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Horizontal plumes in rapidly spinning vertical rotors have been
examined in an effort to improve the cooling systems of rapid spin-up
airborne superconducting rotors. Using water as the primary working fluid,
plume trajectories have been observed and surface heat transfer
coefficients measured. It is found that natural convection plumes in
strongly rotating systems are two dimensional whereas an equivalent non-
rotating high Rayleigh number plume will create a three dimensional
entrainment flow field. A starting plume is thus found to generate the
thermal equivalent of a Taylor column. The surface heat transfer
coefficient is measured and found to be independent of fluid viscosity.
The Nusselt number in the rotating system correlates well with (RaPr) 33.
Pictures of plumes and a plot of rotational heat transfer data are
presented.

Flow fields and plume behaviour have also been observed in vertical,
non-axisymmetric rotors accelerated to high rotational speeds. The flow
field during spin-up is characterized by strong vortices which quickly
develop in corners of the rotor, gather kinetic energy from the interior
irrotational fluid motion and then move into the interior flow regions.
Surface heat transfer coefficients during the spin-up are estimated based
on a model for the instantaneous relative motion flow field and are shown
to underestimate the measured heat transfer coefficients.
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CHAPTER 1

OVERVIEW

The work reported in this thesis examines natural
convection plume heat transfer in rapidly spinning
containers of various geometries. This chapter
summarizes the fuit thesis, broadly outlining the
issues addressed and their relevance to the
cooling systems of superconducting rotors.

I.A. Purpose of research

The operation of a superconducting generator requires the removal of

large quantities of heat from -ithin the rotating machine. These

generators have a rotating field winding wound from superconducting wire

immersed in a liquid helium bath. During normal steady state generator

operation the heat generated within the field winding will initiate a

bouyancy driven helium circulation- the heat convected inwards ultimately

removed by boiling in regions close to the axis of the spinning machine.

Work has now begun on a prototype airborne superconducting generator which

will be operated only intermittantly. This generator will be spun to rated

speed only when there is a need for power and then operated for a short

period of time. The rotor will normally be idled at a much lower speed. The

demands on the cooling system for such a machine are naturally more severe

than those of a conventional rotor because coolant flow and thermodynamic

transients are coincident with significant transient heating in the field

winding itself. The rotor must be fully operational in a time that is short

compared with conventional rotor cooling system time constants.

The overall helium cooling system of a superconducting rotor is

composed of several smaller subsystems, one of which is the primary



concern of the present research. The work reported here is most relevant

to large pool natural convection initiated by isolated small thermal

sources in rapidly spinning systems . The details of superconducting rotor

cooling systems will be deferred until the next chapter. At this point it

suffices to sketch in general terms the geometry characteristic of the

water filled experimental apparatus used to model the transient thermal and

fluid behaviour of a helium filled system. Figure 1.1 is an example of the

geometry shared by the various rotating apparatus. Shown in Fig. 1.1 is a

right circular annular cylinder filled with fluid. The cylinder is fitted

with two radial baffles . A small heater is affixed to the outer cylinder

wall and the heater surface is parallel to the axis of rotation. (The

heater dimensions are not necessarily small compared to the dimensions of

the container). In the succeeding chapters pictures and surface heat

transfer coefficient data will be presented which characterize the

resulting flow in the container when the heater is turned on.

Natural convection flows have been observed in two different

situations. In one mode of testing the heater was turned on a long time

after the fluid in the container had come to be in solid body rotation-

(the fluid was motionless relative to the walls of the container). In the

second testing mode the heater was energized and the fluid filled

container impulsively accelerated to a higher rotation rate. The purpose

here was to assess the impact of the motion of the fluid relative to the

walls of the container on the surface heat transfer coefficient. The

former class of experiments will be refered to as quasi-steady heat

transfer tests in the discussion to follow in chapters 4 and 6. The flow

was quasi-steady because the bulk fluid in the container absorbed all the
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Figure 1.1 Sketch of annular liquid reservoir with radial
baffles and small heat source at the outer radius.
Heater surface is parallel to the axis of rotation.



heater power- though the test duration was short enough (less than a

minute in the longest test) to make bulk water temperature changes

negligible. The latter class of tests will be referred to as transient

spin-up heat transfer tests. In this testing mode, heat transfer was a

combination of natural convection and forced convection. The motion of the

container radial walls imparted some initially irrotational motion to the

fluid and this augmented the surface heat transfer coefficient. These

results are discussed in Chapters 7 and 8. The range of centrifugal

accelerations in these experiments extended from 27 to 120 times the

earth's gravity and acceleration rates of order 100rpm/s. Except where

otherwise noted, the dynamics of the system were unaffected by the earth's

gravity field. (Experiments with rotors spinning on horizontal axis

revealed some interesting phenomena associated with air bubbles acted on by

both gravity and rotational acceleration. These phenomena are described in

Chapter 9.)

I.B. Quasi-steady heat transfer flow visualization

Fig. 1.2a shows a right circular cylinder with a 6 in. i.d. and 6

in. axial length. The cylinder is fitted with a single, removable baffle.

A small 40 ohm flat surface heater is taped to the outer wall. The

container is filled with water to which a small amount (a thumbnails worth)

of mica flakes coated with shiny titanium oxide have been added. These mica

flakes are roughly 4p in diameter and tend to align themselves with strong

shear stresses in the fluid within the container. The water filled

container is chucked up in a horizontal lathe and heater power is supplied

via slip rings attached to the lathe spindle. The lathe is then spun to



Figure 1.2a Plexiglas cylinder for lathe flow vis. experiments
Figure 1.2b (below) Cylinder mounted in horizontal lathe



531 rpm and the container motion is frozen by the strobe shown in the front

of the lathe. When the fluid within the container is finally in solid :ody

rotation the heater is turned on.

Figure 1.3 shows the starting plume as it accelerates away from thte

heater surface. Fig. 1.4 shows the same plume a few moments later after

the plume has reached the center of the container. Now these rather

simple looking plumes are quite extraordinary. It is surprising, first of

all, to find that the plume is visible at all. The pictures shown in

Figs. 1.3 and 1.4 are of fluid motions as seen through the front end plate

of the rotating cylinder. The heater, however, is taped to the cylinder

wall near the middle of the container (Fig. 1.2a). Figs. 1.3 and 1.4

therefore indicate that the hot fluid leaving the surface of the heater _3

dragging along a column of fluid that extends to the cylinder end plates

(where it can be seen and photographed). The hypothesis, subsequently

proven with dyed fluid, was that a small slowly moving buoyant thermal

creates a Taylor column [11, that is, a small amount of buoyant fluid

will pull a column of non-buoyant fluid inwards just as if the heater had

extended the full axial length of the container. The fact that no fluid

moves over or under the thermal (that no fluid changes in elevation) as the

thermal moves inwards can be physically explained as follows. Individual

fluid filaments (imagine a thread of fluid extending from one horizontal

endplate to the other) that are rotating rapidly posses a kind of

gyroscopic stiffness. In response to small forces perpendicular to the

axis of rotation (such as a buoyant spherical lump of fluid moving inwards)

the fluid filaments will not bend, but rather, move around the obstacle

keeping their original length unaltered.



starting plume

Figure 1.3 Starting plume from small heater affixed to outer wall of plexi-
glas cylinder. Note plume front which consists of pair of
eddies, and the plume itself which narrows towards the wall at
the heater surface. Heater is less than 1/2" wide. Speed is
531 rpm.
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Figure 1.4 Picture of plume a long time after plume front has reached
the centerline.
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The second extraordinary feature of the plume photographed is that

the trajectory is radial. A radial trajectory in a rapidly spinning system

is only possible if there is a net force acting on moving fluid particles

at right angles to their motion. This net force keeps the fluid within

the plume from accelerating azimuthally relative to the walls of the

container inorder to conserve angular momentum. Many flow visualization

experiments were performed with baffled as well as unbaffled cylinders

(Figs. 1.3 and 1.4 show a plume in an unbaffled cylinder) and the plume

trajectories have been the same. The trajectory is not a consequence of

geometry. The external force acting on the buoyant column, it turns out,

is supplied by the pressure field of the cold fluid streaming around the

thermal.

Flow visualization experiments have also been performed with heaters

of widely different shapes and crossections. Although the plume

trajectories were not radial in all cases (for sufficiently small heaters

and sufficiently high surface heat fluxes- the trajectories curve inwards

towards the centerline) it has not been possible to generate a single

three dimensional convection flow field with a heat source fixed to the

outer container wall. The interesting conclusion of these experiments is

that fluid motions generated by bouyancy forces in rapidly spinning fluids

tend to be two dimensional. This phenomena is a characteristic of strongly

spinning fluid systems which is independent of the fluid itself.

I.C. Quasi-steady heat transfer

A fully instrumentated rotational test bed has been constructed for

measuring surface heat transfer coefficients at high rotational speeds.



Fig. 1.5 shows a pie shaped container mounted on a rotating test bed. The

container is a water tight aluminum frame with lexan windows on 3 sides.

Heaters of various shapes are mounted on the inside of the container outer

lexan window. There are thermocouples attached to the heater surface and

in the interior bulk fluid region. The thermocouple output is used to

obtain surface heat transfer coefficients as a function of heat flux,

fluid properties and rotation rate. An onboard rotating data acquisition

system multiplexes 11 analog thermocouple voltages from within the

container, converts each analog signal to a digital signal which is

serially transmitted out of the rotating system with optical slip rings.

Over 150 quasi-steady heat transfer tests have been performed.

Surface heat transfer coefficients as a function of heater power and

rotation rate have been obtained for glycerine and alcohol as well as

water. The range of centrifugal Rayleigh numbers (rotational acceleration,

2 6 11
w r, substituted for g) covered in these tests is 10 to 10 . The heat

transfer data has been found to follow a relationship of the form:

33
Nu=.107(RaPr)3 (1.1)

Fig. 1.7 is a log-log plot of all the heat transfer data collected (water,

water/glycerine,alcohol). The data includes tests with heaters of large and

small axial extent (the dimension parallel to the axis of rotation) and

heaters mounted in different places on the outer wall. Fig. 1.6 is the

water data only compared with the standard laminar and turbulent natural

convection correlations again, based on centrifugal acceleration. A linear

regression for this data alone yields a relationship of the form:

Nu=.23Ra.32 . (1.2)



Figure 1.5 Rotating test bed consisting of pie shaped lexan/aluminum container,
counterweight, and rotating electronics package. Turntable radius \
is 12".
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The interesting implications of these two correlations (Eq. 1.1 and 1.2 are

as follows:

1. the conduction boundary is so thin at these high Rayleigh
numbers that the surface heat transfer coefficient is not
affected by the trajectory of the plume or the additional fluid
dragged inwards by the buoyant fluid,
2. the Nusselt number is apparently independent of fluid
viscosity, indicating a conduction dominated process of a sort
associated with low Prandtl number fluids in Benard like
convection,
3. the surface h measured in water is 50% greater than
expected, attributable to the nearly constant heat flux
boundary condition obtaining in the tests reported here.

I.D Spin-up of a homogenous fluid in a non-axisymmetric geometry

An airborne superconducting generator will operate at rated speed

only for short periods of time. The rotor, normally idling at low speed,

will be accelerated at a rate of 6000rpm/s for 1 second when there is a

sudden demand for power. Now it takes a finite amount of time for the on-

board helium supply to come into solid body rotation. While the fluid is

being spun up the natural convection heat transfer coefficient will be

smaller than the steady state value since the fluid pressure gradient is

not yet fully established. However, the relative motion of the fluid

during spin-up- a function, it will be shown, of reservoir geometry,

will augment the natural convection h to an extent and in a manner that

wil. be described below. The purpose of the investigation into spin-up

flows in general and the effect of fluid relative motion on the surface

heat transfer coefficient in particular is thus to determine whether it is

advantageous to exploit fluid relative motion with a generator reservoir

design that inhibits fluid spin-up.



When a right circular cylinder without radial baffles is suddenly

rotated about its vertical axis the fluid comes to know of the motion of

the cylinder because an imbalance in centrifugal pressure forces exists in

different regions of the fluid. Unless the container geometry is small,

spin-up is not a diffusive (viscous) process. As the container begins to

rotate fluid close to the top and bottom horizontal endplates of the

cylinder is thrown radially outwards . New fluid must then be drawn into

the two endplate boundary layers from the interior fluid regions. To

complete the flow circuit fluid is drawn away from the outer wall region

and into the interior . The latter fluid, however, is spinning -it has

come from regions close enough to the wall to have been acted upon by

viscous stresses, and as the spinning fluid moves inwards it spins faster.

The spin-up is completed when the fluid in the interior is spinning at the

same rate as the container. A schematic of this flow process is shown in

Fig. 1.8. The time required for spin-up is consequently determined by the

time required to flush all of the interior region fluid through the

endplate boundary layers and replace it with fluid drawn inwards from the

boundary layers on the vertical sidewalls of the cylinder. These sidewall

boundary layers are indicated in Fig. 1.8. This time is the Ekman time:

' =(h/2)( )- 5 (1.3)

where h is the distance between the two horizontal end-plates, V is the

kinematic viscosity and w is the final speed of rotation.

The spin-up process can be neatly visualized in an experiment

designed by Prof. Greenspan [2]. A right circular cylinder is seeded with

shiny mica flakes and rotated on a vertical turntable (represented

schematically in Fig. 1.9). A thin collimated light source is projected
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Fig. 1.8 Streamlines of spin-up
flow field. Fluid acquires
rotation after being flushed
through Ekman layers on
endplates,

Figure 1.9 Schematic for visualizing columnar
evolution of fluid rotation. Observer is

at right angle to vertical slit source
of light. Container can be spun-up on

axis or off axis and observer will see
no difference, except that spin-up off
axis is visible only once per rev.
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thru the container, with the camera and the viewer positioned infront of

the container and at right angles to the light source. Fig 1.10 is a

sequence of photos illustrating a spin-up using such an arrangement. The

shiny column of fluid in the interior of the container is fluid that is

non-spinning and is being slowly drawn into the top and bottom end plate

boundary layers. The rest of the fluid in the container is spinning .

The mica particles in this region are aligned with the rotation and are not

visible to the observer. These particles reflect the incoming light back

to the light source. A fraction of the the incoming light, however, is

not reflected back at the light source and is reflected from the interior

in the direction of the camera, showing the slowly diminishing core of non-

spinning fluid.

Suppose instead that the same circular cylinder is made to rotate

about a vertical axis not coincident with its vertical axis of symmetry

It turns out that the spin-up process is still the same. (Fig. 7.6 shows

an apparatus constructed for performing off-axis spin-up tests. The

sequence of pictures in Fig. 1.10 actually show an off axis spin-up). The

distance of the cylinder on the turntable from the axis of rotation affects

only the pressure forces on the walls of the container. Pressure forces

acting on a homogeneous fluid (no density gradients in the fluid) cannot

create a torque on a fluid element, and so cannot by themselves impart

rotation to the fluid. Furthermore, though the pressure forces in the fluid

are different in an off-axis spin-up, the net pressure imbalance, the

imbalance which drives the secondary flow, is the same as in an on axis

spin-up.



Figure 1.10 Sequence of pictures taken during off axis spineup, Note column of interior fluid
getting thinner as spin-up evolves, The last two pictures (7,8) were taken with
the turntable stopped. Unstable spin-down is characterized by roll cells on outer
container wall.
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A homogeneous fluid acquires rotation then as it is slowly pumped

into the viscous dominated endplate boundary layers. For very small times

fluid motion in the regions away from the endplates and sidewalls must be

irrotational. This is true r1egardless of the shape of the container. When

a right circular cylinder is impulsively accelerated to speed w the fluid

initially appears in the reference frame of the container to counterrotate

relative to the walls of the container at a rate equal to -w . Similarly,

if a container of any shape is impulsively accelerated to some speed w the

fluid will always appear to counterrotate along streamlines having the

horizontal contour of the fluid container itself at a rate equal to -w. The

sum of this relative fluid rotation and the container rotation is zero, and

the inertial motion of each fluid element is,irrotational. This result will

be derived in Chapter 8.

The relative motion of the fluid in an arbitrarily shaped container

thus scales with Awc, where Aw is the impulsive change in rotation rate,

and a is a characteristic radius of the container (see Figure 7.3). This

result can be used to estimate the relative motion heat transfer

enhancement. However, the inviscid irrotational flow just described is

unstable for container geometries that are not circular. Deccelerating

boundary layers near the horizontal boundaries of the container will

separate . Fig. 1.11a shows the pie shaped container of Fig. 1.5 seeded

with mica flakes and impulsively accelerated from rest to 20rpm. The

direction of rotation is from right to left. Within two revolutions, the

fluid in Fig. 1.11b can already be seen to have separated in the two

opposing corners. Kinetic energy will be fed into the corner regions from

the original irrotational flow field in each succeeding revolution until
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Figure 1.11 Sequence of pictures taken of spin-up in pie shaped container of Figure 1.5. The upper left

hand corner picture shows the container impulsively accelerated from right to left to 20 rpm. Fluid
attenrts fo counterrotate along horizontal contour of container but adverse pressure gradient causes
boundary layer flow to seperate in the corners. The two corner eddies continue to grow drawing
kinetic energy out of the interior fluid. The eddies are rotating in the same direction.



the vortices in the corners are of sufficient size to move out of the

corners and into the interior of the container. It is most interesting to

note that the initial flow field quickly evolves (within 2 revolutions)

into two irrotational vortices which are now spinning in the same direction

as the container. (A region of concentrated vorticity is clearly visible

at the center of each of the 2 primary vortices). These vortices continue

to interact (shown in Figures 7.13-7.16) until the spin-up evolves. Though

the container in these pictures was rotating slowly, the flow field for

impulsive accelerations to 500 rpm is not appreciably different. The

number of eddies and their interactions are a function of container

geometry and speed of rotation, (in the singly baffled container of

Fig.1.12 there are 4 large eddies ). However, a most important result of

observations of spin-up in non-axisymmetric containers is that the spin-up

is still an essentially two-dimensional process with a time constant of the

same order as that in an unbaffled, symmetric container.

I.E Transient Heat Transfer Tests

The effect of this energetic relative motion on the surface heat

transfer rate has been measured . The pie shaped rotor shown in Fig. 1.5

was idled at rougly 250 rpm until the fluid was in solid body rotation.

The heater was energized and the rotor impulsively accelerated to, say,

550 rpm. The rotor reached 90% of its final rotation rate in less than 2

seconds (6 revs). (The spin-up time constant for the fluid within this
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container is 13 seconds and the acceleration could be considered

impulsive.)

Figure 1.13 is a recorded plot of the temperature history on the

surface of a heater following an impulsive acceleration. Also shown in

Fig. 1.13 is a plot of surface temperature during a quasi-steady test at

550 rpm. The heater power in both tests was the same. Figure 1.13 clearly

shows that there is improvement in the heat transfer coefficient for some

length of time, although that time is still short compared to the spin-up

time of the fluid in the container.

The unusual result that a quasi-steady heat transfer state is

reached while there is still considerable relative motion in the interior

of the container is explained as follows. The local surface heat transfer

coefficient is determined by the buoyancy based upon the local gradient in

pressure and not upon the global pressure gradient. Although it takes a

considerable amount of time to produce rotation in the interior of the

container, a significant gradient is established early on in the regions

very close to the sidewalls because of viscous diffusion. At high

acceleration rates the local thermal boundary layer is also so small that

it is quickly embedded within the spin-up wall boundary layer and as the

spin-up boundary layer grows outward the net relative motion mass flux in

the vicinity of the heater diminishes as well. The appropriate

dimensionless time with which to scale the transient heat transfer data is

thus found to be:

(1.4)Cht =v'J/[(vfr)St I
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Figure 1.13 Temperature histories compared. In the first
curve, the heater is energized with the fluid
in solid body rotation. In the second, the
rotor was accelerated from 250 rpm to 550 rpm
as the heater was energized.
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Equation 1.4 is the ratio of the momentum boundary layer thickness from

ordinary diffusion divided by /Pr times the steady state thermal boundary

layer thickness at the final rotational speed. A nondimensional

temperature history is shown in Fig. 1.14. Using a plot of this form it is

possible to reduce the transient data for a range of Prandtl number fluids

for the same step change in rotation rate to a single curve. The

nondimensional time in Eq. 1.4 is independent of fluid viscosity and

roughly represents the time required for a quasi-steady thermal conduction

boundary layer to develop. It could not be established with the apparatus

available exactly how the time required to establish a thermal boundary

layer depends on the relative fluid motion in regions very close to the

wall. A greater impulsive change in speed will produce a longer period of

heat transfer enhancement. But it also seems that the bumps and dips in

the temperature curve of Fig. 1.13 are due to the swirling vortices which

are interacting and scouring the container walls at the beginning of the

spin-up. This tends to suggest that a disordered spin-up is preferable for

heat transfer purposes, and that reservoir baffles have an important role

in enhancing heat transfer during spin-up.
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Figure 1.14 Nondimensional temperature ratio plotted against
dimensionless time Tht. When dimensionless time
is roughly 10, the complex interior fluid motion
no longer affects surface heat transfer coefficient.
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CHAPTER 2

SUPERCONDUCTING GENERATORS

II.A Background on MIT generator program

The work presented in this thesis is intended to support the

development of an improved cryogenic cooling system for airborne and

conventional superconducting generators. The experiments described in the

opening chapter are explorations of fundamental phenomena characteristic of

rapidly spinning systems. For simplicity, water experiments were designed

to simulate certain aspects of actual cryogenic generator operation.

Compared to water, helium is an essentially inviscid, compressible fluid

with poor thermal conductivity. In Chapter 5 when the details of the

construction of the water filled apparatus .are discussed, a comparison

will be made of relevant characteristic nondimensional numbers for the

experimental apparatus and the GE airborne superconducting generator.

The Cryogenic Engineering Laboratory in collaboration with the

Electric Power Systems Engineering Laboratory and with financing from DOE

is presently constructing a 10MVA superconducting generator. The program

is a showcase for certain advanced concepts in superconducting generator

design. The machine presently under construction incorporates advances in

(1) electromagnetic shielding for the superconducting field winding, (2)

superconducting winding design and rotor design, (3) high voltage

armature design and (4) cryogenic cooling systems. The background material

to follow on the operation of a superconducting generator will emphasize

the role of rotor cooling in the overall generator operation.

The principle of operation of a superconducting generator is the same

as that of a conventional generator with a rotating field winding [3].



However, the field winding in a superconducting generator is made from

superconducting wire which must be maintained at cryogenic temperatures.

The field winding is immersed in a liquid helium bath which is connected to

the central liquid helium reservoir by a manifold of small radial fluid

passages and radial copper conduction bars (Fig. 2.1). During normal

generator operation any heat evolved in the field winding generates

bouyancy driven circulation currents within the narrow passages of the

field winding structure. This small scale circulation transfers heat to

the copper conduction bars which extend into the larger central field

winding helum reservoir. (The copper conduction bars also serve as liquid

isothermalizers removing some of the compression temperature rise in the

liquid.) The small scale circulation also drives a large scale circulation

which brings colder fluid to the field winding space through the fluid

passages connecting the bath and the liquid reservoir. The fluid

convection through the radial channels augments the radial conduction

through the copper bars.

The rotating field winding is also enclosed within two rotating,

helium temperature electromagnetic shields. These shields screen the field

winding from AC fields arising from non-synchronous space harmonics . The

innermost shield is a high conductivity copper tube. The second shield is

the damper shield. The damper shield is a two phase winding of finely

stranded and transposed high conductivity normal (non-superconducting )

conductor (Fig. 2.2). The screening is effected by currents induced in the

damper shield winding and by eddy currents induced in the high conductivity

copper can shield.

The transient heat generated by these shielding currents must be

prevented from diffusing into the field winding structure. The damper

shield thus sits upon a thermal isolation layer of low thermal diffusivity
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material which is shown in Fig. 2.2. The can shield is at the inner radius

of the thermal isolation layer. Both the can shield and the damper winding

structures have numerous axial cooling passages . These helium filled

passages communicate with two large-volume liquid reservoirs on either end

of the rotor. The generation of heat within either shielding structure

starts a thermosyphon which transfers this internal heating to the two

liquid helium baths. Surface evaporation at the liquid surface in the

reservoirs ultimately removes the heat from the rotor.

The rotor has been designed on the assumption that any hot bouyant

fluid deposited at the periphery of the liquid helium pool will quickly

rise to the liquid surface where boiling occurs. In the current rotor

design, the two liquid helium reservoirs supplying liquid for the

electromagnetic shield cooling thermosyphon are fitted with four radial

baffles, two of which are shown in the reservoir schematic of Fig. 2.2.

Figure 2.3 is another schematic of a rotor reservoir fitted with four

radial baffles and showing actual rotor dimensions. Figure 2.4 is a

picture of the copper endplate for the baffle structure. This copper plate

bolts to the wall of the reservoir as illustrated in Fig. 2.2, the

additional length of copper baffling required to span the reservoir length

is then attached onto this end plate. It has already been mentioned in

Chapter 1 that the baffled reservoir geometry shown here led to the design

of the rotating apparatus of Fig. 1.5. In the absence of any external

reservoir heat input, the purpose of these baffles is twofold. These

baffles keep the two phases of helium well seperated within the reservoir.

Liquid helium foams very easily, and these baffles insure that any

turbulent foaming is kept to a minimum. The baffles are also reservoir

isothermalizers eliminating or reducing the temperature rise in the liquid

as it is compressed in the centrifugal field [4]. Isothermalizing the
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reservoir liquid lcwers the temperature at the periphery of the reservoir

where there are various axial thermosyphon inlets and outlets- but at the

expense of higher reservoir pressures. During normal generator operation,

however, the baffles were intended to aid in the transport of hot fluid

inwards. The baffles were thought to produce a beneficial ordering of the

convective flow. Any hot fluid deposited in the outermost radii of the

reservoir which started to accelerate inwards would be deflected by

coriolis forces to the trailing baffle wall, where it would continue to

move towards the vapor liquid interface. Similarly, a cold stream moving

radially outwards would be deflected to the leading, high pressure side of

the baffle. The boundary layers on the radial walls were thus assumed to

involve only a very small portion of the fluid in the reservoir. The fluid

seperating the warm ingoing fluid on one baffle from the cold outgoing

fluid on the other baffle would tend to remain in solid body rotation and

in isothermal equilibrium. It is interesting to note that some of the

results reported in this thesis suggest that those hot plumes of fluid

issuing axially into the reservoir at the outermost radius will have no

difficulty moving towards the rotor axis.

Other notable features of the rotor cooling system are the vapor

cooled torque tubes. Figure 2.1 shows that torque is transmitted to the

field winding support structure from the rotor shaft through a thin,

stainless steel torque tube structure. The torque tube thickness is

minimized (to limits set by fault torque transmitting requirements) to

keep the conduction heat leak from the room temperature rotor shaft to the

cryogenic field winding structure as small as possible. This axial

conduction heat leak can be effectively eliminated by countercooling the

torque tube with boiloff vapor from within the rotor itself. A large

fraction of the vapor evolved in the rotor reservoirs from heat generated



in the damper winding or field winding or from the radiation heat load is

routed from the central vapor core in the end reservoirs to the torque tube

cooling channels through the torque tube inlet tubes shown in Figure 2.1.

The vapor then warms as it travels through the torque tubes and returns to

the centerline through the S shaped tubing shown in Fig. 2.1 to be

ultimately exhausted from the rotor to the helium recovery system. This

process of cold vapor compression in the torque tube inlets, nearly

constant pressure heat addition in the torque tube cooling channels and

warm vapor expansion in the torque tube outlets creates a vacuum on the

centerline of the rotor. The vapor cooling loop thus serves to self pump

the rotor with liquid from the supply dewars. It is worthwhile mentioning

that should these inlet tubes fill with liquid- the vacuum created within

the rotor can pull all the liquid rapidly from the stationary storage dewar

supplying the rotor. Protection against liquid fill is especially

important in the design of the airborne rotor to be discussed next.

For the past 12 years, the Air Force has been funding the

developement of a 20MW, lightweight, superconducting generator to be used

in airplanes [5]. Work is nearly completed at GE on such a machine

Westinghouse is also conducting research on certain aspects of airborne

generators as will be discussed later. This thesis, as mentioned

previously, is in support of the helium rotor research being conducted by

Westinghouse.

Fig. 2.5 is a schematic of an airborne powerplant. Several

crossectional views of the actual GE powerplant are shown in Figures

2.6,2.7 and 2.8. The generator is designed to produce 20MW of DC power at

a voltage of 20-40KV . Furthermore, the rotor is designed with as low a

rotational inertia as possible so that it can be accelerated to 6,000 rpm

in roughly 1 second. The rotor operates like a conventional powerplant ,
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except that it must be operational in very short period of time. Since

the rotor is generating power within a time short compared to fluid

transient decay times- cooling system optimization is much more critical

to this design. During tests of a prototype rotor developed by

Westinghouse Electric Corp. it was found that even moderate speed changes

(40 rpm/s) caused the rotor field winding to go normal [6]. Rapid speed

changes may result in frictional heating due to relative motion between the

winding module and the support structure and between the superconducting

wires themselves. The body forces in the superconductors following a rapid

field excitation may also cause conductor to conductor slip. GE hopes to

solve the problem by using a teflon interface between the field winding

and the support structure. Conductor relative motion, on the other hand,

will be eliminated by fully potting the superconductor into rigid epoxy.

Figure 2.9 shows a superconductor, epoxy module of the sort envisioned by

GE. Radial cooling slots will be formed directly into the structure. The

winding module is mounted onto the support structure as shown in Fig. 2.7.

The superconductor winding in the MIT machine has teflon slip planes wound

in between the adjoining layers of superconductor. The winding itself is

supported in discrete yoke-like structures which are able to pivot and

twist on pins which position the yokes on the inner suport tube [71. These

pivoting yokes, hopefully , will torsionally uncouple the superconductor

module from the field winding support structure. The advantage of

supporting the superconductor in these yoke-like structures instead of

enclosing them within rigid epoxy is the enhanced conductor cooling. Since

radial thermosyphon heat transfer coefficients are high, the dominant

thermal impedence in the GE design is the epoxy support structure. The

disadvantages of the yoked winding comes from the difficult fabrication and
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mounting process and from the fact that there is still conductor relative

motion.

In summary, the heat transfer processes occuring in a

superconducting generator may be thought of as interacting phenomena at

three different size scales :

1. local conductor flow pattern and heat transfer
2. intra rotor circulation system flow
3. supply and vent system behaviour.

At the local scale, the potted superconductor winding with its built

in radial cooling channels supports thermosyphon cooling loops.

Westinghouse is conducting a lengthy series of tests with helium

thermosyphons in simulated conductor cooling slots. Since these channels

are small and the helium flow fully developed and most likely turbulent,

the orientation of the coriolis vector with respect to the hot walls of the

cooling channel determines the heat transfer coefficient. These tests are

essentially to examine the effect of coriolis induced secondary flow

instabilities on heat transfer in fully developed channel flows. A

secondary focus of this research is to determine the time constants for

these thermosyphon loops. These small scale thermosyphons are found to

have response times in the ms range [81.

The local conductor thermosyphons ultimately communicate thermally

with the large helium reservoirs (the bore reservoir in the airborne

machine, the three large reservoirs in the MIT rotor). The thermosyphon

jets either spill out directly into the large pools or the heat is

conducted from a thermosyphon loop into the open pool by copper conduction

bars. Heat transfer on this level of rotor cooling falls within the intra-

rotor circulation system, or large reservoir cooling system. The work in

this thesis is most relevant to this level of the cooling system. The

problem addressed in this thesis is that of open-pool convection initiated



by an ensemble of small heat sources located at the outermost radii of a

rotating reservoir. Convection was studied both during a fluid spin-up and

with the fluid in solid-body rotation. It should be noted that the Ekman

spin-up time constant for the bore fluid in the GE airborne superconducting

rotor is roughly 13s, and the rotor is to be fully operational in roughly

1s. The bulk fluid is clearly not in solid body rotation as the rotor first

becomes operational.

The final level of rotor cooling is the supply and vent system.

There are considerable problems associated with filling and venting a rotor

with helium at high rotation rates and these are being studied at both GE

and Westinghouse. Some of the experiments reported in this thesis may be

relevant to supply system problems , such as observations of frothing in

unbaffled horizontal axis rotors with a large ratio of air to water as well

as observations of surface waves in baffled rotors. But it is certainly

clear that phenomena associated with the coupling of gravity and

centrifugal acceleration in horizontal rotors, previously overlooked,

need to be examined further.

II.B. Previous work on rotating convection

The cooling systems of superconducting rotors have been shown to be

part thermosyphon, part open pool convection. There is a great deal of

previous work and ongoing research in the area of rotating thermosyphons

and forced convection flow in rotating channels and tubes [9]. There is

even a considerable amount of work in this area where helium was the

working fluid RLQ. A thesis by SchnaDper CL11 shows how the radial

temperature distribution in a small i.d. rotating cylindrical tube whose

axis is perpendicular to the axis of rotation and which connects with a

large reservoir of fluid near the centerline can be calculated using an



argument based on entropy fluxes. Scurlock and Thornton [121 made heat

transfer measurements in a similar geometry. Scurlock's work in particular

indicates that free convection in rotating helium filled radial cooling

channels at critical and subcritical pressures follow a correlation of the

29form: Nu = 0.29Ra*. As mentioned previously, there is ongoing research

at Westinghouse where measurements are being made of heat transfer

coefficients in the narrow radial cooling passages of superconductor field

windings. They have found significantly higher heat transfer rates than

4previously reported, of order Nu=.03Ra' . It can thus be reasonably

assumed that even though the exact secondary flow field is not known,

there are enough correlations extant to adequately design this portion of

the rotor cooling system. A summary of helium data from free convection

experiments is also shown in Fig. 2.10. The water data obtained from open-

pool convection studies reported in Chapter 6 are also shown on this curve.

This is not meant to suggest that this data is relevant to thermosyphons

since there is no geometrical similarity between the water filled apparatus

and the radial tubes and thermosyphons of these other experiments.

While a great deal of work has been done to determine the heat

transfer coefficients in rotating narrow enclosures- there has been very

little work in the area of large pool plume behaviour, or even Benard

convection at high rotational speeds. Large Rayleigh number natural

convection in stationary systems, though, has received a great deal of

attention [13], [141. Work by Hudson [15], Homsy [16] and Abell [17]

extends the research done in stationary enclosed systems by measuring the

heat transfer rates in similar geometries which are rotating . Fig. 2.11

shows the geometries studied. Notice that the heat input occurs on surfaces

which are perpendicular to the axis of rotation and that the density

gradient coupled with centrifugal pressure field will quickly produce
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circulation. When the convection of heat within these enclosures occurs

primarily in thin boundary layers on the hot and cold surfaces, the heat

transfer coefficient in the rotating enclosure can be related to that in

the nonrotating enclosure by substituting the rotational acceleration for

gravity in the Rayleigh number. That is not the case, however, if the

rectangular enclosure in Figure 2.11b is a circular cylinder with a heated

upper plate and a cooled lower plate (the circular cylinder of Fig. 1.1

with no baffles, and the top and bottom plates maintained at different

temperatures.) In such a geometry, the heat transfer rate at the same

AT between the two endplates is actually inhibited. The mechanism for

heat transfer in such a geometry is Ekman pumping of hot fluid from a

boundary layer on the top plate down to a cold boundary layer on the lower

plate. There is, infact, a strong azimuthal motion in the interior fluid

regions. This azimuthal flow is in one direction near the top plate, zero

at container midheight, and equal in magnitude and opposite in direction

at the cold bottom plate. This motion is a thermal wind like flow

caused by the coupling of a centrifugal pressure gradient in the radial

direction and a density gradient in the z direction. The circulation

produced in the regions outside the endplate boundary layers is in the

radial direction because of the dominance of the coriolis terms in the

inviscid interior. These strong azimuthal flows are blocked in a rotating

channel (Fig. 2.11b) and the flow field in the fluid regions outside the

boundary layers on the top and bottom endplates resembles that of its

stationary counterpart- Fig. 2.11a.

Although the heat transfer studies just mentioned illustrate

interesting phenomena unique to rotating systems they are not directly

relevant to the experiments reported here. The geometry under

consideration (Fig. 1.1) shows that the heater surface is parallel to the



axis of rotation and therefore, the density gradient established when the

heater is first turned on is parallel to the local acceleration vector and

thus cannot generate large scale circulation. The problem is thus related

to flow from a small heated horizontal plate facing upwards within an

enclosure except for the fact that the rotation of the fluid system

completely alters the nature of the radial plume. The closest relevant work

in the literature has to do with a- study by Gray CL8] of heat transfer in

rotating boilers. Although Gray concentrated on measuring enhanced

boiling heat transfer coefficients and showed no interest in explaining

the resulting fluid motion, the author does note with some surprise that

the bubbles generated at the outer radius of this boiler tended to move

radially inwards to the liquid/vapor interface.



CHAPTER 3

PARTICLE DYNAMICS IN SPINNING SYSTEMS

The dynamics of fast an' slow moving buoyant
particles in rapidly spinning systems are
considered in order to interpret flow visualization
experiments with thermals and starting plumes.

III.A Accelerating buoyant particles in spinning systems

The dynamics of small particle motion in rapidly spinning fluids are

considered in this chapter and some simple models are developed which

demonstrate the dynamical forces unique to spinning systems. The analysis

was initially motivated by the presumption that an isolated heat source is

a generator of buoyant thermals which will alternately form on the surface

of the heater, break away and move inwards towards the centerline. The

motion of three dimensional particles (i.e.,,a small buoyant sphere) in a

rotating coordinate system will be considered at two extremes: nearly

steady, slow motions, and fast, unsteady or accelerating motions. Slow

motions imply that the Rossby number, U P/wb, is much less than 1. The

Rossby number is the ratio of inertial forces to coriolis forces acting on

a particle of characteristic width b and velocity U in a system rotating

at speed w. Whether the Rossby number is small or large determines whether

a particles' motion is nearly steady or whether the particle deflects tangent-

ially relative to the container in a rotating system. Steadiness in the

rotating frame therefore implies that particle inertia is negligible

compared to coriolis terms in both the radial and tangential directions.

This distinction between steadiness and unsteadiness arises because an

assymetry is created when simple motions are superimposed on a rotational



flow field which has the effect of creating lift like forces at right

angles to the motion. That is to say, if the motion of a particle due to

some applied force is slow (Rossby number << 1), the force acting on the

particle due to the pressure field in the surrounding fluid as it moves

around the particle equals the coriolis acceleration of the particle and

there is no imbalance in forces at right angles to the particle motion. The

particle velocity thus remains in the direction of the originally applied

small force. Indeed, a slowly moving three dimensional particle will

actually generate a two-dimensional flow in a rotating container. This

phenomena is known as a Taylor column. An even more unusual result will

also be derived that the trajectory of a two-dimensional object such as a

cylinder whose height extends the full height of the container is not

affected at all by the rotation of the system, regardless of its' Rossby

number. At the other extreme of particle motion, however, the

trajectories of fast moving particles (Rossby number >> 1) are very much

affected by the rotation of the system. This is because the pressure field

in the surrounding fluid cannot balance both the coriolis and inertia

forces acting on the particle and the particle accelerates in the

tangential direction. Although the fast motion of a particle also creates

a pressure field in the surrounding rotational fluid, that pressure field

is ignored in the present analysis. The model instead allows for drag

forces to act on the particle as the particle accelerates relative to the

fluid around it. When the drag acting on the particle is large enough the

motion becomes steady (friction forces rather than pressure forces balance

the coriolis forces) and in this sense, adding drag connects the analysis

to the inviscid, low Rossby number motions mentioned previously. Both



the analyses presented are relevant to observable phenomena in spinning

systems. The starting plumes (buoyant thermals with a plume as a wake)

behave very much like slow moving solid particles. When enough heat is

pumped into the rotating fluid over a small enough area, the plume

behaviour falls somewhat between the two extremes of particle motions to be

described.

As is often the case in this thesis, the analysis presented draws

from and elaborates on the work of G.I. Taylor [19,201. G.I. Taylor found

that an inviscid steamtube of light fluid (essentially a three-dimensional

steady plume of fluid whose crossection varies slowly) that is released

from rest at the outer radius of a rotating cylinder will have a streamline

identical to that of a buoyant particle released from rest. Such a

streamtube might originate as an outlet jet of warm fluid issuing into a

large reservoir, or as a thermal generated by a very small heat source (so

long, as the pictures in Chapter 4 will show, as the heat flux is

sufficiently great). However, it should be made clear that the analogy

between streamtubes and buoyant particles is mathematical and not literal.

(It is much simpler to analyze buoyant particles than it is to analyze

buoyant plumes). A buoyant thermal would neccessarily push ambient fluid

out of its' way along a given trajectory and the accelerating ambient fluid

would generate lift forces. (In stationary systems an added mass is

considered in the dynamics of the buoyant thermal and accounts for an

apparent drag associated with accelerating ambient fluid). Since a

streamtube by definition has no normal velocity there is no additional

external pressure distribution set up in the surrounding fluid. The only

constraint on the analysis of a streamtube (which may also be entraining



fluid) is that the pressure must be continuous at the boundary between the

two fluids.

Consider then a spherical blob or particle of fluid (a thermal) of

some initial particle radius b, and initial density ap a where pa is the

density of the ambient fluid. When released from rest at the outer wall the

particle will be drawn inwards because of its density deficiency. In the

absence of drag forces or any pressure distribution in the surrounding

liquid creating a net force at right angles to the particle motion the

particle will conserve its original angular momentum and acquire some

azimuthal velocity relative to the fluid. The increase in azimuthal

velocity tends to throw the particle back outwards. The radial and

azimuthal velocities are thus coupled together and the overall motion of

the particle as seen from the rotating frame is elliptical. A trajectory

for this inviscid particle motion is shown in Fig. 3.1. It is important to

note that the buoyant particle never reaches the centerline. In fact, the

particle never gets any closer to the centerline than via times the initial

radius. This important result can be derived by considering the energy of

the buoyant particle under certain constraints. When the particle is

released from rest (relative to the walls of the container) it is acted on

by a central force equal to p(w 2r) (not (1-a)p(w 2r)) and possesses the

following energies per unit mass in the rotating coordinate system relative

to a zero energy state at the centerline of the rotating system.:

KE = c2 a /2 (3.a.1)

PE = a /2 ( 2a-2) (3. a.2)



inviscid trajectory
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Figure 3.1 Trajectories of bouyant particles in rapidly
spinning containers.



where a is the radius from the axis of rotation to the initial location of

the particle. The energies shown above are obtained by calculating the

total work required to place a particle of density fraction a at a radius

a with a tangential velocity constrained to be always equal to wr within a

2
gravitational field of magnitude w r. (The pressure field is established

by the ambient fluid which is in solid body rotation. Changes in the

moment of inertia of the ambient fluid surrounding the particle as the

particle moves about are not considered here since the mass of the particle

is a negligible fraction of the total mass of the system. The only

coupling between the ambient fluid and the buoyant particle is the radially

directed pressure gradient w 2r acting through the centroid of this

particle. It is as if the particle is in a vacuum, acted upon by a body

force proportional to r.) The work is composed of two parts: the

integral of the torque required to change the angular momentum of the

S2particle, aw a , and the integral of the net radial force required to

displace the particle each increment in radius out to the outer radius a.

The latter force is (1-a) 2r since the particle is assumed to be

constrained to have velocity wr at each radius and the integral is (1-

2 2 2 2a) 2a /2. The total energy of the particle at radius a is thus (1+a)2 a /2.

Since the kinetic energy of the particle at this radius is obviously

2 2 2 2
a2 a /2, the PE of the particle is the remainder: w a /2. (The potential

energy of a particle with density a is thus the integral of the external

pressure force 2r established by the constant rotation of the ambient

fluid from r =0 to a, independent of the path of the particle). As the

particle accelerates away from the outer radius, some of its potential

energy is converted into kinetic energy since the particle now has relative



velocity in both the radial and tangential directions. At the minimum

radius (r m) of the particle's trajectory, however, the velocity in the

radial direction is zero and the azimuthal velocity is obtained from

conservation of angular momentum assuming that there are no forces acting

on the particle in the e direction, namely
2 2y r = w(a -r ) . (3.a.3)

p mm

The energies/unit mass at this new radius are equal to

2 2
KE = a(v+wr )2 = a(wa ) (3.a.4)

2r 2 ' 2r 2
m m

2 2PE = m r /2 . (3.a.5)

m
Equating energies at r m and at r=a yields:

rM/a = vi2 (3.a.6)

which is the result mentioned previously.

Now consider a buoyant thermal which entrains fluid at a rate

proportional to the instantaneous speed of the thermal q. This is the

assumption most often seen in analyses of turbulent plumes and jets (Turner

[231). If a thermal has radius b, and volume (4/3)nb , then

d(4/3nb3) = sq4nb2 (3.a.7)
dt

or the rate of change of particle volume is equal to the inflow velocity

times the surface area of the thermal. The inflow velocity is some

empirical constant a times the velocity of the thermal. Eq. 3.a.7 can be

further simplified to:

db eq . (3.a.8)
dt



Since q=ds/dt where s is the distance traveled by the thermal, the

entrainment assumption can be integrated to give

b = b + as (3.a.9)

b/b = 1+es/b . (3.a.10)

When the particle has traveled a distance b1 / the radius has doubled and

the volume has increased by a factor of 8.

As a consequence of the entrainment of colder fluid the density of

the thermal increases and its buoyancy decreases. To relate the buoyancy

of the thermal to its radius the energy equation is used to calculate the

average temperature of the thermal. The energy of the thermal at any point

along its trajectory is p(cpT( /3)nb 3), where all properties are calculated

at the mean temperature and the intensive energy is presumed equal to c T.I p

The rate of change of energy is equal to the flux of energy into the

thermal by entrainment, namely:

d(pc T4/3nb 3) p c T adi4/b 3) . (3.a.11)
dt apadt

The density is related to temperature through the Boussinesq approximation:

p = pa + (ap/T)(T-Ta) (3.a.12)

a = p/pa = 1-OAT . (3.a.13)

Since d(4 / 3nb 3)/dt is the inflow velocity into the thermal per unit surface

area of the thermal (Eq. 3.a.7), combining Eqs. 3.a.8, 3.a.11, and 3.a.13

gives the following integrable relation:

d(1-a) = -(1-a)3d(ln(b)) (3.a.15)
dt dt



or a=1-(I-a0)/b 3, where b is normalized to be equal to 1 when a=a0 '

Equation 3.a.15 now relates the instantaneous density to instantaneous

thermal radius ratio b.

The actual equations of motion in a rotating coordinate system can

now be derived. The sum of the forces equals the change in the particle's

momentum:

EF = d(mU 1 (3.a.16)
dt 

where m is the instantaneous mass of the particle which changes as the

particle entrains fluid and Up is the particle vector velocity. Since the

pressure gradient in the fluid is assumed to be purely radial the motion of

the particle is best described in cylindrical coordinates in a rotating

reference frame. The full equations of motion in the radial and azimuthal

directions for a particle of density fraction a are:

(d(u) - -2wv - 2 r) -w 2 r-u _3_q - 9_u
tp -p p -Pab 2 p b2)r a ab 2(pab a) ( . .7a (3.a.17)

(d(v ) + u v +2wu ) =-v .3_Q - 9gy (3.a.18)
dt 2(p b a)

The last terms in Eqs. 3.a.17 and 3.a.18 represent the drag force on a

particle of radius b in a fluid of viscosity s (Stokes drag). The velocity

q, where it appears in Eqs. 3.a.18 and 3.a.17 is the scalar sum of u and
p

v ,1 ((u p+v )). The terms on the right of equations 3.a.17,18
pp p

proportional to e follow from the change in mass of the particle due to

entrainment. Using Eq. 3.a.7, dm/dt is calculated to first order by the

following relationship:



d(m) =p 4Tb 2 eq (3 a.19)

2
where q is the scalar velocity /U . The first term on the right hand side

p

of Eq. 3.a.17 is the centrifugal pressure gradient in a fluid of density p

due to solid body rotation, divided by the particle's density. Eqs. 3.a.17

and 3.a.18 are then nondimensionalized as follows:

t=wt (3.a.20)
q=q/a
u=u/wa
v=v/wa
b=b/b1
a=p/pa
r=r/a 2
Re=(2p a (b )/(9p)

2 2
d u ) = v +2v -u 3o +(a-1)r - u /(Reab )
dt 9 ab a (3.a.21)

2

d(v ) = -v u -2u -v 3e -v /(Reab 2). (3.a22)
dt r- r ap b p

The set of equations above were integrated numerically for various

combinations of Reynolds number and e, and a0=0.5. The results are shown

plotted in Figures 3.1 and 3.2 Some the more important conclusions from

the numerical integration are as follows. In the inviscid case with no

entrainment, as has already been mentioned, the minimum radius of the

particle trajectory is proportional to /a. This result suggests that

radial baffles need to be placed at the outlet ports of thermosyphons to

direct a warm jet inwards and prevent warm fluid from mixing with cold

fluid at the thermosyphon inlet. If the particle entrains fluid the

original trajectory has a minimum of roughly the same value (Ya) but

unlike the non-entraining particle, the entraining particle eventually



Figure 3.2 Trajectories of bouyant particles with drag.



comes to rest at a smaller radius. The reason for the nearly similar

trajectory is that while entrainment increases the average density of the

thermal it does not dissipate any kinetic energy and the particle conserves

its' angular momentum. The trajectory is shallower though because at every

increment of distance traveled by the thermal its bouyancy is less than

that of its' non-entraining counterpart. Because the net force acting on

the thermal is less, one would not expect this thermal to move inwards

quite as far.

If there is drag on the particle and no entrainment, the particle

will always find its way to the center. When the Reynolds number (based on

particle diameter b1) is sufficiently small (of order 10 or less) and for

dimensionless times t greater than 1 the particle no longer accelerates and

the equations of motion become:

(a-1)r/a - u/(aRe) +2v = 0 (3.a.25)

v = -2Reau . (3.a.26)

Equations 3.a.25 and 3.a.26 can be integrated to give:

r = e(t/:) where v=((a-1)/(4a2 ,Re))1 (3.a.27)

V = ((a-1)/(4a))e(t/t) . (3.a.28)

The solution describes a spiral trajectory which slowly approaches the

centerline. The trajectories for two different small Reynolds numbers are

shown in Fig. 3.2.

The nondimensional times listed in Figures 3.1 and 3.2 can be related

to revolutions of the containment vessel by dividing by 2n. For Re=10,

the last data point shown occurs in 3.18 revolutions of the apparatus,



which is quite fast. It takes roughly 100 revolutions of the container

before the particle can be said to have effectively reached the centerline.

In summary, then, particle motions in the absence of fluid lift

forces are fast- even with considerable drag and entrainment. More

importantly, the inviscid trajectories are shown to become shallower as

the initial density ratio decreases (a goes to 1). One might expect to

find that a plume with a small bouyancy would hug the outer wall. This

turns out to be exactly the opposite of what occurs. As the initial

bouyancy in the thermal decreases, the character of the flow changes

dramatically. This change in character is the result of the neglected lift

forces. The neglected pressure distribution at right angles to any motion

of a solid can be easily calculated if the moving object is circular and

two-dimensional although the result is independent of the two-dimensional

shape. This will be done next. The results are not also applicable to the

motion of a three-dimensional object, however, unless the motion is slow

and steady (Rossby number << 1).

III.B. Slow, steady motions in a rotational fluid

The two most striking observable characteristics of slow plumes in

a rotating container are the radial trajectory and the two-dimensionality

of the flow. To understand this phenomena it must first be understood how

a two-dimensional object (i.e., a cylinder with the same axial length as

the container) sets up a pressure distribution in a streaming flow. The

analysis will also show that when a solid object of infinite height (the



cylinder just mentioned, although the object could be of any shape) is

moved about in a rotating fluid of the same density as the object itself

and in a direction perpendicular to the axis of rotation, a pressure field

is created by the streaming flow which identically balances the coriolis

acceleration of the solid cylinder. The resulting motion is thus

unaffected by the rotation of the system as a whole and in contrast to the

trajectory of a buoyant particle in the previous section the object moves

only in the direction of an applied force.

Consider an infinitely long solid cylinder of the same density as the

fluid moving with speed Up relative to the fluid which is in solid body

rotation (Fig. 3.3). This motion is resolved into components in the local

coordinate system centered at the origin of the cylinder as follows:

Up = -UP(cosa)ee +Up (sina)er (3.b.1)

where e r is aligned with a radial line from the center of the spinning

container and a is the angle of cylinder motion as shown in Figure 3.3

relative to the local r,e coordinates. The fluid is incompressible and

flow is two dimensional and a stream function exists whose derivatives are

everywhere related to the fluid relative velocity . The normal velocity is

constrained at the surface of the cylinder to be equal to:

-8 = U sinacosf - U cosasins (3.b.2)

where $ is the inviscid stream function and cdo is an arc length along

the cylinder. The equations of motion cf the fluid in the rotating

coordinate system is:

d(q) -w rer - 2wver+2wue= (3.b.3)
dt p



UP

Figure 3.3 Motion in an unbounded rotational fluid



u =-a (3.b.4)
r08

V = a_ (3.b.5)

ar

such that

d(q) = -(1/p)V(P-2wg -w2r2/2). (3.b.6)
dt

At this this point it is convenient to divide the pressure term into

two components. Let P=P1 + P2 where:

-7(P 1 )/p = d(q)/dt (3.b.7)

-7(P2)/p = - (20 +w2 r 2/2), (3.b.8)

7 P2/p = 2w$ +w2"2 /2 + C.

Looking at Eqs. 3.b.7,8 it is evident that P2 is that part of the pressure

distribution that results from the rotation of the system as a whole, but

P is not a function of rotation. These last two equations can then be

integrated around the perimeter of the cylinder to calculate the forces

acting on the cylinder as it pushes ambient fluid out of the way. The net

forces in the r and e directions due to P2 are:

2 2
Fr P2cospods = p(-2wmcoss-( r /2)coso)cdo)

(3.b.9)

2 2
F0  2sinpcd= p(-2w4sinO-(w r /2)sinP)cdP)

(3.b.10)



where it should be noted that c is the radius of the cylinder and the

countour of integration is the boundary of the cylinder. The distance of

any point on the perimeter of the cylinder to the center of rotation is

related to the radius of the cylinder and A in the local coordinate system

by the relationship:

r2 = R 2 + c2 + 2R c(cosp) (3.b.11)

where R is the distance to the center of the cylinder from the origin.

Using Eq. 3.b.11, the contributions of the centrifugal acceleration term

2%2( )/2 in the r,8 directions in Eqs. 3.b.9,10 (called Fr1' F e), are

found by integrating around the countour cdp:

Fr1 = ~w2Rce2 (3.b.12)

Fe8 = 0. (3.b.13)

The former equation represents a force directed radially inwards of

magnitude mw 2R where m is the mass/unit length of fluid displaced by the

cylinder.

The integration of $p around the countour in Eqs. 3.b.9 and 3.b.10,

however, can not be done directly because $ has not been determined.

Since the derivative of $ along the cylinder countour is known (it is the

velocity of cylinder normal to the boundary of the cylinder) it is possible

to integrate by parts. A differential length on the contour ds is just

cds and working with Eq. 3.b.9 first, since cosodp=d(sino) the first term

in this equation integrates to:

2,r 2n

-ip2wi ospodP=-p2cwisinP +p2wc sinp(a$/8p)dp.

0 J0 (3.b.14)



The first term on the right of Eq. 3.b.14 is zero and a substitution of Eq.

3.b.2 into the second term results in the following integral:

2 2n
P2Wc2 sins(a/8)dp=

0 2 Jn
(p2Utc ) {sinP(-sinacosP+cosasins)ds

0
(3.b.15)

of which only the second term matters. Thus it is found that the lift

force in the radial direction is:

Fr2 = p2wnc 2Upcosa. (3.b.16)

Similarly, the stream function term in Equation 3.b.10 can be integrated

by parts to give the lift force in the tangential direction:

2Fe2 = p2unc U psina. (3.b.17)

Taken together, Equations 3.b.16 and 17 represent a force directed

at right angles to the motion of the cylinder and proportional to 2mWUp,

where m is again the mass/unit length of the displaced fluid. If W is

counterclockwise, this force opposes a motion of the cylinder to its'

right. Eqs. 3.a.12 and 3.a.13, on the other hand, represent a

centrifugal force of magnitude mw 2R acting at the center of the cylinder

and pointing towards the center of rotation.

The significance of these results become apparent when the equations

of motion for the cylinder itself are written out. Referring to Fig. 3.3,

if the cylinder has a relative motion velocity v =-U cosa and u =U sina

in the radial and azimuthal directions respectively, it can be shown that

the inertial acceleration of the particle is:



dmU =[(du -2wv -v 2+W2R )e +
-p p p- a r

c -

+(dv +u v +2wu )eg] prc2 (3.b.18)
dtp ipP

c

Comparing Eqs. 3.b.18 and Eqs. 3.b.17 and 16, it is apparent that the

force distribution caused by the motion of the fluid around the cylinder is

exactly equal to those inertial terms proportional to the rotation rate

(2Up, 2 R ), provided that the mass of displaced fluid and the mass of

the cylinder per unit length are equal. The conclusion is that a neutrally

buoyant cylinder moves in response to a centrally applied force in a

rotating system exactly as it would if the same force were applied in a

fluid system that was not rotating at all.

The previous result can also be used to explain the Taylor-Proudman

theorum. If the infinite cylinder of the previous analysis is replaced by

a sphere which is slightly buoyant and released from rest at some radius

then initially, at least, Up /wb << 1. An order of magnitude analysis of

the pressure forces P and P2 in Eqs. 3.b.7 and 3.b.8 shows that P1 << P2

(the inertial terms/coriolis terms << 1). If one now takes the curl of the

dominant terms in Eq. 3.b.3 and recognizing that the curl of the pressure

term is zero in an incompressible fluid, the result is the following:

2w7x(-ver+ue ) = 0 (3.b.19)
such that;

av = au = 0 (3.b.20)
z 5z

and

aw/3z=o by continuity. (3.b.21)



Eqs. 3.b.20 and 21 together require that the solution to the flow around

this sphere must be a fluid motion that cannot change in the z direction

Now a sphere, unlike a cylinder, has a surface normal with a component in

the z direction. In order to satisfy the Taylor-Proudman constraint (Eqs.

3.b.21,20) two distinct flow regions will form in response to the motion

of the sphere which will keep the fluid above and below the sphere distinct

from the rest of the fluid. As the sphere moves it will appear as if a

cylinder of fluid were moving with it. The motion imparted to the fluid by

the buoyant sphere will be the same as the flow generated by a slightly

buoyant solid cylinder of infinite extent. However, as soon as the

spherical particle begins to accelerate the fluid motion is no longer

constrained to be two dimensional, the pressure forces cannot balance the

inertial forces acting on the fluid in the Taylor column and the column of

fluid moving with the sphere will be left behind. In fact, the sphere

itself will begin to accelerate at right angles to the applied force with a

trajectory as shown in the previous section because the lift forces

corresponding to a three dimensional flow are not the same as those

previously calculated for the cylinder.

It is now possible to see how rotating fluid can be thought of as

possessing stiffness in the axial direction. Just as gyroscopes resist

overturning so to does any given filament of fluid in solid body rotation

resist bending and lengthening up to a point. When the fluid is pushed out

of the way by a three-dimensional object moving at a slow, steady rate, no

fluid will move over or under the object, the filaments of fluid will stay

straight and move around instead.



Consider also the sequence of events which occur when heat is

generated on the surface of a small heater on the outer wall of a spinning

container. For small time, heat is being pumped into the fluid near the

wall and some amount of buoyant and non-moving fluid is collecting. When

enough bouyancy has accumulated the thermal begins to move off the surface,

moving slowly at first because it takes time for the thermal to accelerate.

If the background vorticity is large enough, that is, if the dimensions of

the thermal are sufficiently large so that the Rossby number based on

thermal width and velocity is small, a Taylor column is set up around the

thermal by inviscid pressure waves. When the thermal does break away, a

column of fluid extending to the endplates is dragged along.

It is interesting to note in light of the previous discussion, that

once a buoyant thermal begins to accelerate it will acquire a velocity not

in the direction of rotation but in the opposite direction. The fluid

forces acting on the thermal are of the order of the ambient density times

the coriolis acceleration. The coriolis acceleration of the buoyant fluid

however is some fraction of this since the density is lower. The streaming

flow of ambient fluid would cause the thermal to accelerate to its' left if

the rotation was counterclockwise. This effect has not been observed.

This is probably because the buoyancy defficiency within the thermal is too

small to have any effect, in fact, the bouyancy defficiency must be based

on the average density of the whole Taylor column. But when the heat flux

was increased a hundredfold and the dimensions of the heater reduced, the

curved trajectory that resulted was still in the direction of rotation.

Furthermore, the flow was still two-dimensional. Since it is clear that

an imbalance in forces in the tangential direction exists (otherwise the



trajectory would be radial) and since the fluid in the Taylor column is on

average lighter than the surrounding fluid- it is felt that the trajectory

is the result of an assymetry in the flow field around the head of the

thermal. (Assymetrical wakes have been observed in the lee of towed Taylor

columns [1,22] as the Reynolds number of towing was increased). What is

even more interesting about these curved plume trajectories is that they

were still two-dimensional. This suggests that there is an intermediate

regime where a kind of unsteady Taylor-Proudman theory is applicable.



CHAPTER 4

FLOW VISUALIZATION EXPERIMENTS

Natural convection from small heat sources in
rapidly spinning systems is shown to be slow and
two-dimensional. Experiments with mica flakes and
dye demonstrate that bouyant plumes are a thermal
analogue to a Taylor column.

IV.A Background on flow visualization experimenta

The instrumented rotating test bed described briefly in the first

chapter was designed for flow visualization experiments as well. The

technique used to make either a spin-up flow field or a convection flow

field visible was to seed the water filled container with small, shiny

flat particles. These mica flakes are coated with titanium oxide and are

manufactured by a cosmetics firm for use in eye shadow. The tiny flat

particles (4p in diameter) tend to align with strong shearing flows. If

the motion of a rapidly spinning container is frozen with a single strobe

or several strobes synchronized together, particle alignment makes strong

fluid motions visible. In regions where the particles are randomly

oriented they reflect a large amount of incident light. Where the

particles are aligned because of a locally strong shear flow, they will

not reflect much light. A picture of a particle seeded container reveals

contrasting regions of light and shadow which can then be interpreted as a

qualified view of a given flow field. The word qualified is used because

such a picture, especially when looking into a rotating container from

above , is only an image of what is happening in the vicinity of the

endplate. It turned out, infact, that the results of particle



visualizations were so unusual that a second flow visualization experiment

was designed and experiments were done with dye as well.

The first succesful natural convection flow visualization experiments

were performed in the container of Fig. 1.5 with a long thin heater taped

to the outer lexan window. The heater was meant to be a vertical line

source generating a thin plume extending fully from one endplate to the

other (see Fig. 5.9). With the container rotating at the relatively low

speed of 300 rpm (to increase the centrifugal settling time of the

particles) and the heater energized, a slow radial thermal was visible

ambling inwards. The observation was made looking down into the end plate

from atop the turntable. The result was surprising for several reasons.

As described in the previous chapter, it was assumed (based upon work of

G.I. Taylor) that a streamtube of warm fluid would tend to accelerate

relative to the walls of the container producing a curved trajectory.

Furthermore, the time scale for bouyant particle motions in an inviscid

fluid was shown to be of order of the tip speed rather than the few cm/s

observed. The radial trajectory and the slow plume speed led inexorably to

the notion that this two-dimensional starting plume might be a thermal

equivalent of the famous experiment by G.I. Taylor [1 where a long,

cylindrical column was towed radially inwards by a string. Thus a new flow

visualization test was performed with a smaller heater having the same

width (in the azimuthal direction) as the original heater but having a

length 115 as great (in the direction parallel to the axis of rotation).

The heater was taped at midheight on the outer lexan window. The

trajectory for the plume coming off the small heater was once again radial

and slow. It should not go unmentioned, once again, that it was surprising



to find that any flow was visible at all. The observer is looking down

into the container and only the motion near to the surface is visible.

Fluid could easily be moving underneath a layer of non-moving fluid and

this would go undetected. The notion that a bouyant thermal generated at

container midheight could be dragging along a column of fluid that extended

to the top endplate was, again, difficult to believe.

At this point it was decided that a new experiment was required to

verify the presumed nature of the flow field observed. Although it

appeared that the plume motion was two dimensional it was not possible to

say for sure that a different flow didn't exist further down in the

container. Furthermore, because the experiments had been performed in a

container with radial side walls which could support an azimuthal pressure

gradient, it was not known what role container shape played in determining

the trajectory of the plume.

IV.B Flow visualization experiments

To resolve these questions as well as to provide a more amenable

environment for picture taking, the experimental container shown in Fig.

4.1 was built. Shown here is a plexiglas cylinder with 3 in. radius and 6

in. axial length with an endplate that has a removable baffle. A small

heater can be seen taped to the container side wall at roughly midheight.

The container was filled with mica flakes and water and chucked up in a

lathe. The lathe had a disk clutch that easily allowed for impulsive

container accelerations to 531 rpm. A strobe, pulsed by a photoelectric

pickoff shown in Fig. 4.4 froze the motion of the spinning container so

that observation of particle orientation could be made. Power to the



Figure 4.1 (above) Plexiglas cylinder for horizontal lathe
flow visualization studies. Cylinder radius is
3", axial length is 6".

Figure 4.2 (below) Cylinder chucked up in lathe. Power to
heater is supplied through slip-rings mounted on
the front plate of cylinder.



Figure 4.3 (above)
Figure 4.4 (below)



Figure 4.5
Figure 4.6

(above)
(below)



heater was supplied through a slip ring assembly which was originally

attached to the front end of the container (Fig. 4.2) and later moved to

the rear of the lathe spindle (Fig. 4.4) so that an unobstructed picture

through the container endplate could be taken.

Figure 1.3 is a photograph of a starting plume in this rotating

cylinder. Several features of this picture deserve mention. In this

picture the cylinder does not have a radial baffle. It turns out that the

trajectory of the plume is the same whether the cylinder is baffled or

unbaffled. As explained in Chapter 3, there is no imbalance in forces

acting on the plume fluid. The coriolis acceleration of the plume is

balanced by pressure forces in the fluid outside the plume, a consequence

of the rotational stiffness of the fluid. It should be noticed as well

that the width of the plume is very thin near the heater but grows out to

the plume front which is considerably wider. It is presumed that the width

of the plume front is the characteristic length on which to base the plume

Rossby number helping to explain the two-dimensionality of the flow. If

the structure of the plume is similar to its non-rotating two-dimensional

counterpart then the plume front is moving slower than the plume behind it

and is drawing in bouyancy as it expands through entrainment. The plume

front itself seems to consist of two eddys, one eddy appearing to be

slightly further ahead of the other, again, resembling a two-dimensional

vortex pair. A self-similar plume structure is confirmed in successive

photos of the starting plume as it progresses inwards (Figure 9.6). It is

also interesting to note the sinuousness of the longer plume (Figure 1.4)

and the eddies alternately shed along the radial trajectory. This

sinuousness is probably related to the shear instability of the plume in



the enclosed rotating fluid, since fluid is moving outwards as the plume

moves inwards, although why the eddies are alternately shed is a mystery.

To investigate the two-dimensionality of the plume, a means of

tagging the fluid pathlines at various axial locations was necessary. The

mica flakes are dispersed evenly throughout the container and it is only

possible to see the motion of particles near to the endplate of the

cylinder. Another technique which allows the flow to be observed at all

levels within the container involves the use of a thymol blue dye water

solution (231. This technique is succesful here because the plume velocity

is so small (less than 2 cm/s). A water solution of thymol blue is

prepared and titrated to a Ph of 8 with NaOH. The solution is now a deep,

dark blue. This solution is then made slightly less basic by adding HCl

drop by drop until the solution turns amber., When thin platinum wires

(0.002 in.) are placed in the solution and made to conduct electricity

through the water to a nearby copper cathode, the yellow water changes

color to dark blue in the vicinity of the platinum wire. Figure 4.7 shows

the heater and a grid of platinum wires also taped onto the outer wall.

When the wire is made to conduct electricity the dye is formed as shown in

the darkening of the fluid around the wires in Figure 4.8. The conduction

of current through these wires also generates a little bit of heat and the

dyed fluid is slightly bouyant. This bouyant dyed fluid moves inward very

slowly in a clearly two-dimensional manner as shown in Figures 4.9 and

4.10. (It is very interesting to compare the shape of the front of the

lines of dye with a picture of incipient Benard convection cells- Fig.

4.11). The platinum wires are discretely spaced to illustrate this effect.

The sequence of photographs in Figures 4.12a, c show what happens when the



Figure 4.7 (above) Stationary container showing heater
taped to outer wall and array of thin platinum
wires for generating dye. Container is filled
with thymol-blue water solution.

Figure 4.8 (below) Conduction of current through-water
causes water color to change locally to blue.
Plastic foam is taped to the inner radius of
the baffle to prevent air bubbles from bouncing
around and disturbing plume motion.



Figure 4.9 (above), Figure 4.10 (below) Dyed water is slightly
bouyant and moves inwards slowly. Even this flow is
strongly two-dimensional.



real heater is energized. The container used when these pictures were

taken was fitted with radial baffle (with foam taped at the centerline to

trap air bubbles) and the heater is diagonally across from the baffle.

Fluid immediately rises off the heater and draws in fluid off the outer

wall. Notice how the lines of dye start to bend towards the heater as the

plume starts to rise (Fig.4.12b). If the flow off the heater was not two-

dimensional then the lines of dye on either side of the heater would not

be pulled into the plume at equal rates in the axial direction nor would

they appear to bend uniformly along their length. Figures 4.12a,c also

clearly show the starting plume itself with its mushroom shaped front and

a characteristic pair of alternating eddies. The angle of the photograph

plainly shows that this pattern is continuous in the axial direction

demonstrating directly the two-dimensional character of the flow.

Once the dye experiments verified the orderly nature of a plume

coming off a small heater, different shaped heaters were taped to the

outer wall of the plexiglass cylinder. Figure 4.13 shows a long (5 in. X1/2

in. wide heater) taped to the side wall. Figures 4.14, 4.15 and 4.16 are a

sequence of photographs taken a few moments after energizing the heater.

It appears at first (Figure 4.14) that several radial plumes have risen off

the heater surface. Very soon after, however, the various plumes

coalesce and form a strong central plume which tends to rise inwards in the

middle of the heater (Figure 4.16). The trajectory, again, is nearly

radial. This long thin heater was then removed, and a much larger heater

was taped to the outer wall. This second heater is shown in Fig. 4.17. The

resulting flow is shown in Figures 4.18 and 4.19. In Fig. 4.18, the

disparate plumes are shown emerging off the heater surface. A few moments



Figure 4.11 'Thermals' rising from a
heated horizontal surface under a
layer of water. (From Turner [21])
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Figure 4.12a. First in a sequence of three pictures of plume
rising off of a small heater. Container is spinning at 531 rpm.
Plume is on diameter of container ba'ffe, and is circled in the
next figure.
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Plume
front

Figure 4.12b
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Figure 4.12c
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Figure 4.13 Thin heater taped to outer container
radius. Axial platinum wires for
generating dye also shown.
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Figure 4.14



strong thermalstrong thermal

strong thermal

Figure 4.15
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'igure 4.15
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heater length marked by
radial lines

Figure 4.16 Thermals have merged into a strong thermal
plume centered approximately at the middle
of the heater.
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Figure 4.16
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Figure 4.17 Large heater to be taped to container radius,
replacing heater in Figure 4.13
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Figure 4.18



Figure 4.19 Thermals off of large heater tend to coalesce into
a strong central thermal.

l1
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Figure 4.19
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later, those seperate plumes have merged into the larger central plume

shown in Figure 4.19. The similarity between Figures 4.19 and 4.16 is

remarkable.

Flow observation using mica flakes offers an explanation for the

absence of a length scale dependence in the surface heat transfer

coefficient mentioned in Chapter 1 and discussed further in Chapter 5.

Initially, at least, hot fluid tends to rise off the heater surface in

cells with a characteristic length determined, one supposes, in the same

way as the cell width in horizontal Benard convection. Over time, the

assymmetric entrainment of these little cells competing for the same

ambient fluid causes them to organize into a strong central plume centered

roughly at the middle of the heater. By this time, however, the plume

has little effect on the surface heat transfer coefficient, and surface

temperature is quasi-steady.

Having found that the trajectories from all the flat surface heaters

were radial an attempt was made to generate some curved trajectories. By

analogy with Taylor's experiments, it seemed that if enough heat could be

generated over a small enough area giving a small thermal a large bouyancy

then a curved trajectory should result. A small resistor (1 in. long,

0.1 in. id) was taped to the outer wall inplace of the flat surface heater

used previously. With surface heat fluxes of up to 100 W/cm2, as opposed

to the 5 W/cm2 available with the flat heater, the ensuing thermal did

move off in a curved trajectory but the plume was still two dimensional.

(The experiments with the resistor were first done with dye to be sure the

flow was two-dimensional). Figures 4.20 and 4.21 show the plume coming off

of the resistor. When the direction of container rotation was changed the
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starting plume ^
from resistor

Figure 4 20 Thermal rising off of small heat source taped
to outer wall directly across from baffle.
Heat source is a small 100 ohm resistor, 0.1" o.d.
Heater power is of order 50 W/cm . Trajectory is
curved in the direction of container rotation.
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Figure 4.20
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plume rising off of resistor

Figure 4.21
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Figure 4.21

ll I



trajectory curved in the opposite direction, indicating that the plume was

moving fast enough to.be affected by inertial forces. It is quite apparent

that the thermal flow is now in an intermediate regime where the flow is

unsteady, but not unsteady enough to generate a three dimensional flow

field. It is felt that assymetry of the separated flow around the fast

moving thermal front causes the imbalance of forces in the azimuthal

direction which results in the particle acceleration in that direction.



CHAPTER 5

DESIGN AND CONSTRUCTION OF ROTARY APPARATUS

V.A Overview of test apparatus

A rotating apparatus was built to allow for both flow visualization

and surface temperature measurements in a container during natural

convection experiments at high Rayleigh numbers. The fluid container

designed resembles a baffled liquid helium reservoir found in a

superconducting generator (see Fig. 2.3). Fig. 5.1 shows the fully

assembled test bed. This chapter includes a description of the essential

features of the rotary apparatus, some details of the construction of the

fluid container, the specifications of the rotating data acquisition

system and the placement of heaters and thermocouples within the container.

Table 5.1 is a sketch of the pie shaped container including a tabular

listing of the dimensions of the container. Table 5.2 is a list of some

characterictic dimensionless groups relevant to this particular container

geometry. Table 5.3 compares the dimensionless groups characterizing the

experiment and the GE prototype airborne generator. The container height

of 14.6 cm. was chosen to satisfy the conflicting requirements of slow

spin-up and high turntable speeds. The spin-up time for the container

scales with the container height. If the fluid has a long spin-up time it

becomes easier to satisfy the requirements for an impulsive acceleration.

However, increasing the height of the container also lowers the critical

speed of the apparatus. 'With a 3hp DC motor and a tight V belt (Fig. 5.2),

the fully loaded turntable shown in Fig. 5.1 could be accelerated from
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Figure 5.1 Another view of rotating test bed. Valves
in rear of container allow container to be
filled with water. Additional pipe fittings
are for filling rear reservoir with water.
Stainless structure on centerline is to position
a rotating union which would be used to
recirculate cooling water through the rear
reservoir during a long heat transfer test,
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Table 5.1 Experiment parameters

water volume 4.3 1
rear reservoir vol. 1.46 1
total water volume 5.76 1
weight: container,

bolts, top plate- 9.54 kg.
total weight 33 lbm. 15.3 kg.

outside radius 12" 30.5 cm.
inside radius 7.25" 18.4 cm.
sector angle 1 rad
axial height 5.75" 14.6 cm.

DC motor power 3 hp
max. rotational speed 600 rpm

max. input heater power 30 W/cm2

total power 80 W

0=56*

1 exan

tal wall

HORIZONTAL CROSS SECTION OF INSTRUMENTED CONTAINER
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Table 5.2 Important dimensionless numbers

Dimensionless number or
or characteristic time Water (300K)

spin up time constant h/2 v'w)

50 rpm 41s
500 rpm 12.8s
1000 rpm 9.1S

Ekman number V/(wh 2

50 rpm 5.5X10-6
500 rpm 5.5X10-7
1000 rpm 2.7X10-7

Rayleigh No.1

2 3
(Pr)(pAT)w R 0(R 0) 31

v28 =4.7X10 1

(PAT) =0.01
R =30.54

=600 rpm

convective time scale2

(Pr)(R Ar) = 2p(Ar)
2Nu( v h

Nu = 10 3.4 hr
= 100 20 min.
= 1000 2 min.

I length scale for Rayleigh number is half the width of the outer lexan
window, R /2 since the window sector angle is 1 radian.
2 time to establish a steady state temperature distribution in the bulk fluid
using the rear reservoir as a heat sink and assuming uniform heat generation
over entire outer window surface area. This number roughly estimates the time
constant to raise the bulk fluid temperature to the mean temperature T +AT/2.
Ar is the container outer radius minus the inner radius, h is the surface
heat transfer coefficient and R is the outer radius.
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Table 5.3 Comparison of experiment and GE airborne rotor

rotational speed

acceleration rate

surface heat flux

spin-up time constant

Rayleigh no.

transient Reynolds no.

axial length

PAT

GE airborne
rotor'

6000 rpm

5000 rpm/s

20 mw/cm2

30 s
(bore fluid)

1013

10 8

23 cm.

10-2

Experiment

500 rpm

100 rpm/s

20 w/cm2

18 s

106 - 1011

105

14.6 cm.

10-3

numbers based on dimensions of bore reservoir in the prototype GE
machine, Fig. 2.7
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200rpm to 500 rpm in less than 3 seconds with a step change in DC motor

armature voltage. Since the spin-up time constant at 500 rpm is roughly 10

seconds, the acceleration can be considered impulsive. Rayleigh number

estimates listed in Table 5.1 are an optimistic maximum based on a heater

covering the entire outer wall. The estimate is based on a JAT=Ap/p of

0.012, or the largest bouyancy possible before boiling occurs. Again,

The Rayleigh number estimate is misleading because it will be shown later

on that the surface heat transfer coefficient is independent of heater

length.

V.B Turntable and support structure

Fig. 5.2 shows the welded steel support structure for the rotating

apparatus (24]. A 3 hp DC motor with DC motor controller (not shown in this

picture) and a 3:1 speed ratio single V-belt drive allows turntable speeds

of up to 600 rpm with an overhanging mass (consisting of a water filled

container and a counterweight) of roughly 70lbs. The large step down in

speed between the motor and the turntable is required for rapid turntable

acceleration rates approaching 100 rpm/s. The two bearing vertical shaft

system with a smaller overhanging mass mounted on the turntable can be

safely run to speeds in excess of 2000 rpm. A welded steel structure

provides rigid support and easy access to the motor, bearings and slip

ring assembly. A five slip ring and brush assembly (the slip rings are

shown in Fig. 5.2b) connects electrical power to the system for both the

heater and a rotating electronics package mounted on the turntable. The

rotating electronics in conjunction with an optical data telemetry system

on the turntable shaft is used to pass data from the rotating experiment to
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Fig. 5.2a (above)

Fig. 5.2b (below) Support structure for rotating
test bed. Shaft-bearing system
visible in 5.2b.
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Figure 5.2c (above)
Figure 5.2d (below) Plywood enclosure affixed to rotating test

bed. Movable plywood and oak enclosure
for additional protection is shown in
Figure 5.2d.
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the stationary frame. Figure 5.2c shows the slip rings, one of two slip

ring brush holder pieces, and a micarta ring glued to the shaft beneath

the slip rings which holds the leds used in optical data transmission. A

steel frame housing 4, 1/2 in. plywood boards encloses the turntable.

Additional safety protection in the event of a catastrophic material

failure of any piece of the rotating test bed is provided by the movable

plywood and oak enclosure shown in Fig. 5.2d, The enclosure is made from 4

in. X 6 in. beams attached to sheets of 3/4 in. plywood sheet using 3 in.

lag bolts. This additional structure is on casters and is rolled around

the experiment for high speed tests.

V.C Liquid container

The fluid filled container itself is pie shaped. It is a bolted

aluminum structure which holds three lexan windows in place. A picture of

the container in an early stage of contruction is shown in Fig. 5.3a. The

container was built with windows in the front, in the top plate and on the

two sides because it was not clear at first how best to view the natural

convection flow field within the container. (However, the maximum internal

pressure is limited by the stresses in the outer curved lexan plate and

this design prevents testing with high vapor pressure Freon 12.) The

aluminum structure consists of five pieces: a 1 in. thick base plate, a

back wall machined out of a solid block of aluminum which also has a

machined out chamber for a cold water reservoir , two side plates and a

curved outer plate. These pieces all bolt together and clamp the various

lexan windows tightly in place. A cover plate of aluminum with another

lexan window bolts to the top of the container. Liberal amounts of RTV
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Figure 5.3a Container at an early stage of construction. Wires
shown emerging from center of turntable come from slip-rings.

Figure 5.3b View of container without top plate. Grooves cut
in top of rear reservoir aluminum block allow the container to be
filled with water without trapping air inside. Container
is filled off of turntable, with the inlet valves facing
upwards.



silicon rubber are used to make a liquid seal between the lexan and

aluminum and between the curved lexan window and side lexan window. A

gasket of neoprene is used between the top cover plate and the container

body.

The container is removed from the turntable whenever it is refilled

with water, retrofit with new heaters or thermocouples and whenever the

particle smeared windows are cleaned. The container bolts to the turntable

with 5, 1/4 in. bolts and 2, /2 in. shear pins fix the position of the

container at a precise location. Figure 5.3b shows grooves cut in the top

of the rear wall of the container. The grooves allow the container to be

filled with water or any other fluids without having air bubbles trapped

inside. Fig. 5.3b shows the two valves and associated tubing which

communicate with the large reservoir chamber and through which the

container is filled.

All the aluminum used in this container is 6061-T6. The outer curved

piece of aluminum was cut from a piece of rolled cylinder of 5052-H32 al.

with a 25 in. id. The aluminum pieces were anodized before the final

container assembly. The container windows are made of lexan. This

polycarbonate is reasonably strong and ductile. The particular grade of

lexan used is MR4000 which has a mar-resistant coating which makes the

lexan difficult to scratch and less susceptible to crazing in an alcohol

environment. The mar-resistant coating however, does reduce the

transparency somewhat. The outer, 1/2 in. thick curved window was

thermoformed to a 12 in. curvature by first heating an appropriately sized

piece of lexan in a furnace and then bending the hot lexan over a wooden

mold of slightly smaller curvature.
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V.D Rotating electronics package and stationary data acquisition

The analog output from the various thermocouples within the liquid

container are digitized in an electronics package mounted on the turntable

and then transmitted serially through optical slip rings to a micro

computer in the stationary frame. The rotating electronics package can be

seen in Figure 5.4. Important characteristics of the rotating data

acquisition system are summarized in Table 5.4[251. Figure 5.5 shows the

Imsai 8080 processor, the Compupro disk drives, Tektronix terminal and

the television screen which together form the stationary part of the data

acquisition system. Figure 5.6 is a close up of the television screen.

The various channels displayed show the output of the themocouples and

voltage taps installed in the rotating container. Although there are 16

channels displayed on the screen, only 11 of these are avilable for use.

There are 4 channels grounded internally in the rotating data acquisition

box in order to provide a zero reference for the other signals. Another

channel measures the output of an absolute temperature' sensor. This sensor

comes in a five pin can package and is soldered into the upper cinch

connector of the electronics package. This sensor is shown in Fig. 5.4.

There is a single copper/constantan reference junction for all the

thermocouples inside the container and this junction is soldered to the

case of the absolute temperature sensor. The data acquisition system

thereby measures not only the AT between the experiment thermocouples and

the reference junction, it also records a signal which is proportional to

the actual temperature of the reference junction as well. All the signals

measured are filtered through an RC filter with a rolloff frequency of
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Figure 5.4 Container shown affixed to turntable. Rotary
union at turntable centerline allows water
to be pumped through container rear reservoir.
This union was never used because no steady
state heat transfer tests were performed.
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Table 5.4 Electronics Box electrical Design Parameters [25]

1. 16 differential channels with a full scale range of 5mV and a common mode
range of 10 volts (4 channels internally grounded).

2. Each input channel has a single pole low pass filter with a rolloff at
0.8Hz.

3. An absolute temperature thermometer is provided to measure the reference
junction temperature of any thermocouples used.

4. All signals are multiplexed at low levels with solid state CMOS
multiplexors.

5. A monolothic instrumentation amplifier with a voltage gain of 1000 is used
to amplify all signals prior to digitization.

6. All signals digitized with a 12 bit A/D converter, this gives a maximum
resolution of appr. +-5p1v.

7. Parallel data from the A/D converter along with the channel number are
converted to serial data and transmitted to the stationary frame through an
optical slip ring with a self-clocking frequency-independent scheme. All
logic is CMOS to minimize power dissipation.

8. Built in voltage regulators and charge storage capacitors help to minimize
the effects of slip ring bounce.

9. 11 channels are available to measure any voltages needed, 4 of the 16
channels are internally grounded and 1 channel is connected to a matched pair
of NPN transistors configured as an absolute temperature thermometer.
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Figure 5.5 Rotating electronics package with absolute temperature
sensor- shown soldered to appropriate connector. The
reference junction for all thermocoup],es is soldered to
the outside of the can of this absolute temperature sensor.

Stationary data acquisition system.Figure 5.6
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9 . 3
876 5

Figure 5.7 Data is simultaneously displayed on monitor
and stored in computer RAM. Data is trans-
ferred to disk after test is completed.
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0.8Hz. A 16 channel multiplixer steps through each input channel, 12

signals plus 4 ground signals. The signal is then amplified by an

extremely stable (0.5pv/C) monolithic instrumentation amplifier. The

analog output is then digitized with a 12 bit A/D convertor. The amplifier

gain is set at 1000 with a full scale output voltage of 5V, allowing

inputs at each of the 16 channels of up to mV. The maximum resolution of

the system is thus 5mV/(2 12) (where 212 is the resolution of the last bit

of the 12 bit A/D convertor) =1.22pV. The copper constantan thermocouples

have a sensitivity of roughly 40pV/OC . The data acquisition system is

thus theoretically able to resolve temperatures to within 0.030C, though

the accuracy of the thermocouples themselves is only 0.50C. Note,

however, that the signal input filters limit the realistic frequency

response of the system to less than 0.5Hz. Since 500 rpm, the experiment

design speed, corresponds to 8Hz., events occuring within the container

at frequencies on the order of the frequency of rotation will certainly be

missed by the data acquisition system. The same statement is true,

however, of any noise. Finally, the parallel output of the A/D convertor

along with a coding signal to mark the channel number are converted into a

serial data string and transmitted to the stationary frame through an

optical slip ring. The power to drive the rotating electronics and the

heater are supplied via regular slip rings.

V.E Heaters

Thin, flexible Minco heaters were taped or glued onto the inside of

the outer, curved lexan window. Fig. 5.9 shows one of the heaters used.

The leads of the heater were drawn out of the container in grooves cut into
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the top of one of the side aluminum plates. The heater leads can be seen

in Fig. 5.3c. This particular Minco heater is similar to the others used

in the experiment and is a sandwich made of an inconel heater element

(0.008 in. thick, 0.020 in. wide) vulcanized to a kapton/teflon film. The

lines of the inconel heating element are clearly visible in this

photograph. There are two surface thermocouples (0.2 mil thick at the

junction, 2 mil thick leads) glued down onto the surface. The

thermocouples were laid on top of a thin layer of clear acrylic paint newly

sprayed on the heater surface. A second layer of clear acrylic paint was

then sprayed over the thermocouple. The overall paint thickness was less

than a mil. This heater has only two thermocouples glued to the surface.

In other tests using this heater there were four thermocouples on the

surface. The junction of one of these thermocouples is always placed

directly over a strip of inconel, (which is 0.020 in. wide) , and another

thermocouple is placed in the space between two inconel strips. It turns

out that there is some variation in surface temperature due to the

discreteness of the inconel in the heating element, the thin thermal

boundary layer thickness in high Rayleigh number convection, and the

thermosphysical properties of kapton/teflon insulation in the heater. The

average of these two surface thermocouples is taken to be representative of

the surface temperature. In several tests gradients in temperature on the

surface of the heater were reduced (at the expense of heater thermal

inertia) by gluing a thin copper strip across the heater. The

thermocouples were then insulated with acrylic and laid down onto the

copper. Thermocouple placement was certainly taken into account when

surface temperature were correlated to heat transfer coefficient. (It is



more reasonable to consider these heaters as an ensemble of convection

elements rather than as a continuous heat source).

The heaters originally designed into the experiment were very thin

pieces of glass with a few hundred angstroms of SnO sputtered onto the

surface. The heaters proved too fragile to allow for repeated

repositioning within the container. Minco heaters were chosen because of

their ruggedness and because the lead wires were insulated. When power

leads are exposed in the water there are considerable thermocouple errors

associated both with direct current conduction through the thermocouples to

the electronics ground and capacitive coupling between the sensors and the

power leads.

Table 5.3 shows the dimensions and placement of the heaters used in

the experiments. Figure 5.9 shows a heater aimilar to that of Fig. 5.8

taped to the lexan window. Fig. 5.10 shows two thermocouples glued to the

heater surface and an array of copper/constantan thermocouples supported by

a piece of stainless steel welding rod. These thermocouples were used to

measure fluid temperatures near to the wall on either side of the heater,

and to track the path of the plume away from the wall.
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Figure 5.8 Minco heater with pair of thermocouples
attached to surface. One thermocouple is placed ontop
of heater element, one is placed in the space between.

A'A*

Figure 5.9 Heater similar to one above shown taped to
outer lexan window near to the corner of container.
In this configuration, heater simulates a vertical line
heat source.
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Figure 5.10 Heater of previous figure and array of
thermocouples to track trajectory of plume. There are
two thermocouples on either side of heater attached
to the lexan and a fan of three thermocouples mounted
on a piece of stainless steel welding rod.



CHAPTER 6

QUASISTEADY HEAT TRANSFER TESTS

This chapter includes a discussion of quasi-steady
heat transfer test procedures, and measured
surface heat transfer coefficients. Surface h was
found to be independent of heater length and of
fluid viscosity. Appropriate3-orrelation of Nu is
found to be: Nu = .107(RaPr)

VI.A Testing Procedures

The quasi-steady thermal tests were a series of 156 experiments

designed to measure the surface heat transfer coefficient associated with

free convection from small heaters of various crosssections. Heat

transfer measurements are discussed apart from the plume flow visualization

studies of Chapter 4 because the surface heat transfer coefficient is

apparently unaffected by the trajectory of the plume or the direction of

rotation of the container. The data to be presented here includes tests

with heaters mounted near to the radial side walls of the container where

the resulting plumes have been observed to attach themselves to the nearest

radial wall, as well as tests where the plumes have been observed to move

in radially. The thermal boundary layers are found to be conduction

dominated, quite a bit smaller than the observable fluid momentum boundary

layers. This point will be discussed at length later in this chapter.

The tests described in this chapter are called quasi-steady because

there is no cold reservoir in the container other than the bulk fluid

itself (including a small reservoir of fluid in a chamber in the rear wall

of the container). The duration of the tests were short enough so that the

slow increase in bulk fluid temperature during the test did not introduce
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errors into the calculation of the AT for heat transfer. At the maximum

heater input power of roughly 40 Watts the rate of change of bulk fluid

temperature in the container was 0.0050C/s, 0.30C/min.

The quasi-steady heat transfer experiments involved the following

sequence of events. The turntable was accelerated to some rotational speed

between 300 and 600 rpm and allowed to idle without any heater power for

roughly 3 to 5 minutes. This idling time at steady speed insured that the

container fluid was in solid body rotation. The idling time at high

rotational speed also insured that the multiplexer chip in the rotating

data acquisition system was isothermal. The rotating electronics package

generates a considerable amount of heat which is removed by forced

convection on the turntable surface as it rotates. Temperature gradients

in the multiplexer chip tend to introduce errors in the measured

thermocouple voltages. Whenever the turntable is accelerated from a low

rotational speed some time must be allowed for thermal transients to

disappear in the electronics before testing begins. With the fluid in

solid body rotation and all installed thermocouples indicating the same

fluid temperature, the software used to store data in computer memory was

then enabled. A few seconds later the heater power was turned on. The

heater was left on for roughly a minute and then turned off. Data

collection was disabled at this time . The data in memory was converted to

engineering units such as temperature or voltage and then transferred from

computer memory onto disks to be analyzed and plotted at a later time. The

rotor was then deccelerated to some lower speed to facilitate turbulent

mixing of the bulk fluid. When temperatures throughout the container were

more or less uniform, the experimental procedure was repeated.



Fig. 6.1 shows the thermocouple output from a sample data run. The

few seconds of data at the beginning of the plot were taken in the period

of time between enabling the data collection software and energizing the

heater. The data collected in this short period is averaged to represent

ambient fluid conditions in the AT for the heat transfer coefficient. As

soon as the heater is turned on the temperature on the heater surface

begins to rise. The time constant for the temperature rise on the surface

is limited by the thermal inertia of the heater and the surface heat

transfer coefficient. There is also a small amount of heat conduction back

into the lexan wall but with such high heat transfer coefficients on the

wetted surface this error is negligible. An appendix at the end of this

thesis estimates the conduction error. It is apparent from the plot shown

in Fig. 6.1 that a quasi-steady state is established quickly on the heater

surface. The oscillatory nature of the recorded surface temperature can be

explained from observations of dye on the heater surface. The fluid flow

off the surface of the heater appears like that of a laminar boundary layer

on a hot plate facing upwards. Two thin boundary layers begin on either

side of the heater and meet at the center of the heater. Here the two

boundary layers merge to form a plume which moves radially inwards.

Boundary layer instabilities of the sort associated with convection off of

horizontal surfaces were not observed [261, but it was noticed that the dye

was swept off of the heater surface in waves rather than a continuous flow.

It was also observed that the point where the plume turned to move radially

inwards tended to wander about on the heater surface. It is fair to assume

that these effects are related to the vacillations in surface temperature.
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Figure 6.1 Sample test output. The output shown is from a pair of thermocouples
affixed to the surface of the heater in Figure 5.10. The two temperature
histories are averaged to get a representative surface temperature.
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Elapsed Time (seconds)
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An average surface temperature was calculated by time averaging the various

thermocouple outputs over periods of from 5 to 10 s.

There were between three and four thermocouples placed on the

surface of each of the heaters used. The temperature difference, T -
5

Ta, used to calculate the surface h was based on a weighted average of

these thermocouple measurements. As mentioned previously, the

discreteness of the heater strip elements in the kapton heater package

resulted in gradients in surface temperature. The surface temperature was

therefore taken to be the average of a thermocouple directly over a heater

strip and one placed in the space between. The thermocouples were placed

near to the middle of the heater element where the two fluid boundary

layers merged and flowed radially inwards. In tests using the heater with

a copper isothermalizer strip on the heater 'surface the average of all the

surface temperatures was used in calculations.

VI.B Test results

Of the 156 heat transfer tests, over 100 experiments were performed

using triple distilled water as the working fluid. Surface temperature

data was gathered using four different heater configurations, rotational

speeds from 300 rpm to 600 rpm and surface heat fluxes from 0.2W/cm2 to 20

2W/cm . The maximum surface AT above ambient was on the order of 500C

insuring that no boiling had occured. A surface heat transfer coefficient

was established using the following formula:

h=Q/(AAT) (6.b.1)

where input heat flux is calculated from a measured heater voltage and AT

is based on a weighted average of surface temperatures measured minus the



surface temperature at the beginning of the test. The surface heat transfer

coefficient was then formed into a Nusselt number with a length scale

based on half the heater width in the azimuthal direction. The Rayleigh

number for each test is of the form

Ra=w2 R 0AT(1/2)3 PrA)2 . (6.b.2)

The Rayleigh number is calculated based on measured rotational speed, a

length 1/2 equal to the half width in the azimuthal direction, R0 of

30.5cm. (the inner radius of the outer lexan wall), and fluid properties

based on the mean of the surface and ambient temperatures. The results are

shown plotted in Fig. 6.2. The data over this whole range of Rayleigh

numbers from 105 to 1010 falls most nearly on a curve of the form:

Nu= .23Ra.32. (6.b.3)

Fig. 6.3 shows the same data plotted along with the most commonly found

laminar and turbulent Rayleigh number natural convection correlations.

At this point several comments should be made. The data shown here

represents tests with a long heater mounted vertically (heater #2 in Table

A.I.1, 1/2=0.57cm.), a long heater mounted azimuthally (heater #3,

1/2=6.45cm.), and short heaters (heater #1,4 1=1.79,2.36cm.) as well.

The fact that all the data falls so neatly onto the same curve does not by

itself imply that that the convection field is two dimensional- since the

length dependence nearly vanishes in the correlation of Eq. 6.b.3. It does

show that the surface heat transfer coefficient is not adversely affected

by the additional fluid dragged inwards by the bouyant fluid. The two-

dimensionality of the flow itself is based only on observation. The lack

of a clearly defined laminar, turbulent transition in the plotted data
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does tend to confirm the visual observation of a stable, non-bursting

fluid boundary layer. Furthermore, the data includes tests with the

container rotating both clockwise and counterclockwise and with the heater

mounted both near to and far from the radial walls- with no apparent

effect on surface heat transfer coefficient. Measurements were made,

however, to determine that the flow was two-dimensional in fluid motion

but three dimensional in temperature distribution. Fluid in the moving

plume was shown to vary in temperature in the z direction by placing

thermocouples on the outer lexan wall above and below a small heater and

in the bulk fluid in a plane above and below the heater. No measurable

temperature change could be detected in the fluid in these regions.

Thermocouples mounted in the interior fluid in the same horizontal plane as

the heater registered distinct changes in temperature once the plume had

swept by.

VI.C Experiments with glycerine/water and alcohol

To study the effect of Prandtl number on the surface heat transfer

characteristics the container was filled with two other fluids: a 31%

glycerine/water solution, and isopropyl alcohol. Quasi-steady heat

transfer tests similar to the ones performed with water resulted in the

data shown in Figures 6.6 and 6.7. The Nusselt number and Rayleigh number

were calculated as before but it was clear that the heat transfer

correlation obtained previously was not universal. The thermal properties

for a 31% glycerine solution were obtained by interpolating between

published data for a a 20% and 40% glycerine solution (Appendix 111.2).

Although the viscosity and thermal conductivity of a mixture are not simple
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functions of composition (unlike density and specific heat), the former

properties are relatively slowly changing functions of composition for

glycerine percentages under 40%.

The appropriate dimensionless group for correlating the new data was

suggested by comparisons of the ratio of (Nu/Ra 33) for each of the

glycerine and alcohol data, and some high Rayleigh number water data

This is a technique commonly used in analysing natural and forced

convection data to determine the effect of Prandtl number on the heat

transfer coefficient. It turned out, surprisingly, that:

(Nu/Ra. 33 )al /(Nu/]Ra. 33 )w~-Pral /Pr w (6.b.4)

(Nu/Ra. 33 ) g/(Nu/Ra 33) ~Pr /Prw 6.b.5)

where the subscripts refer to the liquids involved (al=alcohol,

gl=glycerine and w=water). This result immediately suggested a correlation

of the heat transfer data of the form:

Nu=a(RaPr) (6.b.6)

The data was regraphed using Log(RaPr) as the abscissa and the result is

shown in Figs. 6.8, 6.9, 6.10 (Figure 6.4 shows all the data on a single

curve). A least squares correlation of the data resulted in the

relationship:

Nu=.107(RaPr)*.33 (6.b.7)

This result has several implications. The heat transfer coefficient

is independent of a heater length scale. In addition, the surface heat

transfer coefficient is also independent of fluid viscosity . A

correlation of this form suggest that heat transport occurs in a conduction
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boundary layer embedded within and much smaller than the observed fluid

boundary layer. If one bases an average thermal boundary layer thickness

on the surface heat transfer coefficient in the following manner:

St = k/h (6.b.8)

the thermal boundary layer thicknesses established at these Rayleigh number

is of order 0.01cm to 0.001 cm. The photographs in Chapter 4 show the

considerable extent of fluid motion at high Rayleigh number, a fluid

boundary layer an order of magnitude greater than the apparent thermal

boundary layer. This tends to corroborate the notion that the heat

transfer rate is controlled primarily by conduction. The result receives

further confirmation when the transient heat transfer data is examined in

the next chapter.

VI.D Natural convection heat transfer coefficient in a non-rotating
container

To test the instrumentation and the fluid properties data used to

obtain the correlation of the previous sections, several experiments were

performed without rotation. Fig. 6.11 shows the container removed from the

turntable and positioned so that the curved lexan window was perpendicular

to the direction of gravity. With the electronics package cooled by a fan,

a heater taped to the lexan window was energized and surface temperatures

measured. Fig. 6.12 shows the results plotted along with the usual

correlation for laminar natural convection. All the one-g natural

convection tests were done with the same heater (heater #3 in Table

A.I.1). A correction to the surface heat transfer coefficient is required

at such low Nusselt number to account for conduction losses into the lexan,
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- -

Figure 6.11 Container oriented so that gravity
is perpendicular to heater surface.
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and the corrected data is indicated by a +. The length scale used in the

Rayleigh and Nusselt numbers is half the smallest dimension of the heater.

The thermocouples were placed away from the ends of the heater where the

flow would be clearly three dimensional and the latter length scale

inappropriate.

The glycerine and water data correlate well with the standard

correlation. The corrected alcohol data does not. A plot of the surface

temperature history (Fig. 6.14) for the alcohol tests shows strong

oscillations on the surface of the heater indicating, perhaps, that at

these high Rayleigh, boundary layer instabilities have resulted in

shorter effective boundary layers and higher h. Despite the alcohol data,

it appears that the natural convection data in lg is reasonable and that

the instrumentation is working properly.
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NATURAL CONVECTION TEST Ig ALCOHOL

Figure 6.14 Temperature history during alcohol test. Oscillations
indicate boundary layer instabilities.
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CHAPTER 7

SPIN-UP IN SYMMETRIC AND NON-AXISYMMETRIC FLUID CONTAINERS

The initial fluid motion relative to the walls of
an arbitrary, non-axisymmetric container
impulsively accelerated is calculated. Spin-up
flow field and decay time constant are confirmed by
experiments.

VII.A. Introduction

When an arbitrary, non-axisymmetric fluid filled container is

suddenly made to rotate about some axis, the fluid within the container

aquires some motion relative to the container . Over time, however, that

relative motion decays and the fluid comes completely to rest relative to

the walls of the container. At this time the fluid is said to be in solid

body rotation. It has been suggested that the relative motion generated in

the liquid helium bath surrounding the field winding following the

impulsive acceleration of the airborne superconducting rotor would help to

remove the ramp-up heat load since the field current is increased during

the spin-up period. Experiments to actually measure the surface heat

transfer coefficient during a fluid spin-up will be discussed in the next

chapter. This chapter describes the theoretical and experimental work

undertaken to understand the general physics of spin-up in a non-

axisymmetric container. Specifically, the time constant associated with

spin-up in an arbitrary container was sought as well as some estimate of

the scale of the velocities induced in the fluid when the container is

first accelerated. This information was then used to estimate the extent

and duration of any surface heat transfer enhancement.

The organization of this chapter is as follows. A simple, elegant

mathematical model by Wedemeyer [2TIis presented describing spin-up from
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rest in a right circular cylinder. The model contains the essential

physics of the spin-up process. The boundary conditions for the original

model are then altered and the model equations resolved to show that the

spin-up time constant in a similar geometry remains the same even if the

fluid within the container is initially spinning at some finite, though

smaller, rotation rate. The issue arises because an airborne rotor is

idling at some low rotation rate before being accelerated to 6,000 rpm and

the spin-up time constant for the on-board helium is an important

parameter. The general problem of spin-up around a vertical axis in a non-

axisymmetric container with vertical symmetry is considered next. An

example of one of the geometries considered is the experimental apparatus

shown in Fig. 1.5. The container is pie shaped in the horizontal plane

and is uniform in shape in the direction parallel to the spin or vertical

axis. Another geometry examined is a right circular cylinder impulsively

accelerated off the axis of vertical symmetry as shown schematically in

Fig. 1.9. Conservation of initial fluid angular momemtum is used to

calculate the two dimensional (horizontal) relative flow in the rotating

reference frame within each container following the impulsive acceleration

of the container. When observed in a rotating coordinate frame with

rotation rate w, the container is motionless and the two-dimensional

relative flow field consists of a counterrotation of fluid particles about

the horizontal geometric center of the container at a rate equal to -W.

The velocites associated with this motion relative to the walls of the

container are thus found to scale with the characteristic horizontal radius

of the container and not with the distance of the rotor from the actual

axis of rotation. Furthermore, delineation of the relative motion flow

also establishes the pressure distribution within the container in the

horizontal plane . Since the fluid very close to the horizontal boundaries
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of the container is constrained by viscosity at each radius to have the

container velocity, the imbalance between the pressure gradient in the

regions away from the horizontal boundaries and the centrifugal

acceleration of fluid near to the horizontal boundaries is calculated. It

is subsequently found that the net imbalance in pressure forces which

drives the spin-up secondary flow field is identical to that in a right

circular cylinder spun-up on axis. It is then shown that the spin-up

process in a right circular cylinder spun-up off axis is identical to its

on-axis counterpart. Spin-up in a non-axisymmetric container, however,

starts out in a similar fashion though it quickly evolves into a flow that

is quite different from that in a circular cylinder. The flow field

though, is still two-dimensional and the time constant for its' decay is

the same as that for the relative flow in a circularly symmetric container.

VII.B. Spin-up of a homogeneous fluid in a circularly symmetric cylinder

In the discussion to follow the designation "interior" fluid will be

used to describe all the fluid in the container except for fluid in

regions very close to the horizontal and vertical boundaries of the

container. The horizontal boundaries are those surfaces of the container

perpendicular to the axis of rotation, or whose normal is parallel to the

axis. The words axial and vertical will be used interchangeably to refer

to the directions parallel to the spin-axis. The "spin-up" process itself

is the means by which this interior fluid comes to know of the rotation of

the container.

Figures 7.1a,b schematically show a right circular cylinder

impulsively accelerated from rest about its' vertical axis at two different

stages during the spin-up process. When the container is first accelerated

fluid very near to the top and bottom endplates is immediately thrown
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outwards because there is no pressure gradient in the interior fluid

regions to balance the viscous induced centrifugal acceleration. The fluid

being thrown outward forms a thin boundary layer of order v(/w) known as

the Ekman boundary layer. This thickness is determined by a balance of

viscous shear stresses and an integrated coriolis force. Because the

boundary layer is so thin it forms quite quickly, within two revolutions

of the container. It is worthwhile noting at this point that because these

Ekman boundary layers are so thin that the radial pressure gradient in the

boundary layer is established by the radial pressure gradient in the

interior fluid. When the container is first accelerated the interior fluid

is at rest and the interior pressure gradient is zero. As time evolves

and the fluid in the interior slowly becomes rotational, the pressure

distribution in the interior changes as well. This simultaneously causes

changes in the flux of fluid thrown outwards in the bottom Ekman layers.

The flux in the boundary layer readjusts to each new distribution in

interior fluid tangential velocity or radial pressure distribution.

The flux of fluid outwards in radius within this boundary layer of

nearly uniform thickness causes fluid to be drawn downwards from the

interior. The fluid thrown outwards is turned vertically in the sidewall

boundary layer regions and is ultimately drawn inwards radially to complete

the fluid circuit. The sidewall boundary layers, as indicated in Figure

7.1a, are of thickness Ek25. These boundary layers completely form in a

time determined by ordinary viscous diffusion which is a time of order TE'

Once formed, this boundary layer detaches from the outer wall and begins

to move inwards slowly leaving behind a smaller boundary layer of order

Ek.33 as shown in Figure 7.1b. This detached shear layer is a wave front

seperating non-spinning fluid infront from spinning fluid behind. The

fluid behind the front is spinning because it has come from regions close
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enough to the wall to have been acted upon by viscous stresses. The wave

front is shown in Fig. 7.1b. All viscous effects are confined within the

boundary layers shown here and in the detached shear layer. Since these

boundary layers comprise such a small fraction of the contained fluid, the

spin-up process itself is essentially inviscid. Consequently, as this

column of fluid behind the wave front advances inwards its' motion is

torque free and the fluid conserves its' angular momentum by spinning

faster. In addition, the wave front also seperates regions of Ekman

suction from Ekman blowing. Fluid before the front is being pulled

downwards slowly in the Ekman layers as mentioned previously, but the

Ekman boundary layers are actually expelling fluid slowly behind the front.

The fluid behind the wave front can thus be thought of as an expanding

cylindrical ring of fluid which started out with zero width. The ring is

expanding because it is drawing fluid out of the top and bottom Ekman

layers. The tangential flow field in this expanding ring is consequently a

superposition of a vortex flow and a solid body rotation. This is a subtle

point which is essential to understanding Wedemeyer's model and will be

discussed further. As the advancing wave front approaches the centerline,

the rotation in the interior is evolving in such a way as to exactly match

the rotation of the container and the radial pressure gradient imbalance

driving the spin up is becoming negligibly small. The whole spin-up

process takes roughly 5TE. Again, it must be noted that the dominant

pressure gradient during the spin-up process is in the radial direction,

and the pressure gradient in the z direction is an order of magnitude less.

The absence of any z pressure dependence in this rotational system leads

directly to the Taylor-Proudman condition which states that the interior

inviscid fluid motion is constrained to be uniform in the z direction.
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In summary then, the spin-up process is essentially inviscid. The

motion of the horizontal boundary drives fluid outwards in a thin, viscous

dominated boundary layer. Some of this fluid returns to the interior from

the sidewall boundary layer and the rest comes from the Ekman layers behind

the wave front. The fluid behind the wave front is simultaneously

expanding in mass and spinning up at the rate necessary to conserve its'

original angular momentum. The expanding mass is responsible for the fact

that the tangential velocity in the interior never exceeds the tangential

velocity at the endplates until the spin-up is completed. The pressure

gradient in the interior fluid is zero infront of the wave front and

increases like pv 2/r from the wave front on out to the outer radius.

Viscous effects in the Ekman layer drive fluids outwards at a rate

proportional to the difference between the tangential velocity in the

interior and the endplate velocity, wr, at the same radius. This spin-up

process is a secondary flow and all motions are of order Ek. , which is

very small. The time constant for this spin-up is TE, which is the time

required to flush all the interior fluid once through the bottom endplate

boundary layers.

All of the previous information is neatly contained in Wedemeyer's

inviscid analysis, which incorporates the behavior of the boundary layers

implicitely. To first order, as has already been mentioned, the flow in

the interior is a balance between tangential velocity and pressure gradient

since all radial motions are slow:

(8p/ar)=pv 2(r,t)/r . (7.b.1)

In the azimuthal direction, however, the first order, inviscid, slow flow

is given by the following equation:

Ov + u(av +v) = 0 (7.b.2)
aT 'ar r
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It is important to note that there is no z dependence in Eq. 7.b.2. The

interior flow is uniform in height because the pressure gradient in the

radial direction is much greater than the pressure gradient in the z

direction. If there is no pressure dependence in z, it can be shown that:

au = av = 0
az az (7.b.3)

Since the total mass flux in the vertical direction from one

endplate to the other at any radius must be zero, the radial velocity in

the interior region can be related to the Ekman flux at each endplate as

follows:

uh/2 = JudS (7.b.5)

where the latter integral is taken over one Ekman thickness and will be

referred to as the Ekman flux. Wedemeyer noted that the Ekman flux divided

by radius was nearly a linear function of the rotation rate fraction in the

case of an infinite spinning disk in an unbounded spinning fluid, namely:

(fudbl/r = k (1- Wi/W) (7.b.5)

where w1 is the rotation rate of the unbounded fluid above the spinning

disk rotating at a rate w and k is (v7)/2. Wedemeyer uses this result in

his analysis of a contained spinning fluid by noting that the Ekman flux is

a function of radius only and then substituting v(r,t)/r for w1, where v

is the slowly evolving tangential velocity in the interior fluid region.

This assumption implies that an Ekman flux could be determined locally for

any given distribution of v(r) outside of the Ekman layer and that the

finite container geometry does not affect the boundary layer flux. The

radial velocity in the interior is thus coupled to the tangential velocity

in the interior by the mismatch in tangential velocities between the



interior and the endplate fluid and when v(r,t) = wr, the Ekman flux goes

to zero as expected.

Substituting Eq. 7.b.5 into Eq. 7.b.4 and nondimensionalizing by

dividing through the equation by wa results in a linear relationship

between the radial velocity in the interior and the tangential velocity:

u = -k(r-v) (7.b.6)

where k=(1/h)/(//w) and the radial velocity in the interior is towards the

centerline during the spin-up. Now, combining Eq. 7.b.6 with Eq. 7.b.2

results in the following equation:

av + k(v-r)(av +v) = 0 (7.b.7)
at ar r

subject to the nondimensional boundary conditions:

v(r,0) = 0 (7.b.8)
v(1,t) = 1 (7.b.9)

where r=r/a, v=v/wa, u=u/wa, and t=wt. A solution of this first order

partial differential equation can be found using the method of

characteristics after first transforming Eq. 7.b.7 into an angular

momentum equation in the new variable vr. The result is shown in fig. 7.2.

The radial position of the front seperating spinning from non-spinning

fluid is represented by:

-kwt
r=e

c

with v=0 for r <=r the fluid ahead of the wave front in Fig. 7.1b, and

v = [r-(l/r)e-2kwt /-e2kwt] (7.b.11)

for r>=r which represents the fluid behind the wave front which is

rotational. The Ekman time scale appears directly in this solution since

2kw = (T,)~. It is interesting to note that v is almost a superposition
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of a solid body rotation and a vortex (1/r) like flow. Furthermore, using

the latter equation and the continuity equation for the interior fluid

region, the axial velocity into the Ekman layer ahead and behind of the

wave front can be calculated. Because of symmetry in this circular

geometry, the nondimensional equation of continuity in the interior is:

aru = -aw(2a).
rar az h (7.b.12)

This equation can be easily integrated between z=O and 1 since u is not a

function of z, and w is zero at container midheight (z=O) by symmetry as

well:

aru = -w E(2a/h) (7 .b.13)
rar

where wE is axial velocity into the Ekman layer if the gradient in radial

velocity is positive, a is the container radius and h/2 is half the

container height. Combining Eqs. 7.b.6, 7.b.11 with Eq. 7.b.13 gives

the interesting result that:

WE = +k(h/a), for r(= e-kwt (7.b.14)

wE = -k(h/a)/[e 2kwt -1], for r>= e-kwt (7.b.15)

The wave front in this approximate inviscid model thus clearly seperates a

region of uniform Ekman pumping from a region of uniform Ekman blowing

behind the wave front. If the axial velocity (wE) did not reverse sign

behind the wave front the tangential velocity distribution would have had

to be a pure vortex.

The analysis just presented can also show that the spin-up time

constant is the same even if the fluid is already spinning when the

container is accelerated to a higher rotational speed. The issue arises

for the following reason. A rotating airborne helium system will be idled



at a low speed when it is not producing electricity to insure phase

seperation of the coolant and uniform structural temperatures. Ekman

pumping cannot increase the vorticity of fluid filaments in the interior

regions if the fluid is not spinning to begin with and the Ekman time

constant is the time required to flush the interior fluid through the

endplate boundary layer where the fluid is acted on by viscous stress. But

Ekman pumping can certainly increase the vorticity if the interior fluid is

already spinning so it is natural to wonder if the Ekman time constant is

still relevant. The spin-up time constant, it turns out, remains an

Ekman time based on the final rotational speed even though the fluid is

originally rotating with lower .The rate at which Ekman pumping pulls

fluid into the Ekman layers is proportional to the difference in velocity

between fluid in the interior (w r), and fluid in the Ekman layer (w 2r).

Though pumping increases vorticity immediately the rate of pumping is that

much less than it would have been with the interior fluid at rest.

The result is shown by solving Eq. 7.b.7 with the following revised

nondimensional boundary conditions:

v(r,O) = rw (7.b.16)
v(1,t) = 1

where w is the initial rotation fraction w /W. The nondimensional

solution falls out once more using the method of characteristics. The

dividing characteristic (the cylindrical wave front radius as a function of

time) turns out to be

r = ( +(1-W )e-2kwt .5 (7.b.17)c 1 1

and for r <= rc: v= '" [1/(1-o )e-2kwt

r >= r v= [r-(1/r)e-2kt 1-e2kt I



where -2kw =E . This result is graphed in Fig. 7.2b. Notice that for

r>r (fluid behind the cylindrical wave front) , the spin-up is identical
0

to spin-up from rest (Fig. 7.2a). It is also interesting to note that the

wave front moves only to a final radius of V1 which goes to zero if the

spin-up is from rest.

It will be shown in the next few sections that the mechanics of spin-

up in a circular cylinder hold for other geometries as well. To

demonstrate this fact it is first necessary to describe the relative motion

flow field in non-symmetric containers following an impulsive acceleration.

The relative motion flow determines the pressure distribution in the fluid

which drives the ensuing secondary flow (spin-up) .

VII.C Instantaneous flow field in a non-axisymmetric container

The analysis of the previous section was applicable to fluid in a

circular, axisymmetric container. In this section, the principle that

fluid that is initially irrotational can acquire vorticity only through

viscosity is used to determine the instantaneous flow field following an

impulsive acceleration of a non-axisymmetric container. An example of such

a non-axisymmetric container is a vertical, circular cylinder rotated about

an axis other than, but still parallel to its original vertical axis. No

attempt is made to describe the spin-up process that follows once this

initial flow field is established for reasons that will become obvious.

The analysis to follow requires that the container acceleration be

impulsive. The criteria for an impulsive acceleration can be established

if one assumes without proof that the spin-up time constant in a non-

axisymmetric container is also cE. The acceleration time scale, va is

(W2 -W1)/a where a is the acceleration rate of the container. In order to



neglect absolute vorticity changes in the fluid which occur while the

container is still accelerating it is required that

'r /,C =[-'(/7w/(ah)]Aw << 1. (7.c.1)

Now consider an arbitrary, simply connected region with an

incompressible fluid initially at rest (Fig. 7.3). The geometry of the

container does not vary in the direction parallel to the rotation axis.

The container is then given an impulsive angular acceleration about an

arbitrary axis so that the container angular rotation is now w. An

observer rotating with the container will see that the fluid has

instantaneously acquired some relative motion in response to the motion of

the boundaries of the container. The walls of the container S are

impermeable and may be thought of as a closed loop always consisting of the

same fluid particles. Since the fluid within is incompressible and

inviscid, the circulation round this loop must be conserved. In

stationary coordinates Kelvin's circulation theorem is:

D iU -dS = 0 (7.c.2)
Dt)

where U is the inertial velocity of a fluid particle of fixed identity.

Since it will prove to be more convenient to work in a rotating coordinate

system, the inertial velocity of a fluid particle is related to the

velocity of this same fluid particle relative to some convenient coordinate

origin (in this case, the geometric center of the container ) as follows:

U1 = oxR + oxr + q (7.c.3)

where q is the relative velocity vector. Substituting 7.c.2 into 7.c.3 and

noting that the circulation of the fluid was zero initially ( the container

being at rest) it follows that:
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( ((4xR + xr) + q)' dS =0 (7.c.4)
J

for all time. The dot product of the first two terms enclosed by the

parentheses in Eq. 7.c.4 with a vector tangent to the boundary of the

container is equal to the inertial velocity of the boundary in that

direction. It then follows that the integral of this velocity around the

boundary must be twice the angular rotation rate of the container itself

about its' center of geometry times the horizontal area, 2A. Hence

-2wA = fq'dS . (7.c.5)

Eq. 7.c.5 is true whether or not the region is simply connected. It is

equally true for the circulation around the outer boundary of the cylinder

in Fig. 7.4. However, the usefulness of the circulation theorem is that

for the simply connnected region in Fig. 7.3, Eq. 7.c.5 and Stokes'

theorem lead directly to a unique determination of the flow field. In a

multiply connected region the flow field is not unique. According to

Stokes' theorem:

q-dS = n.(7xq)dA (7.c.6)

where n for this presumed two-dimensional flow is a unit normal in the z

direction, parallel to w. Examination of Eqs. 7.c.6 and 7.c.5 shows that

Eq. 7.c.6 is satisfied if:

7xq = - 2 we (7.c.7)

everywhere in S.
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Equation 7.c.7 shows that if a fluid system is to conserve its

absolute circulation, an observer rotating with the container-will observe

a fluid motion which has a uniform relative vorticity equal to -2W. This

result is independent of R, the distance to the axis of rotation. It will

now be shown that Eq. 7.c.7, the incompressibility condition (which leads

to the definition of a stream function ) together with the boundary

condition that the fluid velocity normal to the boundaries is zero is

sufficient to uniquely determine the relative flow field q everywhere in S.

The flow field in S is found by simultaneously solving the following two

equations:

7xq = -2w (7.c.7)

7.q = 0 (7.c.8)

with the boundary condition

n.q = 0 on S (7.c.9)

where n is a horizontal normal to the surface S.

It should be pointed out that the previous result holds even if the

container had not started from rest. If the container had some initial

rotation w1 , and the fluid is in solid body rotation when the fluid is

accelerated then

7xq = -2(w 2~W (7.c.10)

Eqs. 7.c.7,7.c.8 can be rewritten in terms of a stream function

since the fluid is incompressible,

u =-aY/rae

v = ap/ar (7.c.11)

and T automatically satisfies the incompressibility condition 7.q=0

Substituting 7.c.7 into 7.c.8 yields Poisson's equation,



= -2w (7.c.12)

with the boundary condition that 1 =0 (or any arbitrary constant) on S.

The solution to Eq. 7.c.12 together with the boundary condition on S is

simply a flow field counterrotating at a rate equal to -w on streamlines

which have the same shape as the container boundary S. The equation is

analogous to the heat conduction equation in a domain with uniform heat

generation and an outer boundary held at a uniform temperature. T in Eq.

7.c.12 is then analogous to temperature, and -2w is analogous to the rate

of internal heat generation divided by the thermal conductivity of the

medium. Just as the point of maximum temperature is located at the

geometric center of the region (if the thermal conductivity is isotropic)

the relative motion flow field just described is a rotation of fluid

elements about the geometric center of the area enclosed by S.

Furthermore, since the relative motion is centered about the c.g. of S,

the net imbalance in pressure forces caused by this irrotational flow in the

interior must also be centered about the c.g. of S. This point has

implications for the spin-up process itself, and will be discussed further

in the next section.

To illustrate the calculation of a relative motion flow field,

consider a fluid filled elliptical cylinder (Fig. 7.5) with semi-axis a and

b suddenly accelerated from rest. Since the equation for the bounding

surface, S, of an ellipse is:

S(x,y) = (x2/a2 + y 2 /b 2) (7.c.13)

and S is a known streamline of the flow, the solution for the relative

motion streamfunction in this container is quickly found to be:

= -WS . (7.c.14)
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2 ,2,A quick substitution shows, - S=2 , thus =-2w proving that 1Y is indeed

the relative motion stream function for this geometry. In an appendix at

the end of this thesis, the inertial velocity and potentional function

associated with the relative motion is calculated- proving that the flow

is irrotational and unique .

VII.D The Navier Stokes equations in the rotating frame

The previous section was used to show that the circulation of an

inviscid, incompressible fluid is constant for all time. This fact

together with the Stokes' theorem uniquely determined the 2-D flow field in

an arbitrary simply connected region whose boundaries are given an

impulsive acceleration. In this section, this same flow field will be

deduced from the Navier Stokes equations themselves. In this manner it

will be shown that the origin of the axis of rotation for the container

affects the pressure distribution on the walls of the container, but has no

effect on the relative flow field. This is obscured in the previous

analysis. This fact is equivalent to saying that if the relative flow

field has a uniform vorticity equal to -2w then the relative flow field is

steady.

The velocity of a fluid particle of fixed identity relative to the

geometric center of the container S, is related to its inertial velocity

as follows,

UI = wReg + wret +q (7.d.1)

where q has components in the radial and azimuthal directions, uer and ve

. Since we are tracking a fluid particle of fixed identity it is

understood that q is also equal to D(re r)/Dt, (D/Dt being the substantial

derivative). In the local r,$ coordinate system Eq. 7.d.1 becomes,



UT = (Wmcost + wr)e + wRsin er + q

Since dr/dt is ue r, and rde /dt is the negative of the azimuthal relative

velocity, -ve , the acceleration of this fluid particle can be written as:

DUT=-[2 Rcos#+ 2r - R(aw/at)sin#]le, (7.d.3)
Dt 2

+[W Rsin$+R(aw/at)cos# + r(8w/at)]e.

+Q +2wxq

Dt

where, it should be noted, the equation includes acceleration terms

(Ow/at) as well. The inviscid Navier Stokes equation for this sytem is

thus

Dg -[w Roos*+2 r - R(aw/at)sin Jer (7.d.4)
Dt 2

+[ Rsin@+R(aw/at)cos + r(aw/at)]e.

+2wxq = -VP/p .

It is more useful, however, to incorporate the acceleration terms into

the pressure gradient. Eq. 7.d.4 is equivalent to

Dq +2wxq + r(aw/8t)e = (7.d.5)
Dt 2 22

-7(P/p-w Rrcos$+Rr(Ow/at)sin'-w r /2

+q 2/2).

It is already apparent that since R only appears as part of the gradient of

the body force, the distance to the axis of rotation will not affect the

relative flow field. Nondimensionalizing Eq. 7.d.5 by dividing thru with

wa and collecting terms gives the following:

(7.d.2)



aq/at+ (2w+t)xq +r(aw/8t) = 4(P')

where P' =7(P/p-32 Rrcos#+Rr(8w/at)sin?

2 2 2 2 2
-t r /2 +q /2)/o a ) (7.d.6)

and = Vxq.

Taking the curl of Eq. 7.d.6 and noting that (V)xr=2 yields the important

result:

D (e+2w) + (e+2w)-Vq = 0
Dt (7.d.7)

Examination of Eq. 7.d.7 shows that fluid vorticity t equal to -2W is a

solution. In inertial space the flow is irrotational and a potential

function exists such that:

75 = wxR +wxr +q . (7.d.8)

Taking the partial of the previous equation with respect to time and

substituting into 7.d.6 gives the appropriate Bernoulli equation in this

non-inertial coordinate system:

2 2 2 2
7(P/p-W 2rcos #- (X /at)-w r /2+q /2)=0 - (7.d.9)

In the case of an impulsive acceleration, the pressure field can be found

from Eq. 7.d.9 without the unsteady potential function. By studying the

pressure field it is possible to determine likely areas of flow seperation.

Flow visualization experiments will confirm that the flow seperates

wherever the fluid deccelerates abruptly outside a wall boundary layer.

The fact that the flow field has a uniform relative vorticity equal

to -2w(t) merely restates the results of the previous section. The flow

field is uniquely determined by the dual requirements of incompressibility

and uniform vorticity, with a boundary condition of impermeability or zero

velocity normal to the container boundary. With q known everywhere in the



container, Eq. 7.d.9 determines the pressure distribution on the walls of

the container necessary to balance the acceleration of the fluid particles

inside the container. The pressure distribution on the wall has no effect

on the relative flow field. It merely adjusts to whatever it needs to be

inorder to balance the acceleration of the inertial flow field.

In an appendix at the end of this thesis the relative flow field in

three typical geometries is calculated. The simplest case, that of

solving Poisson's equation in a circle is presented in order to reinforce

the intuitive feeling that the fluid inside the circular container responds

to a rotation of the off-axis cylinder as though it were a solid cylinder

mounted in a frictionless bearing at the end of a rotating crankshaft. As

the crank starts to rotate, the cylinder will maintain its original

angular momentum (zero in this case) in the e r'e$ coordinate system since

the bearing cannot exert a torque on the cylinder. The center of gravity

of the cylinder will move in a circular path but the cylinder itself will

not rotate.

The flow field in the interior of an ellipse is also calculated along

with a calculation of the total relative kinetic energy of this system

It will be shown in the next section of this chapter that the spin-up

losses as this original flow decays into solid body rotation depends only

on the relative kinetic energy (not the total fluid kinetic energy). This

suggests a means to minimize kinetic energy losses upon spin-up.

The final flow field described is that of a pie shaped sector. This

geometry is more relevant to the actual rotor reservoir. An approximate

solution is derived which shows where the inviscid, steady, two

dimensional flow field will seperate.



VII.E The change in internal energy of the fluid from spin-up to solid body
rotation.

The relative motion following an impulsive acceleration will decay

during the spin-up process and using the results just obtained it is

possible to calculate the change in internal energy between these two well

defined states. This calculation will show that the change in the internal

energy of the fluid depends only on the kinetic energy of the fluid

relative to the container. This is the energy dissipated as the fluid

comes to solid body rotation. The spin-up losses are consequently

independent of the axis of rotation of the container and depend only on

its' geometry.

The total kinetic energy relative to the rest state in the system at

any time t is calculated using inertial velocities:

KE(t) = 1/2fJUI-UIdA (7.e.1)

where UI is given in Eq. 7.d.1. The change in kinetic energy of the system

over time as the fluid comes into solid body rotation is

KE(-) - KE.(O+)=1/2 ff(wx(R+r)-wx(R+r))- (7.e.2)
JJ

((wx(R+r)+q) (wx(R+r)+q))dA

since there is no relative velocity as t goes to -. The vector products

can be expanded and subtracted. Using the vector identity AXB-C=(BXC)-A

Eq. 7.e.2 becomes

KE = -1/2 J(2(R+r)xq-f + q-q)dA (7.e.3)



where q=q(O'). As the fluid evolves into the state of solid body rotation

there is a concommitant change in the angular momentum of the system. In

order to keep the container rotating at constant speed a torque must be

supplied equal to the rate of change of angular momentum of the system

T = a (R+r)x(wxR+ wxr +q)dA. (7.e.4)
at JJ

The rate at which work is done on the system is -(T.w). Since w is constant

throughout this process, the total work done on the system is:

W = - J(R+r)x(q.w)dA (7.e.6)

recalling that q=O at t== . Eq. 7.e.6 describes the work added to the

system inorder to counteract the tendency of the system to slow down as

more fluid spins up. The first law for the adiabatic rotating control

volume is:

-W = AE + AKE - (7.e.7)

Combining the previous equations yields the result:

AE = 1/2I (q,q)dA . (7e.8)

The latter equation says that the dissipation during the transition to

solid body rotation depends only on the relative kinetic energy at t=o+

It has already been shown that the relative flow field is the

solution to Poisson's equation (Eq. 7.c.12), in effect, a fluid

counterrotation about the geometric center of the container with an angular

frequency of -w. Several important points can be made. First, since the

initial relative flow field depends on the shape of the container, a fluid



will undergo the same change in internal energy whether the cylinder is

spun on axis or off . (This does not say that the external shaft work is

the same in both cases, but the fluid cannot tell the difference between a

spin-up on axis or off.) Second, it can be shown that viscous losses

during the spin-up can be minimized by breaking up the liquid bath into

several small simply connected baths rather than having one large liquid

bath of the same total volume. For a system composed of n small areas , A.

(i=1 to n), the sum of all the n kinetic energies, or the total viscous

2loss is proportional to nZ((1/2)(q )A.). The container geometry determines

the initial relative motion so the initial kinetic energy scales with the

product (rw) 2, where r is the characteristic dimension of each small area

A.. A. is of order A/n where A is the sum of the A. (or nA.), hence r
1 1 1 l

is of order (A/n).5. The total viscous loss is thus

AE ~ n(A 2 )(A) ~(Aw) 2(7e9
n (n) n

Another conclusion related to the above is that for a given area,

the circle has the greatest initial relative kinetic energy hence the

greatest spin-up losses. This will be demonstrated in an appendix.

However, since the relative motion flow in all geometries except circular

geometries is unstable- it will also be shown in a later chapter that a

circular geometry is less advantageous for heat transfer.

VII.F Flow visualization of spin-up in off-axis cylinder

The pressure forces on the vertical walls of a non-axisymmetric

cylinder have no effect on the initial relative motion flow field.

However, the imbalance in pressure forces between fluid near the

boundaries and fluid away from the boundaries sets in motion a secondary

flow which drives the spin-up. In this section it will be shown that the



imbalance in pressure forces is independent of the axis of rotation and is

centered at the c.g. of the container. In the case of simple geometries

like a right circular cylinder this results in a spin-up off-axis which is

identical to the on-axis case. For more complicated geometries the

inviscid analysis shows that the initial counterrotation of fluid elements

is bound to produce regions of seperated flow. In this section experiments

will be described which demonstrate that spin-up off-axis in a circular

geometry is no different than spin-up on axis, but that spin-up in a pie-

shaped container, or a baffled right circular cylinder is dramatically

different from the unbaffled on-axis counterpart .

In the first chapter of this thesis an elegant experiment by Prof.

Greenspan was described which enabled an observer to detect the evolution

of solid body rotation in a right circular cylinder . Figure 1.9 shows

how the motion of the horizontal boundaries pull fluid into the end wall

boundary layers, drawing a vertical column of fluid inwards from the

vertical side walls. An observer positioned at right angles to a thin,

collimated light source will see a dark column of spinning fluid advancing

slowly towards the axis, as the non-spinning, sharply reflecting column

of particles is pulled downwards into the endplates. Fluid is also moving

upwards in the spinning regions, but this motion is small and not so

easily seen.

Suppose instead that the fluid cylinder is mounted off of the axis of

rotation. The lab apparatus for experiments in off-axis spin-up is shown

in Fig. 7.6 . The resulting imbalance in pressure forces accompanying

spin-up can be calculated using the results of chapter VII.E. Bernoulli's

equation for a cylinder impulsively rotated off axis is:

7(P/p - w2Rrcos - 2 r 2/2 + q 2/2)=0. (7.f.1)
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Figure 7.6 Apparatus for off-axis spin-up flow
visualization experiments. The pictures in Figure 1.10
were taken using this apparatus. Shown here is
plexiglas cylinder mounted off the axis of an aluminum
turntable. Not shown here is the vertical slit light
source.
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In the interior of the container the relative fluid velocity is everywhere

equal to -wr. Near the top and bottom horizontal endplates, the fluid

velocity is effectively zero. The pressure gradient in the radial

direction near the endplate region of the container is:

2 2ap ! = W Rcos, $+w r (7.f.2)
par Iw

The pressure gradient in the radial direction in the interior fluid region

is:

=2 ~ 2r 2 2 2ap Rcos# +w r - a_(w r /2 ) = Rcos #
parn ar (7.f.3)w

The net pressure gradient which will then generate a secondary flow is

approximately equal to the difference between Eqs. 7.f.3 and 7.f.2:

A. = o 2 r . (7.f.4)
par

Since the pressure difference increases outward from the c.g. of the

container, fluid will be thrown outwards near the bottom of the container.

The Ekman layer will then be identical to the Ekman layer in an on-axis

spin-up. The fluid pressure gradient caused by the location of the axis,

R, exists everywhere in the fluid system and has no effect on the

secondary flow.

Figures 7.7a-d illustrate this point. A camera has been synchronized

with the motion of the turntable in Fig. 7.6 to take a picture when the

container center passes through the narrow vertical light beam. Shown here

are a sequence of shots taken every few revolutions as the cylinder passed

through the light source. The motion of the cylindrical front is clearly

visible in these pictures. The last 4 pictures in this sequence (Figures

7.8a-d ) were taken with the turntable stopped. The spin-down, however,
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Figure 7.7a-d Sequence of pictures showing columnar evolution of spin-up in
an off-axis cylinder. Bright column of fluid is non-spinning.
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Figure 7.8a,b Spin-down in a circular container. The turntable
was stopped and spin-down was photographed. In addition to
visible roll cells at the outer radius, the inner core actually
pulsates as Ekman pumping now pushes fluid up into this region
from the end plate boundary layers.



is unstable. Very soon after the cylinder is stopped roll-cells develop on

the outer wall. This does not obscure the fact that there is clearly a

core of non-rotating fluid surrounding the center of the cylinder. The

rotational speed in these pictures is 20 rpm. The spin-up time constant

for this particular geometry was 80s.

In summary, if an appropriate local coordinate system is chosen the

equations of motion describing spin-up in an off-axis container are

identical to those for the on-axis container. The effect of the position

of the axis of rotation is an additional pressure distribution on the

container walls, which has no effect on the relative flow in the container

and thus has no effect on the ensuing spin-up process.

VII.G Unstable spin-up in non-circular containers

The flow obtained earlier is bound to separate wherever the fluid

motion near the boundaries deccelerates. This has been borne out by flow

visualization experiments. It was also found, unexpectedly, that these

seperated flow regions come to completely dominate the spin-up flow .

Figures 7.9 thru 7.16 are a sequence of spin-up pictures taken at 20 rpm

using the pie shaped container filled with liquid and seeded with mica

flakes. In Figure 7.9 the container is impulsively accelerated from right

to left (clockwise). In Fig. 7.10 (two revolutions later) two large

seperated flow regions are evident in opposing corners. (If one examines

these pictures closely, there are smaller separated flow regions in the

other corners as well ). The rest of the fluid is rotating in a counter-

clockwise direction. As the spin-up progesses those two vortices grow

until they possess sufficient rotational energy to move out of the corners.

It is interesting to note that those two irrotational vortices, with a

distinct core of concentrated vorticity ( the dark centers of each vortex)
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are rotating in the same direction, clockwise, the original direction of

container rotation. In other words, the initial counterclockwise relative

rotation of the bulk fluid is very quickly transformed into two clockwise

vortices because of viscous effects in corners. Furthermore, because the

two vortices are rotating in the same direction they exert an attractive

force on each other. The velocity induced by one vortex on the other

causes these vortices to sweep by each other. In Fig. 7.14 they have

actually changed places. As these vortices interact they tend to scour

the walls of the container creating high surface heat transfer

coefficients in the process. This will be discussed in the next chapter.

Once these vortices have switched places there no longer appears to be any

other great fluid movement, and the flow field of Fig. 7.15 persists for

the remainder of the fluid spin-up. As far as can be observed from

repeated experiments, the spin-up time constant is still of order -E

even for such disordered spin-up flow fields. It is likely that an Ekman

like flow is set up by each vortex, drawing fluid in the endplate regions

in a fashion similar to, but not the same as the Ekman flow in a right

circular cylinder. Here the velocity is of order 1/r measured outward from

the vortex core, rather than of order r in a circular cylinder.

Another sequence of spin-up flow field pictures, Figures 7.17 thru

7.20 illustrate the vortex formation in a baffled circular cylinder

impulsively accelerated to 500 rpm. The cylinder used is shown in Fig.

4.3. There are at least seven distinct eddies in Fig. 7.18. The largest

and strongest eddies are those in the upper left hand corner of container

rotating clockwise (same direction as the container), and one immediately

to the right of the baffle, rotating counterclockwise. The clockwise

vortex clearly originated in the seperated flow region in the corner

between the baffle and the container wall though the origins of the others
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Figure 7.17 First of a sequence of spin-up pictures
showing eddy flow-field in baffled right circular
cylinder.

) I ) ) I I I I

Figure 7.1'
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Figure 7.19 Figure 7.20 As spin-up nears completion,
eddies become less and less distinct.

) ) ) ) ) )
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are not so apparent. The vortex pattern is more stationary at these high

rotational speeds than at the low speeds (probably because there are more

pairs of vortices rotating in opposite directions), but it seems that the

number of vortices is more likely a function of geometry than rotational

speed. It is also found that the time constant for the decay of this

energetic vortex flow field is still -.,



C0

CHAPTER 8

TRANSIENT HEAT TRANSFER TEST RESULTS

VIII.A. Transient heat transfer

In this chapter, the results of heat transfer experiments during

liquid spin-up are examined. These experiments will be referred to as

transient heat transfer tests since the heater power is on while the fluid

in the container is still being spun-up. The results of these tests are

summarized as follows:

1. in tests with water, alcohol and glycerine/water- a heat
transfer co fficient enhancement is found to last a time of
order (at) /St and for high surface heat flux this time is
short compared to TE'
2. the magnitude of the enhancement to h is a function of the
fluid relative velocity, although the complex interaction of
the spin-up vortices prevents verification of a simple model,
3. flow visualization confirms that the transient plume is two
dimensional and that the plume gets swept along by whatever
vortices are in the vicinity of the heater.

The bulk of the transient heat transfer testing was conducted in the

following manner. The rotor was idled at some low rotational speed

(usually 250 rpm) for a period of time sufficiently long to insure that all

thermocouples were in temperature equilibrium (no instrumentation

transients) and that the fluid was in solid body rotation as well. The

data collection software was enabled for a short period (roughly 5s). At

this moment a step change was introduced into both the DC motor voltage

and the container heater voltage which caused the rotor to accelerate while

a plume was forming inside the container. Surface temperature change as a

function of time was recorded on disk and the test was stopped when a

steady surface temperature was reached. Tests were also done with the rotor

accelerated slowly rather than impulsively. The DC motor voltage was

adjusted slowly by hand inorder to produce a desired acceleration rate.
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Figure 8.1 and Figures 8.3 thru 8.5 are the results from a sequence

of tests performed at constant heater power with varying acceleration

rates. In the first curve in Fig. 8.1 the heater was energized with the

rotor at 500 rpm and the fluid in solid body rotation. This test provides

a datum for interpreting the affect of fluid relative motion. If the fluid

is in solid body rotation the surface temperature time history is

determined by the thermal inertia of the heater and the time constant of

the developing thermal and momentum boundary layers . The second curve in

Fig. 8.1 is a plot of surface temperature history at the same heater power

following an impulsive acceleration. It is obvious that a quasi-steady

state arrives in a time short compared with the Ekman spin-up time (3TE~

30 s). Though the surface temperatures are lower for the first 5 seconds

than they would have been had there been no fluid transient, it is

surprising to find that the surface temperature becomes steady while there

is still considerable fluid relative motion. Fig. 8.2 shows a heater plume

spiralling inwards during a spin-up. The trajectory of the plume is

dictated by the near presence of vortical flow . However, at the time

this picture was taken the temperature at the heater surface had already

reached a quasi-steady value. The reason for this is straightfoward. The

bulk fluid spins-up slowly but the fluid very near to the wall spins up

quickly by viscous diffusion. A radial pressure gradient of order (pW2 R) is

quickly established even though the absolute pressure on the outer wall is

still well below its final value. At the heater power levels used in these

experiments the thermal boundary layers are very thin, thin enough to be

within the viscous dominated regions of the spin-up flow field. As soon

as the side-wall spin-up boundary layers grow to sufficient size, the

temperatures on the heater surface are no longer affected by vortex

interactions in the interior, and because the pressure gradient at the wall



01
(I

E
L
A
P
 
F
D
 

T
A

 IN
E

 
(S

E
C

O
N

D
S

)
1
5
.0

2
0
.0

1
5

.0
 

2
0

.0
E
L
A
P
S
E
D
 
T
I
M
E
 
(
S
E
C
O
N
D
S
)

2
5
.0

2
5
.0

3
0
.0

3
0
.0

19 ri) 0 u 0 0 w co 0

I
 
. O

> 
0

z ZC
A

Z 
W

M .

m
to

m
0

0
O 1, fu O0 P

i
0) 0 ru 0

0
5
.0

0
5

.0

io
.0

1
0
.0



is nearly at the steady state value the surface temperatures are steady as

well. This arises from the fact that the bouyant terms near the wall are

based upon the local centrifugal acceleration acting over the density

difference. Since the wall fluid has been spun up to the steady state W

the centrifugal acceleration will have achieved its final value.

The behaviour of the surface temperature during slower accelerations

can be explained in a similar fashion. Surface temperatures will be higher

while the rotor is accelerating and drop down later to reflect the quasi-

steady conditions at the final rotational speed. There is some lag in

thermal response because of the inverse relationship between thermal

boundary layer thickness and rotational speed. The fluid relative motion

has a greater impact on surface temperature early on in the acceleration.

The results of varying acceleration rates are shown in Figures 8.3 thru

8.5. The circled region in the graph of Fig. 8.4 shows the scouring

action of a vortex moving around in the interior fluid. In the spin-up

pictures of the previous chapter these vorticies were shown to have

originated in the corners of the pie shaped container. The vortices tended

to grow in size and moved out of the corners, sweeping along the outer wall

and sweeping some fraction of the hot fluid off of the heater.

One would expect then that the spin-up will affect the surface h only

until the momentum boundary layer developing concurrently with the

inviscid spin-up in the interior has grown to a distance of the order of

the plume boundary layer thickness. It also seems reasonable to assume

that if the thermal boundary layer thickness is large then the period of

time that the relative motion will affect the surface temperature will also

be longer. This assumption is confirmed in the temperature histories shown

in Figures 8.6 thru 8. The output shown here follows a series of impulsive

accelerations with diminishing heater power. The heater power used in
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radial baffle

thermal plume
Figure 8.2 Thermal plume during spin-up. Plume is

swept along by a local vortex.
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these tests ranged from 17 W/cm2 down to 0.73 W/cm2 with the same final

rotational speed. The thermal boundary layer thicknesses in these tests

varied by a factor of 2 from 0.009 cm. to 0.016 cm. (boundary layer

thickness varies like (F0 )- 25). The figures show that the enhancement in

h follows inversely with surface heat flux F .

The first attempt to correlate all the data taken during the

transient tests using water, alcohol, and water/glycerine into a single

graph of AT/ATs ht ) where Tht is a dimensionless time was

unsuccesful. The dimensionless time was based on the ratio of the

diffusive boundary layer thickness to the quasi-steady thermal boundary

layer thickness at the final rotational speed:

T h t = /155 =(/'7th/(5k) .. (8.a.1)

This dimensionless time reflects the assumption that so long as fluid

relative motion existed close to wall that natural convection at a low

pressure gradient would be augmented by forced convection. But once the

momentum boundary layer had grown sufficiently large, say 5 times the

thermal boundary layer thickness, not only would the surface heat transfer

boundary layer be unaffected from fluid motion in the interior, but a

nearly quasi-steady pressure gradient would exist to increase the surface

natural convection h.

The dimensionless time (Eq. 8.a.1) was succesful in reducing all

water temperature histories to a single curve and the glycerine tests to

a single curve- but did not allow for correlating both sets of tests

together. This immediately suggested that a Prandtl number effect was

being overlooked. The similarity solutions for natural convection flows

of Prandtl number fluids >1 were used as a guide and a new dimensionless



time was chosen based on the conduction boundary layer thickness times

Pr. , which is effectively the associated momentum thickness layer:

rht 4 5 15/t (8.a.2)

or rht= (at).5/(h/k) (8.a.3)

where it is noted that T ht is now independent of fluid viscosity.

Figures 8.9 thru 8.16 are plots of the temperature difference (T -

T a) normalized by the quasi-steady temperature difference at the end of

the test vs. the dimensionless time of Eq. 8.a.3. All tests followed

impulsive accelerations from 250 rpm to 550 rpm (the maximum allowable

change in speed). All three working fluids were used in these tests and

both the long and short heaters. Several features of these curves are

worth noting. The enhancement in transient heat transfer coefficient for

this step change in speed lasts to about 10t ht If it were possible to

give the system a greater impulsive acceleration, this enhancement would

probably last longer. (It should be noted, though, that the Ekman time

decreases as w increases, and that the enhancement will last only through

a time of order T E). There also appears to be little difference between

the data for long and short heaters (factor of 5 different in length)

suggesting again, that the transient h is also independent of length.

A simple model for establishing a reasonable estimate of surface heat

transfer enhancement is motivated by observations of plumes such as the one

in Fig. 8.2. Following an impulsive acceleration there is essentially slug

flow of order (Awe) over the heater of length 1 as indicated in Fig. 8.17.

The simplified one-dimensional energy equation for this problem is:

aT + (Awc)6T = a (8.a.4)
at ax ay
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where q=(Awc). Now for t)l/Awc, the thermal boundary layer is quasi-

steady and the first term is neglected. It can be shown that a solution of

Eq. 8.a.4 for constant heat flux (F ) boundary condition is:

T-TA = 2Fo vx ) e
2 - y/2erfc(n)

k /q nr

where i = y/2(1/ (vx/qPr) (8.a.5)

and T3 - T = 2F /Vx ) = 1,33F x (8.a.6)
TA 70vyPrT k/(qx/a)

The surface heat transfer coefficient is thus:

h = k'(qxi/a) (8.a.7)
1.13

and h av= 1.77k/(q/la) (8.a.8)

and the average Nu is:

Nu = 1.77v(ql/a) (8.a.9)

where qAcc.

Over time the spin-up boundary layer on the side wall diffuses

outward and the bulk flow over the heater diminishes. Again, using an

error function model for the rate of outward momentum diffusion the order

of magnitude of the fluid velocity a distance 8 away from the heater is

roughly

q = (Awc)erf(S/(2y(E) (8.a.10)

If one chooses a length & based on the steady state momentum thickness:

6 t, then the average transient heat transfer coefficient on the heater

surface due to forced convection is approximately:

htr = 1.77k((Awc)erf(St /(2/-a)) (8.a.11)
al
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Now the Nu, Ra correlation derived in Chapter 5 can be rearranged to

relate h and F0 directly:

h=(.11k).75(gPF 0 /2.3 . (8.a.12)

A nondimensional AT(t) can then be found from the following ratio-

AT/AT ~h/(h +h) ~~ 1/(h /h + 1) (8.a.13)as tr tr

Figure 8.18 shows Eq. 8.a.13 plotted alongside some measured data in a

test with glycerine/water. The model would probably fit the measured data

better if the test container were circular rather than pie-shaped. The

jaggedness of the temperature curve makes it clear that it is the

interactions of the spin-up vortices that dominate the surface heat

transfer enhancement. Eq. 8.a.13 also goes to zero like /vt which is

much slower than the rate observed in practice. The problem is that the

relative motion on the heater surface enhances heat transfer over half of

the heater, but probably hinders heat transfer on the other half. The

steady state (bulk fluid is in solid body rotation) momentum boundary

layers generated by the heaters have been observed to meet at the center

of heater which means that the spin-up relative motion which is sweeping

across the heater in one direction only short circuits heat transfer over

half of the heater (Fig. 8.17c). The usefulness of such a model, then,

is in conservatively predicting the order of magnitude of h during the

early part of the transient which in this case is around twice the steady

state heat transfer coefficient.

Nonetheless, using Eq. (8.a.12) it is possible to estimate the heat

transfer enhancement time. Since:

h = (.11k).7 5 (gF 0/a2 ).33 (8.a.12)
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Figure 8.18 Comparison of transient test with glycerine
and model for spin-up flow enhancement. Steady state heat
transfer coefficient is rougly twice the maximum predicted
transient heat transfer coefficient.
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and &t is of order k/h it can be shown by substituting Eq. 8.a.12 into Eq.

8.a.3 that:

ht=(gF 0/k).25 (t).5 /5.24 .(8.a.13)

The value of v ht at which a quasi-steady state is reached most likely

depends on either a relative motion Reynolds number (Aw(c)l/v) or on a

relative motion RePr# product (Aw(c)l/a). The larger the value of this

dimensionless group, the larger the dimensionless time required to reach

quasi-steady conditions. It is presumed of course that Tht is small

compared to T E otherwise it is improper to consider the magnitude of the

5relative motion as a function of (vt). . It was not possible, however, to

determine the functional dependance of T ht on Re or RePr because not enough

is known of the motion or the velocity field associated with these

vortices. Furthermore, additional tests with a lower Prandtl number

fluid are required before Eq. 8.a.13 could be reasonably used as universal

correlation for the effects of irrotational flow on heat transfer.



CHAPTER 9

SPIN UP OF INHOMCGENOUS FLUIDS, UNUSUAL PHENOMENA

II.A Observations of spin-up with a free liquid surface

At various points during experiments with plumes and spin-ups in

baffled and unbaffled cylinders on the horizontal lathe new phenomena of

interest were observed. As a class, the phenomena are all related to the

coupling of earths' gravity and centrifugal forces. Furthermore, these

phenomena were all observed in mixtures of air and water. Some of these

phenomena may explain aspects of curious behaviour of superconducting

rotors (which are horizontal) and it is for this reason that they are

briefly mentioned here.

When an unbaffled cylinder filled partly with soapy water is suddenly

accelerated from rest, the turbulent mixing of air with the low surface

tension water in the initial moments during spin-up generates a great

amount of sudsy bubbles or foam. This foamy fluid mixture initially

comprises a core of fluid centered around the origin and extending out

radially far in excess of the air core radius that remains when the suds

ultimately collapse. Figure 9.1 shows this foamy core and the spin-up flow

field in the rest of the fluid. This picture was taken at a time that was

long compared to the usual spin-up time for a homogeneous mixture. In

fact, this foam core takes an order of magnitude longer to spin-up than

either liquid or vapor alone. This is due to the surface tension of the

bubbles resisting the centrifugal forces trying to separate the two fluids.

What is also interesting is that this foam core is not exactly on center.

Due to the coupling of the bouyancy of the core due to gravity and due to
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Figure 9.1 Foaming in the interior of a partially filled
cylinder impulsively accelerated. The flow field in the
liquid regions indicated by the mica-flakes illustrates
the interior flow generated by the collapsing core of foam on
the centerline.



centrifugal forces, the core finds its' equilibrium displaced from the

horizontal axis of rotation. This sudsy core is also rotating slowly

relative to the rotation of the core as a whole. This sort of phenomena

has been explored by Gans [28]. However, this phenomena is significant to

superconducting rotors for two reasons. Since it is well known that helium

foams very easily it is likely that accelerating rotors without reservoir

baffles and with continuous inlet jets of liquid helium will generate a

great deal of foam and that a distinct separation of the phases may take a

great deal of time. The density of these suds is certainly greater than

that of vapor, and a torque tube inlet filled with sudsy helium might

create enough of a centrifugal head to account for the blowout phenomena

experienced during superconducting generator operation [29]. The heat

transfer coefficient in a sudsy solution might also be sufficiently high to

prevent the liquid level gages in the reservoirs of superconducting

generators from working properly.

The spin-up process in a baffled cylinder with a baffle extending to

the centerline also exhibits unusual phenomena when there is air present in

the container. Figures 9.2 and 9.3 show a spinning container with two

different air/void fractions. The pictures, again, were taken a few

minutes after an impulsive acceleration of the container. The mica flakes

attest to the persistence of an energetic motion in the interior which is

not a spin-up flow field. The interior motion is a response to surface

waves at the water/air interface. In both figures, a foamy region can be

found on the high pressure side of the baffle (the container is rotating

counterclockwise). In Fig. 9.3, a rotating hydraulic jump is also

visible. The shape of the interface in each case is not steady, but
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Figure 9.2

\egion of intense
'-foaming

Surface waves generate interior motion which
persists indefinitely.
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Figure 9.2
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Figure 9.3 Surface waves in a baffled cylinder with a larger air
fraction. foaming occurs on high pressure side of baffle
only.
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varies as the container rotates. Figures 9.4 and 9.5 were pictures taken

with the container rotated 1800. In the bottom picture the baffle is

pointing downwards. In the top picture, the baffle is pointed upwards.

The observed phenomena is most certainly related to the cross coupling of

gravity and rotation, vividly illustrated by the different liquid levels

on either side of the baffle in Fig. 9.5. As the ratio of g/ 2r gets

smaller so does the distrubance level at the air/water interface. With the

container only slightly filled with water- g/2 r ~ 1/25 , the surface is

nearly ripple free. Therefore, it does not seem possible that an

energetic interior fluid motion caused by liquid/vapor interfacial waves

can be responsible for any significant additional helium boiloff. These

experiments, however, do illustrate the utility of baffles in seperating

phases.

Early on in the course of flow visualization experiments, plume

pictures were marred by the presence of large scale two-dimensional fluid

disturbances apparently coming from the centerline of the rotating

container. The disturbance was found to have originated in the erratic

motion of small, discrete air bublbes on the centerline. These bubbles

were found to bounce up and down due to the coupling, again, of gravity

and rotation- pumping a steady stream of liquid outwards from the

centerline in the process. Figure 9.6 is a sequence of photos which not

only illustrate the self-similar structure of a bouyant starting plume,

they also show this reverse plume phenomena. This reverse plume not

only spreads outwards, it also rotates slowly in the opposite direction of

the container . The disturbance was eliminated by putting a rectangular

piece of plastic foam along the centerline- held in place by a thin rod
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baffle
facing upwar<

gravity I

baffle facing
downwards

water/air liquid surface

Figure 9.4 (above), Figure 9.5 (below) The surface wave
pattern varies with theta. In these two pictures the
container is frozen in two positions 180* apart. Notice
the difference in liquid levels on either side of the baffle
in fig. 9.5.
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Figure 9.4 (above)
Figure 9.5 (below)
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Figure 9.6a
Figure 9.6b

(above) Container is rotating counterclockwise
(below)
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Figure 9.6a (above)
Figure 9.6b (below)



which was glued into the endplate. This plastic foam trapped the air

bubbles preventing them from bouncing. Interestingly, small bubbles

created a similar effect in the baffled cylinder (the baffle did not extend

all the way to the centerline of the container). In a baffled cylinder,

however, a strong plume was generated 2700 from the high pressure side of

the baffle originating at the centerline and moving straight radially

outwards. The problem was also remedied by taping plastic foam to the

inner edge of the baffle.

Except for the foaming, the small ratio of gravity to rotational

acceleration at the liquid surface to be found in high speed

superconducting rotors makes these experiments just mentioned interesting

but not particularly relevant.



Appendix A.I
Experimental Data Summary

Table A.I.1
Heater Specification Table

1: length used in Rayleigh number calculation is 1/2 the length in
the azimuthal direction, (1/2)/1

w: width of heater, dimension in axial (z) direction

h# 1 cm. w cm. A cm R ohms type

1 1.79 2.2 3.94* 19.5 short heater
4 2.36 1.67 3.94 19.5 short heater
2 1.14 12.9 14.9 18.6 long heater
3 12.9 1.14 14.9 18.6 long heater

*heaters are not quite rectangular, area of heater where leadwires at-
tach is not included in surface area

Table A.I.2
Data Table Abbreviations

exp#: experiment number
gly=glycerine tests
iso,alc =alcohol tests
everything else is water

h#: heater number (see Table A.II.1)
Nu#: Nusselt number (based on 1/2 in Table A.II.1)
Ra#: Rayleigh number (based on 1/2 in Table A.II.1)
RaPr#: Rayleigh number times Prandtl number
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Data suetary Table A1.3

:Experiment Data Summary #1

11 exp# hi Nut Rat Pr# Ra*Pr

1Experiaent Data Summary #2 (cont.)

eXD# hi Nut Ra# Pr Ra*Pr
-----------

I alo
I all
I a12

a13
a 14

V a15

V 17

a9
a20

Va21

a24
a
a6

Sa8
V a?

alcb2
alCb3
alcb4
alcb5
Ialcb6
alb7O
'alcb8
bI
b2
b 3
b4
b 5
b b
c I

c dO
: cl '
I c12
1 c2
c3
0;4

ga7
ga8
gbi

64.0
65.3
65.4
63.0
34.2
45.7
49.2

53.9
54.6
58.1
63.3
59.6
58.1
54.1
40.8
45.7
58.5
61.4
64.7

1061.0
1096.0
906.3
706.8
518.0

1076.0
911.9
54,6
57.8
65.0
67.3
70.6
69.3
19.4
29.6
29.7
31.2
21.4
16.-2
17.5
72.5
78.2

242.5

6. 42E+07
6.61E+07
6.58E+07
6.02E+07
7.41E+06
2.23E+07
2.81E+07
3.24E+07
3.65E+07
4. 08E+07
4.61E+07
6. 23E+07
5. 14E+07
4.40E+07
3. 53E+07
1.58E+07
2. 35E1+07
3.29E+07
5.91E+07
6.55E+07
4.21E+10
4.11E+ 10
2.62E+ 10
1.36E+10
6.09E+09
3.76E+10
2.48E+10
3.5 1E+07
4.45E+07
5.82E+07
6.94E+07
7.47E+07
7.45E+07
8.25E+05
5.06E+06
5. 84E+06
6. 21E+06
1.18E+06
4.84E+05
8.22E+05
9.79E+07
1.24E+08
4.48E+09

4.80
4.80
4.79
4.88
5,95
5.03
%J .;

C; 1

C;

4.86
4.79
4.69
4.56
6. 03

6.10
4.97
4.86

25.80
26.00
28.50

61.30

4. 30
35.00
28.50
5.69
5.50
5.23
5.00
4.89
4.72
6.46
5.62
5.44
5.45
6.30
6.19
6.09
4.05
4.14
4.8 

3.09E+08
3.17E+08
3.15E+08 I
2.93E+OS
4.41E+07i
12E+08

1,44E+08
1.BE+08 I
1.88E+08
2.10E+08 2
2.39E+08 i
3.03E+08 i
2.46E+08
2.06E+08
1.6E+08
9.55E+07
1.35E+08 i
2.O0E+08
2.94E+08
3.19E+08 1
1.09E+ 12 1
1.07E+12
7.47E+11
4.26E+11
2.09E+1iA
1.32E+12
9.55E+11 I
2.00E+08
2.45E+08 1
3.04E+08 I
3.47E+08 I
3.65E+08 
3.52E+08 I
5.33E+06
2.84E+07i
3.18E+07 .1
3.39E+07
7.42E+06 I
3.00E+06 .
5.OOE+06
3.96E+08
5.13E+08
2.19E+10

c5
C6

c6
c7

c9
dia
dlb
d2a
d2b
d3a
d3b
d4a
d4b
d5a
dsb
d5c
d6a
d6b
dbc
eal
ea2
ebl
eb4
fal
falO
fall
fa12
f a.3
f a2
fa3
fa4
f aS
fab
f a7
f aB
f a9
gal
qa2
ga3
ga4
ga
ga6

23.3 1
24.1
25.4
26.7
27.0
50.7
68.1

71.5
51.3
72.7
53.0
61.2
54.4
66.1
70.7
58.5
71.3
60.3

100.6
117.0
36'2. 3
364.4

55.0
100.1
97.7
62.1
65. 1
67.0
72.0
76.5
80.3
86.0
91.5
42.0
44.9
68.4
64.8
73.4
77.3
86.2
86.8

2.24E+06
2.33E+06
3.13E+06
3. 79E+06
4.25E+06
2. 55E+07
7. 82E+07
S.53E+07
9. 02E+07
2.72E+07
8.65E+07
3. 03E+07
5. 66E+07
2.94E+07
6. 36E+07
1.06E+08
3. 73E+07
8. 78E+07
5.34E+07
2.37E+08
2. 24E+08
1.19E+10
1.29E+ 10
4. 66E+07
2. 62E+08
2. 70E+08
7. 65E+07
7.37E+07
7. 57E+07

,OIE+08
1.38E+08
1.46E+08
1.84E+08
2. 17E+08
1.29E+07
1.23E+07
8.32E+07
6. 95E+07
1.09E+08
1.37E+08
1.83E+08
1.81E08

5.62
5.58
5.59
5.60
5,60
4.29
4.91
4.38
4I.3

4.11
4.80
4.16
4.47
4.19
4.58
4.69
4.31
4.67
4.36
4.22
4.24
5.32
5.23
5.59
4.06
3.98
5.05
5.08
5.26
4.96
4.66
4.61
4.37
4.21
5.89
5.92
4.51
4.41
4.53
4.55
4.30
4.30

I-- --- ---- --- ---- --- ------- --

1.26E+07 V
1.30E+07 V
1.75E+07 1
2.12E+07 V
2.38E+07 V
1.1E+08 V
3.84E+08 V
1.55E+08 V
4.36E+08 V
1.12E+08 V
4.15E+08 V
.26E+08 V

2.53E+08 1
1.23E+0E V
2.91E+08 0
5.00E+08 V
1.61E+08 V
4.10E+08 V
2.33E+08 V
1.OOE+09 V
9.50E+08 V
6.31E+10 V
6.75E+10
2.60E 08 V
1.06E+09 V
1.07E+09 kI
3.86E+08 V
3.74E+08 I'.
3.98E+08 !
5.02E+08 :1
6.43E+08 !
6.73E+08 V
8.04E+08 "
9.14E+08 V
7.60E+07 V11
7.31E+07 V
3.75E+08 V
3.06E+08 N
4.94E+08 it
6.23E+08 A
787E+08 ;
7.78E+08 11



Data summary- Page 2

HExperiment Data Summary #3 (cont.)

Sexpt h# Nut Rat Pr* Ra*Pr

Experiment Data Summary #4 (cant.

ex.# hi Nut Rat Prt Ra*Pr
if...............

q2
gb3
gb4

H gb5
gb6

H gly1I
glylo
~gly11

ly 16
'1 7

gly4
Hgly5
Sgiy6

V gly8
H Q~yPC

isobi
isob2
isob~3

'isob4
~isob5
;Iisobb
'isob7
1isob8

H 110b

I I la111b
!f111C

291. F
288.4
312.8
336.5
333.0
395.0
380.0
252.0
422.0
438.0
420.0
285.0
425.0
359.0
462.0
256.0
464.0
326.0
337.0
248.0

1089.0
1127.0

908.0
582.0
394.0
390.0

1120.0
926.2

77.1
91.1
98.7
80.5
92.8

103.7

6.16E+09
7. 33E+09
7. 72E+09
9. 60E+09
8.33E+09
4. 32E+09
3. 36E+09
I. 08E+09
4. 19E+09
4. 18E+09
4.32E+09

6.79E+09
4.47E+09
6.42E+09
1.29E+09
6. 26E+09
2. 79E+09

1.16E+09
3. 93E+10
3.95E+10
2.44E+10
8.28E+09
2.84E+09
2.71E+09
3.70E+10
2. 50E+ A
1.12E+08
1.74E+08
2.62E+08
9.67E+07
1.82E+08
2.45E+08

4.99
4.98
5.02
5.03
5.02

13.00
13.63
15.15

13.11
13.08
14.90

13.01

A. L'

14.80
12.40
13.98
14.03
15.00
26.80
26.80
28.90
33.80
36. 10
37.20
27.10
29.80
3.59
4.00
4.18
3.62
3.96
4.19

3.07E+10
3. 65E+10
3.88E+ 10
4.83E+10
4. IE+10
5. 62E+10
4.58E+10
1.64E+10
5.53E+10
5.48E+10
5.65E+1 IC
i.68E+10
8.33E+10
5.82E+10
7. 90E+ 10
1.91E+10
7.76E+10
3. 90E+ 10
3.80E+10
1.74E+10
..05E+12
1.06E+12
7..5E+ 11
2.80E+11
1.03E+11
1.01E+11
1.00E+12
7.45E+1
4.03E+08
6.96E+OB
1.09E+09
4.51E+08
7.19E+08
1.03E+09

I---------------I!

16a
1 6b
16c
I 7a
17b
17c
I8a
18b
1Sc
19a
19b
I 9C
sala
salb
sa2a
sa2b

sa)b
sa4a
sa4b
t1

I lb12 a

12b
13a
13b
14a
14b
ISa
15b
15c

298.2
326.3
358.2

75.8
105.9
108.9

77.5
99.5
107.6
79.6
97.4

105.8
49.3
63.9
42.4
64.8
56.9
70.2
49.3
66.5
30.9
31.2

3s15.4
327.0
321.7
356.7
278.7
360.7
269.5
337.7
349.0

5. 83E+09
1.03E+10
1.29E+10
8. 30E+07
1.97E+08

252E+08
7. 84E+07
1.55E+08
2.52E+08
8. 89E+07
1.59E+08
2.59E+08
2. 05E+07
5. 42E+07
1.38E+07
5.77E+07
3. 45E+07
6.75E+07
2. 47E+07
6.47E+07
6. 10E+06
6.16'+06
4.66E+09
1.38E+10
7.07E+09
I. 32E+10
7.14E+09
1.23E+10
4. 45E+09
1.24E+10
4.09E+09
1.01E+10
1.24E+10

5.10
5.20
5.31
3.52
4.16
4.22
3.45
4.05
4.19

3.98
4.14
4.45
4.90
4.09
4.88
4.34
4.73
4.21
4.76
5.52
5.48
5.30
5.28

.5.09b5.35

5.45
5.29
5.39
5.09
5.35
5.02
5.26
5.45

Ii-----------------------------------.--Ii
II ~
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2. 98E+ 10
5.36E+10
6.86E+10
2.92E+08
8.20E+08
1.06E+09
2.71E+08
6. 28E+08
1.06E+09
3. 13+08
6.32E+08
1.07E+09
9.12E+07
2. 6E08
5.66E+07
2.82E+08
1.50E+08
3. 19E+08
1.04E+08
3. 08E+08
3.E36+07
3. 38E+07
2.47E+10
7. 26E+10
3.78E+10
7.21E+10
3.78E+10
6.63E+10
2.27E+10
6.65E+10
2.05E+10
5.28E+10
6.77E+10
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Table A.i.4 Natural Convection Data Sumnary

Natural convection data summary

expi Nu# Ra# Corr. Nut*

g4g
g5g
gig

g~w
glw

q6w

g2w
g2g

5 J.

g~i
g4i

7.15
9.24
9.79

12.10
10.71

iv.

8.91
9.79

14.30
10.89
10.45
14.63
11. 55

17.71
20.68
21.01
23.54

2s. 65

3.01E+04
9.54E+04
1.15E+05
I.41E+05

1.44E+05
1.6 0E+05

QZ - j

1.97E+05
2.11Ec+05

L.Lt

2. 65E+05
2. 70E+05
2.83E+05
4. 54E+05
4.93E+05
5.64E+05
5.71E+05
7.10E+05

8.50%
7.001
6.60%
5.001
5. 10%
4.00"
4.40%
4.50Z
4.00%
4.00-A
4.50%

4. 70"

13.00%
12.00%
7.00%
9.70%
7.001
7.80%

6.54
8.59
9.14

11.50
10.17
10.45

9.35
13.73
10.45
9.98

14.19
11.01
13.49
15.58
19.23
12.97
21.89
21.81

icorr.: conduction error
*: corrected Nu
i: alcohol tests
w: water tests
g: glycerine tests



Appendix A.II

CONDUCTION ERROR ESTIMATE

If it is assumed that the heat flux into the lexan wall from the
heater is proportional to the temperature on the surface of the heater,
a reasonable estimate is made of conduction errors in the surface heat
transfer coefficient. A fraction of the heater power diffuses into the
lexan walls of the container at a rate proportional to AT/ t. where AT
is the difference between the temperature in the middle of the heater
package and ambient temperature (the initial temperature) of the lexan.
If one neglects the conduction gradient in the heater itself and assumes
that the maximum AT is twice the AT based on the measured temperature at
the surface of the heater and the ambient water temperature, the heat
flux back into the lexan window is of order:

Fe= k(2AT)/(2/at)=0.0548AT//t W/cm . (A.II.1)

All properties in the above equation are those of lexan, and are listed
in Appndif A.III.1. (Based on the thermal diffusivity of lexan,
13X10 cm Is, it takes 20 min. for the thermal boundary layer to
propagate to the outside of the lexan window.) Now AT can be related to
heater power at high Rayleigh numbers using the correlation obtained in
Chapter 6. Given that

Nu = .11(RaPr).33  (A.II.2)

then h = .11k(gOAT/a2).33  (A.II.3)

and in terms of surface heat flux:

F = hAT (A.II.4)

such that F0 = .1lk(gAAT/a2).33AT . (A.II.5)

The ratio of the heat conduction into the lexan to the heat
carried away by the natural convection is thus of order:

2 33 -1Fe/F = .5((/t)k(g3AT/a )' ) . (A.II.6)

Some tabulated results are given below. Eq. (A.II.6) is evaluated
for a rotor at 500 rpm, and using the thermal properties of water.
At 300 rpm the data in the table is roughly 40% larger. The
conduction correction to the natural convection data in Chapter 6 was
obtained by replacing the laminar natural convection correlation for
the high Ra# correlation used here in Eq. A.II.2.



Table A.II.1
Conduction error as a percentage of F0

t\AT 100C 200C 400C

los 5.0% 4% 3.0%
40s 2.4% 2% 1.4%



Appendix A.III
Thermal properties of water,
alcohol and water/glycerine.

Water
(C)

T
15.56
21.11
26.67
32.22
37.78
43.33
48.89
54.44
60.00
65.56
71.11

data [ I
J/gm/K

Cp
4.19
4.18
4.18
4.18
4.18
4.18
4.18
4.18
4.18
4.19
4.19

gm/cm3 gm/cm/s
p p

1.00 1.12E-02
1.00 9.79E-03
1.00 8.59E-03
1.00 7.64E-03
0.99 6.81E-03
0.99 6.15E-03
0.99 5.62E-03
0.99 5.12E-03
0.98 4.71E-03
0.98 4.30E-03
0.98 4.01E-03

cm2 /s
p/p

1.12E-02
9.83E-03
8.62E-03
7.69E-03
6.86E-03
6.22E-03
5.68E-03
5.21E-03
4.80E-03
4.3 9E-03
4.10E-03

W/cm/K
k

5.95E-03
6.04E-03
6.14E-03
6.23E-03
6.30E-03
6.37E-03
6.44E-03
6.49E-03
6.54E-03
6.59E-03
6.64E-03

cm2 /hr
a

1.42E-03
1.44E-03
1.47E-03
1 .50E-03
1.52E-03
1.55E-03
1.55E-03
1.57E-03
1.60E-03
1.63E-03
1.63E-03

1/K
1*103
0.18
0.23
0.27
0.32
0.36
0.40
0.43
0.49
0.52
0.56
0.59

Pr #
7.88
6.78
5.85
5.13
4.52
4.04
3.65
3.30
3.01
2.72
2.53

Alcohol data [ ]
(C) J/gm/K gm/cm3  gm/cm/s cm2 /s W/cm/K cm2 /hr 1/K
T Cp p s p/p k a *103 Pr #
20 2.37 0.785 2.39E-02 3.10E-02 1.40E-03 7.53E-04 1.03E-03 40.5 I
30 2.37 0.776 1.76E-02 2.30E-02 1.40E-03 7.61E-04 1.03E-03 29.8 1
40 2.37 0.772 1.33E-02 1.70E-02 1.36E-03 7.43E-04 1.03E-03 23.2 |
50 2.37 1.07E-02 1.40E-02 1.35E-03 18.8 |
60 2.37 8.OOE-03 1.OOE-02 1.33E-03 14.3 |

30% glycerine solution [ ]
(C) J/gm/K gm/cm3 gm/cm/s cmz/s W/cm/K cm1 /hr 1/K
T Cp p p g/p k a $*103 Pr #

20 3.25 1.05 1.76E-02 1.68E-02 5.19E-03 1.53E-03 3.10E-04 11.0 1
30 3.23 1.04 1.35E-02 1.29E-02 5.32E-03 1.58E-03 3.60E-04 8.2 1
40 3.30 1.04 1.07E-02 1.03E-02 5.40E-03 1.57E-03 4.10E-04 6.5 |
50 3.36 1.04 8.79E-03 8.49E-03 5.53E-03 1.59E-03 4.60E-04 5.3 |

40% glycerine solution [ ]

20 3.03 1.07 3.72E-02 3.47E-02 4.48E-03 1.38E-03 4.10E-04 25.2 |
30 3.01 1.07 2.66E-02 2.48E-02 4.52E-03 1.40E-03 4.50E-04 17.7 1
40 2.90 1.09 2.07E-02 1.90E-02 4.61E-03 1.46E-03 4.80E-04 13.0 1
50 3.14 1.09 1.62E-02 1.49E-02 4.69E-03 1.38E-03 5.10E-04 10.8 1

31% glycerine (interpolated values)

20 3.23 1.05 1.98E-02 1.88E-02 5.11E-03 1.51E-03 3.21E-04 12.6
30 3.21 1.05 1.49E-02 1.42E-02 5.23E-03 1.56E-03 3.70E-04 9.2 I
40 3.26 1.04 1.18E-02 1.13E-02 5.31E-03 1.56E-03 4.18E-04 7.3 I
50 3.34 1.04 9.60E-03 9.20E-03 5.44E-03 1.57E-03 4.66E-04 5.9 |

I------------------------------------------==================



Appendix A.III.
Important thermal properties

material thermal density specific
conductivity heat c
W/cm/K gm/cm J/gm/K

kapton 0.36E-2 1.43 1.3
teflon 0.21E-2 2.14 1.2
RTV 0.23E-2 1.6 ?
Cu 3.5 8.96 0.38
lexan 0.2E-2 1.2 1.255



Appendix A.IV

RELATIVE MOTION STREAM FUNCTION

In this appendix, the relative motion flow field following an
impulsive acceleration is calculated for three representative container
geometries: a circle, an ellipse and a pie shaped container.

A.IV.1 Circle

If the simply connected region in Fig. 7.3 is circular, the
relative motion stream function is the solution to Poisson's equation in
cylindrical coordinates:

189rai = -2w (A.IV.1)
rar 8r

such that:

4= -1/2wr 2  (A.IV.2)

and the relative velocities are:

u = -1 = 0 (A.IV.3)
ra

v=alP = -r . (A.IV.4)
ar

The relative motion flow field consists of circular streamlines centered
at the origin of the container. The inertial velocity of any fluid
particle is thus:

U =wReg + wree -wree =wRet . (A.IV.5)

In a non-rotating coordinate system, the inertial velocity is

u = -wRsin(wt) (A.IV.6)

u = wRcos(ot) (A.IV.7)

The position of a given fluid particle at any instant of time is
found by integrating the latter two equations (see Fig. A.IV.1):

x- x = Rcos(wt)-R (A.IV.8)

y- yO = Rsin(Wt) (A.IV.9)

(x- (x -R)) 2 + (y- y0 )
2 = R2 (A.IV.10)



particle trajectory
(inertial)

Figure A.IV.1
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The trajectory of a given fluid particle is the same as the motion of
any point on a cylinder of radius c mounted in a frictionless bearing
and which is made to rotate about a centerline a distance R away (see
Fig. A.IV.1) . Just as it is not possible to change the angular
momentum of this cylinder without exerting a torque, the fluid motion
described by Eq. A.IV.5 is one of zero rotation. In the local r,Q
coordinate system, the inertial velocity is:

UI = (WRcos# +wr)e +wRsiner - wre

U = V(0)

(A.IV.11)

(A.IV.12)

where

= wRrsin(#) (A. IV. 13)

The existence of the velocity potential
irrotational and unique.

confirms that the flow is

A.IV.2 Ellipse

The relative flow within an elliptical container was calculated in
Chapter 7.C. It was also shown in Chapter 7.E that the viscous
dissipation that occurs as the fluid spins-up is proportional to the
relative kinetic energy. Since

AE = 1/2 (q-q)dA (7.e.8)
JJ

for an ellipse such as the one shown in Fig. 7.3, then:

r aI )2 + 2
AE = 1+ (21) dxdy

00 (ax) (ay)

AE = w2
a +b

AE = w"a g b2
a +b

(A. IV. 14)

(A. IV.15)

(A. IV. 16)

It is interesting to note that the kinetic energy losses are a
maximum for a/b=1, a circle. As the ratio of a/b or b/a gets very
small then the kinetic energy goes to zero.



A.IV.3 Pie shaped sector

In this section, the calculus of variations will be used to
approximate the streamlines of an impulsively accelerated fluid in a pie
shaped container. This exercise gives mathematical form to streamlines
whose shape is the same as that of the container itself. The stream
function shows that fluid particles are rotating around the center of
geometry of the container. The stream function, however, is not
realizable in practice. The local pressure gradient in the vicinity of
abrupt changes in container geometry in the fluid outside the boundary
layers gets very large (of order 1/p where p is the local radius of
curvature of the container) and the momentum in the fluid boundary
layer is insufficient to balance this pressure gradient increase. The
flow separates in the corner boundary layers and a strong local vortex
develops readjusting the streamline of the fluid outside the boundary
layer into a more navigatable curvature (see Fig. 7.13).

The pie shaped container is sketched in Fig. A.IV.2. Taking
advantage of container symmetry one finds that the stream function for
this flow is the solution to the following equation:

L2" - + 1 a rai +2w = 0
r o r 3r Or

(A.IV.17)

Transforming Eq. A.IV.17 into a variational problem results in:

i1(a
S i -1/2((Og) + 1 ($)2 + 2u'P)rdrd6 = 0

OJ-a (Or) r (a6)
(A. IV. 18)

Performing the indicated variation results in the following equation:

Ia

(-gLS(-) + 12L$58J + w8i)rdrdO =0
J0J -a Or Or r a6 a6

(A. IV. 19)

which is then integrated by parts where possible to give:

a r=1

-aOr r=0

1 f a ff 2
+ 2 + 1 aLra + ( )S0rdrd6 = 0

J oe J r 8 r ar Or
-a

(A.IV.20)

The first two terms are zero because the streamfunction is specified on
the boundaries of the container. The variational problem to solve,
after nondimensionalizing the latter equation, is



244 + 1 8 rak +1 )&Wrdrde = 0
J. a r 56 r 8r ar

$ = /(wa 2
r = r/a
e = e/a.

(A.IV.21)

(A.IV.22)

Using the Kantorivich method, a function in r is chosen which
automatically satisfies the boundary conditions at r=O,r=1. The stream
function is then a product of this function in r and an undetermined
function of 6 only. A suitable function is:

$ = r(1-r 2 )®() . (A.IV.23)

Substituting the latter equation into Eq. A.IV.22 and integrating with
respect to r gives the following

1 1f
2- 12

(r(1- G" +6(1-9r2) + 1)r(1-r 2 )S®rdrd6 =0
a r r

12

((®"/(6a2) -0/2 + 2/15)80 d = 0

-1

(A.IV.24)

(A.IV.25)

The optimal functional dependence of the stream function on is the
solution to the second order differential equation enclosed within the
parenthesis, subject to the boundary conditions

0(-1)= 0

D( 1) = 0 . (A.IV.26)

The complete solution to this equation is

9 = 4115(1- cosh((/3)a6) -(1-cosh((/3)a)))sinh((/3)aO)))
sinh((/3)a)

(A.IV.27)

and the stream function can now be approximated as:

$ = (4115)r(1-r2 )(1-cosh((/3)a)- .sinh((/3) a))

where = (1-cosh((/3)a))/sinh((/3)a )
(A.IV.28)

It is a simple matter to show that the stream function is a
minimum at e=0, r=1/13 which is the geometric center of this pie shaped



sector. In figure A.IV.2 three streamlines were calculated for $
=0.135,0.384, and 1.0.



streamline equation:
q)=9.1(r(i-r2)(1-cosh(v3O)-.7sinh(
o () f1
Or 1
0 0 1 gions of deccelerating flow

where fluld boundary layer
will seperate

Figure A.IV.2
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