
SUBMARINE GEOLOGY OF THE RED SEA

by

Arthur W. Jokela

B.S., M.I.T.

(1963)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September, 1965

Signature of Author...... ... ................
Department of Geology & ohysics

Certified by..... .. .
Thesis Supervisor

Accepted by.... -. ..... .......... ..... ............
CILairman, Departmental Commnittee on

Graduate Students

I



ACKNOWLEDGEMENT

The author is greatly indebted to Professor William H.

Dennen for his advice and constant encouragement in making

the present work possible.

Special thanks go to Dr. John M. Hunt, Mr. A. R. Miller,

and Dr. Egon Degens of the Woods Hole Oceanographic Institu-

tion for initiating the author's interest in the Red Sea study

through the activities on Atlantis II, cruise 15.

Mr. S. T. Knott and Miss E. T. Bunce of the Oceanogra-

phic kindly allowed the use of some of their unpublished data.

Drs. C. L. Drake, R. Fairbridge and B. Heezen of Columbia

University provided several references and points of informa-

tio. about the Red Sea area and their help is acknowledged. The

Standard Oil Company (New Jersey) generously provided access

to many of their reports on the region; Mr. Henry Hotchkiss is

particularly to be thanked.

The author is indebted to the Woods Hole Oceanographic

Institution for their financial support under contract No.

1599.



-1-

ABSTRACT

A literature survey has been done on the regional geology

of the Red Sea to summarize the factors which have been effec-

tive in the development of Red Sea submarine structure. Recent

geological and geophysical work in the Red Sea itself has been

consulted. Previous theories regarding Red Sea evolution and

structure are reviewed.

A new model for the structural evolution of the Red Sea

basin and its consequent submarine features together with the

supporting evidence is presented.

The model proposes Paleozoic development of the basin as

a shallow trough which subsided through the agency of semi-

plastic spreading and thinning. In contrast, most writers have

considered the basin a fracture feature of mid-Tertiary age.

The suggestion is made that Tertiary faulting and subsidence

represent a second phase of basinal development; this latter

activity was dominated by the development of a transcurrent

fault zone which passes through the sea.
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I. PHYSIOGRAPHY OF THE RED SEA AREA

The Red Sea trough separates the ancient crystalline

highlands of Arabia on the east from their counterparts on

the western Nubian shores. Lacking the central trough, the

two crystalline areas together form a nearly circular Pre-

cambrian shield. The so-called Arabo-Nubian Shield extends

from the Nile to central Arabia. It domes up toward the

middle, and is overlain on its periphery by an offlapping

succession of Paleozoic sediments.

The Sea is nearly 2000 kms. long from Bab el Mandab in

the south to Ra's Muhammad in the north; the width converges

from a maximum of 350 kms. at Massawa to about 190 kms. in

the northern reaches. (Figure 1). A most striking character-

istic is the nearly exact match in shape of the opposite

shores, and the even better match of opposite basement boun-

daries.

A band of mainly littoral-facies sediments up to 50 kms.

wide lines the Red Sea shores. In some places the beds are

reported to lie unconformably upon the basement. In other

areas, the contact is reported as a great boundary fault,

or fault zone. Correspondingly, the shield topography rises

slowly in some areas and steeply in others. It reaches its

maximum height of about 3 km. in the south Arabian and Ethio-

pian Highlands. Mean elevation of the hinterland through the

main body of the Sea is 1-1.5 km. (Figure 2).
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Figure 2,
Physiography of the

Red Sea.
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In the north, the topography again rises steeply above

the shores of Gulf of Aqaba. The bottom topography of the

Gulf is irregular; depth reaches 900 fathoms. The Gulf of

Suez, by contrast, is filled with sediments to a depth of

about 50 meters. Its shores are bordered by a sedimentary

lowland similar to that of the Red Sea.

The only major inconsistency in the borderland pattern

of the Red Sea itself is the Afar Plain, an extrusive igneous

lowland which borders the southwestern shore. This plain

fills a large triangular area between the sea and the high-

lands of Ethiopia and Somalia. The two highlands join at

the southwest corner of the plain and then continue inland

toward the east African rift zone. An important interruption

of the Afar Plain is a horst of basement rocks and Mesozoic

sediments which runs parallel to the Red Sea coast. Toward

the east, the Gulf of Aden shores diverge toward the Indian

Ocean at a small angle (6-9 degrees) like that of the Red

Sea shores.

The Red Sea bottom topography is rough except below the

shelves. It has a distinguishable pattern of depth--wide

trough and narrow shelves in the north; wide shelves and na-

rrow median valley in the south. The mean depth is on the

order of 500 meters. Sediment thicknesses range up to several

kilometers where measured below the shelves and trough. They

are much disturbed by faulting below the trough. Magnetic,
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gravity, and seismic measurements indicate the presence of

basic intrusive rocks in the form of a massive dike below

the median valley. The presence of namerous volcanic islands

in the southern parts of the valley agrees with this finding.
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II. INTERPRETATIONS

A. History of theoretical developments

The Red Sea has been characteristically interpreted as

a rather simple geologic structure--most typically as a gra-

ben or as a gap between separated crustal blocks. Lack of

complication in theories of its origin has most probably been

due to a shortage of detailed geologicAl information about

either the sea or its borderlands. Until recently, very little

direct information about the submarine geology has been avai-

lable, except for several oil well logs, mainly from the Gulf

of Suez. Most writers have assumed the Red Sea structure is

continuous with that of rifts described on land at either

end. Thus, the interpretation of the connecting structures

has been quite critical. This is especially true of the Gulf

of Aqaba--and its counterpart the Gulf of Suez--because of

their relative accessibility. For this reason, and also be-

cause the geology of the area is better known, the northern

end of the Red Sea will be emphasized in the present study.

The structure of Gulf of Aqaba is somewhat controversial.

It has been variously interpreted as a graben, a normal fault,

a crustal separation, a transcurrent fault, or an intermediate

combination. Even whether it has been under tension or com-

pression is not resolved in the current literature.

The Gulf of Suez, by contrast, has been agreed by most
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writers to be a subsidence trough or some kind of tensional

separation which has been continuously filled with sedimenrs

and faulted on the sides, however, whether the faulting is

a cause or effect of subsidence is not agreed. Although the

structure is superficially simple, it is in fact rather com-

plicated, and has not been given detailed treatment in thee-

retical writings (Tromp, 1950). The same is to some extent

true of the Red Sea proper (Owen, 1938). Much controversy

appears to have carried on because particular points of view

or types of information have not been reconciled.

Subsidence

The oldest and most durable structural argument holds

that the Red Sea subsided en masse as a response to prolonged

uplift of the Arabo-Nubian Shield. This view has often re-

ferred for comparison to the Rheingraben, which is also a

subsidence in the midst of a regional uplift, although on

a far smaller scale. The analogy was first made by Fraas (

quoted by Suess, 1875) on the basis of observations in the

Gulf of Suez and Aqaba, which he thought were both grabens.

The graben theory was much generalized and extended by

Suess, who saw relationships among the various rift sub-

sidences. Unlike many of his successors, Suess saw them as

distinct, though related.features:

"At the southern point of the Peninsula of Sinai

lies the intersection of two of the greatest sys-
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tems of linear fractures which are known on the

face.of the earth. The first is that of the Red

Sea, which is continued in the direction of Suez;

the second which runs almost directly from north

to south is that of the Jordan. This...meets the

line of the Red Sea at an acute angle and is not

continued further."

This distinction between the rifts has been restored in the

most recent interpretations (Holmes, 1965, Freund, 1965).

Following Lartet, Suess supposed the Jordan-Aqaba rift

was an "asymmetric fault trough". Corresponding rock forma-

tions extend much farther north on the east side than they

do on the west. The central depression was thought to repre-

sent a down-faulted block in the midst of a great normal

fault.

The Red Sea, on the other hand, according to.Suess was

a simple "trough subsidence, perhaps the greatest in the

world." Curiously, he thought the Gulf of Suez to be a younger

feature than the Gulf of Aqaba, although it has lower and

more matured topography.

Gregory(1924) systematized Suess' idea, contending

that the entire rift system from Jordan to Lake Nyasa, in-

cluding the Red Sea, is a continuous series of grabens of
ni

like history. He was followed in this opion by such pro-

minences as Krenkel (1924) and V.V. Beloussov (1962), Cloos

(cited by Holmes) has demonstrated through model experiments
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that such long grabens han be formed by simple uplift on an

area overlain by horizontal strata.

Exceptional Opinions

Ball (1911, 1912) suggested that Gulf of Suez is an

erosional feature and not the result of faulting activity.

He proposed the origin of the Red Sea and Gulf of Suez at

a relatively early date as a great land subsidence, possi-

bly during the Upper Cretaceous-Oligocence uplift; the va-

lley was supposed to have been first occupied by a chain

of fresh water lakes and a vanished Erythrean river.

The present paper's thesis is not inconsistent with

Ball's Erythrean watershed. His suggestion has otherwise

been largely ignored.

A compressional origin was suggested for the Dead Sea
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as well as for the east African rifts in the papers of Willis

(1928, 1936). He did not, however hold that the rift system

was contineous or of uniform structure through the Red Sea.

Opinions favoring the origin of the Red Sea trough through

a succession or alternation of folding and tension were

given by Argand and by Lamare.( cited by Owen ). This theory

has been generally discreditted (Holmes), but only with re-

gard to the Red Sea itself. The Jordan-Dead Sea rift has re-

cently been demonstrated fairly conclusively to result from

shear under compression (Freund, 1965).

Crustal Separation

The second major trend of Red Sea interpretation is that

of continental drift. This theory makes much of the amazing

coincidence in shape of the opposite shores as well as their

correspondence of topography and geology. It is further

supported by observations that the Red Sea and the Gulf

of Aden are morphologically and structurally intermediate

in character between continental rifts and deep ocean rifts.

According to the drift theory, as described by Wegener

(1924), continental rift valleys "form the first steps 6f

a complete separation of the two parts of the (continental)

block." ( page 168). In the case of the East African rift

valleys, "First an opening cleft arises' in the more bri-

ttle upper strata, whilst the more plastic layers below

are stretched." A moderately deep and isostatically un-
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compensated rift valley is the result. Upon further sepa-

ration, large areas of land may be submerged.

"In the case of the great rift-valley of the Red Sea, which

according to Triulzi and Hecker, is already isostatically

compensated, development may have gone so far that at the

deeper parts the sima is uncovered. With a further separa*

tion of the blocks, the pieces broken from the margins re-

main behind as ialands" floating in pure simatic oceanic

crust.

The Red Sea is thus presented as an important example of an

intermediate stage of ocean basin formation. Wegener did not

develop the examples in any detail, but presented an out-

line of a theory which was sufficiently advanced to account

for major physiographic features of crustal separation ba-

sins.

The 'hecking" and fracture theory of Wegener gives

the most satisfactory account of Red Sea evolution of all
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the theories surveyed. To the detriment of later theoreti-

cal development, it appears to have been largely overlooked,

perhaps because of its brief treatment (not much more than

given in the above paragraph) in the midst of many other

proposals.

Elements of the crustal separation theory have further

been pursued by many authors, including Carey (1954), Swartz

and Arden (1960), Girdler (1958,et seq.) and Holmes(1965).

Later Theoretical Developments

A theory of graben formation was developed by Vening

Meinesz (Heiskanen and Vening Meinesz,1958) as follows:

The first manifestation of uniaxial stress release in the

earth's crust is a normal fault with a dip angle of 63 de-

grees. (stage a)

-C)

A slight curvature develops in the crust on both sides of

the fault during readjustment toward'isostatic equilibrium.

On the downward-moving side, this gives rise to an addition-

al tension in the surface of the crust (stage b). A second

fracture foris at the. point of maximum curvature, which is

theoretically at a distance of 65 km. from the first for a
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crust of 35 km. thickness. If the faults converge downward,

the block will subside to form a. valley. (stage c). If the

faults are parallel or diverge, the block will tilt but

will not subside in approaching isostatic equilibrium. (

stage c').

R. W. Girdler (1958, '62, '63, '64) has presented a

theory based on Red Sea geophysical data which combines ele-

ments of crdstal drift and block subsidence. He re-empha-

sized the finding of von Triulzi (1898, 1901) that the cen-

tral Red Sea is an area of high positive gravity anomaly,

whereas the other rift zones are nearly all negative. Girdler

deduced that a body of basic intrusive igneous rock 60 km.

wide underlies the Red Sea median valley. He suggested that

this great dike represents magma extruded from beneath the

crust at the time of the rift formation, and that the sub-

sidence of the Red Sea crust is, in fact, due to the dis-

placement of this material. Girdler postulated that forces

and motions which formed the Red Sea were similar in kind

to those forming other rifts but more intensive (stage a).

-)7&
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Therefore, instead of a simple normal fault first forming,

as in Vening-Meinesz's theory, a complete separation of the

crust took place. Sub-crustal magma intruded into the gap

subsequently (stage b). The intrusion "caused subsurface

movements which originated the rift faulting along the

margins of the Sea. The formation of the wide trough is

therefore conceived to be a collapse effect due to the move-

ment of igneous material into the fissures of (the) axial

fracture zone." (Girdler, 1964) (stage c). Horizontal move-

ment causing the tension and separation was taken to be a

rotation of Arabia relative to Africa(second sketch above.).

Drake and Girdler (1964) have further developed the

details of this model in the light of seismic refraction

data. They constructed an idealized cross-section (Figure 3),

which is a great improvement over previous suggestions.

(Gregory, 1921; Swartz and Arden, 1960; Girdler, 1958).

An alternative theory developed by Carey (1958), con-

currently with that of Girdler proposes systematic normal

faulting as a mechanism of crustal separation. Carey stated

that ductile shear in the lower crust is the most important

mechanical factor in crustal block motion. He claimed that

the plane of a normal fault changes its slope toward the

horizontal at increasing depth in the earth's crust. At its

base, the motion of crustal block is resolved into laminar

fluid flow.

Mh_
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Thus, in the Red Sea, multiple fracturing of this type has

resulted in crustal thinning and the separation of the crus-

tal blocks. The submarine stnucture accordingly is a series

of tabular fault blocks separated by a median ridge of crue-

tal material. This ridge is obscured by sediments in the

case of Red Sea. A variation on this theory by Evision

(1960) suggested that sliding motions in the upper few

kilometers of crust are of primary impoctance.

The systematic patterns of faulting that he indicated are

similar to those of Carey, but secondary faults are shown
calvpe

con c away from the center of motion. His patternsare

based on observations of flow in glacial ice.

Carey is an active successor of Wegener in both the

the general theory of crustal drift(not discussed here) and
more

in thenspecific theory of crustal fracture and horizontal
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spreading. His treatment of structural detail is more sys-

tematic, and supported by theoretical arguments of sub-crustal

mechanics. However, his theory is less accomodating to the

complexities of topography, morphology, and structure that
S

are observed in the Red Sea. (Figure, 2 and 3).

Later Geological Models

Shalem (1952) contributed an interpretation of the

basic tectonics of the Red Sea-Near East region. He empha-

sized the importance of a compressional arc which follows

the eastern shore of the Mediterranean, beginning in Sinai

and branching toward the east in Syria (see figure). He con-

sidered this a basic structural trend of the region which

had been overshadowed in interpretations by the more drama-

tic Jordan trend, which he regarded as an older feature.

Folding on the compressional arc, according to Shalem, is

intimately associated with volcanic activity in the area;

he cited a number of examples of volcanic fissures which

are perpendicular to folding trend. He claimed these fi-

ssures are parallel to each other, and also to the "Ery-

threan" trend of the Red Sea; the fissures and the Red Sea

thus related, and all were ascribed to the action of "ten-

sional stresses". These stresses, plus the associated com-

pressions, and the volcanic emanations, are seen to occur

only on the Arabian side of a supposed Erythrean boundary,

the Red Sea-Gulf of Suez line. The African side he inter-
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preted to have been "comparatively stable." Age of the Ery-

os& L
threan faults was taken 6e *ower Miocene at the latest.

Quennell (1956; reviewed in.Quennell, 1958) presented evi-

dence demonstrating that transcurrent motion of the Dead Sea

fault is the primary tectonic feature of the structural geolo-

gy of the area. Motion was indicated to occur in stages, Mio-

cene-Pliocene and Quaternary, with a lapse of time between

the periods of activity. Quennell postulated that a rotational

motion totaling 60 occurred at the same time as the transla-

tion. Thus the Red Sea was suggested to evolve as a consequence

of translation-rotation pivoting on the Dead Sea fault beginn-

ing in Miocene time.

Swartz and Arden (1960) summarized the stratigraphic su-

ccession in the Red Sea region and postulated a sequence of

mechanical motions to account for it. As a basic structural

model, they assumed a variation on the sheme of Shalem. They

postulated the amount of crustal separation to equal the full

width of the present Red Sea;by, their account, the entire ba-

sin is a great fissure, filled by sediments and flows of lava

during successive stages of opening.

The tectonic model of Red Sea evolution suggested by

Swartz and Arden follows:

" At the end of lower Eocene time the first im-
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portant folding movements of the northern Red Sea
occurred. We believe that at this time a stress
couple centering around the southern Hermon Moun-
tains became established, and that energy derived
from this couple caused the horizontal shifting
of two or more blocks. These movements resulted in
concomitant compressional forces developing in the
south. (Figure 8).. .The Sinai Block (III) moved
southeastward along possibly older (Cretaceous)
northwest-southeast-trending faults. Concomitantly,
the Arabian Block (II) moved first northward against
the Sinai Block, and then rotated northeastward
from the African Block (I). The lines of separa-
tion between Blocks I and II and Blocks I and III
united to form a single, Jagged separation---the
paar. The opening of the paar formed the first
stages in the development of the Red Sea and the
Gulf of Suez.

In the area of the later Dead Sea, alternating periods of

compression and tension allowed the elevation of mountain chains

concurrently with the formation of the Dead Sea graben. The

paar continued to open, nearly reaching its full width by the

end of Miocene time, but still remaining closed in the south.

The final major structural development was the separation of

the Arabia block from the Somalia block. This began with east-

west faulting during late Oligocene or early Miocene time, and

culminated with the wrenching open of the straits of Bab el

Mandeb in Pliocene time. Figure 4 indicates their interpre-

tation of paleogeography at the critical Oligocene stage. The

fissure is shown partly opened, prior to fracturing of the

Gulfs of Aqaba and Aden.

4



The work of Swartz and Arden treated the Red Sea from the

point of view of classical stratigraphic land geology. They

assumed forces and motions wherever necessary, without being

particularly concerned with the structural geology. Thus their

deductions are at odds with most of the "structural" theories.

Their model is nonetheless accurate in several respects, and

has the great advantage of being primarily based on field ob-

servations.

Holmes, in his recently revised text (1965) summarized

the state of the theory of Red Sea formation as follows :"

Like the African rift valleys, the Red Sea and the Gulf of

Aden are structural depressions bounded by normal faults, but

...their dimensions are conspicuously different. Until a few

years ago this contrast remained unexplained, except by su-

pporters of contine.ntal drift who 6laimed the gap between Ara-

bia and Africa to be a clear manifestation of crustal separa-

tion and ocean floor formation, arrested at a relatively early

stage compared with, say, the separation of America from Europe

and Africa and the formation of the Atlantic floor." The widths

of the Red Sea and Gulf of Aden have been explained, according

to Holmes, by the discovery (Quennell, 1956, 1958) of the Dead

Sea transcurrent fault zone. By Holmes' account, ordinary rifts

-2D0-
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such as the Rhine graben and the East African Rifts, are the

consequence of'subcrustal expansion; in the Red Sea case, the

additional effect is postulated of a subcrustal current driving

the Arabia block in a northeasterly direction. The expansion

of the Red Sea thus appears to be a summation of two motions,

a) Uniaxial dilation of the crust and

b) Translation or rotation of one block relative to another.

Freund (1965) gave further details about the translation-

al motion of the Arabia block, deduced from studies of Turo-

nian (Upper Cretaceous) strata on opposite sides of the Dead

Sea rift. He stated, following Quennell, that a northward trans-

lation has occurred which has the appearance of a counter-

clockwise rotation of the Arabia block. He locates the center

of rotation at about 3000 km. west of the Dead Sea. The amount
0

of displacement is given as 70-80 km., which amounts to 1.5

of rotation around the postulated axis. This is a smaller ro-

tational component than most writers have supposed ( 50 - 10 ).

Nonetheless, Freund still follows previous writers in assuming

that rotational and translational motion occurred simultaneously.

He takes account of evidence for regional tectonic activity

beginning in Cretaceous time, and he suggests accordingly that

the Dead Sea transcurrent fault may have become active earlier
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than the Miocene date given by Quennell (op. cit.). He presents

additional structural evidence pertinent to the Dead Sea fault

motion and further suggests that periods of most active motion

along the fault may correlate with periods of folding and up-

lift of the Tauros and Zagros mountains of Turkey and Iran.

Discussion

Most of the interpretations described have been based on

rather few observed geological data or on observations in a

limited area. Thus the various suggestions should be consi-

dered within the limits imposed by their authors.

Reconnaissance gravity and bottom topography data have

been available since the turn of this century (von Triulzi,

1898, 1901). The general patterns of positive anomalies in the

Red Sea and negative anomalies in the Gulfs of Suez and Aqaba

were known; the structure was considered to be isostatically

balanced (Triulzi and Hecker, cited by Wegener, 1924). Never-

theless, two central theoretical ideas have persisted that are

inconsistent with these points:

' a) The Gulfs and the Sea have commonly been thought to

originate in the same way and to have similar structures. How-

ever, the differnet patterns of anomaly over large areas indi-

cate that significant differences in submarine density exist.

Presumably, differences, in submarine structure follow.
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b) Theories of block subsidence have implicitly assumed

that a detached block will sink to a lower level by displacing

underlying plastic material. However, the Red Sea is about ten

times as wide as normal crust is thick, so that a block, or a

field of that size filled with many blocks, could not bodily

subside without changing density or dimensions.

In general, little attention in theoretical discussions

has been given to consideration of submarine features. Varia-

tions in morphology, though important, have been particularly

slighted. Ideal cross-sections have been constructed, nearly

always based on the shelf and valley strcuture of the southern

end of the Sea, whereas the trough structure has remained a

theoretical terra incognita.Recent seismic profiles (discussed

later) show the submarine structure to be somewhat more complex

than expected, particularly in the north.

Further construction of models for the Red Sea or regional

geology should consider the Red Sea submarine geology in its

rightful central place. On the other hand, the submarine geo-

logy of the Sea should not be isolated from the graben tectonic

features of the region, whose motions have formed and are re-

flected in its submarine structure.
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B. New Model

Elements of the various theories surveyed can be combined

and correlated with more recently available information to form

a more general theory of Red Sea evolution than those described.

According to the author's analysis, the Red Sea has developed

in two stages, characterized at first by continuous gradual

expansion and thinning of the crust; the second stage is cha-

racterized by intermittent fracture and block subsidence. Corres-

ponding to these two stages, the Arabian block has moved north

and somewhat to the east, first slowly and later rapidly. Deve-

lopment of the northern compressional arc in Turkey and Iran

agrees with this sequence. The first period, beginning in the

Paleozoic, saw the slow subsidence in compression of the Tethys

belt in this area. In the later period, catastrophic compre-

ssion and orogeny in several stages caused the folding and up-

lift of the Tauros and Zagros mountains of Turkey and Iran,

and the raising of a land bridge between Arabia and this arc.

In the Red Sea itself, the evolution can be postulated

and summarized as follows:

1) The Arabian half of the Arabo-Nubian massif began to

to recede from Africa during Paleozoic time. Northward strain

of the whole massif formed a zone of compression across its

northern margin.

lob.-



-25-

2) Motion of the Arabian half of the shield was prima-

rily rotational, with center of rotation in the eastern Medite-

rranean. In response to the horizontal dilation of the shield,

the Erythrean trough formed as a wedge-shaped area of thinning

and subsidence.

3) The trough collected continental clastic sediments

throughout this first phase of evolution. It was exposed to

marine sedimentation at several intervals, probably accompanied

by normal faulting.

4) Transgressive intervals corresponded to periods of re-

lative uplift in the Zagros mountains and suggest that the

Arabia block moved more actively then .

5) During the long period of slow rotational motion, stre-

sses accumulated most rapidly near the fulcrum in the eastern

Mediterranean. Resistance is indicated in the Mesozoic by in-

cipient transcurrent motion in Sinai and in Palestine.

6) In Miocene time, renewed activity resulted in a part-

ing of the crust along the Aqaba-Dead Sea-Jordan line, form-

ing a major left-lateral strike-slip fault. Active normal fault-

ing occured in the Red Sea at this time.

7) Post-Miocene motion of the Arabia block primarily was

translational, almost due northward; this direction is at an

acute angle to the Red Sea axis, and thus a significant amount

of shearing fracture also occured in the Red Sea.
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8) Fracturing was largely confined to the axis of the Sea,

probably because the crust was thinnest and weakest there. In

the southern part of the Sea, the oblique motion parted the

crust, allowing intrusion of basic igneous rocks. In the north,

complex faulting and general disturbance of the sea bottom re-

sultad.
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III. GEOLOGIC EVIDENCE

A. Introduction

The first object of the discussion in this section is to

show the pattern of quiescent structural development that exist-

ed in the Red Sea prior to the period of rift formation. The

second object is to show that the early structural pattern is

continuous with that of the later faulting phase.

Most important evidences for the first case are

a) The presence of a trough on the site of the present

Gulf of~Suez which subsided almost continuously from its be-

ginning in Paleozoic time until interupted by the first rifting

movements in the early Tertiary.

b) Evidence of uniaxial compression throughout northern

Egypt, acting in the direction of the Red Sea-Gulf of Suez axis,

which existed as early as Paleozoic time, and stopped during

the first major period of transcurrent rift motion.

Best evidences for the second case are :

a) The continuity in shape of the Tauros-Zagros arc dur-

ing several periods of uplift, both before and after the onset

of rifting.

b) Parallel development of tensional and compressional

features between the.former and the latter structural phases.

The conclusion from these observations is that the Dead
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Sea-Jordan transcurrent rift is an internal adjustment of a

moving mass sonewhat greater than the Arabia Block; and that

the greater mass has executed more consistent motion than that

of "Arabia Block".

B. Stratigraphic Evidence of Early Red Sea Development

A first postulate to be made is that the sides of the Red

Sea were continuous with those of the Gulf of Suez prior to the

onset of Jordan rifting. Freund (1965) has demonstrated that

Turonian and Cambrian strata are offset nearly the same amount

as the inshore Precambrian margin. Quennell (1958) has demons-

trated this same motion by several other indicators. Thus upon

restoration of the faulted rocks,

the eastern boundaries of the ba-

sin line up, together with the pre-

Tertiary strata. The basement is unbroken on the Egyptian side.

It might thus be surmised that pre-rifting tectonic developments

in the Gulf of Suez were continuous with those in the Red Sea,

and that trough formation in the Gulf of Suez extended south

into the Red Sea proper.

Early Trough Development

Conformable Paleozoic and Mesozoic strata lie unconfor-

mably upon basement rocks in the Suez depression, and show evi-

dence of basinal deposition. In view of this and the suggested
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fault restoration, it is evident that a trough existed prior

to rift formation.

Stability of the early trough development was dependent

upon the tectonic motions of the underlying and surrounding

Arabo-Nubian Massif.The most marked characteristic of this

Massif is its prolonged and remarkably stable configuration

during uplift and erosion. Epeirogenic uplift of the massif has

been the dominant feature of the regional geology. Throughout

the Paleozoic, clastic sediments were deposited in Egypt which

include great thicknesses of greywacke and other pour-in facies

(Said, 1962). The topography was ,therefore, probably not low

throughout this period, although Picard (1943) described it as

an early Paleozoic peneplain.

A corresponding series of continental and marine sediments

was deposited around the Arabian rim of the Shield. These gene-

rally have the form of off-lapping beds of decreasing age away

from the shield (U.S.G.S. map 1-270). The location of the nor-

thern continental margin is diagramed by Picard (1943), and is

seen to occur within quite narrow limits from lower Cambrian

to Miocene time.

Precambrian

The currently exposed shield from Jordan to Ethiopia and

beyond apparently represents the denuded root zone of a massive

Precambrian (and possibly lower Paleozoic--Holmes, 1965) moun-
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tain chain (Mohr, 1962; Picard, 1943).

Structural trends of the basement rocks may have been in-

fluential to some extent in determining shape and orientation

of the original separation. Foliation of the basement is mark-

edly parallel to the basin margins in the south; fracturing has

apparently followed old lines of crustal weakness (Mohr, 1962).

In the sinuous central section of the Sea, the basement "grain"

is oblique to the sea axis (Ruxton, 1956; Brown and Jackson,

1960) and the shores are consequently irregular. Said (1962)

mentions a Precambrian structural trend along the Gulf of Suez,

but gives no details.

Paleozoic

In view of the distribution of Paleozoic and Mesozoic se-

diments (U.S.G.S., 1963), it appears likely that the axis of

uplift remained fairly constant during those eras. Early part-

ing of the crust may have occurred along the crest of the up-

lift (Cloos, op. cit.; also Evison, 1960; Rusnak and Fisher,

1964) following pre-existing lines of weakness. No trough se-

diments are reported prior to Cretaceous time except at the

northern end of the basin; thus little direct information about

early Red Sea developqient is available. If the rate of expan-

sion was related to uplift, the trough probably spread outward

slowly throughout the span of several geologic periods. Assum-
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ing a period of time in the order of 100 million years and a

distance of drift less than 100 km., the rate of drift averaged

as little as 1 mm. per year.

Earliest trough formation in the Gulf of Suez area is in-

dicated in figures 5 and 6. A lower Carboniferous gulf of the

Tethys Sea advanced southward all the way to the present Red

Sea. The Umm Bogma formation deposited in this gulf consists

of sandstone, marl and crinoidal limestone. Figure 5 indicates

the basinal habit both in facies variations and in thickness

contours. It is of interest that in an upper member of this

formation,black shales predominate in the Gulf concurrent with

limestone deposition farther norther. Said (1962) suggested the

basin was separated from the open sea by a sill, and further

states: "The Gulf must have received great quantities of fresh

water to bring about a Black Sea-type of basin where inflow

over the sill produced an un-aerated bottom most suitable for

the formation of black shales." This interpretation suggests

the presence of river drainate, presumably flowing northward

into the head of the Umm Bogma gulf. Possibly related condi-

tions existed during fluvio-marine deposition of the early

Jurassic period.

Mesozoic

During the Mesozoic era, major marine transgressions occurred

in both the south 'and the north ends of the Red Sea. These were
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accompanied by preliminary horizontal tectonic motions. Begin-

ning in Upper Triassic (Mohr, 1962) or Lower Jurassic (Somali-

land oil Co.), the sea advanced over Somaliland, South Arabia,

and parts of Ethiopia, reaching its maximum extent in Upper Ju-

rrassic. A brief regression occurred in early Cretaceous, allow-

ing elevation and erosion in part of the Jurassic beds. Later

renewed transgressions of Mid.-Cretaceous to MidTEocene time

were somewhat less extensive, stopping short of the head of

the Gulf of Aden (Somal. Oil Co.).

Mohr (1962) has suggested on grounds of basalt flow ages

that the Afar Plain existed in approximately its present state

prior to Tertiary fifting. Thus the southern end of the Red

Sea was at its present width during the Upper Mesozoic. The

Jurassic transgression which laid marine sediments on the Dana-

kil Horst and the present highlands of Yemen and Ethiopia would

, therefore have been continuous across'the southern end of the

Sea (also indicated by Somaliland Oil Co., 1954). There is at

present no grounds for estimating how far north into the de-

pression the Jurassic sea may have extended. In the north, trans-

gressions in Palestine and Egypt occurred at approximately the

same times (Picard, 1943; Said, 1962) as those in the south.

Maxima were reached in the Upper Jurrasic and at several stages

from Middle Cretaceous through Lower Eocene. Throughout this
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period, the basinal character of sedimentation was perserved

and the shape of the Gulf remained similar to that illustrated

in Figure 5.

Cretaceous-Eocene

Transgressions increased through the early and middly Cre-

taceous, reaching a climactic series which began in the Campanian

epoch of the Upper Cretaceous period. At that time the sea ad-

vanced over much of Egypt, and penetrated far south into the

Red Sea basin. Beds of the Campanian-Lower Eocene marine series

are found lying conformably above basinward-dipping Nubian sand-

stones as far south as 26 degrees north on the Red Sea shores

(Beadnell, 19247 Hume et al., 1920). They are found in faulted

outliers away from the shore in Egypt (Beadnell; Said, 1962)

and also far to the sough on the Arabian shore near Jidda

(Karpoff, 1957). Only the Maestrichtian portion is identified

(by Karpoff, -1957) from the latter location; U.S.G.S. (1963)

reported Eocene faunas from the same formation. It is interest-

ing to note that Karpoff's stratigraphic description , although

scanty, is comparable with the Maestrichtian sequence described

in Gebel Duwi by Beadnell (1924). This comprises twolayers of

white chalk separated by iron-containing beds, the whole follow-

ed by a clastic redbed sequence. A possible further occurrence

of deposits correlating with this sequence is reported from

the Sudan coast at 21 degrees north (Carella and Scarpa, 1962).
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It is reasonable to assume on this basis that Cretaceous-Eocene

beds underly the whole Red Sea basin, at least north of this

latitude.

The main sedimentary facies during Upper Cretaceous in the

Red Sea were marls and shales, with chark being the main acce-

ssory beds. Meanwhile in the Gulf of Suez, chalk formed almost

exclusively. In the Lower Eocene, flinty limestones were depo-

sited in both areas. Deposition in the Red Sea appears to have

ended abruptly at the end of Lower Eocene, contenporaneous with

marked tectonic movements.

Discussion of Stratigraphic Evidence

The basinal habit of sedimentation in the Gulf of Suez is

important to the present discussion in that it is indicative

of quiescent trough development in Pre-Tertiary time. Attention

is called to Figure 6, which indicates conformable contacts

between strata deposited by successive transgressions up until

the Oligocene. While faulting is recorded from the Eocene (
is

Tromp, 1950), the major activity in the Gulf of Suez indicated

to begin and end in the Oligo-Miocene (Said, 1962). At that

time, graben formation of the type described earlier (Vening

Meinesz, P.13) appears to have occurred. Prior to that time,

trough subsidence by another mechanism took place. It is here

proposed-that the Gulf of Suez trough, as'well as that of the

Red Sea, was isostatically balanced during the early period of
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formation. Episodic, or possibly continuous lateral expansion

of the trough allowed the accumulation and subsidence of a

thick sedimentary sequence. This accumulation was compensated

by crustal thinn$ng of the type proposed by Wegener (p. 11).

In the case at hand, the motion was so slow that surface ex-

pressions of the lateral motion were relatively minor. Block

motion of the type suggested by Wegener began in the Gulf of

Suez during the latter part (Cretaceous-Eocene) of the"quies-

cent subsidence"phase when the lateral motion was somewhat

accelarated. Possible supporting evidences for the above mo-

del, in addition to those in the text, should include mea-

surements of crustal thickness below the Gulf of Suez. The

crust is expected to be relatively thin, graben subsidence

and negative gravity anomalies notwithstanding. It would further

be interesting to look for evidence of many minor tensional

adjustments in the older sediments of the Gulf of Suez area.

From the model, one might conclude that the entire basin

was a shallow and relatively flat feature during the Creta-

ceous- Eocene marine transgression. In view of this interpre-

tation and the available stratigraphic information, it may

be possible to predict the submarine characteristics of this

important sequencA.
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C. Structural Evidence

Several types of episodic structural phenomena occurred

in the northern Red Sea region during the pre-Oligocene phase

of basin formation. These generally developed with timing and

intensity parallel to the marine transgression series, and

thus were probably associated with lateral motion of the Arabia

block. Taken together, they form a tectonic pattern which su-

pports the postulate of episodic expansion of the Red Sea

trough.

During the later period of "rift" formation, a somewhat

different tectonic pattern emerged. Elements of it have been

correlated by Quennell (1958) and by Freund (1965) and indicate

a similar episodic development. In the second period a clear

parting of the crust occurred along the Gulf of Aden-Red Sea-

Dead Sea lines. The Arabia block was released to move more

freely northward, whereas the African side of the Arabo-Nubian

Massif ceased its previous motion toward the Mediterranean. In-

tervals of various structural developments follow:

a) Major transgressions of the Gulf of Suez-Red Sea trough:

Lower to Middle Carboniferous; Middle and Upper Jurassic; Upper

Cretaceous and Lower Eocene; Mid. Tertiary and later. The last

named epoch is exceptional in that boundaries are fault con-

and
trolled, a thick section of basal clastic developed/deposition

is clearly related to the present location of Red Sea shores.

b) Folding and uplift in the unstable shelf areas of
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North and West Egypt: Lower to Middle Carboniferous. Compre-

ssion was active from Paleozoic to Mid-Tertiary, then stopped.

Orientation of folds normal to the Red Sea-Suez axis became

quite pronounced during the Cretaceous and Eocene stages.

c) Normal faulting of "Erythrean" orientation: Upper

Cretaceous (Attia, 1955); Lower Eocene (Tromp, 1950, Said);

mid-Tertiary and later (Said). During the last epoch, tensional

relief with normal faults of Erythrean orientation developed

in place of earlier folding in northern Egypt. Also in that

period , major down-faulting of the Gulf of Suez and Red Sea

occurred.

d) Vertical block motion, Gulf of Suez region: Increas-

ing through several stages in the Cretaceous-Eocene period

(Said, 1961, 1962).

e) Volcanism and hydrothermal activity: Lower Carboni-

ferous (Said, 1962); Upper Jurassic (Picard 1943); Upper Cre-

taceous; Oligocene (Said); Mid.-Tertiary and later (Quennell).

f) Motion along the Dead Sea fault., incipient strain:

Jurassic and Senonian; 62 km. translation: Miocene-Pliocene7

45 km. translation' late Cenozoic (Quennell, 1958).

g) Compression and uplift of the Tauros-Zagros mountains0

general uplift, absence of strata in' Lower Carboniferous (Kuxmel);

major orogenies: Upper Cretaceous, Eocene, Mio-Pliocene, Qua-

ternary (Freund, 1965; Kummel, 1961).

Items a) and c) appear to both result from a field of uni-
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axial stress release acting normal to the axis of the Red Sea-

Suez trough. Item b) thus seems to result from the conjugate

field of uniaxial compression acting in the direction of the

trough axis.

An intimate relationship appears to exist between the ob-

served tensional and compressional effects. Maximum activities

were generally coincidental, most notably in successive stages

of the Upper Cretaceous and at the end of Lower Eocene (Said,

62). Block motion activities (item d) may have resulted from

effects of the right angle intersection of folding trend and

faulting trend.

Shalem (op. cit.,p.17) presented a diagram showing the con-

tinuation of the "Syrian Arc" of folding around the southeast

Mediterranean shore and on toward the northeast through Syria.

He indicated a pattern throughout the arc of tensional cracks

which cross the fold axes and which are oriented parallel to

the Red Sea axis. He further cited evidence showing that ba-

salt is characteristically extruded along these cracks. (item

e).

Volcanism occurred in the compression zones of Egypt during

the pre-Oligocene period of activity (Said, 62), but appears

to have ceased after the Mio-Pliocene relaxation of stress in

this area. In Arabia and Palestine, fracturing and volcanism
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appears to have increased in Mid.-Tertiary and later time (Que-

nnell, 1958, Picard, 1949; U.S.G.S., 1963).

Following Quennell, development of the Dead Sea rift was

about as follows:

a) First evidences of differential motion along the later

fault occurred in Senonian time; drag folds developed during

deposition of chalk beds. Earlier evidence of shear occurred

probably in Jurassic time.

b) The Sea withdrew northward after Eocene deposition;

two uplifts occurred, then a prolonged Oligocene still-stand.

c) Early Miocene time, NW-SE compression gave rise to

deep seated thrust faults and the beginning of major shear faults

along old zones of weakness.

d) Volcanic activity began and lasted until the second

period of transcurrent motion began in Plio-Pleistocene time.

Summary

To summarize the structural pattern indicated above :

a) Episodic compression or motion occurred in the direction

of the Red Sea axis in pre-Oligocene time and was expressed

by folding of "soft" sediments of the Egyptian shelf and possibly

by uplift of mountains in Turkey.

b) Simultaneously, tension perpendicular to the sea axis formed

fractures parralel to the axis, some of which served as volcanic
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and hydrothermal vents.

c) Tensional opening gave a sideways motion to the Arabia block,

which apparently put the opposite side of the block into com-

pression, pushing up mountains in Iran.

d), Net motion due to the tensional and compressional effects

was approximately northward.

e) Stress accumulated in the Sinai region through successive

episodes, eventually causing yield and shearing motion of the

Dead Sea fault.
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IV. Submarine Structure of Red Sea Sediments

In the light of stratigraphic and structur.al evidence

cited, it has been shown that the Red Sea has a much older

history than is commonly thought. The cited age is generally

Miocene or at earliest Upper Cretaceous (Freund, 1965; and

others), the latter on the basis of reported Maestrichtian

strata in the basin (Karpoff, 1952). However, from the for-

going discussion it may be concluded that the Red Sea existed

as a continental basin at least as far back as the Carbonife-

rous (figure 5).

It has been further shown that prior to Oligocene time,

the basin developed by a different mode- than in

later time. Such a two-phase evolution appears to have been

previously unrecognized. Most authors have suggested different

types of simple or compound motion to account for the struc-

ture in one stage or one mode of activity.

The Gulf of Suez has been discussed at some length and

presented as representative of the early phase of Red Sea

evolution. This period saw the development of a relatively

quiescent subsidence trough. The Gulf of Aqaba, on the other

hand, represents the later period of normal faulting and trans-

current rift formation, both of which motions affected the

Red Sea. According to the present model, the relative motion
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of the shores was a) an expansion away from the axis in the

first stage and b) a northward translation of Arabia relative

to Africa in the second stage. Recent seismic reflection pro-;

files by the Woods Hole Oceanographic Institute (figures 8, 9,

be,
10) mayreferred to for further evidence regarding the two

phases of motion.

A pattern of deformation may be pointed out in the cross-

sections. The shelves at both ends of the Sea have relatively

smooth surface topography, and are underlain by gently folded

conformable sediments. The median trough, by contrast, is un-

derlain by much-disturbed and irregularly deformed beds. Con-

formable bedding in this area is largely obscured by the erra-

tic variations in topography and structure.

The width of the highly disturbed zone increases markedly

from south to north as indicated by the seismic data. It appears

to be associated in both areas with the central depression. This

depression, the "axial trough", appears to diverge northwards

rather than southwards, as supposed by Drake and Girdler (op.

cit.) (figure 2).

In the south, the axial trough is associated with strong

magnetic anomalies and positive gravity anomalies. These have

been interpreted as due to a basic intrusive igneous body under-

lying the axial trough (Girdler, 1958 et seq.) The width of this
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supposed body is 60 km.; it extends for nearly half the length

of the sea. In the central and northern part of the sea, the

occurrence of magnetic and gravity anomalies data indicates

that igneous bodies are here distributed irregularly. For ex-

ample, on profile 4 (figure 8) an area of strong magnetic ano-

maly occurs outside the axial depression. The width of the

disturbed zone is on the order of 100 km. in the northern

section and thus occupies most of the width of the sea.

It is here suggested that the northern axial trough is an

enormous shear zone which has developed as a consequence of

Miocene to Recent motion on the Dead Sea fault (Quennell, op.

cit.). Assuming a translational motion just east of north, the

direction would be about 450 away from the axial direction.

During the same motion the southern axial trough parted cleanly

to form separated blocks. This might be due to a slight rota-

tion of the block during translation, as suggested by Freund

(1965). The southern part of Arabia would move faster than the north

under such a condition, and might exceed some critical velocity

for crustal separation as suggested by Rusak and Fisher for the

Gulf of California (1964). The difference in fracturing behavior

could on the other hand be due to a difference in strength of

the crust, or lineation of the basement rocks, as pointed out

earlier. Or it could be due to the shape of the opposite shore-
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lines in the central Red Sea. In one area, a northward trans-

lation would almost parallel the trough axis; consequently,

shearing activity would be greaterat least in that area. It

is noteworthy that several deep holes occur in this central

part of the Sea (figure 2).

In any case, the amount of disturbance and linear motion

of the Arabia block appears to be about constant from the Dead

Sea to Bab el Mandab. Motion on the Dead Sea fault was about

80 (Freund) to 100 (Quennell) km. The 60 km. width of the

southern median valley is about the same when measured in the

direction of supposed translation. The northern trough zone

of disturbance could have accomplished the same extension by

"necking" down to about half of its pre-rifting thickness.

The area is regionally subsided by about 1 km., suggesting that

such a change of the crust has taken place.

The likelihood of distension and subsidence of the main

trough during rifting is further suggested by the appearance

of the disturbed sediments (profile 4). It is most interesting

that a reflector of fairly constant depth below the bottom can

be recognized. This reflector faithfully follows the bottom

topography which latter must, therefore, be a tectonic and not

erosional topography. The layer thus appears to be a disturbed

sediment layer which was all-ready buried prior to the last
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major period of rift motion. The appearance of this faulted

contact suggests that the right-hand side of the fault moved

upwards and its previous upper surface eroded away. This

vanished layer would correspond to the second layer of the

left-hand side, which ends at the fault. Further deposition

occurred contemporaneously with further motion; thus the upper

layers in both the disturbed and the stable zones are probably

of late-rifting age, or late Pleistocene, according to Quennell's

chronology (op. cit.). The second layer is thus probably early

Pleistocene; the third may be Pliocene. It is very interesting

to note that the three-layered sequence is repeated in a con-

formably-bedded and subsided section on the right-side of pro-

file 4 (figure 8). The upraised portions contain only two re-

flecting layers, the late Pleistocene layer, and the postulated

pliocene "third" layer. Recent sediments of several meters

thickness are found lying unconformably above this sequence as

horizontal sediment ponds in low places (S.T. Knott, personal

communication based on high resolution bottom sounding records).

A similar sequence of disturbed, eroded, and re-deposited sed-

iments might occur at a deeper level. This would correspond

to the first period of rifting motion in Miocene time. On the

other hand, Miocene motion might have been expressed differently

in part, such as in the extensive normal faulting of that
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period observed in many parts of the Red Sea shores.

A reconstruction of the Red Sea bottom to its condition

in the pre-rifting period would apparently re-join and re-

thicken the crust to a relatively flat and shallow state, such

as is presently observable in the Red Sea shelves. Such a re-

construction would be very much in agreement with the evolution-

ary model suggested by the present paper, and would correspond

to the Cretaceous-Eocene shallow basin whose existence has been

postulated in an earlier section. The Red Sea shelves are

thus suggested to be remnants of a relatively smooth pre-

Oligocene basin whereas the median valley in the south and the

deep trough in the north are caused by the post-Oligocene

rifting of this basin. From this one may conclude that the

ancient clastic sediments and Mesozoic marine deposits of the

Red Sea shores may be found below the shelves and furthermore

among the fractured and subsided rocks of the main trough of

the Sea.
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