction to describe Quillen coho-

mology of truncated Π-algebras.

5.1 Standard model structure

Recall Quillen’s construction [Qui67, II.4 thm 4] to makes sC into a simplicial model category,

where C is an algebraic category and sC denotes the category of simplicial objects in C. The classic

reference is [Qui67, II.4]. For a more recent reference, see [GJ91, II.4].

There is an explicit description of the model structure on sΠAlg in [BDG04, § 4.5]. Now we do

the same with the category ΠAlgn
1 of n-truncated Π-algebras. Most of the arguments will only be

manifestations of the fact that ΠAlgn
1 is a category of universal algebras.

We first describe the ingredients involved in the construction: effective epis, projective objects,

and free objects. First, recall that ΠAlg has free objects. The forgetful functor

U : ΠAlg→ GrSet
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to graded sets (with grading 1, 2, 3, . . .) has a left adjoint

F : GrSet→ ΠAlg

F ({Xi}) = π∗

 ∞∨
i=1

∨
Xi

S i

 .
This Π-algebra is called free on the graded set {Xi}. For a somewhat less drastic adjunction, one can

forget down to graded pointed sets:

U∗ : ΠAlg→ GrSet∗

and this functor has a left adjoint

F∗ : GrSet∗ → ΠAlg

F∗ ({(Xi, xi)}) = π∗

 ∞∨
i=1

∨
Xi−{xi}

S i

 .
The category ΠAlgn

1 also has free objects.

Proposition 5.1.1. The left adjoint of the forgetful functor

U : ΠAlgn
1 → GrSet

is the functor

Fn : GrSet→ ΠAlgn
1

Fn ({Xi}) = Pnπ∗

 ∞∨
i=1

∨
Xi

S i

 = π∗

Pn

n∨
i=1

∨
Xi

S i

 .
In other words, we have Fn = PnF.

Proof. Combine two adjunctions:

GrSet
F //
ΠAlg

U
oo

Pn //
ΠAlgn

1ιn
oo

�
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Remark 5.1.2. In the case n = 2, we know that ΠAlg2
1 is equivalent to the category ModGp. The

previous proposition tells us that a free 2-truncated Π-algebra on a pair of sets (S ,T ) is P2π∗(
∨

S S 1∨∨
T S 2). This wedge of spheres has π1 = F(S ), the free group generated by the circles, and π2 =

Zπ1[T ], the free π1-module generated by the 2-spheres. Thus we recover exactly the free objects as

in proposition 7.1.2.

Now that we have free objects, we’d like to identify projective objects. For this we need to

identify effective epimorphisms. Recall a few definitions.

Definition 5.1.3. In a category with kernel pairs, a map f : X → Y is an effective epimorphism

[Qui67, II.4] or regular epimorphism [Bor94b, def 4.3.1] if the following diagram is a coequalizer:

X ×Y X
pr1 //
pr2
// X

f // Y. (5.1.1)

We will prefer the term “regular”.

Definition 5.1.4. An object P is projective if for any regular epi f : X → Y , the map

f∗ : Hom(P, X)→ Hom(P,Y)

is a surjection of sets. In other words, maps from P lift through any regular epi:

P

���
�

�
�

��
X

f
// Y.

Definition 5.1.5. A category has enough projectives if for any object X, there is a regular epi from

a projective P→ X.

Recall that in the category of groups, a regular epi is just a surjection of underlying sets. The

reason is that any map that coequalizes the diagram (5.1.1) will have a kernel containing ker f . We

can generalize this argument to our case.

Proposition 5.1.6. In ΠAlg or ΠAlgn
1, a map f : X → Y is a regular epi iff it is a surjection of

underlying graded sets.
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Proof. (⇐) f is a surjection and we have the following commutative diagram in ΠAlg:

X ×Y X
pr1 //
pr2
// X

α
��>>>>>>>

f // // Y

∃?β
���
�
�

Z

(5.1.2)

Since each functor πi preserves limits, applying it to the diagram yields a diagram of groups:

Xi ×Yi Xi
pr1 //
pr2
// Xi

αi ��???????
fi // // Yi

∃!βi

���
�
�

Zi

where there exists a unique map of groups βi. It can be defined as choosing a preimage by fi and

then applying αi. Hence in the diagram (5.1.2), there is a unique map β of graded groups. It remains

to check that this β is a map of Π-algebras. This follows from the fact that α is, and so is f , hence

preimages by f can be chosen so as to respect the extra structure. To be very explicit, write x’s for

f -preimages of the corresponding y’s in Y . Then we have:

β(y1 · yk) = α(x1 · xk)

= α(x1) · α(xk)

= β(y1) · β(yk)

β([y, y′]) = α([x, x′])

= [α(x), α(x′)]

= [β(y), β(y′)]

β
(
γ∗(yk)

)
= α

(
γ∗(xk)

)
where γ ∈ πm(S k)

= γ∗α(xk)

= γ∗β(yk).

(⇒) Note that im f is a Π-algebra, and the inclusion ι : im f → Y is a map of Π-algebras. Now

consider the diagram

X ×Y X
pr1 //
pr2
// X

f !! !!CCCCCCCC
f // Y

∃!β
���
�
�

im f .
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From β f = f , we get β|im f = idim f = βι. Now consider the commutative diagram

X ×Y X
pr1 //
pr2
// X

f ��????????
f // Y

idY

��
ιβ

��
Y.

By the uniqueness of the map on the right, we conclude ιβ = idY , so im f equals Y, i.e. f is

surjective. �

Remark 5.1.7. Quillen notes that this proposition always holds in a category of universal algebras.

See [Qui67, II.4], remark 1 after proposition 1.

Corollary 5.1.8. In ΠAlg or ΠAlgn
1, an object is projective iff it is a retract of a free.

Proof. (⇒) Note that the counit of the adjunction F a U maps surjectively onto any object, i.e.

FUX � X is a regular epi. If P is projective, then we have the dotted arrow in

P

||y
y

y
y

idP
��

FUP // // P

which exhibits P as a retract of the free FP.

(⇐) Frees are projective and retracts of projectives are projective (standard argument, see e.g.

[Bor94a, prop 4.6.4]). Explicitly, let P
s
→ F

p
→ P exhibit P as a retract of a free, and consider the

following diagram:

F

g′′

���
�

�
�

�
�

�
p
��
P

g′���
�

�
�

s

OO

g
��

X
f
// // Y.

Since F is free, lift gp : F → Y to g′′ : F → X by choosing f -preimages of the gp-image of the

generators. (For this reason, a free is projective.) Now define g′ B g′′s, which is a lift of g, as we

wanted:

f g′ = f g′′s = gps = g. �

Remark 5.1.9. Again, this holds in any category of universal algebras, for the same reason.
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Corollary 5.1.10. The Postnikov truncation functor Pn : ΠAlg → ΠAlgn
1 sends projectives to

projectives.

Proof. A projective P in ΠAlg is a retract of a free:

P //

id

77F // P.

Applying truncation Pn, we obtain a retract:

Pn(P) //

id

44Pn(F) // Pn(P).

By proposition 5.1.1, Pn(F) is free in ΠAlgn
1. By corollary 5.1.8, Pn(P) is projective in ΠAlgn

1. �

Note that ΠAlg and ΠAlgn
1 have enough projectives. Moreover, the regular epi FUX � X

shows that the set of free objects π∗(PnS 1), π∗(PnS 2), . . . , π∗(PnS n) forms a set of generators for

ΠAlgn
1, i.e. any object receives a regular epi from a coproduct of generators. Recall the following

definition.

Definition 5.1.11. An object P is small if Hom(P,−) preserves filtered colimits.

The next fact holds in any category of universal algebras C.

Proposition 5.1.12. Any free object on a finite (graded) set of generators is small.

Proof. Let J be a filtered category, S a finite (graded) set and X = colim j X j. We have:

HomC(F(S ), colim
j

X j) = HomSet

(
S ,U(colim

j
X j)

)
= HomSet

(
S , colim

j
U(X j)

)
= colim

j
HomSet

(
S ,U(X j)

)
= colim

j
HomC(F(S ), X j).

In the second equality, we have used the fact that the “underlying set” functor preserves filtered

colimits; see [Mac98, IX.1], proposition 2 and the remark after it. For the third equality, we have

used the fact that every finite set is small. Indeed, HomSet(S ,−) is the product
∏

S , i.e. the limit over
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S viewed as a discrete category, and finite limits commute with (small) filtered colimits [Mac98,

IX.2, thm 1]. �

In particular, our category ΠAlgn
1 has a set of small projective generators: π∗(PnS 1), π∗(PnS 2),

. . ., π∗(PnS n).

Proposition 5.1.13. The category sΠAlgn
1 of simplicial truncated Π-algebras has a standard model

structure.

Proof. ΠAlgn
1 has finite limits (in fact all small limits), small colimits, and a set of small projective

generators. Hence Quillen’s theorem 4 applies. �

Recall that in the standard model structure, a map f : X• → Y• is a weak equivalence (resp.

fibration) if the map

f∗ : HomC(P, X•)→ HomC(P,Y•)

is a weak equivalence (resp. fibration) of simplicial sets. Cofibrations are the maps with the left

lifting property with respect to acyclic fibrations. We’d like a more explicit description. In the case

of simplicial Π-algebras, a map is a weak equivalence (resp. fibration) iff it is levelwise a weak

equivalence (resp. fibration) of simplicial groups, and a cofibration iff it is a retract of a free map

[BDG04, § 4.5]. We’ll see that the description is essentially the same for truncated Π-algebras.

Let us use the adjunction

ΠAlg
Pn //
ΠAlgn

1ιn
oo

to compare the two model structures.

Corollary 5.1.14. The adjunction

sΠAlg
Pn // sΠAlgn

1ιn
oo

is a Quillen pair.

Proof. The left adjoint Pn : ΠAlg→ ΠAlgn
1 preserves projectives (by 5.1.10). �

In particular, Pn preserves cofibrations. In fact, more is true.

Proposition 5.1.15. Pn : sΠAlg→ sΠAlgn
1 preserves weak equivalences and fibrations.
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Proof. Let f : X• → Y• be a fibration (resp. weak eq) in sΠAlg. Let P be a projective of ΠAlgn
1,

exhibited as a retract of a free by P
s
→ F

p
→ P. The following diagram:

HomΠAlgn
1
(P, PnX•)

p∗

��

(Pn f )∗ // HomΠAlgn
1
(P, PnY•)

p∗

��
HomΠAlgn

1
(F, PnX•)

s∗

��

(Pn f )∗ // HomΠAlgn
1
(F, PnY•)

s∗

��
HomΠAlgn

1
(P, PnX•)

(Pn f )∗ // HomΠAlgn
1
(P, PnY•)

exhibits Pn f (in the top and bottom rows) as a retract of the middle row, so it suffices that this row

be a fibration (resp. weak eq) of simplicial sets.

Note that F = Fn(S ) is free on a graded set S empty above dimension n, so we have:

HomΠAlgn
1
(F, PnX•) = HomGrSet(S ,UPnX•)

= HomGrSet(S ,UX•)

= HomΠAlg(F(S ), X•).

Using this, we obtain:

HomΠAlgn
1
(F, PnX•)

�

��

(Pn f )∗ // HomΠAlgn
1
(F, PnY•)

�

��
HomΠAlg(F(S ), X•) f∗

// HomΠAlg(F(S ),Y•).

Since f is a fibration (resp. weak eq) in sΠAlg, the bottom and top rows are fibrations (resp. weak

eq) of simplicial sets. �

Now we can describe explicitly the model structure on sΠAlgn
1.

Proposition 5.1.16. Let f : X• → Y• be a map in sΠAlgn
1. Then f is:

1. a fibration (resp. weak eq) iff ιn f is one in sΠAlg;

2. a cofibration iff it is a retract of a free map.

Proof. 1. (⇒) As we have seen in corollary 5.1.14, ιn preserves fibrations and weak equivalences.

(⇐) We have f = Pnιn f , and we have seen in 5.1.15 that Pn preserves fibrations and weak

equivalences.
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2. This is Quillen’s remark 4 at the end of section II.4 in [Qui67]. �

Remark 5.1.17. This proposition also holds in any category of universal algebras, which has un-

derlying (possibly graded) sets. A map between simplicial objects is then a fibration (resp. weak

equivalence) iff it is so at the level of underlying sets.

Remark 5.1.18. Note that the right Quillen functor ιn does not preserve cofibrations, not even free

maps or even free objects for that matter. Well, except Pnπ∗(S 1).

5.2 Truncation isomorphism

In this section, we use the machinery of 4.4 and the previous section to show that the Quillen

cohomology of truncated Π-algebras can be computed “within the world of truncated Π-algebras”.

We use the adjunction

ΠAlg
Pn //
ΠAlgn

1ιn
oo

which is extremely nice. The left adjoint Pn preserves limits (by C.0.7) and as we have seen in

5.1.15, it preserves all weak equivalences. Moreover, the counit ε : Pnιn → 1 of the adjunction is

the identity. Taking as base object a Π-algebra A in ΠAlg, apply (4.4.3) to obtain an equivalence of

cotangent complexes:

Pn(LA)
∼
−→ LPnA (5.2.1)

i.e. truncating the cotangent complex of a Π-algebra yields the cotangent complex of the truncation.

Now for Quillen cohomology, start with a module N over PnA. Applying (4.4.5), we get a natural

iso:

HQ∗
ΠAlgn

1
(PnA; N)

�
−→ HQ∗ΠAlg(A; η∗AιnN) (5.2.2)

where ηA : A → ιnPnA is the Postnikov truncation map. Note that starting with a base object T in

ΠAlgn
1 yields nothing new, only the same results with the particular case A = ιnT .

We’d like a nicer description of η∗AιnN. Think of a module over A as an abelian Π-algebra on

which A acts (cf. [BDG04, § 4.11]), i.e. the kernel of the split extension as opposed to its “total

space”.

Lemma 5.2.1. The category ModPnA of modules over PnA is isomorphic to the full subcategory

Modn-tr
A of ModA of modules that happen to be n-truncated.
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Proof. Look at the adjunction on modules:

ModA
Pn //ModPnA
η∗Aιn

oo

from 4.1.5. We already know the composite Pnη
∗
Aιn is the identity. Moreover, η∗Aιn lands in Modn-tr

A .

By restricting to the latter, we obtain the adjunction

Modn-tr
A

Pn //ModPnA
η∗Aιn

oo

where both composites Pnη
∗
Aιn and η∗AιnPn are the identity, i.e. an iso of categories. �

The lemma justifies the abuse of notation in the following repackaged statement.

Theorem 5.2.2. Let A be a Π-algebra and N a module over A that is n-truncated. Then there is a

natural iso

HQ∗
ΠAlgn

1
(PnA; N)

�
−→ HQ∗ΠAlg(A; N).

Consequently, the Quillen cohomology of a Π-algebra with coefficients in a truncated module

can be computed within the world of truncated Π-algebras. The following example is of interest to

us in light of theorems 1.3 and 9.6 in [BDG04].

Example 5.2.3. Let A be an n-truncated Π-algebra. For k a positive integer, the k-fold loops ΩkA

form a module over A (which is zero if k ≥ n) and we are interested in the cohomology groups

HQ∗(A; ΩkA). Since ΩkA is (n − k)-truncated, proposition 5.2.2 says:

HQ∗
ΠAlgn−k

1
(Pn−kA; ΩkA) ' HQ∗ΠAlg(A; ΩkA).
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Chapter 6

Realizations of 2-stages

In this chapter, we investigate some special cases of the realization problem for Π-algebras using

the obstruction theory of [BDG04] (theorems 1.3 and 9.6). Let us recall their main results.

6.1 Blanc-Dwyer-Goerss obstruction theory

Start with a Π-algebra A and consider the moduli space TM(A) of its topological realizations. Try

to build it using the moduli spaces TMn(A) of “potential n-stages”, which are simplicial spaces that

look more and more like realizations of A.

• Geometric realization induces a weak equivalence TM∞(A)
∼
→ TM(A).

• There is a weak equivalence TM∞(A)
∼
→ holimn TMn(A).

• Successive stages TMn(A)→ TMn−1(A) are related in a certain fiber square.

• TM0(A) is weakly equivalent to B Aut(A).

The interpretation in terms of π0 is the following.

• A potential 0-stage exists and is unique (up to weak equivalence).

• Given a potential (n − 1)-stage Y , there is an obstruction class

oY ∈ HQn+2(A; ΩnA)/Aut(A,ΩnA)

to lifting it to a potential n-stage.
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• If Y is liftable, different lifts (up to weak equivalence) are classified by HQn+1(A; ΩnA), mean-

ing that the group acts transitively on the set of lifts.

• Realizations correspond to successive lifts all the way up to infinity.

We can be more precise on the indeterminacy of classifying lifts. There is a fiber sequence [with

correct indexing!]

Hn+1
A (A; ΩnA)→ TMn(A)Y →M(Y) (6.1.1)

whereM(Y) is the moduli space of Y (i.e. the component of Y in TMn−1(A)), TMn(A)Y consists

of components of TMn(A) sitting over it, andHn+1
A (A; ΩnA) is a Quillen cohomology space, whose

π0 is the corresponding Quillen cohomology. In particular, the set of (weak equivalence classes

of) lifts of Y is in bijection with HQn+1(A; ΩnA)/π1M(Y). The Quillen cohomology space satisfies

more generally:

πiH
k
A(A; M) = HQk−i(A; M). (6.1.2)

as explained in [BDG04, 6.7].

6.2 Toy example: Eilenberg-Maclane spaces

As a warmup, take a Π-algebra A of Eilenberg-Maclane type K(G, n), i.e. An = G and all other

groups are trivial. Note that this data determines A as a Π-algebra. More precisely, there exists a

unique Π-algebra with this data, as long as G is an abelian group if n ≥ 2.

Proposition 6.2.1. Let k be a positive integer. In the example above, the Quillen cohomology groups

HQi(A; ΩkA) are zero for all i.

Proof. Since A is m-truncated, we have:

HQi(A; ΩkA) � HQi(Pn−kA; ΩkA) = HQi(∗; ΩkA)

where ∗ is the trivial Π-algebra. Since the latter is free, HQi(∗; M) is zero for i > 0 and since it is the

zero object in Π-algebras, HQ0(∗; M) is zero, for any module M over ∗ (i.e. abelian Π-algebra). �

Remark 6.2.2. There is another, more direct proof which doesn’t use 5.2.2. Since A is (n − 1)-

connected, it admits a cofibrant replacement C• whose constituent Π-algebras are all (n − 1)-

connected; take for example the simplicial resolution obtained by applying repeatedly the comonad
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Free Forget (the pointed version). Now ΩkA is (n−1)-truncated, so once we apply the “derivations”

functor

HomΠAlg/A
(
−,ΩkA

)
to C•, the resulting cosimplicial abelian group is identically zero.

Corollary 6.2.3. A is realizable, in a unique way (up to weak equivalence).

Proof. The obstructions to existence live in the trivial groups HQk+2(A; ΩkA), k ≥ 1; obstructions

to uniqueness live in the trivial groups HQk+1(A; ΩkA). �

We’ve recovered the fact that Eilenberg-Maclane spaces exist and are unique up to weak equiv-

alence. Well, there are many simpler and nicer proofs of that fact, but it was only a warmup to use

the machinery.

Let us represent the process schematically in a realization tree for A:

...

2 •

1 •

0 •

The bottom node represents the unique potential 0-stage, and the nodes above represent all possible

successive lifts. According to theorems 9.3 and 9.4 of [BDG04], successive lifts all the way to

infinity correspond to a topological realization of A.

We’ve only presented the π0 point of view. However, a nice feature of the obstruction theory is

that it gives information on the whole moduli space of realizations TM(A). Let us study the whole

tower instead of only π0 of each stage.

Proposition 6.2.4. The topological monoid of self homotopy equivalences Auth(K(G,m)) is dis-

crete, with π0 = Aut(G), the group of group automorphisms of G.

Proof. By (6.1.2) and 6.2.1, the fiber in the fiber sequence (6.1.1) is weakly contractible for all

n ≥ 1. Therefore, the tower consists of weak equivalences TMn
∼
→ TMn−1 at all stages and

we obtain TM∞
∼
→ TM0 ' B Aut(A). By the structure theorem for moduli spaces, we know
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TM(A) '
∐
〈X〉 B Auth(X), where the coproduct runs over (weak) homotopy types of realizations

of A, of which there is only one in this case. In short, we have:

B Auth(K(G,m)) ' TM(A)
∼
← TM∞

∼
→ TM0 ' B Aut(A)

so that the 0th Postnikov truncation

Auth(K(G,m))→ π0 Auth(K(G,m))

is a weak equivalence and we have π0 Auth(K(G,m)) ' Aut(A) = Aut(G). �

Of course, it is not hard to show this fact using classical methods.

Proof. The topological monoid of pointed self-maps Map∗ (K(G,m),K(G,m)) is discrete:

πi Map∗ (K(G,m),K(G,m))

= π0 Map∗
(
S i,Map∗ (K(G,m),K(G,m))

)
= π0 Map∗

(
S i ∧ K(G,m),K(G,m)

)
=

[
ΣiK(G,m),K(G,m)

]
∗

= H̃
m (

ΣiK(G,m); G
)

= H̃
m−i

(K(G,m); G)

=


HomZ (Hm K(G,m),G) = HomZ(G,G) for i = 0

0 for i ≥ 1.

Here we used the Hurewicz theorem and the universal coefficient theorem. Note that the result still

holds for m = 1 and G a non-abelian group, in which case we need to say π0 is HomGp(G,G), a

formula that covers all cases.

Now Auth(K(G,m)) is the submonoid of Map∗ (K(G,m),K(G,m)) consisting of (pointed) self

homotopy equivalences, which means it is the union of path components corresponding to invertible

elements. We conclude:

πi Auth(K(G,m)) =


Aut(G) for i = 0

0 for i ≥ 1.

�
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As mentioned above, it was only a toy example to see the machinery at work.

6.3 2-types and a variant

Now for a more serious application, take A to be a 2-truncated Π-algebra, i.e. A1 is a group, A2 is a

module over it, and all the groups above dimension 2 are trivial. As we saw in 2.2.9, this is precisely

the data of a 2-truncated Π-algebra.

6.3.1 π0 point of view

We first seek to describe the set of realizations of A.

Proposition 6.3.1. Any 2-truncated Π-algebra is realizable.

Proof. The action of A1 on A2 induces a (pointed) action of A1 on the Eilenberg-Maclane space

K(A2, 2). Use this action to form the Borel construction

X = EA1 ×A1 K(A2, 2)

��
BA1

By the long exact sequence of the fibration K(A2, 2) → X → BA1, we have πi(X) ' Ai for all i,

and by construction, the action of π1(X) on π2(X) is the prescribed one. In other words, π∗(X) is

isomorphic to A as a Π-algebra. �

Proposition 6.3.2. Realizations of A are classified by group cohomology H3(A1; A2). More pre-

cisely, their weak equivalence classes are in bijection with

H3(A1; A2)/Aut(A).

Proof. Notice that the module ΩkA is zero for k ≥ 2. This means once we reach a potential 1-stage,

it lifts uniquely up to infinity. The only possible obstruction that could happen is in lifting from the

potential 0-stage to a potential 1-stage. Since we know A is realizable, the obstruction to existence

vanishes. Lifts to potential 1-stages are parametrized by

HQ2(A; ΩA) � HQ2
ΠAlg1

1
(P1A; ΩA) = HQ2

Gp(A1; A2)
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and as we have seen in A.1.7, this Quillen cohomology in groups is equal to group cohomology

(shifted by one):

H3(A1; A2).

The indeterminacy is the action of π1TM0(A) � π1B Aut(A) � Aut(A). �

The realization tree for A looks like this:

...
...

...

2 • • •

1 • • •

0 •

======== H3(A1;A2)/∼

��������

Remark 6.3.3. The topological interpretation of the cohomology class in H3(A1; A2) is the 1st k-

invariant of the realizing space X, which is the obstruction to a cross-section of the Postnikov trun-

cation X � P2X → P1X ' K(A1, 1).

Here is one way of establishing the interpretation. Use the correspondence of obstruction the-

ories between the Quillen cohomology of Π-algebras and (S,O)-cohomology [BB09, thm 4.5] of

a suitable diagram that encodes the Π-algebra we’re trying to realize [BB09, 4.3]. The obstruction

theory with (S,O)-cohomology consists of lifting hom-sets to mapping spaces in a coherent way,

one Postnikov level at a time. When lifting the “mapping n-types” to (n + 1)-types, the cohomology

classes parametrizing different lifts are essentially the nth k-invariants of the mapping spaces [BB09,

5.5].

Hence we recover a classic result of Whitehead and Maclane on the classification of pointed

homotopy 2-types [MW50, thm 1, 2].

We can extend the argument to a more general case. Let A be a Π-algebra with a group A1 and

an A1-module An in dimension n, and zero elsewhere. Again, there is a unique Π-algebra with such

data. The Borel construction in 6.3.1 also works to realize this A (just replace 2 by n).

Proposition 6.3.4. Realizations of A are classified by group cohomology Hn+1(A1; An). More pre-
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cisely, their weak equivalence classes are in bijection with

Hn+1(A1; An)/Aut(A).

Proof. The module ΩkA is zero for k ≥ n, so once we reach a potential (n − 1)-stage, it lifts

uniquely up to infinity. To get there from the potential 0-stage, we encounter some obstruction

groups HQ∗(A; ΩkA). For 1 ≤ k ≤ n − 2, these groups are in fact all trivial. Indeed, we have:

HQi(A; ΩkA) � HQi(Pn−kA; ΩkA) = HQi(A1; ΩkA)

where the abuse of notation A1 means the Π-algebra with the group A1 in dimension 1 and trivial

elsewhere. Such a Π-algebra admits a cofibrant replacement C• whose constituent Π-algebras are

also concentrated in dimension 1; take for example the simplicial resolution obtained from Free

Forget. In other words, a cofibrant replacement of such a Π-algebra is just a cofibrant replacement of

the group A1. (This is a very special feature of the free Π-algebra π∗(S 1).) Since ΩkA is concentrated

in dimension n − k > 1, applying the “derivations” functor

HomΠAlg/A
(
−,ΩkA

)
to C• yields a cosimplicial abelian group which is identically zero. It follows thatH i(A; ΩkA) is in

fact contractible for 1 ≤ k ≤ n − 2, so that the maps

TMn−2(A)→ · · · → TM1(A)→ TM0(A) ' B Aut(A)

in the tower are all weak equivalences. The only possible obstruction is in lifting from the potential

(n− 2)-stage to a potential (n− 1)-stage. Since we know A is realizable, the obstruction to existence

vanishes. Lifts to potential (n − 1)-stages are parametrized by

HQn(A; Ωn−1A) � HQn
ΠAlg1

1
(P1A; Ωn−1A)

= HQn
Gp(A1; An)

� Hn+1(A1; An)

and the indeterminacy is the action of π1(TMn−2(A)) � Aut(A). �
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The realization tree in this case looks like this:

...
...

...

n • • •

n − 1 • • •

n − 2 •

======== Hn+1(A1;An)/∼

��������

...

1 •

0 •

6.3.2 Moduli point of view

Now we want to describe the moduli space of realizations TM(A).

Theorem 6.3.5.

πiTM(A) '



Hn+1(A1; An)/Aut(A) for i = 0

Hn+1−i(A1; An) for 2 ≤ i < n

Der(A1, An) for i = n

0 for i > n

and π1TM(A) is an extension by Hn(A1; An) of a subgroup of Aut(A) corresponding to realizable

automorphisms.

Proof. We know that TM∞
∼
→ TMn−1 is a weak equivalence. Using the identifications TM∞

∼
→

TM and TMn−2
∼
→ TM0 ' B Aut(A), we can exhibit the moduli space TM as the total space of

a fiber sequence:

Hn(A; Ωn−1A)→ TM→ B Aut(A). (6.3.1)
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By the long exact sequence of homotopy groups, we obtain:

πiH
n(A; Ωn−1A)

'
→ πiTM

for all i ≥ 2, which proves the claim in that range. The bottom part of the long exact sequence is:

π2B Aut(A)→π1H
n(A; Ωn−1A)→ π1TM → π1B Aut(A)→

→ π0H
n(A; Ωn−1A)→ π0TM → π0B Aut(A)

which we can write as

0→ Hn(A1; An)→ π1TM → Aut(A)→ Hn+1(A1; An)→ π0TM → ∗

remembering that Hn+1(A1; An) is really a pointed set, on which Aut(A) acts. The sequence gives

us π0TM ' Hn+1(A1; An)/Aut(A). Now the kernel of Aut(A) → Hn+1(A1; An) is precisely the

stabilizer of the basepoint κ ∈ Hn+1(A1; An), so we get a short exact sequence of groups:

Hn(A1; An) ↪→ π1TM� Stab(κ)

which proves the claim on π1TM. �

Interpretation Working with pointed spaces instead of simplicial groups, one can see that the

spaceHn(A; Ωn−1A) above is equivalent to the derived mapping space MapBA1
(BA1, BA1(An, n + 1))

of pointed maps over BA1 [BDG04, 3.6]. That is why they have the same homotopy groups, as com-

puted previously. Here we used the notation of [BDG04, 3.1], where BG(M, i) denotes the extended

Eilenberg-Maclane object EG ×G K(M, i).

The fiber sequence 6.3.1 exhibits TM as the homotopy quotient (Hn)h Aut(A). In fact, there is

a general phenomenon at work. As explained in [BDG04, 1.1], the moduli space TM(A) always

fibers over B Aut(A), with fiber the relative moduli space TM′(A) consisting of realizations X

equipped with an identification f : π∗X ' A. In our case, the map TM(A) → B Aut(A) can be

identified with TMn−1 → TMn−2, whose fiberHn(A; Ωn−1A) is therefore equivalent to the relative

moduli space TM′(A).

More explicitly: Picking an actual k-invariant κ ∈ Hn+1(A1; An) is the same as choosing an
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(isomorphism class of) identification f : π∗X ' A for the realization X corresponding to κ. The

action of ϕ ∈ Aut(A) on Hn+1(A1; An) corresponds to the postcomposition action ϕ · (X, f ) = (X, ϕ f ).

The stabilizer of (X, f ) is the subgroup of all ϕ ∈ Aut(A) satisfying

(X, f ) = ϕ · (X, f ) = (X, ϕ f )

in that set of isomorphism classes. In other words, there is a self weak equivalence h : X ' X

realizing the automorphism:

π∗X

π∗h
��

f // A

ϕ

��
π∗X f

// A.

That is why Stab(κ) corresponds to the subgroup of realizable automorphisms of A, once all base-

points have been chosen.

Conclusion 6.3.6. Realizations of A correspond to Hn+1(A1; An)/Aut(A), viewed as the k-invariant

up to its indeterminacy. This π0 statement can be promoted to a moduli statement: The moduli

space of realizations is weakly equivalent to the mapping space where the k-invariant lives, up to

the action of Aut(A):

TM(A) ' MapBA1
(BA1, BA1(An, n + 1))h Aut(A) .

Taking the relative moduli space removes the indeterminacy:

TM
′(A) ' MapBA1

(BA1, BA1(An, n + 1)) .

There are other approaches to describing the moduli space of 2-stage spaces in the literature. See

[MS09, § 2] for an overview. However, some of the approaches are less convenient when dealing

with the non simply-connected case.
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Chapter 7

Computations with 2-truncated

Π-algebras

In chapter 6, we have seen that the obstruction theory works out nicely for 2-types. Can we use it

to study realizations of 3-types? The primary obstructions to realizing a 3-truncated Π-algebra A lie

in HQ∗(A; ΩA) = HQ∗(P2A; ΩA), that is, Quillen cohomology of a 2-truncated Π-algebra. In this

chapter, we develop tools to compute such cohomology groups.

Definition 7.0.7. Consider the category ModGp (fibred over Gp) whose objects are pairs (G, A),

where G is a group and A is a (left) module over G. Morphisms are pairs of maps ( f1 : G → G′, f2 :

A→ A′) such that f2 is f1-equivariant, i.e. f2(g · a) = f1(g) · f2(a).

Remark 7.0.8. Baues denotes this category Mod∧Z [Bau91, def I.1.7].

We are interested in this category because it is the category ΠAlg2
1 of 2-truncated Π-algebras.

However, the notation ModGp is used to suggest a more general construction which we explore in

appendix B.

7.1 Beck modules

Our first task is to describe Beck modules in the category ModGp.

Lemma 7.1.1. The forgetful functor π2 : ModGp→ Ab which sends (G, A) to the abelian group A

has a left adjoint, which sends an abelian group A to (1, A).
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Proof. A map in HomModGp ((1, A), (G, B)) is the data of a group map 1 → G (no data) and an

equivariant map ϕ : A → B. But here the equivariance condition ϕ(1 · a) = 1 · ϕ(a) is automatic,

hence we conclude:

HomModGp ((1, A), (G, B)) � HomAb(A, B).

�

In fact, ModGp has free objects.

Proposition 7.1.2. The “underlying set” functor U : ModGp→ Set2 that sends (G, A) to (UG,UA)

has a left adjoint (“free” functor) F : Set2 → ModGp which sends a pair of sets (S ,T ) to

(FS ,Z(FS )[T ]), i.e. π1 is the free group on S and π2 is the free π1-module.

Proof. Let’s forget in two steps:

ModGp U2 // Gp × Set U1×id // Set × Set

(G, A) � // (G,UA) � // (UG,UA)

so we can free up in two corresponding steps. The left adjoint of U1 × id is F × id, where F means

the free group functor. To complete the proof, we need to show that the left adjoint of U2 is the

“free π1-module” functor defined by F(G,T ) = (G,ZG[T ]).

HomModGp
(
F(G,T ), (G′, A′)

)
= HomModGp

(
(G,ZG[T ]), (G′, A′)

)
=

{
group map ϕ1 : G → G′ and ϕ1-equivariant map ϕ2 : ZG[T ]→ A′

}
=

{
ϕ1 : G → G′ and map of G-modules ϕ2 : ZG[T ]→ ϕ∗1A′

}
=

{
ϕ1 : G → G′ and map of sets T → U(ϕ∗1A′) = UA′

}
= HomGp(G,G′) × HomSet(T,UA′)

= HomGp×Set
(
(G,T ), (G′,UA′)

)
= HomGp×Set

(
(G,T ),U2(G′, A′)

)
. �

Proposition 7.1.3. A Beck module over an object (G, A) consists of the following data:

• G-modules M and B;
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• A G-map ϕ : M ⊗Z A→ B, where the tensor product has the diagonal G-action.

The correspondence is as follows: Given this data one constructs

 A ⊕ B

G n M

 p
−→

A

G

 ,
where the action of G n M on A ⊕ B is given by

(g,m) · (a, b) = (g · a, ϕ(m, g · a) + g · b).

Conversely, given a Beck module A′

G′

 p //

A

G

e
oo

one extracts the data as follows.

• M B ker(π1 p : G′ → G), endowed with the usual G-action (cf. remark after A.1.1);

• B B ker(π2 p : A′ → A), with the G-action g · b = pro jB(e(g) · b);

• ϕ(m, a) B pro jB(m · e(a)).

Proof. Since the functors π1 : ModGp → Gp and π2 : ModGp → Ab preserve limits, by propo-

sition 1.1.1 and the structure of Beck modules in Gp and Ab (cf. A.1.1 and A.2.1), we know that a

Beck module in ModGp is of the form

 A ⊕ B

G n M

 p
−→

A

G

 ,
where B is an abelian group and M is a (left) G-module. This determines the projection map p and

the three structure maps; moreover, they automatically satisfy the abelian group object conditions.

The only additional data is that the “total space” (G n M, A ⊕ B) is an object of ModGp, i.e. A ⊕ B

has a (GnM)-action. The additional conditions are that the projection map is a map in ModGp and

the three structure maps are maps in ModGp/(G, A). Let us describe those conditions.
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1. The projection map p is a map in ModGp.

p2((g,m) · (a, b)) = p1(g,m) · p2(a, b)

= g · a.

In other words, the A-component of (g,m) · (a, b) is just g · a. Let us denote its B-component by

ψ(g,m, a, b), so we have

(g,m) · (a, b) = (g · a, ψ(g,m, a, b)) .

2. The multiplication map µ is a map in ModGp/(G, A). First, we have the following pull-

back in ModGp:  A ⊕ B

G n M

 ×
A

G



 A ⊕ B

G n M

 =

 A ⊕ B ⊕ B

G n (M × M)

 ,

where G acts diagonally on M × M and G n (M × M) acts on A ⊕ B ⊕ B as follows:

(g,m1,m2) · (a, b1, b2) = (g · a, ψ(g,m1, a, b1), ψ(g,m2, a, b2)) .

The multiplication map µ is given by the formula

µ

 a, b1, b2

g,m1,m2

 =

 a, b1 + b2

g,m1 + m2

 ,
which commutes with the projection down to (G, A). Applying µ to the left-hand side of the previous

equality, we obtain

µ ((g,m1,m2) · (a, b1, b2)) = µ(g,m1,m2) · µ(a, b1, b2)

= (g,m1 + m2) · (a, b1 + b2)

= (g · a, ψ(g,m1 + m2, a, b1 + b2).

Applying µ to the right-hand side yields

µ (g · a, ψ(g,m1, a, b1), ψ(g,m2, a, b2)) = (g · a, ψ(g,m1, a, b1) + ψ(g,m2, a, b2)) .
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Equating the two sides yields the condition

ψ(g,m1 + m2, a, b1 + b2) = ψ(g,m1, a, b1) + ψ(g,m2, a, b2). (7.1.1)

In particular, setting b1 and m2 to 0, we obtain

ψ(g,m, a, b) = ψ(g,m, a, 0) + ψ(g, 0, a, b).

3. The unit map e is a map in ModGp/(G, A).

e(g · a) = e(g) · e(a)

(g · a, 0) = (g, 0) · (a, 0)

= (g · a, ψ(g, 0, a, 0)

We obtain the condition ψ(g, 0, a, 0) = 0, which we already knew from (7.1.1) by setting m2 and b2

to 0.

4. The inverse map ι is a map in ModGp/(G, A).

ι ((g,m) · (a, b)) = ι(g,m) · ι(a, b)

(g · a,−ψ(g,m, a, b)) = (g,−m) · (a,−b)

= (g · a, ψ(g,−m, a,−b)

We obtain the condition ψ(g,−m, a,−b) = −ψ(g,m, a, b), which we already knew from (7.1.1) by

setting m2 = −m1 and b2 = −b1.

Now let us describe the action of G n M on A ⊕ B. Applying the action to (a, b) = (a, 0) + (0, b)

yields

ψ(g,m, a, b) = ψ(g,m, a, 0) + ψ(g,m, 0, b).

Combined with condition (7.1.1), we obtain:

ψ(g, 0, a, b) = ψ(g,m, 0, b) for all g,m, a, b,

so these are all equal to ψ(g, 0, 0, b). This defines an action of G on B. Indeed, for a fixed g ∈ G, the
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formula g ∗ b B ψ(g, 0, 0, b) gives a linear endomorphism of B, and they compose correctly:

(gg′, 0) · (0, b) = (g, 0) ·
(
(g′, 0) · (0, b)

)
= (g, 0) ·

(
0, ψ(g′, 0, 0, b)

)
=

(
0, ψ

(
g, 0, 0, ψ(g′, 0, 0, b)

))
;

gg′ ∗ b = ψ(gg′, 0, 0, b)

= B − component of (gg′, 0) · (0, b)

= ψ
(
g, 0, 0, ψ(g′, 0, 0, b)

)
= g ∗ (g′ ∗ b).

We will denote this action g · b from now on. Let us now describe the other piece of data, coming

from ψ(g,m, a, 0):

(g,m) · (a, 0) = (1,m)(g, 0) · (a, 0)

= (1,m) · ((g, 0) · (a, 0))

= (1,m) · (g · a, 0)

= (g · a, ψ(1,m, g · a, 0).

Taking B-components, we obtain:

ψ(g,m, a, 0) = ψ(1,m, g · a, 0).

In light of this, let us define:

ϕ(m, a) B ψ(1,m, a, 0),

which is linear in m and in a, thus can be viewed as a map ϕ : M ⊗Z A → B. To see how this map

interacts with the G-actions, let’s use the factorization (g, 0)(1,m) = (g, g · m):

(g, g · m) · (a, 0) = (g, 0) · ((1,m) · (a, 0))

(g · a, ψ(g, g · m, a, 0)) = (g, 0) · (a, ψ(1,m, a, 0))

= (g · a, ψ (g, 0, a, ψ(1,m, a, 0)))
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Taking B-components, we obtain:

ψ(g, g · m, a, 0) = ψ (g, 0, a, ψ(1,m, a, 0))

ψ(1, g · m, g · a, 0) = ψ (g, 0, 0, ψ(1,m, a, 0))

ϕ(g · m, g · a) = g · ψ(1,m, a, 0)

= g · ϕ(m, a).

Hence the map ϕ is G-linear, where G acts diagonally on M ⊗Z A. The map ϕ and the G-action on

B determine the action of G nM on A ⊕ B, since we have ψ(g,m, a, b) = ϕ(m, g · a) + g · b and thus:

(g,m) · (a, b) = (g · a, ϕ(m, g · a) + g · b) . (7.1.2)

This proves one direction of the correspondence.

Conversely, given G-modules M and B, and a G-linear map ϕ : M ⊗Z A→ B, we want to show

that the formulas above define a Beck module over (G, A). First, let us check that the formula (7.1.2)

defines an actions of G n M on A ⊕ B. For fixed (g,m) it’s clearly an endomorphism of A ⊕ B. Let

us check that they compose correctly:

(g,m) ·
(
(g′,m′) · (a, b)

)
= (g,m) ·

(
g′ · a, ϕ(m′, g′ · a) + g′ · b

)
=

(
gg′ · a, ϕ(m, gg′ · a) + g · ϕ(m′, g′ · a) + gg′ · b

)
;(

(g,m)(g′,m′)
)
· (a, b) = (gg′,m + g · m′) · (a, b)

=
(
gg′ · a, ϕ(m + g · m′, gg′ · a) + gg′ · b

)
=

(
gg′ · a, ϕ(m, gg′ · a) + ϕ(g · m′, gg′ · a) + gg′ · b

)
=

(
gg′ · a, ϕ(m, gg′ · a) + g · ϕ(m′, g′ · a) + gg′ · b

)
.

By our discussion of Beck modules in ModGp, the only thing that remains to check is that the

multiplication map µ is in ModGp/(G, A), which is equivalent to condition (7.1.1) above. In our

construction, the condition becomes

ϕ(m + m′, g · a) + g · (b + b′) = ϕ(m, g · a) + g · b + ϕ(m′, g · a) + g · b′

which holds indeed. �
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Proposition 7.1.4. In the correspondence of proposition 7.1.3, a morphism in Mod(G,A) from (M, B, ϕ)

to (M′, B′, ϕ′) corresponds to the data of G-maps α : M → M′ and β : B → B′ such that the fol-

lowing diagram commutes:

M ⊗ A

α⊗1
��

ϕ // B

β

��
M′ ⊗ A

ϕ′
// B′.

Proof. Easy verification. �

The category of modules over (G, A) has a good notion of tensor product.

Definition 7.1.5. The tensor product of two (G, A)-modules (M, B, ϕ) and (M′, B′, ϕ′) is

(M, B, ϕ) ⊗ (M′, B′, ϕ′) =

=
(
M ⊗ M′,M ⊗ B′ ⊕ B ⊗ M′,m ⊗ m′ ⊗ a 7→ (m, ϕ′(m′, a), ϕ(m, a) ⊗ m′

)
where by default, ⊗ applied to G-modules means tensored over Z, with the diagonal G-action. This

tensor product should be thought of as “over the action of the object ({1}, 0) of ModGp”, or as “over

the module (Z, 0, 0)”, by analogy with the tensor product of modules over groups.

Proposition 7.1.6. 1. Mod(G,A) equipped with the direct sum ⊕ and tensor product ⊗ is a bi-

monoidal category, where the zero module plays the role of zero object, and (Z, 0, 0) is the

unit object (here Z has the trivial G-action).

2. The full embedding Zero : ModG → Mod(G,A) and the forgetful functor π1 : Mod(G,A) →

ModG are bimonoidal functors, i.e. compatible with the usual ⊕ and ⊗ in ModG.

Proof. Routine verification. �

7.2 Abelianization

Now we set out to find the abelianization of (G, A)
id
→ (G, A).

Lemma 7.2.1. If A is a G-module, then we have naturally isomorphic G-modules:

ZG ⊗l
Z A � ZG ⊗d

Z A
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where the left-hand side has a G-action by left multiplication on the first factor and the right-hand

side has the diagonal G-action.

Proof. Consider the map:

θ : ZG ⊗l
Z A→ ZG ⊗d

Z A

g ⊗ a 7→ g ⊗ ga

It is a map of abelian groups: linear in g by definition and clearly linear in a. Moreover, it is a

G-map:

θ (h · (g ⊗ a)) = θ (hg ⊗ a))

= hg ⊗ hga

= h · (g ⊗ ga)

= h · θ(g ⊗ a).

In fact, θ is an isomorphism of abelian groups (and hence of G-modules) whose inverse is:

θ−1(g ⊗ a) = g ⊗ g−1a.

Finally, note that the formula defines an isomorphism that is natural in G and in A. �

Proposition 7.2.2. For (G, A) in ModGp, the abelianization Ab(G,A)(G, A) of the identity is the

following module: (
IG,ZG ⊗Z A, IG ⊗Z A

incl⊗1
−→ ZG ⊗Z A

)
,

where the second G-module has the diagonal action.

Proof. It is straightforward to check that this works. For a more enlightening discussion, let’s see

how we obtain the result. First, by categorical nonsense (proposition B.2.3), the first G-module has

to be IG. Indeed we have:

π1Ab(G,A)(G, A) = Abπ1(G,A)π1(G, A) = AbGG = IG

where π1 is the “ground level” forgetful functor, denoted U in appendix B.
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Now, let us identify global sections in ModGp, i.e. maps in

HomModGp/(G,A)


A

G

 id
→

A

G

 ,
 A ⊕ B

G n M

 p
→

A

G


 .

Such a section s :

A

G

→
 A ⊕ B

G n M

 consists of the following data:

• A section s1 of G n M
p1
→ G, where by abuse of notation we also denote the corresponding

crossed homomorphism G → M by s1.

• A section s2 of A ⊕ B → A that is s1-equivariant (to ensure that s is a map in ModGp). By

the same abuse of notation, we also denote the relevant component A→ B by s2.

The condition on s2 is the following:

s2(g · a) = s1(g) · s2(a)

(g · a, s2(g · a)) = (g, s1(g)) · (a, s2(a))

= (g · a, ϕ(s1(g), g · a) + g · s2(a)) .

In other words, s2 satisfies the following cocycle condition in B:

s2(g · a) = ϕ(s1(g), g · a) + g · s2(a). (7.2.1)

The map s2 ∈ HomAb(A, B) � HomG(ZG ⊗Z A, B) corresponds to an adjoint map of G-modules:

σ2 : ZG ⊗Z A→ B

g ⊗ a 7→ g · s2(a)

where G acts on the left-hand side by left multiplication. Note the following:

s2(ga) = 1 · s2(ga) = σ2(1 ⊗ ga)

ϕ(s1(g), ga) = ϕ(σ1(1 − g), ga)

g · s2(a) = σ2(g ⊗ a).
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So the map s2 satisfies the cocycle condition (7.2.1) iff its adjoint map σ2 satisfies the “adjoint”

cocycle condition:

σ2(1 ⊗ ga) = ϕ(σ1(1 − g), ga) + σ2(g ⊗ a). (7.2.2)

We’re looking for a G-module B′ and a map ψ : IG ⊗Z A→ B′ such that the above data is the same

as a map in HomMod(G,A) ((IG, B′, ψ), (M, B, ϕ)). Such a map consists of the data of two G-maps

σ1 : IG → M and β : B′ → B such that the following diagram commutes:

IG ⊗Z A

σ1⊗1
��

ψ // B′

β

��
M ⊗ A ϕ

// B

or in other words, the following condition holds:

ϕ(σ1(1 − g), a) = βψ(1 − g, a).

Comparing this to condition (7.2.2), one good candidate is to take:

B′ = ZG ⊗Z A

ψ(1 − g, a) = 1 ⊗ a − g ⊗ g−1a

β = σ2

We only need to check that this ψ : IG ⊗Z A→ ZG⊗Z A is indeed a G-map, where the left-hand side

has the diagonal action and the right-hand side has the action by multiplication on the left factor. It

is clearly a map of abelian groups; let us check the G-equivariance:

ψ (h · ((1 − g) ⊗ a)) = ψ (h(1 − g) ⊗ ha)

= ψ ((1 − hg) ⊗ ha − (1 − h) ⊗ ha)

= 1 ⊗ h · a − hg ⊗ g−1h−1ha − 1 ⊗ h · a + h ⊗ h−1ha

= h ⊗ a − hg ⊗ g−1a

= h ·
(
1 ⊗ a − g ⊗ g−1a

)
= h · ψ((1 − g) ⊗ a).
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Now it’s annoying to have the left multiplication action on ZG ⊗Z A, since A is itself a G-module

and in that case we usually take the diagonal action. Let us use lemma 7.2.1 to fix this:

IG ⊗Z A
ψ // ZG ⊗l

Z A � // ZG ⊗d
Z A

(1 − g) ⊗ a � // 1 ⊗ a − g ⊗ g−1a � // 1 ⊗ a − g ⊗ gg−1a = (1 − g) ⊗ a.

This is precisely the statement. �

7.3 Pushforward

In order to compute any abelianization, let us describe pushforwards in ModGp (cf. proposition

1.1.7). First, let us describe free modules over (G, A).

Lemma 7.3.1. The forgetful functor Mod(G,A) → G-Mod2 defined by (M, B, ϕ) 7→ (M, B) has a left

adjoint that sends (M, B) to

(M, (M ⊗Z A) ⊕ B,M ⊗Z A ↪→ (M ⊗Z A) ⊕ B).

Proof. A map in

HomMod(G,A)

(
(M, (M ⊗Z A) ⊕ B,M ⊗Z A ↪→ (M ⊗Z A) ⊕ B) ,

(
M′, B′, ϕ′

))
consists of the data of two G-maps:

α : M → M′

β : (M ⊗Z A) ⊕ B→ B′

making the following diagram commute:

M ⊗Z A

α⊗1
��

� � // M ⊗Z A ⊕ B

β

��
M′ ⊗Z A

ϕ′
// B′.

The condition says that β is ϕ′ ◦ (α⊗ 1) on the first summand, and there is no constraint for β on the
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second summand. Hence this is the data of any two G-maps

α : M → M′

β2 : B→ B′

i.e. a map in HomMod2
G

((M, B), (M′, B′)). �

In particular, the free (G, A)-module on sets (S ,T ), is given by

(ZG[S ], (ZG[S ] ⊗Z A) ⊕ ZG[T ],ZG[S ] ⊗Z A ↪→ (ZG[S ] ⊗Z A) ⊕ ZG[T ]).

Notation. Let us denote the latter free module F(S ,T ). The arguments could also be abelian groups

or G-modules.

Lemma 7.3.2. For a map f :

A

G

→
A′

G′

, there is a natural G′-map

ψ : f1∗(M ⊗Z A)→ f1∗M ⊗Z A′

g′ ⊗ (m ⊗ a) 7→ (g′ ⊗ m) ⊗ g′ f2(a).

Proof. The map is well-defined: in f1∗(M ⊗Z A) we have

g′ f1(g) ⊗ (m ⊗ a) = g′ ⊗ (gm ⊗ ga)

and the first expression is sent to

(g′ f1(g) ⊗ m) ⊗ g′ f1(g) f2(a)

whereas the second expression is sent to

(g′ ⊗ gm) ⊗ g′ f2(ga)

= (g′ f1(g) ⊗ m) ⊗ g′ f1(g) f2(a).
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Moreover, the map is a G′-map:

g′′ ·
(
g′ ⊗ (m ⊗ a)

)
= g′′g′ ⊗ (m ⊗ a)

7→ (g′′g′ ⊗ m) ⊗ g′′g′ f2(a)

= g′′ ·
(
(g′ ⊗ m) ⊗ g′ f2(a)

)
= g′′ · ψ

(
g′ ⊗ (m ⊗ a)

)
.

That the map is natural (in f ) is easy to check. �

Proposition 7.3.3. For a map f :

A

G

 →
A′

G′

, the pushforward functor f∗ associates to a module

(M, B, ϕ) over

A

G

 the module:

(
f1∗M, f1∗M ⊗Z A′ q f1∗(M⊗ZA) f1∗B, f1∗M ⊗Z A′

i1
−→ f1∗M ⊗Z A′ q f1∗(M⊗ZA) f1∗B

)
where the pushout is defined using the map ψ in the previous lemma.

Proof. Recall what the pullback does. Given a module (M′, B′, ϕ′) over (G′, A′), its pullback

f ∗(M′, B′, ϕ′) is the module (
f ∗1 M′, f ∗1 B′, f ∗2ϕ

′
)

where the latter map is given by

f ∗2ϕ
′ : f ∗1 M′ ⊗Z A→ f ∗1 B′

m′ ⊗ a 7→ ϕ′(m′, f2(a)).

A map in HomMod(G,A) ((M, B, ϕ), f ∗(M′, B′, ϕ′)) consists of the data of G-maps

α : M → f ∗1 M′

β : B→ f ∗1 B′

satisfying the condition

βϕ(m ⊗ a) = ϕ′ (α(m) ⊗ f2(a))
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for all m ∈ M, a ∈ A. By adjunction, this is the same data as two G′-maps

α : f1∗M → M′

β : f1∗B→ B′

satisfying the condition

β
(
g′ ⊗ ϕ(m ⊗ a)

)
= ϕ′

(
α(g′ ⊗ m) ⊗ g′ f2(a)

)
(7.3.1)

for all m ∈ M, a ∈ A, and g′ ∈ G′ (or only for g′ = 1, by equivariance). Using free modules over

(G′, A′) , this is the same data as a map

F( f1∗M, f1∗B)→ (M′, B′, ϕ′)

satisfying (7.3.1). By lemma 7.3.1, the free module is

(
f1∗M, ( f1∗M ⊗Z A′) ⊕ f1∗B, incl1

)
so we’re looking for G′-maps α, β

f1∗M ⊗Z A′

α⊗1
��

� � incl1 // ( f1∗M ⊗Z A′) ⊕ f1∗B

ϕ′◦(α⊗1)+β

��
M′ ⊗Z A′

ϕ′
// B′

such that the diagram

f1∗(M ⊗Z A)

ψ

��

f1∗ϕ // f1∗B� _
incl2
��

f1∗M ⊗Z A′

α⊗1
��

( f1∗M ⊗Z A′) ⊕ f1∗B

ϕ′◦(α⊗1)+β

��
M′ ⊗Z A′

ϕ′
// B′

commutes. Taking the pushout P of the top left corner, we see this is the same data as α and the
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bottom right map P→ B′ in the commutative diagram

f1∗(M ⊗Z A)

ψ

��

f1∗ϕ // f1∗B

��
β

��

f1∗M ⊗Z A′

α⊗1
��

// P

���
�
�

M′ ⊗Z A′
ϕ′

// B′

This proves the assertion. �

7.4 Hochschild cohomology

We start with an object (G, A) of ModGp and a module (M, B, ϕ) over it, cf. 7.1.3. Our goal is to

compute the Hochschild cohomology

HH∗ ((G, A); (M, B, ϕ))

= Ext∗
(
Ab(G,A)(G, A), (M, B, ϕ)

)
= Ext∗ ((IG,ZG ⊗Z A, incl), (M, B, ϕ))

where the last equality comes from 7.2.2.

7.4.1 Extended group cohomology

As in the case of groups, the module of differentials embeds in a projective (even free) module.

Indeed, there is a short exact sequence of (G, A)-modules:

0 // (IG,ZG ⊗Z A, incl) // (ZG,ZG ⊗Z A, id) // (Z, 0, 0) // 0 (7.4.1)

where Z in the rightmost module has the trivial G-action. The middle module is the free module

F(1, 0), cf. 7.3.1.

Notation. In a manner analogous to group cohomology, let us write

H∗ ((G, A); (M, B, ϕ)) B Ext∗ ((Z, 0, 0), (M, B, ϕ))
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in the category Mod(G,A). They are the derived functors of what could be called the orthogonal

invariants functor:

MG,⊥ B Hom ((Z, 0, 0), (M, B, ϕ)) = H0 ((G, A); (M, B, ϕ))

= {m ∈ M | gm = m ∀g ∈ G and ϕ(m, a) = 0 ∀a ∈ A}.

Applying Hom (−, (M, B, ϕ)) to (7.4.1), we obtain the long exact sequence:

· · · → Exti ((Z, 0, 0), (M, B, ϕ))→ Exti (F(1, 0), (M, B, ϕ))→

→ Exti ((IG,ZG ⊗Z A, incl), (M, B, ϕ))→ Exti+1 ((Z, 0, 0), (M, B, ϕ))→ · · ·
(7.4.2)

and since F(1, 0) is projective, the long exact sequence breaks into the exact sequence

0→ MG,⊥ → M → Γ ((G, A), (M, B, ϕ))→ H1 ((G, A); (M, B, ϕ))→ 0 (7.4.3)

for i = 0 and the isomorphisms

HHi ((G, A); (M, B, ϕ)) � Hi+1 ((G, A); (M, B, ϕ))

for i ≥ 1. In (7.4.3), Γ refers to “global sections” or “derivations”, and as for group cohomology,

the sequence exhibits H1 as derivations modulo principal derivations.

Conclusion 7.4.1. Computing HH∗ is essentially the same as computing H∗, which is our new goal.

7.4.2 Reduction: M = 0

Our notion of H∗ is indeed a generalization of group cohomology. The idea is that we can forget

what’s happening on the “second floor” and only look at the “ground floor”, the case of groups.

More precisely, we have the forgetful functor π1 which sits in the adjunction

ModGp
π1 // Gp

Zero
oo

and as we know by B.2.1, Zero is in fact a left and right adjoint of π1, so π1 preserves all limits. The

unit of the adjunction is

η :

A

G

→
0

G


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and the counit is the identity functor on Gp. The induced adjunction on Beck modules (cf. 4.1.5) is

Mod(G,A)
π1 //ModG

Zero
oo

(M, B, ϕ) � // M

(N, 0, 0) N�oo

Take a base object (G, A) in ModGp and a G-module N. The induced π1 preserves projectives (since

Zero is exact), so we have a comparison map (cf. 4.2.1)

HH∗(G; N)
�
→ HH∗ ((G, A); (N, 0, 0))

which is an iso since π1 is exact. Similarly, π1 induces an iso

H∗(G; N)
�
→ H∗ ((G, A); (N, 0, 0))

This can be checked directly, or by the 5-lemma applied to the map that π1 induces from the long

exact sequence (7.4.2) to the analogous one for groups.

We have a short exact sequence of (G, A)-modules:

0→ (0, B, 0)→ (M, B, ϕ)→ (M, 0, 0)→ 0

where in fact, the map on the right is the unit map of the adjunction on Beck modules, 1→ Zero◦π1.

Applying Hom ((Z, 0, 0),−), we obtain a long exact sequence

· · · → Exti ((Z, 0, 0), (0, B, 0))→ Exti ((Z, 0, 0), (M, B, ϕ))→

→ Exti ((Z, 0, 0), (M, 0, 0))→ Exti+1 ((Z, 0, 0), (0, B, 0))→ · · ·
(7.4.4)

which we can rewrite as

· · · → Hi ((G, A); (0, B, 0))→ Hi ((G, A); (M, B, ϕ))→

→ Hi(G; M)→ Hi+1 ((G, A); (0, B, 0))→ · · ·
(7.4.5)

In that sense, the groups Hi ((G, A); (0, B, 0)) (and the maps around them) measure the loss of in-
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formation when forgetting from extended group cohomology Hi (((G, A); (M, B, ϕ)) to usual group

cohomology Hi(G; M).

Conclusion 7.4.2. Assuming we know how to compute group cohomology and assuming we can

understand the long exact sequence (7.4.5), the important step is to study the cohomology groups

H∗ ((G, A); (0, B, 0)). This is our new goal.

7.4.3 Reduction: Derived functors of indecomposables

We’re trying to compute Ext∗ ((Z, 0, 0), (0, B, 0)) in the category of (G, A)-modules. Consider B

fixed and let us vary the source.

Proposition 7.4.3.

HomMod(G,A)

(
(M′, B′, ϕ′), (0, B, 0)

)
� HomModG (B′/ imϕ′, B)

Proof. A map from (M′, B′, ϕ′) to (0, B, 0) consists of the data of a G-map β : B′ → B such that the

diagram

M′ ⊗Z A

��

ϕ′ // B′

β

��
0 // B

commutes, i.e. such that β vanishes on imϕ′. This is exactly the data of a G-map β : B′/ imϕ′ →

B. �

We have factored our functor as follows:

Mod(G,A)
Q //

Hom(−,(0,B,0))

66ModG
Hom(−,B)// Ab (7.4.6)

where the functor Q : (M, B, ϕ) 7→ B/ imϕ can be thought as some kind of “indecomposables”

functor.

Proposition 7.4.4. The functor Q preserves projectives.

Proof. In both categories, projectives are retract of frees, so it suffices to show that Q preserves

frees (or at least sends them to projectives). A free (G, A)-module on sets S and T is

F(S ,T ) = (ZG[S ],ZG ⊗Z A ⊕ ZG[T ], incl1)
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and the functor Q sends it to ZG[T ], which is a free G-module. �

Therefore, the factorization (7.4.6) applied to the module (Z, 0, 0) yields a Grothendieck spectral

sequence (first quadrant, cohomologically graded):

Es,t
2 = Exts (LtQ(Z, 0, 0), B)⇒ Exts+t ((Z, 0, 0), (0, B, 0)) (7.4.7)

Note that Es,0
2 is zero, since Q(Z, 0, 0) is zero. Moreover, the edge morphism

Extt ((Z, 0, 0), (0, B, 0))� E0,t
∞ ↪→ E0,t

2 = Hom (LtQ(Z, 0, 0), B)

is the homology preservation map [Bar06, 2.2, 2.6] of the left exact functor Hom (−, B), applied to

Q of a projective resolution of (Z, 0, 0).

Conclusion 7.4.5. Assuming we can understand the composite spectral sequence (7.4.7), an impor-

tant step is to compute L∗Q(Z, 0, 0), the left derived functors of Q applied to (Z, 0, 0). It is now our

goal.

7.4.4 Bar resolution of (Z, 0, 0)

In order to compute L∗Q(Z, 0, 0), we will construct a bar resolution of (Z, 0, 0), which is the simpli-

cial resolution associated to the comonad “Free of Forget”, in the adjunction:

Ab2
F //Mod(G,A)
U

oo

(S ,T ) � // (ZG ⊗Z S , (ZG ⊗Z S ) ⊗Z A ⊕ ZG ⊗Z T, incl1)

(M, B) (M, B, ϕ)�oo

The G-actions are: left multiplication on ZG⊗S , diagonal action on (ZG⊗S )⊗A (meaning G acts on

the ZG factor and on A), and left multiplication on ZG ⊗ T . Here, tensor products without subscript

mean over Z. Let us denote by X• the simplicial resolution of (Z, 0, 0), so that Xn = (FU)n+1(Z, 0, 0).

A straighforward computation yields the following.

Proposition 7.4.6. The constituent (G, A)-modules Xn are

(
ZG⊗n+1,⊕n+1(ZG⊗n+1 ⊗ A), incl1

)
.
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On ZG⊗n+1, G acts by left multiplication i.e. on the left-most tensor factor ZG. On ⊕n+1(ZG⊗n+1⊗A),

the action is more subtle: On the first summand, G acts by multiplication on the left-most ZG factor

and on the factor A, whereas on the subsequent summands, G only acts by multiplication on the

left-most factor ZG.

Corollary 7.4.7. Q(X•) is the simplicial G-module whose nth constituent is ⊕n(ZG⊗n+1 ⊗ A), on

which G acts by left multiplication, i.e. on the left-most ZG factor of each summand.

Since X• → (Z, 0, 0) is a free resolution of (Z, 0, 0) in Mod(G,A), the derived functors of Q on

(Z, 0, 0) can be computed as π∗Q(X•), i.e. the homology of the associated chain complex.
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Appendix A

Examples related to Quillen cohomology

In this appendix, we review some standard examples related to Quillen cohomology. We discuss in

particular the category of Beck modules, the abelianization functor, and the pushforward.

A.1 Groups

A.1.1 Beck modules

Proposition A.1.1. A Beck module over a group G is a split extension of G (with the data of a

splitting) with abelian kernel:

1 // K // E
p // G
s

oo // 1.

Proof. Standard computation; see [Bar02, section 6.1]. �

Remark A.1.2. This category is equivalent to the standard category of (say, left) modules over G.

To a split extension, one associates the kernel K with induced action from G, given by g · k = s(g)k.

To a usual module K, one associates the semidirect product G n K → G. Note that this is the same

as a module over the group ring ZG. It’s also the same as (covariant) functors from the one-object

category G to Ab.

Proposition A.1.3. For a map of groups f : H → G, the pushforward functor f∗ associates to an

H-module M the G-module:

ZG ⊗ZH M.
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Proof. We know this is the pushforward from ZH-modules to ZG-modules. �

Proposition A.1.4. 1. The module AbXX of a group G is the augmentation ideal IG = ker(ZG
ε
→

Z).

2. The abelianization functor AbG : Gp/G → Ab(Gp/G) associates to H → G the G-module:

ZG ⊗ZH IH .

Proof. 1. Standard computation in homological algebra. Let us describe the correspondence more

explicitly. Recall that for groups, “global sections” correspond to crossed homomorphisms:

Γ(G,M) = HomGp/G(G
id
→ G,G n M → G)

�
{
ϕ : G → M | ϕ(gg′) = ϕ(g) + g · ϕ(g′)

}
.

Such a crossed homomorphism corresponds, via the adjunction, to the G-module map α : IG → M

defined by:

α(1 − g) = ϕ(g).

2. Follows from propositions 1.1.7 and A.1.3. �

A.1.2 Hochschild cohomology

Proposition A.1.5. For a module GnM → G over a group G, Hochschild cohomology is essentially

group cohomology, with grading shifted by one:

HHi(G; M) �


Γ(G,M) if i = 0,

Hi+1(G; M) if i > 0.

Proof. We have:

HHi(G; M) = Exti(AbGG,M) = Exti(IG,M).

There is also a short exact sequence of G-modules:

0→ IG → ZG
ε
→ Z→ 0.
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Since ZG is a projective (free!) G-module, we have Exti(ZG,M) = 0 for all i > 0 and the associated

long exact sequence of right derived functors of Hom(−,M) yields:

Exti(IG,M) � Exti+1(Z,M) = Hi+i(G; M)

for i > 0 and

0→ MG ↪→ M → Γ(G,M)� H1(G; M)→ 0

around i = 0. �

A.1.3 Quillen cohomology

Proposition A.1.6. Let G be a group. The Quillen homology object of G is weakly equivalent to a

constant object:

LG
∼
→ AbGG.

Proof. Standard homological / homotopical algebra. One way to prove it relies on Quillen’s ma-

chinery of simplicial modules over a simplicial ring (since G-modules are ZG-modules) and the fact

that a weak equivalence of simplicial sets induces an iso on homology. �

Corollary A.1.7. The Quillen homology of a group G is:

HQ∗(G) =


IG if ∗ = 0,

0 if ∗ , 0.

The Quillen cohomology of G with coefficients in a module M is:

HQ∗(G; M) = HH∗(G; M)

as given in A.1.5.

In other words: For groups, it all reduces to homological algebra. The homotopical algebra

doesn’t bring anything new.
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A.2 Abelian groups

Proposition A.2.1. A Beck module over an abelian group A is a split extension of A in abelian

groups:

0 // K // E � A ⊕ K
p // A
e

oo // 0.

Proof. Not hard. Basically the same as for groups, except the “total space” has to be abelian. �

Remark A.2.2. This category is equivalent to Ab. To a split extension, one associates the kernel K.

To an abelian group K, one associates the projection A⊕K → A. It’s also the same as functors from

the trivial category ∗ to Ab.

Proposition A.2.3. For a map of abelian groups f : A → B, the pushforward functor f∗ is the

identify functor on Ab, i.e. sends A ⊕ K to B ⊕ K.

Proof. The pullback functor f ∗ is the identity on Ab, under the above identification. �

Proposition A.2.4. The abelianization functor AbA : Ab/A → Ab(Ab/A) � Ab is the “source”

functor, which sends B→ A to B.

Proof. Under the above identification, the forgetful functor UA : Ab → Ab/A sends an abelian

group K to A ⊕ K
π1
→ A. Thus we have:

HomAb/A(B→ A,UA(K)) = HomAb/A(B→ A, A ⊕ K → A)

= HomAb(B,K).

�

A.2.1 Hochschild cohomology

Proposition A.2.5. For a module B over an abelian group A, i.e. just an abelian group B, Hochschild

cohomology is given by:

HHi(A; B) = ExtiAb(A, B).
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Proof. By proposition A.2.4, we have:

HHi(A; B) = Exti(AbAA, B)

= ExtiAb(A, B) �

A.3 Associative algebras

By ring, we will mean by default an associative, unital ring. Fix a ground ring R which is commuta-

tive, and consider the usual notion of associative R-algebra, i.e. a ring A which is also an R-module

in a compatible way. Equivalently, it is a ring A with a ring map R→ A which lands in the center of

A.

Notation. Let AlgR denote the category of R-algebras.

A.3.1 Beck modules

Proposition A.3.1. A Beck module over an associative R-algebra A is a split extension of A (with

the data of a splitting) with square zero kernel:

0 // M // E � A ⊕ M
p // A
s

oo // 0.

Equivalently, it is the data of an A-bimodule M over R, i.e. the two actions coincide for scalars

(elements of R).

Proof. Standard; see e.g. [Bar02, § 6.1]. Since it is a formative exercise, let us prove it anyway.

As abelian groups, we have a split extension

A ⊕ M
p // A
s

oo

which determines the abelian group object structure maps. The latter must be maps in AlgR/A, and

the projection map p must be a map in AlgR. Those are all the conditions.

1. The projection map p is a map in AlgR.

p
(
(a,m)(a′,m′)

)
= p(a,m)p(a′,m′) = aa′
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In other words, we have

(a,m)(a′,m′) =
(
aa′, ϕ(a,m, a′,m′)

)
for some function ϕ.

2. The multiplication map µ is a map in AlgR/A. Note that the product inside A ⊕ M ⊕ M =

(A ⊕ M) ×A (A ⊕ M) is given by:

(a,m1,m2)(a′,m′1,m
′
2) =

(
aa′, ϕ(a,m1, a′,m′1), ϕ(a,m2, a′,m′2)

)
and µ is a ring map. Applying it to both sides, we obtain:

µ(LHS) = µ(a,m1,m2)µ(a′,m′1,m
′
2)

= (a,m1 + m2)(a′,m′1 + m′2)

=
(
aa′, ϕ(a,m1 + m2, a′,m′1 + m′2)

)
µ(RHS) =

(
aa′, ϕ(a,m1, a′,m′1) + ϕ(a,m2, a′,m′2)

)
and hence the condition:

ϕ(a,m1 + m2, a′,m′1 + m′2) = ϕ(a,m1, a′,m′1) + ϕ(a,m2, a′,m′2).

In particular, we get:

ϕ(a,m, a′,m′) = ϕ(a,m, a′, 0) + ϕ(a, 0, a′,m′)

as well as ϕ(a, 0, a′, 0) = 0, which is the condition of the unit map s being a map in AlgR/A.

Using the decomposition (a,m) = (a, 0) + (0,m), we also obtain:

(a,m)(a′,m′) = (a, 0)(a′, 0) + (a, 0)(0,m′) + (0,m)(a′, 0) + (0,m)(0,m′)

= (aa′, 0) +
(
0, ϕ(a, 0, 0,m′)

)
+

(
0, ϕ(0,m, a′, 0)

)
+

(
0, ϕ(0,m, 0,m′)

)
=

(
aa′, ϕ(a, 0, 0,m′) + ϕ(0,m, a′, 0) + ϕ(0,m, 0,m′)

)
.

However, we know:

ϕ(0,m, 0,m′) = ϕ(0,m, 0, 0) + ϕ(0, 0, 0,m′) = 0 + 0 = 0
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so the previous condition becomes:

ϕ(a,m, a′,m′) = ϕ(a, 0, 0,m′) + ϕ(0,m, a′, 0)

=: a · m′ + m · a′.

By the associativity of the product in A⊕M, these formulas for a ·m and m · a define a left and right

action of A on M, respectively. We can rewrite the formulas as:

a · m = s(a) m ∈ M ⊂ A ⊕ M

m · a = m s(a) ∈ M ⊂ A ⊕ M.

It remains to describe the behavior as R-algebras.

3. R-action. For a scalar r ∈ R, also denote by r its image in A (or any R-algebra). We know the

section (unit map) is a map in AlgR:

R

�� ##FFFFFFFFF

A ⊕ M
p // A
s

oo

so that r is (r, 0) in A ⊕ M. In particular, (r, 0) is in the center of A ⊕ M and the two actions of A on

M agree over R.

In summary, we have shown that a Beck module over A is exactly the data of a split extension

A ⊕ M → A of R-algebras with square zero kernel (and the data of the splitting), or equivalently, of

an A-bimodule M over R. The three categories are isomorphic, via the constructions above. �

A.3.2 Abelianization

Notation. For an R-algebra A, denote by m : A ⊗R A → A the multiplication map, and let IA B

ker(A ⊗R A
m
→ A) be its kernel.

Proposition A.3.2. The abelianization of an R-algebra A over itself is AbAA = IA.

Proof. Standard computation in homological algebra. We will check the result and establish the

correspondence more precisely. Let us first identify the “global sections” HomAlgR/A(A
id
→ A, A ⊕

M
p
→ A). Such a map is the data of a function ϕ : A → M making a 7→ (a, ϕ(a)) into an R-algebra
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map A→ A ⊕ M. Respecting multiplication means:

aa′ 7→
(
aa′, ϕ(aa′)

)
= (a, ϕ(a))

(
a′, ϕ(a′)

)
=

(
aa′, a · ϕ(a′) + ϕ(a) · a′

)
so the condition is the Leibniz rule ϕ(aa′) = a · ϕ(a′) + ϕ(a) · a′. The condition of R-linearity means

R

�� ##FFFFFFFFF

A
(id,ϕ)

// A ⊕ M

commutes, in other words (r, ϕ(r)) = (r, 0), so the condition is ϕ(r) = 0. Thus global sections for

associative R-algebras are just R-linear derivations DerR(A,M).

Now we exhibit a natural equivalence of R-modules

α : HomA−BimodR(IA,M) � DerR(A,M) : β

f 7→ ϕ(a) = f (1 ⊗ a − a ⊗ 1)

f
(∑

ai ⊗ bi
)

=
∑

aiϕ(bi)← [ ϕ

Verifications for α. The formula for α does define an R-derivation:

aϕ(a′) + ϕ(a)a′ = a f (1 ⊗ a′ − a′ ⊗ 1) + f (1 ⊗ a − a ⊗ 1)a′

= f (a ⊗ a′ − aa′ ⊗ 1) + f (1 ⊗ aa′ − a ⊗ a′)

= f (1 ⊗ aa′ − aa′ ⊗ 1)

= ϕ(aa′)

ϕ(r) = f (1 ⊗ r − r ⊗ 1)

= f ((1 ⊗ 1)r − r(1 ⊗ 1))

= f (0) = 0.

Moreover, the definition of α is clearly additive (in fact R-linear) in f .
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Verifications for β. First of all, the formula for β(ϕ) makes sense since it is R-bilinear. Let us

check that it is a map of A-bimodules:

f
(
a
∑

ai ⊗ bi
)

= f
(∑

aai ⊗ bi
)

=
∑

(aai)ϕ(bi)

= a
∑

aiϕ(bi)

= a f
(∑

ai ⊗ bi
)

and likewise for the right action. Moreover, the definition of β is clearly R-linear in ϕ.

α◦β is the identity. Let’s compute the composite α◦β (and denote by a tilde something modified

by the composite):

ϕ 7→ f
(∑

ai ⊗ bi
)

=
∑

aiϕ(bi)

7→ ϕ̃(a) = f (1 ⊗ a − a ⊗ 1)

= 1ϕ(a) − aϕ(1)

= ϕ(a)

which means ϕ̃ = ϕ, i.e. α ◦ β is the identity.

β ◦ α is the identity.

f 7→ ϕ(a) = f (1 ⊗ a − a ⊗ 1)

7→ f̃
(∑

ai ⊗ bi
)

=
∑

aiϕ(bi)

=
∑

ai f (1 ⊗ bi − bi ⊗ 1)

=
∑

f (ai ⊗ bi − aibi ⊗ 1)

= f
(∑

ai ⊗ bi −
∑

aibi ⊗ 1
)

, but recall
∑

aibi = 0

= f
(∑

ai ⊗ bi
)

which means f̃ = f , i.e. β ◦ α is the identity. �
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A more elegant way of saying this is that there is a universal R-derivation

d : A→ IA

a 7→ 1 ⊗ a − a ⊗ 1

such that the natural map

HomA−BimodR(IA,M)→ DerR(A,M)

f 7→ f ◦ d

is an iso, which we called α earlier.

A.3.3 Pushforward

For a map f : A→ B of R-algebras, basic homological algebra tells us the following fact.

Proposition A.3.3. The pushforward functor f∗ : A − BimodR → B − BimodR is given by

f∗(M) = B ⊗A M ⊗A B

equipped with B-multiplication on the left and right.

Corollary A.3.4. The abelianization functor is AbB(A→ B) = B ⊗A IA ⊗A B.

A.4 Commutative algebras

Notation. Let ComR denote the category of commutative R-algebras.

A.4.1 Beck modules

Proposition A.4.1. A Beck module over a commutative R-algebra A is a split extension of A (with

the data of a splitting) with square zero kernel:

0 // M // E � A ⊕ M
p // A
s

oo // 0.

Equivalently, it is the data of an A-module M in the usual sense (i.e. an abelian group with an

action of A).
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Proof. Same as for associative algebras A.3.1, except the total space E must be commutative, which

means:

a · m = s(a)m = ms(a) = m · a. �

A.4.2 Abelianization

We use the adjunction Com : AlgR � ComR : ι to identify the abelianization in ComR.

Proposition A.4.2. For a commutative R-algebra A, the abelianization functor AbA : ComR/A →

A −Mod satisfies

AbAA = IA/I2
A.

Proof. Starting from idA in the upper left corner of 4.6.2, we obtain

idA_

��

� // IA_

��
idA

� // AbAA = HH0(IA).

Now HH0(IA) is obtained from IA by modding out the sub-bimodule generated by elements of the

form

a · m − m · a = a · (1 ⊗ a′ − a′ ⊗ 1) − (1 ⊗ a′ − a′ ⊗ 1) · a

= a ⊗ a′ − aa′ ⊗ 1 − 1 ⊗ a′a + a′ ⊗ a

= −
(
1 ⊗ aa′ − a′ ⊗ a − a ⊗ a′ + aa′ ⊗ 1

)
since A is commutative

= −(1 ⊗ a − a ⊗ 1)(1 ⊗ a′ − a′ ⊗ 1)

which is exactly the sub-bimodule I2
A. Thus we have AbAA = HH0(IA) = IA/I2

A. �

As for associative R-algebras, the “global sections” of a Beck module A ⊕ M → A over the

commutative R-algebra A are precisely the R-derivations DerR(A,M).

Notation. The module AbAA = IA/I2
A representing R-derivations is called the module of differen-

tials and denoted ΩA/R.
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Again, there is a universal R-derivation

d : A→ ΩA/R

a 7→ 1 ⊗ a − a ⊗ 1

such that the natural map

HomA−Mod(ΩA/R,M)→ DerR(A,M)

f 7→ f ◦ d

is an iso. Compare [GS07], the setup before proposition 4.27.

A.4.3 Pushforward

For a map f : A → B of commutative R-algebras, basic homological algebra tells us the following

fact.

Proposition A.4.3. The pushforward functor f∗ : A −Mod→ B −Mod is given by

f∗(M) = B ⊗A M

equipped with B-multiplication on the left.

Corollary A.4.4. The abelianization functor is AbB(A→ B) = B ⊗A ΩA/R.

A.4.4 Quillen cohomology

In the category ComR of commutative R-algebras, Quillen cohomology is given by

HQ∗(A; M) = H∗HomModA(AbAC•,M)

= H∗DerR(A ⊗C• ΩC•/R,M)

which is the celebrated André-Quillen cohomology of commutative R-algebras [Qui70].
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Appendix B

Fibered category of Beck modules

B.1 Construction

The category ModGp encountered in chapter 7 is an example of a construction of independent

interest. For any nice category C, instead of looking only at Beck modules over a single object X,

we want to know what happens when we change the base object X. For this, we assemble all the

module categories ModX together.

Definition B.1.1. The (fibered) category of Beck modules over C, denoted ModC is the category

whose objects are of pairs (X, E), where X is an object of C and E → X is a Beck module over X.

A morphism from (X, E) to (Y, E′) consists of maps f : X → Y and ϕ : E → E′ in C making the

obvious diagram commute:

E

��

ϕ // E′

��
X

f
// Y

and such that the horizontal arrows respect the group structure maps of E → X and E′ → Y .

Consider the forgetful functor U : ModC → C taking the pair (X, E) to the base object X. Its

fiber over an object X (i.e. subcategory of ModC of objects sent to X and morphisms sent to idX)

is exactly the category ModX of Beck modules over X. Now let’s make sure that ModC is indeed

fibered over C.

Proposition B.1.2. A morphism from (X, E) to (Y, E′) as defined above is the same data as a map

f : X → Y in C and a map ϕ : E → f ∗E′ in ModX .
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Proof. Consider the commutative diagram:

E

p

��

!!CCCCCCCC
ϕ // E′

p′

��

f ∗E′

==zzzzzzzz

}}{{{{{{{{

""DDDDDDDD

X
f

// Y.

Viewing it as a diagram in C, the map ϕ is in HomC/Y (E
f p
→ Y, E′

p′
→ Y) = HomC/X(E

p
→ X, f ∗E′

f ∗p′
→

X). By construction of the pullback f ∗E′ and its structure maps, this adjoint map ϕ is actually in the

subset HomAb(C/X)(E
p
→ X, f ∗E′

f ∗p′
→ X) iff the original ϕ respects the structure maps of E → X and

E′ → Y . �

Corollary B.1.3. Pullback squares

f ∗E′

��

ϕ // E′

��
X

f
// Y

are Cartesian morphisms in ModC. The forgetful functor U : ModC → C makes ModC into a

fibered category over C in the sense of [Vis07, § 3.1.1]. The system of pullbacks makes it into a

cleaved category.

B.2 Relationship to the ground category

Proposition B.2.1. The “zero section” functor Z : C → ModC which sends X to (X, 0X) is a both

a left and right adjoint of U. In particular, U preserves all limits and colimits.

Proof. It follows from the fact that 0X is a zero object in the additive category ModX and the

pullback of zero is again zero, i.e. f ∗0Y = 0X .

HomC(X,U(Y, E′)) = HomC(X,Y)

= HomModC((X, 0X), (Y, E′))

= HomModC(Z(X), (Y, E′)).
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HomC(U(X, E),Y) = HomC(X,Y)

= HomModC((X, E), (Y, 0Y ))

= HomModC((X, E),Z(Y)).

�

In fact, there is a more general relative version of this proposition, where we work over fixed

objects. The previous case is over the terminal object.

Proposition B.2.2. Consider the forgetful functor U : ModC/(X, E)→ C/X.

1. The left adjoint of U is the “zero section” functor Z, which sends Y
f
→ X to (Y, 0Y )→ (X, E).

2. The right adjoint of U is the “pullback” functor Pull, which sends Y
f
→ X to (Y, f ∗E) →

(X, E).

Proof. 1) Similar to the absolute version:

HomModC/(X,E)

(
Z(Y

f
→ X), (X′, E′)

( f ′,ϕ′)
→ (X, E)

)
= HomModC/(X,E)

(
(Y, 0Y )

( f ,0)
→ (X, E), (X′, E′)

( f ′,ϕ′)
→ (X, E)

)
=

{
(g, ϕ) : (Y, 0Y )→ (X′, E′) | ( f ′, ϕ′) ◦ (g, ϕ) = ( f , 0)

}
=

{
g : Y → X′ | f ′ ◦ g = f

}
since ϕ must be 0, and 0 works

= HomC/X

(
Y

f
→ X, X′

f ′
→ X

)
= HomC/X

(
Y

f
→ X,U

(
(X′, E′)

( f ′,ϕ′)
→ (X, E)

))
.

2) We have the following:

HomModC/(X,E)

(
(X′, E′)

( f ′,ϕ′)
→ (X, E), Pull(Y

f
→ X)

)
= HomModC/(X,E)

(
(X′, E′)

( f ′,ϕ′)
→ (X, E), (Y, f ∗E)

f
→ (X, E)

)
=

{
(g, ϕ) : (X′, E′)→ (Y, f ∗E) | f ◦ (g, ϕ) = ( f ′, ϕ′)

}
.

This consists of the data of g : X′ → Y and a map E′ → g∗( f ∗E) � ( f g)∗E = ( f ′)∗E in ModX′
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making the diagram commute. But since

f ∗E

��

// E

��
Y

f
// X

is a pullback square, our map ϕ must “be” (under the usual identification) the map ϕ′ : E′ → ( f ′)∗E

in ModX′ . Hence it provides no additional data and no constraint, and the above set of morphisms

is:

{
g : X′ → Y | f ◦ g = f ′

}
= HomC/X

(
X′

f ′
→ X,Y

f
→ X

)
= HomC/X

(
U

(
(X′, E′)

( f ′,ϕ′)
→ (X, E)

)
,Y

f
→ X

)
. �

We can use this proposition to study the abelianization in ModC. The forgetful functor U :

ModC → C sending (X, E) to X takes the “ground level” part of the data. With this in mind, we’ll

show that the ground level part of the abelianization is the abelianization of the ground level part.

Proposition B.2.3. The following diagram commutes:

ModC/(X, E)

U
��

Ab(X,E) // Ab(ModC/(X, E))

U
��

C/X
AbX // Ab(C/X).

Proof. By propositions B.2.2 and 4.1.1, the diagram above consists of left adjoints. Let us write all

four adjunctions:

ModC/(X, E)

U
��

Ab(X,E) // Ab(ModC/(X, E))
U(X,E)

oo

U
��

C/X

Pull

OO

AbX // Ab(C/X).
UX

oo

Pull

OO

The diagram of right adjoints commutes on the nose:

U(X,E) ◦ Pull = Pull ◦ UX
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by definition of induced functor on category of abelian group objects. Thus their left adjoints are

naturally isomorphic:

U ◦ Ab(X,E) � AbX ◦ U.

As in proposition 1.1.7, the abelianizations can be chosen so that this is an equality on the nose. �

Proposition B.2.4. The “total space” functor S rc : ModC → C which sends E
p
→ Y to E (viewed

as object in C) has a left adjoint, which sends an object X of C to AbXX → X. The notation S rc

stands for “source”.

Proof. A map in HomModC

(
AbXX → X, E

p
→ Y

)
consists of a map f : X → Y and a map AbXX →

f ∗E in ModX .

HomModX (AbXX → X, f ∗E → X) = HomC/X(X
id
→ X, f ∗E → X)

= HomC/Y ( f!(X
id
→ X), E → Y)

= HomC/Y (X
f
→ Y, E → Y)

Therefore, a map in HomModC

(
AbXX → X, E

p
→ Y

)
consists of the data of f and ϕ in such a dia-

gram:

X

f ��???????
ϕ // E

p
���������

Y

which is the data of ϕ only, since f must be pϕ. Since there is no constraint on ϕ, we conclude:

HomModC

(
AbXX → X, E

p
→ Y

)
= HomC(X, E). �

B.3 Limits and completeness

In this section, we study limits in ModC and show that ModC is complete if C is. Let’s proceed in

steps.

Proposition B.3.1. The forgetful functor U : Ab(C) → C creates limits, in the sense of [Mac98, §

5.1].
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Proof. 1) Start with a diagram F̃ : I → Ab(C) whose underlying diagram F B UF̃ in C has a limit.

We will endow lim F with structure maps to produce a limit of F̃. The structure maps of the objects

in the diagram F̃ can be expressed as natural transformations

F × F
µ
→ F

∗
e
→ F

F
ι
→ F,

where ∗ is the terminal diagram (i.e. constant on the terminal object), and F × F is the composite

I
(F,F)
→ C × C

×
→ C.

In other words, we take the objectwise product, unit, and inverse structure maps. Applying the

functor lim yields maps

lim(F × F) � lim F × lim F
lim µ
→ lim F

lim ∗ � ∗
lim e
→ lim F

lim F
lim ι
→ lim F.

(Detail: We haven’t assumed that C is complete, so technically there is no functor lim : CI → C.

We could work around this by restricting to the full subcategory of CI of diagrams admitting a limit,

on which the functor lim is defined. More explicitly, we can unwind the construction: A natural

transformation h : F → G always induces lim h : lim F → lim G whose associated cone on G is

given by lim F
πi
→ Fi

hi
→ Gi for any index i in I.)

These form structure maps of an abelian group object, since applying lim to the condition di-

agrams of F yields condition diagrams for lim F. Let us denote l̃im F ∈ Ab(C) the object lim F

equipped with these structure maps. By construction, l̃im F comes with a cone on F̃ which is a

U-lift of lim F and its limiting cone on F.

2) Let us check that l̃im F is the limit of F̃ in Ab(C). Given a cone ψ̃ : ∆Z̃ → F̃, look at the

underlying cone ψ; it has a unique map ϕZ → lim F associated to it. We need to check that ϕ is

a map in Ab(C). But by construction it is, since all the maps in the natural transformation ψ̃ are in

Ab(C).
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For example, consider the diagram

Z × Z

µZ

��

(ϕ,ϕ) // lim F × lim F

µlim F

��

� // lim(F × F)

lim µF

��
Z ϕ

// lim F lim F.

It commutes iff the adjoint diagram commutes:

∆Z × ∆Z = ∆(Z × Z)

∆µZ

��

(ψ,ψ) // F × F

µF

��
∆Z

ψ
// F.

This diagram does commute, since ψ̃ was a natural transformation between I-diagrams in Ab(C).

Likewise for the unit and inverse structure maps. Hence we have l̃im F = lim F̃ in Ab(C), as desired.

3) So far we’ve shown that U lifts limits, but there is more to creating limits. We need to show

that there is a unique cone lifting lim F and its limiting cone π : ∆ lim F → F. Let L be such a lift,

i.e. L is the underlying object lim F equipped with (possibly exotic) structure maps, and we have a

lift π̃ : ∆L→ F̃ of the cone π. Saying that this cone π̃ is a lift in Ab(C) means that all the projection

maps πi : lim F → Fi respect the structure maps. For example, the following diagram commutes:

lim F × lim F

πi×πi

��

µ // lim F

πi

��
Fi × Fi µi

// Fi.

Hence the ith component of µ is µi(πi × πi). But a map to a limit is uniquely determined by its

components, hence µ is unique, and by the same argument, so are the unit and inverse structure

maps. These structure maps are precisely the ones we used in part (1), i.e. L is l̃im F. Since U is

faithful, the lift of the cone π is unique, and as we’ve seen in part (2), it is a limiting cone for F̃. �

Corollary B.3.2. If C is complete, then so is Ab(C), and U : Ab(C)→ C preserves limits.

Proof. Let F̃ : I → ModC be a diagram indexed by some small category I. Since C is complete,

the underlying diagram F B UF̃ has a limit, with limiting cone π : ∆ lim F → F. Since U creates

limits, there is a unique U-lift (L, π̃) of (lim F, π), and it’s a limit in ModC. Thus U preserves limits,

since they are essentially unique. �
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Remark B.3.3. Note that creating limits and preserving limits are distinct notions, neither one im-

plying the other. The previous argument only shows that a limit-creating functor U must preserve

limits of diagrams whose underlying diagram has a limit.

Example B.3.4. (Preserving limits; Creating limits) Consider the projection functor C×D → C.

Clearly it preserves limits, but (for generalD) it does not create them, or even lift them uniquely.

Example B.3.5. (Creating limits ; Preserving limits) Let N = {0, 1, 2, · · · } be the category of

natural numbers viewed as a totally ordered set, i.e. with a unique morphism from i to j iff i ≤ j.

Let [n] be its full subcategory with objects {0, 1, · · · , n}.

Limits in N are as follows: the minimum number appearing in the diagram if the diagram is

non-empty, and non-existent if the diagram is empty, i.e. there is no terminal object. Limits in [n]

are the same except there is a terminal object, namely n. Therefore, the inclusion functor [n] → N

does NOT preserve limits, but it does create them.

Corollary B.3.6. If C is complete, then so is each category of Beck modules ModX , for X an object

in C.

Proof. C being complete implies the slice category C/X is also complete [Bor94a, prop 2.16.3].

Hence ModX = Ab(C/X) is also complete. �

Corollary B.3.7. For any map f : X → Y, the pullback functor f ∗ : ModY → ModX preserves

limits.

Proof. We have the commutative diagram:

Ab(C/Y)

UY
��

f ∗ // Ab(C/X)

UX
��

C/Y
f ∗ // C/X.

As seen above, UY preserves limits, and so does f ∗ (downstairs) since it’s a right adjoint. Hence, if

we start with a limit and its cone in ModY we obtain:

UX f ∗(lim F) = f ∗UY (lim F)

= lim( f ∗UY F).
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Since UX creates limits, f ∗(lim F) with its cone is the unique UX-lift of lim( f ∗UY F) with its cone,

and it is itself a limit. In other words, we have f ∗(lim F) = lim f ∗F. �

Proposition B.3.8. If C is complete, then so is ModC.

Proof. 1) Let F̃ : I → ModC be a diagram and denote F B UF̃ the diagram of underlying objects

in C. Since C is complete, it admits a limit X B lim F. We’re looking for a “limit module” over X;

let’s just pull back all the modules in F̃ via the cone π. Having a diagram F̃ in ModC means that

for every index i ∈ I, we have and object F̃i → Fi and for every map α : i→ j we have a map

F̃i

��

// F̃ j

��
Fi Fα

// F j

in ModC, which is the same as Fα and the associated map F̃i → F∗αF̃ j in ModFi . Now, X has a

limiting cone on F, i.e.

X
πi

���������� π j

��???????

Fi Fα
// F j

Pulling back the modules over X via π, we obtain:

π∗i F̃i

  AAAAAAAA
// π∗i F∗αF̃ j � (Fαπi)∗F̃ j = π∗j F̃ j

vvmmmmmmmmmmmmmmmmmm

X

which defines an I-diagram π∗F̃ in ModX (One needs to be careful with the natural iso f ∗g∗ � (g f )∗,

but it works). By B.3.6, ModX is complete, so we can take its limit M B lim π∗F̃.

2) Let us check that M → X and its cone π̃ over F̃ is a limit in ModC. Given a cone ψ̃ : ∆(Z̃ →

Z) → F̃, look at the cone ψ of underlying objects and take its associated map ϕ : Z → X = lim F.

We’re looking for a map

Z̃

��

ϕ̃ // M

��
Z ϕ

// X
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that commutes with the cones, i.e. such that π̃◦ ϕ̃ is ψ̃. This is the same as a map Z̃ → ϕ∗M in ModZ

such that the cones π̃ ◦ ϕ̃ and ψ̃ in ModZ over ψ∗F̃ agree. There is a unique such map, because of

the following:

ϕ∗M = ϕ∗ lim π∗F̃

= limϕ∗π∗F̃ by B.3.7

� lim(πϕ)∗F̃

= limψ∗F̃. �

Question. Does ModC inherit other nice properties from C? Here are some properties that would

be of particular interest.

• Having all pushforwards;

• Having all abelianizations;

• Beck modules over any object form an abelian category;

• Cocompleteness;

• Regularity;

• Exactness.

The answer is probably yes for most of them, maybe with additional assumptions. In light of

proposition 3.4.8, we probably need additional assumptions for cocompleteness.

B.4 Representability

Following [Vis07, § 3.1.2], one can think of the fibered category ModC as a (contravariant) pseud-

ofunctor Mod(−) associating to each object X of C its category of Beck modules ModX and to each

map f : X → Y the pullback functor f ∗ : ModY →ModX ,

Mod(−) : C → AbCat.

In the examples of appendix A, we have seen that the category of Beck modules over an object X is

sometimes naturally equivalent to a category of functors into Ab, i.e. presheaves of abelian groups.
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This raises the question: Is there a (covariant) pseudofunctor I(−) making the following diagram

commute up to natural isomorphism?

Cat
Fun(−,Ab)

$$IIIIIIIII

C

I(−)
==|

|
|

|

Mod(−)

// AbCat

Definition B.4.1. The category C has representable Beck modules if there exists such a pseudo-

functor I(−), called an indexing functor, and the category IX , satisfying ModX � AbIX is called an

indexing category for the object X of C.

Example B.4.2. C = Set has representable Beck modules, taking the indexing category IX of a set

X to be the discrete small category X.

Example B.4.3. C = Gp has representable Beck modules, taking the indexing category IG of a

group G to be the one-object groupoid G.

Example B.4.4. C = Ab has representable Beck modules, taking the indexing category IA of an

abelian group A to be the trivial category {∗} with one object and its identity map.

Non-example B.4.5. C = ComRing, the category of commutative (associative, unital) rings, does

NOT have representable Beck modules. For a commutative ring R, the category ModR of Beck

modules over it is the usual category of R-modules (see Haynes’s notes). Taking R = Fp the field

with p elements, then ModR is the category of Fp-vector spaces, which itself is not of the form AbI

for any category I. Indeed, fixing an index (object) i of I, consider the (covariant) functor:

I
HomI (i,−) // Set Free // Ab

This is an object of AbI whose identify endomorphism has infinite additive order. This can’t happen

in Fp-vector spaces, where every map is p-torsion.

Question. When does C have representable Beck modules? The question can be broken down into

two.

1. When is an abelian categoryA equivalent to a functor category AbI?

2. Assuming C is such that for every object X, the category ModX is equivalent to a functor

category AbIX for some (small) category IX , when does C have representable Beck modules?
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In other words, can we make the indexing categories IX and equivalences ModX � AbIX

natural in X?

Question. Does C have some nice features if it has representable Beck modules? In other words, is

it an interesting property?

It is more common to look for a ring R (or ringoid, a.k.a. preadditive category) such that the

abelian categoryA is the category of modules over R (additive functors R→ Ab).

B.5 Analogy with the tangent bundle

Here’s a far-fetched idea: Does the fibered category ModC deserve to be thought of as the “tangent

bundle” of C? The tangent bundle of a smooth manifold M gives over each point x the tangent space

TxM, which can be thought of as the best linear approximation of M around x. Heuristically, let’s

think of C/X as a neighborhood of X, in other words an object Y
f
→ X is a point “close” to X. Now

let’s think of abelian group objects as providing the best approximation by an additive category.

Then ModX is a best linear approximation of C around the object X.

Here’s one way in which the analogy is not completely silly. Notice that if V is a smooth

manifold that happens to be a vector space (i.e. Euclidean space), then for every point x ∈ V , we

have TxV � V . The same holds for Beck modules.

Lemma B.5.1. Let I be any category and let A denote the abelian category AbI . Then for every

object F ofA, we have an equivalence of abelian categories:

ModF = Ab(A/M) � A.

The equivalence associates to a module E
p
→ F the object ker p, and to an object K of A, the

module F ⊕ K → F, with structure maps given by the “objectwise” addition in K.

Proof. Let’s look at one node of the diagram at a time. For an index i in I, consider the functor

i∗ : AbI → Ab that extracts the abelian group at index i, i.e. evaluates a functor in AbI at i. This

is the restriction functor along the inclusion of the point category i : {∗} → I that selects the object

i. By proposition C.0.3 i∗ preserves limits, and thus induces a functor on Beck modules. By our

knowledge of Beck modules in Ab (proposition A.2.1), we know that the Beck module E
p
→ F,
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which looks like

Ei

pi

��

Eα // E j

p j

��
Fi

Fα // F j

(where α : i→ j is a typical map in I) is actually of the form

Ki

��

Kα // K j

��
Fi ⊕ Ki

pi

��

Eα // F j ⊕ K j

p j

��
Fi

Fα // F j

where Ki is ker pi and Kα is the restriction of Eα to Ki. Moreover, since p : F ⊕ K → F is a map in

A, i.e. a natural transformation, and so is the zero section e : F → F ⊕K, we know that the map Eα

is actually Fα ⊕ Kα, or in matrix form

Fα 0

0 Kα

. The upper row comes from p, and the lower-left

corner comes from e. This determines completely the structure maps, which must be the objectwise

addition, zero, and negative in each abelian group Ki. The only additional information is that these

structure maps are maps in A/F. Writing down these conditions explicitly, they say that Kα must

be a group map, which is automatic. In other words, there is no constraint on K, any object of A

will do.

Now look at the correspondence described in the statement. The composite A → ModF → A

is the identify functor. The composite ModF → A → ModF sends E
p
→ F to F ⊕ ker p → F,

which is a natural iso in A/F since the Beck module comes equipped with the data of the splitting

(the unit map). By the argument above, it is a natural iso in ModF , i.e. it recovers the Beck module

structure. Finally, note that both directions of the correspondence are additive functors, so we obtain

an equivalence of abelian categories ModF � A. �

Proposition B.5.2. Let A be an abelian category. Then for every object M of A, we have an

equivalence of abelian categories:

ModM = Ab(A/M) � A.

The equivalence associates to a module E
p
→ M the object ker p, and to an object K of A, the
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module M ⊕ K → M, with the following structure maps:

• Multiplication µ : M ⊕ K ⊕ K → M ⊕ K is given by

idM 0 0

0 idK idK

;
• Unit e : M → M ⊕ K is given by inclusion, that is

idM

0

;
• Inverse ι : M ⊕ K → M ⊕ K is given by

idM 0

0 −idK

.
Proof. Essentially follows from the splitting lemma, the Yoneda embedding and the lemma above.

Recall the Yoneda embedding:

Y : A → AbA
op

B 7→ HomA(−, B)

which is full, faithful, and left exact. Since it’s left exact, it preserves small limits and hence induces

a functor on Beck modules. Starting with a Beck module E
p
→ M in A, we get a Beck module

Y(E)
Y(p)
→ Y(M) in AbA

op
. By the lemma above, its structure maps must be the obvious ones on

ker Y(p) (objectwise addition, zero, and inverse). Since Y is faithful, this determines the structure

maps for E
p
→ M. Moreover, we have ker Y(p) = Y(ker p), and by the splitting lemma, E

p
→ M is

canonically isomorphic to M ⊕ ker p→ M inA. Put structure maps on the latter by the formulas in

the statement. Notice that Y sends all those maps to the structure maps of Y(M)⊕ ker Y(p)→ Y(M)

(we used the fact that Y is additive for the inverse structure map ι). Hence those candidate structure

maps ARE those of E
p
→ M. (Incidentally, this shows that the formulas in the statement do define a

Beck module, although one can easily check it directly.)

We can conclude ModM � A exactly as in the lemma. �

Question. 1. Can we push the analogy further? More precisely, we’re looking for a universal

property satisfied by the tangent bundle of a manifold, and a universal property satisfied by

the fibered category of Beck modules.

2. Is Ab(C) → C terminal among additive categories equipped with a faithful, limit-creating

functor to C?
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Appendix C

Kan extension arguments

Whenever we have a functor F : I → J, it induces a restriction functor F∗ : CJ → CI . Kan

extensions allow us to go the other way. Let’s recall a few things about them, which can be found

in [Mac98, X.3].

The right Kan extension of a functor X : I → C along F is the “closest” (i.e. terminal) functor

as in this diagram:

I

F ��========
X // C

� �� �KSη

J
RanF X

??�������

which means the following:

HomFun(I,C)(F∗Z, X) � HomFun(J,C)(Z,RanF X)

i.e. the right Kan extension RanF (if it exists) is right adjoint to restriction F∗.

Dually, the left Kan extension is the closest (i.e. initial) functor as in this diagram:

I

F ��========
X //

�� ��
�� ε

C

J
LanF X

??�������

which means:

HomFun(I,C)(X, F∗Z) � HomFun(J,C)(LanF X,Z)

i.e. the left Kan extension LanF is left adjoint to restriction F∗.
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The right Kan extension can be computed as a limit:

RanF X( j) = lim
j→Fi

X(i)

where the limit is taken over the comma category ( j ↓ F). In particular, if I is small and C is

complete, then RanF X exists for any X and F, and F∗ has a right adjoint RanF .

Dually, the left Kan extension can be computed as a colimit:

LanF X( j) = colim
Fi→ j

X(i)

where the limit is taken over the comma category (F ↓ j). In particular, if I is small and C is

cocomplete, then LanF X exists for any X and F, and F∗ has a left adjoint LanF .

As we have seen several times, we’re interested in knowing if F∗ preserves limits and, to a lesser

extent, colimits. Of course, if C is cocomplete, then F∗ is a right adjoint so it preserves limits. But

frankly, I don’t like to assume (co)completeness properties when we don’t need to.

Proposition C.0.3. Let I, J, C, be categories (we may want I and J to be small, though I don’t see

why), and F : I → J a functor. Then the restriction functor F∗ : CJ → CI preserves limits.

Proof. Recall that limits in functor categories are computed objectwise or “pointwise” [Bor94a,

prop 2.15.1]; it follows basically from the fact that natural transformations are defined objectwise.

Let X : K → CJ be a diagram of functors which has a limit. Trying to compute limK F∗X objectwise,

we get:

(lim
K

F∗X)(i) = lim
K

(F∗X)(i)

= lim
K

X(F(i))

= (lim
K

X)(F(i))

= (F∗ lim
K

X)(i)

and thus F∗ limK X with its cone is indeed limK F∗X. �

In fact, colimits in functor categories are also computed objectwise, hence we obtain the follow-

ing.
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Proposition C.0.4. Let I, J, C, be categories and F : I → J a functor. Then the restriction functor

F∗ : CJ → CI preserves colimits.

Proof. Same as above. �

Sometimes, as in Lawvere’s notion of algebraic theories [Law63], we are interested in the full

subcategory Fun×(I,C) of product-preserving functors.

Proposition C.0.5. If a diagram in Fun×(I,C) has a limit when viewed in Fun(I,C) (i.e. objectwise

limit), then this is also the limit in Fun×(I,C). In other words, the inclusion Fun×(I,C) ⊂ Fun(I,C)

creates limits.

Proof. It follows from the fact that products are limits and hence commute with any other limits.

More precisely, let X : K → Fun×(I,C) be a diagram of functors that has a limit L in Fun(I,C). We

know this is an objectwise limit:

L(i) = lim
K

X(i).

Thus L is itself product-preserving:

L(i × j) = lim
K

X(i × j)

= lim
K

(X(i) × X( j))

=

(
lim

K
X(i)

)
×

(
lim

K
X( j)

)
= L(i) × L( j).

(We wrote a finite product for ease of reading, but it should be understood as an arbitrary product.)

Since Fun×(I,C) is a full subcategory of Fun(I,C), L is actually the limit of X in Fun×(I,C). �

In particular, this inclusion also preserves limits if C is complete. Warning: it need NOT pre-

serve limits in general.

Example C.0.6. Let I be a discrete category, and C be the “disjoint union” of the category of sets

of cardinality not one with a discrete one-object category (i.e. a “disjoint basepoint”). Note that

C doesn’t have a terminal object since it has more than one component, and it has exactly one

idempotent object, namely the added basepoint ∗. We call an object c idempotent if any (non-
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empty) product of copies of c is (naturally) isomorphic to c. Since I is discrete, we have:

Fun×(I,C) = Fun(I, Idem(C))

= Fun(I, {∗}) = {∗}.

This has a terminal object, namely the constant functor on the added basepoint. However, this object

is not terminal when viewed in Fun(I,C). In fact, that category doesn’t have a terminal object since

C doesn’t have one. Hence in this example, the inclusion Fun×(I,C) ⊂ Fun(I,C) does NOT preserve

limits.

Question. Can we find reasonable conditions on C or I, weaker than C being complete, that guar-

antee the inclusion does preserve limits? Is it enough if C has all finite powers, including a terminal

object? Also, we’re interested in the case where I is the opposite of the category of finitely generated

free abelian groups, because then Fun×(I,C) is Ab(C).

Corollary C.0.7. Assume C is complete.

1. If F : I → J preserves products, then the restriction functor

F∗ : Fun×(J,C)→ Fun×(I,C)

preserves limits.

2. More generally, if F : I → J is any functor, then the restriction

F∗ : Fun×(J,C)→ Fun(I,C)

preserves limits.

Proof. Consider the commutative diagram:

Fun×(J,C)

��

F∗ // Fun×(I,C)

��
Fun(J,C) F∗ // Fun(I,C)

where the vertical arrows are the inclusions. The left (and right) arrow preserves limits since C is

complete. The bottom arrow preserves limits by C.0.3. This proves the second claim. For the first
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claim, note that the right arrow creates limits, which forces the top arrow to send limits to limits. �

Remark C.0.8. Even when C is complete and F : I → J preserves products, the restriction

F∗ : Fun×(J,C)→ Fun×(I,C)

does NOT preserve colimits in general, since the naive (objectwise) colimit of a diagram is NOT a

product-preserving functor anymore. In other words, such colimits cannot be computed in Fun(I,C).
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Appendix D

Regular categories

In this appendix, we describe some categorical tools needed to work with Quillen’s standard model

structure on simplicial objects. The main references are [Bar02, chap 1.8, 6.1] [Bor94b, chap 2].

Recall the following.

Definition D.0.9. [Bar02, 1.8.8] [Bor94a, def 4.3.1] An epimorphism is called regular if it is the

coequalizer of a pair of maps. If the category has kernel pairs, this is equivalent to being the

coequalizer of its kernel pair.

Definition D.0.10. [Bar02, 1.8.9] [Bor94b, def 2.1.1] A category is called regular if it has kernel

pairs, coequalizers of kernel pairs, and the pullback of any regular epi is still a regular epi.

There are different definitions of regular category in the literature. One may require more, as

Barr does: all finite limits and coequalizers of any two parallel maps. Unless otherwise stated, we

will use the weaker definition given above.

Proposition D.0.11. [Bar02, exer 1.8.13.3]. Assume we have a diagram:

X

f
��

e // // X′

~~~
~

~
~

f ′

��
Y � �

m
// Y ′

where e is a regular epi and m is a mono. Then there exists a unique “diagonal fill-in” h : X′ → Y

making both triangles commute. (No need to assume the category is regular.)
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Proof. [Bor94a, prop 4.3.6 (4)] The top row in the diagram

K
p1 //
p2
// X

f
��

e // // X′

~~~
~

~
~

f ′

��
Y � �

m
// Y ′

is a coequalizer, since e is a regular epi. Now m f = f ′e coequalizes the two pi, and so does f since

m is a mono. Hence there is a unique diagonal fill-in h making the top left triangle commute. We

have mhe = m f = f ′e which implies mh = f ′ since e is an epi, so h makes the bottom right triangle

commute as well. �

Proposition D.0.12. A map is an iso iff it is both a mono and a regular epi. (No need to assume the

category is regular.)

Proof. [Bor94a, prop 4.3.6 (3)] Clearly an iso is a mono, as well as regular epi, since the kernel pair

of an iso is

X
id //

id
// X.

Conversely, let f : X → Y be such a map. Then there is a unique diagonal fill-in in the diagram:

X

id
��

f // // Y

���
�

�
�

id
��

X � �

f
// Y

and is it an inverse to f . �

Proposition D.0.13. Assume a composite X
f
→ Y

g
→ Z is a regular epi. Then the last map g is also

a regular epi, assuming either:

1. f is an epi (without assumption on the category);

2. or the category is regular (without assumption on f ).

Proof. (1) [Qui67, II.4, prop 2 (2)] The top row in the diagram:

K
p1 //
p2
// X

f
��

g f // // Z

α

���
�
�

Y

g
>>~~~~~~~~

h
// W
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is a coequalizer and we want to show g is a coequalizer of f p1 and f p2. Assume h coequalizes f p1

and f p2, in other words h f coequalizes p1 and p2, so there is a unique map α such that αg f = h f .

Since f is an epi, we have αg = h, hence g is indeed a coequalizer of f p1 and f p2.

(2) [Bor94a, cor 2.1.5 (2)] Start with the same diagram but take the kernel pair of g and its

coequalizer:

X ×Z X

f× f
��

pr1 //
pr2
// X

f
��

g f // // Z

α

���
�
�

Y ×Z Y
pr1 //
pr2
// Y

g
<<zzzzzzzzz

h
// Coeq.

β

OO�
�
�

Since g coequalizes the bottom projections, there is a unique β satisfying g = βh. By universal

properties, α and β are inverse to each other, hence g is a regular epi. �

Remark D.0.14. For (2), we only used that the category has kernel pairs and their coequalizers.

Proposition D.0.15. A pushout along a regular epi is obtained as a coequalizer. More precisely, let

e : X � Y is a regular epi and f : X → Z any map.

K
p1 //
p2
// X

f
��

e // // Y

���
�
�

Z // // C

Let Z � C be the coequalizer of f p1 and f p2. Then C (with the induced map Y → C) is a pushout

of f and e.

Proof. [Bor94a, prop 4.3.8 (2)] �
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Appendix E

Facts about simplicial sets

In this appendix, we recall some basic facts about simplicial sets.

Proposition E.0.16. (a) A fibration of simplicial sets f : X• → Y• is surjective in every level iff it is

surjective in level 0

(b) iff it is surjective on path components π0( f ) : π0(X•)� π0(Y•).

Proof. (a) By induction, assume f is surjective up to level n − 1. Let yn ∈ Yn be any n-simplex,

which can be thought of as a map yn : ∆[n]→ Y• where ∆[n] is the standard n-simplex. Its 0th face

d0(yn) ∈ Yn−1 has an f -preimage xn−1 ∈ Xn−1, by induction hypothesis. Now f is a fibration so there

is a lift in the diagram

∆[n − 1]� _

d0 ∼

��

xn−1 // X•

f
����

∆[n]

∃xn

::v
v

v
v

v

yn
// Y•

and xn ∈ Xn satisfies f (xn) = yn. Hence f is surjective in level n.

(b) Assume f is surjective on path components. We want to show it is surjective on vertices

f : X0 � Y0. Let y0 ∈ Y0 be any vertex. By assumption, there is another vertex y′0 in the path

component of y0 and in the image of f , say f (x′0) = y′0. There is a path γ (i.e. a chain of 1-

simplices) in Y from y′0 to y0. WLOG, γ consists of a single 1-simplex. Since f is a fibration, there

is a lift in the diagram

∆[0]� _
d0 ∼

��

x′0 // X•

f
����

∆[1]

∃γ̃
==z

z
z

z

γ
// Y•
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i.e. we can lift the path with a given starting point. We have

f (d0γ̃) = d0 f (̃γ) = d0γ = y′0

f (d1γ̃) = d1 f (̃γ) = d1γ = y0

hence y0 is in the image of f . �

Corollary E.0.17. An acyclic fibration of simplicial sets is surjective in every level.

We could also prove the corollary directly, by picking any n-simplex yn ∈ Yn and lifting in the

diagram

∅� _

��

// X•

∼ f
����

∆[n]

∃xn

<<y
y

y
y

yn
// Y•.

Proposition E.0.18. Assume C has finite limits and enough projectives. Then an acyclic fibration

f : X• → Y• of simplicial objects in sC is a levelwise effective epi.

Proof. Let P be a projective of C. By definition of acyclic fibration in sC, the map

HomC(P, X•)
f∗
→ HomC(P,Y•)

is an acyclic fibration of simplicial sets, in particular a levelwise surjection. Therefore fn : Xn → Yn

is an effective epi for each level n, by [Qui67, II.4 prop 2]. �
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