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ABSTRACT

Single crystal layers of 180-enriched MgO were epitaxially
grown at rates of about 20 pm per hour at temperatures between
1000 0C and 1100 0C on substrates of normal MgO through chemical
vapor transport with HCl. After deposition, exchange between
180 in the epitaxial layer and 160 present in air as well as
isotopic interdiffusion between the epitaxial layer and the
substrate were simultaneously produced by annealings in a
temperature range of 1000*C to 1650*C. Diffusion coefficients
were determined from concentration profiles established with
the aid of secondary ion mass spectrometry. The diffusion
coefficients extracted from the gas-exchange profiles and from
the isotopic interdiffusion profiles were in good agreement.
The effect of the gas-exchange rate on the overall kinetics
was therefore not significant within the limits of experiment-
al uncertainty. The temperature dependence of the oxygen
tracer diffusivity, obtained from the gas-exchange profiles,
is best represented, with a precision of a factor of 2 by a
pre-exponential term Do of 1.8x10~ 6 cm2/sec and an activation
energy of 3.24±0.13 eV. The magnitude of the diffusivity is
smaller than that obtained from the earlier gas-exchange
measurements of other workers but agrees well with recent
values obtained from gas-exchange profiles established through
a proton activation analysis. The present activation energy
is in the middle of the range reported in previous studies.
Upon comparison with the theoretical estimates of defect-
related energies for MgO, the experimental value seems too
large to represent an enthalpy for anion vacancy migration
(estimated as 2.4 eV), the activation energy to be expected
when the concentration of anion vacancies is extrinsically
fixed. It is far too small to represent the combination of
the enthalpies for Schottky defect formation and the anion
vacancy migration (estimated as 7.5 and 2.4 eV, respectively),
the activation energy to be expected if either the system
remains intrinsic or, as presently believed, the defect
structure of MgO is governed by cation impurities of higher
valences.

Nonisothermal interdiffusion of the oxygen isotopes in a
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system of Mg(160 1 _ xOy) was analyzed in the light of irre-
versible thermodynamics. For comparison, non-isothermal
diffusion of interstitial solutes was also analyzed. It has
been analytically possible, for both cases, to obtain
approximate but highly accurate and explicit time-dependent
solutions to the transport equation for semi-infinite, thin-
film and finite source boundary conditions. Contrary to an
initial intuitive expectation, the interdiffusion of the
anion isotopes in MgO-like ionic solids is not affected by
the influence of anion thermomigration but only by the tem-
perature dependence of the anion self-diffusivity in the
applied temperature gradient. This is attributed to the fact
that the local crystalline lattice in an MgO-like ionic- solid,
which is stoichiometric and where diffusion proceeds via a
Schottky vacancy mechanism, is rendered mobile by a net flux
of electrically-neutral quasi-molecular vacancies VMgO induced
by the temperature gradient in very much the same way as in an
elemental crystal with a vacancy diffusion mechanism. The
heat of transport of the anion is consequently not accessible
from the intermixing profile of the anion isotopes which is
developed in a temperature gradient. The analytical time-
dependent solution was employed to numerically predict the
velocity of the local crystalline lattice, which provides a
direct measure of the molecular heat of transport in an MgO-
like ionic solid.^ It is shown, however, that the time
required to produce a measurable shift of a specific lattice
plane may be unrealistically long for a system such as MgO in
which the anion diffusion rates have been found to be
extremely sluggish. The analytical time-dependent solutions
for a nonisothermal distribution of an interstitial solute, in
contrast, bears two perturbations: One arises from the tem-
perature dependence of the solute diffusivity through its
activation energy and the other from the effect of solute
thermomigration through its heat of transport. This differ-
ent behavior, relative to a vacancy mechanism, is due to the
fact that the center-of-mass of the interstitial solute can be
displaced relative to that of the solvent. The time-dependent
solutions which were obtained in the present work have been
employed to design promising experiments, through which the
heat of transport of interstitial solutes may be determined by
either measuring the change of concentration at a specific ~
point in the solid as a function of time or by measuring the
rate of shift of the position of a specific concentration of
the solute. It is shown that such experiments provide a
highly-accurate measure of the heat of transport in an experi-
ment which requires an order of magnitude less time than the
conventional technique which utilizes the Soret effect.

Thesis Supervisor: Bernhardt J. Wuensch

Title: Professor of Ceramics
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PROLOGUE

This work was originally aimed at analysis and experiment-

al measurement of oxygen thermomigration in MgO, a material

selected for study as a model ceramic oxide. Moreover, as

MgO is a highly stoichiometric material, a thermomigration

experiment would be free from the competing effects of varia-

tion in diffusivity arising from local equilibration with

atmosphere along the temperature gradient. It was envisioned

that oxygen self-diffusion in a temperature gradient would be

affected by two factors: the temperature dependence of the

oxygen self-diffusion coefficient and the oxygen thermal-

diffusion or thermomigration. The magnitude of the first

influence will be governed by the activation energy for oxygen

self-diffusion and the second by the heat of transport of

oxygen in MgO. If one were to supply an oxygen isotope such

as 180, either from a semi-infinite source or from an embedded

thin film source in the form of Mg' 80, an-intermixing profile

of the isotopes, 180 and 160, may bear those two influences in

addition to ordinary self-diffusion. Depending on the sign of

the heat of transport, the degree of intermixing would be

anticipated to be either amplified or attenuated in given

temperature and isotopic concentration gradients. One might

thus expect an overall intermixing profile to be distorted or

shifted compared with what would be developed from e.g. a thin

film source in an isothermal condition, an effect which would



be analogous to the classic Chemla experiment of ionic diffu-

sion in an electric potential gradient. Deconvoluting upon

appropriate analytical or numerical analysis of the inter-

mixing profile, one might hope to separate out the net effect

of the thermomigration from which the heat of transport of

oxygen can be extracted. For a meaningful deconvolution, the

temperature dependence of the oxygen diffusivity or its acti-

vation energy must be known accurately and precisely for the

specific material employed in the experiments. Several

studies reported in literature show no general agreement on

-activation energies, and the magnitudes of the diffusivity

range over several orders of magnitude. It was thus required

that the isothermal oxygen self-diffusion coefficients be

precisely determined over a wide range of temperature before

the analysis of thermomigration data could be performed.

In parallel with this experimental study of oxygen self-

diffusion, a rigorous theoretical analysis of thermomigra-

tion was undertaken. No general time-dependent solution had

been given for the redistribution of solute during diffusion

in a temperature gradient. It was anticipated that numerical

methods, such as finite-difference methods would have to be

employed. I.t was possible, however, to obtain an approximate

but explicit analytical solution to the problem for semi-

infinite, thin-film and thick-film source initial conditions.-

The formulation of the problem and nature of the result de-

pends on the diffusion mechanism. It was shown that all infor-

mation on thermomigration effects disappears from an aniso-



thermal diffusion profile for a vacancy diffusion mechanism.

Oxygen thermomigration in MgO--a material which is stoichio-

metric, ionically bonded, and in which diffusion on both the

cationic and anionic sublattices presumably proceeds via a

Schottky vacancy mechanism-would thus not be a process

amenable to study by means of the diffusion experiments

originally contemplated in the present work. Moreover, the

experimental measurements of isothermal oxygen self-diffusion

revealed diffusion coefficients up to two orders of magnitude

smaller than those reported in the literature-thus increasing

proportionately the time necessary to produce measurable

effects in the largest temperature gradient which might

reasonably be produced under laboratory conditions. Uncertain-

ty remains whether oxygen truly diffuses via a vacancy mechan-

ism in MgO. But, even if this were not the case, the present

diffusion data show that the annealing times necessary to

produce measureable perturbations in a diffusion profile (which

must be created under highly hostile experimental conditions)

to be unrealistically long: ca. 4 years. It is thus concluded

that MgO is decidedly not a suitable model material for self-

thermomigration studies.

Therefore, the description of the results of the present

work has been broken into two seemingly independent parts.

The first part is devoted to the experimental measurement of

isothermal oxygen self-diffusion in MgO. A unique type of

specimen was developed in which a layer of single crystal

Mg' 8 0 was grown epitaxially on a substrate of normal MgO.



The self-diffusion coefficient was determined therefrom with

the help of analysis of concentration profiles through

secondary ion mass spectrometry.. The second part is devoted

to the irreversible thermodynamical analysis of the self-

thermomigration in MgO-like ionic solids. For generality and

in order to support the related subtle physics, the thermo-

migration of interstitial impurities in a non-ionic lattice is

treated first. In this development for the first time an

explicit analytic solution is obtained for the time-dependent

flux equation, the form of which suggests a new procedure for

the determination of the heat of transport from a nonisotherm-

al diffusion gradient. The method promises to be more rapid

and precise than conventional methods involving time-indepen-

dent stationary states.
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PART I:

ISOTHERMAL ANION SELF-DIFFUSION IN MgO



1. INTRODUCTION

Approximately a dozen studies of oxygen self-diffusion in

single crystal MgO have been reported subsequent to the first

gas exchange measurements1 performed by Oishi and Kingery in

1960. Although recent advances in theory have provided reli-

able estimates of the enthalpies for defect formation,

migration, and association in MgO"' 3 ,4 the various activation

energies for anion self-diffusion provided by experiment are

not in especially good agreement with either theory or each

other, while a concensus by and large seems to have been

reached for cations. Moredver, the magnitudes of the diffu-

sion coefficients which were obtained range over more than

two orders of magnitude although the difference, of itself,

would not be unexpected if extrinsic, impurity controlled

transport were involved.

The difference between the activation energies of

previous studies may be at least partly due to the small

temperature range over which experiments have been conducted.

Each data set extends over a temperature range of 4500K at

most. This attaches considerable uncertainty to the reported

activation energy. The significance of the difference cannot

be established at the moment since errors associated with the

various measurements have not been assessed to provide a

realistic uncertainty to the activation energy and the

diffusion coefficient as well. Results may be especially mis-



leading if the measurements extend over a temperature range

where a change in diffusion mechanism appears to occur. If

insufficient data are available to resolve a change in slope

in an Arrhenius plot of the diffusion coefficients, the

apparent activation energy will be some value intermediate

to those for the two different mechanisms.

In the present work, oxygen self-diffusion coefficients

were measured over a wider temperature range, 1000 0C to

1700 0C. The predominant isotope in air, 160, was exchanged

with 180 in an isotopically-enriched layer of single crystal

MgO which had been grown epitaxially on.a substrate of

normal MgO. Diffusion profiles were established with

secondary-ion mass spectrometry (SIMS). Diffusion co-

efficients measured from the gas exchange at the free surface

of the epitaxial layer were also compared with those measured

from the isotopic interdiffusion at the interface between the

epitaxial layer and the substrate in order to elucidate the

possibility of the surface (phase boundary) exchange reaction

being rate-controlling.
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2. REVIEW OF LITERATURE

Oishi and Kingery' first measured the oxygen diffusion in

Mg0 with the gas/solid 180 isotope exchange technique in which

crushed particles of single crystal MgO were annealed in an

atmosphere of 150 torr 1802. The particles were subsequently

reduced by carbon to convert the oxygen to the gas phase.

The gas was then analyzed by means of mass spectrometry to

determine the total amount of 180 which had diffused into the

solid, a measurement from which the diffusion coefficient was

deduced. The gas exchange rate at the specimen surface

(phase boundary) was assumed to be fast enough that the

overall kinetics of the gas exchange was limited by solid-

state diffusion. In such boundary conditions as diijuzion

J'om a weZ-4titted solution oj timited voZume to a sphete,

extraction of a diffusion coefficient necessitates knowledge

of the radius of the sphere or the radius of particles.

Oishi and Kingery' employed as an equivalent sphere radius

the value corresponding to that which would provide the same

surface-to-volume ratio as was estimated from a photomicro-

graph of the irregularly shaped particles. The diffusion

coefficients obtained could be represented by D = 2.5 x 10~

exp (-2.71 eV/kT) cm2 /zec at temperatures of 1300* to 1750*C..

An enormous error may have been produced by the estimation of

the radius from the surface-to-volume ratio. Measurement of

the surface area by macroscopic means is likely to lead to a



underestimation of the true area, where the gas exchange

- reaction has taken place, due to surface irregularities on the

atomic scale. Recently, Oishi et at have reported the

influence of surface condition on the apparent oxygen self-

diffusion coefficient. It was shown that the oxygen diffusion

coefficient of a single crystal AZ20 3, once measured by Oishi

and Kingery7 with exactly the same technique, was overesti-

mated by as much as a factor of 34 due to the underestimation

of the surface-to-volume ratio. In this view, the first

oxygen diffusion data seem to have been overestimated also.

Quite recently, the oxygen diffusion coefficient in MgO

has been remeasured by Oshi et afZ with the same method as

before. A rectangular plate of single crystal rather than

crushed powders was used this time and the exposed surface

of the plate was polished chemically to eliminate a possible

underestimation of the surface-to-volume ratio due to surface

microroughness. The annealing atmosphere was again 150 torr

1802. The results for Norton crystals were interpreted as

having a break at around 1500 0C in an Arrhenius plot of £n D

as a function of reciprocal temperature. The steeper

portion was represented by D = 6.76 exp (-5.56 eV/kT) cm2 /.4ec

between 1500*C and 1750 0C and that at lower temperatures. by

D = 2.2 x 10~ 9 exp (-2.21 'eV/kT) cm2 /sec from 1300 0C to

1500 0C. The former was interpreted as an intrinsic diffusion

* Norton Co., Worcester, MA



based on the observation that the result was comparable with

that obtained for ORNL crystals which had a differing

impurity concentration. The latter was interpreted as not

impurity-sensitive but structure-sensitive, being dependent

on the method of sample preparation such as as-cleaved, as-

crushed, or as-chemically-polished. According to Oishi et

at.'s comparison of impurity contents8 the Norton crystal

contains as much as 150 ppm of At, Fe, and P combined, while

the ORNL crystal has 60 ppm of AZ, Fe, P, and Si combined as

the major aliovalent cationic impurities. The activation

energy for the so-called intrinsic diffusion above 15000C

appears comparable to the theoretical estimate, 6 eV, which

is the sum of the enthalpy for the anion vacancy migration

and a half of the enthalpy for the Schottky defect formation

(see Table 2). But, this interpretation is suspicious in

view of the impurity content, which is still too large to

allow for intrinsic transport to occur. It is also suspici-

ous in view of the limited number of data points on the

Arrhenius plot. The break was judged on the basis of only two

seemingly-high diffusion coefficients at temperatures below

15000C. In other words, the two seem to have been excluded

* Oak Ridge National Laboratory, Oak Ridge, TN

+ Based on the theoretical estimate of Schottky defect
formation energy, 7.5 eV , the fractional concentration of
anion vacancies is on the order of only 10- 9or 0.001 ppm at
the temperature of 18000C when the entropy-related pre-
exponential term of the Schottky defect equilibrium equation
is taken as unity.



almost arbitrarily for the sake of obtaining an activation

energy close to the expected value, 6 eV.

Hashimoto et aZ2 applied the same technique to measure

the oxygen diffusion in polycrystalline MgO. A sintered

tablet of 96% theoretical density was crushed into poly-

crystalline particles with a diameter of -3 or ~5 times the

approximate grain size. These powder samples were annealed

in an environment of 40 torr 1802 enrichment. When the

approximate grain size rather than the size of the poly-

crystalline particles was taken as the radius of sphere, the

volume diffusion coefficient between 10500 and 1438*C was

calculated as D = 4.5 x 70~ exp (-2.67 eV/kT) Cm 2/4ec, which

was claimed to agree well with the earlier measurement' of

Oishi and Kingery. It seems likely that the uncertainty

associated with taking an average grain size for the

corresponding sphere radius is no smaller than the procedure

for estimating sphere radius micrographically in the earlier

work of Oishi and Kingery.

With the use of the same technique, Rovner'0 arrived at

diffusion coefficients, D = 4.3 x 70~5 exp (-3.56 eV/kT)

Cm2 / ec at temperatures of 975*C to 1150 0C and D = 4.8 x

10~ 14exp(-1.37 eV/kT) em2 /.6ec at 750* to 975*C for crushed

Norton crystals, and V = 2.4 x 70- exp (-3.56 eV/kT) Cm 2/ ec
*

at 9750 to 1150*C for crushed Semi Elements crystals. Both

crystals were diffusion-annealed in an 1802 atmosphere of 1

* Semi Elements Inc., Saxonburg, PA
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torr. According to Wuenschii,1 2 these measurements were

complicated, however, by the necessity of making large correc-

tions for exchange with the system, and by the fact that the

exchange rate plots did not extrapolate to zero at zero time.

Reddyis used the 180 exchange technique followed by proton

activation-analysis to establish an 180 concentration profile,

from which the oxygen diffusion coefficient was best estimated

to be D = 7.9 x 704 exp(-3.84 eV/kT) cm2/zec at temperatures

1310* to 1544 0C for ORNL MgO single crystals which had been

mechanically polished and annealed in 760 to 800 torr 1802.

In a proton activation techniquel1 180 is activated in zlta

by irradiation with monochromatic protons. An experimental

in-depth profile is obtained from the variation of the

intensity of the nuclear reaction product (a-particles in

Reddy's work, produced via the '80(p,a)isN reaction) with

its energy which is, in turn, converted to a penetration

depth. In this technique, the major uncertainty comes

into existence, obviously, during -the conversion of an

intensity-energy relation into a concentration-depth re'la-

tion.

Some authors have measured the oxygen diffusion co-

efficients indirectly from the observation of dislocation-

related phenomena in a thin MgO single crystal by means of

the transmission electron microscopy. Moriyoshi et atis

measured elapsed times for subgrain boundary formation at

14000 to 1750*C in a thin sheet of single crystal MgO which

had been mechanically polished to introduce- dislocations.



Assuming that the subgrain boundary is formed by dislocation

polygonization via diffusion processes and taking a diffusion

distance in an elapsed time as an average spacing between

neighboring dislocations (a value which is estimated from the

density of dislocation etch pits), they have obtained a

diffusion coefficient, D = 1.35 x 10 5exp(-3.28 eV/kT) cm2!

Zec. Upon comparison with the earliest oxygen diffusion data'

of Oishi and Kingery, control of the rate of polygonization

has been attributed to oxygen diffusion since the activation

energy is but "a little different" from the earliest value,

2.71 eV, and the magnitude of the diffusion coefficient it-

self is rather smaller by the order of magnitude 1.

Narayan and Washburn 6 measured shrinkage rates of dis-

location loops in an MgO foil. Being based on the kinetic

model that the dislocation climb rate is controlled by the

diffusion of oxygen vacancies between a loop and the surface

of a foil, the diffusion coefficient of oxygen has been given

as D = 1.37 x 10- 2exp(-4.78 eV/kT) cm2 /sec at temperatures of

11000 to 1427 0C. In these dislocation-related methods, the

diffusion coefficient is obviously dependent on the kinetic

model chosen for dislocation movements just as diffusion co-

efficients estimated from sintering or creep experiments.

The experimental observations of oxygen diffusion in MgO

are summarized in Table 1.

On the other hand, the success of theoretical calcula-

tions of defect energies has recently seen a major advance

for MgO and similar oxides?' 3 ,4 ,1 7 The enthalpy for Schottky



defect formation, hs, is calculated to be 7.5 eV by Mackrodt

and Stewart 2 and 7.72 eV by Sangster and Rowell3 . The

similarity of results in different calculations using

different potentials suggests that these values are reliable.

The activation energy for cation vacancy migration, h +, has

been put at 2.16 eV2 or 2.07 eV! These results are in good

agreement with the experimental cation migration enthalpies,

2.2 eV1 8 or 2.29 eV1 9 obtained from ionic electrical conduc-

tivity measurement with heavily-doped crystals, but somewhat

smaller than that obtained from the cation self-diffusion

measurement, 2.76 eV

With respect to the anion vacancy, its migration enthalpy

has been calculated as 2.38 eV2 or 2.11 eV! These have often

been favorably compared with the activation energies obtained

from anion self-diffusion measurements, 2.71 eV by Oishi and

Kingeryl or 2.61 eV by Hashimoto et at.?, but this is meaning-

less at present as this interpretation is inconsistent

with the interpretation of cation diffusion in terms of a

defect structure dominated by vacancies created by impurity

cations (see Chapter 5).

Interaction energies among defects in MgO have been also

calculated rather extensively?''' 2 1  Among those, the

enthalpy for cation-anion divacancy formation is estimated

to be -2.55 eV.

The theoretical estimations are summarized in Table 2,

which will be referred to later.



TABLE 1. OXYGEN SELF-DIFFUSION DATA IN MgO*

Ref Authors Technique Annealing Temperature D (cm2/sec) Activation Samples
Atmosphere range(*C) o Energy(eV)

Oishi & - 6 Crushed single
1 Kingery, 1300-1750 2.5xl1 -2.71 crystals

1960 1802

Oishi et 150 Torr 1500-1750 6.76 -5.56 Chemically pol-

8 al., gas/solid ished, Norton+

1972 9 single crystal
180 iso- 1300-1500 2.2x10 -2.21 plate

Hashimot tope ex- Crushed
9 et al., change 40 Torr 1050-1438 4.5x10 -2.61 polycrystals

1972 - mass

spectro- 975-1150 4.3x10 -3.56 Crushed Norton
Rovner, metry 1802 750-975 4.8x10 14 -1.31±0.13 single crystals

10
1966 1 Torr Crushed

975-1150 2.4x10 -3.56±0.13 Semi-Elements#
single crystals

(cont'd)

* The structure of this table is reproduced from Ref. 11.

+ Norton Co., Worcester, MA

# Semi-Elements, Inc., Saxonburg, PA



Table 1. (cont'd)

Ref Authors Technique Annealing Temperature D (cm2/sec) Activation Samples
Atmosphere range(*C) o Energy(eV)

as/solid
.0 iso- Mechanically

Reddy, tope 1801 (1.9+4 ) polished
13 exchange- 1310-1550 -1.4 3.84±0.21

1979 proton 760-800 x10 -4 ORNL*
acti- Torr single crystals

vation
analysis

Polygoni- Mechanically
Moriyoshi zation _ polished Tateho+

15 et al., of dis- air 1400-1750 1.35x10 -3.28 single crystal
1979 locations sheets

Narayan & disloca- (1.37t0.26) Muscle Shoals
16 Washburn', tion loop air 1100-1427 -2 -4.78±0.18

1973 shrinkage x10 single crystals

* Oak Ridge National Laboratory, TN.

+ Tateho Comp., Japan.

# Muscle Shoals Electro-Chemical Corp., Tuscumbia, AL.
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Table 2. Calculated Defect Energies in Mg0

Enthalpy (eV)

Processes
Ref. 2 Ref. 3

Scottky defect formation, h . 7.5 7.72

free cation vacancy migration, hm 2.16 2.07

free anion vacancy migration, hM- 2.38 2.11

cation-anion divacancy formation, ha -2.55



3. EXPERIMENTAL PROCEDURE

3.1.. PREPARATION OF '80-ENRICHED MqO POWDER

80-enriched MgO powder was made by oxidizing magnesium

metal in 1802 atmosphere. Magnesium metal ribbon* of 0.18 mm

thick and 3.2 mm wide was cut into a piece of about 35 cm

long, zig-zagged to about 0.5 cm wide and 3-4 cm long, and

washed ultrasonically in reagent grade methanol. After being

dried, it was placed on a fused-silica boat, which was in

turn put into the oxidation furnace depicted in Fig. 1.

The system was then evacuated to 10-3 torr and purged

with dry nitrogen gas of low oxygen content (less than 0.5

ppm). The process was repeated several times. The system

was then baked at about 200*C at least for one hour while

evacuating with a high speed mechanical pump . After being

cooled to the room temperature and evacuated to 10- 3 torr

again, the system was disconnected from the pump and filled

with 1802 gas to a pressure of 40 or 50 torr. Oxygen-18

gas, purchased from Monsanto Research Corp., was 99.5 mol %

pure with the isotope, 180, being enriched to 95-99 atom %.

The total pressure was monitored by a capsule vacuum gauge.

* Mg-ribbon, MX0010, Matheson Coleman & Bell, Norwood, OH
+ Duo-Seal 1405B
# Mound Laboratory, Monsanto Research Corp., Miamisburg, OH
§ Leybold-Heraeus 160 63-MB
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The system was then completely isolated.

Magnesium has been known to form a protective oxide film

at lower temperatures while, at higher temperatures, a non-

2 2-2 4
protective loose scale is formed. According to

Gulbransen 2 -the transition takes place at temperatures 450*C

to 475 0C. At 570 0C or above, the metal undergoes ignition in

the first few minutes." The oxidation was thus performed in

the neighborhood of 550 0C to enhance the oxidation rate while

suppressing the explosive combustion. The oxidation was

completed within an hour and the final pressure of the system

was usually less than 1 torr.. The system was open to the

nitrogen gas first when the room temperature was restored.

The final product always maintained the shape of the zig-

zagged metal ribbon. It was greyish-white in color. An X-

ray powder diffraction pattern confirmed the presence of MgO

but also indicated the presence of traces of magnesium metal

in the as-oxidized product. The product was ground in an

agate mortar and cold-pressed into 6.35 mm dia. x 2-3 mm

pellets under a pressure of about 3000 psi for use as the

source material in a closed system transport apparatus (a

greyish-white pellet readily turned white on being baked out

in the apparatus-see following). The pellet was subject to

a semi-quantitative spectrochemical analysis. The result is

given in Table 3. A large amount of silicon impurity was

present which had originated probably from the tube and boat

of fused silica in the oxidation furnace which was employed.



Table 3. Spectrochemical Analysis of As-Pressed

Isotopic MgO

Al 0.001% - 0.01%

Ca 0.001% - 0.01%

Cr 0.001% - 0.01%

Cu <0.0001%

Fe 0.01% - 0.1%

Mg >10.0%

Pt 0.01% - 0.1%

Si 1.0% - 10.0%

Ti. 0.0001% - 0.001%



3.2. EPITAXY OF '0-ENRICHED MqO SINGLE CRYSTAL

An 180-enriched single crystal layer of MgO was grown

epitaxially on a substrate of normal MgO single crystal by a

chemical vapor transport method. Substrate crystals were

obtained from Norton as-cleaved on (100) to provide 17-18 mm

x 17-18 mm x 2-3 mm plates. The purity of the crystal was

reported by the vendor as in Table 4. As-received crystals

were chemically polished in phosphoric acid at 150 0-160 0C to

prepare surfaces on which the epitaxy was intended to occur.

A layer of approximately 100 ypm was removed from the as-

cleaved surface to eliminate potential damages caused by

cleaving. Substrate crystals were then washed in a dilute

HCl solution and, subsequently, in distilled water to remove

potential phosphates from the polished surface, and stored

in reagent grade methyl alcohol.

Substrate surfaces with other surface preparations, i.e.

as-cleaved and as-etched in a Stokes solution2" (1 H2S0 4 :

1 H2 0: 5 NH4CZ saturated solution) were also utilized in

other epitaxial growth experiments. It was, however, found

that, in most cases, a polycrystalline material rather than

a transparent epitaxial layer was deposited. Chemically-

polished surfaces were thus exclusively employed in the

present work.

The epitaxial growth was performed by following closely

* Norton Research Corp. (Canada) Ltd., Niagara Falls, Ontario,
Canada



Table 4. Approximate Impurity Contents of Substrate Crystal

Impurities

SiO

Content in ppm

20 - 30

110 - 140

8 - 12

44 - 64

30

20

3 - 25

<5

2000 - 3000

Ontario, Canada

Fe 0
2 3

TiO
2

Al O
2 3

CaO

ZrO
2

MnO
2

NiO

Cr 0
2 3

* provided by Norton Co., Niagara Falls,



a method developed by Gruber 6 The substrate crystal was

supported over a pellet of source MgO or, in preparation of

the final specimens, a cold-pressed powder pellet of 180-

enriched MgO by a 15 mm diameter Pt ring. This assembly was

placed in a 20 ml platinum crucible. The crucible was then

closed with a snuggly-fitting cover of platinum foil and sus-

pended in a fused silica chamber as shown in Fig. 2. The

chamber was then evacuated down to 10~5 torr and purged with

dry nitrogen gas of low oxygen content (less than 0.5 ppm)

several times. The contents of the crucible were baked out at

the growth temperature, 1000*C - 1100 0 C, for about 10 hours.

After allowing the crucible to cool, anhydrous HCU was

introduced into the chamber at 10~5 torr.. An optimum range

of HCU pressure at room temperature was found to be 20-30

torr. 40 torr seemed to be the upper limit to accomplish a

successful epitaxy.

A small temperature gradient was established between the

source pellet and substrate by heating the lower portion of

the Pt crucible with an r.f. induction field. The tempera-

ture of the crucible bottom, as measured by an optical

pyrometer, was kept almost constant at a temperature of

1000 0C to 1100 0C. The rate of epitaxial growth on the sub-

strate depends on temperature, temperature gradient, the

partial pressure of HCU in the growth chamber, and the

source-to-substrate separation. For certain conditions,

growth rates of up to 100 ym/hr were once achieved, a rate

equal to that reported by Gruber 6 By reducing the source-
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Fig. 2. Schematic of apparatus for Mg18O
chemical transport in HCl.



to-substrate distance to a few millimeters and by adjusting

the position of the Pt crucible assembly in the induction

coil, the epitaxial isotopic layers of the best quality

were grown to a thickness of -3 to -50 urm in 10 minutes to

3 hours. The surfaces of these layers were observed to bear

an irregular distribution of pits, but were used directly in

the as-grown state for the exchange experiments in order to

avoid mechanical damage or contamination by impurities.

Gruber 26 has shown that the chemical vapor transport is-

accompanied by a very high degree of perfection of the epi-

taxial layer in terms of dislocation densities and also leads

to the purification with respect to most of the impurities in

the source Mg0. In particular, the reduced incorporation of

Ct (less than 10 ppm) compared with that of the source (20

ppm) is noteworthy because the contamination by the trans-

porting agent, HC, had been feared. Si and Fe, however,

have been shown to be preferentially transported. With this

consideration, the as-grown layer of Mg18 O apparently contains

the cationic impurities transported from the source pellet of

Mg180 powder (see Table 3). These impurities are enough to

suppress the intrinsic transport behavior in the epitaxial

layer. For a qualitative identification of the impurities in

the layer, a secondary-ion mass spectrum was taken with help
*

of SIMS by sputtering the as-grown surface with a primary

beam of oxygen negative ions. The result is shown in Fig. 3.

* CAMECA ims 3f ion microprobe, located at the Department of
Earth and Planetary Science of M.I.T.
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An absolute quantitative analysis of the impurity contents

is not feasible from the intensities of secondary ions

because the ionization yields from the common matrix MgO are

not known for each kind of the impurities displayed in Fig. 3.

From Fig. 3 and Table 3 in association with the enthalpy for

the Schottky defect formation, 7.5 eV (see Chapter 2), how-

ever, it is safe to conclude that the epitaxially-grown

crystal of Mg 8 0 is infested mainly with the aliovalent

cationic impurities of higher valence and that the crystal is

apparently extrinsic in its defect structure.

Three different pieces of as-grown crystals, designated

respectively as R27,R29 and R31, were cut by a low speed saw*

along 100 planes normal to the growth front to provide

diffusion samples carrying an epitaxial isotope deposit of

about 4 x 4 mm area. 5 to 9 such diffusion samples could be

made out of each piece. From SIMS in-depth profiling described

in Chapter 4, the initial abundances of 180 in atomic % Mg1 8 0

were found to be 7-10%, 8-14%, and 34-53%, respectively, for

R27-, R29-, and R31- series diffusion samples (see for details

Table 2.1. of Appendix 2).

3.3. DIFFUSION ANNEAL

Substrate crystals bearing the as-grown isotope deposit

were annealed in an air atmosphere at temperatures in the

range 10000- 1650 0C. To minimize the possibility of contam-

ination during the annealing, specimens were placed in a Pt

* Isomet@ Low Speed Saw, VWR Scientific Inc.



envelope with an open end. Based on the earliest oxygen

diffusion data' by Oishi and'Kingery, the duration of the

annealing was selected to produce a concentration gradient

on the order of 1 ym in depth for subsequent in-depth pro-

filihg with SIMS.

Unlike the conventional gas/solid 180 exchange technique,

the minor isotope 180 (0.2% natural abundance) diffused out

of the sample to be replaced by the predominant 160 isotope

contained in air. The gas reservoir from which exchange

occurs with the sample is thus essentially infinite and

problems of change in isotopic composition of the atmosphere

as exchange progresses are not encountered. In the conven-

tional gas/solid 110 exchange method used for the measure-

ment of oxygen-diffusion in MgO, a gas reservoir of limited

volume must be assumed to be infinite in its size and

constant in its composition during diffusion annealing.

Gas-exchange with components of the system must be assumed to

be negligible if the amount of exchange is to be monitored by

measurement of the composition of.the atmosphere. As a

concentration gradient in the sample is directly determined

by SIMS analysis, rather than monitoring the isotopic compo-

sition of the atmosphere or the total amount of 180 diffused

into the specimen, the low exchange rate at reduced tempera-

ture is a less constraining influence. It is not necessary

to contain a small volume of atmosphere at a fixed composi-

tion of special isotope. Long diffusion annealings may be

employed without difficulty.



A unique aspect of the procedure is that two diffusion

coefficients may be determined from each sample: one from

the exchange gradient at the free surface of the isotopic

layer (constant surface concentration boundary conditions)

and the other from the gradient produced by interdiffusion

between the isotopic epitaxial layer and substrate crystal

(The times and temperatures are sufficiently low that neglig-

ible interdiffusion occurs during deposition of the epitaxial

layer of isotopic material and semi-infinite source initial

conditions apply. For a layer grown in 10 minutes at 1000-

1100*C, the diffusion zone at the interface is about 8Vt wide,

or 30 A at worst.). One can thus compare exchange diffusion

coefficients and tracer interdiffusion coefficients for the

same sample and thereby assess the possible influence of gas-

exchange reaction rate, sample vaporization or surface flaws

on diffusion coefficients measured by exchange.

3.4. MEASUREMENT OF 180 CONCENTRATION GRADIENTS

The distribution of isotopes in the annealed specimens

was determined by in-depth profiling sputtering with a CAMECA

ims 3f ionmicroprobe. The primary ion beam was 4"At+

accelerated to 9.65±0.01 KeV for all of the surface exchange

profiles with a few exceptions (see Table 2-2 in Appendix 2).

The intensity of the positive secondary ions 60+, 80 +, and

* A national facility located at the Center for Microanalysis
of Materials in the Materials Research Laboratory at the
University of Illinois.
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24Mg2+ was measured. The primary beam was rastered over a

250 x 250 pm area during irradiation, but a mechanical

aperture was used to restrict the area which contributed to

the measured intensity to a central area of 150 ypm diameter

in order to minimize artifacts arising from edge effects and

27-32
redeposition of material. The problems caused by charg-

ing of an insulator surface under bombardment by the incident

ion beam were almost completely eliminated in the present

work by the deposition of a 300 A gold film on the sample

surface and by flooding the sputtered area of the surface

with an appropriate number of electrons. Determination of

the proper electron flux and maintenance of the flux at the

correct location was quite laborious. An interpretation of

the charge neutralization process has been provided by sev-

3 3-3 6
eral authors.

An estimate of the sputtering rate was used to establish

the time necessary to remove a layer of desired depth. This
O

thickness (10 to 80 A) in turn was based on the total number

of concentration measurements desired within the anticipated

extent of the concentration gradient. The intensity accumu-

lated during this time interval was stored in a multichannel

analyzer. After completion of the analysis, the total depth,
*

do, of the sputtered crater was measured with a profilometer.

Most of the crater depths could be measured to within a 10%

relative error at the 100% confidence level. A few measure-

* Sloan Dektak Surface Profile Measuring System



ments, however, were subject to an error as high as 50%.

This was usually due to the inadvertent selection for analy-

sis of a locally-rough area of the original specimen surface.

As the sputtering rate for a homogeneous single-crystalline

matrix remained constant within reasonable uncertainty for a

28-30
prefixed primary accelerating voltage, an attempt was

made to average the uncer-tainty in crater depth over the

entire set of analyses. This was done by plotting for each

sample the measured crater depth, d0 , per primary ion

beam current, I , as a function of- sputtering time, t.

Normalization by the total current rather than current density

is justified as the irradiated sample area was kept constant

in all 'analyses. Fig. 4 shows the relation to be linear and

the results may be satisfactorily represented by the equation,

d IP = (1.3 ± 0.2) x .10~ 't + (3.2 0.7) x 10~ cm/nA.

Eq. 1

Since the primary beam current, I , had been well stabilized

and the'sputtering time, t, had been subject to a negligible

uncertainty, Eq. 1 rather than the measured value was used to

evaluate a corrected total crater depth, d, for a given experi-

ment. The thickness of each layer sputtered from the sample

was thus provided by-

Ax = d | N, Eq. 2

where N is the total number of channels in each run.

... ......
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4. RESULTS

4.1. GAS-EXCHANGE

4.1.1. EXPECTED DIFFUSION PROFILES

For the gas/solid diffusion couple in question, namely

(160_10 )2(in air, 0.21 atm)/Mg (160I-X 8  ) where

X0 = 0.002039 is the natural abundance of 180 and X, is the

artificial enrichment of 110 in the epitaxial layer, the

10 exchange reaction rate at the surface or at the phase

boundary must, in general, be brought under consideration

since it can be a rate-controlling step of the overall gas

exchange kinetics. The simplest resonable assumption is that

the rate of exchange is directly proportional to the differ-

ence between the actual concentration C' on the surface,

where x = 0, at any time and the concentration Co which would

be in equilibrium with the 1802 partial pressure in the atmos-

phere remote from the surface or a quasi-chemical exchange

reaction of the first order at the phase boundary. Mathemati-

cally this means that the boundary condition at the surface'

is

-= zk(C' - C Eq. 3

where k is the reaction constant, D is the oxygen diffusion

coefficient, and C is the concentration of 180 in the



isotope-enriched layer. If the concentration of 110 in the

semi-infinite mudium is initially C throughout or

C (x > 0 ; t = 0) = C Eq. 4

and the surface exchange is determined by Eq. 3, the 180

5
concentration profile will be represented by

C -C - 0  -exp( k. t _- x-)e & c( - q/ ) et

Eq. 5

In this expression, D is assumed to be independent of

composition. The isotopic effect is not considered here and

hence it is justified that D is independent of 180 concentra-

tion. If the gas exchange reaction is very fast or the

equilibrium is instantaneously established at the phase

boundary so that the surface concentration of 180 is kept at

its natural abundance C , then Eq. 5 may be rewritten as
0

C-C
o_ _ 0 x _ ). Eq. 6

C4-Co /7C 1- 0 2VV~t

For the present system which is chemically and physically

homogeieous, the concentration of 180, C, may be replaced by

the corresponding mole fraction, X, since the molar volume

does not change with 180 concentration. If we neglect the

isotope fractionization effectV7' 38 the mole fraction of 180
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at a certain depth or the nth channel can be expressed in

terms of 160 and 180 intensities measured at the same channel,

1 81(n) and '1I(n), as

X(n) = 181() Eq. 7
1 61(n) + 111(n)

The initial enrichment, Xe, is similarly obtained from those

intensities measured in the bulk, 16I and 8I . As the

equilibrated surface concentration, the natural abundance

0.0020 is taken. Thus in Eq. 5 and Eq. 6,

C(n)-C 0  [181(n)/{1 6 1(n)+181(n)}]-0.0020 . Eq. 8
C -C [181 /.{161 +181 }]-0.0020

A diffusion depth, x, in Eq. 5 or Eq. 6 is converted

into the sputtering time or number of channels, n, with the

use of a unit channel thickness, Ax, determined by Eq. 2 or

x = nAx. Eq. 9

If a surface exchange reaction rate competes with the

diffusion rate of 180 and the second term on the left-hand-

side of Eq. 5 is thus appreciable relative to the first term,

a plot of e~ti-(C - C )/(C - C ) as a function of x will not

be linear but, rather, will display curvature. As will be

shown later, however, all such plots obtained in the present



work are linear with higher correlation coefficients. This

implies that the contribution of the exchange rate to the

overall kinetics is negligible or at least not noticeable

within the experimental error of the concentration measure-

ment. This fact will be reconfirmed in Section 4.2. Eq. 6,

combined with Eq.'4 8 and 9, thus provides as a good estima-

tion of a sputtering profile,

[18 1(n)/{ 1 6 1(n)+181(n)}1-0.0020 Ax .
[181 /{161 +18 1}0 .0020 2/oToo

Eq. 10

A diffusion coefficient may then be determined from the slope

of a plot, the inverse error function of the left-hand-side

of Eq. 10 as a function of the channel number,n. If we let A

be the slope or

V = A-n Eq. 11

where

Y v L x -1[181(n) /{ 11(n)+"81(n)}}-0.0020

[181 /{161 +181 1}-0.0020

then the diffusion coefficient will be provided by

V = ~Eq. 12



4.1.2. EXPERIMENTAL DEPTH PROFILES

An example of a measured in-depth profile is provided in

Fig. 5. This specimen, designated as R31-1300-2, which had

been diffusion-annealed at 1301 ± 1*C for 2.682 x 10 seconds

with an uncertainty of less than 120 seconds, was sputtered

by rastering an 4AA + primary beam of 51.0 nA, 9.65KV. The

secondary ions 2 4M 2+ 160+, 180+, and 197 Au+ were counted

for 1 second each. The measured depth of the sputtered

crater was d = 2.3 ± 1.1 KA, which was corrected to d =

2.5 ± 0.7 KA according to Eq. 1. A channel thickness is thus

Ax = (1.7 ± 0.5) x 10~ cm/ch since the total number of channel

is N = 150 in Eq. 2. The variation of intensity with channel

number, shown in Fig. 5, was converted to a plot of concentra-

tion as a function of penetration according to Eq.7. The

result is shown in Fig. 6. The initial enrichment or bulk

concentration of 180 was determined from the intensities

measured beyond the diffusion zone or at channel numbers

greater than 100 in this case, by means of either

150

Z 1 81(n)
X n=101 Eq. 13

.Z {'8I(n)+ 81(n)}
n=101

or

150 1 8 n)
x 1 .1 Eq. 14



Fig. 5. Measured SIMS depth profile for 100, 160, 2 4Mg,
and 19 7 Au in a layer of isotopically enriched
single-crystal MgO after gas exchange for 74.5
hr at 1300*C with 1602 in air. Primary beam:
-rastering 4OAr+, 51 nA, 9.65 KV.
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Equation 13 and Eq. 14 yield, of course, the same result

within the experimental error which is estimated on the basis

of counting statistics!'' 40  The initial enrichment, Xz, was

found to be 0.5253 (expressed as atomic fraction Mgl1 0) for

the present specimen, R31-1300-2. The surface concentration,

X0, was arbitrarily taken as the natural abundance, 0.0020,

as already pointed out. The profile in Fig. 6 may then be

represented by the equation,

X(n)-0.0020 = A o n), Eq. 15
0.5253-0.0020 2V{9

where X(n) is given by Eq. 7.

A plot of the inverse error function of Eq. 15 against

the number of channels, n, is shown in Fig. 7. A slope of the

plot, A, was obtained by a linear-squares method as

A = 0.0224 ± 0.0003

and a linear correlation coefficient, A, was obtained as

L = 0.996,

for the set of data, {n, etL~1 (C-Co)/(Cz-C0 )} where 1 <n 50.

The high value of the correlation coefficient, as "an

indicator of how well a set of data fits a straight line""0

implies that 180 exchange reaction at the surface is not
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rate-controlling at least within the present experimental

error. If the surface reaction were competitive with the dif-

fusion, a plot such as the one in Fig.7 would not be a straight

line and accordingly the correlation coefficient would be

far smaller. An experimental error associated with concentra-

tion measurement is, in turn, reflected in the standard

deviation of the slope, aA = 0.0003. In the present work,

the relative error of the slope is only on the order of 1 %

for most cases. A diffusion coefficient is extracted from

the slope, A = 0.0224, along with a channel thickness,

Ax = 1.7 x 10~ cm/ch, and diffusion annealing time, t =

2.682 x 10 zec. Using Eq. 12, the diffusion coefficient,

V, for the specimen, R131-1300-2, is calculated as

D = (5.2 ± 2.9) x 10'1 cm 2/,e .

The uncertainty associated with a diffusion coefficient has

been propagated from errors associated with a slope, A,

annealing time, t, and a unit channel thickness, Ax. For

the present work, it has been found that the major error

source is the measurement of the final depth of the sputtered

crater or, in other words, the value of a unit channel thick-

ness. This uncertainty is attributed to the roughness of the

as-grown surface. An analysis of the propagation estimated

errors will be disscussed in Appendix 1.

All the other specimens were analyzed similarly. All

experimental profiles and their inverse error function plots
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are collected in Appendix 2. The standard deviation of the

slope was found to vary between 1 % and a maximum of 20 % but,

as previously noted, with a correlation coefficient always no

smaller than 0.98 (see Appendix 2).

4.1.3. DIFFUSION COEFFICIENTS

The average diffusion coefficient determined at each

temperature in the present work is listed in Table 5 along

with the representative conditions under which these values

were obtained. When multiple analyses were performed on a

given sample, the resulting diffusion coefficients have been

combined into an average weighted according to the individual

standard deviations as described in Appendix 2. A plot of the

logarithm of the diffusion cbefficient as a function of

reciprocal temperature is presented in Fig. 8: the error bars,

however uncosmetic, represent the standard deviations of Table

5, based on realistic assessment of error discussed in

Appendix 1. As the uncertainty of the temperature measure-

ments is considered negligible compared with the uncertainty

in the diffusion coefficients, and because the relative

standard deviations of D are comparable to each other in

magnitude (the average relative standard deviation, a /D =

0.4), equal weights were assigned to each measurement in

determining a least-squares fit 4 0 to the data of Fig. 8 and

Table 5. The best estimate of D is expressed by

in D b6 = -(13.22 ± 0.96) -3.24 ± 0.13 eV
kT
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Table 5.

Annealing
Time (hr)

2.0

3.0

4.7

4.0

12.0

74.5

360.0

480.0

960.0

Oxygen Self-Diffusion Coefficients

in Single Crystal Mg0

Extent of
Gradient*
( x 1000 A)- D (cm2 /sec) D

1.2 (5.2±2.7)x10 0.

1.6 (5.9±2.3)x10 15 0.

1.0 (1.4±0.8)x101 1 0.

1.0 (1.6±0.7)xlO 0.

0.8 (3.7±1.6)xlO 0.

0.8 (5.6±2.4)x10' 1 0.

0.7 (1.0±0.4)x1O1 0.

0.4 (1.9±0.5)x10 0.

0.3 (4.5±1.0)x10 0.

/D

52

39

57

44

43

43

40

26

22

a value of e6 of ca. 1. 0* Approximate penetration to

T (*C)

1650

1600

1550

1500

1400

1300

1200

1100

1000
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or

- +2.9 -s 3.24 ± 0.13 eV) CM 2/bec
Db =; (1.8: ) x 10 exp(- ) m2Teb est -11kT

Eq. 16

over a temperature range, 1000*CCT<1700*C. The linear corre-

lation coefficient of the set {7/T, in D} is -0.989. A

diffusion coefficient specified by Eq. 16 is precise within

a factor of approximately 2 (see Appendix 1). That is,

V ~ 2. Eq. 17
Vb et



4.2. ISOTOPIC INTERDIFFUSION

4.2.1. EXPECTED DIFFUSION PROFILES

In our solid/solid isotope-intermixing system,

Mg(1 60 180 )/Mg( 6  1 8  ) where X is again the- 6. x4  0 0
artificial enrichment of 180 in the epitaxial layer and X0

the natural abundance, 0.002039, the two halves may be

regarded as two semi-infinite media for annealings of an

appropriately short time scale. If the initial distribu-

tion of 180 satisfies the conditions,

X (x<O ; t=0) = X (in the epitaxial layer)

X (x>0 ; t=0) = X (in the substrate), Eq. 18

the intermixing profile will then be

X - X
0 X - T e( ). Eq. 19

Is 0 2 VD

Similar to the analysis provided for gas-exchange profile,

diffusion depth, x, and the normalized concentration, i.e.

the left-hand-side of Eq. 19, are replaced by Eq. 9 and

Eq. 8, respectively, to yield a sputter.ing profile,

[182(n)/{ 1 ' (n)+'1 (n)}]-0.0020 1 _ _AX 0

[182 /{161 /S+181 Is}-0.002. Eq

Eq . 20



A diffusion coefficient, D, is then extracted from the slope,

A, of et'de'2(X-X )/(X -X ) or etC1[1-2(X-X )/(X -X )] as a

function of n using the earlier expression of Eq. 12,

For several possible reasons, however, an experimental

measurement of the initial distribution of 180 is likely to

appear to have a finite spread rather than a well-defined

step function, Eq. 18, across the interface between the

isotope-enriched epitaxial layer and the substrate. Such a

distribution could possibly arise from initial diffusion

during the epitaxial deposition, interface roughness, and

resolution limitations inherent to the profiling technique.

In either of these cases, Eq. 19 generally ceases to repre-

sent a realistic description of the experimental sputtering

profile. Even- if a profile after diffusion anneal were to

appear to be an etdc function, what one would obtain from the

slope, A, is not the actual diffusion coefficient which is

responsible for the spread during the diffusion anneal but an

apparent diffusion coefficient representing the overall

spread of the profile at the interface.

Hall and Morabito4 1 have-developed a formalism for the

deconvolution of the true diffusion profile from a measured

distribution broadened by instrumental or experimental

artifacts. The analysis is applicable to the extent to which

the measured profiles before and after diffusion anneal can
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be fitted by vLjc functions. The analysis is based on the

fact that, when a gaussian diffusion process is observed

with an instrument whose response function is also gaussian,

the convoluted profile is also gaussian. Ho and Schuele4 2

have shown that the observed broadening in this case is

given by the square root of the sum of the squares of the

broadening due to diffusion and the broadening due to the

resolution of the instrument, or

G-2 = G-2 + G-2
obz di66 tezot

where G is the gradients of the normalized concentration

dX-profiles e.g. dg(X -)in Eq. 19. According to Hall and~

Morabito7' other broadening effects such as interface rough-

ness will also add the same way provided the influence of

these effects is also gaussian. If they are significantly

non-gaussian, their convolution will be affected and the

observed profiles will also not be gaussian. Thus to the

extent to which the observed profiles are gaussian, we have

-2 -2 -2 -2 -2
G~ = G 2 + G- ,+ G- + G-2 . E . 2Gobs Gdi + inat di , tezoL +Gough Eq. 21

The deconvolution is then a simple subtraction,

G -2 -2
Sdi [Gobs It=2t ob-[ t=o' Eq. 22



The deconvolution is valid for all concentration if all the

functions are eAdc and it is valid for (X-XO)/(XZ-Xo) = 0.5

in Eq. 19. Due to Eq. 19, the gradient at the interface

(x=0) would be

G = - (47tDrt)~, Eq. 23

if the concentration profile were an vLec function extrapolat-

ed from the region where the e&6c fitted well. [Gobslt=

is then equated to the diffusion coefficient which is obtained

from the slope of the plot, et6c~2e (X-Xo ) vs. n corresponding

to the region where the measured profile after the diffusion

anneal is fitted by the etdc function, and [Goba lg a to the

diffusion coefficient obtained from the corresponding region

of the initial profile taken before the diffusion anneal. In

view of Eq. 12 and Eq. 23, Eq. 22 will then be rewritten as

1 11 = 4Vt, Eq. 24
(A/Ax )2. (A/Ax )2~

where Ax is unit channel thickness of a SIMS in-depth profile

and A is the slope of the plot, etlc1 2(XZXO ) vs. n over the
X-Xo

region of the in-depth profile where the eAde~1 plot is

found to have a good linearity.

4.2.2. EXPERIMENTAL DEPTH PROFILES

Intermixing profiles of oxygen isotopes have been

obtained by the CAMECA ims 3f ionmicroprobe for five samples
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of Mg(' 601-X 80 )/Mg('O 160 1800 ) which had been

diffusion-annealed at temperatures of 1000*, 11000, 1200*,

1300*, and 1400*C, respectively. The profiles provided at

only two temperatures, 1100*C and 1200*C could be completely

analyzed since only for these samples could the correspond-

ing initial profile be successfully obtained. An analysis

of an unannealed portion of the deposit physically adjacent

to each of the areas from which the remaining samples were

taken was, in fact, performed. The results yielded features

(i.e., an apparent spreading of the initial distribution or

the height of an anomalous "lump" in concentration, to be

discussed below) which did not correspond to the profile of

the annealed specimen. The unannealed specimen was thus

not truly characteristic of the portion which had been used

in the diffusion specimen, a difference which is probably

due to local variations in surface topology.

Fig. 9 presents the apparent initial distribution of 180

isotope for the two specimens, which were diffusion-annealed

at 1200 0C and 1100 0C and designated as R27-1200-5 and R27-

1100-3, respectively. A portion of the same as-grown crystal

from which the two specimens, 127-1200-5 and R27-1100-3, were

prepared was sputtered for about 1.5 hr with a 506 nA, 4'A&+

primary beam of 14.7 KeV to yield the initial profile before

the diffusion anneal. The primary beam was rastered over an

area of 250 x 250 im square and the extraction of the secon-

dary ion beam was again restricted to a circular area of.

150 vm in diameter centered within the sputtered square with



the help of the field aperture with which the CAMECA SIMS

was equipped. The profile extends to 3.15±0.05 pm in depth

and a unit channel thickness is thus 52.5 A or

Ax) = (5.25 ± 0.08) x 10~ cm/ch. Eq. 25

The same data are replotted in the form of atomic percent

Mg'80 on an expanded scale of penetration for the region

about the interface between the epitaxial layer and the sub-

strate in Fig. 10. It is rather surprising that the initial

spread is so wide, because it was expected to be a step

function distribution. It is very likely an artifact that

may be attributed to irregularities of the substrate crystal

surface. As already described, the as-cleaved surface of

the substrate crystal was heavily polished in a hot phos-

phoric acid. Chemical polishing usually induces a surface

undulation, which is most severe for an as-cleaved surface

especially when micro-cleavage-steps remain on it. Diffusional

intermixing during the epitaxial deposition is a highly

improbable reason for such a wide initial spread. Deposition

of this epitaxial layer was accomplished.within only 10

minutes at a temperature no greater than 1100*C. During this

time a diffusion zone on the order of 8V/Dt or 30 A in width

would be expected at most. It is also unlikely that the

resolution limitation of the SIMS in-depth profiling bears

the whole responsibility for such a wide spread 3 If the

original interface had been sharp, the profile would have



been an apparent eAdc as usual3 2 from which a depth

resolution could be experimentally determined for the given

sputtering condition. The interface at each microscopic

element of area beneath the sputtered square may have been

sharp and well-defined, but undulations on the order of the

0.5 jim observed for the spread in the distribution would

not be surprising over a macroscopic area as large as 250 x

250 pm. In this connection, it is also not ruled out that

the undulation of the as-grown surface under the irradiation

may be propagated deep into the epitaxial layer to yield an

apparent initial broadening across even an ideal interface.

It remains puzzling, however, whether the concentration

bump between the 200th and the 270th channel is a real local

variation in isotope ratio or whether it is an instrument-

related artifact. In view of the growth technique employed,

it is difficult to understand a gradual change of 180

concentration within the 10 minutes of growth time in-the

growth chamber filled with the anhydrous HCZ gas. The

origin of this artifact remains unclear.

A plot of eA/c~ 2(X-X )/(X -X ) or e&6~1[1-2(X-X )/(X -X )0

against the channel number, in Fig. 11, examined whether the

initial spread across the interface was gaussian. The

initial abundance, X , was arbitrarily taken as 0.0935, an

average over channel from 221 to 235, which corresponds to

the maximum concentration in the profile of Fig..10. It is

noted that the portion of the plot above approximately the

305th channel has a good linearity. This implies that the



initial spread over the same range of channels is gaussian

as is strongly suggested from the shape of the profile shown

in Fig. 10. For 26 data points, the linear correlation

coefficient was 0.99 and the slope was

A) = 0.075 ± 0.002, Eq.* 26

where the subscript, t=O, denotes the initlaZ or pte-dijjuzlon

anneat. Selection of an alternative choice for X in a

concentration range between 0.07 and 0.08 (cancentrations in

the epitaxial layer far from the interface, Fig. 10) does not

change the slope of Fig. 11 sufficiently to exceed the

experimental standard deviation of ca. 3 % in Eq. 26. Neither

does it alter significantly the range of channel where the -

apparent initial spread is gaussian. For a relative variation

of the initial abundance, 6X /X -~--0.2, i.e., when X is chosen
*

0.07 instead of 0.0935, it can be shown that the slope of

Fig. 11 or Eq. 26 increases only by approximately 5 %.

The sputtering profile of the specimen R27-1200-5 is

provided in Fig. 12. The specimen was sputtered by a 9.65

KeV, 306 nA, 4'At+ primary beam. The sputtered crater was

measured to be 2.60 0.05 ypm and hence a unit channel

* A variation in V such that V=eaec' (2X/X 4 ), 6V, is related
to a variation, 6X4 as 6V = (/+/2)exp(Y2 )edc(V)-(6X4 /X)
for the given X. The slope of the plot, V + 6V vs. V in 0<
V<-2 is 1.052 from which the relative increase in the slope
of V vs. penetration depth turns out to be ca. 5 %
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thickness is 94 A or

Ax = (9.4 ± 0.2) x 10~ cm/ch. Eq. 27

The linearly-scaled plot of the concentration of Mg 80 as a

function of penetration is shown in Fig. 13 to emphasize its

similarity to the initial profile of Fig. 10 in the neighbor-

hood of the interface. One may readily identify in Fig. 12

or Fig. 13 the two diffusion profiles in the specimen: the

first established by the gas exchange at the surface of the

epitaxial layer and the second (of much greater apparent ex-

tent) by the isotope intermixing at the interface between the

layer and the substrate. A plot of eVzc 2(X-X)/(X -X ) or

end~1 [1-2(X-X )/(X -X )] as a function of channel number for

the intermixing profile is plotted in Fig. 14 (b), in which

X has been taken to be the maximum abundance or 0.0945 (an

average over channels from 120 to 130). An excellent linear-

ity is conspicuous. The linear correlation coefficient is

0.99 for 18 data entries and the slope is

A) = 0.094 0.003, Eq. 28

where the subscript, t=t, denotes agtet the d'i66uzlon anneat.

The diffusion coefficient is extracted from the interdiffusion

profile by using the simple deconvolution provided by Eq. 24.

From the slopes and the unit channel thicknesses, Eq.'4 25 and

26 and Eq.'4 27 and 28, the diffusion coefficient is obtained
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as

D = (1.0 ± 0.2) x 10- 17 CM2sec, Eq. 29

for the specimen R27-1200-5 which has been diffusion-annealed

at 1200 0C for 15 days.

The sputtering profile of the specimen, R27-1100-3, which

was annealed at 1100 0C for 20 days has been obtained with an

4OAt + primary beam of 9.65 KeV, 206 nA as in Fig. 15. The

crater depth is 2.40 ± 0.05 ym which is reduced to a unit

channel thickness,

Ax = (4.1 ± 0.1) x 10~ cm/ch. Eq. 30

The plot of evd~6[1-2(X-X )/(X -X )] as a function of channel

number which corresponds to the interdiffusion profile in Fig.

15 is shown in Fig. 16 (b). The initial abundance, X , has

been chosen as the maximum abundance, 0.0904 (obtained by

averaging over channels of 380 to 400, Fig. 10), in order to

preserve the consistency of analysis. A good gaussian nature

of the spread is again demonstrated in the region correspond-

ing to that of the initial profile, Fig. 9 or Fig. 11. For

43 data entries, the linear correlation coefficient is 0.99

and the slope is

A) = 0.040 ±-0.001. Eq . 31
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From Eq.'z 30 and 31, the deconvolution, Eq. 24, yields the

diffusion coefficient,

D = (8.0 1.3) x 10~ 1 Cm 2/.ec Eq. 32

for the interdiffusion at 1100*C.

4.2.3. COMPARISON OF INTERDIFFUSION AND GAS-EXCHANGE,

GRADIENTS

Exchange profiles for the specimens, R27-1200-5 and

R27-1100-3, shown in Fig. 12 and Fig. 15, respectively, have

been already analyzed in the preceding chapter (see also

Appendix 2). For direct comparison, the plot of eti~1 as a

function of penetration produced by exchange in the surface

-region is also given in Fig. 14(a) and Fig. 16(a),

respectively, on the same scale as the interdiffusion

gradient. The two diffusion coefficients obtained therefrom

are compared in Table 6.

Table 6. Comparison of Diffusion Coefficients

Temp (*C) diffusion coefficients (cm 2 /sec)

interdiffusion gas-exchange

1200 (1.0±0.2) x 10 (1.0±0.13) x 10

1100 (8.0±1.3) x 10 (2.1±0.4) x 10

L _______________________________________ 1__



It is noted that the diffusion coefficient obtained from the

interdiffusion gradient is in agreement with the diffusion

coefficient obtained from the gas-exchange, taking into

account the prevailing experimental error.

Reddy and Cooper'" have shown that, for MgO, the values of

k!V-t/D in Eq. 5 are greater than 3 and hence that the surface

exchange process does not influence the overall kinetics at

temperatures of 1300* to 1600*C. The direct comparison in the

present work shows that this conclusion is justified at

temperatures at least down to 1100 0 C. This conclusion is also

in keeping with the fact that all exchange profiles could be

successfully interpreted (i.e., gave highly linear results,

Appendix 2) under the assumption that the concentration of 180

at the phase boundary of'the gas/solid diffusion couple,

(160_X 0180 X)2 (in air)/Mg(1 601-X418 0X ), was its natural

abundance X or 0.002039.
0

The justification probably extends to the exchange profile

established at 1000 0C within the limits of the present

experimental uncertainty since the diffusion coefficient ex-

tracted as such is not different from what is expected from the

Arrhenius plot of diffusion coefficients measured between 1650*

to 1100 0C. According to Table 5, the best fit of the first 8

data (t = 0.995) yields

D = (6.8 +11.7) x 10 -6exp(-3.44 ± 0.14 eV/kT) cm2 /zec,
4 .3

Eq. 33
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from which a diffusion coefficient at 1000 0C is expected to

be D = 1.6 x 10- cm2/ ec with the relative uncertainty

U /D-2. The measured value, in comparison, is D (4.5 1.0)

x 10~ cm2 /,ec

Therefore, the diffusion coefficient represented by Eq.

16 may be regarded as the best estimate of the oxygen diffu-

sivity in Mg0.



5. DISCUSSION OF RESULTS

The results of the present analyses are compared in Fig.

17 with the oxygen self-diffusion coefficients reported in

previous studies summarized in Table 1. The magnitudes of

the present diffusion coefficients are two orders of magnitude

smaller than those obtained by early exchange measurements"
9

but Oishi et afZ showed that chemical polishing to remove the

surface damage introduced in crushed samples considerably

lowered the apparent diffusivity. In addition, certain heat

treatments could increase the apparent diffusivity by creating

etch pits which.increased the area available for exchange.

In contrast, the present results are in good agreement

with those of Rovnerlo and in magnitude, if not activation

energy, with results obtained by Reddyi3 through proton-

activation measurements of the gradients produced by 180

exchange. The latter agreement is of particular interest as

discrepancies which could not be satisfactorily explained

were present between the results of SIMS analysis
4 8 and

proton-activation analysis4 9 of anion self-diffusion.in

AL2 0 3 Also included in Fig. 17 are results of indirect

determinations of diffusion coefficients based upon measure-

ment of dislocation movement with the aid of transmission

electron microscopy. The activation energy for subgrain

boundary formation obtained by Moriyoshi et at!' is in
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good agreement, perhaps fortuitously, with the present value.

The diffusivities deduced by Narayan and Washburn 6 from

dislocation-loop shrinkage rate are smaller than any directly

measured coefficients. The values hinge, however, on the

model assumed for dislocation movement.

The activation energies reported in previous studies vary

from 2.6 to 3.8 eV for oxygen diffusion measured with the gas-

exchange techniques. The activation energy obtained in the

present work, 3.24 ± 0.13 eV, is squarely in the middle of

this range. It is difficult to decide whether individual

differences are truely significant in view of the limited

temperature range and uncertain error limits of most studies.

An activation energy on the order of 3.2 eV is very

difficult to interpret in terms of the available theoretical

estimates of energies relevant to the defect structure of

MgO and the prevailing interpretation of cation transport

mechanisms. By virtue of good agreement between the calculat-

ed and experimental energy for cation vacancy migration as

well as the magnitudes of ionic electrical conductivity and

cation self-diffusion, it seems well established that cationic

transport in MgO occurs by a vacancy mechanism, and that

vacancy concentrations are determined by aliovalent cationic

impurities!'' 12 If such is the case and if Schottky equilib-

rium is maintained, anion vacancy concentrations and anion

self-diffusion coefficients should be depressed - probably

much more so than the ca.3 orders of magnitude difference

presently observed between the measured anion and cation



self-diffusion coefficients. Moreover, the activation

energy anticipated for-anion self-diffusion in a crystal

whose defect structure is controlled by cation impurities of

higher valence state, or e.g. [V" ][FMg] in Kr6ger-Vink

notation, should be given by hs+hm_ where hs and hm_ are the

enthalpies for Schottky vacancy-pair formation and anion

vacancy migration, respectively. The sum of theoretical esti-

mates for these enthalpies, namely 7.5 or 7.72 eV plus 2.38 or

2.11 eV (see Table 2), is clearly incompatible with the experi-

mental values. If the defect strusture is governed by cationic

impurities of lower valence state, or e.g. [V'']~[F g], the

activation energy will be anticipated to be the enthalpy for

anion vacancy migration, hm- or 2.38 or 2.11 eV. The dif-

ference between experiment and the theoretical values for hm-

seems too great for all investigations to date to provide a

satisfactory interpretation. Furthermore, judging from the

SIMS mass spectrum of the impurity contents of an as-grown

epitaxial layer, shown in Fig. 3, domination of the defect

structure by cation impurities of lower valence is a highly

improbable situation for the present study. Even if the

crystal remains in an intrinsic regime and [V ]=[V" ], the

activation energy must be hs+hm- or about 6 eV for the

oxygen diffusion. Even consideration of cation-anion

divacancy as a corresponding diffusion mechanism leads to the

activation energy of hs+ha+h' , where ha and h are the

enthalpies for divacancy formation and migration, respective-

ly. ha has been theoretically estimated to be -2.55 eV (see
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Table 2) and hA has been shown to be comparable with or

greater than the activation energy for single vacancy move-

ment!0 The activation energy is thus at least 7.5 - 2.55.+

2.38 or about 7 eV, which is far greater than the observed

value, 3.2 eV. The nature of the anion transport mechanism

accordingly remains unclear and is not satisfactorily inter-

pretable in terms of any obvious model for defect structure.



6. SUMMARY

The anion self-diffusion coefficient of MgO has been

determined in the present work by the gas/solid 180 exchange

technique, and by a limited number of solid/solid inter-

diffusion measurements. Unlike the conventional method in

which a normal MgO crystal was diffusion-annealed in a limited

volume of '80-enriched atmosphere, a layer of 1 80-enriched

single crystal was grown epitaxially on the substrate of

commercially available MgO single crystal through chemical

vapor transport with HC and annealed in an air atmosphere

to accomplish replacement of 180 in the layer by 110 in air.

The concentration gradients of 180 were established by

secondary ion mass spectrometry. The charge build-up on an

insulator surface during SIMS in-depth profiling was almost

completely eliminated both by depositing a thin Au film on

the sample surface and by flooding electrons on the sputtered

area and hence an in-depth profile could be extended as deep

as 3 ypm. The excellent depth resolution of SIMS as well as

the unique characteristic of the diffusion sample allowed the

diffusion coefficient to be measured at a temperature as low

as 1000*C (diffusion coefficients as low as 1019 cm2 /sec,

previously accessible to measurement only with great

difficulty) in a reasonable time.

At temperatures of 1700*C to 1000*C, the best estimate of

the oxygen diffusivity is represented by



+2.9 -6

Db =a -1. 1) x 70 exp(-3.24±0.13 eV/kT) Cm2 /zec,

which is precise within a factor of 2, or

a DD best ~ 2.

The present diffusion sample is unique in that one may

compare two diffusion profiles in one specimen: one devel-

oped by the gas exchange at the surface of the epitaxial layer

and the other developed by the isotopic interdiffusion at the

interface between the epitaxial layer and the substrate

crystal. At temperatures of 1100*C and 1200*C, diffusion

coefficients obtained by the gas-exchange were not in dis-

agreement with those obtained by the isotopic interdiffusion

within the limits of experimental uncertainty. Based on this

comparison and the previous observation by Reddy and Cooper"i

the overall gas exchange kinetics are not influenced by the

isotope exchange reaction rate at the phase boundary but

governed by the diffusion in the solid phase, MgO. Similarly,

it is concluded that surface flaws or dislocations have no

appreciable influence on the apparent exchange diffusion

coefficient. The best estimated diffusion coefficient ex-

tracted from the gas exchange thus well represents the oxygen

self-diffusion coefficient in single crystal MgO.

The activation energy in the neighborhood of 3.2 eV, how-
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ever, still defies any atomistic interpretation based on the

prevailing defect model for MgC-like ionic solids, which has

mainly been established on the basis of experimental studies

of transport phenomena on the cationic sublattice but by

theoretical calculations of defect energies as well. It is

implied that our present understanding of even the simplest

oxide is still incomplete in so far as the anionic sublattice

is concerned.
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7. SUGGESTIONS FOR FUTURE WORK

For almost the past three decades, MgO has been a most

beloved material as a model system for ceramic oxides. By

virtue of extensive studies especially of cationic transport

phenomena, there has been accumulated a great deal of

information on the basis of which a self-consistent model

for a defect structure has been established for MgO. It is

now generally believed that cations migrate via a vacancy

mechanism and the predominant defect is the Schottky dis-

order. This concensus is substantiated by the recent

theoretical calculation of defect enthalpies.

Unfortunately, however, the present work has shown that

such a defect model cannot explain successfully the diffusion

mechanism on the anionic sublattice. Experimental figures

for the activation energy of anion self-diffusion are incon-

sistent with the established defect model for Mg0-like ionic

systems. Is it implied that the uncertainty of experimental

measurements veils the truth or, if not, a naive defect model

is not appropriate as the oxygen diffusion mechanism? Could

absolutely unexpected defect species due to, for example,

anionic impurities be responsible for the discrepancy?

In the conventional gas-exchange technique where the

crystal has to be annealed in a limited volumes of 180-

enriched atmosphere because 1802 gas is very expensive ($400



per gram!!), the direct measurement of oxygen diffusion is

accordingly subject to various difficulties or limitations.

It is now believed that those experimental hurdles have been

obviated by the present diffusion sample bearing an 180-

enriched epitaxial layer. With the present sample, an

arbitrarily long diffusion anneal can be done in any kind of

6O-reservoir. It may be an atmosphere whose oxygen partial

pressure is controlled. In addition, SIMS in-depth profiling

provides the most accurate analytic tool to establish a

diffusion profile extending to 2-3 ypm depth with an excellent

depth resolution and no serious charging problem as well.

The limitations on the precision in D encountered in the

present work are not inherent to the method, but may be

improved by careful attention to surface planarity or reduc-

tion of the rastered area.

The following suggestions are thus offered for future

work to provide answers to the questions raised earlier:

i) It would be desirable to remeasure the oxygen

diffusion coefficient with higher reliability over a far

wider temperature range. In order to improve the accuracy,

the diffusion annealing has to be long enough to let the

diffusion distance be 1 im at least. It is noted that the

overall uncertainty has been propagated overwhelmingly from

the depth measurement of sputtered craters. In any case,

SIMS depth resolution is not accuracy-limiting. With respect

to annealing temperature, approximately 1800 0C may be the
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realistic upper limit for gas exchange measurements due to

high vapor pressure of MgO. There is no such limit to

solid/solid interdiffusion measuremetns and cation self-

diffusion measurements 2 0 have been performed to 2500*C.

There need be no lower limit since the present specimen

allows arbitrarily long anneal.

ii) The oxygen partial pressure dependence of the oxygen

diffusivity is suggested for measurement for a clearer under-

standing of defect structure. Arbitrary control of oxygen

partial pressure in the annealing atmosphere is now easily

allowed with the present diffusion sample.

iii) Simultaneous measurement of cation self-diffusion

may provide the critical clue to the understanding of the

oxygen diffusion mechanism. For a diffusion specimen, one

may grow with ease an epitaxial layer of e.g. 26Mg' 80 on

usual single crystal MgO, or 2 6 Mg1 60 on M918O through the

chemical vapor transport with HCU. Since the simultaneous

counting of various kinds of secondary ions is possible in

SIMS in-depth profiling, diffusion characteristics on both

sublattices can be directly compared.

iv) It is necessary to identify anionic impurities. In

contrast to cationic impurities, little is known about

anionic impurities in MgO. With the use of well-prepared

standard-reference-materials, one may perform a quantitative

analysis through, for example, the SIMS mass spectrum.



APPENDIX 1: ASSESSMENT OF ERRORS

In order to meaningfully compare experimental

diffusivities and the diffusion parameters derived therefrom,

it is necessary to assign the reliability to the measured

diffusion coefficients. The reliability of a measured physical

quantity is usually quantified by its random error and

systematic error representing the precision and accuracy of the

quantity, respectively. In most cases, however, it is very

difficult, if not impossible, to evaluate the systematic error

but it can be minimized or eliminated by the calibration of

measuring instruments or specifically incorporating the correct

systematic dependence in the model for the measurement of the

physical quantity. The systematic error is thus disregarded

in the present assessment under the assumption that all the

related instruments, e.g. the profilometer and the thermocouple

have been well calibrated. Hence, only the random error is put

under consideration. As a measure of the random error, the

standard deviation is introduced.

1.1. ERROR PROPAGATION AND LINEAR REGRESSION

Most physical quantities usually cannot be measured in a

single direct measurement, but are calculated from one or

more quantities which can be directly measureable. The errors

associated with each measurement are propagated through this

procedure. The propagation of errors has been given extensive



consideration '44'45

Suppose that a set of physical quantities, {p.}, are

directly measured with the uncertainties, {6p.}, and they

are used to calculate another quantity, q, via a functional

dependence,

q q ({p.1). Eq. 1-1

If the uncertainties, {6p.}, are random and independent of

each other, then the error in the calculated quantity, 6q, is

given by40

6q= [z(D 6pi) 2. Eq. 1-2

In any case, it is never larger than the ordinary sum,

6q D E|UE | 6p,~ Eq. 1-3

which is often probably an overstatement of 6q, since there

may be partial cancellation of the errors in pit' If the

measurements of p. are governed by independent normal.

-distributions, with standard deviations a, then the values

of q({p.}) -are also normally distributed with standard

deviation,

= [Z(3q a 2] . Eq. 1-4
q 4 Bpi Pi
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When a set of directly measured diads {(x ,y. )} are

obtained and the variables, x and y, are known to be linearly

related, on the other hand, the best straight line y = Ax + B

to fit a set of measured diads {(x 1 ,y ), (x 2 ,y 2 )'. (x N'YN)}

is usually found by a method of least squares. If x's are

subject to negligible errors, and y's are equally uncertain,

the slope, A, and the intercept,. B, are respectively obtained

from the principle of maximum likelihood40 as

N(Ex iy) - (Ex.) (Ey.)
A =1Eq. 1-5

and
(Ex .)(Ey.) - (Exi)(Ex y.)

B =1Eq. 1-6

where

A - N(Ex) - (Ex.2 Eq. 1-7

The uncertainties in A and B are generated only from a constant

uncertainty in y or a since a x 0. Due to Eq. 1-4,

a2 = Na 2 /A Eq. 1-8
A y

and

a2 = a2Ex/A , Eq. 1-9
B y 1

where

2 1 N
a 1 E (y. - A - Bx.)2 . Eq. 1-10
y N-2 1 1

The.extent to which a set {(x ,y.)} supports a linear

relation y = Ax + B or how well the set {(x ,y. )} fits a

straight line is measured by the linear correlation
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Z(x.-x) (y.-y)
r = x Eq. 1-11

[z(x.-x)227 y,-y) 2 2
1 1

where (x,y) is the center-of-mass of the set { (x.,y.) } or

- 1 - 1
x = kx and y = y. Eq. 1-12

The probability that ten or more measurements of two un-

correlated variables x and y, for example, would produce a

correlation coefficient rI 0.9 is less than 0.001 % or

negligible 7 If this probability is sufficiently small, then

we can conclude that it is very improbable that x and y are

uncorrelated, and hence very probable that they are really

correlated linearly.

1.2. ERROR EVALUATION

In the present determination of the diffusion coeffi-

cients, errors have been propagated from four independent

sources. They are 1) the sputtered crater depth, d0 , from

which a unit channel thickness Ax is derived, 2) the slope,

A, of the inverse error-function plot against channel number

which is generated by a measured sputtering profile, 3) the

diffusion annealing time, t, and 4) the annealing temperature,

T. The first three sources attach the error to individual

diffusion coefficients through Eq. 12 in the text,



or

D = ( AX)2

Due to Eq. 1-2, the uncertainty of a diffusion coefficient is

S[(2 T) + (2 6A)2 + Eq. 1-13
D Ax At

since the uncertainties in Ax, A and t are independent and

considered random. The typical uncertainty in an annealing

time was about- 2 minutes or less, which was attributed to the

elapsed time for the rise and fall of the sample temperature

to and from the preset annealing temperature. It has thus

been ignored compared to the other sources.

The uncertainty in a unit channel thickness, Ax, was

estimated from the directly measured crater depths, {d .i

6d .}. The uncertainty in the depth of the ith crater,
0,1

6d ., was taken as the maximum range of the true value with

100 % confidence, or [d .- 6d 0 , d .+6d .1. Although the
o, o 0,1 0,1

relative uncertainties, 16d ./d .1 were mostly about 10 %,

some of them amounted to as much as 50 %. In order to even

up these uncertainties, the measured crater depths normalized

with respect to the primary ion beam current, d0 /I1p, were

least-square fitted to a linear dependence on the sputtering

times, t, assuming that the sputtering rate was constant for

a constant primary accelerating voltage. The straight line

of best fit was represented by Eq. 1 in the text



d = (At + B)I cm, Eq. 1-14

where, due to Eq.'s 1-5 to 1-10,

A = (1.3 ± 0.2) x 10 cm sec nA

B = (3.2 ± 0.7) x 10 cm nA1

For the set, {(tido,i/Ipi)} of size 1<i<10 as shown in Fig.

4 in the text, the linear correlation coefficient was

r = 0.97.

The error in a corrected depth, d, was then evaluated

from Eq. 1-14 on the basis of Eq. 1-3 rather than Eq. 1-2 to

improve its reliability. Since the errors associated with

the sputtering time and the primary ion beam current were

negligibly small, ad was assessed as

Eq. 1-15a d pI(taA + aB)

or

a d p[(2x10 )t + (7x10~ )] cm,

and



which was rather an overestimation as already pointed out.

The corrected crater depth was subsequently converted to a

unit channel thickness by dividing by the total-number of

channels, N, or

Ax = d/N Eq. 2

with a uncertainty

a 1 a Eq. 1-16,Ax N d

again due to Eq. 1-2 or Eq. 1-4. The relative errors,

a /Ax based on Eq. 2 and Eq. 1-16 were 20-30 % in the present

work as shown in Table 2-2 in Appendix 2.

The uncertainty in the slope 6A in Eq. 1-13 was also

evaluated by Eq. 1-8, from the straight line of best fit,

C-C
erf' C An + B,. Eq. 1-17

C -C
s 0

C-C
for a data set {n, erf-1  0 } which was extracted from the

C -C
sputtering profile as described in Chapter 4. The standard

deviation, GA, may be regarded as representing the various

errors originated from SIMS in-depth profiling. The relative

errors of the slopes, aA/A, varied from 1 % to 9 % with one-

half of them falling between 1 and 2 %. The correlation

factors were also larger than 0.97 as shown in Table 2-1 in

Appendix 2.



Therefore, the uncertainty in a diffusion coefficient

determined in the present work was represented in terms of

the standard deviation,

D CFA X A )
D 2[( )2 + (A)2] , Eq. 1-18

which was somewhat of an overestimation in view of Eq. 1-15.

As shown in Table 5 in the text, they ranges from 20 % to

60 %.

These diffusion coefficients with the assessed standard

deviation were then used to derive the diffusion-related

parameters on the basis of the empirical equation,

D = D exp(-Q/kT), Eq. 1-19

in which the fourth source of error would come into play.

The method of least squares was again employed for the set of

{1/T, ln D}. Since the uncertainties in the diffusion

coefficients were comparable in size and those in the anneal-

ing temperatures were negligibly small compared to the

standard deviations of diffusion coefficients, Eq. 1-5 to Eq.

1-10 were used to calculate the slope along with the standard

deviation', from which the activation energy, Q ± a was

extracted, and the intercept along with the standard deviation,

from which the preexponential factor, ln D± alnD , was
0

extracted. The result is Eq. 16 in the text or
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3.24 ± 0.13 eV
ln D = - (13.22 ± 0.96) -kTbest k

from which the precision of Dbest is estimated as

D C 0.96 + 0.13 eV

best kT

In the temperature range of 1700*C to 1000*C, the relative

standard deviation of the diffusion coef-ficient varies from

1.7 to 2.2. Thus, the diffusion coefficient determined in

the present work may be claimed to be precise within

approximately a factor 2, but it is rather an overestimation

in view of Eq. 1-3.
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APPENDIX 2. EXPERIMENTAL DATA

Measured sputtering profiles, intensity ratio of 180 to

10 vs. channel number, for surface gas-exchange are provided

in what follows along with the corresponding plots of erf'

(C/C )/(C s-C ) as a function of channel number, where C, C0

and C are measured concentration 180, natural abundance, and

artificial abundance, respectively. A sputtering profile and

the corresponding erf' plot are designated as (a) and (b),

respectively, behind a specimen designation, for example, R29-

1650-1(a) and R29-1650-1(b), respectively. Results of analy-

ses are summarized in Table 2-1, where uncertainties associat-

ed with slopes, A, and intercepts, B, of the inverse error

function plots are represented by standard deviations a A and

a B, respectively. The standard deviations and the linear cor-

relation factors have been calculated by Eq.'s 1-8, 1-9, and

1-11 in Appendix 1.

Diffusion coefficients extracted from the slopes, A, are

given in Table 2-2. Measuuted di44uzion coedicients in the

6th column of the table are based on the as-measured thick-

nesses of a unit channel in the 4th column, that is, derived

from direct measurement of the final depth of the specific

sputtered crater. On the other hand, ca btavted didduzlon

coediecientz in the last column are based on the corrected

(or calibrated) unit channel thickness of column 5, obtained

by using sputtering rate averaged over the entire data set
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according to Eq. 1. One set of the best estimates, given in

Table 5 in the text has been obtained by taking weighted

averages of the calibrated D's at temperatures where multiple

diffusion coefficients are available. A weighted average,

D± D, of a set {D i a D.I is defined40 as

D = ZW.D./EW. Eq. 2-1

and

GD = (W ) Eq. 2-2

where

W. = 1/a2
1 D.

Especially for the 1400*C samples, the weighted average of

R31-1400-1 and -2 has been averaged again with R27-1400

arithmatically or with the same weights since the datum for

R27-1400 is statistically independent of the others. Simi-

larly, the independently determined diffusion coefficient

for R27-1000 has been employed as a best estimate of

diffusion coefficient at 1000*C. For a comparison, the

diffusion coefficients in the 6th column, which were determin-

ed from the measured values of the sputtered crater depths,

are plotted against reciprocal temperature in Fig.. 2-31. When

equivalent weights are assigned to each element of the data

set {1/T, ln D} to simplify the method of least squares though

it is not a very rigorous way,"' the set of 15 elements may

well be represented by
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+10.7 -6 3.35±0.19 eV 2
D = (4.0 ) x10 exp ( )T 3 cm2 /sec

-3.kT

Eq. 2-3

where the linear correlation coefficient is -0.98. This

diffusion coefficient is, as a matter of fact, the same as

the diffusion coefficient based on the calibrated crater

depths, Eq. 16 in the text. It is, however, noted that, by

evening up uncertainties associated with raw measurements of

the sputtered crater depths with the help of Eq. 1, the

precision of the activation energy and the preexponential

factor in Eq. 2-3 are improved from 6 % to 4 % and 11 % to

7 %, respectively.



Table 2-1. Linear Regression Data of Diffusion Profiles, Y=An+B

where Y=erf (C-C )/(Cs-C0)

Specimen Artificial Slope Intercept Correlation Entry

Designation Abundance (A±aA) x 102 (B±B) x 102 r N
Mg 8 at %

R29-1650-1 9.24 1.24±0.02 -3.8±0.7 0.995 110

R29-1600-2 7.96 0.641±0.012 -4.2±1.4 0.993 39

R29-1550-1 13.82 1.43±0.09 -4.2±3.4 0.955 65

R31-1500-1 44.63 1.75±0.03 4.8±1.0 0.994 57

R31-1500-3 37.78 1.60±0.02 -8.3±0.7 0.996 67

R31-1400-1 33.89 2.09±0.04 -4.7±0.9 0.995 36

R31-1400-2 42.32 1.519±0.013 -8.7±0.5 0.998 56

R27-1400 8.03 4.1±0.3 26±3 0.972 14

R31-1300-1 48.15 2.41±0.03 -10±1 0.997 37

R31-1300-2 52.53 2.24±0.03 0.80±0.82 0.996 50

R27-1200-5 7.64 13.0±0.8 10±6 0.980 13

R27-1100-1 7.22 6.9±0.3 10±3 0.990 18

R27-1100-2 8.23 8.0±0.5 12±3 0.986 10

R27-1100-3 7.05 10.6±1.0 6.7±6.0 0.968 10

R27-1000 9.85 15.3±0.7 24±3 0.995 10

* calculated from the secondary ion intensity ratio of 180 to 0 according to Eq. 13

+ size of a data set {n,Y}



Table 2-2. Diffusion Data

* Sputtering data of these two specimens, obtained toward the completion of the series

of measurements, were not included in the establishment of the linear sputtering

rate equation, Eq. 1 in the text because the sputtering condition was different.

The corresponding diffusion coefficients must therefore be taken to be independent

of the others.

Specimen Annealing Ax(x 10 7 cm) D(cm 2/sec)

Designation Temp(*C) Time(hr) measured calibrated measured calibrated
14 -15

R29-1650-1 1650 2.0 2.2±0.2 1.5±0.4 (1.1±0.2)x10 1 4 (5.2±2.7)x10 1 5

R29-1600-2 1600 3.0 1.03±0.05 1.0±0.2 (6.0±0.6)x10 1 5 (5.9±2.4)X1015
R29-1550-1 1550 4.7 1.5±0.1 1.4±0.4 (1.6±0.3)x10_ (1.4±0.8)x10

R31-1500-1 1500 4.0 1.18±0.06 1.6i0.4 0.79±0.08)x10 15 (1.5±0.8)xl0
R31-1500-3 1500 4.0 1.67±0.07 1.7±0.5 (1.9±0.2)x10 (2.0±1.3)x10
R31-1400-1 1400 12.0 1.9±0.2 2.1±0.7 (4.8±0.9)x10_ 16 (5.7±3.6)x10
R31-1400-2 1400 12.0 2.0±0.2 1.8±0.6 (10±2) x1O (8.1±5.2)x10
R27-1400* 1400 15.0 1.81±0.01 (0.9±0.13)x10 _1 *

R31-1300-1 1300 74.5 1.2±0.4 2.0±0.6 (2.3±1.5)x10 17 (6.4±4.1)x1017
R31-1300-2 1300 74.5 1.5±0.7 1.7±0.5 (4.2±3.9)x107 (5.2±2.9)x10

R27-1200-5 1200 360.0 9.4±0.2 9.4tl.8 (1.0±0.13)x10 1 7 (1.0±0.4)xl0
R27-1100-1 1100 480.0 2.35±0.05 2.4±0.4 (1.7±0.2)x10 18 (1.7±0.6)x10
R27-1100-2 1100 480.0 3.08±0.08 3.2±0.6 (2.1±0.3)x10 18 (2.3±0.9)x1018

R27-1100-3 1100 480.0 4.03±0.08 4.1±1.3 (2.1±0.4)x10 1 8 (2.2±1.5)x10
R27-1000* 1000 960.0 3.8±0.4 (4.5±1.0)x1o *
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1. INTRODUCTION

How the intermixing of oxygen isotopes, 180 and 16o, in

'our system MgO proceeds in a temperature gradient can be

described through the application of ltteveulbe The Lmo-

dynamic, in which the coupling of the temperature

gradient with a mass flow ( i.e. thermomigration) is

attributed to a difined quantity, called ~the heat o6

CLanz6et. By doing so, a set of phenomenological equations

is established for the system, from which, in principle, a

time-dependent intermixing profile of oxygen isotopes may

be obtained. From this profile, in turn, it should be

possible to extract a value for the heat of transfer of

oxygen in MgO. In anticipation of the final result, however,

it has been found that no cross effect is left in the inter-

mixing profile when diffusion proceeds via a vacancy mecha-

nism. As this is presumed to be the transport mechanism in

MgO, the heat of transfer of oxygen can never be obtained

from an experiment of the type originally envisioned.

In order to develop an understanding of the phenomenon

in a clear way, irreversible thermodynamics is reviewed

first with an emphasis on its intrinsic limitations. This

is followed by its application to the simple case of the

thermomigration of interstitial impurities in an elementary

metal. This treatment leads to a useful result which stands

in conspicuous contrast to the thermomigration via a vacancy
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mechanism, and suggests a more efficient experiment for

measurement of the effect. Finally, the intermixing of the

oxygen-isotopes in the system MgO will be tackled in a

rigorous way.
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2. IRREVERSIBLE THERMODYNAMICS

When a system is displaced from thermodynamic

equilibrium, it evolves towards a stationary state which is

compatible with the imposed constraints. There may be

chemical reactions, mass and energy transfer, and momentum

transfer as evolutionary processes of the system. A system-

atic treatment of these processes makes the subject of the

Thetmodynamicz og Ittevetzlbte Ptocezes or, more concisely,

Iuteve.&lbLe or Nonequilbltum Thetmodynamlcz. This branch

of thermodynamics has been discussed extensively in the

linear regime ~5 and more recently attention has been paid

to the non-linear regime

The principles of Irreversible Thermodynamics, in general,

stand on the hypothesis that any irreversible process produces

entropy. In its linear regime, the method of this discipline

is to calculate the rate of entropy production, to identify

generalized thermodynamic fluxes (or rates) and forces (or

affinities), to set up linear phenomenological equations, and

to apply the reciprocity theorem of Onsager: Usually, all

the transport phenomena may be described satisfactorily in

the linear regimet In what follows, the linear irreversible

thermodynamics will be summarized to the extent necessary for

the development of understanding in the subsequent Chapters 3

and 4.
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2.1. Entropy Production

For a continuous system in which the intensive state

variables are not only functions of time but also continuous

functions of the space coordinates, the rate of entropy

production in a unit volume, a, is calculated, with the help

of three conservation laws for mass, energy, and momentum,

2-5
on the basis of a local formulation of the Gibbs equation.

The Gibbs equation in the form of its total time derivative

with respect to the center-of-mass frame of reference is

dS dU dV n dn k
T = t + P - y 'k dt Eq. 1

k=1

where, as usual, T, P, V, S and U are respectively tempera-

ture, pressure, volume, total entropy and total internal

energy. ik and nk are respectively chemical potential and

the amount of substance k in an n-component system. Equation

1 is not affected by the choice of species a's the substance k

provided that all possible chemical equilibrium between

species have been'established. Use of the local Gibbs

formula for a state displaced from an overall thermodynamic

equilibrium is justified, due to Prigogine8 provided that the

distribution functions of particle momenta and relative

positio.ns are maintained, locally, close to the equilibrium

distributions. According to Nicolis' more specifically this

implies:
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i) Spatial and temporal variations of thermodynamic

variables must be small enough over the mean free path and

the relaxation time, respectively, which characterize the

thermal motion of constituent particles. This implies that

dissipative processes, arising primarily from the frequent

elastic collisions, are very efficient in establishing some

kind of. Local equillbtlum in the system.

ii) Reactive collisions are sufficiently rare events so

that elastic collisions may restore the equilibrium distribu-

tion to a good approximation. This can be achieved if the

energies of activation are sufficiently large with respect to

thermal energies.

The result is the balance equation for the local entropy

1.- 5
per unit volume, svi

ds

dtv = -div s + a, Eq. 2

where Js represents the entropy flux across the imaginary

boundary of a local volume element which is moving at its

center-of-mass velocity, uM. The centet-o-mazz (ot

bagceantalc) (came oj tedetence is a natural coordinate

system for this formulation, since any bulk motion of the

system, as a whole, makes no contribution to entropy produc-

tion. The rate of entropy creation, a, is never negative by

virtue or the second law of thermodynamics.
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Entropy is produced by chemical reactions (o chem)

diffusion (Gdiffusion , heat conduction (athermal , and

vascous flow (aviscous )

According to Curie's symmetry principle 4 which says that

matcoLcoplc cause.4 atways have ewet element6 oj agmmetay

than the e6dectz they ptoduce, fluxes and forces of differ-

ent tensorial character do not couple in an isotropic system

within the domain of linear irreversible thermodynamics!

The total rate of entropy production, a, may thus be split

up into the three positive-definite components;

chem +(a diffusion + athermal + aviscous

Eq. 3

with

chem >

diffusion thermal 0

aY . - > 0
viscous

where equalities hold only for reversible processes.

In such a non-viscous system of n-components with no

chemical reaction involved, the rate of entropy production,

a , solely due to vectorial phenomena - diffusion and heat

conduction is given in a bilinear form of fluxes and

forces;

Ta = JX Eq. 4
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where the transposed matrix (denoted by tilde) of vectorial

fulxes, J, and the matrix of generalized forces, X, are,

respectively, defined as

M)

U
Eq. 5

and

X- (XM )

U

In Eq. 5, the

Eq. 6

(nxl) submatrix JM represents a column matrix

of n-diffusion fluxes J1, J2' ' 'Jn,9 namely,

JM
J2

n

and the (lx1) submatrix JU is the energy flow Ju itself or

JU (J U).JU u'

Corresponding thermodynamic forces are represented respective-

ly by the (nxl) submatrix XM and the (lx1) submatrix XU in

Eq. 6, which are defined as
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XM EX and XU (X

X 2

Xn

The introduction of submatrices, JM' JU, XM and XU, instead

of their element forms somewhat facilitates some manipula-

tions with fluxes and forces, e.g., their transformations,

to be described later on. The diffusion flux of a component

k, Jk' is defined with respect to the barycentric frame of

reference as2-5

4. 4.U u q
Jk Ck (uk -uM' Eq. 7

where C k and u k are, respectively, local molecular density

and velocity of the component k. Such fluxes for n compo-

nents are automatically interdependent through the definition

of a local center-of-mass velocity, uM, as

n
Z mk k = 0 Eq. 8

k=1

where mk is the molecular weight of k. When the component k

is acted upon by an external non-electrical force, Fk, the

4.> 1-5
generalized thermodynamic force, Xk' is represented by

Xk Fk ' Eq. 9
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in which pk is the chemical potential of k. If the

constituent is electrically charged, then the corresponding

chemical potential is replaced by its electrochemical

potential, k

The energy flux, Ju, is also by construction referred to

the local center-of-mass frame and its conjugate force, Xu
1-5

is

X - TV(-). Eq. 10
u T

It should be noted that the rate of entropy creation

decreases as the system evolves with time and becomes

2-4

minimum at a (non-equilibrium) stationary state.- At

thermodynamic equilibrium, as a special case of stationary

state, both the fluxes and forces for all irreversible

processes disappear simultaneously with no entropy produced;

J = 0 and X = 0. Eq. 11

2.2. PHENOMENOLOGICAL LAWS AND ONSAGER THEOREM

A flux may be expressed in Taylor series about thermo-

dynamic equilibrium with respect to forces of the same

tensorial characters For example, a diffusion flux, Jk' in

an isotropic system is represented by
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3Jk
Jk 1 k (X=0) + Z(3X 1 +

S 1 X=0

1 k
+ h ( 3 ) XlXm + Eq. 12

1 m 1 m X1 =0,Xm=0

where the first term is identically zero due to Eq. 11. In

the neighborhood of thermodynamic equilibrium, the third and

higher order terms may be disregarded to provide the

phenomenologicat tawz or thetmodynamic equationz o6 motion'

in the matrix form,

J = L X Eq. 13

or, due to Eq. 5 and Eq. 6,

JM =L XM + LMUXU Eq. 14

JU = LUMXM + L UUXU Eq. 15

in which the matrix of phenomenological coefficients or

transport coefficients L is defined as6

L = (L kl) ( k) ) . Eq. 16
kl 3Xl X1=0

Empirical relations such as Fourier's law of heat

conduction, Fick's law of diffusion and Ohm's law of electri-

cal conduction belong automatically to this scheme. The
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existence of phenomenological laws is considered an ext'a-

thieLmodynamic hypothezila But it has been shown4 that they

are valid whenever the relative variation of a state

variable such as, for example, temperature T is small over

a length of the mean free path, , or

X BT
<K 1. Eq. 17T 3x

This condition is satisfied in most of the usual cases and

in general the phenomenological laws are considered to give

good approximations for transport processes We may notice

that the domain of validity of the phenomenological laws

coincides with that of the local Gibbs equation described in

Section 2.1.

The grand assumption which plays the key role in the

application of the phenomenological laws, Eq. 13 or Eq.'s

14 and 15, is the celebrated reciprocity theorem of Onsager:

Without this theor.em, the phenomenological laws are nothing

but a known condition of thermodynamic equilibrium, Eq. 11,

and the empirical linear laws themselves? The Onsager

theorem states that, in the absence of Lorentz force and

Coriolis force, the matrix of the phenomenological co-

efficients, L, is symmetrical for apptopxlatety-chozen,

independent fluxes and forces, or

Eq. 18L = L,
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the proof of which is readily found in the well-known

textbooks of irreversible thermodynamics.

The appropriately-chosen conjugate flux and force are

originally selected to be the time derivative of a thermo-

dynamic state variable (scalar flux) and the first partial

derivative of the entropy of the given system with respect

to the same variable (scalar force), respectively. The

validity of the theorem has thus been questioned for vec-

torial fluxes and forces since there is no evidence that

these are appropriately chosen in the rigorous Onsager sense.

Furthermore, the vectorial fluxes are frequently subject to

a linear homogeneous relation among themselves such as Eq. 8

and/or the vectorial forces also. Due to Mazur and de Groot3

however, the Onsager theorem is taken as verified even for

vectorial fluxes and forces. It has also been proved that a

linear homogeneous dependency among the fluxes leaves the

theorem unimpaired. Even when there are linear interdepend-

encies for both fluxes and forces, it has been shown that the

L-matrix can be chosen in such a way that the theorem holds

due to the indeterminancies of the phenomenological co-

efficients!' 12

-The Onsager theorem, Eq. 18, reduces the production of

entropy to

Eq. 19TG = XLX,
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in view of Eq.'s 4 and 13. Since the entropy production must

be positive definite, the L-matrix is required to be positive

definite, o'r

L> 0. Eq. 20

2.3. TRANSFORMATION OF FLUXES AND FORCES

In principle, there can be an infinite number of equiva-

lent sets of flux and force, {J,X}, to describe an irreversible

system, but it occurs quite often that a specific set is

particularly convenient for the system' 13 We are thus in need

of the transformation of a given set, {J,X} into another

equivalent {J',X'} subject to the requirement that entropy

production remains invariant and the Onsager theorem unimpaired.

According to Meixner 1 a new set, {J',X'} obtained by a congru-

ent transformation through a such that

J' = aJ ; X' = U~1X Eq. 21

leaves the entropy production invariant,

Ta = JX = J'X' Eq. 22

and the Onsager throrem remains valid,

L' = aLa = L'. Eq. 23
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Such transformation, a , has been shown to be the only

admissible one for the (scalar) fluxes and forcesP5 The

same is presumably true for vectorial fluxes and forces in

such a way that the Onsager theorem itself is true for these

due to Mazur and de Groot! It should be noted that, for a

nonsingular matrix, a, to exist, either the fluxes have to

be independent of each other or equivalently, the forces so.

One of the most frequently used set of fluxes and forces

2-5
is obtained through the transformation a,

a~ (I O\
Eq. 24

-hM1

where I denotes an (nxn) identity matrix and hM is a (1 x n)

row matrix of partial molar enthalpies of constituents or

hM (hh, --- hn). Eq. 25

By operation of the transformation, a, the new fluxes and

forces expressed in terms of the old ones are, respectively,

obtained as

M M .)Eq. 26
J JU - M M)

and

X XM + hM U) Eq. 27

X X U/
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The new phenomenological laws may be written as

J' = L'X' Eq. 28

or

J = LM X + LM X' Eq. 29

J = LU X + LU X Eq. 30

where the L'-matrix has been transformed following Eq. 23

as

L'= L LM$) = L L M-L hM

LU LU LUM ML LUU-LUMhM MLMU ML MMhM

Eq. 31

During the transformation, whereas the diffusion flux, JM'

remains the same (i.e. J = JM), the energy flux, Ju, trans-

forms (see Eq. 26) as

J' = Ju - hMM'

The enthalpies carried by.diffusion fluxes have been sub-

tracted from JU' the energy flux conducted across the imagi-

nary boundary of a local volume element moving at the center-

of-mass velocity. The transformed energy flux J', especially

called the Lduced heat 6tux' is found to be independent of

the frame of reference (or reference velocity)' and will be

replaced by a new symbol, Jq , in its application to a crystal-

line solid.
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With respect to the thermodynamic forces, only the direct cau-

ses for mass flows take a different form (see Eq. 27), i.e.,

X' = X + hMX
M M M U

or in its elementary form,

k k k u

which is rewritten, in view of Eq.'s 9 and 10, as

Xk = k - Eq. 32

The last term on the right-hand-side of Eq. 32 is the

isothermal part of Ypk'

(yk) T = k) + ( )T, Eq. 33

which is, of course, a function of other thermodynamic vari-

ables, e.g. pressure and composition. XZ may be called a te-

duced (thetmodynamlc) 4omce. The reduced force X' (=X ) will

be specially denoted as X . The teduced fluxes and forces,
q

{J',X'}, obtained by a transformation a in Eq. 24, make obvi-

ously a very convenient set in the description of non-isother-

mal phenomena such as thermomigration because the diffusional

driving force, Xk' has been set free from its temperature

dependence. This set, {J',X'}, will be used exclusively in
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the following chapters.

2.4. HEATS OF TRANSFER

The phenomenological law,

JM =L XM + LMUXU Eq. 14

or -

J = L X + LM'XU, Eq. 29

implies that a mass flux is induced not only by its direct

cause-diffusional driving force, XM or X , but also by an

indirect cause-thermal driving force (i.e. temperature gradi-

ent),, XU (=X6). The former, the direct effect, reduces to the

well-established Flck'z Fitzt Law under isothermal conditions.

The latter, the indirect effect or cross effect which relates

a mass flux to the temperature gradient is called the

(Ludwig-) Sotet e66et The processes themselves may be

called, respectively, (otdinatg-) diduaion and the'mat-

diSuLlzon or thetmomigtation. The teri thetmomigtation, how-

ever, is preferred to avoid a possible confusion of the

thetmat-di66ualon with the themma di66uzlvity. When a system

is of one-component, the cross phenomena may be called a

ze4-theAmomigatation or thetmat -sel-didduslon. Similarly,

according to the phenomenological equation,

Eq. 15
JU = UMXM + LUUXU
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or

J= LU X' + LUX , Eq. 30

the energy flux is caused by the diffusional driving force

as well as by the temperature gradient. The direct phenomenon

is subject to the FoutivL' Law of heat conduction. The cross

phenomenon is called the DudouL e66ect' which is reciprocal to

the Somet e6dect.

These cross phenomena or interferences are attributed to

a quantity called the heat o6 ttanzdet and their exact

reciprocity is established by the Onsager theorem. Let us

first consider an isothermal diffusion system. The phenom-

enological law will then be

M = L MMXM Eq. 34

JU =LUMXM Eq. 35

since XU=0 in Eq.'s 14 and 15. Substitution of Eq. 34 into

Eq. 35 is followed by

j= Q*J Eq. 36
U M M

where an (lxn) row matrix Q* is defined asO

Q* LUML~ Eq. 37
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It is implied that an energy as much as Q* is transported by

the diffusion flux, Jk, even in the absence of its direct

cause. Q* is, thus, called the heat o Vtanzpott or heat o6
k

ttanzdet of the constituent k. Through the application of

the Onsager theorem,

LUM = LMU LMM = LMM'

a column matrix of the heat of transfer, Q*, is obtained as

Q* = L-LMU. Eq. 38

Substituting from Eq. 37 or Eq. 38 into the phenomenological

equations, Eq.'s 14 and 15,

JM = LMMXM + LMMQXU Eq. 39

JU = o*LMX + L XU, Eq. 40
U MM.M UU~U

in which the reciprocity of the interference between the two

vectorial phenomena has been established by virtue of the

heats of transport. A diffusion process is coupled to an

applied temperature gradient because the diffusing species are

thermally energized with their heats of transport quite

similarly to the way in which a diffusion of charged particles

is coupled to an applied electric potential gradient because

the diffusing species are electrically charged.

The same isothermal diffusion system can also be described
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in terms of the reduced fluxes and forces, {J',X'}, as

J = L 'X'

J = L 'X'
U UMM'

Eq. 41

Eq. 42

Combining Eq. 41.and Eq. 42, we obtain a reduced heat flux

transported by the diffusion flux,

Eq. 43
JU = qMJM ,f

where the row matrix of the corresponding heat of transport

is defined as

q* ~-L 'L '~
MUM MM

Eq. 44

Again due to the Onsager theorem, the column matrix, q),

becomes

q* = L ''L '.M M MU
Eq. 45

In view of Eq. 44 and Eq. 45, the phenomenological laws,

Eq. 29 and Eq. 30, are rewritten as

J = L 1X' + L q *XU

J = q*L 'X' + LUUX
U M U U

Eq. 46

Eq. 47

The corresponding heat of transport in this reduced scheme is
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accordingly called the teduced heat ol ttanzden.

The reduced heat of transfer, q*, is related to Q*

through the transformation a in Eq. 24. Since, from Eq. 31,

LMM LMM LMU LMU LMMhM

and, from Eq. 39,

L =L

MU MMUM'

Eq. 45 reduces to

q* = Q* - hM Eq. 48

or, in its element form,

q* = Q* - h Eq. 49

The reduced heat of transfer, q*, is a thermal energy carried

by a diffusing species k less its own enthalpy. According to

Eastman16 and Wagner1 7 who independently introduced the con-

cept of the heat o6 ttande.t, the reduced heat of transfer of

a component, q*, can be defined as the heat which must be

absorbed by an arbitrarily isolated part of a system in order

to keep its temperature and pressure constant when unit quan-

tity of the component in question is removed from it. No suc-

cessful kinetic interpretation, however, has yet been avail-
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able for a condensed system 8 '19

2.5. APPLICATION TO CRYSTALLINE SOLIDS

The irreversible thermodynamics has been reviewed so far

for vectorial phenomena with respect to a natural reference

frame-the center-of-mass frame of reference. In this section,

we will see how the results must be modified to be applicable

to a crystalline solid. Our system will be an isotropic

crystalline solid. The system is assumed to be isobaric and,

consequently, to be in mechanical equilibrium. The effect of

external conservative force fields such as gravitational or

centrifugal forces are usually neglected for a solid system,

i.e., in Eq. 9 or in Eq. 32,

F k 0.Fk

We will assume that no space charge build-up is to be allowed

in the system, if constituents are charged electrically, even

in a volume element which is macroscopically small but

microscopically large$0 Actually, mechanical equilibrium is

readily achieved through a bulk movement of the system itself?

In the irreversible thermodynamical description of the

transport phenomena in a crystalline solid, it is convenient

as well as reasonable to take into account atomic (or ionic)

defects in addition to all the atomic (or ionic) species,

since the latter are rendered mobile only through the perti-

nent lattice defects. In an actual material, defects do not
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necessarily have to be in internal thermodynamic equilibrium

with respect to their local concentrations. In such a case, a

definite value cannot be assigned to the (electro-) chemical

potential of a thermodynamic componentP' If the kinetics of

the defect annihilation or production remains in the domain in

which the local Gibbs formula is valid, as described in Sec-

tion 2.1, we instead employ the (electro-) chemical potentials

and other pertinent partial thermodynamic quantities of atomic

(or ionic) species and individual defects. A treatment of

this non-equilibrium case is developed in Appendix 2.

In view of the well-defined localities of constituent

entities in a crystalline solid, a vectorial flux relative to

the local lattice rather than the local center-of-mass may

better represent intrinsic characteristics. An atomic (or

ionic) flux, ik' is usually defined as the number of chemical

species crossing a unit area per unit time, which is moving

at a velocity u relative to the fixed laboratory coordinate

system of reference ' 2 2 or

k Ck (Uk - U), Eq. 50

where u k is the velocity of k with respect to the laboratory

frame of reference. The relative velocity, u, thus defines

a reference frame, which is, in general, taken as a weighted

mean of velocities of chemical constituent, u '22

u = wkuk Eq. 51
kk
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in which the weighting factors, wk' have been normalized to

be

1 = w, . Eq. 52
k K

The relative velocity u is often called a tedetence velocity.

In view of Eq. 51, the atomic (or ionic) fluxes are inter-

related via a linear homogeneous relation,

Wk +
Z- J = 0. Eq. 53
k 'k k

By choosing mass fraction as the weighting factor or

wk mkCk/mkCk'

we define the centvL-o6-mas/s or mazz-6ixed 6tame 06 tedetence

or the batyceut'tic 6~tme o6 &eetnce, uMI

u = Em , Eq. 54

Smk k

which has provided the natural reference frame in the

calculation of the entropy production since it is automatical-

ly introduced by the law of momentum conservation. In this

frame, a flux is defined as Eq. 7 and satisfies Eq. 8 or Eq.

53, which implies that no net transfer of mass occurs in this

frame.

If we choose a volume fraction for wk'
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wk kCk k C k Eq. 55
kk

where Vk is the partial volume of k, satisfying VkC k= 1'
k+

we have the Fick or the volume-4ixed L(ame o4 tedetence, u F'

uF = kkk Eq. 56

A flux in the Fick frame, F k, is given by

F k = Ck(uk - uF), Eq. 57

which satisfies the linear homogeneous relation,

E Vk F k 0. Eq. 58
k

Eq. 58 implies that there is no net volume transfer in the

volume-fixed frame of reference. This frame provides a

geometrical coordinate system in which matter transport is

experimentally measured.

When the weighting factor is taken as the mole fraction

or

wk = Ck/ZCk, Eq. 59
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the motecutat or the numbet-6ixed 6{Lame o6 oLe zence is

defined with the reference velocity, uN'

+ ku
uN C . Eq. 60

k k

A diffusion flux in this frame, N k' is represented by

N k Ck (uk - UN), Eq. 61

and no net particle flux exists,

E J =0. Eq. 62
k N k

The number-fixed frame of reference coincides with the Matano

inte~~ace3 124

The choice of velocity of the solvent atoms (or ions) as

a reference velocity defines the Hi ttoX or the zotuent-ixed

tatme o4 Ledetence, uS, in which any diffusion flux is defined

relative to the solvent. It is obviously a convenient frame

to describe, for example, transport of interstitial impurities

in a crystalline solid.

Likewise, the Zattice (-6ixed) 6Aame o6 tejetence is

represented by the reference velocity, u L' with which the

local crystalline lattice is moving. By introducing the

vacancy as a constituent in addition to chemical species, we

define u L as
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EC ku + C u
uL ECk + CVV Eq. 63

k k v

where the concentration and the velocity of vacancies are,

respectively, denoted as C and u . The denominator,v v

Ck+C, may be replaced by the concentration of lattice

points, C, since the interstitials are not taken into account

in the definition of uL in Eq. 63. In the present discussion,

C is assumed to be constant. A diffusion flux is then measured

relative to the local lattice or

L k = Ck(uk - uL) Eq. 64

and, in view of Eq. 53,

z + J =0, Eq. 65.k L k L v

which implies the conservation of the local crystalline

lattice. The lattice frame of reference is congruent with the

frame represented by the inett chipz in Darken's analysis 25 of

the Kirkendall effect and accordingly often called the

Kikendaltt Aame o4 tedetencej6 The local lattice flow

velocity, u L can be derived purely phenomenologically in an

isothermal diffusion system without recourse to the introduc-

tion of vacancy fluxF7

Of these possible choices of the reference velocities,
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it will be shown that the Fick frame and the lattice frame

of reference are the most appropriate frames to describe

the matter transport via the vacancy mechanism with the

provision that the partial volume is constant. The former

provides the proper geometrical coordinate system in view of

the experiment and the latter in view of the physics of matter

transport within a lattice. These two frames are related to

each other through their relative velocity as

F k L k + Ck(uL - uF). Eq. 66

Due to Eq.'s 58 and 65, the relative velocity, uL-uF, is

obtained as

SLv
u L- uF = Eq. 67

k k

in which the partial volume of a chemical component has been

assumed to be constant. Since usually the concentration of

vacancies, Cv, is negligibly small compared with the

concentration of lattice points, C, the denominator in Eq. 67

may be taken as C, which reduces Eq. 67 to

L v
uL - u L. Eq. 68

L F C

The choice of the lattice reference frame, uL, may not

lead to the bilinear form of the entropy production, Eq. 4

which in turn renders the Onsager theorem invalid. Under
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mechanical equilibrium, however, it has been shown that the

rate of entropy production remains bilinear due to

M2-4,9Paigogine' z theote~. The theorem says that, for an n-

component system in mechanical equilibrium, the generalized

forces, Xk' are related to each other as

n
Z CkXk = o, Eq. 69

k=1

at constant temperature. This is an extension of the Gibbs-

Duhem equation to an irreversible systemj8 2 9 As a corolla-

ry, the rate of entropy production is then invariant with an

arbitrary choice of reference velocity. The theorem is

extended to the non-isothermal system by employing the

reduced set of fluxes and forces, {J',X'}, in Eq. 26 due to

Eq. 32 or

n
Z C X' = 0. Eq. 70

k=1 k k

Especially for a crystalline solid with a vacancy

diffusion mechanism, the theorem will be-rewritten as

n
Z C X' + C X' = 0 Eq. 71

k=1 k k v v

and the entropy production as

n
TG = Z J'-X' + J'*X' + J .

k=1 L k k L v v q q
Eq. 72
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The (n+2)x(n+2) matrix, L', for the set {J',X'} satisfying

Eq. 72 'cannot be defined uniquely because the fluxes and

the forces are respectively dependent, i.e., Eq.'s 65 and

71P'3,12 In order to avoid the arbitrariness of the L'-

matrix, we may choose to eliminate the vacancy terms with the

use of Eq. 65, according to a procedure introduced by de

Groot, with n dependent fluxes in the fluid systemi'" The

rate of entropy production, Eq. 72, is then reduced to

n
Ta= E J -(X - X ) + J -X Eq. 73

k=i k k v q q

where the subscript L (which denotes the lattice frame of

reference defined by Eq. 63) and the superscript ' (prime)

(indicating reduced set defined by Eq. 24) have been

dropped for the sake of simplicity. -In what follows, all

fluxes and forces are to be understood as the reduced

quantities refered to the lattice reference frame, unless

otherwise specifically indicated. It should be noted that

the fluxes of chemical components are independent, whereas

the forces remain dependent,i.e., they are related by Eq. 71.

We may recall that, in such a case, the (n+l)x(n+1) matrix,

L, can be uniquely defined and it is symmetric due to the

Onsager theorem.

The phenomenological laws are then written as

n
J E L k(X - X ) + L X ( k =1, 2,---n)
k 11 kq

Eq. 74
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J = ZL (X - X ) + L qqX
q ii1ql(X1 v) q

Eq. 75

in which Onsager reciprocity relations hold, i.e.,

L kl= L ; L kq =L qk* Eq. 76

Accoridngly, n independent reduced heats of transport are

defined as

Lkq = kl * Eq. 77

In view of Eq. 77, a diffusion flux, Jk' with respect to the

local lattice reference frame is represented by

n
Eq. 78J =Z L (X - X + q*X).

k i=1 kl l v l q
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3. DEVELOPMENT OF A MODEL

FOR THERMOMIGRATION OF INTERSTITIALS

Having reviewed the foundations of irreversible thermo-

dynamics in the preceding chapter, we will now use these

principles to develop a description of the thermomigration of

interstitial impurities. This analysis will be performed

before treating our favorite MgO system since the analysis for

an interstitial mechanism is very simple in concept, and the

involved mathematics is quite similar to that of the inter-

mixing of oxygen isotopes in a temperature gradient.

For interstitial impurities in metals, about twenty meas-

urements of thermomigration have thus far been performed as

summarized in Table 1. Most of measurements were made with the

stationary state technique in which the application of a

stationary temperature gradient produced a stationary concentra-

tion gradient from an initially homogeneous matrix. According

to Shewmon3 this technique is considered more accurate than

any other possible technique probably involving a non-zero flux

of the solute. It is because the disappearance of the solute

flux in the stationary state renders both the diffusion

coefficient and the absolute concentration of the interstitial

solute unnecessary for the extraction of a heat of transfer

from the stationary concentration gradient (see Eq. 86).

Experimentally, however, a very long time is usually required

to reach a stationary state. The difference between initial
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Table 1. Experimental Heats of Transfer

for Interstitial Solutes"

Solvent

a-Fe (bcc)

y-Fe (fcc)

a-Fe (bcc)

a-Fe (bcc)

y-Fe 0 Ni 0.

(fcc)

Ni(fcc)

Ni (fcc)

a-Zr (hcp)

a-Zr (hcp)

6-Zr (bcc)

Ti (bcc)

8Al-lV-Mo
titanium a

q* eVb

*tj OK)C

-1. 04±0. 07
* (12000)

-0.10± 0.07
(1200)

-0.35--0.24
(4100~2800)

-0.34~-0.23
(4000~2700)

-0.07~-0.05
(810-580)

-0.07~-0.01
(810~120)

-0.06--0.03
(700-350)

0.26
(3000)

0.28
(3300)

0 .26-0.52
(3000-6000)

0.23
(2700) -

0.13
lloy (1500)

6A1-4V
titanium alloy

Solute

Q eVd

(T mK)e

1.04
(12000)

1.56
(18000)

0.12
(1400)

0.12
(1400)

0.43
(5000)

0.36
(4200)

0.36
(4200)

0.41
(4800)

0.37
(4300)

Ref.

30, 31

30,31

32

32

32

32

32

33

0.08
(930)

0.54
(6300)

(cont'd)



Table 1. (cont ' d)

Solvent

6-ZrH1 6 9

(fcc)

a-Fe (bcc)

6-Zr (bcc)

Nb (bcc)

Ta (bcc)

B-Zr (bcc)

Nb(bcc)

Ta (bcc)

h
Bi2Te3

Solute

a. Most of data are reproduced from References 18 and 48.

b. reduced heat of transport as defined in Eq. 43, Chapter 2.
-5

c. T*Eq*/k where k is the Bol'tzmann constant, 8.617x10 eV/K

d. activation energy for the isothermal diffusion

e. T mQ/k, activation temperature

f. for oxygen concentration less than 0.15 at %

g. for oxygen concentration less than 0.5 at %

h. rhombohedral

q* eV b

( I* K) c

0.06 ±0.02
(670)

-0.78
(9100)

positive

0
(0)

-0.30-0
(3500-0)

0 . 87±0 .0 9
(10000)

- 0 . 6 9 f
(8000)

-0. 82
(9500)

0.26 ±0 .04
(3000)

175

Q eVd

(Tm K) e

0.49
(5700)

0.78
(9100)

Ref.

36

39

39

37, 38

39

39
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and final concentration decreases approximately as

cxp(-1/6)) 0 '4' where e=L 2 2 D , L is the specimen thickness

along the gradient and the diffusion coefficient for the

impurity in question is denoted as D.. A time at least as

long as 56 is required to bring a sample within 99.3 % of the

stationary state. Depending on D., this sometimes can be

hopelessly long. Some have thus tried to develop a solution

for the time-dependent concentration which is developed from

the initially homogeneous distribution of impurities with a

method of quantum mechanical perturbation theoryt2,43 But the

related mathematics is quite involved.

In this chapter, an approximate solution, valid for short

annealing times, which is experimentally operable, explicit and

mathematically simple, will be introduced under the initial

conditions of a semi-infinite source, a thin film source and a

finite (or thick-film) source, in order to provide an analysis

analagous to oxygen-intermixing in MgO in a temperature

gradient. We will see, in addition, that an experiment design-

ed on the basis of the present time-dependent solution may be

an advantageous replacement for the above mentioned stationary

state technique to measure the heat of transport of intersti-

tial impurities in a metal system.

3.1. PHENOMENOLOGICAL LAWS

Consider an isotropic crystalline system containing

interstitial impurities of one kind denoted with the subscript

"i", such as, for example, carbon in austenite. The system is
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assumed to be in mechanical equilibrium (as outlined in Sec-

tion 2.5), and subject to both a concentration gradient of

interstitials and a temperature gradient. With respect to

the local temperature, a stationary state is assumed or

(T) = 0 Eq. 79
t=+ r

since heat conduction is usually much faster than a concentra-

tion change by diffusion in most material systems. The valid-

ity of the following analysis is, thus, guaranteed only when

the stationary state with respect to the temperature is reached

in a negligibly short time compared with the time required for

a measurable change in concentration.

We may assume that movements of interstitials are not

coupled to those of host atoms. The host lattice is relatively

immobile so that it may be regarded as a cage for intersti-

tials. The host lattice thus provides the most appropriate

frame of reference relative to which the flux of interstitials,

l., is measured. This frame corresponds to the Hi ttoid or the

zctvent-6ixed itame o6 tedetence (see Section 2.5 for details),

which is approximately coincident with the Flck or the votume-

6ixed 6Aame o6 tedetence if one may neglect the volume change

which accompanies the incorporation of an interstitial. The

flux, J., in the present example is therefore experimentally

determinable.

The flux of interstitials, J., referred to the solvent-

fixed frame of reference may be written in view of Eq. 46 as



J. = L. .(X. + q* X ). Eq.
1 1 i 1 1 q

Substituting Eq. 32 and Eq. 10, we have

3C. q*
J. =-D. D.C. I Eq.

i 3Z ii kT2 dz

for planar thermomigration along z-direction, where the

ordinary diffusion coefficient of interstitials, D.i has

been defined as

kTL..

i C.

80

81

Eq. 82

According to de Groot2 the coefficient of the temperature

gradient in Eq. 81 is called the thetmat di44uzion

coe4jcient, D!, or
I

q*
D! ED 1

1 i kT
Eq. 83

and the ratio of the thermal diffusion coefficient to the

ordinary diffusion coefficient is the So&t coe66icient, ST'

T D.
Eq. 84

The reduced heat of transfer of an interstitial, q*, is

defined relative to the host lattice.

In the stationary state, the flux of interstitials

178
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disappears relative to the solvent,

= 0 Eq. 85

which reduces Eq. 81 to

dlnC. q*
d(1/T) =I Eq. 86

Eq. 86 is the principle of the stationary state technique

which has been almost exclusively used to measure the heat of

transport of interstitials'' 4"8

Since the solvent-fixed frame is taken to approximately

coincide with the Fick frame of reference, the continuity

equation for the interstitials is obtained as

3C.
= - div J. Eq. 87

or, due to Eq. 81,

= (D. ) T* [D.C. (1)], Eq. 88t 7z i 9z z ii z T

where

q*

T*- Eq. 89
1k

The intermixing profile of the interstitial isotopes,
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say i and i*, will also follow the same equation if the inter-

ference between the two isotopes is neglected. In such a

case, C. must represent the concentration of the i isotopes.

It should be noted from Eq. 88 that the development of

the concentration profile, C. (z,t), is influenced by the

thermomigration via the reduced heat of transport (T*). If a

time-dependent solution of Eq. 88, C.(z,t), is available, one

may thus extract the information of the thermomigration from

it or design a time-saving experiment to measure the reduced

heat of transport, q*. We will see what a time-dependent

solution looks like in the next section.

3.2. TIME-DEPENDENT SOLUTIONS

One may assume that, even in a temperature gradient, the

local diffusion coefficient, D. (z), will be the isothermal

diffusion coefficient at the local temperature, T(z), in view

of the postulate of the local thermodynamic equilibrium

discussed in Section 2.1. The temperature dependence of an

ordinary diffusion coefficient has been well established both

theoretically and experimentally4 4 as

D = D exp(-T m/T) Eq. 90

in which T denotes the activation energy for the diffusion,
m

Q, divided by the Boltzmann constant, k, i.e.,

Tm = Q/k. Eq. 91
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It may be called an activation tempecatute.

Substituting from Eq. 90 into the continuity equation,

Eq. 88, we obtain a differential equation,

C. a2C. T +T* 3C.
= D. I + D m idT

Dt i 9z2  i T _9z dz

T*(T -2T) T* 2
+ D. Ci ( )2+D. - C. d - . Eq. 92

An exact so-lution is by no means possible but an

approximate solution may be obtained with a perturbation

method45'46 over a very thin region 6, in which the thermo-

migration is observed, such as

~ 2 2 << 1, Eq. 93
L

where a typical dimension of the system is again denoted as L.

In the neighborhood 6 of z=0, (- 6, 6), the spatial

variation of the stationary temperature (Eq. 79) may be taken

as linear, viz.,

T = T + a-z Eq. 94 a

or

T = T (1 +-) Eq. 94 b
o T

and, for the temperature usually employed in a solid-state

diffusion-related experiment, the relative variation of temper-

ature may be only on the order of magnitude E2 or
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E2 Eq. 95
0

where T is the temperature at z=0 and "a" is the temperature

gradient -in (-46, 6). Equation 93 and Eq. 95 imply that a

temperature gradient is on the order of magnitude, a-T 0/L,

but, as far as Eq. 95 remains valid, Eq. 93 need not be

necessarily true as shown in Appendix 1 (L, as a symbolic

representation of a macroscopic dimension, was introduced to

stress that 6 is relatively thin). If it is expanded in a

Taylor series about z=O (T=T0 ), the diffusion coefficient, Eq.

90, is then well represented within the accuracy of £2 in this

region 6 by

D. = A + Aiz, Eq. 96

where

A E D.(T ) ; A E (a/T )(T /T )D.(T ).o i o i0 m 0 2i 0

In usual temperature conditions of a diffusion-related experi-

ment, we may set

T
Eq. 97

TE
0

and

Eq. 98
T F
0

on the basis of experience'"4 7'r48' 7 7 (see also Table 1).

In the neighborhood 6 characterized by "a" and T0 as such,
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the solutions to Eq. 92 are obtained, within the accuracy of

2 , as follows (see, for details, Appendix 1):

For the semi-infinite source initial and boundary condi-

tions,

t=0) = CS

t=0) = 0

t>0) = C f
t>0) = 0 )

Eq. 99

the time-dependent solution is

C.(z,t) ' 1 - a(T +2T*) 2
- = _erfc zA 1 t-exp(- zt

Cs 2V 20 t 4v/T T0 o06

aT 2 2
+ 1 m z z

81V To /A t 4A0t

Rearranging, we obtain

C.(n,() aT*
1 -erfc(I) - - -E-e (--2
Cs 4 T o

Eq. 100 a

aT
+ T m ( exp(_n2

8V- To
Eq. 100 b

Eq. 101; = P /C.

C.(z<0

C.(z>0

C.(z=-0;

C.(z=1 O

where

0 / t
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For the thin-film source initial and boundary conditions,

C.( z = 0

C.(z > 0

C.( z| = 0O

t = 0) = CO

t = 0) = 0

; t > 0) = 0

the solution is

C. (z,t)M 1 22 A

* exp(- 4 1
oZ t)+16

a(T +2T*)
_ . m I . z
8 To0 VT-t

0

aT 3 z 2

Tz 2* 3 /2 exp( 4A t
o (A t) o

Eq. 103 a

or, due to Eq. 101,

C. (,E ) =I'exp(-n2) _1 . . exp(n 2)
M 1 T 2

0

+ aT
+ - zm--n (2-n2 . e pg_ 2 ,4 T

0

where M is the total Amount of source, i.e.,

M C

M f C. (z, t) dz.

Eq. 103 b

Eq. 104

For a finite source of 2h thickness represented by the

initial and boundary conditions,

Eq. 102



C.( z <h

C ( z I>h

t = 0) = C

t = 0) = 0

the solution is given by

1 [erf( h+z
2 2v JE

0

+ erf( h-z

2 T
0

T +2T*
+ ) ( 0 I

46 o-f T 0

- exp[-( h-z )2]}

0

{exp[-( h+z )2_

0

= [erf( )

{exp
0

+ (a
8V+ T0

h+z ) 2

0

T

T(M)
0

exp h-z ) 2]

0

h2-z 2

0 t

Eq. 106 a

+ erf( )

+ 1(a)
4 VT' o

+ 1(a)
4v5 T

T*
(- )Tt

0

_exp[ (1-P)21}

(o-E h +T 2
0

exp 1+P)2
C

Eq. 106 b

where

c E 2v / h. Eq. 107

This finite source of 2h thickness may be regarded as an

185

Eq. 105

Ci (z,t)

C
5

C~ P
C

S

p E z/h

hc{exp[-( 1+ )2]
C

( p) ( 1- )

- exp [-P 2] ,
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intermediate between the two extreme cases, the thin-film

source and the semi-infinite source.

It is shown in Appendix 1 that Eq.'s 95, 97 and 98,

ja6/T I ~ F2 T /T o 1/ ; IT*/T I ~ /s,
o m 0 1 -0

are the sufficient conditions for these approximate solutions,

C.(z,t) or C. (n,§) in Eq. 100 and Eq. 103 and C.(p,c) in Eq.

106 to be accurate within 62.

Expected concentration profiles, C. (n,C) of Eq. 100 and

Eq. 103 and C.(p,c) in Eq. 106 are shown in Fig. 1, Fig. 2 and

Fig. 3, respectively, where an overall profile will be gener-

ated by combining the leading isothermal diffusion profile (a)

and the two corrective curves (b) and (c), both of order of

magnitude c, namely, (a)+c(b)+c(c). The curves (b) and (c)

represent the perturbations produced by thermomigration and

by the temperature dependence of the isothermal diffusivity D ,

respectively. As would be expected, the perturbation due to

thermomigration is governed by the heat of transfer (T*) and

that due to the temperature dependence of D is governed by

its activation energy (T m). Both perturbations are proportio-

nal to the temperature gradient "a" to the extent to which the

condition, a6/T0-C 2 , remains valid. Strangely enough in

this connection, the perturbation due to the temperature de-

pendence of D. turns out to be suppressed around z-±i+/2A t or 1
1 0

-±0.7 for both the semi-infinite and the thin-film sources (see

the curve (c) in Fig. 1 and Fig. 2, and the third term on the
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curve (c)

curve (b)

Ci /CS

lO

(a) 1/2 -erfc (77)

(b) . exp (- 77)

(C) (2772- 0-exp (772

Fig. 1. The nonisothermal diffusion
profile developed from a semi-
infinite source is expected to
be a combination, (a)+E(b)+Ec(c).
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curve (a

-3 -2

curve ( c)

, J77 Ci/M

o i 2" 3

77

curve (b)

-0.5

(a) exp (-'? 2

(b) 77-exp(-772 )

(C) 77-(27 -I)-exp(-7 )

-1.0

Fig. 2. The nonisothermal diffusion
profile developed from a thin-
film source is expected to be
a combination, (a)+c(b)+c(c).
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curve (b)

C1 /Cs

curve (c)

() /2 - (erf ( i+p)
+ erf (1-P))

(b) exp (-(I+p))

V V- exp [-(-p))

-1.p L (C) (1.5 -pa
-(I+p) ]- exp[C

Fig. 3. The nonisothermal diffusion
profile developed from a finite
source of 2h thickness is
expected to be a combination,
(a) +c (b)+(c). G has been
arbitrarily taken as 1 in Eq.
188 b.
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right-hand-side of Eq. 100 b and Eq. 103 b . For the finite

source of 2h thickness, this suppression takes place at z-~

±/hz+2A t or p~Ji+T27 (see the curve (c) in Fig. 3 and the
0

third term on the right-hand-side of Eq. 106 b). As a conse-

quence, any disturbance on an antisymmetric or symmetric

isothermal-diffusion profile in these regions is mainly caused

by thermomigration.

It is noteworthy, in Fig. 1 or in Eq. 100 for a semi-

infinite source, that the isothermal diffusion profile of an

odd function, erfc(n), is modified by two even functions,

exp(-n 2) and (2_n2-1)ep(_-n2), to leave the law of mass

conservation unimpaired, namely,

C
f sC.(nl, )dC = 0. Eq. 108

0 i

In Fig. 2 or in Eq. 103 for a thin film source, however, the

leading profile of an even function, exp(-n 2), is modified by

the two odd functions, Tlexp(-n 2 ) and -n(2_n2_-1)exp(_ 2), and the

law of mass conservation again remains unimparied, namely,

C (nC)(da = M. Eq. 109

The same is true for a finite source of 2h thickness as shown

in Fig. 3 or in Eq. 106. The leading term of an even function

is again modified by the two odd functions.
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3.3. DETERMINATION OF HEAT OF TRANSPORT

From the experimental point of view, we may have some

degrees of freedom to adjust the accuracy of the time-depend-

ent solutions, Eq. 100, Eq. 103 and Eq. 106. A diffusion

zone 6, over which the cross effect is supposed to be observ-

ed, can be diminished as much as is allowed by the spatial

resolution (or depth resolution) of an instrument such as,

for example, the secondary ion mass spectrometer employed to

establish the concentration profile, C (z,t). Equivalently,
1

the accuracy 62 can also be controlled by adjusting the tem-

perature and its gradient at z=0 for a given 6 (see Eq. 95).

If we take, for example, 6-10 p and L-l cm or a-10
3 K/cm and

T ~10 3 K for the given 6-10 p, then 62 will be ~10-3 or 0.1 %.

The reduced heat of transport, q*, can be determined by

curve-fitting an experimental diffusion profile to either one

of Eq. 100, Eq. 103 and Eq. 106 depending on the initial and

boundary conditions, Eq. 99, Eq. 102 or Eq. 105, respectively.

Alternatively, it is possible to determine q* from the charac-

teristics of the profile itself. Let's first examine the non-

isothermal diffusion profile developed from a semi-infinite

source, Fig. 1 or Eq. 100. It is observed in Fig. 1 that the

position where C /C s=1/2, z0 or l0 (-z0/2VA 0 t), will be dis-

placed from z=0 or n=0 where C./C would be 1/2 for an iso-

thermal annealing under the semi-infinite source initial and

boundary conditions. This is a result of the addition of the

second term in the solution Eq. 100 a, which has maximum
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magnitude at z=0 and which, moreover, is the term which con-

tains information on the heat of transport. From Eq. 100 b,

1 1 2
2; = -( - - + - - -.

aT*#

4 o (i n 2o

+1aT n 5
+ ; fm(-1 + 3+2 _ 5'4 +

8T o0 o Eq. 110

where use has been made of infinite series expansions for the

complementary error function and the exponential function.

For a small displacement or

+ 0, Eq. 111

we may neglect the terms of the second and higher order in

Eq. 110 to get

a(T +2T*)lm I
n9 = - - - --7

0

or, due to Eq. 101,

(z -t 4 T o

Therefore, by measuring the

Eq. 112

Eq. 113

shift velocity,. i =( z /t), at z=

0, we can determine the heat of transport, q* (=kT*) provided
I l

that the isothermal diffusion coefficient of the interstitial
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impurities is known. In view of Eq. 113, the shift velocity,

i , is obviously position-dependent. Thus, by measuring both

a displacement, z0, and the elapsed time, t, in the stationary

temperature gradient, we come to obtain a certain average

velocity, i , such that

z
i - z 0 i (z)dz. Eq. 114

0

The local velocity, 20 (z -0), may thus be determined by

extrapolating 20 up to z =0 or equivalently t=0.

The reduced heat of transport, q*, can also be determined

from the time rate of concentration change at z=O, C (0,t) for

the semi-infinite source. According to Eq. 100 a, C (Ot)

varies with time as

C. (0,t)

C = -a-V Eq. 115
S

where

avT~
a= (T + 2T*). Eq. 116

4JTFT2 m I

The normalized concentration, C./C , at z=0 is expected to

vary linearly with t. From its proportionality coefficient, a,

we may extract- q* (=kT*) both with the help of the isothermal
l 1

diffusion coefficient which is presumed to be sufficiently

accurate, and with the knowledge of the temperature and its

gradient at z=0, i.e., T0 and "a". These latter terms might
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be the major source of error associated with the calculation

Of q*. By choosing T for a given temperature gradient
10

satisfying Eq. 95, a6/T0 ~E2, we may maximize a.

Substituting Eq. 90, D(T ) = D exp(-T m/T , for A in Eq. 116,

we obtain

a(T +2T*)v'I exp(-T /2T
m 1 o m 0 Eq. 117

0

which goes to maximum,

o a (2 + 1) Eq. 118
max = e 2 Tm T m

at the temperature,

T = T /4. Eq. 119
o m

To maximize the cross effect, thus, the choice of a proper

combination of T0 and "a" is required. The temperature

gradient, a, may be rather more restrictive due to the con-

straints necessary to achieve accuracy of the time-dependent

solution, Eq..95, and due to the possible alteration of the

material itself at the hot end of the specimen such as, for

example, melting or vaporization'.

We next turn to an examination of the solution under thin

film initial conditions, Eq. 103, to see if the expression

might similarly suggest experiments which might provide value

for the heat of transport in a simple and efficient way. It
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may also be observed in Fig. 2 that the position, z0 or no'

where the solute concentration is maximum, is displaced from

z=0, the location of maximum concentration which would occur

under isothermal annealing with the thin-film source initial

and boundary conditions, Eq. 102. For this solution, however,

the displacement occurs as a result of the asymmetry in the

form of both (b) and (c), Fig. 2, only the former of which

contains information on the heat of transport. Also the two

perturbations may, in part, nullify one another depending on

the sign and magnitude of the heat of transport. By

differentiating Eq. 103 b with respect to n, we have

a(T +2T*) a(2T +T*) aT -
0=r + 2 m T f1r 2.Tj

4To 0 0

Eq. 120

For small no, neglecting the second and higher order terms in

0 analagous to the procedure in simplifying the expansion Eq.

110, we arrive at exactly the same expressions as Eq. 112 and

Eq. 113. That is, the maximum in the concentration gradient

of the thin-film sample moves at the same velocity as the re-

lative concentration of 1/2 under semi-infinite source condi-

tions. The reduced heat of transport, q*, is thus determined

by measuring the velocity, 2 (z0 -), with which the concen-

tration maximum shifts from z=0. The determination of the

local shift velocity, 2 (z -*0), follows the same procedure

that has been discussed for the measurement of the local

velocity with which the position where C /C s=1/2 shifts for

the semi-infinite source.
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According to Eq. 113, the displacement of the concentra-

tion maximum or C./C =1/2 is.governed by the temperature
i~ s

dependence of the diffusion rate via Tm or Q and by the

interference with the applied temperature gradient via T* or

q*. The former always shifts the concentration maximum or,

alternatively, C./C =1/2 down the temperature gradient but the
1 S

latter influence may shift this reference concentration either

down or up the gradient depending on the sign of q*. As a

numerical estimation of the shift velocity, we may substitute

a-10 3 K/cm, T ~10 3 K, and T +2T*~_10 4 K in Eq. 113. The shift
0 m i

velocity is then given as

z /t ~ 10A cm/sec.

In other words, the system must be kept in the temperature

gradient only for a time t as long as

t - z0 /10A 0 sec,

for which an overall diffusion zone, 6, extends to

6 10O VWt ~/ cm.
0 0

When z is taken as ~1 pm, 6 will then be -100 im. In compar-

ison, it is very interesting to compare the present time scale

with that of a stationary state technique for which it has

previously been shown that the relaxation time is e=L 2/7 2D .
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It has been already pointed out that it takes at least 56

to achieve 99 % of the stationary state. The ratio of the

two time scales is approximately

t z0

which represents very well the efficiency of the present

analysis. That is, the suggested method for determining the

reduced heat of transport for diffusion by an interstitial

mechanism should produce accurate results in experiments an

order of magnitude less time in duration than the stationary

state technique.

Finally, to a nonisothermal diffusion profile developed

from a finite source, Eq. 106 and Fig. 3, one may apply the

ideas similar or equivalent to those described above for the

both extreme source conditions so as to determine the reduced

heat of transport of the solute.
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4. NONISOTHERMAL ANION SELF-DIFFUSION IN MgO

We will now turn to our initial problem, which motivated

the present analyses, the intermixing of isotopes, 160 and 180

of MgO in a temperature gradient. The focus of the problem

is on how the intermixing profile develops in a temperature

gradient, namely, how it is affected by the thermomigration.

Understanding of the thermomigration in ionic crystals

is still rather limited. Howard 4 9 and Allnatt and Chadwick 50

have provided theoretical analyses based on irreversible

thermodynamics for an alkali halide crystal doped with

divalent cations. In these analyses, the anion sublattice

was regarded as perfect and immobile since the diffusion rate

of anions is very sluggish compared with cations in the alkali

halides. The principle of the analyses is based on the

Soret effect confined at the cation sublattice - stationary

unmixing of cation impurities in a temperature gradient.

Experimental observation is made of the Soret gradient

from which an effective heat of transport of impurity cations

is extracted. Soret data are available only for alkali

halide crystals: 85Sr2+ in NaClsi,52 and in KCl5 54 Mn2+

54 53 - 2+ 2+ - 2+. 55 2+
in NaCl and KCl ; Sr , Cd and Mn in AgCl ; Cd

2+ 55
and Mn in AgBr. No study has yet been made of thermo-

migration in metallic oxides and furthermore, a thermal

self-diffusion measurement has never been attempted even

for alkali halides as far as we know. If or when a self-



199

thermomigration datum is available, it could be complemented

by a measurement of the thermoelectric power to permit

separation of the heats of transport of cations and anions

because each provides the knowledge of a certain combination

of two heats of transport (see Section 4.3). More attention

has been paid to the measurement of thermoelectric power 
6

The irreversible thermodynamical analyses of the thermo-

electricity of ionic crystals have been provided by many

57-61
authors.

In this chapter, we will analyze the thermomigration of

oxygen in MgO and show what kind of information might be

extracted from the time-dependent intermixing profile.

4.1. PHENOMENOLOGICAL LAWS

Consider a system of crystalline Mg(1 60 1_180 ), composed

of two kinds of oxygen isotopes, 160 and 1 80. It is presumed

to be hypothetically pure and stoichiometric. The predominant

defects are those of Schottky disorder which are fully ionized.

The concentration of intrinsic electronic defects - free

electron and holes is negligibly small compared with that of

the ionic defects.

Now suppose that the system is subject both to an

isotopic concentration gradient (3Ci/3z 0 0) and to a station-

ary temperature gradient (DT/3z # 0; DT/9t = 0) along the z-

direction. In such a system, we may observe fluxes of

(1) 0 2, (2) 0-2 and (3) V' on the anionic sublattice and

those of (4) Mg and (5) V' on the cationic sublattice,
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induced relative to the local crystalline lattice or lattice

frame of reference (see Section 2.5) as evolutionary processes.

The numerical superscripts, -2 and +2 denote the actual charge

states (valences) of the constituent ions on each sublattice,

while the dotsU) and the primes (') represent the effective

positive and negative charges, respectively, of the fully

ionized defects according to the Kroger-Vink system of nota-

tion 2 For the sake of simplicity, we will employ numerical

subscripts, k=1-5 to denote the mobile species in the order in

18 -2
which they have been introduced above: J for flux of 800;

for flux of 102 ; J3 for flux of V*' ;.J for flux of Mg +2

J_ for flux of V".Mg

In an MgO-like stoichiometric ionic solid, the two sub-

lattices are so intimately bound together that they are better

regarded conceptually as a single molecular lattice with an

electrically neutral quasi-molecule, (Mg 0- 2) x, on each latt-

ice point. Thus, any kind of variation on one sublattice ei-

ther closes itself or synchronizes with the reciprocal equi-

valent on the other under the macroscopic constraint,

C =C - C Eq. 121

in which C_ and C+ denote the densities of ionic positions on

the anionic sublattice (denoted by the subscript "-") and the

cationic sublattices (denoted by the subscript "+"), respec-

tively. For the present system,
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C_ = C1 + C2 + C3 Eq. 122

and

C+ = C4 + C5. Eq. 123

Since the misplacement of ions from their own sublattice to

the other is prohibited energetically and each sublattice is

preserved locally, the fluxes are subject to the constraints,

J + J + J =0 Eq. 124
Li1 L2 L3

and

L 4 + L 5 = 0. Eq. 125

Due to these linear interdependencies between fluxes, the

phenomenological equations for our system may be written,

according to Eq. 78, Chapter 2, as

J =L (X -X +q*X) + L (X-X +q*X )+ L (X -X +q*X
L 11 1-3 q1q 12 2 3 2 q 14 5 q

Eq. 126

L 2 = 2 1  1- 3  q) + L 2 2  2- 3 2 qq) + 4 5 4 q

Eq. 127

=L 4 (X -X +q*Xq + L 2 ~-%'+q*q) + L4 4 (X -X +q XL 4 = 1 L 1 3- 1 q) +42 2 3 2q) + 4 Lggg-5 4 q

Eq. 128

Since the constituents are electrically charged, the general-

ized forces in their reduced forms (see Eq. 32, Chapter 2) are

written in terms of the corresponding electro-chemical poten-

tials;
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Xk k Tk = 1, 2, 3, 4, 5 Eq. 129 a

Xk = - Uk)T - ekV'
Eq. 129 b

where ek may be chosen as either the actual charge or the

effective charge of species k and V$ is an electric field

induced internally in our nonisothermal diffusion system of

charged constituents. The thermodynamic forces of Eq. 129

are supposed to satisfy the electrochemical Gibbs-Duhem rela-

tion 281 2 9 (or Prigogine's theorem, Eq. 71, Chapter 2);

5

E k k =k=1i
Eq. 130

Assuming that vacancies do not interact with each other

and are absolutely random in their placements, we may write

y + kT In C /C' k = 1, 2, 3, 4, 5

and hence Eq. 129 is rewritten as

Eq. 131

_+ C _+

Xi= -kTCi + ev$

x2 =kTC2 + eV$2 C 2

x = -kTVC 33 C3

X = -kTC 4 - eV$
4 C 4

18 -2
for 0

0

16 -2
for 0

0

for V''
0

for Mg+
Mg

or

Eq. 132
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+ C'
X = kT0 5 for V Eq. 132

in terms of the actual cationic charge, e (=2e for MgO in

terms of the electronic charge e ) . If we further assume that

local internal equilibrium for Schottky defect formation

prevails,

+ + h /2
VC3 _ VCs _ s T, Eq. 133
C3 C5 kT

since

C 3C 5 CC exp(-g /kT) Eq. 134

and C3 =5 and C_ = C+'

Here the Gibbs free energy and the enthalpy for Schottky de-

fect formation, gs and hs, respectively, are interrelated via

the thermodynamic identity,

L g h
( )= - . Eq. 135

Thermodynamic forces in the local defect equilibrium have been

well derived by Howard and Lidiard9 and Lidiard 3

With respect to the phenomenological coefficients, we may

assume, as Howard and Lidiard9 did in their treatment of the

thermoelectricity of ionic solids, that

L1g = L41 = 0 ; 24 = L42 = 0, Eq.. 136

which implies that a diffusional driving force acting on the
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cation confined to its own sublattice does not cause a diffu-

sion flow of the anion confined to the other sublattice and

vice veJact. Of the other non-zero phenomenological coeffi-

cients, Lil, L12(=L21) and L22 are identified in terms of the

anion tracer diffusion coefficient, D*, and the corresponding

correlation factor, -f_, with a close analogy to the isother--

mal self-diffusion in an elemental crystal? This is made

possible only for a system in which local defect equilibrium

is observed or in which the vacancy concentration, C3 in the

present case, is a single-valued function of the local temper-

ature alone in view of the relation,4

D*= f D3 ' Eq. 137

The vacancy diffusion coefficient, D3, is presumably dependent

on the local temperature alone.

The identification is carried out by the two independent

thought experiments. First consider an isothermal (i.e.,

X =0) anion tracer diffusion in which

C1 + C 2 = 0 ; 3 = 0. Eq. 138

From Eq.'s 126 and 127 along with Eq.'s 132, 136 and 138, we

can equate the anion tracer diffusion coefficient D* with the

combination of the phenomenological coefficients as

(L 1 1 /C 1 ) - (L 1 2 /C 2) = D*/kT Eq. 139
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and

L22 /2 - L21 1 = D*/kT. Eq. 140

It is noted that L 1 + L 2 = 0 is necessarily true.

Consider next a situation in which a concentration

gradient of vacancies exists in an isothermal condition and

in which the isotopic ratio remains constant, or

VC
1 /C 1 = C2/C2

; C # 0 . Eq. 141

There will then be a net vacancy flux, L 3' or

L 3 = 3 C3
142Eq.

which is counterbalanced by L 1 and L 2 proportional to the

concentration of the isotope 1 and 2, respectively, viz.,

L 1 = - [C 1 / (C+C 2)] L 3

L 2 [C2 /(C 1+C 2 L 3.

Eq. 143

Eq. 144

Substituting Eq.'s 126 and 127 along with Eq.'s 132, 136 and

141 into Eq. 143 and Eq. 144 combined with Eq. 142, we obtain

another set of equations;

11 + L12

L22 + L21

= (C1 C3D 3 ) /(CkT)

= (C2C 3 D 3 ) /(CkT)

and

Eq. 145

Eq. 146
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By solving simultaneously Eq.'s 139, 140, 145 and 146

along with Eq. 137, we obtain single-valued coefficients in

terms of f and D* as;

C D* C

S kT C1 +C2

D* C1 C2
L = L =. ~ - 1 C2_ -(1-f_)

2 1  
1 2 fkT C 1 +C 2

C2D* Cl

2a2 fkT Cto +C 2 xprien

In another thought experiment

Eq.

Eq.

147

148

Eq. 149

in which a concentration

gradient of the cation vacancy, VC 5, is imposed upon our

system, we have a net vacancy flux on the cation sublattice,

Eq. 150J = - D C
L 5 5 5'

This vacancy flux will be counterbalanced by a net cation flux

L 4 or

Eq. 151J =- .J
L54 L 5

Equation 151 along with Eq. 150 yields an expression of L 44 in

terms of the cation self-diffusion coefficient D + due to Eq.

128 combined with Eq.'s 132 and 136;

C D

L = 4 + Eq. 152

44 kT
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where we employed

C D = C D
5 5 4 +

a relation similar to Eq. 137,

Eq. 153

The transport coefficient L44 , Eq. 152, corresponds to the

combination, L 11+L12+L2 1+L22 ' on the other sublattice, which

is related to the anion self-diffusion coefficient, D-, due

to Eq.'s 147, 148 and 149;

L + L + L11 12 21
+ L

(C1 + C2 )D_

kT

since D* = f D . It should be noted that, in this identifica-

tion of transport coefficients Lkl, the vacancy concentrations,

C3 and C5 , have been implicitly assumed to be negligibly

small compared to both ion concentrations or

C3 << C1 + C2
; C5 << C 4 .

These assumptions allow Eq. 122 and Eq. 123, if necessary, to

be rewritten as

C C 1 + C 2 C ~ C 5.

Substituting Eq.'s 132, 133, 136, 147, 148, 149 and 152

into Eq. 126, Eq. 127, and Eq. 128, we finally obtain the

phenomenological equations respectively as:

Eq. 154

Eq. 155

Eq. 156
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C e C (q*-hs/2)
L -D*[VC 1 fkT 2  T] Eq. 157

1 f kTV+ kT

2C e C (q*-h /2)J DIIV -2 2 2 S TEq15
L 2 -D*[VC2 ~ kTV$ + fk 2 T] Eq. 158

C e C (q*-h /2)
L = - D+[PC - kT [$ + kTz T] Eq. 159

If we neglect the isotope effect originating from the

difference of isotopic masses, we may set

q = q* E q*. Eq. 160

This effect has been already neglected when we define the

tracer diffusivity D*, Eq. 139 and Eq. 140. It should be

noted that only two independent reduced heats of transfer, q*

and q* (=q*), one for each sublattice, is defined as has been

already pointed out by Howard and Lidiard?

Movements of ions are further restricted by an electro-

neutrality field, $, called the thetmat diddusion potentlat,

which originates from the incipient charge separation due to

the difference of cation and anion mobilities. This field

prohibit further separation by leveling ionic mobilities, i.e.,

"helping and retarding ions according to their needs so as to

keep the situation as electroneutral as possible." 65  In this

sense, it may be called the electroneutrality field. As a

sufficiency for the charge neutrality,
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J - J = 0 Eq. 161

in terms of effective charge flows, or

J + J - J = 0 Eq. 162
Li1 L 2 L 4

in terms of actual charge flows. The constraint on the fluxes,

Eq. 161 or Eq. 162 implies that any net movement of ions on a

sublattice must be neutralized by a reciprocal equivalent on

the other sublattice. From this point of view, one may regard

an ionic event on either sublattice as one on the molecular

lattice in which electrically neutral quasi-molecules,

(Mg+g 0 2)X, or quasi-molecular vacancies, VMgO, are involved.

Solving Eq. 162 for $ with use of Eq.'s 157, 158 and 159

and Eq.'s 121, 122, 123 and 133, the thermal diffusion poten-

tial -is obtained as;

VT D q*-D q* h C, D+ -D
$$ = [- -+ +D + -)+ -(1+ - 7) (D+D- Eq. 163

eT D+D 2 4 D++D

where the anion diffusion coefficient, D_ has replaced D*/f_.

For an MgO-like stoichiometric solid with a high value of

Schottky defect formation energy, an intrinsic value of the

vacancy concentration is usually negligibly small compared to

the concentration of ions 6 i.e., Eq. 155. A numerical

estimation of the vacancy concentration is put at C5 /C4-10~

for a pure MgO even at its melting point (3120 K) when we take
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h s=7.5 eV 76 (see Part I) and take the entropy-related term of

Eq. 134 as unity. Due to Eq. 155, Eq. 163 may be rewritten as

+ T D+q*-D_q* hs D+-D_
V T [ D ++D ) 2 D +D) Eq-. 164

Similar expressions have been obtained by many authors in

their treatments of the thermoelectric power of ionic sol-

ids. 7-61

Substitution of the thermal diffusion potential, Eq. 164,

reduces the phenomenological equations, Eq. 157, Eq. 158 and

Eq. 159 to the following equations:

L 1 = - D* C - C1

L 2 = 2D* 2 2

D D q*+q*-h

D_+D kT 2

DD q*+q*-h

D +D kT 2

Eq.

Eq.

Eq.
D D q*+q*-h

C+ D+D kTL 4 =

In the derivation of Eq. 167, use has been made of

165

166

167

C ~0 due4-

to Eq. 156.

The salient feature of the present system is that there

are net vacancy fluxes (or equivalently net mass fluxes) on

both sublattices solely due to the -applied temperature gradi-

ent in view of Eq.'s 124, 165 and 166 or Eq.'s 125 and 167,

namely,

D -D (q*+q*-h
L = 3 = C-( ~ -+) ~ + -

L 3 L 5 D_+D+ kT
Eq. 168
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where the approximation, 1(C +C2)~0, has been employed in

view of Eq. 156. They are strongly coupled (L 3L 5) through

the thermal diffusion potential so that one may regard the

synchronous vacancy flows on both sublattices as a net flow of

electrically neutral quasi-molecular vacancies, VMgO, on the

molecular lattice. 'A net flux of VMgO, which is equal to L3

in Eq. 168, renders local lattice movement at a velocity, uL'

relative to the Fick or the volume-fixed frame of reference

for the preservation of the local defect equilibrium. The

Fick frame of reference coincides with the laboratory frame in

the present case, i.e., uF=0, since no volume change may be a-

ssumed upon isotope-intermixing even in a temperature gradient.

The relative velocity is thus given in Eq. 68 in Chapter 2;

u ~ Eq. 169
L C L 3

or, due to Eq. 168,

D -D -q*+q*-h
u= - +,T. Eq. 170

L D_+D+ kT

This relative velocity, uL, again very much reflects

molecular characteristics. The combination of the self-

diffusion coefficients, (D_D +/D_+D ) and the combination of

the reduced heats of transfer, (q*+q*) are the corresponding

+2 -2 X
quantities of a quasi-molecule, (MggO 0 )x. The enthalpy of

the Schottky defect formation, hs also corresponds to the

formation enthalpy of a molecular vacancy, VM 0 . As would be
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expected, thus, the relative velocity, Eq. 170, or the net

vacancy flux, Eq. 168 is readily reduced to that for an

elementary metal either by replacing the molecular quantities

with the corresponding atomic quantities of the metal, i.e.,

D -D

D_+D = D

q*+q* = q*

h =h
s v

(self-diffusion coefficient of the metal)

(reduced heat of transfer of the metal)

(vacancy-formation enthalpy of the metal)

or by setting

D =D = D

q* = q* = q*

h /2 = hs v

A net vacancy flux induced by a temperature gradient in an

elemental crystal has been given9 as

C D
S v Wq* - h )VT

L v kT __ v
Eq. 171

where Cv is the local equilibrium vacancy concentration and

D is the diffusion coefficient of the metal vacancy.
v

Due to this relative motion of the local crystalline
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lattice, the fluxes in the moving frame, Eq. 165, Eq. 166 and

Eq. 167, are not accessible to an observer -sitting in the Fick

frame of reference. What is accessible experimentally and

meaningful in the mathematics of diffusion is a flux (e.g. F 1)

which has been transformed to the Fick frame according to Eq.

66, or

F 1 L 1 + C1 L* Eq. 172

Substituting Eq.'s 165, 166 and 167 into Eq. 172, we obtain as

the observable fluxes (or operable phenomenological laws):

F l = -D*C 1  Eq. 173

J = -D*VC Eq. 174
F 2 - 2

F 4 = 0 Eq. 175

It is necessarily true that, due to Eq. 156 or VCi+VC 2 ~0,

J + J = 0. Eq. 176

One may note that the intetdetence o6 the tempetatu'e

gcaudient with the mazz 4tow haz dizappeated completelZy in the

Fick 6(tame o6 tedetence (Eq. 175 and Eq. 176) and that the

mixing of anion isotopes, 180 and 160 in the present case, has

nothing to do with the cross effect (Eq. 173 and Eq. 174).
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Therefore, no i ndotmatioi about the ct os e.6ect ot the heat

00 Vtrasi 'et can be exttact ed 6Ptom the-nonis othemaL h eZ6-

diudaalon ptodite, Cl(z,t), which is provided by the solution

of the continuity equation,

-di F 1

or, due to Eq.. 173,

S= 
-

C

Eq. 177

Eq. 178

Time-dependent approximate solutions to Eq. 178 will be

provided in the following section.

4.2. TIME-DEPENDENT SOLUTIONS

In the local defect equilibrium which has been assumed in

the present analyses, the self-diffusion coefficient is a

well-defined single-valued function of temperature alone;

D* = D exp(-T /T).
- o- m

Eq. 179

Inserting Eq. 179 into Eq. 178, we have

= D* = Pc T m 9C1 dTD* + D*
8t -Bz -T7 3z dz

Eq. 180

for a planar diffusion along the z-direction. It is very

interesting to compare Eq. 180 with the time-dependent
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differential equation for interstitials, Eq. 92, Chapter 3.

When T*=0, Eq. 92 becomes exactly Eq. 180.

In a thin intermixing zone, 6, such that

6, 2 2

where

T = T + a-z
0

and

E

0

« 1,i

Tm
T
0

an approximate analytic solution to Eq. 180 can be obtained in

exactly the same manner as the interstitial thermomigration as

shown in Appendix 1. By putting T*=0 in the solutions for the
1.

interstitial thermomigration, Eq. 100, Eq. 103 and Eq. 106, we

obtain:

For the initial and boundary conditions,

C 1 (z<0;t=0) = Cs (artificial abundance of 180)

Ci(z>0;t=0) = C0 (natural abundance of 180)
Eq. 181

the solution C1 (z,t) is

Cl-Co

C -C
5 0

=1 z 1-I a m 2_
- erfc( z T -1-) (--)V -t exp z2
2 2 A t 4/T T9 To o 4At00

+ ( ) z2 e ~ 4 t) + 0(C2-) Eq. 182 a

8/ o 0 L t 0
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or

C- a T n2_2+0(1 0 - erfc(n) + 1 ( ) + 0( 2)-C 2-8' To To
s 0 8 o

Eq. 182 b

where

A E D 0exp(-T m/T ,

S2 t ,--
0

a z/E

and 0(C2) represents terms on the order of 62 or less. The

leading term of 0(62) is shown in Appendix 1 to be

T T
- (a_) 2__m)m 2(2 ep(_ ) .Eq. 183

8/2 7T T To

For the initial and boundary conditions,

C1 (z=O; t=O) =

C 1 (IzI>O;t0=) = C (natural abundance of 180)

Eq. 184

the solution C1 (z,t) is

(C -C ) = 1 exp( z2 _ 1 aT z _ t2M 10 20 A t 8 To Jt ot
0 0

+ aTm z 3 2exp(- 4At) + 0(6 2 )
o (At) 0

Eq. 185 a

or
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(C -C = exp (-n2) + ( )
0

+ 0(E 2 ).

M is again the total amount of

T

(-E)T
0

(2n2 _1) exp (_ 2)

Eq. 185 b

"0 or

M -'/ (Ci-C0 )(da

and the leading term of 0(6 2 ) (see Appendix 1)

T
-( a) 2 (__)8 8T T

0 0

For a finite

T
(--2)
T

0

(2n 2+1) Eexp (-n 2) .

source (or thick-film)

Eq. 186

initial and boundary

conditions,

t=0) = Cs

t=O) = C 0

(artificial abundance

(natural abundance of

the solution is given as;

= 1 r h+z
erf (

0

+ erf( h-z
2 A t

0

aT
+ 1

T4

+ 1
18 /7

m

0

[- h+z ) 2]
o 2v/At

0

h2-z2

0 E

{exp[-( h+z )2]
20

- exp[-( h-z )2]}
2VT

0

- exp[-( h-z )2

2 V t
0

C ( z<h;

C (lz l>h;

of 10)

180)

C -C
C -C

5 0

Eq. 187
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+ O(C2) Eq. 188 a

or

1 o = [erf( 1+p) + erf ( -P)]

s 0

+ ( T )hc 1 + 2 (1 2 exp[-(-+P)2
8J- T0  T 0.

- exp[- (l~) 2]} + 0(62), Eq. 188 b

where

c 2VT't/h ; p B z/h.
0

The nonisothermal intermixing profiles expected from the

semi-infinite source (Eq. 182 b), from the thin-film source

(Eq. 185 b) and from the finite source (Eq. 188 b) will be the

same as those for the interstitial thermomigration with q*=O

corresponding to the respective source conditions (see Eq. 100

b, Eq. 103 b and Eq. 106 b, Chapter 3). One may get the pro-

files by deleting the curve (b) respectively from Fig. 1, from

Fig. 2 and from Fig. 3. It is observed that the location of

reference concentration, i.e., (C 1/C )/(Cs/C 0)=1/2 for the

semi-infinite source or concentration maximum for the thin-

film source, shifts from z=0, the location where that would be

if isothermal. Its shift velocity is readily obtained from

Eq. 113 either by deleting T* or by setting T*=0 asI 1
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i aT
i (z lim(-1-) = - A . Eq. 189

0 0 z9+o. t 2 OT0 0

It is noted that the locations of the reference concentrations,

i.e., (C 1-C 0)/(C -C0 )=1/2 for the semi-infinite source and the

concentration maximum for the thin-film source, shift always

down the temperature gradient even without the thermomigration-

al contribution. It is, as has been pointed out by Mock,2

because the source is stolen faster towards hotter side of the

specimen which, in turn, erodes away the profile from the

higher temperature side.

At this stage, one of our time-dependent solutions, Eq.

185 may be compared in its accuracy with the approximate

solution that was used by Mock 72 in his analysis of the non-

isothermal self-diffusion profile developed from a thin-film

of 195Au embedded in 197Au matrix. For a stationary tempera-

ture gradient, dT/dz(=a), the approximate solution for the

instantaneous planar source was

C(zt) = M exp[- (z+4DtZ')2  Eq. 190
2V'TrD*t

where M is the total amount of the source, D* is the tracer

diffusivity of Au, z' is the initial position of the planar

source on the z-axis, and v corresponds to 2 in our notation,

i.e., the shift velocity of the concentration maximum.

Concentration profiles of this kind, Eq. 190, have been

encountered both in the Chemla experiment9' 74 and in the
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experiment of electromigration,7 in which a stationary elec-

trical potential gradient is applied as a driving force for

diffusion in addition to the relevant concentration gradient

itself. Since both experiments are performed under an iso-

thermal condition, not only D* but also v is constant and

hence Eq. 190 can become the exact solution for a diffusion

profile drifted as a whole by the electrical potential gradi-

ent.

In a nonisothermal self-diffusion in which a stationary

temperature gradient corresponds to the electrical potential

gradient in electromigration, Mock 7 2 employed Eq. 190 as a

solution to Eq. 180 under the assumption that both D* and

D*T m/T 2 were constant in a relatively thin diffusion-zone.

Then, the choice of a constant shift velocity,

v = D*(T m/T 2 ) (dT/dz) Eq. 191

made Eq. 190 exact as the solution.

However, neither.D* nor v can be constant even in a thin

diffusion zone due to their exponential dependence on tempera-

ture. Considering their temperature dependences, Eq. 190

leaves a residue between the right-hand-side (RHS) and the

left-hand-side (LHS) of Eq. 180. The leading term of the

residue is calculated to be

T
(RHS)-(LHS) (a6)2 ( T)2 Eq. 192

(LHS) T T
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in our notation, where 6 replaced 2/D*t or equivalents. The

accuracy of our solution, Eq. 185 and the others, Eq. 100, Eq.

103, Eq. 106, Eq. 182, and Eq. 188 has been shown to be the

same as Eq. 192, (see Appendix 1 or Eq. 183 and Eq. 186).

Thus, it can be concluded that our solution, Eq. 185 is as

accurate as Eq. 190 along with Eq. 191 as a solution to Eq.

180..

In this connection, one may notice that the shift velo-

city, Eq. 191, obtained from Eq. 190 looks different from

ours, Eq. 189 by a numerical factor 1/2 even at z =0. But it

will be demonstrated by using Mock's thermomigration data in

the following section that, as z0 0, v approaches i (z -0)

given in Eq. 189 presumably due to its position dependence.

4.3. MEASUREMENT OF SELF-THERMOMIGRATION IN MgO

Intuitively, we had expected that the cross effect in

the temperature gradient will affect somehow the development

of the nonisothermal anion self-diffusion profile, C 1 (z,t),

from which the heat of transfer may be extracted. We have

found, however, that it does not bear any information about

the thermomigration in an MgO-like stoichiometric oxide, un-

like the case of. interstitial impurities (see Chapter 3).

According to the rigorous treatment of the phenomenon in the

light of irreversible thermodynamics, the isotopic flux with

respect to our laboratory frame of reference is driven only

by the isotopic concentration gradient or Eq. 173



222

J = - D* C
F 1 -z

and consequently, the local concentration must only satisfy

Eq. 178,

3C1_ 3(D* DC')
8t 3z - z

Why is that? It may be attributed to the diffusion me-

chanism - the vacancy mechanism itself. In the local lattice

frame of reference, the isotopic 180 ions perform not only

random walks in the isotopic concentration gradient (ordinary

self-diffusion), but also directional walks against the net

vacancy flow L 3 induced by the temperature gradient (thermo-

migration). The former is confined only on the anionic

sublattice. The latter is, however, of a molecular-like

character. It has been already pointed out that, in a

stoichiometric ionic solid, any net ionic or vacancy flux on

one sublattice is coupled strongly to the reciprocal equivalent

on the other sublattice via the charge neutrality condition so

that one may regard them as a flux of electrically-neutral

quasi-molecules (MgO) or quasi-molecular vacancy (VMgO '

respectively. In this sense, an MgO-like stoichiometric ionic

solid can be treated in exactly the same way as an elementary

metal with the vacancy diffusion mechanism. Such a concept

may facilitate the atomistic interpretation of the Kirkendall
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effect in an ionic system such as, for example, NaCl-KCl 7

Likewise in the Kirkendall effect68 the net flux of molecular

vacancies, VMgO, renders the local molecular lattice mobile

in the same direction of L VMgO L 3 L 5) for the preserva-

tion of the local internal equilibrium for Schottky defect

(or molecualr vacancy) formation. This relative movement of

the local lattice frame itself cancels out exactly the

directional walk and, hence, the profile C1 (z,t) observed in

the Fick frame bears no information at all about the direc-

tional walk in the temperature gradient. The cancellation of

the effect by the movement of the local lattice reference

frame is the salient feature of the vacancy mechanism compared

with the interstitial mechanism for diffusion.

How can the heat of transfer of oxygen ion then be deter-

mined experimentally in an MgO-like stoichiometric ionic

solid ? It should be noted that the response of the ionic

lattice in an applied temperature gradient is of a molecular-

like nature and that- the molecular response is quite similar

to the atomic response in elementary metals. In an elementary

crystal where the vacancy mechanism is well-established, a

local crystalline lattice plane is shown to move in a tempera-

ture gradient at the velocity, u L, given as9 ;

q*-h vd
u L= D- -d Eq. 193

LkT dz'

where D(=D*/f) is the self-diffusion coefficient, q* the re-

duced heat of transfer, and h- the vacancy formation enthalpy.v
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Thus, by measuring the moving velocity of a specific local

lattice plane in a given temperature gradient, one can deter-

mine the reduced heat of transfer with the help of the

presumably known self-diffusion coefficient. To apply this

method, it is necessary to label a specific lattice plane in

order to measure its speed. Two kinds -of markers have been

used for this purpose in studies of self-thermomigration in

pure metal systems. The first kind is a surface indentation

or scratch made, for example, by a Knoop indenter 9 The sec-

ond consists of a thin filament of an inert material embedded

in the crystal perpendicular to the temperature gradient70 as

in the Kirkendall experiment:' Quite recently, as a varia-

tion of the second type, Mock 7 2 has used an inert radioactive

marker. He inserted a thin layer of 1 81HfO 2 in a gold rod to

measure the moving velocity of a local crystalline lattice in

a temperature gradient of ~300 K/cm.

A similar technique may be applied to the MgO-like ionic

solid on the basis of Eq. 170 or

D -D q*+q*-h
uL - + - + s.T Eq. 194L D +D kT2  dz

in a temperature gradient along the z-direction. As stated

earlier, the diffusion coefficient (D+-D_/D++D_), reduced

heat of transport, (q* + q*), and the vacancy-formation

+2 -2 x
enthalpy, h, for a quasi-molecule (Mg~g 00 ) correspond

to the atomic quantities, D, q*, and hv, respectively. Espe-

cially for an MgO crystal and similar oxides, the molecular
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diffusion is governed by the anion diffusion coefficient

since D_ << D+ (see Part I). The relative velocity, uL in Eq.

194, is thus well-represented by the approximation,

q*+q*-h
uL~ D - + '-- E 195

L - kT 2  dz Eq.

We need one more independent piece of information to be

able to separate the heat of transport of the anion, q*, from

the molecular quantity, q*+q*, which one can determine with,

for example, a marker method. This information may be pro-

vided by a measurement of the thermoelectric power of the

ionic system. There are various conditions on the kind of

electrode-material and on the arrangement of electrodes in

the measurement of the thermoelectric power of ionic compounds

involving ionic and electronic conduction as elegantly re-

viewed by C. WagnerP1 For a compound with prevailing cationic

conduction, many authors 5' 7 3 ,7 4 ,75 employed a thermocell with

the uniform metal activity, aMl' throughout the MX sample en-

forced by placing foils of metal M between the Pt leads and

compound MX;

(a) Ptl MI MX MX| M| Pt| Pt ()

+ T ++T+AT-++ T +

The thermoelectric power, E, of the thermocell shown above

has been defined as;
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E lim Eq. 196
ALT-+*o AT

where A$ represents a potential difference between Pt-

electrodes a and B. Accordign to Wagner"' c of the present

thermocell is expressed in the Hittorf frame of reference

(anion-fixed frame) as;

e = (S - (Pt) Eq. 197

0 -

where SM and S+ are the partial entropies of metal M and ca-

tion M+e, respectively, and c (Pt) i-s the thermoelectric power

of the Pt lead wire. On the basis of the two independent

pieces of information, Eq. 193 and Eq. 197, q* and q* can be

determined separately, in principle.

But, an experimental measurement of the local lattice

velocity, uL, is rather hopeless especially for an MgO crystal

and similar oxides as the rate controlling anion diffusion is

almost negligibly slow. For this reason, in fact, the anionic

sublattice is often used as the appropriate coordinate system

of reference for the description of transport phenomena in an

ionic system$0 Let us now estimate the order of magnitude of

the marker motion predicted for MgO by Eq. 195. On the basis

of experience with elementary metals,8 '4 8'77 the order of

magnitude of the molecular heat of transfer, q*+q*, is at most

the activation energy for molecular diffusion, (hm-+h s) +

(hM+4h ), where h and h are migration enthalpies of the
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anion and cation vacancy, respectively. The theoretical

estimates 76 for an MgO crystal are hm-= 2 .38 eV, hm+= 2 .16 eV,

and h =7.5 eV (see also Part I). In Eq. 195, q*+q*-hs is

thus 5 eV at most. A local temperature T =2100 K (-18000 C)

may be taken as a practical maximum for an experiment, a limi-

tation imposed by high vapor pressure of MgO above 18500C.

The diffusion coefficient of -oxygen at 2100 K is estimated to

be only 3.0x10~ 1 cm2 /sec according to our measurements des-

cribed in Part I. Let a temperature gradient, dT/dz=2100 K/

cm be assumed to be realizable experimentally for prolonged

periods of time. Under these conditions it will take 1.3x108

sec or around 4 years at least to produce a shift of only 1

,pm (we must have recourse to optical means to measure the dis-

placement of surface marks and the wavelength of visible

light is on the order of 0.5 ypm). Eq. 194 or Eq. 195 is pre-

sumed to be valid for an extrinsic MgO with defect structure

controlled by cation impurities since the molecular diffusion

is in any case governed by the anion diffusion coefficient.

Even for a system in which the local defect equilibrium is

violated, Eq. 194 or.Eq. 195 provides an asymtotic limit of

the local lattice velocity, uL. A treatment of the latter

system is given in Appendix 2 for an elementary metal system.

In closing this chapter, we will analyze the Au-thermo-

migration data produced by Mock 7 2 in view of one of our time-

dependent solutions, Eq. 195 in order to demonstrate the

workability of the present results including those for inter-

stitial impurities. Eq. 195 has yielded a shift velocity of
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the concentration maximum, Eq. 189;

i (z -+0) = -4oaT /T2
0 -o o m o

The local lattice velocity, uL, is given by Eq. 193 for an

elemental crystal with vacancies as the predominant defect,

or

u (z -0) = A a(q*-h )/fkT2 .
L0 0 v 0

Thus, a velocity of the concentration maximum relative to the

local lattice plane represented by an inert marker is given by;

lim (Az/t) = - okT( + v), Eq. 198
0 -* 0

where Az-(i -u )t is a separation distance from the inert
o L

marker to the concentration maximum, and T has been replacedm

by Q/k, the activation energy for isothermal self-diffusion

divided by the Boltzmann constant. Eq. 198 is supposed to

become more accurate as the shift distance z0 approaches 0.

This implicitly requires an extrapolation of a series of

measurements of ( o-u L) to z =0.

On the other hand, Eq. 190 produces the corresponding

equation as;

A z A a q* h Eq. 199
tioT(Q + f

0
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which has been used by Mock 7 2 to analyze his Au-thermomigra-

tion data:

t A (x10~1 0  T a Az Az/t
(xlO

(x105 sec) cm2 /sec) (*C) (K/cm) (p1m) cm/sec)

(i) 7.52 4.98±0.13 834±2 315±12 -16±3 2.1±0.4

(ii) 8.50 8.47±0.44 867±3 309±12 -35±3 4.1±0.4

The two runs, (i) and (ii), look quite similar in their

experimental conditions. The magnitudes of A a/T2 for the two
0 0

runs are respectively (i) (1.5±0.1)xlO- s cm/sec K and (ii)

(2.0±0.2)x10-is cm/sec K. Therefore, we may regard the two

data as having been produced in the same experimental condi-

tions except for annealing time, t. Although the number of

data is limited to only two, we might expect to have Az/t-1.0

x10~ cm/sec as a limiting value as Az approaches 0. Then,

the quantity in the parenthese of Eq. 198 turns out to be 0.53

eV, or

q* ~0.7 eV
Au

with help of the values7 2 Q=1.83 eV, h =0.98 eV and f=0.78I v

for Au and with help of the averaged values, T =850*C,

A =6.7x10 1 cm2 /sec, and a=310 K/cm for experimental condi-

tions.

In his extraction of q* on the basis of Eq. 199, Mock
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took an average of the two values for q 11, 0.64 eV and 0.96

eV calculated from run (i) and run (ii), respectively. That

is,

q*= 0.8 eV.
Au

The other reported values of qu were put at 0.8 eV7 0 , 0.6~

eV 78, and 0.98 eV 7 9 .

- This example of a successful application of Eq. 198 is

believed to assure the workability of our analyses. Eq. 198

may be a better machine for a unambiguous determination of the

reduced heat of transport with a self-thermomigration experi-

ment involving the measurements of Az/t.
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5. SUMMARY

The intermixing of two kinds of anion isotopes, 180 and

160, in a temperature gradient is not influenced by the cross-

effect, thermomigration, in an MgO-like ionic system, in which

a relative shift of the anion and the cation center-of-masses

is prohibited by the constraint that stoichiometry be pre-

served. In contrast, the distribution of interstitials is

affected as the center-of-mass of interstitials is allowed to

shift relative to the immobile host lattice. Consequently, no

information about thermomigration via a vacancy mechanism can

be extracted from the time and position dependence of a

nonisothermal isotopic gradient. The conclusion is a conse-

quence of the molecular-like nature of the response of a

stoichiometric ionic system to an applied temperature gradient.

Approximate but explicit and highly accurate solutions

for the isotope-intermixing via a vacancy mechanism in a

stationary temperature gradient have been obtained for thin

film, thick film and semi-infinite source boundary conditions.

Those for the distribution of solute via an interstitial

mechanism have also been obtained for the three kinds of

source boundary conditions. The solutions obtained for the

interstitial impurities suggest a new method for the measure-

ment of the he.at of transport, based on following a specific

concentration as a function of position or time which is

capable of producing reliable data in an order-of-magnitude
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less time than conventional methods.

The molecular heat of transfer for a vacancy mechanism

may be determined by measurement of the shift of an appro-

priately labeled local crystalline lattice plane with time

as has been done in elementary metal systems. In the specific

case of MgO, however, the extremely sluggish diffusion rate of

the anion, as determined in the present and certain other

works, causes the annealing time required to produce measur-

able shift of a local crystalline lattice plane to be

unrealistically long, even for the optimum temperatures and

temperature gradients which might be employed under practical

laboratory conditions.
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6. SUGGESTIONS FOR FUTURE WORK

At-this point, we feel certain that a byproduct of the

present work - the time-dependent solutions to the thermomig-

ration of interstitials - has provided a valuable suggestion

of experimental methods which are readily realizable as well

as very economic in the determination of a heat of transport.

The uncertainty of the methods based on the present solutions

is no greater than E2 (62<<1) provided that 1a6/T 0-6 2, Tm T

-1/c and jT*/T 0 -l/E (see, for detail, Section 3.2 or Appendix

1). These sufficient conditions may be reformulated as

ja6/T | ~ - 3 T ~ ET. m o m

since T*<T on the basis of experimental and theoretical evi-m

dence accumulated so far. One may thus have two degrees of

freedom (for example, E and T ) in the selection of a, 6, T ,

and E for an appropriate experiment. Here the following

suggestions are offered for future work:

i) It is suggested that the present time-dependent solu-

tiOns be tested and verified with a well-defined system in

which the isothermal diffusivity of the interstitial is pre-

cisely known. The self-diffusion rate of the solvent atoms

should be negligible compared with the solute diffusivity

and, in order to have a standard with respect to which the
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present procedure may be compared, the heat of transfer of

the solute has to be available with a high precision. One

of the possible choices for the system might be a-iron with

C as the interstitial solute. For this system, the isother-

mal diffusion coefficients for both the solute and the sol-

vent have been rather exhaustively studied. The ratio of

the diffusivity of the solvent to the solute is on the order

of magnitude of 1-0~5 at temperatures of 700 0C to 900 0C.

Thus, the host lattice of a-iron may be taken as a reference

coordinate system relative to which the solute flux is mea-

sured in a temperature gradient. A reliable value for the

heat of transport of carbon has also been obtained by

Shewmon 3 i with the stationary state technique.

ii) The present time-dependent solutions are supposed to

be valid provided that the'coupling of a temperature gradient

to the diffusion flow under consideration persists in the Fick

frame of reference, viz., J =-D.VC.-D.C.q* T/kT2, that the
F I 1 1 1 1

relevant diffusion coefficient, D., is a single-valued func-

tion of T alone or D.=D.(T) and that the reduced heat of
1 1

transport q* or equivalent is a constant. Thus, the present

solutions may presumably, with minor modifications, be applied

to thermomigration in an MgO-like ionic crystal which is-

alloyed with substitutional cation impurities of the same

valence as the solvent cations. An example might be

(Na_ xKx)Cl in a temperature gradient. The fluxes of the host

cations and the solute cations are described in this case with

respect to the relatively immobile anion sublattice which is
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approximately congruent with the Fick frame of reference. It

is thus suggested as a future work that the present solutions

be modified to describe a time-dependent profile of thermomi-

gration in such a system and hence to extract from the profile

the corresponding heat of transport. The heat of transport in

such an experiment might be expected to be a combination of

the heats of transport of solvent and solute cations.

iii) We have phenomenologically demonstrated that, in a

stoichiometric ionic solid MX in which a diffusion proceeds

via a Schottky vacancy mechanism, a flux of quasi-molecular

vacancies V x (i.e., synchronized fluxes of anion and cationMX

vacancies) is induced by an applied temperature gradient.

This vacancy flux, in turn, -renders the local crystalline

lattice mobile and, by measuring the velocity of a specific

lattice plane uL, one may thus determine the molecular heat of

transport, q*+q*. The velocity has been shown to be *uL=(D D++ - L -+

D_+D) (q*+q*-h5) VT/kT2 (see Eq. 170 in the text). It is
-+ + - s

suggested that this velocity be experimentally tested with an

appropriate system of MX by employing a technique which has

been used for pure metal systems. The system MX is required

to be ionic, to have a very narrow range of stoichiometry,

and to be less sluggish in its self-diffusion on both sub-

lattices so that a measurable shift could be produced in a

reasonable time.
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APPENDIX 1. SOLUTION OF THE DIFFERENTIAL EQUATION

1.1. DIFFERENTIAL EQUATION

The nonlinear partial differential equation, Eq. 88 in

the text,

C C. 1
(D. 1) - T*- [D. C. -(-)] I

Dt BZ i aZ 13Z 1i 1Z T
Eq. 1-1

is rewritten as

= D + ( )( ) + DD()(C) + (T* D (T)C

T* 3T T* 2T- 2Dy( 5 )2 C + DT(Zz ' Eq. 1-2

where the subscript "i" has been dropped for the sake of

simplicity.

An approximate solution to Eq. 1-2 may be obtained by the

perturbation method454 6 as follows:

With respect to the temperature, we may assume that its

temporal variation is stationary and its spatial variation

linear;

DT) =0
tz Eq. 1-3

The diffusion coefficient is supposed to be a single-valued

function of the temperature alone in local thermodynamic

equilibrium;

;21)
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D = D exp(-T m/T) Eq. 1-4

and hence, due to the chain rule, 3D/9Z= (3D/DT)-(dT/dZ),

= aT
Z Tm Eq. 1-5

Substitution of Eq.'s 1-5 and 1-3 reduces Eq. 1-2

to

+C 2C C--- +2 w
= D[(3 ) + (-L) - T ]

where

a(Tm + T*),

3 E2a2T*

2and Y a T T*.m

Eq. 1-6

Eq. 1-7

Eq. 1-8

Eq. 1-9

Any short time solution to the diffusion problem such as

Eq. 1-6 is valid only for an infinite medium. In other words,

if we let 6 be an extent of diffusion and L be an overall

dimension of the given system along the diffusion direction,

Eq. 1-10

or

6 2
L

2 << 1 Eq. 1-11

Over such a thin diffusion zone 6 about Z=O where T=T , it is

sufficiently accurate to assume a linear spatial variation of
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temperature or

T = T (1 + -)
0 T

0

Eq. 1-12

The relative variation of temperature will be very small as

well, or

Z 
a6

0 0

Eq. 1-13

Eq. 1-13 implies in association with Eq. 1-11 that a tempera-

ture gradient a is

Eq. 1-14
T

I al ea l

If we take, for a numerical example,

and L ~ l cm

or

a ~ 103 K/cm and T ~ 103 K,

then

2 10-3

In addition, we may set

Eq. 1-15

Eq. 1-16

and

T

0

T*
0

6 ~ 10-P
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on the basis of experience!8'4 7 '4 8 The typical value of

activation energies and of reduced heats of transfer of

interstitials are order of magnitude of 1 eV or less. Thus,

T -104 K and T*~104 K.
m

Due to Eq. 1-12 and Eq. 1-13, an approximation

Tn n (1 + aZ
S +n-)

0

Eq. 1-17

is accurate within E4 and the diffusion coefficient D of

Eq. 1-4 is well represented within accuracy E 2, due to Eq.

1-13 and Eq. 1-15, as

D AO + A1Z Eq. 1-18

A0 E D (Z=0) = D exp (-T m/T0)

A1  (3D/3Z)Z = aT A /T.

Substituting Eq. 1-17 and Eq.

Eq.

Eq.

1-18, Eq.

1-19

1-20

1-6 is reduced to:

C 2C + 3 2 C + a C A Z

oZ 2 + A1Z2 + A-; -T + 1 T0oT0 .0

- 2 a a Z2 -C - 3BC
1 T

3  3Z o T30 0

aaZ DC- 2A 0 T 3Z
0

- __i __3C + a BZC
T- IC +

0 0

+ + AB-C+,C + A1'ZC - 4A ayZC - 4 ayZ 2C.

T4 0 T 4T T T
0 0 ~o o 0

Eq. 1-21

where

and
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Labeling the terms on the right-hand-side of Eq. 1-21 as

1, 2, 3, -... 14 in the order of appearance, we may compare

the magnitude of each term to that of the first term, on the

basis of either Eq. 1-11 or Eq. 1-13 and both Eq. 1-15 and

Eq. 1-16, as:

1T

2 a T+T*(-) (-)1 T T

0 To T +T*
(. ) 2 ( )( M2

1 T T o0 o 0

14 ( ) 4 (5 s

0 0 0

where we have employed the approximations,

(C/3Z)
(32c/3Zz) ~ 6

C
, ic/3Z2

If we take terms in Eq. 1-21 only upto the order of magnitude

of E, we obtain finally a differential equation;

A 32C + A1Z z2 + A a2t 0 7 Z BZ7 0 To 0BZ
Eq. 1-22

The subsequent perturbation in Eq. 1-22 is only of order of

magnitude, E2 or smaller. Thus, the accuracy of Eq. 1-22 will

be on the order of E2.
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If we let

C = C + Z C
ok=o k

Eq. 1-23

in which C and C k are such that

9C 32 C

0 -A Z2 0 =0
Eq. 1-24

and using Eq. 1-7,

C2k 32Ck 3 2 Ck-i a(T m+T*) 3Ck-i
8t ~ o Z2 = AiZ -. Zz + A 0  T2 Z '

Eq. 1-25

Then it is sufficiently accurate to solve for only C and

C1 since the subsequent correction is again negligible due

to Eq. 1-13, Eq. 1-15 and Eq. 1-16. We may choose C (Z,t) to

satisfy the initial and boundary conditions imposed and hence

Ck (ZIt = 0) = 0 (k>1) . Eq. 1-26

1.2. SOLUTION FOR A SEMI-INFINITE SOURCE

For the initial and boundary conditions

C(Z<0; t=0) = Cs

C(Z>0; t=0) = 0

C(Z=-O; t>0) = Cs

Eq. 1-27
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C(Z=CO; t>O) = 0 , Eq. 1-27

The solution for C (Zt), Eq. 1-24 will be given, due

to Eq. 1-26, as;

C z
C (Z,t) = erfc( )0 2 2V Yt

0

Eq. 1-28

which corresponds to an isothermal diffusion profile at T=T0 .

Substituting from Eq. 1-28 into Eq. 1-25, the differen-

tial equation for Ci(Z,t) will be

~' /9

dkld + B-eZ24A4At Eq./
C =-A--e Z2/4At BZ2 e- /AOt Eq.0 Bth t V

1-29

where
C a'(T +T*)

-Am
2T 0

and

Cs aT 1

0

Let C1 = C +

Eq. 1-30

such that

3Cl 32C 1

A 0 -Z = -

(2)
3C1 2C )

A0 B

The differential

A e.Z 2 /4Act

Z2 -Z 2 /4Aot

tfd

equations, Eq. 1-32, and Eq. 1-33,

Eq. 1-32

Eq. 1-33

are easily

solved by using the Fourier transformation method.

(1) (1)
Letting Y (k,t) be the Fourier transform of C1 (z,t)

Eq. 1-31

and

2
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(I ) (i ) 1 E) ikZ
Y (kit)(C=FI[C1 (Z It)]] /_C*0 1 (Z It) e dZ,

Eq. 1-34

Eq. 1-32 is Fourier-transformed as

S(1) Ak2y(1) - -A2 ek2At
t 0

since

Eq. 1-35

F[e 2/4Aot] - 2 kt e 2 A ot

The solution of the Fourier-transformed differential equation,

Eq. 1-35, is a sum of the particular solution, Y , and the
p

homogeneous solution, Y() h is, however, zero since weh* h

have chosen C and C1 such that the initial condition is met

by C0 alone and C1 (Z,O)=O, Eq. 1-26. Therefore

Eq. 1-36Y( Y(1)

p .

Multiplying on both sides of Eq. 1-35 by e k02t and rearrang-

ing, we obtain

(ek2A t (i))= -Av2A
p 0

which is integrated with respect to t as

Y (kt) = -AV27 t e-k2 0
p 0

Eq. 1-37

Eq. 1-38
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since, in view of Eq. 1-26,

Y (ko) = 0.
p

Eq. 1-39

Taking the inverse transform on both sides of Eq. 1-38,

(1)we obtain C1 (Z,t) as

( t1) Z2 /4AotC1 (Z, t) = -AVE e Eq. 1-40

On the other hand, Eq. 1-33 is Fourier-transformed as

follows. By letting o-l/4A0 , we rewrite Eq. 1-33 as

3t 0 wZgB
Eq. 1-41

which is now turned quite similar to 'Eq. 1-32. The Fourier-

transform of Eq. 1-41 is then

Y ( + A k2y(2) 2JZ BA3/2(1-2A k 2t)e Aok 2 t
3t p o p o o

Eq. 1-42

with use of the relation,

F[-- ew2/t] = F[e-wZ2/t].9W 9 Eq. 1-43

The homogeneous part of the solution, Y has been again set

to be zero for the same reason as Y _h=0.

h A k2 t
Multiplying both sides of Eq. 1-42 by e 0 , we have
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(eYkctY (2) ) = 212 B A (1-2A k 2 t)
p 0 0

which is easily integrated as

Y(2) - 2v/2 B A3/2 (t - A k 2 t 2 e-Aok 2 t.

p 0 0

(2)
The inverse-transformation of Eq. 1-45 yields C1

C 2) (Z,t) = B(A jt + Z2 e
0 2J/

Eq. 1-44

Eq. 1-45

as

Z2/4At .Eq. 1-46

An approximate solution to Eq. 1-22 is then the linear

combination of Eq. 1-28, Eq. 1-40 and Eq. 1-46 along with

Eq.'s 1-30 and 1-31;

C(Zt) lerfc Z 1 a m )/ t e-Z 2 /4Aot

s 2 vA t 4 /T T 0

+ 1 a__ Z2 e-Z2 /4Aot
8v T To

Eq. 1-47

The solution, Eq. 1-47, is supposed to be accurate within

C2 once the conditions, Eq. 1-13, Eq. 1-15 and Eq. 1-16 are

satisfied. It is noted that the leading term of the solution,

Eq. 1-47, is an odd function and the following terms of

perturbation (or correction) are even functions. Thus the law

of mass conservation is automatically satisfied, namely,

C

0 s C(Zt)dc = 0. Eq. 1-48
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1.3. SOLUTION FOR A THIN-FILM SOURCE

Now suppose that we have an instantaneous planar source.

The initial and boundary conditions will then be

C( Z =0; t=0 ) =

C(IZ|>O; t=0 ) = 0

f/ C(Zt)dZ M,

Eq. 1-49

Eq. 1-50

where M is the total amount of source. The solution is pro-

ceeded in a very much similar way to the previous case, the

semi-infinite source initial and boundary conditions. The

differential equation, Eq. 1-24, is readily solved along with

Eq. 1-26 and the solution C0 (Z,t) is given by

C (Zt) - M exp(- 4A t)
S2v'TFA t

0

Eq. 1-51

Substituting Eq. 1-51 into Eq. 1-25, we obtain a differential

equation for Ci(Z,t) as

C 32C Z -Z 2 /4Aot Z3 eZ 2 /4Aot
-t 0 d =z -G e o + H 2te-

tvt t2/t
Eq.

2T +T*
M mT

T
H E M T T

86/a T ' -- o T0

Eq.

Eq.

1-52

1-53

1-54

and

where

and
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= (1) (2)By letting Ci = C1 + Ci , we may break Eq.

two differential equations for C(1) and C 2)

3C 2CZ -Z2 /4Aot

-A 1

t 2Z tZ

C 2C z3  -Z 2 /4Aot
- G-=-H e

9t~~ o 3 tt

1-52 into the

as:

Eq.

Eq.

1-55

1-56

which correspond to Eq. 1-32 and Eq. 1-33 for the semi-

infinite source, respectively. These are easily solved -again

by the Fourier transformation method.

With the help of the relation,

F[Z e-Z 2 / 4Aot] = -i dF [e2/4AOt]dk

1-55 is Fourier-transformed as

Y (1) + k 2A y(i) - 2/- G A3/2 (ik) e-k2Aot
Dt p o p 0

Eq. 1-57

. Eq. 1-58

Eq. 1-58, multiplied by ek2Aot, is, in turn, integrated with

respect to t to yield

Y (kt) = -2f G As/2t(ik) e-k2Aot
p 0

, Eq. 1-59

the inverse transform of which gives the solution C1) (Z,t);

C (Zt) = -G z e-Z 2 /4Aot

Eq.

Eq. 1-60
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With use of the relation

Eq. 1-61F[Z3e-Z2/ 4 AOt = 33F[eZ2/4Act

1-56 is Fourier-transformed as

( (2) 2A 5 2)2 t / 2 -k 2Ao-Y 2 + k2  (2) = 4VCH(3-2kA t) A (ik) e Ot
3t p o p o o

Eq. 1-62

Multiplying both sides of Eq. 1-62 by e k2ot and integrating

(2)
with respect to t, we obtain the solution Y (kt);

p

Y 2) (k,t) 4V2HA5/2t(3-k2A t) (ik)e-k2, 
p 0 0

(2)
which is inverse-transformed to produce C1 (Zt);

C2) (Zt) = H(3A + Z)e Z/4At
o/t 2t

Eq. 1-63

Eq. 1-64

Combining Eq. 1-51, Eq. 1-60 and Eq. 1-64, we obtain an

approximate solution to Eq. 1-1 for a thin-film source;

(Z,t) = _eM 2/7r6 t
0

-Z2 /4Aot _ 1 a m+ Z -Z2/4Aot

vg7 T9 To t

+ 1 a (in) Z3 -Z 2 /4Aot
16vT To To (A t) 3/2

Eq. 1-65

This solution is also supposed to be accurate within £2

under the conditions, Eq. 1-13, Eq. 1-15, and Eq. 1-16.

Eq. 1-65 does not violate the law of mass conservation since

Eq.
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the leading term of an even function is modified by the two

odd functions, and hence

f C(Z,t)dz = M Eq. 1-66

1.4. SOLUTION FOR A THICK-FILM SOURCE

For the finite-source initial and boundary conditions,

C(lZ I< h

C( Z I> h

; t = 0) =

; t = 0) = 0

CS
Eq. 1-67

where 2h is the thickness of the finite planar source, the

solution of Eq. 1-24, C (Z,t), is the simple isothermal

diffusion profile,

C (Zt) = C[erf( h-Z) + erf( h+Z ).
0 2 s 2v t 2V-At

0 0

Eq. 1-68

Substitution of Eq. 1-68 reduces Eq. 1-25 for k=1 to;

- 1) 2C( 1)-(+
C) 3-12 = K Z [(h+Z)e (h+Z) 2 /4AOt
at o3Z t/t

+ (h-Z)e-(h-Z)2/ 4 AOt] Eq. 1-69

(2) 2(C2)) 2 )2'
_C - L -2 = 1[e -(h+Z)/4Aot _ -(h-Z)/4ot

0t 0 D L[Z1

Eq. 1-70

where
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C T
K B s a m 1.)

-T T
0

T +T*
L Ca m

2 T T 0

Eq. 1-71

Eq. 1-72

These are corresponding to Eq. 1-32 and Eq. 1-33 for the

semi-infinite source, respectively. Again using the Fourier

transformation method, the differential equations, Eq. 1-69

and Eq. 1-70 are easily solved. The Fourier transform of

Eq. 1-69 truns out to be

(Y()eAkt) = 2V2 K A 3/2 [(1-ihk-2A k2t)e ikh
9t p o 0

- (1+ihk-2A0k 2 t)eikh] , Eq. 1-73

which is integrated with respect to t and then inverse-

transformed to;

(Z,t) = t + 1(Z2-h2) e (Z+h) 2/ 4Aot
C, (Z~t)-(Z-

- e- (Z-h) 2 /4Aot] Eq. 1-74

The Fourier transform of Eq. 1-70- is

_( (2) eAokt = 2 L A 2 (e -ikhe ikh),
fo p

Eq. 1-75

from which Y ()is solved and inverse-transformed to;
p

C 2) (Z,t) = Lv[e-(Z+h) 2 /4Aot _ e-(Z-h) 2/4ot] Eq. 1-76
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An approximate solution of Eq. 1-1 for a thick-film

source is then the linear combination of Eq. 1-68, Eq. 1-74,

and Eq. 1.-76;

C = [erf( h-Z + erf( h+Z
Cs 2VA t 2VA t

0 0

1 a -)m -+2T*) - -(Z+h) 2 /4A t -(Z-h) 2 /4Aot
+ - (- ) v/ ( t[e e 0

4 To T 0

1 a )- Z2 -h 2  -(Z+h) 2 /4Act
- T) T9 Vot2At [e

- e-(Z-h) 2 /4Aot] Eq. 1-77

This solution is accurate also within c2 under the conditions

Eq. 1-13, Eq. 1-15, and Eq'. 1-16.

1.5. ACCURACY OF THE SOLUTIONS

It has been stated that Eq. 1-47, Eq. 1-65, and Eq. 1-77

are accurate within E2 as the approximate solutions to the

differential equation, Eq. 1-6 or

S = [2C +a(T +T*) a2T*(T -2T)
=_ m[ +C Tzm C] Eq. 1-78

for the semi-infinite source, the thin-film source, and the

thick-film source, respectively, provided that Ea. 1-13, Eq.

1-15, and Eq. 1-16 are satisfied, namely,

T E
T*

TO
Eq. 1-79

T_
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where 2<<1. The sufficiency of this statement, Eq. 1-79,

can be proved by substituting each solution into Eq. 1-78

and then by comparing the magnitudes of the both sides in

view of Eq. 1-79. We will prove here the sufficiency only

for the thin-film solution, Eq. 1-65, as the relevant

algebra is the simplest to show. The result, however, remains

the same for the other two solutions, Eq. 1-47 and Eq. 1-77.

We may define the accuracy of a solution as the difference

between the values of both sides of Eq. 1-78, |(RHS)-(LHS) ,

evaluated by substituting the solution, Eq. 1-65 in the present

case, into Eq. 1-78, divided by either of the two values, for

example, I (LHS),

( RHS) -(LHS)l(Accuracy) - (LHS) Eq. 1-80
(LHS)j

Partial differentiation of Eq. 1-65 with respect to t(time)

yields (LHS) as

T +2T*
_ (1 1 1 a m Z 1 z2
M 4 - t 16v T T0  t 8L V-toJ ~ 11 o 8o1K0 0 0 0

T +T* T3 T
- 1_ _ a _m__ Z_ 1 a mZ ,

16A A o o 64A 2  To To
o o 0 0

1 Z__2
-exp(- 4A t). Eq. 1-81

V/_t 0

The 2nd and the following terms in the square bracket on the

right-hand-side of Eq. 1-81 are on the order of magnitude E
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relative to the leading term, 1/4VA0t, due to Eq. 1-79.

Thus the denominator in Eq. 1-80 may be replaced by this

leading term for an accuracy estimation, or

(LHS) Mo (RHS) - (LHS) .

After some algebra, Eq. 1-82 turns out to be;

(RHS) - (LHS)
I (LHS) 9

Eq. 1-82

H (X 2 2 2 +2V 2 -viv+8v)

+ (2Z2 9 2+8pv+2v 2 )

- (X2Z4 2)y )(3i+v) + (X2Z6(~)p2

+ (X3 ZE 2 )v (p-2) (3-p-2v)

+ -(X 3Z3 )- (4p2+2V 2 +7pv-2v)

- A(X3Z5- 2 )J2(J+V)
2
1

- -(X 4 Z2 2) yv (p+2v) (i-2)

+ (1A 4Z4) y2v (y-2)| Eq. 1-83

X E a/T0,

yn

and E

H T m/T o,

E T*/T

2VA 9t

In this derivation of Eq. 1-83, we have disregarded, in the

polynomial representations of D and Tn, the higher order terms

of C2 or less being again based on the conditions, Eq. 1-79,

or

D = A\ (1 + XyZ)

where

Tn =TnT T0
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The use of these approximations affects by no means the final

result showing the overall accuracy to be E2 because, other-

wise, it would have produced additional terms the magnitudes

of which are smaller than any term in Eq. 1-83. One may notice

-that, in Eq. 1-83,

an d | <m-m Ix- m

Vzx I Ix 6'

and m-n m~ -nj < (,,)mi-nl1

Eq. 1-84

In view of Eq. 1-84 and Eq. 1-79, thus, the accuracy, Eq.

1-83, may be written as

T(RHS) - (LHS) aC 2 (_n) 2
1' (LHS) T T

Eq. 1-85 a

(RHS) - (LHS) E2
(LHS)

Eq. 1-85 b

in which the Schwarz inequality has been used.

Therefore, Eq. 1-79 is proved to be'the sufficiency for

the accuracy E2 of Eq. 1-65 as a solution to the differential

equation, Eq. 1-78.

or
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APPENDIX 2. SELF-THERMOMIGRATION

WITH LOCAL DEFECT EQUILIBRIUM VIOLATED

2.1. INTRODUCTION

It has been shown that, in a self-thermomigration system,

the applied temperature gradient induces a net vacancy flux

which causes the local crystalline lattice to move down or up

the gradient depending on the sign of the heat of transfer for

the preservation of local defect equilibrium?'1 8 ' 3 ,7 9 The

formulation of the phenomenon in terms of irreversible thermo-

dynamics is based on the postulate that the local thermodynam-

ic equilibrium for the vacancy formation prevails in the sys-

tem. It is, however, often violated in real systems"0 since

the annihilation or creation of vacancies is a sluggish diffu-

sion process, in general, to or from repeatable growth sites

such as dislocations, grain boundaries and external or inter-

nal surfaces. The vacancy concentration is a function of not

only temperature but also position and time. It may be super-

saturated or undersaturated, though the vacancy concentration

may be not much different from its local equilibrium one,

C q(T), in the proximity of a repeatable growth site. As av

consequence, the velocity of the local lattice is obviously

position dependent and the Fick frame of reference moves as

well due to the incorporation of excess (or deficit) vacan-

cies. It may cause a serious error in an experimental deter-

mination of the reduced heat of transfer by measurement of
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the local lattice velocity. But a more fundamental question

to be asked is whether the local formulation of the Gibbs

equation remains valid for a system in which local defect

equilibrium is violated. The applicability of irreversible

thermodynamics in the linear regime should be justified.

This will be done in what follows and thermal self-diffusion

will then be reformulated in a more general way.

2.2.- IRREVERSIBLE THERMODYNAMICS

The irreversible thermodynamics has been based upon the

fundamental assumption that the Gibbs equation holds piecewise

even in a continuous system in which the thermodynamic
2-6

variable change continuously with space (r) and time (t),

ds -du + Edv - - dC Eq. 2-1
T T k T k'

where s, u and v are respectively specific entropy, specific

internal energy and specific volume. This is equivalent to

the definition of the local thermodynamic potentials as

surfaces in the space of local thermodynamic variables, for

example,

s(r,t) = s[u(r,t), v(',t), Ck( ,t)] Eq. 2-2

G(',t) = G[T(',t), P( ,t), Ck(rt)] Eq. 2-3

which is the necessary condition for the applicability of the

irreversible thermodynamics in the linear regime!
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Now consider an elementary metal system subject to a

stationary temperature gradient, in which vacancies are the

predominant defect type. Such a system may be regarded as a

collection of an infinite number of infinitesimal discontinu-

ous systems, each of which is in the thermal equilibrium with

a heat reservoir at the local temperature, T(r) . An isother-

mal subsystem may be or may be not in internal thermodynamic

equilibrium with respect to the vacancy concentration. The

Gibbs potential per unit volume, G, however, can be repre-

sented as an analytic function of the temperature, T, and the

vacancy concentration, Cv, in the isobaric condition, irre-

spective of the local defect equilibrium. If one considers

the subsystem a binary ideal solution of the vacancy solute

and the metal solvent in the neighborhood of the solubility

limit, C q(T), such asv

Ceq(T) << C, Eq. 2-4
v

the Gibbs potential, G, may be written according to the

statistical mechanics9'7 4 as

G = G0 + Cv g + kT[C vln(Cv C) + (C-CV )ln(C-C v)/C]

Eq. 2-5

where G0 denotes the specific free energy of an ideal crystal

and C is the concentration of lattice points. The chemical

potential of a vacancy is then defined as
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(3G g + kT ln (C /C). Eq. 2-6
v 3Cv TV

The internal defect equilibrium corresponds to the condition,

( ) = 0 Eq. 2-7
v T

in which vacancies are in their solubility limit, C eq (T), and
V

the chemical potential of the metal is determined uniquely in

the sense of the exact thermodynamicsil Due to Eq.'s 2-6 and

2-7,

= kT ln(C /Ce ) Eq. 2-8

and

C0e = C exp(-g /kT). Eq. 2-9
v

In view of Eq. 2-5, irreversible thermodynamics can be

applied equally well to a system in which the local defect

equilibrium is violated, but in which the deviation is not

so far as to cripple the validity of Eq. 2-5. The evolution

of the system is, now, less restrictive. If local defect

equilibrium were to- be imposed as a limiting condition, states

for the system would be confined to a line of minima in G,

i.e., v =0, on the G-surface. The evolution of the present

system, in contrast, is allowed on the whole G-surface as

shown in Fig. 2-1. This implies a presence of another

evolutionary phenomenon associated with vacancies. If the
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G
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Fig. 2-1. G-surface of a system of the
metal solvent and the vacancy
solute.
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system is off the line of minima on the G-surface, the

vacancies are created or annihilated to lower the system

energy, which requires them to diffuse from or to the repeat-

able growth sites. Though the process itself is of a

vectoxial character, the annihilation (or creation) of

vacancies may be treated as a quasi-chemical reaction,

VM + (repeatable growth sites) =

MM + (repeatable growth sites) Eq. 2-10

by analogy to a chemical reaction between conserved chemical

species. The affinity for the reaction, A, is proportional

to how far the system is off the line of minima', or

A - )= y , Eq. 2-11
Br v

where E denotes the degree of advancement of the reaction. If

we let r be the reaction rate of Eq. 2-10, defined as the

vacancy annihilation rate in a unit volume;

r P- (C /3t),, Eq. 2-12
v r

the rate of entropy creation due to the chemical reaction,

achem' will be

Cchem = r-(A/T). Eq. 2-13
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When the vacancies are supersaturated (point X in Fig. 2-1),

vacancies are annihilated and vice versa (point Y in Fig.

2-1);

o> 0 def inite. .
chem

Equation 2-11 may be rewritten, in view of Eq. 2-8,

A = kT ln(1+S),

Eq. 2-14

as

Eq. 2-15

where S is the supersaturation of vacancies44 defined as

S =(C - Cq )/C .
v v v

Eq. 2-16

For a small deviation from the local defect equilibrium,

i.e.,

S << 1, Eq. 2-17

Eq. 2-15'is approximated as

A = kTS Eq. 2-18

In such a case, it is justified4 that the linear phenomeno-

logical law for the reaction is valid;

Eq. 2-19r = L A
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or, due to Eq. 2-16 and Eq. 2-18,

r- kTL (C - C e) Eq. 2-20
C eq v V

v

The phenomenological coefficient (reaction constant), L,

contains information on the kinetics of the vacancy annihila-

tion. By introducting the relaxation time or the lifetime of

the vacancy, T, one may replace

1/T = kTL /Ce Eq. 2-21
V

to obtain

r = (Cv- C )/T. Eq. 2-22

Equation 2-22 is what Adda et al.7 9 Balluffi?1 and Fara and

Balluffi2 employed.

2.3. FORMULATION

In a thermal self-diffusion system which is off the line

of the minima, Pv=0, on the G-surface in Fig. 2-1, there may

arise two kinds of irreversible phenomena; the heat flux

(thermal conduction) and mass flux (thermomigration) are

induced by the temperature gradient, and the system itself

evolves towards the state of the local defect equilibrium

(point Z in Fig. 2-1) by creating or annihilating the vacancies

when undersaturated (point Y in Fig. 2-1) or supersaturated

(point X in Fig. 2-1), respectively. It is noted that, while

the former (heat and mass flux) are of vectorial character,
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the rate of change of vacancy concentration intrinsically is

of scalar character no matter what the mechanism of the vacan-

cy creation or annihilation is. We may treat it as a quasi-

chemical reaction, Eq. 2-10. Due to Curie's Principle' the

vectorial phenomena (the heat and mass fluxes) do not inter-

fere with the scalar phenomenon (the vacancy annihilation).

From irreversible thermodynamics, the rate of entropy

creation of the system, a, for the present system will be

Ta = 5 -(v - X ) + -X + r-A Eq. 2-23
v v M q q

as Adda et al:9 have derived, and the phenomenological

equations are written as:

LV = L (X - X + q* ) Eq. 2-24
L V VV V M V q

r = L A, Eq. 2-19

in which the local lattice conservation,

L V + L M= 0, Eq. 2-25

has been used. Instead of the reduced heat of transport of

the metal atom, q*, the corresponding quantity of the vacancy,

q*, is introduced in the Eq. 2-24, which can be shown to bev

Eq. 2-26
= -q*
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with use of Eq. 2-25.

With respect to the temperature, we again assume a

stationary temperature gradient,

(-) = 0 Eq. 2-27
t-*

r

and hence the heat flux, J q, has been omitted in the

phenomenological equations.

Due to Prigogine's theorem, Eq. 70 and Eq.'s 33 and 10

for the thermodynamic forces, X, Eq. 2-24 is rewritten as

C q*

L V =-D (VC - kTz -T) Eq. 2-28

in which the assumption, CV<<CM~C, has been used and the

diffusion coefficient of the vacancy, DV, defined as kTLvv Cv

The local vacancy concentration, C V(r,t), is changing

with the vacancy flux induced by the applied temperature

gradient and with its creation or annihilation. For a system

of n-components, in general, in which no chemical reaction

takes place between the components, the law of mass conserva-

tion reads

nn k

(k= Ck u z C Eq. 2-29

or
n n n

( C ) C Eq. 2-30
at k=1 k k=1 L k k=1 k 2-3

due to Eq. 64,
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L k = C k(uk - u ).

In the crystalline lattice with vacancies as predominant

defects,

n
C + E C =v k=1 k

and, since the local

n
J + E =
L V k=1 L k

Eq. 2-31

crystalline lattice is conserved,

Eq. 2-32

Substitution of Eq.'s 2-31 and 2-32 into Eq. 2-30 results in

( ) - + -(Cu), Eq. 2-33
t+ L V L

r

in which use has been again made of the approximation,

C << Cv

n
or E C Ck=1 k

It should be noted that the 2nd term on the r.h.s. of Eq.

2-33 corresponds to the creation or annihilation of vacancies

and that it is equated with Eq. 2-19 or Eq. 2-22;

CE e - C

- (Cu,) = -r = v
L T

Eq. 2-34

By substituting Eq.'s 2-34 and 2-28 into Eq. 2-33, we obtain
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a differential equation,

C C q* C eq C

( = VD (VC - 2 VT) + Eq. 2-35
r

For the appropriate initial and boundary conditions, Eq. 2-35

can be solved, in principle, to give the local concentration

of vacancies as a function of position, r, and time, t;

C v= Cv (rt). Eq. 2-36

The relaxation time or the life time of vacancies, T, is

assumed to be known as a function of the vacancy diffusion

coefficient or the temperature and the geometry of vacancy

sinks!" The net vacancy flux is, then, recalculated, by

putting back Eq. 2-36 into Eq. 2-28, as

C v(r,t) -q*-
TI(r,t) = -D (r) -( C (9,t) - vT). Eq. 2-37

L V v -Cv kTt)(')2kT(~ r

The supersaturation (or undersaturation) of vacancies

causes the Fick reference frame to move with a velocity u F

relative to the laboratory frame due to the volume expansion

(or contraction) accompanying the incorporation of the non-

equilibrium vacancies. The l.h.s. of Eq. 2-33 is, thus, equat-

ed with the divergence of uF' or

C
7- (Cu F Atv) .Eq. 2-38 a
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This expression looks more self-explanatory if C is replaced

by 1/Q where Q is an atomic volume,

DC

P" F Dt r
Eq. 2-38 b

From Eq. 2-33 and Eq. 2-38 a, the relative velocity of the two

reference frames is given by

uL - uF =L V/C

or, due to Eq. 2-37,

Eq. 2-39

-_ N q*
uL - uF = -Dv (VNv -T Eq. 2-40

a result which is congruent with Eq. 67 in Chapter 2, that has

been derived from the definitions of reference velocities.

Here N EC /C.v v

For local defect equilibrium, represented by the line of

minima on the G-surface of Fig. 2-1, the vacancy concentration

would be determined by the local temperature alone, i.e., Eq.

2-9. As consequences, the Fick frame coincides with the

laboratory frame,

uF = 0, Eq. 2-41

and the lattice reference frame moves with its limiting

velocity,
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q= h y Eq. 2-42
L kT

where D is the self-diffusion coefficient, D = Dv Nv

The relative velocity, Eq. 2-39 or Eq. 2-40 is what we

measure in thermal self-diffusion with the help of Darken's

chips 25 or inert markers embedded. It is obvious that the

reduced heat of transport, q*, may be subject to a serious

error when determined from the experimental measurement of the

relative velocity, uLu F and by using Eq. 2-42, instead.

If the life time of the vacancy, T, is very short or

consequently,

3C
- 0 ; S 0. Eq. 2-43

r

Then, Eq. 2-42 will be a good approximation of Eq. 2-40 in

view of Eq. 2-33. For such a case, its first order correction

can be easily made. If we rewrite Eq. 2-16,

C = e(1 + S) Eq. 2-44
v v

where S<<<1. The supersaturation of vacancies, S, is assumed-

to be a function of the local temperature alone in a given

sample geometry (grain size, etc.). From Eq.'s 2-9 and 2-44,

Sv h v 1 (dS)]-*T Eq. 2-45
C kT= 1+S dT

v
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Substituting Eq. 2-45 into Eq. 2-40, we obtain

eq q*-h v 1 d
UL - uF DvC ve( 1 + S)-( kT2v 1 + S

or, due to Eq. 2-43,

+ + 1 dS) -'T
uL -uF ~D -kXi (q* - hv dT Eq. 2-46

What is determined experimentally is, thus, the quantity in

the parentheses which may be called the "ed ective heat o6

Eq. 2-47q* = q* - h - dS/dTeff v

The temperature dependence of the vacancy supersaturation is

presumably determined mainly by the temperature dependence of

the vacancy lifetime in the condition of Eq. 2-43. From Eq.'s

2-16 and 2-34,

T
S = (-V-CuL)

C L
Eq. 2-49

from which

dS dT
dT dT

Eq. 2-50

for a given sample geometry. According to Schmalzried, the

relaxation time for the equilibration of vacancies on the
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dislocation network in metals is given by

Eq. 2-51
fTo D7Tpd~v

where pd is the dislocation density, a is the radius of

dislocation core, and f(pdx) is a function of Pd and a. For

the special case of a whisker crystal of radius, r0,

_0

5.76D
v

Eq. 2-52

In this case, only the surface can serve as a sink or source

for vacancies. From Eq. 2-52, we may conclude that

dS dT< 0
dT dT

Therefore, from Eq. 2-47,

Eq. 2-53

Eq. 2-54q* > q* - h
eff v

or a heat of transport determined from a self-thermomigration

experiment, qf, is likely to be greater than what it would

be if local defect equilibrium were established in an

elementary metal system.
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