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Array processing is widely used in sensing applications
for estimating the locations and waveforms of the sources in
a given field. In the absence of a large number of snapshots,
which is the case in numerous practical applications, such
as underwater array processing, it becomes challenging to
estimate the source parameters accurately. This paper presents
a nonparametric and hyperparameter, free-weighted, least
squares-based iterative adaptive approach for amplitude and
phase estimation (IAA-APES) in array processing. IAA-APES can
work well with few snapshots (even one), uncorrelated, partially
correlated, and coherent sources, and arbitrary array geometries.
TAA-APES is extended to give sparse results via a model-order
selection tool, the Bayesian information criterion (BIC). Moreover,
it is shown that further improvements in resolution and accuracy
can be achieved by applying the parametric relaxation-based
cyclic approach (RELAX) to refine the IAA-APES&BIC
estimates if desired. IAA-APES can also be applied to active
sensing applications, including single-input single-output
(SISO) radar/sonar range-Doppler imaging and multi-input
single-output (MISO) channel estimation for communications.
Simulation results are presented to evaluate the performance of
TAA-APES for all of these applications, and IAA-APES is shown
to outperform a number of existing approaches.
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I.  INTRODUCTION

The goal of array processing is to estimate the
locations and waveforms of sources by combining
the received data from multiple sensors so that the
desired signal is enhanced, while the unwanted
signals, such as interference and noise, are suppressed.
In active sensing applications such as radar/sonar
range-Doppler imaging, the aim is to find targets
present in a region of interest. For channel estimation
in communications, the aim is to estimate the non-zero
channel taps and their Doppler shifts, which are then
fed to the subsequent equalizer for symbol detection.
Low numbers of snapshots and low signal-to-noise
ratios (SNR) are among the many challenges that
array processing systems frequently face. Another
challenge is the presence of nearby sources, in terms
of location or Doppler, since closely spaced sources
are harder to discriminate. Herein both passive array
processing and active sensing are considered.

The most basic approach to array processing
is the classical delay-and-sum (DAS) method,
in which the received signal from each sensor is
weighted and delayed so as to focus on different
points in space. However, this method suffers from
low resolution and high sidelobe levels. There is a
vast amount of literature on methods that provide
superior performance over the DAS approach when
certain assumptions are met [1]. The well-known
standard Capon beamformer (SCB) [2] and multiple
signal classification (MUSIC) [3, 4] methods provide
superresolution when the sources are uncorrelated and
the number of snapshots is high. Many extensions
to these methods have been proposed to deal with
modelling errors, such as steering vector mismatches.
(See, e.g., [5]-[9].) However, none of these methods
is able to cope with very low snapshot numbers,
coherent or highly correlated sources, or severe noise.

Only a few snapshots are available when the
environment being sensed by the array is stationary
for a short duration of time. Moreover, to avoid
smearing, i.e., losing resolution because of wide
main beamwidths in the array response, averaging
can only be done over a small bandwidth [10, 11].
Therefore the number of available snapshots, which is
directly related to the time-bandwidth product, can be
very small, sometimes as small as 3, for applications
such as underwater array processing. Furthermore,
as discussed later, the data models for single-input
single-output (SISO) radar/sonar range-Doppler
imaging and multi-input single-output (MISO) channel
estimation in communication problems are similar
to the model used in array processing with a single
snapshot and an arbitrary array geometry (dictated by
the probing waveforms).

The array processing problem has been carried into
the sparse signal representation area by noticing that
the number of actual sources is usually much smaller
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TABLE 1
Notation used in the Text

-1 £,-norm

-1, £,-norm

-1, £,-norm

- llg Frobenius norm of a matrix

O] the Hadamard (elementwise) matrix product
tr(-) trace of a matrix

o7 transpose of a vector or matrix

) conjugate transpose of a vector or matrix

than the number of potential source points that can
be considered [12-29]. Sparsity-based techniques
have also been used in spectral estimation [30], image
processing, and array design [31-33], among many
other application areas. Sparse signal representation
algorithms can deal with a few snapshots (even one).
However, they may require large computation times
and the fine tuning of one or more hyperparameters.

Application areas, ranging from passive source
localization to active radar/sonar range-Doppler
imaging and channel estimation for communications
are addressed here. Section II considers passive
sensing applications and describes a weighted
least squares-based iterative adaptive approach
for amplitude and phase estimation (IAA-APES).
The algorithm is named IAA-APES herein since
its derivation resembles that of the amplitude and
phase estimation (APES) algorithm [34-36]. (See
Section IIC.) This name also distinguishes it from the
maximum likelihood (ML)-based iterative adaptive
approach (IAA-ML) discussed in the Appendix to
further motivate IAA-APES. Using the Bayesian
information criterion (BIC) [37, 38], IAA-APES can
be extended to yield point source estimates. (This
approach is referred to as IAA-APES&BIC.) Next, a
parametric relaxation-based cyclic approach, namely
RELAX [39, 40], is discussed as a way to further
refine the results of IAA-APES&BIC. (This approach
is referred to as IAA-APES&RELAX.) Section III
presents the data models for the aforementioned active
sensing applications and emphasizes the similarities
to the passive sensing case. IAA-APES is evaluated
via comprehensive simulations in Section IV, and the
IAA-APES’ performance is compared with that of a
number of existing approaches.

Notation: We denote vectors and matrices by
boldface lowercase and boldface uppercase letters,
respectively. The kth component of a vector X is
written as x,. The kth diagonal element of a matrix
P is written as F,. See Table I for other symbols and
their meanings.

II. PASSIVE SENSING

In passive sensing applications such as
aeroacoustic noise measurements [41] and underwater
acoustic measurements [42], an array of sensors is
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Fig. 1. Far-field linear array.

used to estimate the desired source characteristics.
This section first introduces the data model for such
applications and then the IAA-APES algorithm in this
model.

A. Data Model

Consider the wavefield generated by K sources
located at 6, where 6 é[91,92,...,9,{] and Gk' are the

location parameters of the kth signal, k = 1,...,K. In

the narrowband, multi-snapshot case, the M x 1 array
output vector of an M element array in the presence

of additive noise can be represented as [5, 43]

y(n) = A(0)s(n) + e(n), n=1,...,N 1)

where N is the number of snapshots, A(8) is the
M x K steering matrix defined as A(8) 2[a(6,),

a(6,),...,a(0y)], and s(n) é[sl(n),sz(n),...,s,((n)]T,
n=1,...,N, is the source waveform vector at time n.

The array steering matrix has different expressions,
depending on the array geometry and on whether the
source is in the near-field or far-field of the array. For
instance, the steering vector corresponding to the kth
source for a far-field linear array (where 6, represents
the impinging angle of source k in this case) is given
by

a(d,) = [e*j(27Tf/Co)x1 005(91()’ e e 1S [co)xm 005(9k)]T

2
where f is the center frequency, ¢, is the wave
propagation velocity, and x,, is the position of the
mth sensor, m = 1,...,M. (See Fig. 1.) Note that for a
planar array or near-field sources, only the expressions
for the steering vectors have to be modified; the
algorithms that are presented can be applied without
any modifications, since a(f) is assumed to be a
known function of 6. The number of sources, K, is
usually unknown; hence, here, K is considered to be
the number of scanning points in the region. In other
words every point of a predefined grid that covers
the region of interest is considered as a potential
source whose power is estimated. Consequently,

IWith a slight abuse of notation, we do not use bold font for 6,,
k =1,...,K, which might be multi-dimensional, for simplicity.
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K will be much larger than the actual number of
sources present, and only a few components of
{s(n)} will be non-zero. This is the main reason why
sparse algorithms can be used in array processing
applications.

B. Related Work

We focus our attention on array processing
algorithms exploiting sparsity, which have
gained noticeable interest recently. Sparse signal
representation aims at finding the sparsest s, such
that y = As is satisfied, i.e., to minimize ||s||,, such
that y = As, where A is known and y is measured.
The problem in its original form is a combinatorial
problem and is nondeterministic polynomial-time
(NP) hard, making it impractical [12]. Fortunately,
when s is sufficiently sparse [12—-15], |s||, can
be replaced by ||s||;, which leads to a convex
optimization problem that can be solved much more
easily by using, for instance, the least absolute
shrinkage and selection operator (LASSO) [16] or
basis pursuit (BP) [17] algorithms. Alternatively, the
focal underdetermined system solution (FOCUSS)
algorithm [18], which is derived using Lagrange
multipliers, can be used to iteratively solve the
sparse problem. A Bayesian approach, such as
sparse Bayesian learning (SBL) [19, 20] or the
approach in [21], can also be used to estimate s.
The algorithms mentioned up to this point are for
the single-snapshot case only. The extensions of
FOCUSS and SBL to the multiple-snapshot case
are M-FOCUSS [22] and M-SBL [23], respectively.
Another algorithm, the ¢,-SVD (singular value
decomposition) algorithm [24, 25] is similar
to BP or LASSO, but this algorithm can work
with multiple snapshots. (For the single-snapshot
case, £;-SVD becomes a LASSO and BP type
of method.) M-FOCUSS requires the tuning of
two hyperparameters, which might affect the
performance of the algorithm significantly. ¢,-SVD
requires the tuning of a hyperparameter and an
estimate for the number of sources. Moreover,
implementing ¢,-SVD requires convex optimization
software, such as SeDuMi [44]. M-SBL does
not require any hyperparameters. However,

M-SBL converges quite slowly in its original form
[19, 20, 23].

Besides the above algorithms, which are the
focus of our attention in the numerical examples,
there are other sparsity based approaches worth
mentioning. Reference [26] adds an additional spatial
sparsity regularizing term (an ¢,-norm constraint)
to the ¢,-norm constraint, and it minimizes a cost
function similar to that of ¢,-SVD. However, this
method has two hyperparameters, assumes that
the source waveforms can be represented by a
sparse basis, and has high computational complexity

[26]. Fuchs [27, 28] uses a sparsity-constrained
deconvolution approach that assumes the sources
are uncorrelated and that the number of snapshots
is large. The sparsity-constrained solution is
obtained with a LASSO or BP type of algorithm.
Reference [29] introduces two hyperparameter
free deconvolution algorithms exploiting sparsity:
a sparsity-based extension to the deconvolution
approach for the mapping of acoustic sources
(DAMAS) [45] (which is similar to [27] and [28]
and widely used in practice) and a sparsity based
covariance-matrix fitting approach. Extensions

to the correlated source case are also provided.
However, the methods in [29] are based on the
sample covariance matrix, and hence, these
methods do not work well with a limited number of
snapshots.

C. IAA-APES

IAA-APES is a data-dependent, nonparametric
algorithm based on a weighted least squares (WLS)
approach. Let P be a K x K diagonal matrix, whose
diagonal contains the power at each angle on the
scanning grid. Then P can be expressed as

1 N
B = N;mk(m\z, k=1,....K. 3)

Furthermore, define the interference (signals at angles
other than the angle of current interest 6,) and noise
covariance matrix Q(6,) to be

Q(6,) = R—Ra(@a” (4, “

where R 2 A(O)PAT (). Then the WLS cost function
is given by (see, e.g., [34]-[36] and [43])

N
Z ly(n) — s, (ma@B)Igy 10, ®

n=1

P = HQ~1(#,)x and s,(n) represents the

signal waveform at angle 6, and at time n. Minimizing
(5) with respect to s,(n), n =1,...,N, yields

_ a"(60Q' Gy
a(6,)Q 1(6,)a(6,)"

This looks like the result that would be obtained by
employing APES [34-36], but it is actually different
than APES since APES obtains Q(6,) from the data
by forming subapertures, while IAA-APES computes
Q(6,), as in (4). Moreover, IAA-APES is iterative, but
APES is not, and APES cannot be used with arbitrary
array geometries.

Using (4) and the matrix inversion lemma, (6) can
be written as

_a(G)R 'y(n)
~af (0 )R 1a(g,)’

where [|x][¢,

A

Sk(n)

=1,....N. (6)

A

5 (n) n=1,...,N. @)
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TABLE II
The IAA-APES Algorithm

P = !

N
- H 2 -
= G Do OO k=K

repeat
R = A(9)PA" (9)
for k=1,..., K
H ~1
s, (n) = M, n=1,..., N
al’(0)R~1a(0,)
A 1 al
Bo=5 Y 3P
n=1
end for
until (convergence)

TABLE III
The IAA-APES&BIC Algorithm

P: Set of peaks obtained from IAA-APES
I=0, n=1, quit=0, BIC® =
repeat
i’ = arg min BIC, (1)
ieP-T
if BIC, () < BIC*M
I=1{L,i'}
BIC*M = BIC, (1))
n=n+1
else quit =1
until (quit=1)

This avoids the computation of Q"(Gk) for each
scanning point, i.e., K times. Moreover, {5,(n)} can
be computed in parallel for each scanning point,
which makes IAA-APES amenable to implementation
on parallel hardware. IAA-APES is summarized in
Table II. Since IAA-APES requires R, which itself
depends on the unknown signal powers, it has to
be implemented as an iteration. The initialization is
done by a standard DAS beamformer. Our empirical
experience is that IAA-APES does not provide
significant improvements in performance after
about 15 iterations. In IAA-APES, P and, hence
R, are obtained from the signal estimates of the
previous iteration and not from the snapshots as in
conventional adaptive beamforming algorithms, such
as SCB, which fails to work properly with coherent
or highly correlated sources, or few snapshots [43].
The Appendix provides an alternative derivation of
IAA-APES, based on the ML principle. IAA-APES
is shown to be an approximation of the IAA-ML
algorithm, which is locally convergent due to
cyclically maximizing the likelihood function. Hence,
the analysis in the Appendix provides an approximate
calculation that shows the local convergence of
IAA-APES.

Because P is assumed to be a diagonal matrix,
one degree of freedom (DOF) is needed to suppress
one interfering source. This may lead to a larger
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than necessary reduction of the number of degrees

of freedom when some of the interfering sources are
coherent since the cancellation of multiple coherent
interfering sources would require only one DOF if
the correct structure of P were known. However, we
do not assume that the true structure of P is known.
Moreover, it is the diagonal structure of P assumed by
TAA-APES that makes the algorithm work properly
even for low number of snapshot cases and coherent
sources.

D. ITAA-APES&BIC

In many applications it is desirable to obtain point
estimates rather than a continuous spatial estimate.
To achieve this sparsity we incorporate a model-order
selection tool, i.e., the BIC [37, 38], into IAA-APES.
Let P denote a set containing the indices of the peaks
selected from the IAA-APES spatial power spectrum
estimate. Also let 7 denote the set of the indices of
the peaks selected by the BIC algorithm so far. The
IAA-APES&BIC algorithm works as follows: first
the peak, from the set P, giving the minimum BIC is
selected. Then the second peak, from the set P — 7,
which together with the first peak gives the minimum
BIC, is selected, and so on, until the BIC value
does not decrease anymore.”> The IAA-APES&BIC
algorithm is summarized in Table III. BIC,(n) is
calculated as follows (see [38])

2

N
BIC,(n) =2MN1In | Y lly(m)— > a(#,)s;(n)
n=1 Jje{zui} 2
+35In(2MN) ®)

where 1 = |Z| + 1, |Z| denotes the size of the set Z, i is
the index of the current peak under consideration, and
{8,(m})_, is the TAA-APES signal waveform estimate
corresponding to angle ¢, j € {ZUi}. Note that the
second term on the right side of (8) does not matter
to peak selection; it matters only when (8) is used to
select the number of peaks to retain.

E. IAA-APES&RELAX

RELAX [39, 40] is a parametric cyclic algorithm
that requires an estimate of the number of sources in
the field. The results of IAA-APES&BIC can be used
to provide a good initial estimate for the last step of
RELAX. This approach is outlined in Table IV. The
RELAX iterations can be terminated when the norm
of the difference between two consecutive estimates
is smaller than a certain threshold (5 x 10~ for the
examples considered herein). The maximization

2 Alternatively, the largest n peaks can be selected so that when
the (n + 1)st largest peak is added to Z, the BIC value does not
decrease. This simplified version gives similar results to the one
described above in our numerical examples.
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TABLE IV
The IAA-APES&RELAX Algorithm

6’: Locations of the peaks obtained from IAA-APES&BIC
K': Number of peaks obtained from IAA-APES&BIC
{8,(m)}: Corresponding waveforms obtained from
IAA-APES&BIC
repeat

for k=1,....K'

K/
¥em) = ¥ =y a3 ),

i=1

i#k
N
0, = argmax, g Z |aH(€')yk(n)\2
n=1
” 1 H /)
Sk(}’l) = Ma (Hk)yk(n),
end for
until (convergence)

n=1,...,.N

n=1,....N

step of the algorithm can be implemented without
much computational effort by means of a fine search
only around the peak values of the [AA-APES&BIC
result.> RELAX can be useful in estimating off-grid
sources accurately and for further improving the
TAA-APES waveform and angle estimates.

Ill.  ACTIVE SENSING

In active sensing applications, besides the
receiver, there are also one or more transmitters.
The radar/sonar range-Doppler imaging problem for
a SISO system is first investigated in this section.
Then the channel estimation problem for MISO
communications is discussed.

A. Range-Doppler Imaging

Pulse compression refers to the process of
transmitting a modulated pulse and then matched
filtering the returned signal, which arrives at the
antenna altered by complex coefficients that bear
target information [48].

1) Data Model: Consider a range-Doppler
imaging radar/sonar with a transmitted pulse

$ = [5(1),5(2),...,s(M)]" C))
where M is the pulse length. Let
S(w) =50 d(w) (10)
be the Doppler shifted signal, where
d(w) = [1,e™, ..., e/M=Dl =1, L

€8y

3The fine search can be implemented efficiently using the fast
Fourier transform (FFT) [39, 40] or a derivative-free uphill search
method, such as the Nelder-Mead algorithm [46, 47]. Note that the
latter method is available in the MATLAB optimization toolbox
with the name of “fminsearch.”
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Fig. 2. Pulse compression for radar/sonar range-Doppler imaging.

the Doppler interval of interest is divided into L bins,
and the Doppler frequency for the /th Doppler bin is
denoted as w;. Then the M samples of the received
signal that is temporally aligned with the return from
the range bin of current interest r (see Fig. 2) can be
represented by

L
Y. = Zar,ls(wl) +
=1

M-1 L
Z Zar+m,l‘]ms(wl) te,

m=-M+1 [=1
m#0

(12)

for r = 1,...,R, where a,; (which is proportional to
the complex “voltage” radar-cross section (RCS)

of the corresponding target) denotes the complex
amplitude of the returned signal from the range bin
of current interest r and the /th Doppler bin {o,,,,;}
denote the complex amplitudes of the returned signals
from the adjacent range bins, and e, denotes the noise.
The reflections from nearby range bins are considered
to be clutter. The M x M shift matrix J,, takes into
account the fact that the clutter returns from adjacent
range bins need different propagation times to reach
the radar/sonar receiver:

e -
o ... 1 - 0
J.=1| . =1, a3)
0 - 1
L0 - 0 - 0]
for m =0,...,M — 1. Equation (12) can be written as
y, =Sa, +e€, (14)
where
S = [5(w)), 8wy 8wy )] (15)
o, = [ar,l’ar,Z""’ar,L]T (16)
429



and

M—1
er = Z Zar+m,l‘]ms(w1) + er'

m=—M+1 [=
m#0

L
17)
1
Note that (12) is similar to the data model for passive
sensing arrays, see (1), but with a single snapshot. The
TAA-APES estimate at iteration number i € {1,2,...}

becomes . .
&(,') — S (w[)R(,‘,l)(r)Yr

st (w)RGL (r)s(wy) (1%
forl=1,....L,r=1,...,R, where
M-1 L
R; H(r) = Z Z |5‘£l:nlz?z|2JmS(W1)SH(W1)JrTn-
m=—M+1 [=1
(19)

Here IAA-APES is applied in a slightly different
manner than in the passive array processing case.
When «, is to be estimated, the previous values of
{a, ., }"=M ! are used to estimate R(r). However,
only c, is updated using R(r) and y,. When all
{e,}R | are updated in this way, we advance to the
next [AA-APES iteration. IAA-APES is initialized by
matched filtering, matched to each range and Doppler
bin, to obtain the initial {a,}.

2) Related Work: Matched filtering has been
widely used for pulse compression because it gives
optimal signal-power-to-output-power performance
in the presence of a single target and white noise.
However, in practical radar/sonar systems, matched
filter performance is far from desirable since the pulse
compression problem is usually clutter limited rather
than noise limited (see, e.g., [49] and [50]). Many data
independent (see, e.g., [49]-[54]) and data-adaptive
(see, e.g., [48] and [55]) approaches have been
proposed to achieve improved pulse compression.

Data independent approaches can be designed
off-line, and hence, these approaches are convenient
for real-time implementations in practical systems.
Although receive filters based on data-independent
instrumental variables (IV) can be used to achieve
excellent pulse compression for the negligible
Doppler case, their performance is unsatisfactory
in the nonnegligible Doppler case because of high
sidelobe level problems [49]. On the other hand
data-adaptive approaches result in better performance
but at the cost of implementation complexity.

Two important data-adaptive methods for pulse
compression are the adaptive pulse compression
(APC) [48] and the Doppler-compensated APC
(DC-APC) [55] algorithms. APC is an iterative
minimum mean-squared error (MMSE) based data
adaptive approach, and DC-APC is the extension of
APC to the nonnegligible Doppler case. However,
an IV approach [49] may be preferred to APC since
the sidelobe level of the former method can be made
arbitrarily low and because the filter coefficients

430

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 46, NO. 1

can be computed off-line, whereas APC updates
the filter coefficients iteratively and adaptively. In
the nonnegligible Doppler case, however, adaptive
approaches can perform much better. DC-APC is
purported to work with at most one target per range
bin, and the method used in [55] to estimate the
Doppler values is not appealing from a performance
viewpoint. On the other hand, IAA-APES can work
with multiple Doppler targets located at the same
range bin, and JAA-APES estimates the Doppler
values in a robust manner. Moreover, APC and
DC-APC require the tuning of hyperparameters,
whereas IAA-APES is hyperparameter free. Some
other differences are discussed below.

DC-APC assumes that there is at most one
target per range bin. Let {a, 4, 1,.-->Q,, 1} and
{@_pr41>-+-+@ripr—1 + denote the complex amplitudes
and the Doppler frequencies, respectively, of the
targets in the corresponding range bin r. DC-APC
estimates the target parameters iteratively as follows

o = ol VP @R (), (20)
forr=1,...,R, where
M-1
R, = Y [aVP),s@, 08" @, )5 +Q,.
m=—M+1
(2D

Q, is the true noise covariance matrix of e,., which
is assumed to be known, and i € {1,2,...} represents
the current iteration number. The initial estimates

of {&,,, fn’t ! 1+ are obtained by using a standard
matched filter that neglects the Doppler effect [55].
DC-APC also requires the estimates {&,,,, }¥_",,,, of
the target Doppler frequencies at each iteration. The
Doppler frequency estimation approaches suggested
in [55] are ad-hoc and not very accurate, especially
for large Doppler shifts. This limitation of DC-APC,
though, can be easily corrected by replacing @, in
(20) with all possible Doppler frequencies {w,} to
deal with multiple targets per range bin and to form
range-Doppler images.

The DC-APC iterations defined in (20)—(21) result
in the numerical ill-conditioning of R, ,(r). To
mitigate this problem, [48] suggests using [al~D|?
in (20) instead of |a~D|?, and o° instead of o2,
where 0 < 6 <2 and where the noise e, is assumed
to be white with a known variance 2. This approach
requires the delicate tuning of ¢ (at each iteration),
but [48] and [55] do not provide a clear guideline on
how to do this. We remark that if the noise covariance
matrix Q, in (21) is set to zero, then APC/DC-APC
becomes identical to FOCUSS, with the sparsity
parameter p = 0 and the regularization parameter
A =0. (See, e.g., (16) in [22]). In addition, with the
introduction of §, APC/DC-APC is still identical to
FOCUSS, now with 1 —p/2 = §/2 and A = 0°. We
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also note that both APC/DC-APC and FOCUSS are
related to the approaches in [21], [30], and [56]. It is
interesting to note that many different ideas lead to the
same result.

TAA-APES assumes that multiple targets can exist
within the same range bin and that {c,,} is calculated
as in (18), where the term in the denominator can be
viewed as the current estimate of |a~"|? used in (20).
This would be best estimate for |a~D|2, obtained
by applying the minimum variance distortionless
criterion, had the true covariance matrix been known
[5]. One more advantage of IAA-APES is that the
parameter estimates are inherently unbiased for the
signal of interest, whereas this is not the case in
DC-APC (or FOCUSS). Furthermore, in IAA-APES,
the statistical properties of e, are assumed unknown
and are taken into account implicitly as false targets in
the current and adjacent range and Doppler bins; see
(19). No matrix inversion problems were encountered
with IAA-APES during our numerical simulations
because of the unbiasedness property of IAA-APES.

B. Channel Estimation

The purpose of channel estimation in
communications is to provide the subsequent
equalizer with an accurate channel estimate so that the
transmitted signals can be recovered successfully at
the receiver side [57, 58]. SISO channel estimation
for communications problem is similar to SISO
radar/sonar range-Doppler imaging, with the only
difference being that the delay for the former is due to
single-trip propagation, while the delay for the latter
results from round-trip propagation.

1) Data Model: For the MISO channel estimation
problem with [ transmitters and a single receiver, let

S; = [5,(1),5,(2),...,5,(M)]", i=1,....1 (22)

denote the ith transmitted pulse, and let L denote the
total number of Doppler bins. Then similar to (12),
the received signal that is temporally aligned with the
return from the rth tap, r = 1,...,R, with R denoting
the total number of taps of the channel, can be written

i=1

L
o, (D)s;(w))
I=1

M—-1 L

+ Z Zar+m,l(i)Jmsi(wl) +er (23)

m=—-M+1 [=1
m#0

where J,, was defined in (13),

s;(w) =5, 0d(w) (24)

and d(w,) was defined in (11). When determining
the parameters of the ith channel {o, (i)}, the term

S a, /(D)s;(w) is the signal term, and all other
terms in (23) are considered as clutter and noise.

Consequently, IAA-APES can be applied directly to
(23) to estimate {a, (i)}. Like in radar/sonar range
compression problems, to determine {c, (i)} with
high accuracy, the transmitted pulses need to have
both good auto and cross-correlation properties

[59, 60].

2) Related Work: Most of the demodulation
algorithms used in practice rely heavily on the
accurate estimation of the channel impulse response.
As in many other applications, sparse signal
estimation approaches have also been proposed in
this context. The main motivation for this is that
underwater communications [61-63] and wireless
channels are appropriately modelled as sparse
channels consisting of only a few non-zero taps
[64]. The existing approaches we evaluate for sparse
channel estimation, besides IAA-APES, include the
matching pursuit (MP), orthogonal matching pursuit
(OMP) [65-67], and least squares matching pursuit
(LSMP) [68] algorithms, which have been used for
sparse channel estimation and equalization in many
applications [69—72]. It is difficult to determine
the stopping criterion when using matching pursuit
algorithms, and user intervention is needed.

IV.  NUMERICAL EXAMPLES

We evaluate the performance of IAA-APES
and compare it with various alternative methods
in this section. We first focus on passive sensing
applications and then shift our attention to active
sensing applications.

A. Passive Sensing Examples

This subsection investigates the performance
of IAA-APES, M-FOCUSS, M-SBL and ¢,-SVD
for various passive sensing scenarios. Unless noted
otherwise, M-FOCUSS is implemented by setting
the sparsity parameter p = 0.8 and fine tuning the
regularization parameter \ to get the best results.*
£,-SVD is implemented by assuming that the number
of sources is known a priori and by fine tuning
the hyperparameter. Since the fine tuning of the
hyperparameters assume knowledge of the true source
parameters, the so obtained results of M-FOCUSS and
£,-SVD are impractical. M-SBL is implemented by
using the alternative update method for the parameters
as described in [19], [20], and [23]. For all approaches
considered, the scanning grid is uniform in the range
from 1° to 180°, with 1° increment between adjacent
grid points, unless noted otherwise.

We consider a uniform linear array with M = 12
sensors and half-wavelength interelement spacing.

4See Section VE in [22]. Also note that the M-FOCUSS algorithm
used here is referred to as regularized M-FOCUSS in [22] since
A # 0. We refer to the approach as M-FOCUSS for simplicity.
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The far-field narrowband signal waveforms and the
additive noise signals are assumed to be circularly
symmetric, independent identically distributed (i.i.d.)
complex Gaussian random processes with zero mean
and variance o2, which is varied to obtain various
SNR values. Furthermore, each signal waveform

is normalized such that (1/N)SN_ |s,(n)*> = B,
k=1,...,K,, for a given B, value, where K|, denotes
the true number of sources. SNR is defined as
IOIOgIO(Pk/az), k=1,...,K,, in decibels (dB), where
o is the noise variance. According to the comments
made in the Introduction, we consider very low
snapshot cases, viz. N =3 and N = 1.

First we consider three uncorrelated sources at 60°,
82°, and 90°, with 5 dB, 10 dB, and 10 dB powers,
respectively, and with N = 3. The noise power is
0 dB, which results in a minimum SNR of 5 dB.

Fig. 3 shows the power and location estimates of

the algorithms. The circles and the vertical dotted
lines that align with these circles represent the true
source locations and powers, and the results of 10
Monte-Carlo trials are shown in each plot. DAS
clearly suffers from smearing and leakage. IAA-APES
provides a much better result than DAS, with low
sidelobes and peaks at the true source locations.
Moreover, IAA-APES&RELAX indicates the number
of sources and their locations and powers accurately.
As observed in Fig. 3(d)—(f), the sparse algorithms
encounter source splitting, location bias, and power
underestimation problems. Also it is hard to tell how
many sources are present by solely using the spatial
estimates of the sparse algorithms.

Next Fig. 4 considers three coherent sources
at 60°, 80°, and 90°, with 10 dB power each and
with N = 3. The source waveforms are assumed
to be identical for all three coherent sources. The
noise power is 0 dB, resulting in a 10 dB SNR.
Similar to Fig. 3, the circles and the vertical dotted
lines represent the true source locations and the
powers, and the results of 10 Monte-Carlo trials are
shown in each plot. We observe that IAA-APES
is able to resolve the sources successfully and
that IAA-APES&RELAX provides accurate point
estimates. On the other hand DAS fails to resolve the
two closely spaced sources. The performances of the
sparse algorithms are similar to those of the previous
example.

Finally Fig. 5(a) compares the total mean-squared
error (MSE) (sum of each individual MSE) of
the angle estimates of each algorithm with the
Cramer-Rao bound (CRB) [5], and Fig. 5(b) compares
the total angle estimation bias (sum of each individual
bias’ modulus) of each algorithm for varying SNR.
Two uncorrelated sources are placed at 77.51° and
90.51°, and N is set to 1. (The angle values are
picked so that they are not on the size 1° grid used
by TAA-APES.) To calculate the MSE and bias, we
consider only the signals with the two largest powers
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as the estimated signals for FOCUSS and ¢,-SVD.
We run the sparse algorithms, with a fine grid of size
0.01°, around the true source locations. The sparse
algorithms are run with K = 950 scanning points,
whereas IAA-APES is run with the same resolution
as before, i.e., K = 180. IAA-APES&RELAX
is used to estimate the off-grid sources. M-SBL
results are not shown because of the excessive
computation time needed. Each point in Fig. 5 is the
average of 100 Monte-Carlo trials. We observe that
IAA-APES&RELAX has both better variance and bias
characteristics than the other methods for lower SNR.
Note that FOCUSS and ¢,-SVD both have two
hyperparameters, and their selection affects the
performances of these two algorithms significantly.
Moreover, a different parameter setting should be used
depending on the SNR, N, and the source structure,
i.e., the number of sources, source spacing, source
power levels, and correlation levels. We were able to
tune the parameters relatively easily in our simulation
scenarios, but when the problem dimensions are large
and when there is no prior knowledge of the scenario,
it becomes difficult to find good hyperparameters.
M-SBL, on the other hand, does not require any
hyperparameters, but it takes the longest time to
converge. These are the main reasons why BP or
LASSO, which are the single-snapshot counterpart of
£,-SVD, and SBL and FOCUSS, which are the single
snapshot counterparts of M-FOCUSS and M-SBL, are
not considered in the active sensing examples below.
Assuming K > M, the complexity of each
IAA-APES iteration is O(M?K). The complexity
of the BIC extension is negligible compared to
that of IAA-APES, and the complexity of the
RELAX extension depends on how many sources
TAA-APES&BIC determines, the termination
condition, and the method chosen for the
maximization step. In our experiments RELAX
usually converged faster than the time needed
for IAA-APES to converge. The complexities of
M-FOCUSS and M-SBL are also O(M?K) per
iteration [23]. The complexity of ¢,-SVD, on the
other hand, is O(K3K32 ;) [25], where K4 is the
estimate of the number of sources. In our simulations
TAA-APES was always faster than M-FOCUSS,
M-SBL, and ¢,-SVD, especially when the SNR was
low. Note that the actual number of iterations required
for convergence depends heavily on the specific
scenario. For example for the scenario considered in
Fig. 5 at SNR = 2 dB, the times required by FOCUSS
and ¢,-SVD are 3.9 and 5.6 s, respectively, whereas
IAA-APES&RELAX requires 0.1 s on average.’

5The timing values in seconds are given as an example. The
convergence times may vary depending on many factors such as
how the algorithms are implemented, the specific hardware, etc.
£,-SVD has been implemented using the software described in [73]
and [44].
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Fig. 3. Three uncorrelated sources at 60° (5 dB power), 82° (10 dB power), and 90° (10 dB power), as represented by circles and
vertical dotted lines in each plot. N = 3, the noise power is 0 dB (which results in minimum SNR of 5 dB), and 10 Monte-Carlo
trials are shown. (a) DAS spatial estimate. (b) IAA-APES spatial estimate. (c) IAA-APES&RELAX point source estimates.

(d) M-FOCUSS spatial estimate. (¢) M-SBL spatial estimate. (f) ¢,-SVD spatial estimate.

B. Active Sensing Examples

This section considers examples for the SISO
radar/sonar and the MISO channel estimation

problems.

1) SISO Range-Doppler Imaging Example: We
now evaluate the performance of TAA-APES for
SISO range-Doppler imaging and compare it with
that of the matched filtering, MP, OMP, and LSMP.
We use a 30-element P3 code for the transmitted

pulse, i.e., 5(m) = e/=D7/M and m = 1,...,M, where

M =30 [55, 74]. The Doppler shift is expressed as

O, =w,M(180°/m), I = 1,...,L, which is the total
phase shift (in degrees) for the transmitted pulse
duration.

We consider three moving targets with 5 dB
power and with Doppler shifts of —30°, —25°, and
15° and six moving targets with 25 dB power and
Doppler shifts of —70°, —55°, —10°, 10°, 20°, and
60°, as shown in Fig. 6(a). The background noise is
assumed to be a circularly symmetric i.i.d. complex
Gaussian random process, with mean zero and a
variance of 0 dB. The number of range bins is set
to 100, and the number of Doppler bins is set to
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(f) £,-SVD spatial estimate.

37. The resulting minimum SNR is 5 dB. Fig. 6
shows that the matched filter smears the targets in
both the Doppler and range domains significantly.
Figs. 6(c)—(e) show that MP, OMP, and LSMP results
are not satisfactory in this example. The MP, OMP,
and LSMP algorithms are all terminated manually

to give the best performance.® Fig. 6(f) shows that
TAA-APES provides a much more useful result (the

6See [70] for a complexity analysis of MP, OMP, and LSMP. In our
examples MP and OMP took less time than IAA-APES, whereas
LSMP took longer than IAA-APES to converge.
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target locations and Doppler frequencies being easily
observable) than the matched filter. IAA-APES&BIC
can estimate the strong targets accurately and the
weak targets reasonably well, as shown in Fig. 6(g).
TAA-APES&RELAX helps improve the results of
TAA-APES&BIC even further, as shown in Fig. 6(h).
In Figs. 6(c)—(e) and Figs. 6(g)—(h), the cross marks
represent the targets selected by the algorithms, and
the circles represent the ground truth. The numbers
shown in Figs. 6(g)—(h) are the power estimates
obtained by the corresponding algorithms. Recall
that BIC selects only the dominant components of the
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are in range of —30 dB to 0 dB, and noise level is —20 dB, which results in —10 dB minimum SNR. Estimates for first channel
via (a) MP, (b) OMP, (c) LSMP, and (d) IAA-APES&BIC. All power levels are in dB.

TAA-APES spatial estimate, but BIC does not modify
either the range-Doppler values or the power levels
estimated by IAA-APES, whereas RELAX improves
upon the I[AA-APES estimates.

2) Channel Estimation: The performance of MP,
OMP, LSMP, and TAA-APES are also investigated
for the channel estimation problem encountered
in communications. We consider six transmitters,
viz. I = 6, and a single receiver. The probing pulses
used in the simulations are obtained by using a
cyclic algorithm to ensure both good auto and
cross-correlation properties; see [59] and [60] for
details. The sampling frequency is assumed to be
24 kHz. M is chosen to be 1024 (which yields a
42.7 ms pulse duration). The number of delay taps
are set at 80 to yield a 3.3 ms of delay span, and
13 Doppler bins are used to cover the range from
—30 Hz to 30 Hz with 5° resolution. The six channels
are assumed to be independent of each other, and they
are simulated as circularly symmetric i.i.d. complex
Gaussian random variables, with mean zero and a
variance decreasing exponentially with increasing
delay, specifically o7 = e %9*-1_where o7 is the
variance of the channel tap with delay index &,
k=1,...,80. The noise is simulated as a circularly
symmetric i.i.d. complex Gaussian random process,
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with mean zero and a —20 dB variance. The locations
of the non-zero taps of the channels are also simulated
randomly and by trying to mimic practical channel
functions encountered in underwater communications,
see, e.g., [69] and [70]. The power levels of the
channel taps were in the range from —30 dB to 0 dB,
which results in a minimum SNR of —10 dB. Fig. 7
illustrates the performances of the algorithms for

the first channel; IAA-APES&BIC provides the best
result. The results for the other channels, which are
not shown for conciseness, are similar to that for the
first channel.

V.  CONCLUSIONS

This paper has presented IAA-APES in
array processing applications. IAA-APES is a
nonparametric, hyperparameter free algorithm that is
designed to work under severe snapshot limitations
and for uncorrelated, partially correlated, and
coherent sources, as well as for arrays with arbitrary
geometries. Because of the similarities between
many active sensing applications and passive array
processing, IAA-APES can be applied to these cases
as well, without any essential modifications. The
BIC can be used in conjunction with the IAA-APES

JANUARY 2010



algorithm to yield sparse solutions, which are
desirable in many applications. Furthermore, the
application of the parametric RELAX algorithm to the
IAA-APES&BIC results provides further performance
improvement. Simulations showed that IAA-APES
and its variations outperform the most prominent
methods in the literature in the corresponding
application areas. IAA-APES is believed to be a
viable candidate for practical applications since it
does not require any hyperparameters, has a simple
formulation, provides superresolution, facilitates
parallel processing, and shows good performance.

APPENDIX. AN APPROXIMATE ML INTERPRETATION
OF IAA-APES

We derive a locally convergent ML-based iterative
adaptive approach called TAA-ML. IAA-ML is similar
to IAA-APES in nature, and we show that IAA-APES
can be obtained as a simplified version of IAA-ML.

The negative log-likelihood function of {y(n)}"_,
can be represented as

In|R| +tr(R™'T) (25)

where I' = (1/N) Zilvzl y(n)y” (n) is the so-called
sample covariance matrix. It is assumed that the
received signal is a multivariate, complex Gaussian
random vector with zero-mean and covariance matrix
R and that the snapshots are i.i.d. [5]. Minimizing
(25) is equivalent to minimizing the Stein’s loss,
—In|R7!IT| + tr(R™'T) [75, 76], which stresses the
covariance fitting character of the cost function, but
without the i.i.d. Gaussian assumptions needed by the
maximum likelihood loss function.

Assume that Q(6,) is known and that the signal
power at 0, is to be estimated. Using the fact that
I+ AB| = I+ BA| and the matrix inversion lemma
together with (4), it can be shown that minimizing
(25), with respect to F,, is equivalent to minimizing

RalQ.'TQ '
1+ Pkank*lak

f(B)SIn(1 + RaQ;'a,) —
(26)

where Q(6,) and a(f,) have been replaced by Q, and
a,, respectively, for notational simplicity. Setting the
first derivative of (26), with respect to B, to zero, i.e.,

f'(B) =0, gives

1

_ QT -Q)Q,'a
(af' Q; 'ay)?

The second derivative of (26), with respect to B, is

a!Q,'TQ, 'a;

(1+PRal’Q 'a)
(1+PRal'Q'a,)?

k 27

_1 _1
—(@f'Q'ay)?* +2 alQ, 'a,

'@ =

YARDIBI ET AL.: SOURCE LOCALIZATION AND SENSING: A NONPARAMETRIC ITERATIVE ADAPTIVE APPROACH

and hence f” (i’k) is

(aff Q, 'a,)?
(1+PRal’Q, 'a,)?

f'(B) = (28)

which is strictly positive. This means that IT}( is the
unique minimizer of f(F,). In principle, é( may be
negative. However, since B, represents power, it should
be nonnegative. The minimizer of f(F,) subject to the
constraint £, > 0 is

P, = max(0,R) (29)

since IE,’{ is the unique minimizer of f(£,) (when
P, <0, £(0) < f(R) for VP, > 0).

By using the matrix inversion lemma in (27) to
replace Q, by R, we get

. HR-'(I' ~ R)R"!
E(:max(O,B(+ak (' —R) ak). (30)

(afR-'a,)?

Computing ka requires knowledge of B, and R (recall
that R = A(§)PA”(0), where P is a diagonal matrix
with {B,} on its diagonal). Therefore the algorithm
must be implemented iteratively; the initialization is
done with DAS. TAA-ML will be locally convergent
if R is recalculated after each F, is updated because of
the cyclical maximization of the likelihood function.
Note that (30) can be written as (assuming f’k >0)

~ aR'TR'a 1
p=%*—— *4p-———08— (3l
KT @R a2 T F @R lay G
By the properties of SCB, B, =~ 1/(allR'a,) [6, 43].
Hence an approximate solution of (31) is
~ allR'TR 'a,

p="— "= % k=1,.K.

(afR-'ay)? ’ (32)

Iterating this equation by building R from the

latest estimate of {F,}, we get IAA-APES. This
approximation has two advantages. First the 13,( in (32)
is guaranteed to be nonnegative, and it alleviates the
need for the procedure in (29). Secondly when {F,}

is accurate, the difference F, — 1/ (akH R*Iak) in (31) is
small, as discussed above. When {B,} is inaccurate,
however, this difference may not be small, and forcing
the difference to zero may provide a better estimate of
F.. IAA-ML tends to work well when the snapshot
number is large. It is not considered in the numerical
examples because of our focus on cases with few
snapshots.) Since IAA-APES can be obtained as a
close approximation to IAA-ML, which is locally
convergent, IAA-APES is expected to also enjoy

local convergence. We have never come across an
example where IAA-APES did not converge; however,
the search for a convergence proof could be a useful
direction for future work.
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