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ABSTRACT

The linear and nonlinear optical response of a C02 laser amplifier
has been measured for pulse inputs which have risetimes shorter than or
comparable to the inverse bandwidth of the medium. The pulsed
response behavior was predicted theoretically by integrating density
matrix equations.

The theoretical linear (small-signal) response of a laser amplifier
to a rectangular pulse signal input was derived. The linear step
response was measured experimentally, and by comparison with the
derived theoretical response, the bandwidth of the amplifier was directly
measured.

The amplifier response was also studied for extremely intense fast
risetime pulse inputs. At low amplifier gas pressures, the output pulses
had faster risetimes than the input pulses, and the lagging edge of the
pulse was absorbed leading to active pulse sharpening. The amplification
was not bandwidth limited. At high gas pressures, no absorption of the
lagging edge was observed because of rotational relaxation. The
nonlinear pulse amplification results were also predicted theoretically.

Thesis Supervisor: Hermann A. Haus

Title: Professor of Electrical Engineering
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CHAPTER I

INTRODUCTION

Ever since its advent five years ago, the CO2 laser has commanded

a great deal of interest both as a research tool and as a commercially

useable laser. Its high gain (in excess of 3 db/meter), ease of

construction, high power, and ability to be Q-switched recommend it for

a variety of tasks. In this work we are interested in the short pulse

behavior of CO2 lasers both as oscillators and amplifiers; as oscillators

to be able to generate short CO 2 laser pulses, and as amplifiers to

determine what limits the amplification of short pulses. It is in

conjunction with this second goal that we have examined some of the

basic physical mechanisms which occur in the CO2 laser, such as the

effects of multiple degeneracy upon amplification, saturation broadening,

and bandwidth limited amplification. In the course of the investigation

we have determined a way to measure the bandwidth directly when

amplifying low intensity pulses, and can achieve pulse amplification at

frequencies greater than the bandwidth in conjunction with pulse shaping

when intense pulses are amplified.

Since the experimental portion of this work was concerned with

generation, amplification, and measurement of these short pulses, it was

considered beyond the scope of this work to construct any CO 2 laser

amplifiers capable of producing high cw power levels such as those

constructed by Miles and associates. Rather, the experimental

emphasis here was placed upon the use of GaAs electro-optic modulators

to generate pulses much shorter than the more standard methods used

to generate them.

ENA



The motivation for studying short pulse amplification arises mainly

from the fact that the CO2 laser, because of its high gain and the long

lifetime of its upper state, can be Q-switched to generate short intense

pulses. That is, the Q of the laser cavity is lowered to prevent

oscillation, permitting the population inversion to be at its nonsaturated

level, and then the Q is raised to a high value for a short period of time

causing a brief intense pulse to be emitted. The existence of these

pulses raises questions concerning their production and use; for

example, is it better to make a long laser cavity with high gain to

generate more intense pulses, or is it better to create a pulse of

sufficient intensity and then amplify it for greater intensity? Studies

here indicate that the pulse length of a Q switch increases with the

length of an oscillator and that the peak intensity does not grow as

quickly, whereas much greater peak intensities and pulse shortening may

be obtained with the use of an oscillator-amplifier combination. An

example of the need for knowledge of short CO2 pulses arises from pre-

liminary studies of CO 2 10. 6 y radars, which originally generated

interest because of the atmospheric window at this wavelength. Shorter

pulses improve the resolution of the radar, so again the problem is how

to create short pulses without sacrificing the energy in the pulse.

Interest in short CO 2 pulses also arises from the possibility of

their use in second harmonic generation. If a pulse of sufficient intensity

propagates through certain nonlinear materials, second harmonic

radiation can be generated at a high efficiency. This work has applica-

tions in frequency measurements of visible radiation; the frequency of

CO 2 can be measured by mixing it with previously measured longer

wavelength H20 lines. Once the frequency of CO2 is known, second

WN
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harmonic generation can be used to get into the visible and measure the

frequencies of some of the shorter wavelength lasers, such as He-Ne.

The work here was made possible only by novel schemes of short

pulse generation for both low level and intense pulses. As a rule, we

found no new interesting effects to occur unless the peak pulse power was

realized in a time comparable to the inverse bandwidth of the medium.

However, pulses produced by conventional means are limited in their

buildup time by the bandwidth of the medium. In this work, we have

utilized a voltage controlled polarization switch (GaAs with a Ge polarizer)

to produce pulses of both small and large intensities that have risetimes

significantly less than the bandwidth of the medium.

It was because other workers have had such problems in generating

short pulses that this field of research has not been adequately explored.

Although some authors 1' 2, 3,4 have considered the problem of an intense

pulse propagating through an amplifying medium, no one has done experi-

ments to study some of their more interesting conclusions. More

recently, picosecond pulses in neodymium doped glass lasers 5 have been

produced and amplified. While interesting effects due to fast, intense

pulses were observed, no attempt was made to match these with a

descriptive theory. In addition, the work was not performed in CO2 or

even another gas laser, so many results we hoped to see were not present

in this work. In addition, the bandwidth in glass lasers is so large that

the pulses necessary to achieve the type of effects discussed here are so

short as to not be easily detected. Currently, these picosecond pulses

are being detected by photographing double resonant fluorescence in a dye

and measuring the length of space these pulses occupy. However, in CO 2

lasers these pulses are in the nanosecond range and can be readily



measured on an oscilloscope.

Recently much work has been done on an effect known as "self-

induced transparency" (a mechanism whereby a pulse may propagate

through an absorbing medium without energy loss). Although this work

is extremely interesting, it (1) does not study propagation in an ampli-

fying medium, (2) considers pulses only much shorter than the inverse

bandwidth, and (3) is not done in CO 2. Quite recently though, people

have looked for self-induced transparency by shining CO 2 laser radiation

through sulfur hexafluoride (SF6 ' 6 but again this is not an amplifying

medium. In addition, much controversy surrounds this work, since

little is known about SF6 and its transitions. Other workers have used

SF6 as a saturable absorber placed internally in a CO2 laser cavity for

self-induced Q-switching. This is only of interest here as a possible

means of producing an intense pulse for nonlinear amplification purposes.

However, work has been reported similar to reference 6, where an

inertial effect in the population is supposedly observed.8 But the

reported effects could be due to off resonance absorption rather than

saturation of the absorber in a time comparable to the bandwidth.

The only work done for intense pulse amplification of CO 2 laser

radiation in a CO2 laser amplifier was for an input pulse where the

energy necessary to cause saturation was not achieved until the pulse was

much larger than T 2 , the inverse bandwidth. That is, the amplifier

was simply saturated and there was no ringing in the population (an effect

which we hope will lead to achieving pulse sharpening).

As far as can be determined, no one has ever theoretically calculated

or measured any parameters of low-level, short pulse amplification. In

this work, we theoretically determine the impulse response, numerically
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calculate the step response, and compare this to experimentally

measured low-level step response.
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CHAPTER II

THEORETICAL LINEAR RESPONSE OF LASER AMPLIFIERS

To describe adequately the behavior of laser amplifiers to pulses

short compared with the inverse bandwidth of the medium, one must use

a density matrix description of the material. One starts with Maxwell's

and Schrodinger's equations and uses them to describe the interaction of

an electromagnetic field with an ensemble of quantum systems which, in

addition, experience relaxation described by appropriate time constants.

This approach, which is a good deal more complicated than rate equations,

is necessitated here by the fact that we are considering time responses

of the quantum systems in which the macroscopic polarization cannot

follow "instantaneously" the electric field. If pulses longer than the

inverse bandwidth were to be considered, a rate equation approach could

be used.

Although density matrix equations can be written in various degrees

of complexity, the following assumptions will be used here in describing

the linear fast time response of the laser amplifier:

(1) A plane electromagnetic wave will be assumed. As long

as the pulse amplification is not so strong as to cause changes

in the electric field within a wavelength or so of propagation,

the diffraction of a linearly amplified beam is the same in the

medium as it would be in free space. Since a detector

measures power, the spatial integral of the square of the

electric field, and the electric field is everywhere amplified

the same amount, the plane wave assumption is valid for

linear amplification. However, for nonlinear amplification,

E



different intensities experience different amplification, the

diffraction of the beam can be significantly different in the

medium than in free space, and the plane wave assumption

presents problems.

Now consider the linear amplification of an input pulse

with an arbitrary transverse intensity distribution; the output

beam will only be affected by the uniform gain the medium

imparts to the beam. Therefore, a plane wave may be

substituted for the arbitrary intensity distribution.

(2) A two-level system will be assumed. Again, the results

obtained under this assumption are immediately generalizable

to a multilevel medium, but are not extendable to the nonlinear

case. In the case of a CO 2 laser operating on a P(20) transition,

there are 20 different dipole moments contributing to the ampli-

fication process. In the nonlinear case, the quantum system

behaves as a two-level system with an average dipole moment

only for times longer than the inverse bandwidth.

(3) Homogeneous broadening is assumed. This may appear to

be improper in a CO 2 laser where the homogeneous and

inhomogeneous bandwidths (Doppler broadening in this case) are

comparable; however, it will be shown that for a high gain

system the linear amplification is virtually the same for either

broadening mechanism.

Equations of motion

The motion of the particles of the system is given by the time rate of

change of the density matrix, which is given by

M



= i/h(pH-Hp)

or in the notation of individual matrix elements

Amn = IZ(Pmk Hkn - HmkPkn) (2-1)
k

where H is the complete Hamiltonian of the system and p is Hermitian,

i. e., = p . Equation (2-1) expanded reduces to

2 P!_(P 2 2 -p 1 1 )H 1 2 +p 1 2 (H 2 2 - H 1 1

(b22 ~ 1 1 2i 1H12 ~P 1 2 H 2 1 )

where we now resort to perturbation theory to let

H = H+V
0

V = -E-P

with E being the classical electric field and P the polarization.

diagonal matrix and P pure off-diagonal

H*

o 11
00

22 11

0

Hf22

= H - H 1

0

S 21

=h. > 0m

H11

H= -E P
21

(2-2)

(2-3)

H_ is a

with

and

12

0

- 12

H
22

p = i/h( p, H ]

12
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By adding in phenomenological relaxation terms, (2-2) and (2-3) become

~-2i
b22 ~b11 h(2 1 E 12 ~ P12 E 21)

- e e
(P 2 2 ~p 1 1 ) Tp 2 2 p 1  (2-4)

Tw P (2-4)

21 512 = -[( 2 2 ~ P 1 1 ) i 1 2 + p 1 2 h- (2-5)
2

Note that the relaxation term T describes the relaxation of the levels to

their equilibrium value. This may be inadequate to describe relaxation

between rotational levels in a CO 2 laser amplifier, but for linear ampli-

fication this term is not important. The off-diagonal relaxation term, T 2 '

often called "the phase interruption time, " describes the decay of the

polarization. By solving these equations in the steady state, one finds

the homogeneous (Lorentzian in shape) linewidth, Av , to be equal to
n

- T.
iT 2

If we now consider the molecular dipole moment P 1 2 ' 21 to be real

and depend only on the state of the molecules under consideration

P12 21

and a sinusoidal electric field which is linearly polarized

E = Ecos (wt - kz+ p (z, t)] = E+ ei(Wt - kz) + E e-i(t - kz)

and in-phase rotating off-diagonal density matrix elements,

p 1 2 = P 1 2 (t) ei(t - kz) P 2 1 = P 2 1 (t) e-i(wt - kz)



for (2-4) we arrive at

1 ~(p 2 1 E+

- iLF21 E+

~ -12 E+)A

-2i(t - kz)

(p2 2 - p1 1 - 2 2 - P11

* 2i(t - kz)j
P-12 E + e

The double frequency terms oscillate so fast compared to the other terms

that they average to zero over short times or, in other words, they do

not couple effectively; hence we shall drop these double-frequency terms

(P22 - P1 1 - 22
(b22 - b11

e
~P11 (2-6)

If we proceed in a similar manner on (2-5)

= [ 12 +p-1 2  ei(wt-kz)

[P 22-P 1 1 ) 2 + P12 hWm 2
ei(wt - kz)

+ (2 -i(wt - kz)

divide by the exponential, drop the double-frequency term, and define

Q = (W - Wm

2 (P22 -P11) 2-
P-1 2

12 -

Ib22

P1 2

P-12 E y -(21 E +

P12 (2-7)



P2 1

-i (P 2 2Pll) E+
7) 22 ~ 211 i +

-21

2
(2-8)

We must now consider the propagation of the electromagnetic field in

the laser amplifier. The two pertinent Maxwell equations are given by

V x E = -ye

Vx H

with the definition

D = cE+P

Under the assumption that we have sinusoidal fields, we can describe the

electric field and polarization by

ei(wt - kz)

^i(wt - kz)

+ E_ e-i(wt - kz)j

+ P_ e-i(wt - kz)]

where E+ =E. We have from (2-11)

1 ei(wt -kz) iwE
2 +

+ A

1 -i(Wt - kz) F E +
+ T e I- kzLwE- + EjI

and

(2-9)

(2-10)

E(z, t)

P(z, t)

F E

= P +
2L +

(2-11)

(2-12)



ei(wt - kz) w2 E

+ e-i(wt - kz) 2 E

+ 2iwE

- 2iwk _ +

1 i(wt - kz) k2 E- 2ki B+

+ ei(c.t- kz)-kE
+ 2eI-k

I 1 i(wt - kz) 2P + 2iwP +

1 -i(wt - kz) 2+ TeI- WP

From (2-9),

Vx Vx E

- 2iw_ + Pj

in the conventional fashion we can show

2 -
= -y9E B2

= - e 2

2-

- e 2
2-

+ Cy e 2
e t2

If we assume no non-linearities, then we can simply take the positive

frequency term, letting (Ae

2 y P+ + 2iwpP+

+ E+

= 1/c

2
- E
c

2
+k 2E

We see that (2-13) reduces to

S+ 2 +
C

(2-

BE 32E
+ 2ki B+ - 2 = 0az

-14)

b2

bt2
1

a2E
2

2

+ Z 2

a2E
+ 2

BE
_+2ik ;

2

(2-13)



If w/c = k and we use the slow wave approximation, that is, that

2 p 1'-E >W iE >> 1~+ k *6z

then the reduced form of (2-14) is

2
1 W e 

2k +
iw
2 ec +

We can relate the polarization to the density matrix formulation by

= N(P) = NTr {pP}

= + npLe 1 2 e

= +ny(p12+p21

-i(t - kz)~
+ -21 j

Therefore,

1 ~ ,In i1.
1 " + = o -c at + az = (c' 12

For convenience let us introduce the following normalizations

(1) The normalized electric field:

E+
F = 2- E

m AN

(2) The normalized macroscopic polarization current:

n wm np12
2e hw ANm e

1.> i
+ W-P

1 BE+

P(x, t)

(2-15)

(2-16)

(2-17)



(3) The normalized population inversion:

N P 22 P11
e e

P2 2 ~ P11

(4) The normalized time:

t
T

n

(5) The normalized distance:

Z zcT

where AN e

tion time.

n(p2 ~ ) is the equilibrium inversion and T a normaliza-

The equations (2-6), (2-7), and (2-15), which describe the interaction,

then become

FT+ = -K

= -ANF - iMK - K

S2 (F K + FK )N 1

T1

where now Q = T (w m) and A = p2 AN emw T /2htEn = acT /2T 2 '

where a is the low signal power gain coefficient.

The following points are of interest about these equations:

(2-18)

(2-19)

(2-20)

(2-21)



(1) if bK/BT can be neglected compared with K/T 2, we

obtain the rate equation;

(2) there are actually five real equations, since F and

K are complex; however, if Wf = wm, the amplifi-

cation is at line center, and F and K, if initially

real, remain real;

(3) for linear amplification, by definition N = 1, and

the equation for BN/BT is not employed;

(4) for linear or nonlinear amplification, the boundary

condition imposed on this set of partial differential

equations is the electric field at z = 0 as a function

of time, or at t = 0 as a function of z;

(5) since the pulse is propagating in one dimension in

space and another in time, it is convenient to define

a new variable: n = T + Z for use in numerical

integration techniques.

Linear amplification on line center for homogeneous broadened line

In this case both F and K are real, 0 = 0; the equations of interest

are:

+ z= -K (2-22)

_K KAF- (2-23)

Furthermore, we are concerned with obtaining the solution to a

low-level step of radiation propagating through the medium since this is

the experiment we are able to perform. To obtain this step response
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we may solve the above equations exactly for the impulse response. Let

us put the following boundary condition on the above equation

F+(Z, 0) = P(Z

The equations may be solved using a Fourier transform in time and

a Laplace transform in space. 0 Hence, we define

C- 10* C

F(Z, T) = dw' e1wT do eipZ F(w', $)

-O -ic -O

and the Fourier transform of the initial condition becomes

F(p, 0) 1 -2 I

Solving for the transform we find from equation (2-22) and (2-23)

i(w' - #) F - F(p, 0) = -K

1
(io'+1)K = -AF

T2

The transform of the electric field becomes

1F(#, 2') + A

T2

The inverse transform of this cannot be taken directly because of an

essential singularity which cannot be evaluated when the contour integral

of the inverse transform is deformed. However, using the technique of

reference 10, we can find an analytic solution of the impulse response
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which can be verified by direct substitution.

1

F = po(T - Z) + exp T -Z ,ZZ 1 2 (AZ)(T-Z) T > Z
2

= 0 T < Z

I is a modified Bessel Function of first order.

For ease of understanding it is convenient to write the previous

equation without the normalized variables defined in equations (2-16),

(2-17), and (2-18). The electric field impulse response then becomes,

with Tn t 2 :

z1

E = p(ct-z)+exp(- tc zA 3 * 1  ()t t > 
2 t- c t 2c 2

(2-24)

=0 t < z
c

The constant A is now defined as

act
A = 222

where again a is the low signal gain coefficient. Figure 2-1 shows

expression (2-24) plotted for three different times for conditions typical

of the CO2 laser.

We now turn to the evaluation of the step-response of an amplifier

constructed of the two-level system. Denote the impulse response

function in (2-24) by h(t, z). If we denote the step response by Estep

then we have by superposition
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= ~ h(t-r;z)yi(r) drstep

where h(t - r; z) = cE impulse response because of our initial condition

being an impulse in space.

o [c(t - r)-z] + exp (t2)

1zA 7
t - T --c

1

1 (t -2

= S(t -
2 (zA'\,(t

+ (t 2  c\
JO

where S is the unit step function, X is the normalized variable
1 1

t - c - ,and# = ct 2 /4zA.

Note that this response shows an unperturbed step propagating through

the medium. This means that the amplifier cannot respond to an

infinitely fast risetime step; however, the amplifier adds to the remaining

part of the step, which is indicated by the second term in equation (2-26).

This step response can also be expressed in terms of Lommel functions

defined as

U (w, z) z -
z -1 0

Estep

t-z

t =rO

1

c2 t2

(2-25)

1

T - ) dT

1
c 2

C / e-AX 11(X) dX (2-26)

(z, t) Cos . W(1 - t2 )I tv



= L) S J _(z, t) sin W(1
z -1 0

By adding the Lommel functions U1 and iU2 for pure imaginary argument,

one gets an integral identical in form to the last term in (2-26). Hence,

one finds

e -(t - z/c)/t2

+ iU, --L t

2

I

ct 2

2i AZft -

2

It is an interesting check to look for the step response as t 4 o.

this consider equation (2-26) as to t -+ o.

Estep(t -+ O) = 1 + 0 e~ X

1

= 1 +-
2v

e /8#

= 1 2 e 1/8# s 1

= e /8#
zA/ct

2
- e

where we have used the relation A = act2/2.

Estep

1

(t - )

(2-27)

To do

dX

= eaz/2

- t 2 )1 tv dtUp _ g (W, Z)

{i (
f 8#

From this we infer that
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Istep (t -+ =O) = ez (2-28)

where a unit step was applied. This is as expected. The step response

integral was done numerically on a computer; the program can be found

in Appendix A.

Figure 2-2 shows a series of plots of the normalized intensity

response (E step)2 /eaz for typical parameters of a CO2 laser amplifier.

In these plots, the gain is held constant, while the bandwidth (t 2 ) is

changed.

Figure 2-3 shows normalized intensity step responses when the band-

width is kept constant and the gain is changed. In this case the amplifier

exhibits gain narrowing; that is, as the gain is made larger, and due to

exponential dependence of the gain with distance, the center of line

(hence a smaller effective bandwidth) contributes more heavily to the

gain leading to a longer risetime for the larger gain cases. Any paradox

in the reader's mind can be resolved easily if he realizes that if Fig. 2-3

were plotted without being normalized to unity, curve C would have a

greater value than curve B which would be greater than curve A.

Linear amplificationoff line center for homogeneous broadened line

It is also necessary to consider the amplification process at

frequencies away from line center since this may be the case in an

experiment. The equations of interest are (2-19) and (2-20).

=- AF - inK - K (2-29)
T . y =2

BF F K (2-30)
BT BZ
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where we are again using the normalized notation and F and K are

complex. This problem can be simplified considerably by making the

substitutions

F t = F ei0(T Z)

K' = K ei1(T Z)

whereupon equations (2-29) and (2-30) become

bK - AF - K
T T 2

+ 'F' - K'

which are the same equations which were solved earlier. F' impulse =

eiM(T - Z) F impulse on resonance. The off resonant behavior multi-

plies the resonant behavior by a dephasing term which rings faster the

further off resonance that the interaction takes place. Using unnormal-

ized notation, the off resonance step response becomes

1 1

tZ, -( -E = 1± 2 ( cos a 2 eX 1(X) dX
step

(2-31)
1 1

2 zA 2 tz' 2

. r(t-) t -~ c si. a 2 e#X 2

+ 1 F 2 s X(X) dX

where a =t 2c/4Az (w - wm) and x = 2/t 2 Az/C) (t T - z/c) .wher a/t(zc)2/c

Figure 2-4 shows theoretical intensity step responses for various

values of off-resonant amplification. The other parameters are those
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typical for a CO 2 laser. The curves were normalized for the values of

the cw low signal amplification.

I iz step2
step ~exp z

1+ tWm) 2
2

An important feature exhibited here is the ringing of the step

response to a low-level signal when the amplification is far off resonance.

One must be careful to distinguish this ringing from the nonlinear ringing

of the population (a nutation effect). In experiments it is possible that

one may confuse the two phenomena unless one is careful to ascertain

whether the power levels used experimentally warrant the occurrence of

nutation or whether the amplification is on resonance. This will be

discussed in greater detail in the next chapter.

Linear amplification with inhomogeneous broadening

As mentioned earlier, we are faced with the problem of a mixture of

broadening mechanisms in a CO2 laser amplifier. Classically this has

always been considered by a Voigt profile; the homogeneous linewidth

would be convolved with an inhomogeneous linewidth which, in the case of

a CO 2 laser, is Doppler-shaped due to the thermal velocities of the

molecules. Of course, to analyse the fast time response of an

inhomogeneously broadened system requires a modification of the original

density matrix equations; this is done by considering a group of

homogeneous systems which are continuously distributed by the Gaussian

inhomogeneous linewidth and are coupled by their common interaction

with the electric field.12 To describe the continuous distribution of the



population inversion and polarization current for each velocity group, we

modify equations (2-19), (2-20), and (2-21) to the following:

N, the population difference, is replaced by a differential

population inversion in frequency space which accounts

for the inhomogeneous spread.

N 4 M) dv such that
O

S M) dv = N and

2
M (v) = 2 -(2V/ AV)

e

K 4 Q(v)

The inhomogeneous equations then become

L6F + F
T BZ - oO

Q(v) dv (2-32)

Q(V)- A M(v) F
BT

= 2 (F" Q(v) +

- i~' Q(v) - Q(V)
T 2

M(V) - M (V)
FQ (v)) - T1_

' is now defined as the frequency separation between the electric field

and the particles in a velocity group centered at frequency v

(2-35)o' = Tn(W + V - Wm)

This is easily shown in Fig. 2-5.

MW)

(2-33)

(2-34)
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In addition,
2 2

A m n
A = 2hE

The linearized equations become, setting

"M&) = 01 0
bT T T1

a QM A M(v) F - iO'(v) - Q (2-36)

+F=+- Q(v) du (2-37)
"aT az

and

M(v)du = 1 (2-38)

Note that complexity of the iO' term could be reduced by using a

total time derivative instead of the partial time derivative. It permits

one to integrate for the impulse response without solving first for the

poles and zeros. This has been done elsewhere and has led to some

surprising, yet at the same time, intuitively appealing results.13 There

is no distinguishable difference (less than 4% difference in the two curves)

between the step response for the homogeneously broadened medium and

the inhomogeneously broadened medium provided

(1) the amplification is at line center;

(2) the half power bandwidth is the same for both cases;

(3) the low signal gain at line center is the same for both cases;



(4) the total low signal gain is high, > 10 db.

The intuitive reason for this surprising agreement is readily

apparent when one realizes that this is an amplifying medium, not an

attenuating one. Since the gain is exponential in character with distance,

the center of the line contributes most strongly for a high gain medium

(a manifestation of gain narrowing), whereas the tails contribute only a

small portion to the resulting amplified pulse. It is precisely near the

line centers that the homogeneous (Lorentzian) and inhomogeneous

(Gaussian) lineshapes agree; therefore, for this linear exponential-type

gain the amplified pulses agree. In the linear amplification it is only the

shape of the linewidth near line center that counts, not the mechanisms

that produce it. Of course, if the pulse were to saturate the medium,

everything would change completely, and these arguments could no longer

be made.

Similarly, if the linear pulse is put through an absorbing medium,

the center of the linewidth absorbs most strongly, and the tails contribute

most strongly to the output pulse. A Lorentzian shape and a Gaussian

shape differ most strongly at the tails, so the pulse out of an absorber

would be different for the two broadening mechanisms.

This result will be used extensively in our CO2 linear pulse

experiment described in the next chapter.

One final word about our theoretical model for linear amplification

before describing the experiment. The equations we have written here

are for the interaction taking place through a single dipole moment.

Unfortunately the CO 2 laser has a degeneracy problem, since there exist

a number of dipole moments corresponding to the different angular

orientations of the molecule. If we were considering amplification at
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times much longer than t 2 (not the case here) collisional effects would

cause the system to behave as though it had one dipole moment.

However, since in this experiment we only consider linear amplification,

and we are adding the linear responses of groups of particles that have

different strengths of interaction with the field, but whose behavior is

identical except for the low signal gain. Therefore, we can consider

this linear multi-level case to be equivalent to a two-level case with an

average gain.

on*
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CHAPTER III

EXPERIMENTAL SMALL-SIGNAL STEP RESPONSE AND
MEASUREMENT OF BANDWIDTH

Since the theoretical step response has been described in detail, a

brief description of the experiment will be given followed by a detailed

description of the various components in the experiment. Figure 3-1

shows the complete experimental equipment layout.

The signal from a cw oscillator operating in the P(16) line is passed

through a gallium arsenide polarization switch. The switch is followed

by a polarizer, which reflects out the radiation when the switch is not

activated. When a voltage is applied, the incoming wave becomes

elliptically polarized and is partially transmitted through the polarizer.

Light pulses with a risetime of 1 ns and lengths adjustable up to 100 ns

result. 14

The radiation is then passed through a multipass amplifier of five

passes of the type used by Kogelnik and Bridges. 15 A 5-meter ampli-

fying path is provided and gains as high as 23 dB can be obtained in a

mixture of CO 2 , N2 , and He. The flow rates and total pressures in the

amplifier are measured, and from this data the partial pressures are

evaluated. After amplification, the signal is detected in a Ge:Cu:Sb

detector at liquid He temperature. The detector is terminated in 50 ohms,

and the detected output is observed on a sampling oscilloscope with a

0. 35 ns risetime.

The GaAs electro-optic modulator

The electro-optic modulator achieves pulses with risetimes much

less than 7rt 2 , which is on the order of 10 nanoseconds. The GaAs



HIGH VOLTAGE PULSE

FIGURE 3-1



41

modulator works with the electro-optic effect in Cr+ doped single crystal

GaAs.16 The electro-optic effect here is a rotation of the polarization

of the electric field with the application of a dc or rf electric field.

Intuitively this can be seen to take place if the electric field puts a force

on the crystal which causes it to contract or expand along a certain axis;

the refractive index then changes differently for each of the two polariza-

tions. Figure 3-2 shows the GaAs electro-optic modulator used in this

experiment; the refractive index is increased along i and decreasedx

along i when an rf voltage is applied to the gold-coated surface. Consider
y

an optical field at the input to the crystal

-4
= E sin (wt - kz)

= E sin (wt - kz) (i + i )x y

so that

Ell = E

and

El = 0

after going through the crystal.

= i sin (Wt - kz+ ) + i sin (wt - kz - )j
/x 2 y2

El = E sin (wt - kz) cos 2

El E cos (wt -kz) sin 0

4
Eoutput

then
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where p is the total phase difference; therefore the power in the various

polarizations is

P= cos2

P1 = sin 2

p goes linearly with the applied rf electric field and length of crystal, and

for the size of crystal used in this experiment we can calculate from

reference 16 an rf (or dc) voltage of 11. 6 kV would be required for p = i,

which corresponds to P1 = 0 and PL = 1 (900 rotation).

The GaAs modulator is used in conjunction with a Ge polarizer.

Since the index of refraction of Ge is 4, if it is set at a Brewster angle,

it rejects 85% per face of the radiation of polarization perpendicular to

the polarization it passes completely.

In this experiment the oscillator was built with NaCl Brewster

windows so that the output power (internally apertured to a single trans-

verse mode) was vertically polarized. The Ge polarizer was placed

after the GaAs modulator and passed only horizontally polarized radiation.

When no voltage was applied to the GaAs, it behaved as an isotropic

material (P = 0), and the polarizer shunted 98% of the radiation off to the

side.

The voltage driver for the GaAs modulator land trigger for the

Tektronix 1SI sampling scope was an SKL Model 503A high voltage wave

generator which produced voltage pulses of 1 kV magnitude with approxi-

mately 0. 5 nanoseconds risetime by discharging a charged 50 ohm line

through a mercury reed switch into another 50 ohm line. The GaAs

formed a 50-ohm transmission line terminated in a match. The radiation

after the GaAs is elliptically polarized, and the Ge polarizer picks out the
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horizontally polarized component and passes that onto the multipass

amplifier.

The multipass amplifier

In both the linear and nonlinear pulse amplification experiments, it

was found helpful to use an amplifier of relatively long length. In the

linear amplification it was advisable because only when exp (az) >> 1 did

the difference between the homogeneous and inhomogeneous amplification

become minimal. In the nonlinear case, as we shall show, the nonlinear

interaction was not linear in length of amplification, i. e., the effect we

were looking for did not merely halve in halving the amplifier distance -

it may have been nonexistent. In both cases a 5-pass amplifier was used,

providing 5 meters of amplification with no beam overlap in the amplifier.

An excellent description of this amplifier follows (from reference 15):

"1 A multipass structure adapted from that described in Herriott,

et al. was used, as shown in Fig. 3-1. It consists of two spherical

mirrors of curvature radius R = 1 meter, spaced at a distance of

d = 1. 5 meters. This choice of parameters provides for ray systems

that are re-entrant after six traversals. The IR beam is injected at

an angle that arranges the impact points on the mirrors in coaxial

circular patterns. As indicated in Fig. 3-1, the beam enters the

amplifier through an opening in the input mirror and exits after five

traversals through an opening in the output mirror.

Each opening is a 1200-sector cut out of the circular mirror and

the input and output openings are set at an angle of 1200 to each other

as shown in Fig. 3-3. In the figure, the areas of beam impact on

each mirror are marked by numbers which also indicate the completed
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traversals.

It is known that two concave mirrors (without openings) form an

optical resonator which can provide feedback for laser oscillations;

these oscillations must be prevented in the present case. An

obstacle inserted inside such a resonator will quench multimode

oscillation patterns not only in the obstacle areas but also in areas

that are axisymmetrical to that obstacle. The two rotated mirror

openings can be regarded as obstacles. In the aperture of the

system there is no area that is not covered by an opening or its

axisymmetrical image. One expects, therefore, that the diffraction

losses of this structure for oscillating modes are very high.

Experimentally it was found that when the single pass gain exceeded

3 dB, accurate adjustment of the mirrors was necessary to prevent

oscillations. To increase the diffraction losses even further, masks

with circular holes, as shown in Fig. 3-4, were inserted in front of

each mirror. Holes of 8. 5 mm diameter insured freedom from

oscillations in the present experiments. The masks increased the

insertion loss of the amplifier by about 0. 5 dB. The overall

insertion loss of the amplifier varied between 1 and 2 dB depending

on the age of the Brewster windows and the gold-plated mirrors, and

on the quality of the alignment.

For these low insertion losses a zero-order Gaussian beam

must be injected, and the beam parameters must be matched 7 to the

parameters of a mode of the multipass mirror structure. Under

matched conditions all five beams passing through the amplifier have

the same contour. The beam waists are formed in the midplane of

the structure where the beam radius (or spot size) w0 assumes a
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value of

w = - -d(2R- d) = 1. 21 mm

The corresponding beam radii at the mirrors have a value of w =

2. 42 mm.

The oscillator was comprised of a 2-meter radius of curvature gold-

coated mirror and an 80% reflecting Irtran IV mirror (used for output

coupling) separated by 1. 7 meters. The mode matching between the

oscillator and amplifier was accomplished by using a 2-meter radius of

curvature gold-coated mirror (instead of a transmitting lens) which was

placed 2. 56 meters away from the Irtran IV output mirror and 0. 90

meters before the input to the multipass amplifier. The beam was

reflected off the curved mirror at an angle of less than 100 to minimize

aberrations.

Figure 3-5 shows a typical response of the input pulse and of the

response of the amplifier. Only the risetime of the amplifier was

studied. The scale is 10 ns/div. The input signal was comparatively

small and was partially obscured by sampling scope noise. The gain was

measured from the steady-state portion of the oscilloscope trace. The

amplified trace was sufficiently strong so that noise did not affect it.

Attenuators were used before and after the amplifier to insure

linearity of amplification. By using attenuators and noting the oscillo-

scope settings, the steady state low signal gain could be measured, and

a, the low signal gain coefficient, could be determined. Once a was

known, computer curves were generated by the method outlined in

Chapter 2 and were fitted to the experimental curve. The best value of

t2 to achieve this fit was chosen on a trial-and-error basis.
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An example of such a fit is shown in Fig. 3-6. The circles indicate

the experimental points taken from a photograph. The three curves

correspond to step responses computed from three different assumed

values of t 2 for a measured value of a.

Several experimental step responses were measured for varying

total pressures, but in each case the proportions of CO2, N and He

were fixed. Each time a value of t 2 was found by the procedure just

described.

Figure 3-7 shows a plot of the bandwidth, (nt 2 ) , that was

calculated in this manner vs total pressure in the amplifier. Note that

the matched t 2 was an effective t 2 that included inhomogeneous

contributions also. A straight line fits very well and has zero pressure

intercept of 59 MHz. Since the bandwidth we are plotting is full width at

half intensity, this zero pressure intercept corresponds to the Doppler

width. A 59 MHz Doppler width in CO2 corresponds to a gas tempera-

ture of 372 0 K. Furthermore, a linear bandwidth curve is to be expected

since the actual lineshape is the convolution of a Lorentzian and a

Gaussian curve, and the total linewidth is approximately equal to the sum

of the two linewidths.

The collisional part of this linewidth increases at 4. 67 MHz/torr.

This should check with collisional cross section data since t 2 is a

dephasing "collision" time of the polarization (equation (2-23)). Using

the latest values of cross sections for CO2 - CO2, CO2 - N and

CO2 - He collisions, 18 we get a linewidth broadening of 4. 84 MHz/torr

for a gas temperature of 372 0 K. Appendix B shows these calculations.
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Sources of experimental error

There are several sources of error in this experiment; they may be

ascribed to either the laser oscillator or the GaAs crystal.

The GaAs modulator was of poor optical quality; 9 the beam after

passing through it was not a TEM Gaussian mode. If we were using

a single pass amplifier, this would present no problem, since by definition

all portions of the beam experience the same linear amplification.

However, the multipass amplifier is designed to accept only a TEM 0

mode, and there was a 2 dB insertion loss when the beam of poor optical

quality was passed through the amplifier. The error comes about in the

manner in which the data was analyzed. The low signal gain coefficient

was measured from the electronic steady state gain of the amplifier,

when the theory was designed for the actual a. Introduction of loss

modifies equation (2-19)

+ IF + F= -K (3-1)T aZ T0

where T0 is the normalized field loss coefficient which changes the

result for E
step

Estep (with loss) = e-a z Estep (without loss)

But even if this extra step were taken in the data analysis, the result

would still not be completely accurate since equation (3-1) describes a

continuous resistive loss, whereas the insertion loss consists of lumped

diffraction losses at the apertures in the amplifier. Using a single pass

amplifier of necessarily shorter length presents problems in the matching,

since a high gain (eaz >> 1) system is necessary to minimize differences
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between the homogeneous and inhomogeneous amplification. No severe

detuning effects such as the 30 MHz curve in Fig. 2-4 were observed, but

the oscillator could have been 10 MHz off resonance quite easily even

though it was tuned for peak power. This off resonant amplification

could change the effective t 2 used in the matching. Furthermore, any

errors in measuring the effective t 2 are made worse when trying to

compute the collisional (homogeneous) linewidth because of the large

fraction contribution of the Doppler width to the effective t 2 '

Possible cures for these problems are:

(1) The use of a GaAs crystal that is boat-grown instead of

pulled. A boat-grown crystal has less optical striations

than a pulled one, where the Cr+ dopant atoms form

periodic concentrations and rarifications.

(2) The use of an oscillator stabilized onto line center.

This would give accurate results on line center, and a

second oscillator could be locked off line center (using

the first as a reference) to check the off-resonant

amplification theory.
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CHAPTER IV

NON-LINEAR AMPLIFICATION IN A CO 2 LASER AMPLIFIER

Before considering any particular model for nonlinear amplification

in CO we must first consider many of the different mechanisms

complicating the amplification process. It is convenient to consider

these at different pressure regimes since collisional effects change the

amplification most drastically.

High pressure case

Let us first consider the high pressure regime, approximately

10 torr total pressure. At this pressure we may consider the line to be

predominantly homogeneously broadened; furthermore, there is no

degeneracy problem even for transitions operating between two levels

with high J values since the collisions "couple" the different degenerate

M-levels of a particular rotational level into one effective level.

However, since the collision times begin to be small, and there are

other rotational levels, relaxation from other rotational levels into the

two levels between which the laser is operating becomes important. 20

Figure 4-1 shows an energy level diagram depicting this rotational

relaxation problem. It shows a laser operating at P(20) and how the

other rotational levels tend to relax into the 001 J = 19 and 100 J = 20

states. A further complication here is the fact that the electromagnetic

field in any experiment has a nonuniform cross section. The nonlinear

interaction is dependent on the strength of the electric field, so in any

experiment we would find the time evolution of the pulse amplification to

vary from the center to edge of the beam.
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Low pressure case

The other pressure regime where appreciably different amplification

effects occur is when the total pressure is less than one torr; at these

low pressures, relaxation from other rotational levels becomes important,

and it becomes easier to drive the nonlinear interaction. However, we

are still faced with the problem of the nonuniform intensity profile of the

electromagnetic field, and since the collisional times are so long, the

system no longer behaves with an average dipole moment, but rather we

have to concern ourselves with the nonlinear interaction occurring

through many different dipole moments. The medium is also predomi-

nantly inhomogeneously broadened.

Intermediate pressures

At pressures between the two regimes discussed above, the experi-

mental results are not especially startling, and the analysis is extremely

complex; all the problems above have to be contended with. The medium

is neither homogeneously nor inhomogeneously broadened. In addition,

rotational relaxation exists, and multiple dipole moments relax into a

single dipole in these time regimes. The nonuniform structure of the

electromagnetic field presents problems also. This case will not be

studied here.

Theoretical model for the high pressure case

For the reasons mentioned earlier we may use the homogeneously

broadened equations from Chapter 2.

F' + ' - - K' (4-1)
B T B Z



=K AN'-K'- ANF' K(4-2)
2

- 4K'F' N- (4-3)

where

F' = Fe i(T - Z) (4_4)

K' = K e (T - Z) (4-5)

For convenience we will only consider amplification at line center,

i. e., Q = 0. Furthermore, we are using a two-level system, which is

only an approximation to the multi-level CO 2 system. From Fig. 4-1 we

can see that, strictly, there is a set of equations for each two-level

system coupled by a rotational relaxation time Tr and together relaxing

back to their equilibrium value with a time T Instead we are going to

replace T1 in equation (4-1) with an effective rotational relaxation time,

1 1 + 1 1
1 1 Tr eff Tr eff

The boundary condition for the partial differential equations is the

initial electric field, F(T, Z = 0). Then the equations can be numerically

integrated on a computer, using the Runge-Kutta technique; the program

(developed by T. K. Gustafson) is in Appendix C. The pulse is integrated

along the path described in Chapter 2, and is stopped at a distance P

corresponding to the length of the amplifier in the experiment. In

addition to the input pulse and amplifier length, the medium parameters
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have to be specified; these consist of the low signal gain coefficient, the

phase interruption time t 2 , and population recovery time, t 1 .

Let us now consider two theoretical examples of this nonlinear

amplification for fast risetime nonlinear pulses. The first will be

representative of a typical experiment involving a CO2 laser amplifier,

except that it will completely neglect rotational relaxation. By doing

this simpler case first we can see the impetus for doing nonlinear

amplification. The second will be the same as the first, except that it

will include rotational relaxation. Also included on the first graph will

be a curve corresponding to a linearly amplified step (equation (2-26)) for

this gain and bandwidth. The linearly amplified step will, of course, be

bandwidth limited.

Figure 4-2 shows our first example of pulse amplification. The

pulse and medium parameters are summarized here:

Peak intensity input pulse = 9. 8 kW/cm 2

t2 = 2. 8 nanoseconds, which corresponds to a

homogeneous bandwidth Avn = 114 MHz

= 4 dB/m

fi = 5 m, which means the low signal gain is

20 dB or a factor of 100

1 _ 0, no rotational relaxation.
t i

In Fig. 4-2 we see the pulse intensity plotted versus time for z = 0,

2. 5 meters, and 5 meters of amplification. The linearly amplified step

is indicated by dashed lines on this graph. The intensity values on the

graph do not pertain to the linear amplification, which, by definition, is

done with extremely small intensity input pulses. The salient features



60

80 BANDWIDTH LIMITED AMPLIFICATION

70 -

/ 0C=4dB/m

60 Z=5 / 2=2.8ns
II tI=0

50 /

E/
40 /

30 Z= 2.5

20 -

10-

0
2 4 6 8 10

t(UNITS OF t2)

FIGURE 4-2



of the nonlinear pulse amplification are:

(1) The pulse is amplified by a factor of 7. 68, while the

low signal gain is a factor of 100.

(2) The pulse is amplified without distortion ("smearing"

effects) at rates greater than the bandwidth. After

five meters of amplification we see the risetime of

the pulse to be 6. 1 nanoseconds, and the inverse

bandwidth, art 2 , is 8. 89 nanoseconds. However,

the risetime of the bandwidth limited pulse (dashed

line) is approximately 20 nanoseconds. The intense

pulse could be amplified even further without losing

its fast risetime, whereas the low intensity pulse

would have a longer risetime with further amplifi-

cation due to gain narrowing.

(3) The tail end, or lagging edge, of the pulse has been

absorbed by the medium instead of being amplified.

From 12. 9 nanoseconds onward, the pulse at the

output of the amplifier is less than it was at the input.

The last two points are related by the fact that the pulse acts upon

the medium and the medium then acts back upon the pulse. That is, the

intense pulse hits the medium very hard in a time comparable to the

inverse bandwidth and is amplified to a value about a factor of 13 less

than its low signal gain, but as though it has a much larger bandwidth

than in the linear case. Another way to appreciate how this larger band-

width comes about is to view it as saturation broadening; that is, the

intense pulse induces transitions between the upper and lower laser level
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at a rate comparable to the bandwidth of the medium.

a = (ir t 2 ) 1  (4-6)h n2

When this occurs it is like flattening the Lorentzian lineshape to a lower

value but with a much larger linewidth. However, this simplistic view

has its limitations, since we cannot simply draw a new lineshape and

then resort to linear amplification. Rather let us consider equations

(4-1), (4-2), and (4-3). Note that the application of an intense pulse to

the medium can drive the polarization K and inversion N in a nonlinear

manner since they are coupled via equations (4-2) and (4-3). Finally,

the resulting polarization drives the electromagnetic field via

equation (4-1). If K were set equal to zero, we would have a propagating

wave with an amplification. In fact if we satisfy condition (4-6),

BK/BT # 0, and the optical pulse can drive the initial inversion into an

absorbing state. When this occurs the lagging edge of the pulse is

attenuated (the third observation of this theoretical pulse).

Figure 4-3 shows the variable N (the normalized inversion) versus

time for the amplification of the pulse of Fig. 4-2. We can see the

population go negative.

This population reversal in an amplifier is not merely an intellectual

curiousity. Haus, Wagner, and Gustafson have expounded these results

excellently, 3 but they can be summarized here. By applying a pulse

that satisfies condition (4-6), pulse sharpening and shortening may be

effected. In fact the further the pulse is amplified, the more

pronounced the sharpening and shortening become.

The importance of condition (4-6) can be seen as follows; if it is not
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satisfied, BK/BT = 0, and the equations reduce to the rate equations

T + = T2 ANF (4-7)

N -4T ANF2 N- 1
BT 2 TN- (4-8)

A most important result can be shown from these rate equations;

population reversal can never be achieved and the strongest nonlinear

effect that can be done is to bleach the medium, that is, p2 2  p1 1 or

N= 0.

Consider equation (4-8). The equilibrium value of N is

N = 1N
eq + 4 T 2 T AF 2

N is driven towards this positive equilibrium value with a driving term

that goes as the field squared; however, N is always greater than zero.

If population reversal is not achieved, active pulse sharpening cannot be

achieved.

There are some further limitations on the nonlinear amplification.

If the electric field becomes so strong as to make pE/h >> Avn, then

the field is probably so strong that the pulse propagates through the

medium without the medium changing the pulse appreciably. Or, if the

gain is very small (A << 1), then condition (4-6) can be satisfied and the

medium will not affect the pulse much either.

However, in a CO 2 amplifier, the pulse intensities are not so intense

as not to be amplified at all, and the gain is high enough for an effective

interaction to exist. Satisfying condition (4-6) is the chief experimental



difficulty.

Now that we understand the basic processes behind the nonlinear pulse

amplification, let us recompute our theoretical pulse amplification of

Figs. 4-2 and 4-3, and include rotational relaxation. Figure 4-4 shows

N, the normalized inversion, when a rotational relaxation time of

10 nanoseconds is included in the computation. The population reversal

is reduced considerably from Fig. 4-3, and the result of this is shown in

Fig. 4-5 where the pulse amplification is plotted. There is no absorption

of the lagging edge of the pulse since the medium is not sufficiently

absorbing.

We will now consider amplification at the low pressures where

rotational relaxation is not a problem.

Theoretical model for the low pressure case

Let us begin by considering the equation for an inhomogeneously

broadened medium, (2-32), (2-33), and (2-34).

F+ =F Q(v) dv

aQv - -A M(v) F - i 'Q(v) - Q(V)
BT T2

= 2 (F Q(v) + F Q" (v))
a T

where 1/T 1 = 0.

These equations must be modified to include the effects of the

rotational degeneracy of the laser levels. Consider a CO 2 P transition
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operating between J-1 and J. Figure 4-6 shows a model of the amplifi-

cation process. There exists a set of 2J-1 independent populations with

different dipole moments (actually our calculations are made simpler

since p-m =m). Furthermore,

Am =M

Mm=O J1-T

This is true for a rigid molecule; including the effects of a non-rigid

vibrator would only make small second-order correction here.

Equations (2-32), (2-33), and (2-34) must be modified as follows:

(1) M(v), the normalized population inversion per unit

frequency for a group of particles centered a frequency

v away from line center, must be further split to include

the different populations for the different dipole moments

M-+Mm

(2) Q(v), the normalized polarization current for a group of

particles centered at frequency v away from line center,

has in its normalization a dipole p; it must be separated

into the different polarizations pertaining to the different

orientations. Therefore

Q) - Am Qm(
Am=O

(3) A, the normalized gain coefficient, is proportional to p2

A -+ Mm 2 A
m=O
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The value of A is calculated by summing over the

degeneracy quantum number, p.

A 0 A 2
Ao J 2

m

Using all these new variables, the equations which describe the

intense pulse amplification are:

BF +
'aT a z

BQ (v)m pm

ym =0

(4-9)-00

mQm

A M (v) F -
o m ig Q (v)m

Q (v)
-m (4-10)

BM (v) 2 pM

Mm =0
(F' Qm(V + F Q' (v))m

The initial conditions which must be specified are:

(1) The frequency distribution of the initial population

distribution M (v) (Z = 0).

(2) The initial pulse at Z = 0, F(T, Z = 0).

(3) The gain coefficient A0.

(4) The rotational quantum number and the values of

the dipole moments.

(5) T 2 '

(4-11)



The equations have been numerically integrated on a computer by

C. K. Rhodes. 21 Figure 4-7 shows a typical pulse amplification done on

a computer for 2. 5 and 5 meters of amplification. The parameters used

in the computation were:

Peak input pulse intensity = 2. 38 kW /cm 2

t = 85 nanoseconds

A = 0. 0295/m, which corresponds to an a of 1. 5 dB/m

and a low signal gain of 5. 62 for the length of

amplification = 5 m.

J = 20, and the corresponding dipole moments

An inhomogeneous Doppler broadened line of 60 MHz

Active pulse sharpening does occur and attenuation of the lagging edge is

observed. Note that these numbers are representative of a CO2 laser at

these pressures and hence we can expect to see these effects at the low

pressures.

Figure 4-8 shows a comparison between the pulse amplification of

Fig. 4-7 and the same pulse amplification neglecting the rotational

degeneracy. The pulses after 5 meters of amplification are not

appreciably different, because for a high J value most of the dipole

moments are centered about some average value; an extremely high pulse

intensity is required then to make the products of the dipole moments and

electric field noticeably different. However, if we were considering

amplification on a P(4) transition, the values of the dipole moments would

be considerably different, and these intensity values would be sufficiently

strong to cause appreciable differences between the single dipole

amplification and multiple-dipole moment amplification.
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Comparison with analytic 7T-pulse solutions

Most of the theoretical work done in fast optical pulse amplification

has been concerned with analytic solutions of the equations. That is, if

we include the loss term in the field equation

+T + F -K or - Qm(v) dv
0T M - T

a steady state pulse with a hyperbolic secant shape will evolve; it is

called a ff -pulse because it satisfies the condition 2 2

E- S dt =IT

However, this pulse does not come about until the loss from the term

F/T becomes comparable to the energy put into the field from the

amplifying medium. This is not satisfied at all here; the loss is so

small that we will not consider it in our model.

Effect of nonuniform electric field

It has constantly been mentioned that the nonuniform structure of the

electric field causes variations in the rate of population reversal, pE/h.

All the theories described thus far use a plane electromagnetic wave.

This problem has plagued workers in this field for quite some time.

For example, Hahn and McCall in their work on self-induced transparency

in ruby were limited in their analysis of the observed transparency by the

fact that the beam in the absorber was self-trapping and forming small

filaments. 23

For the particular experiment done here, the problem is every bit

as complex because of the diffraction of the beam in the amplifier. First
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consider the case of a pulse propagating in an amplifier such that there

is very little diffraction; that is, the beam may have any transverse

intensity distribution (in our case a TEM Gaussian), but this intensity

profile will not change very much while the beam is propagating through

the amplifier when the amplifier is off (a = 0). In this limit (ray optics),

the computation can be done for several values of input intensities, and

the resulting output intensities can be summed after being multiplied by

appropriate weighting factors for the areas that the various input

intensities occupied. The resulting sum will give the output power, and

the computed result can be made to simulate reality by increasing the

number of input intensity levels used.

But the amplifier used in this experiment has a beam which diffracts

appreciably while passing through it; in linear amplif ication with a

Gaussian beam profile the spot size, w, the radius of the e intensity

value, varies between 2. 42 mm on the mirrors of the multipass amplifier,

and 1. 21 mm in the center of the amplifier. This refocussing condition

on each pass is necessary to achieve five passes of amplification without

appreciable spreading of the beam, which is necessary to observe strong

nonlinear effects within a reasonable amplifier length.

However, the method used in generating the short intense pulses

produced pulses which did not have a pure Gaussian intensity cross

section, but rather they resembled a plane wave of finite aperture. Of

course, the insertion loss increased in attempting to couple these pulses

to the multipass amplifier which in this case behaved as a mode filter.

So although a plane wave treatment could be used, the diffraction of the

beam and its being apertured could not be included in the theoretical

model.
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CHAPTER V

NONLINEAR PULSE AMPLIFICATION EXPERIMENT

The main problem in achieving any kind of interesting nonlinear

pulse amplification in a CO 2 laser amplifier with pulse sharpening and

attenuation of the lagging edge is the fulfillment of condition (4-6).

pE/h ; Av, the bandwidth of the system

The CO2 laser can be Q-switched since it is a high gain system

(a > 3 dB/m at normal operating pressures) and has a long lifetime of

the upper laser state (; 10-3 seconds). The normal method of

Q-switching is by rotating one of the cavity mirrors. The risetime of

the Q-switched pulse is approximately 100 nanoseconds, which is too

long; the long risetime of the pulse is strong enough to saturate the

amplifier before the strongest part of the pulse can begin to drive the

medium (flip the population) at a very fast rate. The rotating mirror

Q-switched pulses could only achieve population reversal severe enough

to lead to attenuation of the lagging edge of the pulse if an amplifier of

extraordinary length were used (about 25 meters for typical parameters

of a CO laser). Obviously a method of extracting the energy from the2

cavity, other than transmission coupling through a cavity mirror, is

needed.
Considerable attention has been given to the production of short CO 2

pulses by introducing a saturable absorber, such as SF into the

5
cavity. Unfortunately these pulses do not have very short risetimes

either (f 50 nanoseconds), and do not exist singularly; rather they are

emitted in trains with approximately 20 pulses in each train. Amplifier

experiments cannot be done with 20 successive pulses; after each pulse,



the amplifying medium needs a chance to recover, i. e., N, the

normalized inversion, must return to unity.

One solution to this problem is to place our GaAs modulator and Ge

polarizer, a device with which we can achieve nanosecond switching

times, external to the cavity. Using the arrangement described in the

linear experiment, the pulse input to the amplifier could be switched on

with a nanosecond risetime. But to get 100% transmission through the Ge

polarizer, the GaAs modulator would have to have an electro-optic

rotation of 900, requiring a voltage of 11. 6 kV.

The method finally used for short pulse production is shown in

Fig. 5-1. The GaAs modulator and Ge polarizer are used inside the

cavity, both to achieve Q-switching and pulse extraction, in this case

called cavity dumping, since when the voltage signal is applied to the

GaAs to extract the pulse, the cavity behaves as though one of the mirrors

were removed, and the energy was "dumped" out. 24 The operation is

simple in theory but difficult to perform in practice.

When no voltage is applied to the GaAs modulator, it behaves like an

isotropic material, and the laser oscillates cw with a polarization in the

plane of the paper. Consider what happens when a quarter wave voltage

is applied to the modulator (cp = 1T /2). Any radiation traveling toward M2

passes through the crystal, becomes circularly polarized, bounces off

M2 , goes through the GaAs modulator again, becomes linearly polarized

(polarization vertical to the paper), and is reflected off the Ge polarizer.

In this manner, the GaAs acts as an internal cavity switch to stop the

laser oscillation. But now consider if the voltage is suddenly dropped to

zero as in Fig. 5-2a. The laser will begin to Q-switch with an experi-

mentally observed risetime of 300 nanoseconds on detector A, Fig. 5-2b;
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M2 was an Irtran IV flat with 5% transmission. The voltage is

re-applied to the Ga-As modulator when the cavity intensity is at its

maximum, Fig. 5-2a; then the Q-switched pulse is shuttled out of the

cavity by reflection off the Ge polarizer. The pulse has a length of

twice the round trip transit time of the cavity, 2/c, in this case

48 nanoseconds, and its risetime is limited only by the voltage risetime

of the GaAs driver (f 5 nanoseconds). The output pulse is monitored

by detector B, Fig. 5-2c.

Figure 5-3 is an oscilloscope photograph of the intensity inside the

cavity (upper trace) and the voltage on the GaAs crystal (lower trace).

Figure 5-4 shows the dumped pulse (upper trace) and intensity inside

the cavity (lower trace). The risetime of the pulse is approximately

5 nsec, and its peak power approximately 1. 5 kW.

Figure 5-5 is a multiple exposure of Fig. 5-3, but during one

Q-switching sequence the voltage was not re-applied to the GaAs. On

that one occasion, the intensity in the cavity leaked out through M2; this

is evident in the upper trace.

Figure 5-6 is like Fig. 5-3, except that proper axial tuning of the

cavity has led to spontaneous mode-locking behavior. The ringing of

the upper trace is 21/c, and the width of the pulses indicates that only

3 modes are being locked. The mode-locking was not repetitive enough,

however, and most of our amplifier work was done without trying to

induce mode-locking to achieve shorter pulses.

The cavity was 7. 2 meters long and Z-shaped so that it could fit on

our optical table. Three separate gain tubes were used; a three-foot-

long 11" diameter, a four-foot-long 1' diameter, and a four-foot-long

3/4" diameter. M was a total reflector, 7. 32 m radius of curvature,
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making the cavity nearly semi-hemispherical. This was necessary so

that the cavity mode would be small enough to fit through the GaAs, which

was near the M2 , the flat mirror.

The same multipass amplifier was used here as was used in the

linear experiment. The mode coupling parameters were d = 1. 245 m,

M 3= 2. 08 m radius of curvature, and d3 = 0. 853 m. In addition to the

previously mentioned fact that the extra length is of critical importance

when looking for nonlinear effects, the multipass amplifier offers other

advantages for nonlinear pulse amplification experiments as well:

(1) No overlap from pass to pass. Whereas this could have

been tolerated in a linear experiment, it definitely could

not be in a nonlinear experiment when the population

inversion varies with time.

(2) The beam is repeatedly refocused. This keeps the

intensity (and the electric field) at a high level, which

drives the nonlinear interaction at a faster rate.

The experiment here involves taking power measurements from our

detectors B and C, which were Ge:Cu:Sb cooled to 4. 20K having measured

risetimes of 1 nanosecond or better (Fig. 3-5). Let us now consider the

bias circuit for the detectors as shown in Fig. 5-7. Note that with this

circuit the voltage across the load is the same for either pulse or cw

radiation impinging upon the crystal, because the capacitor maintains a

constant voltage even when the impedance of the crystal changes suddenly

to a burst of radiation. The detectors were calibrated and plots of A I,

the change in the detector current due to the presence of laser radiation,

versus power input to the detector were made. These calibrations were

0 .76done for a series of bias currents. It was found that A I -P
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Calibrated attenuators were placed at the inputs to detectors B and C so

they would not be saturated. The oscilloscope curves were corrected

for the nonlinear detector characteristics.

Since the pulse risetime is limited by the voltage risetime onto the

GaAs (Fig. 5. 2a), let us discuss how this was done. Figure 5-8 shows

a schematic of the electronics. An SKL Model 503A pulser emits a

70 volt, 0. 5 nanosecond risetime pulse which triggers a Marx-Bank

amplifier (roughly successive stages of transistors run in the avalanche

25
mode). A high voltage pulse triggers a burst of ultraviolet light

(tungsten wire on a barium titanate disk) in a spark gap chamber and the

ultraviolet breaks down a set of spark gaps which are nearly close enough

to break down spontaneously. The first set of gaps breaking down reduce

the voltage to zero on the GaAs, trigger the oscilloscope, and send a

voltage surge along a variable delay line. When this surge hits the

second set of spark gaps (s 300 nanoseconds later) they break down and

the quarter wave voltage is re-applied to the GaAs.

Experimental limitations in intense short pulse production

The main limitation in producing pulses in the manner just described

was the presence of dc voltage on the GaAs; the dc voltage heated the

crystal, which necessitated cooling of the crystal to prevent thermal

runaway. However, there was still a temperature distribution in the

GaAs causing it to behave like a thermal lens. Since the cavity was

near semi-hemispherical so that the TEM mode could fit into the GaAs,

the thermal lens effect caused laser oscillations with a non-Gaussian

mode pattern. Experimentally the mode appeared to be an aperture-

limited plane wave. For example, when the amplifier masks described
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in Chapter II were inserted, it was found that the insertion loss increased

by a substantial amount (up to 2. 5 dB) which indicates the mode was not

a Gaussian in cross section and that its diameter was greater than the

aperture diameter, 8. 5 mm.

A further complication is the fact that the oscillator emitted cw

radiation since it was impossible to shut off the laser completely by

applying a quarter wave voltage to the GaAs modulator. This was

probably due to some imperfection in the crystal giving it some

permanent birefringence. In that case, no value of voltage can turn off

the laser completely.

But this cw radiation was not steady; as a result, the inversion in

the oscillator was not the same from pulse to pulse, and the pulse

amplitude varied a good deal more than one would gather from Fig. 5-5.

The photograph in Fig. 5-5 was taken when the crystal was cooled by

conduction through silicone vacuum grease applied to its sides and

bottom. Later, the silicone grease was removed since it flowed over

the optical faces; the crystal was then air cooled, which proved to be

not as satisfactory from the point of view of laser performance.

The inherent trouble with the cw output is that it is amplified also,

and once it is amplified enough to saturate the amplifier, the inversion

in the amplifier can vary with time, making the problem even more

difficult to analyze. If one records only large pulses, however, the cw

output is then probably low, and the inversion is affected less. From

the relatively high experimentally measured gains, one concludes that

this had to be the case. The only requirement of the cw fluctuation is

that it reduce to a low value a time interval equal to at least t before

the pulse comes along, so that the amplifier inversion can return to its



(optical) field-free equilibrium value.

Low pressure amplification results and computer matching of curves

Using the techniques just described, pulse amplification was

observed at low pressures; the partial pressures of CO2 and N2 were

0. 25 and 0. 55 torr, respectively. Figure 5-9 shows two photographs

of oscilloscope traces; the upper photograph is for the amplifier off,

the lower for the amplifier on. In each photograph the upper trace is

detector C, the amplifier output, and the lower trace is detector B, the

amplifier input. These two photographs were necessary because of the

insertion loss of the beam into the amplifier. By noting the relative

amplitudes and voltage settings in the upper photograph, one can

determine for the lower photograph what the input power (lower trace)

would have been at the output. In this manner the electronic gain of the

amplifier was measured. The curve marked 'experimental' on Fig. 5-10

shows the resulting input and output powers after the detector character-

istics had been taken into account. Here we now see sharpening of the

front edge of the pulse, shortening of the pulse (from 34 nanoseconds

full width at half power to 20 nanoseconds) and attenuation of the lagging

edge. This is the first observation of population reversal in an active

medium.

These curves show important practical results also:

(1) Pulses can be amplified significantly at frequencies

greater than their bandwidth. Here we have a pulse

with a risetime of 18 nanoseconds being amplified

significantly (peak pulse gain of 2. 43) when the inverse

Doppler width is 17 nanoseconds.

(2) Pulse shortening can be achieved while amplifying
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the pulse.

(3) Since the lagging edge of the pulse experienced

attenuation, due to population reversal, the shortening

effect becomes more pronounced as the amplifier

length is increased.

Computer curves were run to predict the amplification theoretically.

The experimentally observed input pulse was used as one boundary

condition for the equations which describe the pulse amplification,

equations (4-9), (4-10), and (4-11). The pulse was observed to occur on

P(20), and the appropriate dipole moments were used in the computer

program. The other pertinent parameters were AvD = 59 MHz and

t2 = 85 nanoseconds. Figure 5-11 shows the computer generated curve

labelled 'theoretical' and the experimental result when a low signal gain

coefficient of 1. 5 dB/m and an intensity of 2. 38 kW/cm2 (corresponding

to a beam diameter of 3. 6 mm) were used. A plane wave model was

used for the reasons mentioned in the previous section. The most

obvious observation of this theoretical-experimental fit is that the energy

in the experimental output pulse is higher than the one predicted using

the above parameters in the computation. Whereas we could not hope to

have the computer program predict the pulse behavior exactly, it should

at least predict the energy gain of the pulse. From experimental

observations, we know the pulse to be larger than the 3. 6 mm used here,

because of the previously mentioned difficulties with the GaAs. If we

use the aperture size, 8. 5 mm, as the size of the beam, the peak input

intensity is lowered to 1. 47 kW/cm 2, and using a = 1. 4 dB/m, the curve

labelled 'theoretical' on Fig. 5-10 results. This is as expected because

the medium can do more to the radial portion of the pulse of low intensity
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than the central portion of high intensity. This fit, Fig. 5-10, is our

best fit.

Figure 5-12 shows another experimental observation and theoretical

match of low pressure amplification. The pressures were the same as

in the previous case. The input pulse is exceptionally long because the

dumping did not work perfectly. The parameters used to obtain this

best fit were the same as before, except the low signal gain was

1. 5 dB/m and the peak intensity of the input pulse was 0. 809 kW/cm2

The computer matching was done for a single level instead of P(20) to

conserve computer time. Note that for the input power level of 1. 4 kW

an intensity of 2.18 kW/cm2 is necessary for an aperture size of 8. 5 mm.

The rather large discrepancy between the two intensity values could be

due to the "quality" of the mode when the experiment was performed;

diffraction in the final pass could have caused the intensity to be lower

than expected (most of the nonlinear amplification would occur there

also). Our pulse power measurement technique could have been wrong

also.

However, both of these examples consistently show the pulse

sharpening and absorption of the lagging edge of the pulse. The

absorption is frequently referred to as a nutation effect. This is the

same phenomenon, except there is no periodic ringing which is normally

associated with the nutation effect. If the pulse is much shorter than

t2, much longer than (AvD) 1 , and of the correct intensity, it may

cause a ringing (nutation) in the inversion, which in turn may cause the

pulse power to indent (have a localized minima) and, if amplified

sufficiently, to break into two parts. Consequently, many observers

fallaciously assume any observation of ringing in a pulse to be a nutation
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8
effect, when in actuality pulse ringing may be caused by many other

effects, such as off-resonance linear pulse amplification (Fig. 2-4).

Other observers also incorrectly believe that no nutation effect has

been observed unless there is ringing in the pulse intensity. 26

In our particular example, we have caused the initially inverted

population to become noninverted, and the medium to become absorbing

(since the lagging edge was absorbed), but the power itself did not begin

to indent. We were slightly low in the intensity required to observe

pulse ringing. Consider Fig. 5-11, which shows a computer fit for a

2
peak input intensity of 2. 38 kW/cm . Now consider Fig. 5-13, which

shows the same computer result if the peak input intensity is increased

to 9. 66 kW/cm 2; the output clearly shows pulse ringing. Had the mode

structure of our beam been more well-defined, the intensity of

experimental pulse would have been high enough (in theory) to observe

pulse ringing.

High pressure amplification results and computer matching curves

Pulse amplification was also attempted at high pressures,

p CO 2 = 1. 83 torr, p N2 = 1. 6 torr, and p He = 8. 23 torr. Figure 5-14

shows the corrected input and output power curves obtained by using the

techniques described in the previous sections. Also on Fig. 5-14 is the

theoretical output curve obtained from Equations (4-1), (4-2), and (4-3)

by using the input pulse as a boundary condition on the differential

equations. The medium parameters used in the computation were

= 2. 5 dB/m, t2 = 2. 8 nanoseconds, and t =22. 4 nanoseconds. t ,

one may recall, is the effective rotational relaxation time.

Again a plane wave interaction was assumed with a beam diameter
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of 8. 5 mm corresponding to a peak input intensity of 2. 46 kW/cm2

Due to the problems with the cw input to the amplifier, the cw output

was high enough to alter the bias current in the detector, causing its

sensitivity to change significantly. Although this was accounted for in

the plotting of the pulse power, the accuracy of the power of the amplified

pulse is only good to 25%.

Nevertheless, the experimental-theoretical match is rather good,

considering the non-idealized state of the experiment. The most

important fact to be learned here is that the lagging edge of the pulse is

not absorbed because of rotational relaxation. However, since the low

signal gain is so much larger at the high pressures than at the low

pressures, the peak power gain is higher also.

Using these considerations, one can design an oscillator-amplifier

combination for any particular use. For example, one may use an

oscillator of moderate pulse output power to drive a low pressure

amplifier so that active pulse sharpening could be achieved and shorten

the pulse to a desired length in time. The shortened pulse could be then

amplified in a high pressure amplifier which would amplify the shortened

pulse to the desired power level.

-i



99

CHAPTER VI

CONCLUSIONS

This work has investigated both the experimental and theoretical

aspects of linear and nonlinear short pulse amplification. However, in

no sense can this be regarded as the final definitive work in this field.

Rather it should be regarded as a first investigation of these interesting

phenomena.

For example, the linear pulse response experiment showed the band-

width of the laser could be measured by observing the step response.

By performing the experiment more accurately, as discussed in

Chapter III, one could determine the collision broadening linewidths of

the constitutive gases in the CO2 laser. Also by studying the behavior

of the linear response at low pressures one can observe the Landau-type

damping which is present in an inhomogeneously broadened line.

The theory derived for the linear experiment is applicable not only

to Co2 lasers, but could be used to predict the behavior of other laser

amplifiers to fast-risetime linear pulses. Bandwidth information could

be derived from such experiments even for lasers in the visible region.

Also note that the theory derived in Chapter II for the inhomogeneous

linear response could be used for solid state lasers if the inhomogeneous

broadening profile were changed from a Gaussian to whatever is

necessary for the particular broadening mechanism that may exist.

However, the nonlinear pulse experiment yielded the most interesting

experimental results by far. Without belaboring the results already

discussed thoroughly in Chapter V, one can see that pulse amplification

is not limited by the bandwidth of the medium, and that active pulse

sharpening can be achieved via resonant amplification.
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The nonlinear experiment could be made more successful if a

rotating mirror were used to initiate Q-switching in the oscillator. This

would eliminate the need for the dc voltage on the GaAs. Dumping could

be achieved by applying a short pulse of voltage to the crystal. The

advantages would be no cw radiation from the oscillator and better

mode definition of the beam.

Other interesting objectives to be studied here are: (1) mode-locking

the oscillator to obtain pulses shorter than the round-trip transit time,

and (2) using a pulsed amplifier to obtain higher gains.

The techniques learned here for studying nonlinear pulse interactions

may be used in any high-gain laser amplifier.
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APPENDIX A

Program to compute equations 2-26 and 2-31.

DIMENSION FI(30)
INTEGER MN,N,J,KS,KT

LABEL SETBRK.(LABEL)
READ PRINT COMENT $TYPE N,J,TMIN,TItCMAX,ZANZ,2,UAGS

R 'A
SAFE:2.0*SQRT.(ZAN)
THROUGH KEEP, FOR T:TMIN,TINC,T.G.MAX
ENDPT:SAFE*SCRT.(T-Z)
BEGI N:0.0

SHORT 8 ND:S IMPER. (BEGIN,ENDPT,R .,N,J,KS,KT,PF,PS)
A ND:S IMPER.(BEGI N,ENDPT ,Q., N,J,KS,KT,PF,PS)

NO: (A ND+1)* (A ND+ 1)
MND= NOD*B ND
S NND:(DND+NNE)* EXP. (-2*7AN*(12 / GMG*G*12*T2+1.))
WHENEVER KS.E.1 .ANC. KT.E.1
PRINT FORMAT WHYT,OND,NNESNNO
OR WHENEVER KS.E.O
N:4+ I
T 'I SHORT
OR WHENEVER KT.E.0
PRINT FORMAT HELP,T
E 'L

KEEP C ONT I NUE
T 'O READ
V'S 1HY:$3H T:F6.2,7H IREAL:E15.8,S2,5HIMAG:E15.8/,
:1,6HES TEPE15 .8*$
V'S HELP:SS1,H'FAILED TO C ONVERGE FOR T : F6.2//*$
INTERNAL FUNCTION (AB,X)
ENTRY TO Q.
Y:00
MN:1
MFIBES. (X,Y,MN,FI)
EXPR:EXP.(-X*X/(4.0OZANWT2))*FI(1)*COS.(X*X*IMG/(4.O*ZAN))
FUNCTI ON RETURN EXPR
END oF FUNCTION
INTERNAL FUNCTION (A,B,X)
ENTRY TO R.
Y:0.0
MN 1
MFl8ES.(X,YMNFI)
EXPS:EXP.(-X* /(.0*ZA'T2))*FI (1)*SIN ,(X*X*&S/(4.OZ*2AN))
FUNCTION RETURN EXPS
END OF FUNCTION
END IF PR OGRAM
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CALCULATION OF AMPLIFIER BANDWIDTH FROM

COLLISION CROSS SECTION MEASUREMENTS

The bandwidth can be computed from the collision frequency by

102

1

km

c
7T

(8kT )
cm scm

where the sum is over the m constitutive gases, pm is the partial

pressure of the m gas, am is the collisional cross section between CO 2

and the mth

m CO 2 m
m =cm mCO2

where mCO is the mass

thm

of the CO2 molecule and m is the mass of the

gas.

The cross sections used in these calculations were

9CO2 - CO
2

GCO - N
2 2

C2 -H

= 13 10- 1 5

= 8. 7 10 5

cm

cm

-15 2
= 3. 710 cm

Using these numbers we find the various collision broadening

frequencies to be

gas, and
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Avn(C0 2 ) = 6. 43 MHz /torr

Avn(N 2 ) = 4. 88 MHz /torr

Avn(He) = 4.49 MHz/torr

using a temperature of 3730K obtained from the Doppler width (zero

pressure intercept) of Fig. 3-7. Using the partial pressures listed on

Fig. 3-7, we find the collision linewidth measurements using these cross

sections to be 3. 7% higher than the pulse amplification linewidth

measurements.
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PRRT=PP*GRT
WRITE (69907) RtTvXIM 1GRAC
WRITE (61909) 7YZYvPRPT

410 CONTINUF
700 JLTM=(ZL+H*V)/(',-i*V)

DO 201 J=19JLTM
R=R+H*V
PR=O.
Af,=I.
AA=I.
AB=I.
BA=l.
BR=I.
BC=I.
DO 2-1 T=?.PNNN

HH=H*V
700=Z(I)/VAC+7(T-1)

xni=X( T -1) /AB /CR+NE
YO(I=Y(T)/VCC+Y(T-1)
Z0=-HH*Y(I)/BRjVf-r
XX=X./6.+X(T-1)

YY=YO/6 .+Y ( 1-1 )
Z7=70/6.+7(I)/(VAC)
DO=DA*BA
DP=DR*BB

ZI=-HH-*(Y00+Y9)/2./nP
XX=XX+XT/3.
YY=YY+YI/3.
ZZ=ZZ+7T/3.
XO=4.*H*(Zrl +71)/2.*(Y(1-1.)+YI/2.)*D'I
Y.=-A*H*(79n+7T)/?.,-(xnr)+x!/?./4R/CR) "cDP
79=-HH*(Y90+YT)/?./0P CD
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909 FORPMAT (3H F=,F16.7,3X,3HPR=?P16.7)
-110 FORMAT(' INPUT~ INTFNSTTIFS 1)

CALL FXIT
FND
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