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ABSTRACT

PREDICTIVE DECOMPOSITION OF TIME SERIES
WITH APPLICATIONS TO SEISMIC EXPLORATION
by
Enders Anthony Bobinson

Submitted to the Department of Geology and Geophysics on
July 26, 1954 in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

, This thesis presents in an expository memner a treatment
of the theory of discrete stationary time series as developed
by Cramér, Doob, Khintchine, Kolmogorov, Wiener, Wold, Yule,
and others. The central theme deals with the development of
the concept of the predictive decomposition of stationary time
series from the point of view of applications. The Predictive
Decomposition Theorem of Herman Wold ( A Study in the Analvsis
of Stationary Time Serjes, Almgvist and Wiksells, Uppsala,

1938) states that a stationary time series ( with an absolutely
continuous spectral distribution) in additively composed of
many overlapping wavelets, or pulses, which arrive as time pro-
gresses. These wavelets all have the same unique stable shape
or form; and the arrival times and strengths of these wavelets
are random and uncorrelated with each other.

Specific mathematical results of this thesis are:

(1) The theory of linear difference equations familiar
to statisticians ie united with the theory of linear systems
familiar to electrical engineers. It is shown that the condi-
tion that a linear difference equation formed by the coeffi-
cients of a discrete linear operator be a stable difference
equation is the condition that the Fourier transform of the
linear operator has no singularities or zeros below the axls
of real frequency. In other works, a stable difference equa-
tion has filter characteristics with minimum phase-shift char-
acteristic. Computational formulae are given for the deter-
mination of this minimum phase-shift characteristic from the
absolute gain characteristic of the desired filtering proper-
ties of a linear operator.

(2) The function which Wiener ( The Extrapolation, In-
MWWW
Engi?ggzipg_épnl§ggzlgn§, National Defense hesearch Coun-
cil ( Section D2) MIT DIC Contract 6037, Cambridge, 1942)
designates as the coefficient function to be used d{rectly
in making an optimum prediction for discrete stationary time
series with absolutely continuous spectral distributions is
shown to be the same function obtained by Wold ( 1938) for
this purpose.
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(3) The expression which Wiener (1942) gives for the
mean square error of the optimum prediction is shown to be
the same expression given by Wold (1938).

(4) The general solution of the filtering problem for
discrete stationary time series given by Wiener (1942; Cyber-
netics, John Wiley, New York, 1948) i1s shown to be a direct
consequence of the Predictive Decomposition Theorem.

(5) Wiener (1942) recommends that the geophysicist use
a certain technical point in the computation of spectra for
Wiener's general technique of discrete prediction. It is
shown that 1f the geophysicist does follow this recommenda-
tion, the general technique of discrete prediction will fail.

The applications to seismic exploration deal with the case
in which a section of seismic trace (recorded with automatic
volume control) is additively composed of seismic wavelets, or
Ricker wavelets, where each wavelet has the same stable shape,
and where their strengths and arrival times may be considered
to be random and uncorrelated with each other. For thls case,
the Predictive Decomposition Theorem tells us that the section
of selsmic trace is a sectlion of a stationary time series.

The problem of the separation of the dynamic component (the
wavelet shape) from the random components (the strengths and
arrival times of the wavelets) is considered.

For an infinite discrete stationary time series, the solu-
tion of this problem consists of the following steps:

(1) Average out the random components of the time series
so as to yleld the unique stable wavelet shape. This stable
wavelet shape is shown to be the Fourier transform of the fac-
tor of the power spectrum of the time series, where this fac-
tor is required to have no singularities or zeros below the
axis of real frequency.

(2) From the wavelet shape thus found, compute the in-
verse wavelet shape, which is shown to be the prediction opera-
tor for unit prediction distance.

(3) Compute the prediction errors by applying this pre-
diction operator, or inverse wavelet shape, to the time series.
These prediction errors are shown to represent the arrival
times and strengths of the wavelets,

For finite dlscrete time series,such as the section of
selsmic trace, the solution of this problem consists of estima-
ting the prediction operator directly by the Gauss method of
least squares, and then using this prediction operator to de-

%ﬁfmine estimates of the wavelet shape and prediction errors.
esis Supervisor: Dr. P. M. Hurley

Title: Professor of Geology



CHAPTER 1

INTRODUCTION AND SUMMARY

l.J Introduction

In exploration seismology, & charge of dynamite is
exploded under controlled conditions, and the resulting vi-
brations at various points on the surface of the ground are
detected by geophones and are recorded as seismic traces on
the seismogram. The analysis of such seismic records ylelds
valuable information about the structure of the sedimentary
rock layers in potential oil producing areas, and such 1ln-
formation 18 of considerable economic value in increasing
the probability of locating new oil fields.,

Present day techniques require the visual examination
and mental interpretation of seismograms, with considerable
importance placed on the detection of reflected energy or
®reflections® which indicate reflecting horizons of sub-
surface sedimentary layers. From this information the geol-
oglc structure of an area may be estimated.

Although reflection seismology 1s only about a quarter
of a century 0ld, it has played an important role in the
discove;y of many of the world's oil fields. The credit
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for much of this success belongs to the oil companies and
geophysical companies which have the practical task of
locating new petroleum reserves. It was the working geo-
physicist of these companies who developed a large part of
the seismic method of today. To help him in his Job, the
engineer, who in many instances is the geophysicist him-
self, has developed the instrumentation needed for the
ever increasing demands of seismic exploration. In addi-
tion, the research sclentist has taken an active role in
the development of the basic scientific theory of ex-
ploration seismology.

For a further discussion of the seismic method, togeth-
er with references to the literature, the reader is referred
to books by Dix (1952), Dobrin (1952), Heiland (1940), Jakosky
(1950), and Nettleton (1940), and also to GEOPHYSICS, the
quarterly journal of the Society of Exploration Geophysicists.

A large part of basic seismic research is directed to-
ward a better understanding of the physical processes involved
in the seismic method. Such an approach is fundamentally
sound. From this point of view, the seismic trace is the re-
sponse of the system consisting of the earth and recordlng
apparatus to the impulsive source, the explosion. Thls sys-

tem, al%hough usually very complicated, is susceptible to a
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deterministic (non-random) approach toward its analysis.

To this end, controlled experiments may be carried out, and
mathematical and physical models may be set up from the re-
sulting data. Careful replication of the experiment and
high precision of measurement can render such data very accu-
rate.

On the other hand, large numbers of selsmic records,
which have as many as twenty or more traces per record, are
needed to carry out an exploration program over a geographlc
area. This quantity of data necessarlily requires the con-
sideration of each record as a member of a larger group or
ensemble of records. Thus the relisbility of a single re-
cord is considerably less than the reliability of the ensemble
of records in connection with the description of the geologlc
conditions existing in that area. Also from an economlc
standpoint, the amount of control in such an exploration pro-
gram must be kept at the bare minimum consistent with worth-
while results. Thus, as a rule, the controlled experiment
aspect of exploration seismology, although possible, falls
short of the needs of a research sclentist who wishes to
set up a mathematical or physical model. As a result, in

these cases the working geophysicist must proceed to fit his
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empirical information into the larger overall framework with-
out the aid of elaborate mathematical or physical models.

In particular, he is faced with the general problems of des-
cription, analysis, and prediction (Cramér, 1946).

That is, first, the working selemologist is faced with
problems of the description of the overall exploration seismic
picture. In particular, he wishes to replace the mass of
original data, which is of & complicated nature, by a small
number of descriptive characteristics; that is, he is faced
with the problem of the reduction of data.

Next, he 1s concerned with the problems of analysis in
which he wishes to argue from the samplé, the evidence from
a limited number of selsmograms, to the populatlon the geo-
logic structure of the area. In other words, from the sample
data he wishes to find estimates of the true values which
describe the geologic structure.

Finally, the working geophysicist i1s concerned with the
problem of prediction, that is, from knowledge of past ex-
perience what course of action should he take in the future.
In particular one of the goals of an exploration program is
to determine favorable drilling sites.

Since the geologic structure is physically fixed and

constant in nature, and has no intrinsic random character-
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istics, any statistical approach to these problems lmmedlate-
1y encounters difficultlies which are commonly assoclated with
Bayes! Theorem in the statistical literature (Cramé}, 1946;
Jeffreys, 1939). Nevertheless modern statistical theory
admits the bypassing of these difficultles, although with
reservation, and hence the working geophysiclst may be con-
sidered to be faced with a slituation which is essentially
statistical., For example, a reflection which may be fcllowed
from trace to trace, record to record, usually has more value
to the seismic interpreter, and hence is statistically more
slgnificant, than a reflection which appears only on a few
traces. Such a procedure in picking reflections does not
imply that the reflection which appears only on a few traces
is necessarlly spurious information, but only that economic
limitations preclude further examination and experimentation
which may render 1t in a more useful form.

This thesls deals with the analysls of seismic records
from the statistical point of vliew. In those years in which
the exploration seismic method was first beilng developed,
the English statistician, G. Udny Yule, was developing methods
of tlme series analysis which proved to open & new epoch in
the analysis of time functions. The concept which Yule intro-
duced is that a large class of disturbed motions are built

Se



up in a time sequence from wavelets whose arrival times and
strengths (or amplitudes) are random. Thus the principal
feature of this class of disturbed movements is a continual
shift of phase and change of amplitude as time progresses.
Yule applied this hypothesls, with success, to empirical data,
and thus the analysis of time series was freed for the first
time from either the hypothesis of a strictly periodiec var-
iation or aperiodic variation, or the counter hypothesis of
a purely random variation. Yule's concept was formulated

on a firm axlomatic basis in the founding of the theory of
stochastic processes by the Russian statisticians A. Kolmo-
gorov (1933) and A. Khintchine (1933), and in the definition
and basic work in theory of statlonary processes by A. Khint-
chine (1934).

The Swedish statistician, Harald Cramér, taught a course
on Time Series Analysis in 1933 which laid the foundation for
a thesis prepared by his student, the Swedish statistician
and economist, Herman Wold (Wold, 1938, Preface). This thesis
was published in book form in 1938. Wold, in the Preface,
describes his work as a trial to subject the fertile methods
of empirical analysis proposed by Yule to an examination and
a development by the use of the mathematically strict tools
suppliéd by the modern theory of probability. In his work
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Wold develops the predictive decomposition of statlonary
time series, about which the present thesis is centered.

For the past four years, the author has worked on a
research program at the Massachusetts Institute of Technology
to apply these statistical methods to the analysis of seismic
records under the supervision of Professor G. P. Wadsworth
of the Department of Mathematics, Professor P. M. Hurley of
the Department of Geology and Geophysics, and Dr. J. G. Bryan
of the Division of Industrial Cooperation. This program
was initilally supported by the Department of Mathematics.

In February, 1952, the program was incorporated into the
Department of Geology and Geophysics as the Geophysical
Analysis Group. From that time until February, 1953, it
was supported by the Magnolia Petroleum Company, and from
then until the present time by fourteen companies of the
petroleum industry.

Computational and theoretical results of this research
program are given in Wadsworth, et al, (1953) and six re-
ports (MIT GAG BReports No. 1 - No. 6) of the Geophysical
Anglysis Group, to which the reader is referred. The pre-
sent thesis attempts to expound more fully on the reasoning
presented there, and, in particular, the predictive tech-

niques proposed for the study of selsmic records.
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In the final analysis, the potential usefulness of the
statistical approach depends upon the coordination of stat-
istical methods with knowledge of practical and theoretical

seismologye.
1.2 Summary of Chapters

In this sectlon we should like to present a summary
of the chapters which follow. Since detalled references
to the literature are given in these chapters, we shall not
state any references in this summary.

In Chapter II we discuss the properties of finite
discrete linear operators. We distingulsh between ex-
trapolation or prediction type operators on the one hand,
and interpolation or smoothing type operators on the other
hand. We see that a prediction type operator has an inherent
one-sidedness in that it operates on the past values of a
time series, but not on the future values. Consequently a
prediction type operator is computatlionally realizable, and
may represent the impulsive responseof arealizable linear
system.

A smoothing type operator, however, operates on both
past and future values of a time series, and thereby is not
computationally realizable. Nevertheless, finite smoothing

operators can be made realizable by introducing a time delay
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In the computations so that all the necessary data is available
at the time the computations are to be carried out. <Lhe fact
that a seismic disturbance 1s recorded on paper in the form
of a selsmogram means that we have waited until all the per-
tinent information is available. Consequently the necessary
time delay has been introduced to utilize finite time-delay
smoothing operators, which are computationally realizable.
Since a time-delay smoothing operator has the same mathematical
form as a prediction type operator, in the remaining parts of
this thesis we deal chiefly with operators of the prediction
type.

The transfer function is defined as the Fourler trans-
form of the linear operator, and corresponds to the trans-
fer function, the system function, or filter characteristics
of a linear system. By analytic continuation we may extend
the transfer function into the complex plene, where the real
axis represents real angular frequency. <Then we see that
the transfer function of a predlction type operator has no
singularities below the axis of real frequency, which is in-
dicative of the realizability of such an operator.

We state the condition that the linear difference equa-
tion formed by the coefficlents of a finite prediction type

operator be a stable difference equation, that 1is, its gen-
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eral solution be a damped oscillation. We show that this
stability condition is precisely the condition that the
transfer function have zeros all of which lie above the axis
of real frequency. Thus a realizzsble and stable prediction
type operator has a transfer function with no singularities
or zeros below the axis of real frequency, which i1s the re-
quirement that its phase characteristic be of the minimum
phase-shift type familiar to electrical engineers. More-
over, we extend this concept of stablility to prediction type
operators with én infinite number of coefficlents.

We show that each stable prediction type operator has
a unique inverse prediction type operator which is also
stable, and that thdr respective transfer functions are
reciprocals of each other. We see that the inverse operator
may be readily computed in the time domain from a given lin-
ear operator.

Finally in Chapter II we show that in order to design a
stable prediction type operator one should utilize only the
absolute gain characteristics of the desired filtering prop-
erties, and not phase characteristics. That is, the phase
characteristic of the resulting stable operator should be
the minimum phase characteristic which 1s determined uniquely

from the sbsolute gain characteristic. We give a direct
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computational procedure which may be readily programmed for
a digital computer.

In time series analysls, there are two lines of approach
which we may call the non-statistical and the statistical.
In the non-statistical approach the given time series 1is
interpreted as a mathematical function, and in the statistical
approach as a random specimen out of a population of math-
ematical functions.

In Chapter III, we treat the methodology used in the
non-statistical or deterministic approach to the study of
time series. Such an approach leads to a perfect functiomal
representation of the observational or theoretical data., In
particular, the methods of this chapter are applicable to the
determination of linear operations on transient time functions
of finite energy, such as seismic wavelets. Further we ob-
serve that even under a deterministic hypothesis it may be
necessary to utilize methods of averaging for certain pur-
poses such as approximations. Although methods of averaging
may be developed without recourse to the theory of probability,
in many applications, it is not until probability theory 1is
introduced that certain averaging operations become meaning-
ful in a physical sense. With thls situation in mind, in the
following chapters we consider the statistical approach to the



study of time series in which methods of averaging play
e central role.

In Chapter IV, we present concepts from the theory of
discrete stationary time series which represents a statistical
approach to the study of time series. We consider station-
ary stochastic or random processes which generate stationary
time series, and glve properties of the autocorrelation and
spectrum. In particular we consider time series which are
*white noise". We see that any time series with an absolutely
continuous spectral distribution is a process of moving sum-
mation.

In Chapter V, we give an heuristic exposition of the
mehtod of the factorization of the power spectrum. We show
how this factorization leads to the predictive decomposition
of a stationary time series. The Predictive Decomposition
Theorem shows that any stationary time series (with an ab-
solutely continuous spectral distribution) can be considered
to be additively composed of many overlapping wavelets. All
These wavelets have the same stable shape or formg; and the
arrival times and strengths of these wavelets are random and
uncorrelated with each other, If the wavelet shape represents
the impulsive response of a stable linear system, and 1f the

uncorrelated arrival times and strengths represent a “white
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noise® input to the linear system, then the stationary time
series represents the output of the linear system.

We then show that the solutions of the prediction and
filtering problems for single time series follows directly
from the Predictive Decomposition Theorem. We examine those
stochastic processes which have power spectra which are ration-
al functions, and see that the autoregressive process and the
process of finite moving aversges are speclal cases of such
processes. We deal with the theory of multiple time series,
in which we see that the concept of coherency plays an im-
portant role, and we treat the general technique of discrete
prediction for multiple time serles.

In Chapter VI we deal with applications to seismic ex-
ploration. In particular we consider the situation in which
8 given section of selsmic trace (recorded with automatic
volume control) is additively composed of seismic wavelets,
where each wavelet has the same stable shape or form, and
where the strengths and arrival times of the wavelets are
random snd uncorrelated with each other. Under these
assumption, the Predictive Decomposition Theorem tells us that
the section of trace may be considered to be & sectlon of a

stationary time series.
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To illustrate the probabilistic approach, we consider
the problem in which we wish to separate the dynamlc compo-
nent (the wavelet shape) from the random components (the
arrival times and strengths of the wavelets).
The theoretical solution of this problem consists of the
following steps:
(1) Average out the random components of the trace so
as to yleld the wavelet shape.
(2) From the wavelet shape thus found, compute the inverse
wavelet shape, or prediction operator for unit prediction
distance. Apply this prediction operator to the trace
in order to yield the random components, which are the
prediction errors. Thet is, the prediction operator
contracts the wavelets to impulses, which are the pre-
diction errors. If one wishes to filter the seismic trace,
one further step is added, namely:
(3) Reaverage the prediction errors by means of a stable
linear operator so as to approximate the desired output.
The practical solution of this problem consists of the
following steps:
(1) Comvute the prediction operator, or inverse wavelet
shape, directly by the Gauss method of least squares which

yields operator coefficients which satisfy certain

14,



statistical optimum properties under general conditions.

(2) Use the prediction operator to determine the pre-

diction errors which are the random unpredictable com-

ponents.

Alternatively, from other considerations, one may have
avallable the shape of the seismic wavelet. Then the pred-
iction operator or inverse wavelet shape, may be readily com-
puted from this wavelet shape. In summary, then, the predic-
tion operator for unit prediction distance is the inverse
selsmic wavelet and the inverse prediction operator for unit
prediction distance 1s the seismic wavelet.

Finally we note that multi-trace operators take into
account the coherency between the traces, which is important

in that seismic traces become more coherent at major reflections,.
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CHAPTER II

THEORY OF FINITE DISCRETE LINEAR OPERATORS

2,1 The Finite Discrete Iinear Operator

In this chapter we wish to consider properties of the
finite discrete linear operator for a single time serles,
that 1s, & linear operator whichles a finite number of
discrete operator coefficients which perform linear
operations on single discrete time serles.

In this thesis we deal almost excluslvely with discrete
time series. A discrete time series 1s a sequence of equidis-
tant observations Xy which are associated with the dlscrete
time parameter t. Without loss of generality we may take
the spacing between each successlve observation to be one

unit of time, and thus we may represent the time serles as

LA N Xt_z, Xt_l, Xt, Xt+l, xt+2,0D. ‘2011)
where t takes on integer values. As a result the minimum
period which may be observed is equal to two units, and
consequently the maximum frequency which may be observed

is equal to 1/2, which is an angular frequency of T,
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Thus, we may require all frequencies f of the discrete time
series to lie between -1/2 and 1/2, and all angular fre-
quencies w = 21f to lie between -T and T,

Time series x; may be finite or infinite in extent, and
may be treated from a deterministic or statistical point of
view. In this chapter we shall develop those properties
of the finite discrete linear operator which are independ-
ent of the mature of the Xy time series, whereas in the
following chapters we shall be mainly concerned with the
nature of the X time series.

Following Kolmogorov (1939, 1941) we shall distinguish
between extrapolation or prediction type operators on the
one hand, and interpolation or smoothing type operators on
the other hand.

242 0 ato
The extrapolation or prediction operator (Kolmogorov, 1939,

1941) is given by

A —
Tppa = KX ¥ KyFp_g ¥ oeee KyXp oy =
(2.21)
M
= I kX az20
. 8 t-g?
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where o is the prediction distance. 7The operator coefficlents,

K.y Kiyjeoo, kM are chosen so that the actual output, £t+a’

o 71
approximates the desired output, Xirar according to some criter-
ion. The operator 1s discrete since 1its coefficlents are
discrete values, and the operator is finite since there are
only a finite number M of such coefficients.

In Section 5.3 we discuss the solution of the prediction
problem in which the operator coefficients are determined by
the least squares criterion. In general, we shall see that
an infinite number of operator coefficients are required,
although for autoregressive time series (see Section 5.5-B)
only a finite number of operator coefficients are required.

The prediction operator (2.21) is one from which a spec-
ific time function may be generated if a sufficlent number
of initial values of the time function are specified. That
is, if we are given the initial values

xo’xl’x2°”'°xl"1+a-l’ (2.22)

and if we define

§t = Xxg for ¢t = Mta, Mt+at+l, Mta+2, ... (2.221)

18.



then we may generate the time function Xy by means of equation

(2.21). For example, let us consider the case given by

A

Then we may génerate the time function
A
x, = X = .5x,_, for t=1,2, 3, ... (2.24)
which is the sequence

(.5), (.5)2, (.53, (.50, (.5)5, .0 (L5)E, (L5)WHE ..

(2.241)

In Section 2.6 we shall see that such a sequence must form
a damped motion in order for the operator to be stable.
Further, the prediction operator (2,21) has the proper-
ty that only the values X., X i, Xi_p,eee Of the time serles
at time t and prior to time t, and no values Xi,.q, Xgyoyeeey
subsequent to time t, are required in order to compute the
actual output £b+a‘ Thus a prediction operator has an in-
herent one-sidedness in that it operates on present and past

values, but no future values, of the time series. As a result

19.



if time t represents the present calender time, as 1t is the
case for a meterologist who makes dally weather predictions,
then only observations of the time serlies at the present time
and at past times, and no observations at future times are
required to carry out the necessary computation.

As we shall see in Section 2.5, the prediction operator
coefficlients represent the impulsive response of an equiva-
lent electric network, Thus those impulses which have arrived
at time t or prior to time t will make the network respond,
whereas those impulses which have not yet arrived at time ¢,
l.e., those lmpulses which arrive subsequent to time t, can-
not make the network respond. In summary, then, we may say
that a finite prediction operator is computationally realiz-
able to the statisticlian, and physically realizable to the
engineer,

Instead of considering the predicted values £t+a as the
output of the prediction operator, one may consider the pre-
diction error §t+a = Xpiq ~ £t+a as the output (Wadsworth,

et al, 1953). Then we have

M
A
Etra = Fpra © Tpra T Fpra T E Kg¥os

(2.25)
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which may be rewritten

(2.26)

= xt-k b4 k

oXt-a = K1%¢-a-1 T T~ KyXe oM

Let us define m = MN+a and

a, =1, &8, = 0, a, = 0"”aa-1 =0, a, = - k_,

a a =a = -ky (2.27)

a+l = "'kl,ooo, a+M m

Then the prediction error gt may be written as

by = 8oXg + 89X ) F eee AR, =

(2.271)

m
= X 8.X, o» 85 = 1l

In the sequel we shall be primarily concerned with the
prediction operator for prediction distance a equal to one.

Then equation (2.271) for the prediction error (a=1) becomes

21,



E, = Z ax =
t s=0 g t-8
(2.28)
= xt + alxt_l + eee + amx.b_m, aO = ]
and equation (2.27) becomes
ao = l, al = "ko, az = "kl,ooo am = "'kM (2.281)

We shall regard equation (2.28) as the basic form of the pre-
diction type operator, the prediction error operator, or
simply the prediction operator, with the coefficients 8y al,
Boyeeeb o The prediction error tt shall be regarded as the
actual output at time t of the operator (2.28).

In general, the operator coefficients are chosen so that
the actual output approximates a certaln desired output
according to some criterion. In Section 5.4 we discuss the
solution to the general filtering problem in which prediction
type operators are used, the coefficilents of which are chosen
according to the least squares criterion.

In equation (2.28) we may let the operator coefficients
represent the impulsive response of a network and the time
series x the input. Then ¢, 1s the actual output of the

network,
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The prediction operator (2.28) has the same realizabllity

properties as operator (2.21), as may be readily verified.

2.3 Smoothing Operators
The interpolation or smoothing operator (Kolmogorov, 1939,

1941) is given by

A

* 4y Xyg vdpXp o toeee t Ay gy

M

=s§-M ¢ Xe-g (2,31)

840
We may consider the smoothing error given by
M

- - =3
Yt B Xt Xt g=«M

and by letting m = M, ¢ =1, and ¢ = -4, (s =+ 1, % 2,

ese + M) we have
n

Y. = L C_X —ay C. = 1 (2033)
t g=em s t-s o

In the sequel we shall regard this equation as the basic form

of the smoothing type operator, the smoothing error operator,
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or simply the smoothing operator, with operator coefficients

c, = 1, Cqs vee Ope The smoothing error

C__m, c"m+l’ LR N ’ m

Vi is the actual output of the operator.

The smoothing operator does not have the same properties
in regard to computational or physical realizabllity as the
prediction operator. In particular, it is not posslible to
generate a time function from specified initlal values by
means of equation (2.31) as was done in the case of the pre-
diction operator. The smoothing operator (2.33) has the
property that values of the time serles Xermr oo Xp2o Fpy
at times subsequent to time t, as well as values X, Xi_j,
Xgopseee Xpom at time t and prior to time t, are required to
compute Ygeo Consequently, 1f time t represents the present
calender time, as in the example of the meteorologist, then
vy 8lven by equation (2.33) can not be computed since it in-
volves observatlons X, ., Xgioseee Xppp at future times and
which thereby are not observable at the present time t.
Similarly, the network which would be equivalent to a smooth-

ing type operator would be one which would respond to impulses

which have not yet arrived at the present time t. Consequently,

smoothing type operators are not computationally realizable
to the statisticlan, or physically reallzable to the engineer.
Nevertheless, a very simple trick makes finite smoothing
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type operators computationally and physically reallizable.

That is, in order to compute

‘Yt-— +ooo+°

g 058 T Cen®prm T Comel Fptm-d ~1%t+1

t™MMB

8

(2.23)

the statisticlian must delay his computations until time t + m,
or later, which is a time delay of m or greater, at which time
all the values needed in the computation will have occured.
That is, the statistician delays his computatlions at least

until time t' = t + m, and then computes

m m
T¢ = I  Og¥peg =% Cg Xpr _pog
S8=-m S==m (2.31})

+ seet ©

= C_p Fgr ¥ Copey Xprog ~1%tem-1

+ Co Xttem + Cr1¥gropm-1 toeeet OpXin op

which we shall call the time-delay form of the smoothing

operator with coefficlents ¢g (s =0, £ 1, .... + m). Such
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an operator is in the form of the prediction type operator
(2.28) with the present time now being t'. That is, t' is the
time at which computations are to be carried out.

Similarly the engineer may introduce a time delay m, or
greater, into his network, (Bode and Shammon, 1950) to
transform the non-physically realizable system (at the time
instant t)

L (2.35)

S=-m

into the physically realizable system (at the time t' = t+m)

CcX ] . (2.36)
S=em s"t'-n-8

The fact that a selsmic disturbance 1s recorded on paper
or magnetic tape means that we have waited until all the
pertinent information 1s available. Consequently the necessary
time delay has been introduced to utilize finlte time-delay
smoothing operators, which are computationally realizable.

On the other hand if computations were to be carried out

at the same time as the selsmic disturbance is occuring, then
the statistician woul@ not be able to compute such smoothing
type operations.

2 The T F Character

As Wiener (1942) points out, the linear operator is the
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approach from the standpoint of time to a filter which 1is
essentially an instrument for the separation of different
frequency ranges. The filtering action of the linear
operator is brought out by its transfer function, which 1is
the analogue of the transfer or system function of the linear
system of which the linear operator is the unit impulse re-
sponse.

Smith (1954) gives the following interpretation to the
transfer function. Let the input information x; be points
from a sine wave of angular frequency w. Since the system
is linear, the output will be a sine wave of the same fre-
quency but, in general, will differ in phase and amplitude.
Using the complex notation for a sine wave, X, = eiwt, of
angular frequency w, the transfer ratio at angular frequency
w is the output of the linear operator, which is a complex
sine wave of angular frequency w, divided by the input Xy =
e?®, The transfer function is the totality of these
transfer ratios for -1 w T, and represents the filter
characteristics of the linear operator. As we shall now see
the transfer function is the Fourier transform of the linear
operator. Since the operator is discrete, the transfer func-

tion is in the form of & Fourler series rather than a Fourier

integrél.
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For the prediction operator, equation (2.21),

M

= £ kX a 2 0, (2.21)

A

X
+Q 8" t-s ?
t 5=0 t

by letting x, = oW e obtain the transfer ratio

M
Lita = 87t-8 s 8 N -1ws
= 820 B=0 = £ ke (2.41)

™M=

xt xt eiwt s

The totality of these transfer ratios yields the transfer

function

ke iws (2.441)

K(w) =
w , Ks

M=

8

which is the Fourier transform of the operator coefficlents
ks'

eiwt

By letting Xy = be the input for the operator for

the prediction error, equation (2.28),

n
gt = 3 a X, o 4 8 = 1, (2.28)

we obtain the transfer ratio
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4 - m m -
AR (1% aseiw(t-s) - 3 g e lws (2.42)
X 8=0 8=

The transfer function is then

m
Alw) =% a g~ lws (2.421)

s8=0 8
which is the Fourier transform of the operator coefficlents.
For the smoothing operator, equation (2.31),
M

A
X, = = ad_x, (2.31)
t gzl s t-8?
s$o
by letting the imput be Xy = eiwt, the transfer ratio is
2 M M
Thoogtwt 5 g glultes) o 5 g niws (2.43)
xt s=-M 8 =M 8
s$o s#o0
and the transfer function is
M -iws '
D(w) = & de (2.431)
s=-M
sto0
Similarly letting Xy = eiwt be the input for the operator

for the smoothing error
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m
Yo = I e, X g (2.33)

g=-m °©
we obtain the transfer ratio
;ﬁ = g iwt g cseiw(t'S) = g c_e 1ws (2.44)
t =-m s=-m
so that the transfer function is
Clw) = T o 98, (2.441)

]
=-m

Using the same operator coefficients Cq (s =0, +1, ...

9 ==

+ m) but introducing a time delay m, the time-delay smoothing

operator, equation (2.34),

n
Ty = 2 oy X (2.34)

'— -
S=—m ttem-8

is realizable at the time instant t' = t+m. Since t' now

represents the time instant at which computations are to be
iwt?

carried out the input is X1 = e o« The transfer ratio is
m 1
5 o clw(t!-n-s) . |
S==m e = ¥ cse-iw(s+m (2.45)
e S=-m
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and its transfer function is

m

e omlw(stm) _ -lum o gmiws o mlum gy (o )07)

A summary of the various linear operator forms and their
transfer functions is given in Figures 1 and 2.
2 Realiza ty of Iinear O tors t Relations
Electric Networks

We now wish to summarize those parts of the preceding
sections concerning the realizability of linear operators.
It was seen that operators of the prediction type, for ex-

ample, as represented by the prediction error operator (2.28)

= ¥ ax (2.28)

gt g8 t-8?

are computationally realizable at the time instant t. On
the other hand, operators of the smoothing type, for ex-
ample, as represented by the smoothing error operator (2.33)

m
Yy = 5 ¢ Xi_g (2.33)

are not computationally realiable at the time instant t.

Nevertheless by delaying the computations at least to the
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Prediction Operator (2.21)
(Computationally real-
izable at time instant t)

Prediction Error Operator
(2.28) (Computationally
realizable at time instant t)

Smoothing Operator (2.31)
(Not computationally
realizable at time in-
stant t)

Time Delay Smoothing
Operator (Computationally
realizable at time in-
stant t'=t+HM)

Smoothing Error Operator
(2.33)(Not computationally
realizable at time instant t)

Time Delay Smoothini
Error Operator (2.34)
(Computationally real-
izable at time instant
t! = t+m)

Xita

by

Tt

Operator Form

]
™

L]
™

(]
~MB

S=-m

OSX

t'-m-g5? o

Figure 1. Various Types of Finite Discrete
Linear Operators for Single Time

32.
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Prediction Operator (2.21)

Prediction Error Operator
(2.28)

Smoothing Operator (2.31)

Time-delay Smoothing
Operator

Smoothing Error Operator
(2.33)

Time-delay Smoothing
Error Operator (2.34)

Figure 2.

Transfer Function

M

K(w) = % kse'iws
8=0
m

Aw) = 3 & B
S=0
M

D(w) = I a e lws
=M B
s40

M

5 a e"iw(S"‘M) - e-'iu)MD(w)

=]
sto

m
Clw) = % o e iws
S=-m
M -iw(s+m) -iwm
X c e = e C(w)

Transfer Functions of Various

Types of Iinite Linear Opera-
tors Given in Figure 1.
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time instant t' = t+m, one may compute

S )
Tg = i Ce¥ttom-5 ° (2.34

This later form of the smoothing operator, which is called
the time-delay smoothing operator, 1s therefore computationally
realizable, and indeed has the same form as a prediction type
operator (2.28),

The realizability of these operator forms are reflected
in thelr respective transfer functions as follows. Let us
consider the complex plane A = w + 1 o, where we let the
real w axis denote the angular frequency w. By analytic
continuation, the transfer function of the prediction type

operator becomes in the complex A-plane

4 m - m _
A(N) = % ase 12s =1 a e” 8 e iws . (2.51)
s=0 8=0

By examining this equation, we see that A(A) has no sing-
ularities in the lower half A-plane, that is, for oo < O,
which reflects the realizabllity of the prediction type
operator.

On the other hand, the transfer function of the smoothing

type operator in the complex plane 1is

3h,



- -1 n -
i>\8= bX cse-i}\s + cse 1>\s, (2.52)

C(A) =
S

[(Rael=
(o)
o

By letting r =-s for s = -m, -m+l,...-2, -1, the transfer
function becomes
m m
C(A) = 5 c e T lUr L5 o T8 gmiws

?
r=1 r 8=0 8

(2.521)

which has singularities in the upper half A-plane and in the
lower half A-plane, thereby reflecting the non-reallzablllity
of the smoothling type operator.

The transfer function of the time-delay smoothing opera-

tor,
-1 o -1 A(s+m)
e C()\) =7 cse =
S=-m
(2.53)
2m
= 5 csec'(s+m) e-iw(s+m)
s+m=0

has no singularities in the lower half A-plane (o~ < O), which
reflects the realizability of such an operator.

The computationally realizable linear operator corres-
ponds to a physically realizable passive lumped element net-

work together with a single amplifier (Bode and Shamnon, 1950).
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The linear operator coefficients represent the impulsive re-
sponse of the network, and the transfer function represents
the transfer or system function of the network (Levinson,
1947; Smith, 1954). For example, in equation (2.28) the

operator coefficient a_ may be interpreted as the output

8
obtained from an electric filter at time t+s in response to
a unit impulse lmpressed upon the input of the filter at
time t. Since ag = 0 for s < O the output obtained from
the filter 1s zero for times less than ©, and since &g = 0
for s > t + m the output 1s zero for times greater than
t+m, the filter 1s physically reallizable. The transfer
or system function of the electric filter is the transfer

function of the linear operator,

e-iws

A(w) = . (2.421)

s

a
8

nMpB

o)

Smoothing type operators, on the other hand, are not
realizable to the statistician unless he introduces a time
delay in his computations, or to the engineer unless he
introduces a time delay in his network. Nevertheless, for
problems in which physical calendar time 1s not important,
for example, as in the analysis of seismic records, one may

make computations based on the time-delay smoothing operator,
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but consider these computations from the point of view of
the smoothing operator itself, In other words, computations
may be carried out with respect to the realizable transfer

function \

=M o) (2.53)

of the time-delay smoothing operator, but considered as if they
were carried out with respect to the non-realizable trans-

fer function

C(A) | (2.521)

of the smoothing operator with the same operator coefficlents.
This same procedure is available to the engineer in such
cases (Bode and Shannon, 1950).

The prediction operator

m -
E, = si 8g%y g (2.28)
has the transfer function
m
AMw) = = ase‘i‘”8 (2.421)
8=0

with real part
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m
Re [A(w)] = £ a, cos ws (2.541)
8=0

and imaginary part

m
Im [A(w)] = = 8, sin ws. (2.542)
s=0
Since both the real and lmaginary parts of the transfer
function depend on the same variables, nsmely the operator
coefficlents a,, 8;,+++ & , the real part Re [A(w)] and the
imaginary part Im [A(w)] cannot be chosen independently
(Smith, 1954). In other words, knowledge of Re [A(w)] lets

us compute the values of the operator coefficients a_ (s =

s
0, 1, ... m) by means of the equation
i 7 6 _iwt
& [ RelA(w)] &% aw =
0
, mom
= J Zz a, cos ws cos wt dw =
0 s=o0 (2.543)

at, fOI‘ t = O’ l’ 2,...mo

With the values of the operator coefflcients 8oy By, see 8
thus found, the imaginary part Im[A(w)] may be computed by

means of equation (2.542).
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On the other hand the smoothing error operator, say

m
Vg = E—m CeXy s B 2 0 (2.33)

k)

has the transfer function

Clw) = = cse~iws, (2.401)
=-m
with real part
el = = z )
Re[C(w)l = T c_cosws=c_ + £ (c_+ ¢ cos ws
S=em S o} s=1 s -8 ’
(2.551)
end imaginary part
n n
ImfC(w)]l = £ o sinws = I (o = c_.) sin ws. (2.552)
S=-m s=1

Thus the real part of the transfer function depends only on
the symmetric component, (cs + c_s), or the smoothing operator,
and the imaginary part of the transfer function depends only
on the antisymmetric component, (¢ - c_.), of the smoothing

), is lin-

operator. ©Since the symmetric component,(cS +ec_ g/,

early independent of the antisymmetric component, (cS - O-s)’

for each value of s = 0,1,2,...m, we see that the real part,
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Re[C(w)],may be chosen independently of the imaginary part,
Im[C(w)], of the transfer function (Smith, 1954).

Now for the smoothing operator (2.33), let us suppose that
the computations are to be carried out with respect to the

time t' where t' = t+p. That is, since t = t' - p, we have

m n
Yo = z c X tenea = z C.Xiy . (2056)
t o, St'ep-s ” 2 s t'-(pts)
lwt!
Letting x4y = € , the trensfer ratio is
ey X cse"“”[t -(pts)) _ T cge w(p+s) (2.561)
e S=-m s=-m

and so the transfer function of the operator (2.56), denoted
by Cp(w), is

cse'lw(8+p’. (2.562)
-m

(s I =

Cp(w) = .
Now when p = O, the operator (2.56) is the smoothing operator
(2.33), with transfer function (2.441), the real and imaginary
parts of which are independent of each other. On the other
hand, when p = m, the overator (2.56) is the time-delay smooth-
ing operator (2.34), which is a prediction type operator, with
transfer function (2.451), the real and imaginary parts of



which are entirely dependent upon each other. For those p
for which O< p<m, the operator (2.56), has transfer function
(2.562), the real and imaginary parts of which are partially
dependent upon each other, and partially independent of each
other. We shall now examine to what extent they are depend-
ent and independent.

We see that Cp(w), given by equation (2.562), is

m
o g~ lw(s+p) _ olwp & o gmiws _ -1wp ()

8

Mg

Cp(w) =
8
(2.563)

where C(w) 1s the transfer function (2.441) of the smoothing

operator (2.,33)., For O < p < m, the real part of Cp(w)

is glven by
m-p m+p
RelC = + + + 4
elC (w)l = e_j 521 (e_y 5 c‘_p) cos wd £=m-§+1 €4p COS W
(2.564)
and the imaginary part is given by
C (] = 2 ( ) r
ImlC_ (w)]l = % c -C s8in wé + I c sin w4
P 4=1 4P Ti-p t=m-pt1 7P |
(2.565)
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Thus, given Re[Cp(w)J, we may compute ¢_j, (C_, .+ c‘_p) for
4 =1,2,.,.m~p, and °4-p for 4 = m-p+l, m-p+2,...mp. The
values (o_,_, - cl_p) for 4 = 1,2,...m-p, Which enter into
equation (2.565) for the imaginary part Im[Cp(w)] are inde-
pendent of the values (°-J-p + c‘_p) for £ = 1,2,..., I~D,
which were computed from the real part He[Cp(w)], and thus
reflect the partial independence of the real and imaginary
parts of the transfer function. On the other hand, the values
c‘_p for 4 = m-ptl, m-pt2,..., mtp, which enter into equation
(2.565) for the imaginary part Im[Cp(w)] are the same values
C4p for £ = m-ptl, 4 = m-p+2,...+p which were computed from
the real part Re[Cp(w)], and thus reflect the partial depend-
ence of the imaginary part on the real part of the transfer
function.
2 Sta P t Ope

In the remaining sections of this chapter we shall con-

slder only the operator form of the prediction type, namely

m
E, =%  a_ X, .. (2.28)
t 8=0 s t-8
Let us now consider the linear difference equation
m
E asxt_s = 0 (2061)

8=0
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obtained from equation (2,28) by requiring Et = 0, We see
that the constant coefficients ag of the difference equation
are the operator coefficients, There is no loss of generallty
in assuming that ao is equal to one, in conformity with our
usual convention.

The theory of difference equations 1is presented by various
authors, and the reader 1s referred especially to Wold (1938)
and Samuelson (1947). In the first part of this section we
state the condition that the difference equation (2.61) be
stable, that 1s, the condition that 1ts solution x, describes
a damped oscillation. Then in the last part of this section
we show that thlis stability condition is preclisely the condi-
tion that Fourier transform of the operator (i.e. the trans-
fer function A(A) ) has zeros and singularities, all of which
lie in the lower half A-plane, where A ; w+ 1. In other
words, we show that the difference equation (2.61) is stable
Aif the transfer function of the operator has minimum phase
shift characteristic. Let us now examine the condition that
the difference equation (2.61) be stable. The characteristic
equation of the difference equation (2.61) is defined to be

m
- m m=-1 A - m-gs
P(L) = at” + af + oo+ oL +ay -SEO at™ . (2.62)
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Since P({) is a polynomial of degree m, it follows from the
fundamental theorem of algebra that P({) has m roots or zeros

QJ such that

P(gj) = O, for J = l,z,ooom (20621)

As a2 result P({) may be written in the form

P(L) = a (-0, Y(E-E ) ea(-C ) (2.622)

Since the operator coefficlents as(s = 0,1,...m) are real,

the roots or zeros {,, {5,00ef must be real or occur in
complex conjugate pairs, Let the distinct real roots of

P({) be represented by @y, J = 1,2,3....h where each distinet
root @, is repeated v, times (3 = 1,2,3...h); that is, the zero
aj is a zero of order Yj' Let the distinct complex roots and
their conjugate roots be represented by ﬁjeigj and 33e~103,
(3 = 1,2,+..k) where each distinct complex root is repeated
py times (J = 1,2,...k); that is, the zero Bjeigd is a zero

of order py, &nd the zero Bje"iOJ is also a zero of order

Pye Here Bj represents the modulus, and OJ or - OJ represents

the argument, of the complex root. Consequently, equation

(2.62) becomes
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- m m-1
P(L) =al” +al teeota ,L+a

1 m

(2.623)

m
B(t = £ - tp)euett - ) =8 TT (L= L)

]
o

h p - P
<§-a3>73 fT (§-63eioj ) d (ﬁ-ﬁje»ioj ) J
J=1

p
f& (t? - 28, cos 0, L + 53) J,

=

For an arbitrary set of initial values
Xo, Xl, xz’to.xt*l’ (2063)

the series Xis Xppqs Fpppaeee MEY be generated by recursive
deductions from the difference equation (2.61), and this series
will form the general solution of the difference equation.

Explicitly the general solution is given by

h k ,
_ (1) t (2) (3) [,y t
Xy _321 PYJ-l(t) D, +Jil[PpJ_l(t) cos ©,t + ij-l(t) sin Ojt]ﬁj
(2.631)
where the PﬁS)(tT denotes a polynomial of order r with ar-

bitrarj coefficients, and the h, Kk, aJ, ﬁj, Yy and pJ are
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glven by the characteristic equation (2.623).
The asymptotic behavior of the general solution X, in
equation (2.€31) 1s dependent on the exponential factors

ag and Bg. A necessary and sufficlent condition that
® e o)
£ xp and | x (2.64)
t=0 t=0

converge for any values taken on by the PﬁS)(t) is that the

magnitude of the roots ILJI, 3 =1,2,.e.m, of the character-
istic equation (2.623) be less than one, that is, Iﬁjl < 1,

J=1,2,00em, which is

laJI <1, J=1,2,...h (2,641)

BJ < l, J = l,z’ocok .

In this case the solution Xy of the difference equation (2.61)
describes a damped oscillation, end we shall call the corres-

ponding linear operator

m

E. = = ax  _, 8
t o g, 8 t-8" o

mathematically stable. That is, a linear operator is stable
if the zeros §k of its associated characteristic equation P({)
lie within the periphery |{| = 1 of the unit circle, that is
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‘ijl < Ll
Let us now turn our attention to the Fourler transform

of the operator coefflcients, that i1s, the transfer function,

m
Aw) = T a e %" (2.65)
§=0
of the linear operator (2.28)., By analytic continuation to
the complex plane A = w + 1 o, where the real w axis denotes

angular frequency, the transfer function becomes

m m
AN = = ase~iks =3 ae

S=0 S

o8 e—iws

. (2.651)

We see that A(A) is an entire transcendental function since

it is a finite sum of entire transcendental functions ase'iks

(s = 1,2,+0.m) plus a constant a Consequently A(A) is

o*
enalytic in the whole A plane and may be represented by a
power series in A which converges in the whole plane, Out-
side of every circle in the A plane, A(N) come arbitrarily
close to every value; that 1is, A(A) has an essential sing-
ularity at the point at infinity.

Let us apply the transformation z = e'ik, for -m< ws ™,

to the transfer function A(A). The transformation z = e-ik

maps the strip between w = -7 to w = M of the upper half A
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plane ( o= < O) into the exterior |z|< 1 of the unit circle
in the z plane; it maps strip between w = =T to w = W of the
lower half of the A plane, (e~ < 0) into the imterior |z| < 1
of the unit circle in the z plane; and it maps the real axls
- < w ¢ 7 of the A plane into the periphery |z| = 1 of the
unit circle in the z plane. See Figure 3. Under this trans-
formation the transfer function A(}), equation (2.651) becomes

the polynomial A(z) where

B8

8 2 m

A(z) = ¢ agz =8, + 8,2+ 82" % ..+ az -

8=0

(2,652)
This polynomial or entire rational function, is analytic in
the whole plene and has a pole at infinity. Let us call A(z)
the transfer function in the z-plane.
For a stable linear operator we have seen that the

characteristic equation

m
P({) =% a
=0

(o)

P = a (P4 algm‘l +eta, 8 =1 (2.623)

has roots {,, 52"’§m’ all of which have modulus I§k| less
than one. Without loss of generality, we assume &y £ 0, so
that |{, | # O for k = 1,2,...m. Thus the characteristic equa~
tion (2.623) may be written
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P(L)

- - )oq. -
(E-81)(E=E5)eaa (E-E ) (2.653)

-1 - -1 -1 -1 -1
(% Lleealy (75 - 870 (631 - £70) wo (gt - Y

£ Lybpeeely (1 (7L - 7h @7t - Ghaatt - b
1 _ p=ly (4=l _ =1y -1l _ -1y
= amgm (g - gl ) (g - gz )ooo(g - gm )

since

am = ("l)m glgzoocgm’ (20654)

Under the transformation z = {~%, the function P({), given

by equation (2.653), becomes

m
P(; = zfl) =8§o asz-m+s = Z-m am(Z“zl)(Z’Zz)ooo(z-zm)
(2.655)
where we define
2z, = Qil, z, = Lgl, ceeZ = E;l. (2.656)

Thus the function
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Dol = 771 = 5 8 2® = 8 (z-2.) (z-2,)ees(z-z.)  (2.657)
Z - Z S=O SZ - am Z“‘Zl Z 22 oo Z Zm *

is the function A(z) in equation (2.652) which was obtalned

from the transfer function A(A) by the transformation z = e-ik.
That is, the transfer function in the z-plane 1s
o s
A(z) =s§o a z = a (z-27)(z-z;)eeelz-zp) (2.657)

where the roots zk(k = 1,2,...m) are given by equation (2.656).
Since the stability condition is that the roots Qk have modulus

|, | less than one, we see that this condition is that the

roots z, of A(z) have modulus

-1
Iz, | = 1630 > 1.

(2.658)

greater than one.

Thus the finite prediction operator is stable if the roots
Zy of the polynomial A(z) all have modulus greater than one.
That is, the operator with coefficlents a,, 8,¢¢¢, 8y is
stable if the transfer function in the z-plane,
A(z) =a_+ a.z+ 8 z + + a_z"
o l 2 o e o

mZ

(2.66)
= ao(Z“‘zl) (Z'Zz)ooo (Z"‘Zm)
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has roots zk where

Izl >1, k=1,2,...,m. (2.661)

In other words, the stability requirement is that all the
zeros of A(z) must lie exterior to the periphery |z| = 1 of
the unit circle in the z plane.

For example, let us consider the so-called cosine operator

(Simpson, 1953)

By = Xp ¥ 89X g + 8%
(2.67)

il

xy = (2 cos wy) xp x5

The coefficients of this operator were chosen by the require-
ment that the prediction error Et = 0 for x, = cos w,te The

transfer function in the z-plane is then

A(z) = 1 + a,z + azz2
=1 -(2 cos w_) z+z2
o (2.671)

1(3)0 —iwo

= (e - z)(e - z)

so that the roots of A(z) are
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Wo | 4, = e . (2.672)

z; = e
Since |zq| = |z,| = 1, the cosine operator is Jjust on the
borderline of unstability.

Let us consider this stability condition (2.661) in terms
of the transfer function A(2A) in the complex A-plane., The
stability condition (2.661) becomes, under the transformation

e} _ 2 thet the transfer function

A(A) = g ase'“‘s (2.651)
§=0
has zeros only in the upper half A plane. See Figure 3. Then
A(2) has no singularities or zeros below the axis of real
frequency w and its logarithm in that helf plane 1s as small
as possible at infinity.

A linear system has minimum phase-shift characteristic if
its transfer functlion has no singularities or zeros in the
lower half A-plane (Bode and Shannon, 1950; Goldman, 1953).
Thus if we consider A(A) to be a transfer function of a
linear system and if A(A) satisfies the conditions of a
minimum phase-shift characteristic, then the linear opera-

tor
k1)

a, = ==~ [ A(w) e%Pauw (2.67)
-TT
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is stable.

In summary, then we see that the stability condition is
that the difference equation (2.28) formed by the operator
coefficients a; (s = 0,1,...m) is to have a solution which
describes a damped oscillation. This stability condition is
also that the transfer function A(A) of the linear operator
is to have no singularities or zeros below the axls of real
frequency w, and that its logarithm in that half plane 1s to
be as small as possible at infinity. Briefly, a stable
difference equation yields a minimum phase network, and con-
versely.

297 T v Operst
Let us consider the stable finite prediction operator

m

£y =S§O BX, s 8, =1 (2.28)

so that 1ts transfer function in the z-plane

a z8 (2.652)
o

A(z) =
8

H™MH

has zeros, all of which are exterior to the periphery

|z] = 1 of the unit circle. In other words, the function

A(z) is analytic for |z| s 1, and
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m
Alz) 40 for |z] ¢ 1, T & «<oo. (2.71)
8=

Consequently the function

A~l(z) = E%ET' = -Erlh———- = B(z) (2.711)

s

is a function which is analytic for |z| s 1, and has no zeros
for |zl ¢ 1. As a result we may expand this function in the

power serles

@
- — t
Y = -= I bz’ = B(z) (2.712)
L agz
8=0

which converges for |z| ¢ 1, and has no zeros for |z| < 1.
The values of b, for t =0, 1, 2,... may be found by direct
division of the polynomial ao + alz + azzz + .0 + amzm into
unity. We shall define bt to be those values given by equa-
tion (2.712) and define

b, =0, for t <O, (2.713)

From the equation (2.712) we have
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A(z) Blz) =1 = T azf ¥ bp.2
=0 S =0 t (2 . 72 )
m (0 9) m a0
=z a, T b2 = 3 a T p 2"
8=0 t= 8=0 n=gs

where we have let n = s+t. Recalling that bt is equal to

zero for t < O we have

(2)B(z) La % 23 (2
A(z)B(z) =1=%za_ I b =2 (3% ab__
s=0 ° n=o ¥°S n=o s=o ° B8

) R, (2.721)

In order for this equation to hold, we see that

ab, =1 (2.722)

m
L agby ¢ =0, for n=1,2,3,... (2.723)

Since, we let a = 1, we have b, = l. Thus, given the

operator coefficlents a

o) 81seee8p, the bl’bZ’bB“’ may be

uniquely determined by recursive deductions from the differ-

ence equation
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m
Z a/b
s=o °©

t-8 = 0, t = 1,2,3,000 (20723)

subject to the initial values bt =0 for t < O and b, =
-1 _
(8" =1,
Since we have assumed that the linear operator with the

coefficients aj, 8, 8¢..8) 1s stable, the difference equa-

o?
tion (2.723) with the constant coefficlents a_, 81, ... 8
has the characteristic equation

m

P(L) = £ ath® (2.73)

8=0
all the roots §k of which lie within the periphery of the
unit circle, that is |{,]| <1 for k = 1,2,...n. 4s a result,
in virtue of equation (2.631) for the general solution of this
difference equation, the solution by (t = 0,1,2,...) describes

a damped oscillation. In particular, the series

Q e 0] 2
b Ibtl and T by (2.731)
=0 t=0

converge.

Let us now examine the linear operator, with coefficients

bo’bl’bz’ LN ) giverl by
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© ;

rzo brgt-r . (2.74)
Since by = O for t < O, this operator is of the prediction
type, and since the operator has an infinite number of dis-
crete coefficients 1t may be called an infinite discrete lin-
ear operator. oStrictly speaking infinite linear operations
may not be computed because an infinite number of multipli-
catlons would be required, and hence in this strict sense
they are not computationally realizable. Nevertheless,
because of equation (2.731), the operator equation (2.74)
may be approximated by the partial sum

M

T Db
r=0

rb o (2.741)
to any degree of computational accuracy by choosing M
sufficiently large, and in this sense the operator equation
(2.74) is computationally realizable,

Since B(z), given by equation (2.711), has no singular-
ities or zeros for |z| ¢ 1, the transfer function of the by
operator

[o0)
Blw) = £ b, g twr (2,742)
r=0
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has no singularities or zeros in the lower half A plane whefe
AN=w+ 1 o, (see Figure 3). Thus the linear operator by
has minimum phase shift characteristic, and 1s stable.

In summary, then, the infinite linear operator bt has

the following properties:

bt O for t < O

0 (2e75)
@
> bi<®
t=0
and the
@ t
B(z) = £ bz ¥ 0 for |z| 1, (2.751)
t=0

and we shall call such infinite predliction operators compu-
tationally realizable and stable,
Let us now examine the significanceof the linear opera-
tor
e s
rzo bl (2.74)
Inserting into this equation the prediction errors Et, gt-l'

€L _psese given by the prediction operator (2.28), we have
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2 bt., .= b, I ax
p=o T t-T r=o0 T g=g B8 C-T-8
(2,76)
m o)
= I a I b x .
s=0 B peo r"t-r-s
Letting n = r+s, we have
ELY: z 3z 61)
Z b, .= I a Z b x (2,761
e t-r 8=0 8 ,-g 1S t-n

and recalling b, = O for r < O, we have

o
T bt = £ a_ I b b = ( = ab .)x .
=0 r°t-r 8=0 s n=o n-s “t-n n=o 8=0 S n-8 t-n

(2,762)

Therefore, because of equations (2.722) and (2.723) we have

(e}
L b, ¢ = X_o (2,77)
r=0 T t-r t
That is, the linear operator (2.77) with coefficlents Db _,bq,
b,.ss Operates on the prediction errors gt’gt—l’gt-Z"" at
time t and prior to time t in order to yield the value of the
time series Xyo Thus we see that the operator (2.28) with
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coefficients a ,a

m-17°°°82s 81, 8, operates on the time serles

covey Xp o9 Xp 9 Xy to yleld the prediction errors gt_z,
Ei_1» Ly» whereas the operator (2.77) with coefficients

eees, by, by, by, performs the inverse operation. Therefore
the ag operator (2.28) is called the inverse to the by opera-
tor (2.77), and conversely.

More generally, the infinite linear operators

3 cg ( )
= & X 2.78
t g=0 B t-s
3 4 ( )
x, = Z Db _ 2.781
t s=0 g~ t-s

are realizable, stable, and inverse to each other 1f the

coefficlents ag satisfy

at =0 for t < O

5 ai < o (2.782)

®
A(z) = = =

tzt £ O for |z| ¢ 1,
t=0
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if the coefficients bt satisfy

bt =0 for t < O
bo>0

Z by < (2.783)

@ &
B{z) = ¢ b,z £ O for |z| ¢ 1
=0

and if

A(z) B(z) = 1, (2.784)

Hence the 8 and bt are related by
& (2.785)
§ a bt-s =0, for £t = 1,2,3,400

Thus, given the set ag, the set bs may be uniquely determined,

and vice versa. For example equation (2.785) for t = 1,2,3,

yields
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a3 1
- 2 (2.786)
on the one hand, and
b, = = + a?
2 ) 1 (2.787)
= - _ a3
b3 a3 + 2a1a2 al

on the other hand.

Both the at series and the bt series

(¢t = 0,1,2,...) form damped oscillatioms.

Lhe transfer functions

A(w)

B(w)

= 3 ase'ws (2,791)
8=0
o)

= % bse-iws (2.792)
S=0

are free from singularities and zeros in the lower half

A-plane, A = w + 1 o, and have minimum phase shift charac-
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teristic. They are related by

Alw) B(w) = 1, (2.793)
Ty = A7Hw) = Blw), (2.794)
'—-(Ly = B™1(w) = A(w)
Blw ’ (20795)
-1
A (UJ) A(w) = l, (2'796)
and
B™1(w) B(w) = 1. (2.797)
2 Power Trans ctlo ts Stable Predictio
Operator

The power transfer function U(w) is defined to be the
square of the absolute value |A(w)| of the transfer function

A(w); that is, the power transfer function is gilven by

Tw) = |Aw)]? = Alw) E@)

(2.81)
(RelA(w)1% + (Im[A(w)]z 2 0
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where the bar indicates the complex conjugate. Here |A(w)]
1s called the galn of the linear operator, and 1t 1s given

by the square root of the power transfer function; that 1s

|A(w)| =-\//I (w) (2.811)

so that knowledge of the gain of the linear operator and

knowledge of the power transfer function are equivalent.
The power trensfer function UT(w) of a finite linear

operator 8,3 8yyese8, may be expressed by the finite trig-

onometric series

m

ase'iws £ aelt - lA()? 2 0 (2.812)
0 t=o0

tmB

T(w) =
5

which is non-negative for -m < w ¢ T, We may rewrite this

expression in the following way

— m - -
Iw) = £ = aae twls-t)
s=0 t=o
(2.813)
m m
= 3T "7 3 884,
T=~m =0
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where T = s-t. Let us define r. to be

T
that is,
2
r o = ab
Tn-1 = Ti-m T Z%0%m-1
rm = r—m = aoam

m
= tZ 88,5 Tr = T_; (2.814)
=0
2 2 2 2 2
+ al + az + e t+ am__2 + am._l + am

+ 8,8, + 88, + e ta o8 o ta j8

+ al:a.3 + azau + 60 t am_zam

a8, (2.814)

Therefore if we are givén the linear operator with coefficients

ao,

81,000, 8, We may find the r, by means of equation (2.814)

and thereby determine the power transfer function

T(w) = |

e"inlZ - -{wT

m
a
L 8

m
z r_e
O T

s m T
(2.815)
m

=ro+2 L r_ cos wr 2 O,

T=0 T
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In this section we wish to consider the inverse prob-
lem; that is, given the power transfer function J(w), find

the coefficlents &,, 8;,¢¢e8y of the linear operator which

o,
yield this power transfer function. This inverse problem,
as it stends, is not uhique in that several different linear
operators may yield the same power transfer function ﬁ(w).
As we shall see, however, all of these linear operators are
unstable, except one. In other words, glven the power trans-
fer function U(w) we wish to find the one, and only one, real-
izable, stable prediction operator which ylelds the power trans-
fer function ﬁ(w). This stable predictlon operator has the
transfer function with gain equal to ﬁh») and minimum
phase characteristic., The import of this section resides in
the fact that if one wishes to design a stable linear opera-
tor, he needs only to have information about the desired
absolute gain characteristics [A(w)| = T(w) , and needs
no information concerning the phase characteristics. In
this section, we give direct procedure for the determination
of such stable finite linear operators. This procedure may
be readily progremmed for automatic computation on a digital
computer,

Since we wish to consider finlte linear operators with

the coefficients By Bpyeeeed, 1t 1s necessary to express the
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power transfer function in terms of a finite trigonometric

serlies
E( ) o ~iwT o
w) =2 r, e =r + 285 r_ coswl, r > O, r_ =1
toep T /o) 721 T ! o ' T -T
(2.82)

which is non-negative for -m< w ¢ T, and the r. are real.
If the power transfer function is given by the infinite
Fourier series
oo}

T(w) = p, + 2 Tzl Py COS WT 2 0, -T < w$ T, (2.821)
which is non-negative for -m < w £ 7, then the Cesaro partial
sum

N T . ‘
ot 2 L (1= ) py cos wr, (2,822)
T=4
which 1s also non-negative for . m < w ¢ 7, may be used as the

finite series approximation to U(w). We then have

T(w) =~ r

m
= - L
° + 2 151 r. cos wT, r = (1 N ) Py (2.823)

T
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which may be used for equation (2.82).
Let Q(u) be the polynomial of order m obtained from
m -7 T
r + 2 ¥ r_ (z7' +z) (2.824)
) T
T=1
by the substitution z * + z = u. Wold (1938, Theorem 12),
in connection with his study of the process of moving aver-

ages, shows that a necessary and sufficient condition that

the finite series

r +2 5 r_(ef®T 4+ o 1uTy (2.825 )

be non-negative for -m< w < T is that the equation Qlu) = O
should have no real root of odd multiplicity in the interval
-2 <u<?2,

The method which we give in this section was used by
Wold (1938) in order to factor the power spectrum of the pro-
cess of finite moving averages, and the power spectrum of the
autoregressive process.

As we shall see in Section 5.5-A, the power spectrum

of a process of finite moving averages is given by

M
¢ (0 +2 = (1) cos wr 20 (5.523)
T=1
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which has the same form as the power transfer function T(w)
glven by equation (2.82). Thus by the method to be presented
in this section, we may factor the power spectrum into the

product

M
$0)+2 T ¢(7) cos wr = Blw) Blw) (5.523)
T=1

where

M -ilws
Blw) = £ Dde (5.524)
5=0
is free from singularities and zeros in the lower half A-plane.

As we shall see in Section 5.5-B, the reciprocal of the

power spectrum of an autoregressive process 1s given by

m
r,+2 I r.cosuws (5.542)
=1

which has the same form as the power transfer function given
by equation (2.82). Thus, by the method to be presented in
this section, the reciprocal of the power spectrum may be

factored into

m
r,+2 I r cosuwTs= Alw) A{w) (5.543)

T=1 T
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where

(5.547)

is free of singularities and zeros in the lower half A-plane.
Returning now to the power transfer function let us
suppose that the r. = r_. are such that T(w) given by equa-
tion (2.82) is non-negative for - < w ¢ T, Under the trans-
formation z = e-ik, where A = w + 1 o, (see Figure 3), the

power transfer fucntion U(w) becomes

o T
J(z) = = r.z (2.83)
T=-m

where J(z) is a rational function in z.

We see that

nm
2 Fz)= £ r 2" (2.831)
T=-m

is a polynomial of order 2m. Expressing this polynomial in

terms of its roots z, (k=1,2,...2m) we have

2 P(z) = rm(z-zl)(z-zz)...(z-ZZm) (2.832)
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where we assume ry ¥ O so that |z, | % O for k = 1,2,.., 2m.

Hence the rational function ﬁ(z) may be expressed as
T(z) = z78 r (z-zl)(z-zz)...(z—ZZm) (2.833)
and the power transfer function is therefore

ﬁ(w) = eium rm(e—iw - Zl)(e.—iw - Zz)ooo(euiw - sz) (20834)

Since the power transfer function ﬁ(w) is a real function

of w, We have

T(w) = Tlw)

-3 wm 1w
r,e (e

- El)(eiw - Ez) L ) ‘eiw - ;zm)

= rmeiwm (1 - -z-le"iw)‘(l - Eze"iw) eee (1 - EZme'iw)
- - iwm _-L_ -lwy _J: -1lw }_ -iw
= ZlZZQoozzmrme ( zl - e )( 22 - e ) oo ( sz‘ e )
(2.835)

Letting z = e"j‘}\ where A = w + 1 o we have
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E(Z) = -Z-]‘Ezooo-z.zmrmz-m(-z-zl - Z)(-Z-;l - Z)ooo‘;ég; - Z)(2.836)
Comparing equations (2.824) and (2.831) we see that if z, 1is

o root of the polynomial z© U(z), then

-
2

Kl is also a root.
Moreover since the power transfer function U(w) is a

real even function of w, we have

Tl-0) = T(w) = Tw) (2.84)

which is

i

T(-w)

iwm, -iw - -1lw - -iw -
r e (™ - zl)(e - zz) P ) - sz)

= P(w) = rmeiwm (e”iw . zl)(e'iw - zz)...(e"iw - sz) = Tlw),

Letting z = e"i)\, where A = w + 1 o, Wwe have

ﬁ(Z) = rmZ-m(Z—-Z-l)(Z-;z)...(Z-;zm) = rmz-m(Z"Zl)(Z“Zz)ooo(Z“'sz)

(2.842)

so that if z, 1s a root of the polynomial z© U(z) then Ek

k
is also a root.
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In summary, then, if z, is a root of 2" T(z) then Ek,
zil, and E;l are also roots. Thus if & is & complex root
of z® T(z) with modulus log | # 1, then ay, a;l, a;l are distinct
from each other, and are all roots of z° U(z). If By 18 a
real root of z© J(z) with modulus lBkl + 1, then B, and ﬁ;l
are distinct from each other, and are both roots of z» U(z).
If vy is a complex root of z® P(z) with modulus ‘7kl = 1, then
vy and ;k are distinct from each other, and are both roots
of zo Ulz). Let P, represent the real roots of Z"T(z) with
modulus lpkl =1,

Accordingly, the polynomial z© J(z) may be expressed as

2" T(z) = Ty kII (z-ak)(z—ak)(z-a;l)(z-ail) kzi (Z—Bk)(z-ﬁil)

T v em ) Pz (2.85)
- - - 2.8
AU St SLANLE B g

where any root of order p is repeated p times.

Let us now turn our attention to equation (2.812),

m m
Tw) = £ age™™® 5 a.el® (2.812)
8=0 t=0

The.



which expresses the relationship of the power transfer func-

tion J(w) with the coefficients a 81, +ee8, of the predic-

0’
tion operator which yields ﬁhn). Under the transformation

z = e'ix, A=w+ 1 o, (see Figure 3), we have
m m
Plz) = = asz8 T ez L (2.86)
s=0 t=0
We thus have
m m m
28 T(z) = = rTzT+m = X aszs T atzm't (2.861)
T=-m 8=0 t=0

In section 2.6 we defined A(z), called the treansfer function

in the z plane, to be

o s
Alz) = = az (2.652)
s=0
so equation (2.86) becomes
T(z) = A(z) A(z™D) (2.862)

and equation (2.861) becomes
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2 Tiz) = [A(z)] LZ"A(z"1)] (2.863 )

which is

2m-1 mel

2m +1 m
+ + .o + 2z + +
r .z ro-1? . ry r,z r,z

+ + +
m ceoe rm_lz I‘m

Zm—l

m m
- + + .o + + <4 + . + +

(2.863)

In order to factor z" U(z) into the two real polynomials
A(z) and zmA(z"l), we see that one of the real polynomials
(z—ak)(z-ak) or (z-ail)(z-ﬁil) must be a factor in the poly-
nomial A(z). Since By 1s real, then either (z~ﬁk) or (z—ﬁ;l)
is a factor in A(z). On the other hand, since the factors
(z-vk) end (z—;k) are complex, both of them must be contained
in A(z). Likewise (z-pk) must appear in A(z). Thus it is
necessary that the roots v, and p,, which have modulus 1,
appear an even number of times, that is 4 = 24' and n = 2n',

This condition that roots of modulus one appear an even

number of times is satisfied since U(w) 2 O, Thus we have
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1
Alz) = a iii (z—ak)(z-ak) ;iI (z-ﬁk) ;il (z-vk)(z-vk) kEI (z-p, )
(2.87)
and
ZMa(z"l) = %& (z-a=1) (z-aot) Tﬁ' (z- -1y
1 4% x ) L Py (2.871)
l' 1
T (v DY T (oD
k=1 k P | k
1 _ =1

-1,

since Y = Tx Yk , and Pre = Py o

» Ty

Thus if the zeros of A(z) are z,, then the zeros of Z8a(z" L)

are z;l. In order for the linear operator with coefficients

8o s8qs 000l to be strictly stable, then all the roots of
m

Alz) = = aszS : (2.652)
S=0

must have modulus lzkl > 1. lhus if the transfer function

T(w) yields roots vy, and p, which do have modulus lvkl =

lpkl equal to one, then there is no strictly stable linear
operator which yields this transfer function , although
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there 1s a linear operator on the borderline of stability,
such as the cosine operator (2,67).
Let us suppose that J(w) ylelds no roots T end p, with

modulus equal to one. Then we have

m
Alz) = ﬁﬁ- (z-a, ) (z=a ) f&'(z-ﬁ )= ¥ az® (2.88)
™ e RE Ly R T 2 %
and
m
Z04(z"1) = %T (z-a-1) (z-T1) f& (z-21) = § a 2% (2.881)
ka1 ok ER LR P s=0 °

where lakl £ 1 for k=1,2,...h and Iﬁkl # 1 for k=1,2,.. J.
If the zeros of A(z) are z, for k = 1,2,...m, then the zeros
of zPAlz"1) are zil for k = 1,2,...n, and since |z, | ¢+ 1, it
follows that half of the 2m roots of

22 T(z) = Alz)Z® a(z~1) (2.863)

have modulus greater than one, and the other half of the 2m
roots has modulus less than one,
Thus if we choose those m roots of z® U(z) which have

modulus greater than one, and call these roots the %,
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(k = 1,2,...h), the @, (k = 1,2,...h), and the B, ( k = 1,2,...h)
which appear in equation (2.872), then A(z) will represent

the transfer function in the z plane, of a stable linear
operator. That is, since A(z) has roots, all of which have
modulus greater than one, the transfer function

Alw) = ase"i‘”S (2.421)

8

nmMB

o

wlll be free from zeros in the lower half plane of A = w +
i1 oo, and be of the minimum phase shift type. The prediction

type operator, with coefficients

L

a, = L/ awet at (2.864)
-TT

is then stable.
On the other hand, 1f we did not choose the roots in the

above fashion, there being at most 2 gifferent ways of
choosing the roots, then A(z) would have roots, some of which
have modulus greater than one, and some of which have mod-
ulus less than one. Consequently the transfer function A{w)
would not be of the mihimum phase shift type and its linear

operator would not be stable.
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Let us summarize the computational procedure required to
determine the stable operator coefficients BosB8ysevedy from

the power transfer function

m
Tw = £ re™ 30, r >o. (2.82)
T=-m

Form the polynomial

m
22 P(z) = £ pz'0 (2.831)

and solve for 1ts roots z,,Z,,.e«+Zy;. ZLet zj, z},...z} Dbe
those z, (k = 1,2,...2m) of modulus greater than one and also
those z, of modulus one counted half as many times. (In
order for there to be a strictly stable operator, there may
be no z, of modulus one). Then we form the polynomial

a_z®, (2.89)

Alz) = (z-z])(z-2})e.e(z-2]) = s

N™MBE

8=0

and the operator coefficlents are given by the age They

represent a stable linear operator, the transfer function of
which has minimum phase characteristic. Thus we have shown
that the power transfer function J(w), equation (2.82), may

be factored into
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T(w) = A(w) E(0) (2.891)

where the transfer function

m
Alw) =3 a g~ 1ws (2.892)

wlll be free from singularities and zeros in the lower half

Mplane,
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CHAPTER III
THE NON-STATISTICAL ANALYSIS OF TIME SERIES

T (o) A o8&

In the last chapter those properties of the finlte
discrete linear operator were developed which are independ-
ent of the properties of the time series X under consider-
ation. In this chapter we wish to consider the methodology
of the non-statistical or deterministic approach to the study
of discrete time series Xye Since this approach leads to per-
fect functional representations of the empirical data, the
various schemes of analysis are called functlonal schemes.

As we shall see, the harmonic analysis of the time serlies, that
is the analysis in erms of eiwt, plays en important role in
these functional schemes.

Ag an introduction to the concept of the functional
approach, let us for the moment consider the continuous time
series x(t). If the integral which represents the total energy
of x(t), given by

® 2
S 2= (t) at (3.11)
-

82,



is finite, then the Fourier integral representation of x(t),

x(t) = %ﬁ ;D X(w) etWt dw, (3.12)
-0

is a perfect functional representation of x(t). Here the

function X(w), given by the inverse Fourier transform

X(w) = foo x(t) eIt gy, (3.13)
-
is a function which contains the same information as x(t),
but 1s in the frequency domain rather than inthe time do-
main as x(t).

In this chapter in which we consider only discrete time
series, we first indicate the methodogy of the periocdic
functional scheme. We then consider the aperiodic functional
scheme for transient time series, especially in connection with
the so-called linear filtering problem, which is the transform-
ation of one transient time series into another transient by
linear operations. Finally we see that the functional approach
in certain cases requires methods of averaging in order to
approximate certain functions for computational purposes. Since
in meny cases methods of averaging become more vhysically

meaningful from the standpoint of probability theory, in the
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last three chapters we shall consider the analysis of time
serles from the statistical point of view.

In particuler, in Chapter V, we shall see that a sta-
tionary time series (with an absolutely continuous spectral
distribution) may be considered to be additively composed
of wavelets, all with the same shape, and with rendom strengths
and arrival times. As we shall see, methods of averaging
play an important role in the determination of the wavelet
shape. Since the shape of such a wavelet represents a
deterministic tramsient time function, 1t may be treated
by the methodology of thls chapter.

3.2 The Periodic Functional Scheme

The various periodic functional schemes assume that
the time serlies under conslderatlon are composed of strictly
periodic components. Since such schemes are treated in de-
tail in the literature and since they have limited applica-
tlon in seismology, we shall only briefly indlcate the
methodology used. For more detailed discussions, the read-
er is referred to Schuster (1898, 1900) and Whittaker and
Robinson (1926).

Let an observational time series be glven by

Xye Xy,eee Xq (3.21)
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b

for the time range 1 ¢ t ¢ T, where the mean value of X is
zero., We shall consider the case in which it is assumed that
the observational data are strictly periodic, say with per-

1od T. Then the infinite time series is given by the sequence
...XT,xl,xz,...XT,xl,xz,...XT,Xl,xz,.ooXT,xl,... (3.22)

Bepresenting this time series by x, (- < t < o), the dif-

ference equation

xt - xt_T = 0 (3023)

holds for any t. The solution of thls difference equation
(where for simplicity we let T be even) is

T
- 21 2n
Xy = El (An cos F nt - B sinTnt)
y (3.24)
T /2
=% C, cos(%unt-!-on)
n=1
where
? -2+  tamo - -B (3.25)
n - “n n o VB E, = An. 325
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The Fourier analysis of the time series Xy will yield the
A, and B, so that equation (3.24) will be a perfect func-
tional representation of the original data.
3.3 The Aperiodic Functional Scheme

The aperiodic functional scheme deals with that class

of discrete time series Xy whose total energy

X (3.31)

is finlte. Examples of such time series are transient time
functions, such as the seismic wavelets of Ricker (1940, 1941,
1943, 1944, 1945, 1949, 1953a, 1953b).

We see that all observational time series of finite time
duration , say from t = O to ¢t = T, fall into this class, if
we define the time series X, to be zero outside the basic
time interval, that is,

X, =0 for t < O and t > T, (3.311)

Hence the time series > 9 defined for all time has finlte to-

tal energy glven by

w T
z x% = I xi (3.312)
t== 00 t=0

86é.



For the remaining parts of this Chapter we shall deal
with finite time series which are defined to be zero outsilde
of their basic time interval. Although the non-statistical
methods of this chapter can be applied to any time series of
finite duration, we do not wish to imply that they should be
applied to the analyses of all time series of finite time
duration. Instead the methodology to be used, statistical or
non-statistical, should depend upon the type of problem to
be solved, and should be chosen with consideration to all
prior knowledge and experience about the problem.

In particular, the methodology of this chapter 1s appli-
cable to wavelets which damp toward zero sufficlently rapidly
so that they may be aporoximated by zero outside of a finlte
time interval, and especially applicable to wavelets which
are stable in the sense of Section 2.6, where we let the
wavelet X¢ be the linear operator 8.

As we shall see in the following chapters, a stationary
time series (with an absolutely continuous spectral distri-
bution function) may be considered to be additively composed
of wavelets, all of the seme shape, but with random strengths
and arrival times. Let us outline heuristically how one, in
effect, determines a certaln llnear operation for such a time

series. First the rendom elements of the time series are
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destroyed by averaging, (L.e. the computation of the auto-
correlation function), and a unique stable wavelet shape
(i.2. the Vl(t) of Levinson (1947) which is our by in the
following chapters) is preserved. Then the particular lin-
ear operation may be determined by non-statistical methods
on this deterministic wavelet shape. ©Since the time series
is additively composed of such wavelets, this linear opera-
tion apolies equally as well to the time series itself.

The aperiodic functional scheme i1s a functional scheme
because it leads to a perfect functional representation of
the observational or theoretical data. This functional
representatlion is given by the Fourler intesral reoresenta-

tion of the function

Tr
Xy = L J X(w) et¥
-1

T aw (3.32)

where X(w), called the (complex) phase and amplitude spec-

trum of X4 is given by

8
!
[
€
ct

X(w) = (3.321)

™
e
ct
o
I
™
ct

t=- o t=0

since x = O for t < O and t > T. Equation (3.32) gives a
perfect functional representation of Xy, and we see that the
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function X(w) contains the same information as the function

Xie ‘the energy spectrum ﬁ%x(w) of x, 1s defined to be

@&x(w) = X(w) X(w) = lX(w)lz 20, =M < wg (3.33)

which is equal to

T T
T W= 3 =xe 3 xe"
t=0 8=0
4 0] fo3)
= > xtxse-iw(s-t)
t=-0 8=~
w - (6 1)
= X e lwt z thb+1
T=- ® t=-
T TeT
-lwTt
= X e z X, X
Ton teo BT (3.331)

where T = 8 = t. Let us define the autocorrelation functlon

of Xi to be

‘-L."T
O (T) = LA (3.332)

where we see
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-

—
i
-
N’
i

¢ _(7)

XX XX

0 for |T] > . (3.333)

<
P e
Y
g
1}

Then equation (3.331) becomes

T
¢xx(T) e W = 9(0) +2 £ (1) cos wr(3.334)
T=1

it ™3

ﬁgx(w) =

T==T

which expresses the energy spectrum as the Fourier transform
of the autocorrelation. On the other hand, the transform

of the energy spectrum is the autocorrelation, as seen by

L1 m T
1 iwt I -iwT _iwt _
T -£ E;x(w) e dw = 2= _£ TE-T ¢xx(7)e e dw = ¢xx(t)
(3.34)
because
i 0 T$t
e~1WT AWt 5 = (3.341)

J
T 2m  T=t

for integer values of t and T. We see that the total energy

of Xy 1s given by
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i
¢xx(0) = tE xi = %ﬁ S ﬁgx(w) aw  (3.342)
=0

Equation (3.33), which may be written
g (N = XN XA, A=w+ 1o (3.35)

generally does not represent a factorization of the spectrum
which satisfies the Wold-Kolmogorov conditions. (See Section
5.1) In other words, the factor X(A) generally will not be
free from singularities and zeros in the lower half A-plane,
This condition will hold only if the finite time series Xy
satisfies the same stabllity conditions which we gave for a
finite linear operator a, in Section 2.6. Since %(w) in
equation (3.334) is expressed in a finite non-negative
trigonometric series, the method of Section 2.8 may be used

to factor @;x(w) into the product

ﬁ;x(w) = Blw) Blw)

where B(A) is free of singularities and zeros in the lower
half A-plane. The function B(w) may then be used in prefer-

ence to X(w) in many applications, although we shall not
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explicitly make use of B(w) in the remainder of this chapter.
Suppose that we have another time series ¥ of finite
time duration, say from t = O to t = T. As in the case of

Xy W€ let

vy =0, fort < 0, t > T, (3.36)

Similar reletions hold for Y, as for the function x.. As a
matter of notation, the complex phase amplitude spectrum is
denoted by Y(w), the energy spectrum by E&y(w), and the auto-
correlation by ¢yy(7).

The cross energy spectrum of Xg and Vi is
§;y(w) = X(w) Y(w) (3.37)

which is equal to

T T
Q%y(w) = 3 xeWt 5 gy eiws
t s
t=0 8=0
(3.371)
T T
- -ilwT
. T§~T € tio xtyt+1

where T = s-t. The cross-correlation function of X¢ and Ve

is defined to be
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T-1
¢xy(T) = tzo XY per (3.38)

where

¢xy(-1') = (P (T)

yX
(3.381)
¢xy(7) =0 for |7| > T
Equation (3.371) becomes
(w) z b_ (1) e 1T
w) = I T) e (3.382)
ixy T==T Xy 3
We have
Lo/ g () e ay = 0 (s) (3.39)
X, 5 ﬁxy e W = xy Py -
L The F P or T ents, F L 0 a

The filter problem is concerned with the determination
of the linear operator which transforms the transient time
series Xe (t = 0,1,2,...T) into the transient time series
sy (t =0,1,2,...T). The time series x, may be called the
input, the signal plus nolse, or the perturbed signal. The
time series s; may be called the output, the signal, or the
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desired information. Under the aperiodic functional scheme,
the observational values of x. (t = 0,1,2,...T) and 8, (t =
0,1,2,... T) are assumed to be known, and not all equal to
ZEro,

In this section we shall consider the case in which the
linear operator is required to have a finite number of coef-
ficients, and more particularly, the same number of coefficients

as the number of terms in the time series Xye Thus the desired

linear operation i1s represented by

= Szo a Xy o, t=0,1,2,...T (3.41)

This equation represents the system of simultaneous linear
equations, given by

= &8
SO O xO

8 X1t e %, (3.42)

8, = ao X, + al Xy + a, X,
Sp = ao Xp + a1 xT-l + as Xp_2 Foeee t arXy»

in which the operstor coefficients 8, 87, 83,+¢¢ &p are the

unknowns. Without loss of generality, we may assume X, % 0,
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and consequently the determinant of this system, which 1s

equal to xg,

equations has a unique solution which ylelds the values

does not vanish. As a result, the system of

8qs 81y 8, e 8p for the operator coefficlients.

Under the aperiodic functional scheme we set x, = 0
for t less than zero and for t greater than T. As a result
if we assume the equation

s, = T a.x (3.43)
t 820 g"t-8

holds for all t (- < t < ), then we see that this equation
specifies the values of &g outside of the range O ¢ t ¢ T, in
which range the values of 8, were given in the original state-

ment of the problem. In particular, this specification 1s

St =0, t <0,
T
8y = SE B Xe gy U= THL, TH2,... 2T
=0
(3.44)
sy = 0, t > 2T,

Consequently, for these values of 8¢ the operator equation

(3.43) is valid for all integer values of t. Thus by multi-

iwt

plying each side of equation (3.43) by e and summing over
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t, we have

(vs) (s3] T
z ste”iwt = et g3 CHE S
t=- t=- 8=0
(3.45)
T fo'o) -
= 5 aSe-iws o ox__e iw(t-s)
which is
27 T T
T rs,ce"lwt = 3 a.sea"""“’S p» xne-iwn (3.451)
t=0 8=0 n=o
Letting
2T
S(w) = = ste"iwt (3.452)
t=0
T ~-ilws
Alw) = = a_e (3.453)
8=0
and
T -ilum
X(w) = % X, e (3e454)
n=o

equation (3.45) becomes
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S(w) = Alw)  X(w) (3.46)

which is

m
A(w) = i g = 5 ae 1w (3.461)

The linear operator a, (s = 0,1,...m), determined from X(w)

8
and S(w) by this equation, is not necessarily stable.

In Figure 4, a symmetric smoothing type linear operator
1s given which contracts a symmetric Ricker wavelet (Ricker,
1953b) into one of lesser breadth. The respective Fourier
transforms are shown to the right of these time functions.
3.5 The Filter Problem for Transients Infinite Linear Operators

In this section we wish to consider the flltering prob-
lem, which is the transformation of the time series x, ( t =
0,1,2,..+T) into the time series s, (t = 0,1,2,...T) under
the aperiodic hypothesis that

8y =X, =0, fort <0, t > T, (3.51)

That is, the values of 8y and x, are specified for all wlues
of t. Thus Wwe wish to find the linear operator, with coef-

ficients hgy, which we shall not restrict in number, such that
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sg= I hgxg g, -®<t< o (3.52)

Since this equation represents an infinite system of slmul-
taneous equations, that 1s one equation for each value of ¥,
this system in general will require an infinite number of un-
knowns hgy for a solution. That is, the llnear operator is
allowed to be a smoothing operator of infinite extent.

The formal solution for this linear operator may be found

in terms of its transfer function

8

H(w) = =  he ™" (3.53)
S== @
Equation (3.53) becomes
o® @ ®
by ste'iwt = = sVt » hox, o
t=- t=- S==-
(3.54)
© ®
- 3 h_e iws 5 xe_ g e-iw(t-s)
8==- t==®
which is
T @ - T
T ose oz ne™® oz g (55)
t=0 8=~ n=o0
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Letting

() T
X(w) = = sl _ 3 g~ lum (3.542)
n=« xn n=o0 }:ﬂ.
and
® T
Sw) = T st 3 g WP (3.543)
t=- 0 t=0

equation (3.541) becomes

S(w) = H(w) X(w). (3455)

Thus the formal solution, given by the transfer function of
the desired linear operator, is

= Hw = = (3.551)

w

&5 K%

The linear operator with coefficlents hs 18 not necessarily

stable. The real part of H(w) is

RelH(w)] =% [WH] =3[ %+2] - -S-&z-i'}o:.(—s-’-‘ (3.552)
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and the lmaginary part

]=1§x-sz
2XX

bl

Im[H(w)] = - % (H-H] = - %’ L

'
»lv

(3.553)

This result corresponds to that given by Smith (1954)
obtained by requiring that the sum of squared errors
T @ )2

I= 35 (8- Z h_x
-0 ——cp B t-8

(3.56)

n 2
2n [ |S(w) - H(w) X(w)]“ aw 2 0
-1

be a minimum. We see that the linear operator thus found,

with transfer function H = S /X yields the minimum value

v
Ty = 27 [ 18W) - Sl x(w)1? aw
(3.561)
L 2
=2n / |S{w) - S(w)|” aw = O
-TT

which 1s zeroe.
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In other words, the linear operator hs precisely trans-
forms the input Xi into the signal Sy e Consequently the addi-
tion of more information, say in the form of a second input
time serles Vs cannot improve this transformation in the sense
of reducing the error, which 1s already zero for all values
of t. That is, let us consider the transformation

@ @

= I ax. . + T by o (3.57)

8
Voo s=- @

where Bgs Xyy Yy are specified to be equal to zero for t < O
and t > T. The formal solutlon of this equation is given by
the A(w) and B(w) for which the equation

S(w) = Alw) X(w) + Blw) Y(w), (3.571)

holds. Thnis equation holds for A(w) and B(w) given by

Alw) =y 5 (3.572)

B(w) = (1-v) R

where vy is any number. The solutlon given by equation (3.551)

15 the case for which ¥ = 1. Since v is arbitrary there is

no unique solution for the ag and bs in equation (3.57).
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Thie condition is reflected in the fact that the coher-

ency matrix, given by,
XY
= (3.58)
Yy

-

ﬁl

@%x(w) §%y(wi_
ﬁ%x(w) E&y(w)

Ql

is singular, that is, its determinant is equal to zero. That
is, since we have complete knowledge of St and indeed may
represent s, in functional form in terms of X, alone, as glven
by equation (3.52), we can introduce no new information about
By into its representation in the form of an additional time
series Ve Further discussion of this type of problem 1s
given in Section 5.7.
A the P tic Point View

For practical purposes one may only utilize llinear opera-
tors with a finite number of coefficients. As a result any
linear operator with an infinite number of coefficlients must
be approximated by one with a finite number of coefficlents.
Thus, for example, we must approximate the infinlte linear
operator hs (-0 < 8 < ®) of the preceding section by a fin-

ite linear operator, say h! (-m s s ¢ m), or, in other words,

approximate the transfer function

1C3.



(s's)
- S
Hw) = = n e i¥s - -{&} (3.551)
8= 00 8 Xlw
by the transfer function
o ~iws
H* (w) = ¢ h! e . (3.61)
S=~m

Such an approximation procedure requires that a certain amount
of informatlion contained in the infinite linear operator hB
be lost in order to obtaln the approximate finite linear opera-

tor h!

S and consequently we shall need to utilize some type

of averaging process to carry out this approximation. One such
averaging process 1s to require that the sum of squared errors
® m n
5 (st - £ hi o~lwsy2 _ op S Is(w) - H'(wYX(w)|2dw
t=- S=-m -7

I =

(3.62)

be a minimum. Smith (1954) writes this equation in the form

I = .2114/1'1T tx(w)12|§§§3-- H' ()% dw = 2m -£“ XX(H-H')(H-H') dw

(3.63)
since H = S /X,
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Thus, in many cases, even if one utllizes a purely func-
tional approach it is necessary to develop methods of averag-
ing in order to obtain certain desired goals. These methods
of averaging may be carried out with respect to certain de-
sirable criteria, where such criterla may be established and
justified from a purely mathematical or functional point of
view,

Although one may work with various averagling procedures
with no recourse to the theory of probablility, in many appll-
cations it is not until probability theory is introduced that
certain procedures become meaningful in a physical sense. The
theory of stationary time series, as conceived by Yule (1921,
1926, 1927), and established in full generality by Khintchine
(l93h), makes use of averaging procedures which were arrived
at from the probavility point of view. This theory has
found many applications in pure and applied sclence. In fact,
Wiener (1942) emphasizes the probabilistic or statistical polnt
of view for engineering problems and applies the theory of
stationary time series toward their solution.

Although seismic records are not statlonary in the sense
of Khintchine (1934), nevertheless one may treat sections of
these records as being approximately stationary and consequent-

1y epply statistical methods to their analyses (Wadsworth, et al,
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1953). Purther discussion of this problem is given in Chap-
ter VI. For numerical computational purposes discrete time
series must be utilized, and so in the next two chapters we
shall present theory of discrete stationary time series. Much
of this theory was first established as a general theory by
the Swedish statistician and economist, Herman Wold (1938),
the work of Khintchine (1934) being confined to continuous

stationary time series,
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CHAPTER IV

THEORY OF DISCRETE STATIONARY TIME SERIES

L om Processes

In a recent paper by Wadsworth,et al, (1953), concepts
from the theory of stationary time series were presented.
In this chapter, and in the next, we wish to extend this
presentation in regard to discrete stationary time series,
and in particular to develop the concept of the predictive
decomposition of stationary time series. For more compre-
hensive presentations of the theory of discrete stationary
time series, the reader is referred to Wold (1938), Doob
(1953), and Wold (1953).

A discrete time series is a sequence of equidistant
observations X, which are associated with the discrete time
parameter t. Without loss of generality we may take the
spacing between each successive observation to be one unit

of time, and thus We may represent the time series as

ceey Xy oy Xp g9 Xy Xppqs Xppogess (4.11)

where t takes on all integer values from minus infinity to
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infinity (- < t < o). Thus all angular frequencies w may
be required to lie between -m and .

Any observational time series X, (-0 < t < ™) may be
considered as a realization of a so-called random process,
or stochastlic process, which is a mathematical abstraction
defined with respect to a probability field. In many phe-
nomena, the number of observational time series supplied by
a random process is limited. It is often the case, especially
in economic applications, that only one time serles i1s gen-
erated by a random process. Such & case, nevertheless, is in
full accord with the frequency interpretation of probability.
h,2 Stationary Time Series

A time series is said to be stationary if the probabili-
ties involved in the stochastic process are not tied down
to a specific origin in time; that is, the probability of
any event assoclated with the time t is equal to the prob-
ability of the corresponding event associated with the time
t+ 1, where t and T are any lnteger values.

For any stochastic process, one may form averages with
respect to the statistical population or "ensemble®™ of
realizations X for a fixed value of time t. Such averages

are called ensemble averages or space averages, and we shall
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denote such an averaging process by the expectation symbol
E. In particular the mean value m = E[xt] and the variance
o? = El(x, - m)?] of a stationary stochastic process are
independent of time t. Likewise, the (unnormalized) auto-

correlation coefficients

¢(1) = Elx, x,,] (4.21)

are independent of t, and constitute an even functlion of the

time lag T, that is

(7)) = ¢(-1). (4.22)
Also we have 1dCT)| ¢ (o), (.221)
The normalized autocorrelation function is defined to
be
E[(x_-m)( -m)]
B(r) = —t - (4.222)
E[xt—m)]
so that
¢(0) =1, (") ¢ 1. (4.223)

In what follows we shall assume that the mean value m is
equal to zero which we may do without loss of generality.

Also we shall utilize the unnormalized autocorrelation (4.21).
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There is another type of average known as a time aver-
age or phase average ln which the averaging process is carried
out with respect to all values of time t for a fixed realiz-
ation xt(-oo < t < ) of the stochastic process. If a sta-

tionary process has the property that

T
lim i _
T,eo B I ¢(1)=0, (4.23)
the process is called an ergodic process, and the ensemble
averages and time averages are equal with probability one.
As a result the autocorrelation of an ergodic process may

be expressed as the time average

T
1linm
(1) = pHB - A JZo o g (4.24)
4,3 The Autocorrelation

The autocorrelation function ¢(7) is a non-negative

definite function, that is,

O(1) = ¢(-1),

N N
I 0(3-k) ap 20, N=1,2,... (4.31)
3=1 k=1
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for every real set of 81589500080 Thus, the autocorrelation

matrix (N = 1,2,..4)

$(0) d(1) ... ()
¢(""l) ¢(O) N d)(N-l)

' (4.32)
¢ (-N) ¢(-N+1) .. $(0)

1s symmetric, has its elements equal along its diagonal and
along any super or sub diagonal, has non-negative eigenroots
Ay 20 (J =1,2,...N), has a non-negative determinant, and
has a non-negative definite quadratic form given by equation
(3.31). The non-negative definiteness of the autocorrelation
follows from the inequality (Wold, 1938)

N

N
b z  ¢(3-x%) a8, =

I ¢ 3-xl) a 48

]
™
™
=
—
®
C
Y
=
4]
e
M
=
-

aJxJ)zj > 0 (4.33)

"
=
™
L an
™
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hoiy Spect

The property that the autocorrelation function ¢(1) is
non-negative definite is equivalent to its representation
by the Fourler transform

i

P(7) = % é cos wt 4 A (w) (4.41)

where A (w), called the integrated spectrum or the spectral
distribution function, in a real monotone non-decreasing func-
tion of w(0O € w ¢ m) with A (0) = 0 and A (m) = 7, This
theorem, usually known as the Wiener-Khintchine theorem, was
used by Wiener (1930) and was first used in this setting by
Knintchine (1934) in his development of the theory of con-
tinuous stationary time series. The theorem for discrete
stationary time series stated here was first given by Wold
(1938).

The inversion formula (Wold, 1938) expresses the inte-

grated spectrum in terms of the autocorrelation, that is,

@
Alw) =w+ 273 Q%F1 sin wT, O § w s W (4o42)
T=1

®

Horeover, Wold (1938) shows that if £ |¢(7)]| is conver-
T=0

gent, then A (w) will be absolutely continuous, with the
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continuous derivative

. ®
A (w) = Q‘%BLQL =Q0(w)=1+2 = ¢(1) cos wr
T=1

@
=3 ¢(1) cos wr (bo43)

T=-= QO

In the remaining part of this thesis, we shall confine our-
selves to stochastic processes for which the spectral distri-
bution function A (w) is absolutely continuous and for which
o|¢(7)| < oo, unless it is otherwise stated. Wiener (1942)
restricts himself to those processes where the spectral dis-
tribution function A (w) is absolutely continuous, whereas
Wold (1938) amd Kolmogorov (1939,1941) treat such processes
as speclal cases.

The derivative $(w) = A' (w) is called the spectral
density function, the power spectrum, or simply the spectrum.
Since @h») is the slope of a real monotone non-~decreasing

function A (w), we have

dlw) 2 o, (L Lly)

and ﬁkw) may be considered to represent the power density in

the time series x; (- < t < ®). In order to have equal
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power at w and -w, let us define Q(w) to be an even function

of w, that is,

T(-w) = P(w), -m swem (4.l5)

Equation (3.41) thus becomes

i i
0(1) =2 [ cos ur P(w) aw = Y O(w) aw

T oo L
(4.46)
and, in particular, we have
L
9(0) = 2 / T(w) aw (4. 461)
-1

To show that the autocorrelations ¢(T) as given by equa-

tion (4.46) is a non-negative definite function, we let

(w) = g a, e~ 1wk (4. 47)
HN‘”“klk .

—3

where g, (k = 1,2,...N) is any arbitrary set of real numbers.

Then the quadradic form of the autocorrelation matrix is

N N d)( ) fn N N 1w(j-k) §( )
T 3 j-k) a.a, = s T a.me a
j=1 k=1 Ik "5 5=1 k=l %k or e

(4,48)
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which i1s equal to

i i
J Hyw) HNij Qlw) aw = S IHN(w)Iz P(w) aw 2 0, N=1,2,...
-TT -T7

(4.49)

Thus equation (4.31) is verified for Q(7) given by equation
(L4.46)

1he important role played by the harmonic analysis of
a stationary time series is brought out by the Spectral
Representation Theorem due to Harald Cramer (1942) and others.
The theorem allows the time serles Xy to be represented by a
stochastic integral which involves the harmonic components
of the time series. For a statement of and a discussion of
this theorem, the reader is referred to Doob (1953, p 481),
who 2lso gives the historical background of this theorem
(Doob, 1953, p 637).

P W W L S

A process is said to have a white light spectrum if 1its

power spectrum has a constant value, that is,

®(w) = constant, - ¢ w ¢ ™. (4.51)

In this section we wish to consider two types of processes

which have white light spectra, namely, the purely random
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process and the mutually uncorrelated process. For a further

discussion of these processes, see Doob (1953) and Wold (1953).
As a metter of terminology, one should distinguish between

the "purely random process® and a "random process". The pure-
1y random process is defined in this section. On the other
hand, a random or stochastic process designates any process
which generates one or more observational time series, and
such processes range from purely random processes to non-
random or deterministic processes.

A realization from a purely random process is the time
series £ (- < t < ©) where each £, is an independent ren-
dom variate from a single probablility distribution function.
Therefore the joint distribution functions of the §t's are
simply products of this probability distribution function.

Consequently, we have

Bt k] = ELE] E[E ] stt (4.52)

Such a process 1s stationary and ergodic. In order to norm-
alize the process so that it willl have zero mean and unit

variance, we let

E(¢,] = 0, E[t3] = 1. (4.53)
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The autocorrelation function is then glven by

d(0) = E[Ei] =1
(4.531)

¢(r)

E[gtf’t-i-'r] = Etgt] EEE‘C-FT] = 0, T=+1, & 2: X 35000

An alternative assumpbtion as to the nature of the it
leads to the definition of the so-called mutually uncorrelated
process. That is, if instead of assuming the &t and. §t+7 are
independent, we assume for a mutually uncorrelated process

that they are uncorrelated in pairs, that is

E(g. £ ] = ELt, ] E[E ] s4t (L4, 54)

which is the same as equation (4.52). That is, independent
random variables are uncorrelated, but the converse is not
necessarily true. Agaln we shall normalize the it as in
equation (4.53), in which case the uncorrelated random var-
iables gt are called orthogonal random variables. ‘Lhe

orthogonality is i1llustrated by

E(¢2] = 1,

ELE, t,] =0t $ s (4.55)
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In what follows, we shall assume all uncorrelated random
variables are normelized inthis manner (equation (4.53)) so,
alternatively, we may call them orthogonal random variables,
Since equation (4.531) holds for a (normalized) uncorrelated
process we see that this process has the same autocorrelation
coefficients as the purely rendom process. Also, an uncorre-
lated process is statlonary and ergodice.

The spectral distribution function, equation (4.42), of
a purely random process or of an uncorrelated process is

given by

Alw) =w, 0O swsm (4,56)

and the power spectrum, by equation (4.23), is a constant

given by

J(w) =1, -mswem (4.57)

These processes therefore have white light spectra, and the
¢4 may be called "white" noise (Wiener, 1930).

In summary, then, the purely random process and the un-
correlated process both have white light spectra and have
autocorrelation coefficlents which vanish except for lag

ZEr0e
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s of lMov Summat

An important theorem states that a time serles with an
absolute continuous spectral distribution function is gen-
erated by a process of moving summation, and conversely. In
this section we shall define what is meant by a process of
moving summation, and then indicate in an heuristic way why
this theorem holds. For a rigorous proof, the reader is re-
ferred to Doob (1953).

For the fixed realization

cosli g9 Epr Eppqs Epppaene (4.61)

of a purely random process or of a mutually uncorrelated
process, the corresponding fixed realization of a process

of moving summation 1is

...xt_l, x;c, xt+l, Xt+2,..- (4.62)

where

(6 0)
= & c.t n=t, txl, t¥2,... (4.621)
n T2 k°n-k’ 2 ) J

— e

Since two random variables are uncorrelated if they are
independent, whereas the converse is not always true, in what

follows we shall impose only the weaker restriction on the
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&t and thus only assume they are mutually uncorrelated (ie.
orthogonal) in the definition of the process of moving sum-

mation. (See Section 4.5). In particular, we assume

E[t,] =0, E[t2] = 1, BLE,t ] = E[t,] E[£.] = O for t 4 s.

(4.63)
The mean of the X, process is
Elx,] = % e, (4. 64)
t Kee oo k t-k
and the variance is
o'} @
Bl = = ol EZ 1- 3 G (4. 641)
== 0 k== 0
The autocorrelation coefficients are
W @
d(1) = Elx,x,, .1 = tim Cr_rCp = 2-00 CiCyype (L 642)

We now wish to indicate why a process of moving summation

has an absolutely continuous spectral distribution function.
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Let Xy be a process of moving summation given by equation

(4,621). Define F(w) by

8.9
Flw) = = o iUk (4.65)

which is the transfer function of the infinite smoothing
operator c¢,. Then, by equation (4.642) we have

u
o) = % C4Cyq = L 3 Cyor elvd T cke"iwk
J=- - j== 00 k==
(4.651)
since
" _ 270 J::
[t et Ay = T (4.652)
-7
for integer J and k, by letting J-T = 4, we have
L @ o]
o(1) = 32'-1; ;YT w c:‘aeiu’z p cke"iwk dw,
-TT A== k=-
(4.653)

Then, using equation (4.65), we have
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i

n
¢(r) = %E / Flw) Floy &7 aw = %F S IF(w)I2 10T gy
n -Tr

(4,654)

which is in the form of equation (4.46) with the power spec-

trum

T(w) = |F(w)]?, (4.655)
Thus the spectral distribution function

A (w) = fw § (u) au (4.656)
o

is absoclutely continuous.

Conversely, any process with absolutely continuous
spectral distribution is a process of moving summation, and
in this paragraph we wish to indicate some reasons for this
theorem. Because of equation (4.44) which states that the
spectrum @Xw’ is non-negative for every value of w, we may

set

T(w) = [F(w)]? = Flw) Fla) (4.66)

where F(w) is the Fourler series of amy square root of Q(w).
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Let us represent thls Fourier series by

8 9]
Flw) = T o e 1K, (4. 661)

k==

Using the coefficients ¢y We may define the process of mov-

ing summation

ckg t_ko (L}‘o 662)

The autocorrelation of the process (4.662) will be given by
equation (4.642). The Fourier transform of this autocorrela-
tion function gives the power spectrum of the process (L,€62)
which is the same as the original power spectrum in equation
(4.66). Thus the process x_ given by equation (4.662) 18 a
process of moving summation which has the given power spectrum

(4.66).

Hence, for the process of moving summation represented by

@
= I

pe (4.621)
L

CLli 19
. k” t-k
the Cy represents a linear operator, and the gt—k represents
white "noise". The transfer function is given by Flw) in

equation (4.65), and the power transfer function is then the
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power spectrum of the process, that is
T(w) = P>, (4.655)

Thus the time series x, 1s the output of a linear system,
with power transfer function §(w), into which white "noise"
is passed. Pince the C, may be an infinite smoothing opera-
tor, this system need not necessarily be reallzable or stable.
In Section 5.1 we shall see that a unique realizable and
stable prediction operator may be found, which leads to the
predictive decomposition of stationary time series given
in Section 5.2.

Finally, let us note that processes of moving summation
are ergodic, and for a proof the reader is referred to Doob

(1953) and Wold (1953).
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CHAPTER V

THE PREDICTIVE DECOMPOSITION OF STATIONARY TIME SERIES

The Factorizat S t

In the preceeding chapter we saw that the power spec-
trum of a time serles X, may be regarded as a power transfer
function of a linear system into which white noise Et is
passed in order to obtain the time serles Xy as output. The
gain characteristic of this linear system is~/ ®(w) . The
problem of the factorization of the spectrum 1s the problem
of determining the phase characteristic so that the system
is physically realizable and stable, with minimum phase char-
acteristic for the gain @h»). Thus the transfer function

of the desired physically realizable minimum phase network

may be gilven by

Blw) = [Blw)] 29 o/ Fw) 2O

(5.11)
where-v/AE§;; is the gain, and ©{w) represents the desired
minimum phase characteristic.

Kolmogorov (1939) gave the general solution of this fac-
torization problem. A rigorous exposlition of his results may

be found in Doob (1953), and in this section we wish to give
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an heuristic exposition.

Let us first turn our attention to the properties of a
realizable, stable linear system with minimum phase-sghift
characteristic. As we have seen in Section 2.7, the condi-
tions that the transfer function be physically realizable

and minimum phase is that it may be expressed as

(e 9]
Blw) = = bse-iws (5.12)
S=0
where
b, =0 for s < O (5.121)
T L2
£ b, < o, (5.122)
8=0
and
Q0
BN = £ be ™ r=w+io (5.123)
S=0

?
has no singularities or zeros in the lower half A plane
(0 < 0)., Under the transformation z = e-ik (see Figure 3),

this last condition becomes that
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1)

B(z) = (5.124)

0
i
o'
N

have no singularities or zeros for |z| ¢ 1. Under these
conditions, log B(z) will be analytic for |z| ¢ 1, and con-

sequently has the power series representation

t

@
log B(z) = = B.z" for lz| ¢ 1, (5.125)

t=0

and, as |z| approaches 1, this series converges to

o ~iwt a Q
log Blw) = £ B.e =B, + I P coswt-1 T B.sin wt.
t=0 t=1 t=1

(5.126)

Let us now turn our attentlon to the power spectrum

O(w). The spectrum §(w) is a real function of w, such that
Plw) = P(-w), P(w) 2 O, - < w ¢ ™, (5.13)

Moreover, the following conditions on $(w) must be satisfied:

T(w) =0 (5.131)

at most on a set of Lebesque measure zero,
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™

S P(w) aw < @ (5.132)
-1
and
Tl'
J log I(w) dw > - . (5.133)

-T7

Under these conditioms, log~/ Q(w) , which is an even real
function of w, may be expressed in the real Fourlier cosine

series

i~8

@, cos wt (5.134)

log ~/ Pw) = .

-

where the Fourier coefficlents G, ere given by

Tr /
a, = %'1? J cos wt log Dw) aw

=TT

i
L/ cos wt log Qlw) dw, (5.135)
o

H
l

From this equation we see that Xy is an even real function of

t, that is

at = a“'t. (5.136)
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Consequently the Fourler expansion (5.134) of log~/ §(w)

becomes
/ 5% .
log P(w) = o +2 ¢ @, cos wte. (5.137)

t=1

Equation (5.11), which gives the transfer function B(w)

for the desired minimum phase network, 1s

Blo) = [Bw)] @) o/ Tw) &) (5.11)

where ~/ Q(w) is the gain, and 6(w) represents the minimum
phase characteristic. By taking the logarithm of each side

of this equation, we have

log Blw) = log~/ Qlw) + 1 O(w) (5.14)

which, by equation (5.137) is

@
log Blw) = a  +2 T G, coswt+ 1 o{w). (5.141)
t=1

Now equation (5.126) gives an expression for log B(w)

which was derived from the knowledge that log B(z) be analytic
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for |z| ¢ 1, whereas equation (5.141) gives an expression for

log Blw) derived from the kmowledge that the gain |B(w) be

equal to -V/ §(w) . Setting these two equations equal to each

other, we have

(s ] Q0
log B(w) = B+t T Bycoswt-1 I By sin wt
t=1 t=1
(6 0]
=a + ¥ 20, cos wt + 16 (w).
o} £=1 t

We therefore have

log-v/ Tlw)

Ee [log B(w)]

o
=8 + T B, cos wt
o t=1 t
los)
=0a + ¥ 20, cos wt
o £=1 t

so that
By = s By = Zat for t = 1,2,3,...

where o (t 0,1,2,...) is given by equation (5.135).

also have
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8

Im [log B{w)] = 6(w) = - £ P sin wt (5.16)
t=1
which, by ecuation (5.151) 1is
©
6(w) = -2 T a, sin wt. (5.161)

t=1

This equation expresses the minimum phase characteristic
©(w) in terms of the o (¢t = 1,2,...), which are computed from
knowledge of the power spectrum EU») by means of equation
(5.135).

As a result the operator coefficlents bs may be deter-

mined in the following manner. Equations (5.12) and (5.11)

glve

® —
Blw) = = b, giws =-v/ Glw) eiO(w) (5.17)
§=0

which, because of equations (5.15) and (5.161), yilelds

log B(w) = Rel[log B(w)] + i ImlLlog B(w)]

i

log-v/ Pw) + 1 6(w)

o) ®
= ao 4+ ¥ 2 at coswt -1 T 2 at sin wt
t=1 t=1
15.8) -
o +2 5 ae lwt (5.171)
°© t=1



Since

B(w) = oLlogB(w) (5.172)

and using equation (5.12) we therefore have

(o'}
a + 2 Z te -iwt

(6 0]
B(UJ) = z bse-’iws = e t=1 . (50173)
S=0

Letting A = w+ 1 o and making the substitution z = e 17,
we have
@© t
. . ab + 2t§1 atz
B(z) =L bz =e , lzl ¢ 1. (5.174)

By means of this equation, we may solve for the linear opera-
tor by in terms of the a.. In particular, we have from equa-

tions (5.174) and (5.135) that

l ™
a S log § (w) dw
= p = &7 d > O (5.175)

Therefore Kolmogorov (1939) shows that the power spec-

trum Q(w) may be factored in the following manner:
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@
DI o]
t=0

T(w) = 1B = | Lo iut |2

where the linear operator bt may be determined from

b, = 0, for t <0,

m
%;; / log $w) dw
bO = e © ’

(5.181)

(5.121)

(5.175)

(5.182)

The transfer function of the linear operator by, given by

(e 0]
B(w) = T be
t=0

has gain

|B(w)| = -\/E(w)

(5.12)

(5.183)

and minimum phase ©(w) given by equation (5.161). The trans-

fer function B(w) is the factor of the spectrum. Since
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b, =0 for t < O, (5.121)

b, > O (5.175)
@ 2
T by < (5.122)
t=0
QO
b lbtl < (5.184)
t=0
and
@© t
Z bz %0, for lz] ¢ 1, (5.124)
t=0

the linear operator bo, bl’ bz...is physically realizable and
stable.
In order to conform with Wold's notation, Kolmogorov

(1939) normalizes the b, so that b = 1. That is, he gives

m
%‘1'1‘ J 1og ¢(w) o

- -lws
B(w) = e E—o bse » D,

S

(5.19)

1 T
=e§J2m§M 2,

~lw
(1 + ble + b, e
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where

log Ehv) = ZGO + 4a1 cos w + 4&2 cos 2w + .. (5.191)

and

exp [2(alz + a222 + eeeel] =1 4+ byz + b222 + eee (5.192)

Kolmogorov (1939) concludes that the linear operator bt
has here the same significance as in Theorem 7 of the book
by Wold (1938). In the next section we shall examine this
theorem which 1s called the Predictive Decomposition Theorem
for stationary time series, and in Sections 5.3 and 5.4 we
shall see that this theorem 1s the fundamental theorem used
in the solution of the prediction and filtering problems.

For further discussion on the results of this section
see Theorems 4.1 and 4.3 of Chapter XII in Doob (1953).

The concept of the factorization of the power spectrum
is due to Cramér and Wold (Wold, 1938, p 123). As we shall
see in Section 5.5 (together with Section 2.8), Wold (1938)
factored the spectra of the autoregressive vrocess and the
process of finite moving averages, both of which have ration-

al spectra, in order to yleld the reallzable and stable linear
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operator bt' Kolmogorov's method given in this section is
essentially a generalization of Wold's method to more gen-
eral spectra, that is, spectra which are not necessarily
rational functions. Accordingly we shall refer to Blw) given
by equation (5.181) as the Wold-Kolmogorov factor of the pow-
er spectrum.

Although Wold (1938) did not have Kolmogorov's more gen-
eral method of determining the operator by (Kolmogerov, 1939)
Wold d4id anticipate correctly the existence of such an opera-
tor, and accordingly gave the results of the following two
sections.
5.2 The Predictive Decomposition Theorem

In the preceding section we have seen that the power

spectrum E(w) may be factored 1n the followlng manner:

(80

T(w) = B(w) B(w) = [B)|? = | = bge "
8=0
(5.181)
where
by =0, <0 (5.121)
b, > 0 (5.175)
@ 2
T b, < ™ (5.122)
S=0
Q
Z bl < o (5.184)
S=0



and where

8

B(A) =
S

bse"""}\s , "= w+ 1 o (5.123)

o™

o)

has no singularities or zeros in the lower half A plame (o~ < 0),
In other words, the linear operator represented by bo’ bl’ bz,...
1s realizable and stable, and its transfer function B(w) has
minimum phase characteristic.

In Section 4.6 we saw that a time series with an absolute-
ly contlinuous spectral distribution function may be represented
by a process of moving summation. We see that equation (5.181)
may be used in place of equations (4.66) of Section 4.6. In
other words we may replace the linear operator Ct of Section
4.6 by the realizable and stable prediction operator bt of
Section 5.1. Thus the process of moving summation is given
by

@

X, = sio by Epg = by by + byl 1+ bty 5+ oe (5.21)
which replaces equation (4.662) of Section 4.6. In this equa-
tion £t (o < t < ®) represents a realization from a mutu-
ally uncorrelated process, the Xy 1s the time series with pow-~
er spectrum $(w), and bys Dys Dyyeee 18 the realizable and
stable operator determined as in Section 5.1. More particu-
larly, the variables £, (- < t < ) have zero meen E(&t)= 0,
unit variance E(Ei) = 1, and are mutually uncorrelated E(gtgs)
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= 0 for t ¥ s, and consequently have a white light spectrum,
(see Section 4.5).

That all stationary processes with absolutely continuous
spectral distribution functions may be represented in the
form (5.21) is a special case of the more general Predictive
Decomposition Theorem of Herman Wold (1938), his Theorem 7.
That is, the more general form of this theorem (Wold, 1938)
is not restricted to processes with absolutely continuous spec-
tral distribution functions. Statements of and further dis-
cussions of this theorem may be found in Wold (1938, Theorem 7),
Doob (1953, Theorem 4.2 of Chapter XII, p 576) and Wold (1953,
Theorem 1 of Chapter 12.6, p 200).

Let us now state the Predictive Decomposition Theorem
for a statlonary process with an absolutely continuous spectral
distribution: Given a stationary process X, (-0 <t < o)
with discrete time parameter t, suppose Xy (=0 <t < ) has
an absolutely continuous spectral distribution. Then X

(-0 <t < o) allows the decomposition

Xp = bby + by ;1 + ot o+ .. (5.21)

where the components (- ® < t < o) have the following properties

A. Each of the variables £¢ 15 linear in Xy, X, 1, Xy_pyeee
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B. The variables {, have zero mean, ELf{ ] = 0j unit
variance, E[Zi] = 1; and are mutually uncorrelated,

E[t t.] = O for s # t.

C. We have bO > 0, and bi + bi + bg + see O

D. The representation (5.21) is unique in the sense that
xt(—oo < t < o) allows no other decomposition of the J
type (5.21) with components which have the properties

A, B, and C.

The predictive Decomposition Theorem, as expressed by

equation (5.21), renders the time series X, in terms of a

stable prediction operator bo’bl’bZ"“ operating on the pre-

sent and past values £,6, 1,84 5,ees Of @ realization of a

mutually uncorrelated process. That 1s,the value of Xy is

expressed in terms of the present value ﬁt and past values

Eesbr_qs Ey_pseee but no future values €t+l’ £t+2”" In

other words, equation (5.21) represents a "predictive” de-

composition of the time series, Xie

Whereas Wold (1938) explicitly found the D, sD1sDy e e

only for the auto-regressive process and the process of finite

moving averages which have rational spectra, Kolmogorov (1939)

gave the method of Section 5.1 which explicitly yields the

bo’bl’bZ”’° for processes with arbitrary power spectra ﬁ(w).
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In addition Kolmogorov (1941) shows that the decomposition
(5.21) is unique (Property D of our statement of the Decomposi-
tion Theorem). That 1is, there is only one sequence of con-
stents bo’bl’bZ"" and only one sequence of random variables
gt satisfying the conditions of the Lheorem.

Let us now consider the predictive Decomposition Theorem
in the language of the engineer (Bode and Shannon, 1950). ‘ithe
non-random or deterministic elements of a stochastlic process
may be represented by a physically realizable and stable elctric
or mechanical network or filter. This filter has minimum phase
cheracteristic. The time function by (t = 0,1,2,3,...) is
equal to the output obtained from the filter in response to
a unit impulse lmpressed upon the filter at time t = 0. That
is, the linear operator bt i1s the impulsive response of the
filter, and we shall call it the response function of the
stochastlc process.

The random or non-deterministic elements of the stochastic
process are represented by the it (-0 < t < Q)), which may be
considered to be the mutually uncorrelated impulses of wide-
band resistance noise or "white" noise. The time series Xy
(-0 < t <) is the response of the filter to the white noise
input £ (-0 < 5 ¢ t). that is £ (- < 5 ¢ t) may be re-

~

garded as an impulse of strength £, which will produce a
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response Esbt-s at the subsequent time t. By adding the con-
tributions of all the impulses {_(-o < s < t), we obtain the

total response, wWhich is the time series xti

-0 g )
X, = Z b, e (5.22
t g=t B t-s
Letting t-s = n, we have
o0
Xt = 3 bnﬁt_n = bOEt + blﬁt_l + bzgt_z + eee (5.21)

n=o

which is the predictive decomposition (5.21).
Since the impulsive response of the filter is given by
b (t 2 0) with b, = 0 for t < O, its trensfer function is the

Fourier transform

8

b_e tws (5.23)

Blw) = s

S

W™

(o)

which has gain

IB(w) | = ~/Tw) (5.231)
and has minimum phase characteristic, given by equation (5.161).

The power spectrum of the £, which is equal to 1 (-7 < w ¢ ),

multiplied by the power transfer function of the filter, which
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is IB(w)lz, yields the power spectrum @(w) of the time series
Xy The transfer function B(w) is the Wold-Kolmogorov factor
of the power spectrum §(w)e

We see that the Predictive Decompositlion Theorem states
that any stationary time series (with an absolutely continuous
spectral distribution) can be considered to be composed of
meny overlapping pulses, or wavelets, or responses, all with
the same shape b,, where b, = O for n < O, The arrival times
of these wavelets, and their relative weighting, 1s glven by
the impulses gt-n' 'he response function bn, which is the
shape of these wavelets, reflects the dynamics of the process,
wherees the mutually uncorrelated impulses ﬁs_t reflects the
statistical character of th2 process.

The wavelet shape bn is physically stable, that is, it
is the solution of a stable difference equation. The auto-

correlation function of the stochastic process 1s

e ) ' o)
¢(7) = E[x,x,,.1 =E[ = b_¢ T bt ]
tTE+T s=0 s °t-8 =0 r “t+17-r

= £ Db_Db_._e (5.232)

Thus the autocorrelation function of the wavelet bS (where

b, = 0 for s < 0) is the same as the autocorrelation function
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of the time series Xie As a result the energy spectrum of the
wavelet (see Section 3.3) is the same function as the power
spectrum of the time series x., a fact of which we made use
in Section 5.1 where we determined the shape of the wavelet
bn from the power spectrum §0») of the time series Xie

Since the filter is realizable and stable with minimum
phase, there exlists the inverse filter which 1s also realizable
and stable with minimum phase., Let the response function of
this inverse filter be at(t > 0) with a; = 0 for ¢ < 0, so

that its transfer function 1is

(0 9]
_ a1l -iws _ _ 1
Alw) = B Hw) = 5 8™ = gy = o ,  (5.28)
8=0 ~iws
= bse
S=0
so that
a (e 0]
5 1(yw) Blw) = = eI T p e =, (5.241)
S=0 S=0

The relationships of the inverse filter, A(w) with the
response a., to the filter B(w) with the response b,, both of
which are realizable and stable, are given in equations (2.78)
through (2.787) of Section 2.7. In Section 2.7 the response
functions a and bt are referred to as linear operator coef-

ficientse.
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Accordingly, the white noise £, (- < t < o) is the
total response at t of the inverse filter to the input Xg
(-0 < s ¢ t). That is, the x (- < 5 ¢ t) may be regarded
as an impulse of strength Xg) which will produce a response
X8y . abt the subsequent time t. Adding all these contribu-

tions we have the total response

.= 5 (5.25)
= T x_ 8, 5425
t s=t g8 t-s8
which, by letting n = t-s, 1is
2 e
by = I Pn¥pon T Byt Bp¥py * BpXpp oo
©o(5.26)

Since the present value X; and the past values X, 1, X; 5,
yield the value of £t, we see that knowledge of Xy up to the
time t is equivalent to knowledge of it up to time t. The
representation (5.26.), which is the predictive decomposition
of the impulse it, will be called the inverse predictive de-

comnposition of the time series Xyo

Pe3 Prediction of Stationary Time Series

The value X4 OF the time series at time t+a, because

of the predictive decomposition (5.21), is given by
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xt+0: - bsg t+a-8

1
o™

|
o’
e

+ bybg g e oty 1y I H (D by B e ).

(5.31)

Let us now consider time t to be the present time with respect
to the filter; that is, time t 1s the time at which the compu-
tations are to be carried out. As a result, all values of the
time series x (- < s ¢ t) at and prior to time t are known

at time t, and consequently all values of the white noise is
(-0 < s ¢ t) at and prior to time t may be found by means of

the inverse filter, represented by

™
4 =n§ a x,_ for - < s ¢t. (5.26)

Thus the component
(boby + buprbpoq + bogpbpotess) (5.311)
of the value of x., . given by equation (5.31) may be computed

at time t, since the values £y, 1,84 5,+.. are available at

time t. On the other hand, the comvonent
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(by Eppg * Dripg g Feoot Doorbpey) (5.312)

of Xy, #lven by the predictive decomposition (5.31) can not
be computed at time t, 8ince the values [, Ernsoeobiia
are not available at time t. In other words, the component

(5.311) is the predictable component of x,, . at time t, and

a
the component (5.312) is the unpredictable component of Xiva
at time t. That is, the predictable part of Xx.,, 1s made up
of the response due to the impulses £, £, i, £t_se+» which
have occured at and prior to time t, and the unpredictable
part is made up of the impulses £,.4, €y o,eee, £y which
occur between the present time t and the time t + a.

Thus Wold (1938) gives the following solution of the pre-
diction problem for stationary time series wlth absolutely
continuous spectral distribution functions. Since this
solution follows directly from the Predictive Decomposition
Theorem (5.21) which utilizes the operator b, 1t was not
until Kolmogorov (1939) gave the method of section 5.1 which
explicitly ylelds the bt that the general solution of the
prediction problem was fully established.

Since the impulses ﬁt are uncorrelated, Wold (1938) by
utilizing the Gram-Schmidt process of orthogonalizing random

vectors shows that the best linear forecast in the sense of

principle of the least squares 1s ylelded by
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A
Xt-Hl = bagt + ba+l€t..l + ba+2€t_z + seey a4 = 1,2,00' (5.32)

The forecast (5.32) is the predictable component (5.311).
For the forecast (5.32) the error is given by the unpredic-
table component (5.312), and Wold (1938) shows that the mean

square error, given by the expectation

2

2
] a_lg t+l] ,’

+ ese + D

A
Inin = E[xt+a = X4t T E[bogt+a + b1£t+a-1

(5.321)

is a minimum. Since E({.f ) = O for t + s, this minimum value is

Toin = Blxq - :‘:t+a]2 = (bg + bi + oees * bi_l)Efii].
(5.322)
By letting E[ﬁ%) = 1, we have
=1 2
Toin = nio b, (5.323)

thereby showlng that the efficiency of the forecast decreases

as the prediction distance a increases., Since
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© 2

Q0
z Db
=0 t’

2 2

E(x] = E[(
s=0 t

the prediction error Imin tends toward E[xi] as the prediction
distance & tends toward infinity and hence for large values of
the prediction distance a the trivial forecast of £t+a = O has
about the same efficiency as the forecast(5.32).

Kolmogorov (1939) generalizes Wold's result (5.323) by
showing that the minimum mean square prediction error for a
process with a non-absolutely continuous spectral distribution

is given by

a-1 >
I = T b (5¢325)

min n=o n

Let us use the Wold-Kolmogorov normalization, which is that

b, = 1. Then B(w) is given by equation (5.19) and I 4n becomes

I, = L o T(w) awl (1 + b2 + + b2 )
min = exp b o Og w w l es e a“l -
(5.326)

Kolmogorov states that

i)
exp [ / 1og T (w) awl =0 (5.327)
(o}

and consequently Imin =0 1if §(w) = O on a set of positive mea-

sure and also if the integral
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o/11 log Q(w) aw (5.328)
diverges, referring to this situation as the singular case of
Wold (1938). Thus we see the reasons for the restrictions
(5.131) and (5.133) in Section 5.1.

Doob (1953, p 584) points out that in the transformation
of discrete time series, with the spectrum @(w) to continuous

time series, with the spectrum W(w), the integrals

U o8
/ log $(w) dw, J J.Qg_ﬂhzgl dw (5.329)
-TT - 1+w

are finite and infinite together. The condition that the
second integral be finite may be referred to as the Paley-
Wiener criterion (Paley and Wiener, 1934), and Wiener (1942)
uses this condition in the same connection as Kolmogorov (1939).
Let us now summarize the solution of the prediction prob-
lem for stationsry time series with absolutely continuous spectral
distribution functions as given by Wold (1938).
In order to obtain the oredicted values it+a from the values

Xis Xpoqs Xgopaee WE first apply the linear operator

o)
tg = nio 8Ky TOT =@ < 58 ¢ & (5.26)
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to yleld the values ..., £ 5, £, ;, £y, and then apply the

operator

8

A
x4

it
It ™

S=0

to yield the predicted value £t+a' 'ne operations on the past
values Xg, Xy_yy Xy.pse+e+s represented by equations (5.26) and

(5.32) may be combined into

A (o) ‘ oo} @ )
x = Z b = Z b I a X, __ (5.33
tta o, ots Ct-s ) Ta+s n=o T t-s-n
which becomes, by letting r = s+n, and recalling that at =0
for t < O,
A (o o @ (oo | ( )
X = I b I a X, .= I L b,_.a. ) x. (5331
t+a g=o Ot8 -  "Tr-8 t-r reo s=o O=8 I-8 t-r
Let us define
@
kpla) = 2 Do g (5.332)

so that equation (5.331) becomes
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e
Xppg = 2 k(a) x_ . (5.333)

This equation thereby expresses the predicted value §t+a in

terms of the present value x, and past values X, 1, Xi_o» X3
ees, 8nd has the same form as the pure prediction operator

(2.21) Chapter II except that we now allow the number of operator
coefficients ky to becomes infinite. Also the dependence of the
operator coefflcients kS on the value a of the prediction dis-
tance, is indicated. We note that k (a) = O for s less than
zero, so that the operator is realizable. Also k (a) is stable
since the operators a and bt are stable.

Further, Wold (1938) shows that

A A A A cos
Tipo = = 81%pp0e] ~ B2Fpraez T 00 T 8gq¥pa1 T 8ot T BarrFe-1"Ba+2Xg2

(5.34)
and he also shows that the operator coefficients k,(a) satisfy
ky(a) + a;k (a-1) + ayk (0-2) + ... + aa_lko(lf +a, =0
ky (@) + ajk; (a-1) + ayky (0=2) + coo + 8, 1Kk (1) + 85,4 =0

(5.35)
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Figure 5 illustrates the least squares linear operator
for unit prediction distance. That is, the operator coefficients
are deternined by the condition that the meén square prediction
error be a minimum. The operator is in the form of equation
(2.28)  From the expression for §(w) in Figure 5, we see that
time series is an autoregressive time series (see Section 5.5-B)
and thus the solution of the simultaneous equations given in
Figure 5 may be found by the method of the factorization of the
autoregressive spectrum given in Section 2.8,

In the remaining part of this section, we wish to compare
the solution of the prediction problem for discrete time series
with absolutely continuous spectral distribution functions as
given jointly by Wold (1938) and Kolmogorov (1939), with the
solution given by Wiener (1948) in his book Cybermetics. Since
Wiener works chiefly with continuous time series, and then trans-
lates his final results to the discrete case, we shall translate
his entire solution to the discrete case. In the main, this
translation consists of rewriting stochastic integrals of the
Stielt jes-Lehesque type by the corresponiing discrete summa-
tions (i.e. rewriting stochastic integral equations as stochas-
tic difference equations) and converting all equations to the
same notation and conventions which we have used up to now.

Stochastic integrals are discussed by Doob (1953), who points
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out that they were introduced by Wiemer (1923). In regard to
the conventions used, Wiener (1942, 1948) in his various sol-
utions of the prediction and filtering problems at times in-
terchanges with respect to our convention past with future on
the various time scales, that is, left with right in the basic
ergodic transformation, and also interchanges the interlor and
exterior of the unit circle. For a further discussion of this
point, see Hammerle (1951). So that the reader may follow our
mathematical argument in relation to that of Wiener (1948), we
shall give the number of his corresponding equation in paren-
theses on the left-hand side of our equation. Also correspond-
ing equation numbers of Wiener (1942) are written in brackets
on the left hand side of our equatiom.

Wiener considers the ensemble of time series
eo)
(3.34),(3.940) £ e .. E.=x (4.621)
generated by a process of moving summation (Section 4.6) so that

the process 1s ergodic and has an absolutely ocontinuous spectral

distribution function. The autocorrelation function is

(4.642)

(3.35)  ¢(71) = E CgCotr = Cott Cotttre
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The infinite smoothing operator coefficlients Cq (-0 < 8 < o)
are real, and the only significant quantity commnected with them
i1s ¢(1). Thus one wishes to replace them by a physically real-

1zable end stable operator b, where by = O for t < O, for which

8

[2.038]

b_b d(r) (5.232)

8 8+T

n
™

which 1s the only indevendent statistical parameter of the time
series., We have called bt the response function of the time
series, that is, it 1s the shape of the wavelets which may be
considered to comprise the time series.

Wiener's method of determining by 1s the same as that of
Kolmogorov (1939), which we gave in Section 5.1. Thus Wiener

puts
(3.925) T
[1.167] O(1) = 2= K Tlw) ™ aw (4.46)
or
0 0]
(3.926) Tw) = £ ¢(1) et (4.143)
[2.605] -
He lets
(e 0]
(3.927) % 105 Tw) = £ a, cos tu (5.134)
-
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and

a ©
(3.928) G(w) = 3 glw) = & 1og Blw) = 52 + z a eVt
(5.171)
which ylelds
(3.929)
&) B(y) (5.172)
[2.620]
which is
@
exp(aO +253 ate'iwt) = B(w) (5.173)
1
where
-iw @ -iws
[2.625] B(w) = B(z=e""") = T b e (5.12)
s=0
i the boundary value on the unit circle |z| = 1 of a function

B(z) without zeros or singularities inside the unit circle, where

w is the angle. (See Figure 3). Thus, we have
(3.930) IB(w) % = Tlw). (5.181)

The method of Wiener (1948) to determine the operator which
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furnishés the optimum prediction for processes with absolutely
continuous spectral distribution functions is the same as that
of Wold (1938), which we gave in the first part of this Section.
Thus Wiener also starts with the predictive decomposition of the

time series

w
z

i

T=-1 (5.21)

We note that in his equations, Wiener lets time -t for the

t time series correspond to time +t for the x time series,

That is, whereas Wold lets the past of the X time serles
correspond to the past of the { time series, Wiener for the

¢ time serles interchanges left with right, and accordingly
lets the past of the x time series correspond to the future of
the £ time series. As we have stated,all the equations which
we glve are converted to Wold's convention, i.e. the convention
which we have been using.

Wiener gives the inverse predictive decomposition

(3.77)

[ g ng + +
Second = a X = a x x + a.x s
equation t o ==t tto- "0 o*t T B1%¢-1 27t-2

below (5.25)
2,038]
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which has the formal property

X . (2.762),(2.77)

The transfer functions are B(w) and A(w) which have the

representation
(3.802a) m
by = %F / Blw) e au (5.36)
(30933) -11
and
m
(3.80D) ay = 2= [ Alw) ' aw (5.361)
‘ -7
where
(3.82), (3.935)
sTay = Alw). (5.24)

Thus the past and present of it determine the past and present
of x, and vice versa; the Predictive Decomposition Theorem.

For the prediction distance a > O, we have

o
(3.83) Xt+a =1=§t-a Ditatr - bot
[First
equation
below] £-1 .
2.038 “Z'
= Divwar ELa+ Z D
Teeteq t+a+T C =T Teet tHo+T g-T
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= (bobipe + Drbiagog Feoe® Py qbippp ) dgly + Doyqbiogte-.)e

(5.31)
Wiener states that the first term of the last expression de-
pends on a range of £S of which knoﬁledge of X o for o < t tells
us nothing, that is, it is the unpredictable component. The

mean square value of this unpredictable component is

(3084) -t=1 2 Qe ], 2
[2.645] Toin = =§t~A Pirarr = Eo boe (5.323)

The best prediction in the sense of least squares is the last

term, the medictable component, Xirqr Slven by

(3.85)

Xeva = 8 t+e- Xeom

(5.33)

The first term, the unpredictable component, 1s not necessarily
independent of the second term, the predictable component, as
Wiener (1948, p99) states, but we can only state (Wold, 1938) that
the unpredlictable component is uncorrelated with the predictable
components That 1s, the {, in general are not independent, as

Wiener (1942, p62) states, but in general are uncorrelated. Thus,
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we infer from Wiener that the unpredictable component will have
zero expectation for any fixed values of £, €, 4, &4 5,...,
whereas we can In general assert that the unpredictable compo-
nent will be of zero expectation only when formed with respect
to the Joint distribution of ., gt—l’ Et-Z"" .

The predictable component (5.311) may be written

X g t E 3 (5.33)
X = Z DY .= Z Db T ax, 5.33
t+a o n+a *t-n n=o n+a s=o s t-n~s

where n = t+7 eand 8 = t+to- n = o~ T, Let us define the pre-

diction operator coefficients ks(a) so that

@
z

(30931) §t+a = xt-s k (a)o (50333)

8=0 s

The transfer function K (w) may be found by applying the opera-
iwt iwt

tor (5.333) to x, = e, and then dividing by e, as in
Section 2.4. 'Thus we have

© @ :
(3.87) = bpeg Z aseiw(t'n'S) = oluwt Kﬁ(w)

n=o0 g=0

(5.37)
©
= ot 5 k (o) et

5=0
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Let us put

o 0]
(3.86 Bylw) = £ by, e P, (5.371)
t=0
Then
(s o] (00
~iw(nts)
K(w)= % b T a_e
a n=o0 n+c 8=0 8
(e 0] @
~ium -iws
= Z b e z a e
n=o0o n+a S=0 8
= B (w) Alw). (5.372)

Therefore, because of equations (5.24) and (5.36), we have

(3.88),(3.932) _ _a
3 73 K, (w)
[2.630]

0
o
€
i 8
o
5
Q
o
'
3

"
N
b
W
4

tmQ =17



Q n
2 r e lws U p(pyetulsta) g

2TTB<U)5 8=0 T
(5.373)
This equation may be written
@
(3.93%) ¥ (4) = 1 Kk (adelwr
ol reo T
le's)
B, (w) et 3 peTtUF
C Bl T —1wt
T  b.e
t=0 t
a-1
-iwt
b.e
= & (1 O§ £ — )e (5.374)
-1
g bte
Since
(3.935) 1 @ -iws
- Bm) = & 8ge (5.24)
8=0
Wwe have
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(3.936)

8

a-1 0 9] -
kr(a)e-iwr = el®( _ 5 b.e lwt a.e 1ws).

K (w) =
o o t=0 8=0

™

r

(5.375)

For prediction distance @ = 1, we have

® ®
(3.937) £k (1) e = e!(1n T e e™E), am1 (5.376)
o 8=0
so that
(3.938) k,(1) = 841 Do = “Bpyqps Do=le (5.377)
Thus the prediction for one step ahead is
(3-999) % 3 (5.378)
X = - a X 3
t+1 reo 1 “t-r

and by step-by-step prediction, the prediction for any predic-
tion distance a may be found. This statement is equivalent to
equation (5.34) given by Wold (1938).

The prediction operator in the time domain is
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[2.635]
il

~T7

Utilizing equation (5.362) for Ka(w), and letting r = s+n, we

have
L a0 o8]
k(0) =5 [/ oY T ae™® T op, e aw
-7 n=0 5=0
1 T et @ -iws -iw(r-s)
=5= [ e b T a_ _e
2m o gog UFS r=g Y-8
(i} Q© 0 0]
1 iwt -iwr
= / e b (z bv a, ) Tb,.,.8
21 - =0 g8=0 a+g r 5=0 ats t-8

(5.381)

which is the Wold (1938) solution for k (a) glven by equation

(5.332).

As a final exercise let us take the Fourier transform of

the equation (5.332), which gives the filter characteristics

@ ® _ @ :
K (0) = = k(a)e™F = 3 e T v (5.382)

a
r=0 r=0 g=g 0TS T-8



which is

a (s 0]

-iws -iw(r-s)
Ka(w) = z ba+se z ar__se . (5.383)
S=0 r=0

Recalling that r = s+n and that ag = 0 for t < 0, we have

e—iws

© -lun

8=0 n=o0

We recall from Section 5.1 that the Kolmogorov (1939) factor

of the power spectrum 1s

8

Blw) = £ be ™ = A" (w) (5.12), (5.24)
S=0
so therefore
mn k1) Q
1 iwt _ -iws iwt , _
= _1,/1‘ B(w) e dw = = _£ sio be e dw=b,
(5.385)
since o +
m s+t
[ etlws Jlwt (5.386)
-7 2 s=t

for integer s and t. Accordingly, by letting ot s = t in
equation (5.385) we have
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b, =k [ By etw(®8) 4, (5.387)

Let us define

8

b.. e 1ws (5.371)

Bq,(w) = o o+s

s

I

which, by equation (5.387), is

a T
Ba(w) = %F T e lus /  Blw) eiw(a+s) dw. (5.388)
8=0 -TY

Also, equation (5.24) shows that

@ -lum -1
Alw) = nzd 8 e = E%ET = B ~(w) (5.24)

where B(w) is the Kolmogorov (1939) factor of the power spec-

trum. Therefore the transfer function K (w), equation (5.384),

becomes
@ -iuny, ® -1
Ka(w) = Eo a e ) sio Do ® wsy
Ba(w)
= Aw) Ba(w) = Blay (5.389)

166.



which by using equation (5.388) becomes our equation (5.373)

8

'y
eI s B(w) glulars) 4 (5.373)

I ™M

S

which is equation (2.630) of Wiener (1942), (where the last
should be @ + ¥ ), and is equation (3.932) of Wiener (1948).

Equation (5.389) for the transfer function for the optimum
prediction operator may be interpreted (Bode and Shannon, 1950)
as first passing the time series xs(-oo < 8 ¢ t) through the in-
verse filter A(w), which yields the impulses f (-@ < s ¢ t),
and then passing the impulses through the transfer function
B, (w) which yields X, .

In conclusion, then, Wold (1938, pp 102-103) actually
obtains a coefficient function ki (a) (which in Wold's notation
is fa,t)’ to be used directly in making an optimum prediction
for a discrete stationary time series with an absolutely con-
tinuous spectral distribution function. Further, Wold develops
an expression for the mean square error of predictlion, glven
by equation (5.322). Wiener (1942, 1948) also obtalins the
coefficient function k (a) which in the notation of Wiener
(1942) is K(t) and the expression for the mean square orror of
prediction. In addition, Wiener (1942, 1948) gives tr2 olution
of the prediction problem for the contlinuous stationary time

series together with its analytic aspects and empnasgizes the
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applicability of these methods to electrical englineering prob-
lems.
F Pr

The solution of the filtering problem for stationary time
series, continuous and discrete, with absolutely continuous
spectral distribution functions is given by Wiener (1342, 1948).
As in the case of the prediction problem the solution of the
filtering problem is a direct consequence of the Predictive
Decomposition Theorem. Again we shall translate the solution
of Wiener (1948) for continuous time series to discrete time
series, with hls equation numbers on the left. The predictive
decomposition of the time series Xy consisting of message plus
nolse 1s

(3.89)
o)

= mt + nt = E bT it_.r- (5.’4’1)

X
t T=0

Since the message has an absolutely continuous spectral dis-
tribution function it may be represented by the process of

moving summation (see Section 4.6) given by

0
z

8

(3.90)  my = (5.411)

T=

M

A bpr *

Ty Y
. + T "t-T

@

where the random variables gt and Yy are mutually uncorrelated,

that 1is,
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B[t21 =1, B[t ] =0 for k 4O,
(5.412)
E[Et'YS] = 0, E['Yi] = 0, E['Ytryt‘l'k] = 0 for k % O,

The predictable part of the message m(t+a), where o is the

lead, 1is
A @ @ .
(3.901) Mg = T Qg bpor = = ap by o g (5.413)
T=0 T=&
and the (minimum) mean square error of prediction is
( ) T2+ %2 (5.414)
3.902 I = q. + Z r_. 41
min ~ _ o T o T

From equations (5.41) and (5.411) we see that noise ng 1s given

by
@ . @ ¢ @ (5.415)
n,= I bt - L Q& .- I TPV oH1
t 7o, TOET S t=T Ll T OE-T

Thus the autocorrelation ¢,,(t) of the noise is given by
(3.903)

E[nt+ 'rn'r]

¢, (t)

®
TEO (b gjar = Ygler) (Pr = ap)
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-1

+ T (b -q )(-q.)
T=-‘t‘ ltl""—r Itl+T T
-ltl-1 ®
+ P> a Q. + I »r r
C'o |t]+1 o |t]+7 Tr
@ (03] @
= I b b, - T q b. - £ aqb
T=0 ltl+ror T=0 lel+r P T=-|t| T lel+r
@ @
+ z q q + z r .
tem o e AT 2 Fleler T (5.42)
The autocorrelation ¢ll(t) of the message is
(3.904)
b1(t) = Elm| |y, m,]
(5.421)

o 0] (¢ 9]

> q q + s r r_.
- 0 Itl” T T== @ ‘tHT T

T=

The cross-correlation ¢lz(t) of the message and noise is

Elm

i

(3.905)  ¢,,(¢t) tar Bl

= E[mt+1(mv+nw) = Dyyp 0]

170.



E[mt+,r(mT + nT)] - ¢ll(T)

fos) ®
= EEO_:Z'___J_ P 4t g'r--cs- o--E--t - g‘r~-<:v‘.l - q)ll(.r)
®
= Z b. q - ¢ll(1). (5.422)
T==t
Let us define
©
(3.907) Blw) = £ be s
8=0
®
Qw) = = q g iws
S=- 0
les)
B-(UJ) = z r e-iws .
cemop B (5.423)

The Fourier transforms of the correlation functions ¢22(t7,
¢ll(t), and ®12(t) are the power spectrum ﬁéz(w) of the noise,
the power spectrum Qﬁl(w) of the message, and the cross-spectrum

Q&Z(W) of the message and noise respectively, and are given by
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(3.906) §,,(w) = BB + Q - QB - BQ + BR

Therefore, we have

(3.908) Ty (w) + Tplw) + Tiplw) + Fpolw) = BB = |Bw)[?.
' (5.431)

In order to compute B(w), we must have the sum of spectra given
by the left hand side of this equation. Let us call this sum
$(w), that is

We see that Qﬁu) is the power spectrum of the time series

Xy, equation (5.41), and thus @(w) may be computed directly from
this time series. We factor @(w) into B(w) Blw) according to
the method of Section 5.1l. In addition, from equations (5.43)

we have

BQ = Qpplw) + T (w) (5.433)
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80 that

(3.909) QB = iiz(w) + ﬁil(w) = ﬁil(w) + ﬁ%l(w) (5.434)

because

Thus we have
iil(w) + ﬁél(w)

(5.436)
B(w5

(3.910) Qw)

m k11 .
G = [ ) aw= k= s gl )
- - Blw)

(5.437)

We let the inverse predictive decomposition of the time series
Xi = mt + ng be

o8] o 3]

gt ) Sio s -5 © szo ®s ( Mg ¥ Dyog ) (5.44)

which glves the predliction errors Et (for unit prediction distance)
of the time series Xyo Thus equation (5.413), which gives the
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predictable part of m(t+a), consists of reaveraging these pre-

diction errors by the realizable linear operation

bpre = ° dpaq bpor = 2 T a )
m = 2 dq = Z  alm . _+n. . Je
gra = 2 Qrea Ster T2 Uria aoo 8 E=T-s t-T-8

(5.441)

The transfer function Ha(w) of this linear operator is the

totality of transfer ratios obtained by letting my + n, =

elWt 4 equation (5.441) and dividing by % tnat 1s
H
(3.9137,
(3.941)
@ ©
- ~iw(T+s)
H(w) = £ qnq £ age
=0 8=0
@
- -iws
= % Qg © lwT T age w
T=0 8=0

___;LT_ D gmtwlt-a) f“ 511(“’) *ﬁzﬂw) 1wt
2mB{w) t=a T Ec;y €
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As Wiener (1948) points out, the equation for continuous
time series (Wiener's equation 3.913) which corresponds to our
equation (5.45) for discrete time series is the transfer function
of what electricians know as a "wave filter". The quantity a
is the lead of the filter, and may be positive or negative.

When it is negative, -t 1s known as the lag. Wiener also polnts
out that apparatus corresponding to this equation may be always
constructed with as much accuracy as we like, and he refers to
papers by Dr. Y. W. Lee,

The mean square filtering error (5.41L) is

g ® 2 )
I = T qf + = r (5.414
min - T - o T

where the first term on the right depends on the lag -a, where-
as the second term does not. For infinite lag, that is, @ = - o0,

the error becomes

(Gm-) = 2 12 = 0..(0) = £ q® (5.46)
U==-m) = I r = - q .
n Toeoo T 11 e T

(3.914) I

mi

because of equation (5.421), with t = O. Equation (5.46) be-

comes
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(3.914)

) 0., (w)
1. n ﬁ}l z(w’
Imin (a=- @) = S S 2] 22 : dw
T ! !
Eil(w) + Eiz(w) + Eél(w) + @éz(w)
(5.461)
which is
Iin(0==0)
= fﬂ Determinant of Coherency Matrix of Message and of Noise ©
27 Y We
-7 Power Spectrum of Message plus Noise
(5.562)

Thus if message and noise were completely coherent, then

I (a== @) = 0, The part of I in depending on lag is

min
(3.915)
“« ¢ 1. 7 1(w) R lw) 2
Z = 2 f d ®
T=- oho ‘r=—ooi 2m -7 B(w) © N ‘
(5.47)

In conclusion, then, we see that the general solution of
the filtering problem for the time series Xy = Oy + n, consist of re-

averaging the prediction errors £, (for unit prediction distance)
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of the time seriles Xi by means of the operator

A Q0
m = X
T=

e boore (5.441)

Here the operator coefficients qy are determined from

Qil(w) which is the power spectrum of the message m;, from
Qél(w) which is the cross-spectrum of the noise n. and the
message m,, and from B(w) which is the Wold-Kolmogorov factor

of the power spectrum Q(w) of the time series Xy = mg + N
T S e P S tra
Of particular interest to the working statistician are
those time series with power spectra @Kw) which are rational

functions in z = e ¥ (see Figure 3).

A, Process of Finite Moving Averages
Let the stable response function b, be of finite extent,

that 1s
bt =0 fort < Oand t > M,

b, # 0, by ¥ O. (5.51)

Then the predictive decomposition of the time series Xy, With

this response function, is

xt = bo Et + bl gt_l + eoe + bM gt-lq (5.511)
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which represents a statlionary process with an absolutely con-
tinuous spectral distribution.

Strictly speaking, the process X, given by this de~
composition is defined to be a process of finite moving aver-
ages 1f white noise it (oo < t < o) is a purely random process,
that is, if all of the components £, are independent random
variables with the same distribution function. Nevertheless,
we shall also include in this definition, those processes
(5.511) for which the it(-oo < t < ®) represents a mutually
uncorrelated process. See Section 4.5. We shall let Zt have
mean value zero and unit variance. Thus, the ¢ (-0 ¢t ®)

is a process such that

E(t,) = 0
E(£2) = 1
E(itﬁs) = 0 s * t . (50512)

The autocorrelation is glven by

Me-T
¢(1) = E[xt xt+T] = tzo bibitr (5.513)
so that
d(1) = O for |T] > M, (5.51%)
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The power spectrum of the process of finite moving averages

is then

d(r) e T (5.515)

]
™M=

M
P(w) = ¢(0) +2 = ¢(1) cos wr
T=1 T=-M

which is a rational function in z e W, 1et B(w) be the

transfer function

Blw) (5.516)

"

™
o’
(]

so we see that

M
IB(w)|? = z d(r)et®T 20 (5,517)
T

Q(w) = B(w) Blw)

is non-negative.

In general, an arbitrary set of coefficlents

d(o), d(1), ¢(2),. 00, ¢(10) (5.52)

will not be such that the rational functlon
M -1lwT
$(0) + 2 T ¢(1) cos wT = T d(7) e (5.521)

=1 T=-M

is non-negative, and hence it is not an acceptable function
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to represent the power spectrum of a process of moving aver-
agese
Thus Wold (1938) gives the following theorem, his Theoremn

12,
Theorem 12. Let Q(u) be the polynomial of order M obtained

from

M
$0) + = ¢(1) [T + 2"]

T=1

lyz-= Uu. A necessary and sufficient

by the substitutulon z~
condition that §(0), ¢(1), ¢(2),...0(M) be the correlogram
of a process of moving averages (5.511) is that the poly-
nomisl should have no real root of odd multiplicity in the
interval -2 < u < 2,

Thus for a sequence (5.52) which does fulfill the condi-

tions of Wold's Theorem 12, the function

M
¢pc) + 232  ¢(7) cos wr 2 0 (5.522)
T=1

is non-negative and hence may represent the power spectrum
ihn) of a process of moving averages. In order to determine
the response function bt(t = 0,1,2,+..1) of the process with
this power spectrum (5.522), it 1s necessary to factor this

power spectrum into
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M
T(w) = d(C) +2 £ ¢(1) cos wr = Blw) Blay (5.523)

T=1

where

p_e lws (54524)

B(w) = "

™M=

S=0

is free from singularities and zeros in the lower half A plane.
Then the stable operator bt is given by

'
b, =.5%— J/ B(w) e¥aw, t=0,1,2,..., N (5.525)

=2m -

In order to carry out the factorization (5.523), Wold
(1938) gave the method which we presented in Section 2.8.
That is, we let Q(w), given by equation (5.523) be the F(w)
of Section 2,8, given by equation (2.,82), Then we determine
the stable finlite linear operator bt from Ehu) in the same
manner as given in Section 2.8. The inverse predictive de-

composition is given by

Q0
= aoxt + alxt__l + azxt_z + 00 = Z aSXt"S (50526)

¢
b S=0

where the inverse linear operator a, (see Section 2.7) is real-

izable, stable, and infinite in extent,
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The process of finite moving averages was introduced by
Yule (1921, 1926) and Slutsky (1927), and consequently was
the first stochastic process studled which was neither a
purely random or an unccrrelated process (Section 4,.%) nor
a deterministic strictly periodic process (Section 3.2).

The solution of the prediction problem for such processes

for the special case in which

1

_— (5.527)
x/M+1

b

t=

is given by Kosulajeff (194/).
B. The Autoregressive Process

The autoregressive process 1s a stochastic process for
which the response function by (t = 0,1,2,...) is of infinite
extent, but the inverse response function a, (t = 0,1,2,...m)
is of finite extent. Thus the inverse predictive decomposition

of an autoregressive time series Xy of the m-th order is

m*t-m s

m
Et = aoxt + alxt_l + 400 + 8 X = SEO a Xt—s (5053)

and the predictive decomposition is

@@
Xy = Doy + Dby g ¥ Dby o+ eee =2 by by g (5.531)
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where the operators ay and bt are stable and inverse to each
other., See Section 2.7. Such a process is stationary with
an absolutely continuous spectral distribution.

Strictly speaking, in the definition of the autoregressive
process, the impulses §t which are independent with the same
distribution function, but we shall also admit £, which are

mutually uncorrelated. We shall let &t be a process such that

E(t,) = 0
E(t2) = 1
E(Etgs) =0 8 % t. (5.532)

The autoregressive process, or the process of disturbed
harmonics, was introduced by Yule (1927), and was a major step
forward toward the establishment of the general theory of
stochastic processes by Kolmogorov (1933) and Khintchine (1933).
Because equation (5.53) for the prediction error Et (for unit
prediction distance) heas only a finite number of operator coef-
ficlents, &, 81y 8p,eee8, the prediction operator for any
prediction distance will require only a finite number of coef-
ficients, as seen by equation (5.34).

The autocorrelation function is given by
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foe
P(1) = E [xtxt+T] = 120 Dbty (5.533)

and the power spectrum by

8

0(1)e” T = |B(w)|®? = +—— 2 0  (5.534)

(w) = ¢
E w Tee o IA(U))'Z
where
m ~
Blw) = & bse’iws (5.535)
8=0
and
©
A(w) = BL(w) = £ ae 5, (5.536)
§=0
Since
i(w) = L = 1 = 1
ROl | 7 ase"iwsl2 z rTe“in (5.557)
S=0 T=-In
where
M .
Ty = SEO BsBgit (5.538)
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We see that the power spectrum is a rational functiocn in e'iw.

In general the rational function in e iw
m -1
£ r.e T (5.54)
T=-m

will not be & non-negative integrable function for -m < w ¢ m,
The function (5.54) will be non-negative if the TosTysTpeeely
satisfy the conditions of Wold's Theorem 12, which we stated

in Part A of this Section in connection with the process of
finite moving averages. The function (5.54) will be integrable
for -m ¢ w ¢ W if the polynomlal

o T
> r.z (5.541)

has no roots of modulus one. If these conditions are satis-
fied, then we may let the ratiomal function (5.54) represent
the power spectrum Eﬁw) of an autcregressive vrocess. Then

the inverse power spectrum

m m
E(w) - — = hX rTe—in = I‘o + 2 I'T COS wT,
Bw) T=-m T=1

(5.542)
may be factored according to Wold's method given in Section
2,8 so that
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T(w) = a(w) A(w) (5.543)

where

Alw) = -lws (5.545)

"~MBE
o
o

has no zeros or singularities in the lower half A-plane.

Then the spectrum 1s given by
- —— o
Sw) = oy —== = B B (5.546)

where the factor

71” m = B(w) (505“‘7)

is also free of singularities and zeros in the lower half
Mplane. In Figures 6 and 7, the various time and frequency
functions of a particular second order autoregressive process
are given. Two fundamental sets of difference equations (Wold,

1938; Kendall, 1946) exist for the autoregressive process
@

Let us multiply this equation by the equation for the lnverse

decomposition at t+n:
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m
szo asxt+n—s = §t+n’ n >0 (5.551)
which ylelds
m 0 ¢ , )
X = a.x = ¢ Z b _ n >0 (54552
t s=0 8 t+n-s t+n r=0 r "t-r?

and, by taking the expectation of each slde, we have

m ¢) .
S-Eo s E[xtxt""n-s] = rEo P E[gt‘*n g'!.',---rJ’ n >0 (5.553)

which yields the set of difference equations

m
z as Q)(n-S) = O’ n > 0, (5055“‘)
S=0

Let us multiply the process (5.55) by the inverse de-

composition at t-n:i

m
z 85%fn-s ~ gt-n’ n 20 (5.555)
8=0
which ylelds
z ., T bt
X L ax . .= - & b tE,. _,n 20,
t g=0 & t-n-s t-n r=o0 ¥ t-r?
(5.556)
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Taking the expectation of each side, We obtain the other set

of difference equations

m
SEO a, Pln+s) = b, n 2 O, (5.557)

The first m-1 linear equations of the set (5.554) are

¢(l) + alw(o) + 3-2¢(1) + eoe + amd)(m"l) =0
d(2) + al¢(1) + a,0(0) + ..0 + a ¢(m-2) = 0
$(3) + a,0(2) + a,0(1) + ..o + 8 ¢(n-3) = O
¢(m-1) +al¢(m-2)+a2$(m—3)+ cee +a 0(1) =0
@(m) +alq)(m°l)+az¢(m"2)+ eoe +am¢)(0) =0 ‘5056)

which correspond to the normal equations of the Gauss method
of least squares (equations (40) of Wadsworth, et al (1953)).
Thus, if we lmow the values of §(0), ¢(1),..., ¢(m), that is,
the first m lags of the autocorrelation function, we may com-

pute a_ = 1, al’ 8oy oo am. It is this property which makes

o}
the autoregressive process a fundamental model in statistical
work. That is, the statistician need only estimate the first
m lage of the autocorrelation to specify an m-th order auto-

regressive process. Under the éutoregressive hypothesis, the

higher lags of the autocorrelation function may be found by

successive recursions of equation (5.554),
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C._The Markov Process

An autoregressive process of the first order as defined
in Section 5.5-B is a MNarkov process. For a more general
definition of the Markov process, see Feller (1950) and Doob
(1953). Applications of the autcregressive process and Markov
process to economic analysis are given by the author (1952).

In order to obtain a Markov process, we let m=1 in equa-

tion (5.53). Hence the impulse £t has the representation
by = Xp + ayx, 4, 8, =1, la)| < 1. (5.57)

The response function by (£=0,1,2,...) may be found by re-

peated iterations of the difference equation

0 = b.b + albt’l, t = 1,2’000 bo = 1 k5o571)

which ylelds

_ t
by = = &b, = (-a;)" (5.572)

Thus the predictive decomposition of the Markov process is

© @ s ‘
s= = (ap)®. . (5.573)

O S=0
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The autocorrelation function is

0(T) = Blxgxpy ) = T by, = 2 (-2 )27, 1> 0 (5.57)
=0 =0
whlch 1s
® (-a,) |7l
0(r) = ()T T et —Ae (5.575)
t=o0 (1-a,%)

Thus we see that the autocorrelation of such a Markov process
is an exponential which is the case of pure persistance. Equa-
tion (5.575) is the discrete time series analogue of equation
(16) in Wadsworth, et al (1953).

The spectrum $(w) is given by equation (5.534) with m = 1;
that is,

O(w) =

&, =1, lajl < 1. (5.576)
| 1+a

-iw,2 * %o
18 |

The prediction operator kt(a), glven by equation (5.332), be-
comes

. (08
k (a) = Dby = (-a;)

it

kt(a) O, for t = 1,2,3,000 (5058)

i
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so that the optimum prediction is given by

Xgpq = (-al)OL Xyo (5.581)

The filter characteristics of the prediction operator are

@
~lwt
K (w) = T k(ale

= (-al)“ (5.582)
t=0

The mean square error of prediction given by equation (5.323),

becomes
_ 2 2 2
_ 2 I 20-2 .
= 1 + al + al + 4o + al PY (50583)

D, Hybrid Processes

Let > 3% be a process with power spectra, which is a ration-

al function in e'iw,

2
T(w) = Bl (5.59)
IA(w)lz
where
m -iws
Aw) = I age (5.591)



Blw) = £ ae . (5.592)

-~

Here the polynomials A(z) and B(z), z = e ~®, are required

to ha;e no common factors, the roots of A(z) to have modulus
greater than one, and the roots of B(z) to have modulus greater
than or equal to one (see Figure 3). Then Doob (1949, 1953)
shows that the process x;, with spectrum 9(w), is an hybrid
between an autoregressive process and a finite moving average

process. That is, we have

ToaX, o= Y (5.593)

Yy = SEO bs gt-s (5-594)
with

E(i%)‘ =1

E(gtgs) =0 for s # t. (5.595)
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«6 Myltivle Time S
In this section, and in the next, we wish to consider

multiple discrete stationary ergodic time series with absolutely
continuous spectral distribution functions. We shall have to
modify our previous notation to some extent in order to accom-
modate the bulk of notation required. Let us consider the
set of stationary processes xJ(t), (J=1,2,...n) which we take
to be rezl functions., From now on, where two or more second-
ary symbols appear, subscripts will denote the particular time
series under consideration, whereas the time parameter will
appear in the parentheses following the symbol for the functicn,

We define the correlation functions (Cramer, 1940) to be

T
b (1) = Elxy(e+m)x (001 = 30 mmy T ox(41) x(£).

(5.61)

For j = k this equation gives the autocorrelation function of
xj(t), whereas for J # k it gives the cross-correlation func-

tion of xj(t) and xk(t). We have

¢jj(T) = ¢jj(-‘r), J = 1,2,...n (50611)

which states that the autocorrelation function is an even func-

tion of T. For the cross-correlation functions, we have

195.



®jk(1) = ¢kj(-7), x £ 3, Jk=1,2,...m. (5.612)

Since the time series xj(t) are real functions of time t, the
correlstion functions are real functions of T. From their

definition (5.61), the Schwarz inequality gives

194, (1) < v G55 (0) by (0) (5.613)

which provides a basis for normalizing the correlation func-

tions.
Cramer (1940) shows that these correlation functions may

be expressed as Fourler-Stieltjes integrals of the form:

L

¢Jk(1) = %F £ w7 ijk(w) dw, for j,k = 1,2,...n.
(5.62)
The inverse transforms may be written as
(o)
ijk(w) = X e lwr ¢Jk(T)o (5-63)

T=- 0

Here the §.,(w) are the spectra of the set of stationary
Jk

processes. For j = k, we have the power spectrum of xj(t)i
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ﬁjj(w) = g):“(-w), 3=1,2,...1 (5.631)

which i1s a positive real function of w. For J # k, we have
the cross-power spectrum idk(w) of xj(t) znd xk(t). The cross-
povier spectrum, which is a complex valued function of the

real varlable w, satisfies

Ejk (w) = §k3(~w) (5.632)
and
ﬁjk(w) = Ekj(w) (5.633)

where the bar indicates the complex conjugate. Consequently,

we have

?Q'.jk(w) = ﬁjk(-—w). (5.634)

Thus we see that the real part of the cross spectrum

Re [ Ejk(w)] = Re [ ﬁjk(-—w)] (5.635)

is an even function of the real variable w, whereas the

imaginary part
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Im[ ijk(w)] = -Im [ ijk(-w)]

is an o0dd function of the real variable w,

By letting 7 = O in equation (5.62), we see that

m U
(@) =37/ Tyle) aw =2 S Be [Ty ()] aw

Let us consider the linear combination

n
x(t) = % ajxj(t)

(5.636)

(5.64)

(5.65)

which defines the time series x(t). Here the weighting coef=-

ficlents a, are real. If xJ(t), J =1,2,...m, represents the

traces on a seismogram, and if aJ =1, J=1,2,.semn, then

x(t) is the so-called Reber trace. The autocorrelation

(5.66)

of x(t) is
lim 1 T
$(1) = T TTT E, x(t+71) x(t)
t=-
= ? g aa Mo L g x. (t+7) x,.(t)
=l k=1 I K T 2T fp T k
which is
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n n
o(r) = ZE e by (T)e (5.661)

Since ¢(T) 1s the autocorrelation function of the time series

x{t) it is an even function of T:
(b(T) = ¢("'T)o (50662)

The spectrum of x(t) is given by the hermitian form

n n
(1) e gr1= 3 % aa (w)
T -co¢ e ' J=1 k=1 % 5% Ejk ?

W
(&)

Q(w) =

W8

(5.67)

which is a non-negative function of w, (Cramér, 1940). The
matrix of hermitian form (5.67) may be represented by the

hermitian matrix

[ Ejk(w)]’ for J’ k = 1’2’0'0, n (50671)

which is .
rﬁ:ll(w) @iz(w) coe Ein(w)

*

inl(w) Q'nz(w) cee §xm("”) (5.672)
L -

199.



We shall call this matrix, which determines the spectra of all

possible linear combinations of x,(t),...., x (t), the

coherency matrix. 1he elements of our coherency matrix are the
derivatives of the elements of wWiener's coherency matrix
(Wiener, 1930, 1942).

Further, for the time series x,(t) and x,(t) with the

coherency matrix

Ell(w) §12 (w)

the significant invariants of this Hermitian matrix are

ﬁiz(w)
L @il(w) ﬁéz(w)] }

cohy,(w) = (5.674)

which Wiener (1330) calls the coefficient of coherency of

xl(t) and x,(t) for frequency w, and

» Typ ()~ Ty (w) s
= 5.6
e T,, (o) ”
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() ~/ Ty (w)
o (w) = Bo1 @)V Bp v (5.676)

which Wiener (193C) calls the coefficients of regression
respectively of Xy on X, and of X, on Xqe Wiener (1930)
peints out that the modulus of the coefficient of cohefency
represents the amount of linear coherency betuween xl(t) and
x,(t) and the argument,the phase-lag of this coherency. The
coefficients of regression determine in a2ddition the relative
scale for equivalent changes of xl(t) and x,(t).

Cramér (1940) shows that the determinant

of the coherency matrix (5.673) is non-negative. Therefore

we have

o) Ty = 1T, 2 ¢ Ty (w) Tpp ) (5.678)

so That the magnitude of the coefficient of coherency,

(w)
lcohlz(w)l = lﬁiz |

'\/Ell (w )gzz (LU)

(5.679)
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lies between zero and one.,

Inequality (5.678) may be written

@ o) ® .
z ¢ (T)e-le 5 ¢ (S)e“iws < 3 ¢ (T)'e"iUJT > ¢ (S)e-iws
T== QO 12 S=~ O 21 T=e O ll =— o 22
(5.68)
which is
Qo s 0] @ w0
. Z 0., (10, () (T-F) T 5 g (19, (p)emtelTmT)
re— T=- ¢ 12 e o Toe o L1 ¥22
(5.681)
or
(0 0] w0 0 ©
-ilun -lum
z e S by, (ntr)d,(r) € T e S 0. (nFr) O, (r).
n=- r=-om ¢ 12 n=- 0 rom o L1 22

(5.682)

This inequeality states that for two stationary time series the
Fourier transform of the autocorrelation of their cross-correla-
tion cannot exceed the Fourier transform of the cross-correla-
tion of their autocorrelations.

As Wold (1953, Chapter 12.7, p 202) observes,in view of

the abundance of possible variations and combinations available
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in the extention of the theory of one dimensional stochastic
processes to multiple stochastic processes, the main difficulty
does not lie in developing formulae of great generality, but
rather in picking out those processes for further study that
merit interest from the point of view of applicaticons. This
observation is particularly pertinent concerning seismic appli-
cations, where any statistical approach to the study of mul-
tiple selsmlc traces should originate from considerations of
the physical phenomena which generate these traces in time and
space.

As an example of multiple time series let us consider the
special case in which two stationary time series have the

predictive decompositions (see Section 5.2),

®
x,(t) = £ b ¢ (5.683)
1 g S t-8
(t) T
x(t) = £ 4d_v,._
2 soo © t-s

where the prediction error it of xl(t) represents a mutually

uncorrelated process, that is,

E(t2] =1, B[E£ D=0, ¢t 4 s,
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where the prediction error of xz(t) Vi represents a mutually

uncorrelated process, that is
2
Elvgl = 1, Blygvgd =0, ¢ % s, (5.684)

and where the cross-correlction of the prediction errors, gt

and Yo ls given by

p for T=0Q

TILHT O otherwise.

The inequality (5.682) becomes

oS 1, (5.686)

The autocorrelation ¢11(T) of xl(t) is

Q

¢11(T) = E[xl(t)xl(t+1)] = SEO b.b_ . (5.687)
and the spectrum 1is
T.- (0) = B(w) Blw) = |B(w)|? (5.688)
11
where
©
B(w) = & bse°’“”S (5.689)
§=0



Likewise we have

and

where

oo}
¢22(T) = z dsd's-}-'r (5.69)
=0
$,,(1) = D(w) Dl@Y = |Dlw)|? (5.691)
© |
D(w) = £ a_e "%, (5.692)
8=0

The cross-correlation of xl(t) and x,(t) for this special

case is

and the cross-spectrum is

ilz (UJ) =

e 0]
¢ro0T) = Elxy (w)x,(2)] = o sio s8eiroq (5.693)
@ e ¢) ‘
~ilwT
= p TE_OO ( Z bl .ol (5.69L)
Q 89
_ -1wa -lum
= re =§co sio bsds+n e

pe"iwa B(w) D(w),

i
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Thus the coherency matrix, equation (5.673), for this special

case 1is

(5.695)

pelwa BD oD

and the coefflcient of coherency is

cohy,(w) = pe~ 1w T%%%%&' Tﬁ%§§%_ , (5.696)

the magnitude of which is

el ¢ 1. (5.697)

We see that the coherency of the two time series, xl(t) and
xz(t), depends on the cross-correlation of their respective
prediction errors, it and vye

In general, 1f the magnitude of the coefficient of
coherency is equal to one, we say the two time series are
completely coherent; 1f equal to zero, completely incoherent,

For completely coherent time series, the coherency matrix 1is

singular.

206,



The study of multiple time series may lead into the con-
slderation of various structural systems, for example, recursive
systems and non-linear systems, (Wold, 1953). For any set of
multiple time serles with well-defined moments, a theorem of
Wold (1948, 1953) secures a recursive revresentation in which
the endogenous variables form a recursive causal chain. Also
Wold (1953) discusses the conditions under which & unique pre-
dictive decomposition of a system of multiple time series may
be obtained.

The concept of ccherency 1s an important one in the study
of seismic records. Computations carried out by the MIT
Geophysical Analysis Group indicate thet seismic traces are
more coherent on the average in an interval containing a me jor
reflection than in an adjacent non-reflection interval., This
coherency property of reflections assists the visual detection
of reflections on a selsmogram, and hence may be exploited in
the detection of weak reflections by statistical methods,

In these computations, the coherency was estimated through the
estimation of the various power spectra and cross-spectra.

The probvlem of how to estimate spectra from finite time series
is a major prcoblem. In Figure 8, we show examples of corre-
lation functions and spectra computed according to the method
of Tukey (1949) and Tukey and Hamming (1949) from MIT Record
No. 1 (supplied by the Magnolia Petroleum Co.) over the time
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interval from 1.05 seconds to 1l.225 seconds. PFurther discussion
of this Figure and of MIT Record No. 1 is given in Wadsworth,

et al, (1953) where also the method of Tukey and Hamming for
the estimation of power spectra is presented. Also the reader
is referred to MIT GAG Report No. 5 for an extention of the
method of Tukey and Hamming to the estimation of cross-spectra.

Under the hyvothesls that a finite section of a2 seismic
trace 1s a section of a stationary time series, which we dls-
cuss in the next chapter, a good estimate of the prediction
operator for a single trace is one which ylelds prediction
errors which satisfy statistical tests of being mutually un-
correlated. Then another approach to the study of coherency
involves the examination of the cross-correlation existing
between the sets of vrediction errors for the various traces.
Here again the estimation problem is a major problem.

Much of the book of Wold (1953) is devoted to the linear
least-squares regression method which is the method for the
determination of linear operators by the Gauss method of least
squares (Wadsworth, et al, 1953). In particular Wold considers
least-squares regression methods for time series from the
viewpoint of sampling theory, and -obtains conditions under
which empirical operator coefficlents computed from a finite
amount of data are unbiased and consistentestimates of the

theoretical operator coefficlents of the stochastic process.
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A simple test to determine whether the empirical operator
for a stationary time series is a good estimate of the theo-
retical operator consists of testing whether the emplirical pre-
diction errors are mutually uncorrelated.
& T Dis

In this section we should like to review the "General
Technique of Discrete Prediction" of Wiener (1942, Section
4,6). 1In particular we should like to question his tech-
nical point concerning the computation of power spectra for
finite time series because, for one reason, 1t leads to an
indeterminate solution in the application of his general
technique of discrete prediction to finite time series.

His technical point is that the correlation functions of
the finite time series x,(t), (-N € ¢t € N), should be computed

by the formula

(4.625]

by (1) = £ x, (p+1)x,(n) 1,3 = 1,2,...n

U
A =

i
g
[,y

-8
n
=2

(5.71)

which, except for the constant factor (2N+1)'l, is the same
formula as used for the computation of the correlation functions

of finite time series considered to be aperiodic functions.
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(See Section 3.3) Wiener (1930) also suggests formula (5.71)
for the computation of correlation functlions for finlte time
geries. That is, in effect, Wiener (1930, 1942) assumes that

the finite time series xi(t) are aperiodic functions such that

xt(t) =0 fort <-T and t > T (5.711)

in the computation of the correlation function (5.71).

As we have seen in Section 3.3 the phase and amplitude

spectra are given by

X, (w) : (t)etwt
w) = I tle”
i t.:__N xi e (5'712)
and the spectra by
- I f N
Qij(w) = xilwij(w) = E-N ¢1J(T)e_ wT (5.713)

which are terminating series in positive and negative powers
of e X0, 1In equation (5.713) the correlation function ¢ij(1)
is given by formula (5.71). Thus equation (5.713) represents
the spectra computed according to Wiemer's technical point.
Wiener states that the most essential property of a single

¢11(T) is that it may be written in the form
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L

(4.61) / et a A (w) (5.714)
where A (w) is monotonically increasing; that is, the power
spectra ﬁ;i(w) must be non-negative., Letting 1 = J in equa-
tion (5.713), we have the power spectrum given by

N = 2
§;1(w) = TE-N ¢11(T) cos wT = Xi(w) Xi(w) = lXi(w)l 30

(5.715)

which is non-negative. Therefore we see that the condition
that the power spectrum ﬁ;i(w) will be non-negative is satis-
fied for those cases in which we compute the spectrum accord-
ing to the aperiodilc hypothesis given in Chapter III, that is,
according to Wiener's technical point as expressed by our
equations (5.713) and (5.71).

Wiener's second condition 1s that the quadratic form

(4,62) § ? E § ¢1J(T—%) a.a, (5.716)

must be non-negative. This condition is also satisfied for
the correlation functions computed according to Wiener's

technical point.

Instead of examining this quadratic form in more detall,

let us examine the hermitian form
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r = (w) a,8 (5.72)
2z B ey

which because of equation (5.67) is non-negative. The coher-
ency metrix, which is the matrix of this hermitian fdrm, is
given by equation (5.672) where the EAj(w) are computed by
Wiener's technical point, that is, by equation (5.713), to-
gether with equation (5.71). Explicitly, this coherency matrix
is

N
[Con(w)] = ( E;J(w)] =[ = ¢1J(T) e IWTy - [ Xi(wjxj(w)]

T=-N

(5.722)

where 1,J = 1,2,...n, and where the correlations ¢ij(1) are
given by equation (5.71).

‘e hermitian matrix (5.722) for finite time series given
by Wiener (1330), and again by Wiener (1942), is singular,
that is, its determinant is equal to zero. Yhis fact readily

follows from the representation

[Coh (w)] = [ii xJ]. (5.723)

Let us now examine the solution to the prediction nroblem

for multiple discrete time series gilven by Wiener (1942, Section
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4,6). We shall write the equation number of Wiener (1942)
in brackets to the left of our corresponding equation. Thus
we start with the fundamental set of equations (discrete an-

alogue of Wiener-Hopf integral equation)

(4,635]

n a0
¢y (att) = ,J-Z-l TEO ¢>Jk(t-1‘) qy(1), £2 0 k=1,2,...n,

(5.73)
the solution of which yields the linear operator qj(T) where
T=20,1,2,400 Since this set of equations need not hold for
t < 0, we shall define the residual for t < O to be B_;.

(The B_, for t < O used here is Wiener's function by for t > O,
in his Section 4,6. To avoid confusicn in thils section we
shall follow Wiener's notation quite closely except, as before,
we let small letters refer to time functions and cavital letters

refer to frequency functions.) We have

[4.635]

0p(art) - = T ¢ (1) qy(n) =
J=1 71=0 PA-t t <0
(5.731)

where the residual/3_t for t < O may be arbitrarily chosen
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so that the equation (5.73) is satisfied for t 2 O, Let us put

[4,6L] ©
s ¢ (n) e = F. (w) (5.732)
n=-co ¥ JK
and
[4.64]
®
T qj(n) g lum Qj(w). (5.733)
n=0o

Then we have

® n ® ‘
£ ¢y (art)e i s 3§ £ e vt O (8- ay(7)
t=- 0 j=1 T=0 t=-
-1 _
= 3 g, et (5.734)
t=- 0

wnich is
n o

@ _ _ - @ -tw(t-1)
5 . (ple-twlt-a) 5 o ety s g (t-1)en MY
t=- 0 1k J=1 T=0 J - Jk

= p_yett (5.735)

or
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[4.645]

™8

ﬁteiwt for k = 1,2,...1,

n
lwa

5 Qj(w) ﬁjk(w) =

t=1

(5.736)

For n = 1, (the prediction problem for a single time

series), we have

w
eiwa Ell(w) - ﬁll(w) Ql(w) = tzl Bteiwto (5-7“’)
Let us factor the power spectrum sc that
Eil(w) = IB(w)Iz = B{w) Blw) (5.741)
where
n -1
Blw) = b, + I by e %5, (5.742)
1

(The b_, by,s+eek, which we use here is our stable response
function by of section 5.2, which in Wiener's notation is

Aoy dqs eee dm). That is, Wiener agsumes that @il(w) is given

o’
by & terminating series in positive and negative powers of
eiw sc that it is the spectrum of a process of finite moving

averages. The factorization may then be carried out as described
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in Section 5.5-A, Here B(w), given by equation (5.742), is
to have no zeros or singularities below the real axis.

Then we have

@
' - ()] Blw) = £ B, &M L=, (5.73)

t=1 B{w)
Let us define e (t = 1,2,3,...) by
@
tzl Bt iwt
= @
— = T et (5.744)
5 bteiwt t=1
t=0
Then equation (5.743) becomes
@ w a=-1 .
z pemtuls=a) Q (wBw) = £ et = p e twse)
s=q t=1 s=0
(5.745)

where the left hand side contains only non-positive powers of
eiw, whereas the right hand side contains only positive powers

of eiw. Thus each side 1s respectively equal to zero, so we

have

217.



@ ~iw(s~-a) _
Sza b_e - 4 (w) B(w) = O, (5.746)

and solving for the filter characteristic Ql(w) we have

w
QW =gy T p e twis-c] (5.747)
Since
1 T ius
b, = 3m S Blu) e du, (5.748)
-T0
Wwe have
[2.630]
Ql(w) = *——%—T cg e-iw(s-a) fn B(u) er%® au (5.749)
2nBlw s=0q -T7

which 1s equation (5.373).
For n = 2, (the prediction problem for double time series)

we have
(4.65] ©
[e?™ - Q) ()] g () = Tpy () Qlw) = z p et
@ o
L& - @ ()] pplw) - Tpp(w) Qlw) = z c et
(5.75)

218.



where the residuals of the Wiener-Hopf equation (5.73) are
By and oy (s = 1,2,3,...) for k = 1 and k = 2 respectively.

The determinant of these equations 1is

Eil(w) @él(w)

Qw) = = ﬂll(w) ﬁzz(w) - @tz]_(w) §12(w)

ﬁiz(w) iéz(w)
(5.751)

which is the determinant of the coherency matrix of the time
series xl(t) end x,(t). If we compute the coherency matrix
according to Wiener's technical point giver by our equations
(5.71) and (5.713), the matrix will be singular, as we have

seen by eauetion (5.723). Thus the determinant of the matrix

of the simultaneous equations (5.75) vanishes, that is,

Clw) = (X xDEX) - (X)) (XX,) = o,

Consequently, equations(5.75) have no solution, or an in-
determinate solution. In other words, Wiener by his technical
point, in effect, suggests that the aperiodic functionasl scheme
(Section 3.3) be utilized for multiple finite time series,

and hence the same type of difficulty is encountered for
multiple linear operators as we described in Section 3.5.

Thus in his section 4.6, Wiener (1942) suggests that the
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geophysiclist utilize a certain technical point for his compu-
tations, If the geophysicist does utilize this technical
point, and if he does utilize Wiener's method of determining
multiple linear operators given in the same section as the
technical point, the geophysicist will obtain nonsense results.
Thus if we are to use Wiener's general technique of dis-
crete prediction, which is a statistical technique, let us
estimate our correlation functions and spectra according to
formulae chosen for statistical reasons, and not for formal
mathematical reasons. In particular we refer to the method
of Tukey (1949) and ‘lukey and Hamming (1949) for the estima-
tion of power spectra. That is, under a statistical hypothesis
observational time serles are not completely coherent, and
thus one should utilize formulae which provide estimates of
the theoretical coherency which actually exists between them.
Thus for time series which are not completely coherent,
the determinant of the coherency matrix does not vanish,
and equabionsg (5.75) will have a solution for the coefficients
of the multiple linear operator as given by Wiener (1942) in the
remainder of his section 4.5.
For finite observational time series, the Gauss method
of least squares (Wadsworth, et al, 1953) takes into account

the empirical coherency existing between finite time seriles,
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and thus yields a unique solution for the empirical operator
coefficients.

In the practical task of computation, for example, on
a digital computer, one must utilize discrete approximations
of continuous integrals, as illustrated in Figure 5 in which
the trapezoidal rule is utilized. Figures 10 and 11 1llus-
trate discrete approximations of sets of sine and cosine waves.

Finally, we note that lichel Loeve (1946) has obtained a
Predictive Decomposition Theorem for a non-stationary random
process which generates time serles x(t) of finite time dur-
ation O € t € T, Karhunen (1947) alsc treats this decomposi-
tion problem. Davis (1952) applies this predictive decomposi-
tion to the prediction problem for non-stationary time
series. Since the time series are ncn-statlonary, ensemble
averages are used instead of time averages. Thus the auto-
correlation function, which plays a central role in this

Predictive Decomposition Thebrem, is given by

$(t,s) = E[x(t) x(s)] (5.76)

which now is a function »f the two time instants t and s,
and 1s no longer a function of only their difference T = t-8
as for a stationrary process. Toward the & etermination of the

applicability of this Predictive Decomposition Theorem to
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seismic data, an exploratory step would be to carry out com-
putations to determine what degree of statistical regularity

exists for estimates of the autocorrelation function (5.76).
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CHAPTER VI
APPLICATIONS TO SEISKIC EXPLORATION

T Respo o)

From a physical point of view, the seismic trace is the
response of the system consisting of the earth and recording
apparatus to the impulsive source, the explosion. This systen,
although usually very complicated, is susceptible to a deter-
ministic approach toward its analysis. The explosion may be
considered to yield an impulse, ét, of relatively short time
duration, so that the impulse Et 1s equal to zero before the
explosion and is equal to zero a short time after the ex-
plosion. In some instances the impulse function Et may be
considered to be sharp impulsivé disturbance of very short
duration. In other instances, for example, the occurence of
bubble pulses in seismic prospecting over bodles of water
(Worzel and Ewing, 1948), the shape of the impulse £, may
have a more complicated form.

The impulse ﬁt yields the energy of the selsmic distur-
bance. This energy is dissipated in various ways as it spreads
out from the source. Some of this energy is transmitted to
the geophones and recorded in the form of seismic traces.

Such recorded energy may be considered to be the response
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function to the impulse Et' The study of thils response function,
that is, the response of the earth and recording system to

the seismic explosion, has led to many important contributions
to theoretical and practical seismology, and the reader 1s
referred to GEOPHYSICS, Instead of dealing with the response
function as such, which is a time function, one may deal with
its Fourier transform which is the frequency and phase com-
ponents of this function in the form of spectra.

Nevertheless, the complicated nature of selsmograms taken
in seismic exploration many times precludes the study of the
overall response of the earth and recording system as a whole.
Also in the final analysis one is interested in the various
components of this total response, for example, one wishes
to separate components of reflected energy from those of
non-reflected energy.

In & sequence of fundamental papers, Normen Ricker (1940,
1941, 1943, 1944, 1945, 1949, 1953a, 1953b) proposes the
wavelet theory of seismogram structure. A seismogram, accord-
ing to Ricker is an elaborate wavelet complex, and the analy-
gis of a seismogram consists in breaking the record down into
its components.

Ricker (1940) points out that, according to the theory

of the propagation of elastic waves in homogeneous, isotropic
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media, a wave form remains unchanged as it is transmitted.
Thus a wave due to a sharp impulse, such as explosion, should
be propagated without change in form and received at a dis-
tance as the same wave form, Consequently in media strictly
obeying the elastic equations a seismogram should conslst

of a succession of knife-sharp disturbances, due to waves
which have traveled different paths by refractions and re-
flections. BRicker goes on to state that if such & sharp and
clear-cut series of impulses did constitute a seismogram many
of the difficulties in seismic prospecting would disappear.
As we know, however, no such simple seismogram is received in
the propagation of seismic waves through the earth. Instead
he points out that we obtaln more complicated selsmograms,
which are familiar to every geophysicist.

In order to explain this complicated nature of a seismo-
gram, Ricker proposes his wavelet theory of selsmogram
structure. The reader is referred to Bicker's work in which
he demonstrates mathematically and experimentally that a sharp
seismic disturbance, or impulse, glves rise to a traveling
wavelet, the shape of which 1s determined by the nature of
the absorption spectrum of the earth for elastic waves. The
shape of this wavelet, which is a time function, is the response
of the earth to the sharp seismic disturbance, or impulse.

A selsmogram, then, consists of many of these wavelets, with
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different strengths and arrival times, due to disturbances
which have traveled different paths by refractions and re-
flections.

2 The Statist D t of Bicker W S

Thus the selsmogram may be visualized as the totality
of responses to lmpulses, each impulse being associated with
a disturbance which has traveled a certain path by refractions
and reflections. These responses, or response functions, are
the seismic wavelets or Ricker wavelets. The analysis of
a selsmogram conslsts in breaking down this elaborate wavelet
complex into 1ts component wavelets. In particular we desire
the arrival times of the theoretical sharp impulses which pro-
duce these wavelets or responses.

There are two basic approaches which one may use toward
the solution of this problem, the deterministic approach and
the probabilistic or statistical approach., In the determin-
istic anproach one utilizes basic physical laws, for example,
in order to determine the shape of the wavelet, or the adsorp-
tion spectrum of the earth. At all stages in such an investi-
gation, one may compare mathematical results with direct and
indirect observation of the physical phenomenon.

In this thesls we are concerned with the statistical

approache. Such an approach in no way conflicts with the
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deterministic approach, although each approach has certain ad-
vantages and disadvantages which do not necessarily coincide.
The emphasis we place on the probablilistic approach is due

to i1ts being the subject of investigation of this thesis.

In practice the two approaches may be utilized in such a
manner so as to compliment each other,

Let us apply the probabilistic approach to one specific
problem, which, as we shall see, is & problem treated by
Wadsworth, et al, (1935). Let us set up a hypothetical sit-
uation. Let us assume that a glven section of seismic trace
is additively composed of Ricker wavelets, where each wavelet
has the same shape or form. We shall assume that the shape
of the wavelet is mathematically stable, that is, the dis-
crete representation of the wavelet shape is a solution of
a stable difference equation. IFurther, we assume that from
knowledge of the arrival time of one wavelet we cannot
predict the arrival time of another wavelet; and, we assunme
that from knowledge of the strength of one wavelet we cannot
predict the strength of another wavelet. Finally, let us
assume that the seismic trace i1s an automatic volume control
(AVC) recording so that the strengths of these wavelets have
a constant standard deviation (or varisnce) with time.

The specific problem which we wish to consider is the

following: given the selsmlic trace described in the above
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paragraph, determine the arrival times and strengths of the
Ricker wavelets, and determine the basic wavelet shape. We
shall discuss a theoretical solution of this problem, and shall
also dliscuss a practical solutlion which involves statistical
estimation.

Let us translate our assumptions about the seismic trace
into mathematical notation for discrete time t. First let
the shape of the fundamental Ricker wavelet be given by the
discrete stable time function bt where bt = O for t less than
zero. That is, b, is the initial (non-zero) amplitude of the
wavelet. Discrete stable time functions are discussed in
Section 2.6,

Let the strength, or weighting factor, of the wavelet which
arrives at time t be given by ﬁt. That is, Et is a constant
weighting factor which weights the entire wavelet whose arrival

time is time t. The variable Et is the theoretical knife-
sharp imoulse of which the particular wavelet (i.e., the one
which arrives at time t) is the response. For example, if
no wavelet arrives at a particular time t, then it = C,

In our discussion of the nature of the selsmic trace, we
shall call the knife-sharp impulses ﬁt "random variables".
Our use of the term "random variable ﬁt" does not imply that
the variable.it is one whose value is uncertain and can be

determined by & "chance" experiment. That is, the variable £,
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1s not random in the sense of the frequency interpretation
of probability (Cramér, 1946), but is fixed by the geologic
structure. Frechet (1937).describes this type of variable as
"nombre certain" and "function certaine" and Neyman (1941)
translates these terms by "sure number" and "sure function".
Another example of a "sure number" is the ten thousandth
digit of the expansion e = 2,71828..., which, although un-
known, is a definite fixed number. Since the knowledge of
working geophysicist about the entire deterministic setting
is far from complete, we shall treat this incomplete knowledge
from a statistical point of view. We thus call Et a"random
variable", although we keep in mind that it is a "sure number",
Further discussions about this genersl type of problem may be
found in the statistical literature with dlscusslons about
the theorem of the English clergymen Thomas Bayes and with
discussions about statistical estimation (Cramer, 1946;
Jeffreys, 1939). The relationship of the use of Bayes' Theorem
in statistical estimation to other methods of statistical
estimation is discussed by the author (13550).

Without loss of generality, we may center the knife-
sharp impulses gt so that their mean E[ﬁtl 1s equal to zero.
Nevertheless the following discussions may be carried out,

by some minor modifications, without centering the Et.
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Our assumption about the unpredictability of the arrival
times and strengths of wavelets means mathematically that the
knife-sharp impulses §t are mutually uncorrelated random var-

iables; that is,

E[t, ] =0, s % t. (6.21)

An explanation of the expectation symbol E is giveh in Section
4.2; mutually uncorrelated variables, Section 4.5, Our assump-
tion that the knife-sharp impulses Zt are mutually uncorre-
lated with each other is an orthogonality assumption, and 1s

a weaker assumption than the assumption that the &t are
.statistically independent, which we need not make.

Returning again, for the moment, to our discussion about
the "sure" nature of the knife-sharp impulses it, we see that
the assumption that they are mutually uncorrelated in time
and in strength does not hold in completely deterministic sys-
tem. Nevertheless, such an assumption is a reasonable one
again for the working geophysicist whose knowledge of the
entire deterministic setting is far from complete, and who 1is
faced with essentially a statistical problem.,

"\ In other words, we assume that knowledge of the arrival
time and strength of one wavelet does not allow us to pre-

dict the arrival time and strength of any other wavelets.
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In particular, we assume that an arrival time and magnitude
of a reflection from a certain reflecting horizon does not
allow us to predict the arrival time and magnitude of a re-
flection from a deeper reflecting horizon.

The use of AVC recordings means mathematically that the
strengths tt have a constent variance, which without loss of

generallty we shall take to be unity,
2
E[£3] = 1. (6.211)

"Finally since we assume that the seismogram trace Xy is
additively composed of wavelets, all with shape bt’ and
strengths Et, we may write this wavelet complex mathematically

as

for t, € t € t, (6.,22)

where the time interval (tl‘s t < t,) comprises our basic
sectlon of selsmic trace. This equation includes tails of
wavelets with shape bt’ these wavelets being due to knife-
sharp impulses itl, itl_l, itl_z,... which cccur before time
t,. Equation (6.22) is illustrated in Figure 12, in which
the top disgram shows the knife-sharp impulses it, the center
diagram shows the Ricker wavelets bt weighted by these im-

pulses, and the bottom diagram shows the selsmic trace Xy
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IMPULSES OR PREDICTION ERRORS 61
(ASSOCIATED WITH REFLECTING HORIZONS OR OTHER
GEOLOGIC FEATURES WHICH TRANSMIT ENERGY TO THE
4 GEOPHONE)

T time t
| 1 1 — | | I\ 1 | |

|
0 l 5 10 15 ‘ 20 25 30(

(FOR STATIONARY TIME SERIES, THE IMPULSES HAVE THE SAME
MEAN AND STANDARD DEVIATION AND ARE UNCORRELATED WITH
EACH OTHER)

WAVELETS OR IMPULSE RESPONSES
(RESPONSES OF IMPULSES TO THE GEOLOGIC SECTION AND RECORDING SECTION)

(FOR STATIONARY TIME SERIES ALL RESPONSES OR WAVELETS MAY BE
CONSIDERED TO HAVE THE SAME PHYSICALLY STABLE FORM OR SHAPE)

- SEISMIC TRACE OR TOTAL RESPONSE
(THE SUMMATION OF THE ABOVE WAVELETS OR RESPONSES)

FIGURE 12 THE PREDICTIVE DECOMPOSITION OF A SEISMIC TRACE
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which is obtained by adding the wavelets of the center diagram.
For the purposes of our theoretical discussion, let us
assume that our assumptions about the time series Xy, equation
(6.22), now hold for all time. That is, we consider the math-
ematical abstraction in which equation (6.22) holds for all t,
where ﬁt now represents a statlonary mutually uncorrelated

process (Section 4.5). Thus equation (6.22) becomes

e's} ,
= szo bsgt-s for ~m < t <m (6.221)

Xt
Equetion (6.221) is the mathematical representation of the
Predictive Decomposition Theorem of Wold (1938) for a station-
ary time series with an absolutely continuous spectral dis-
tribution function. For further discussion of this theoren,
see Section 5.2. Thus the infinite time series Xy given by
equation (6.221) is a stationary time series with an absolutely
continuous spectral distribution, and the finite time series
xt‘given by equation (6.22) represents a finite section of
the infinite time series (6.221),

In other words, the Predictive Decomposition Theorem

states that a stationary time series is the summation of the
responses of a stable linear system to impulses &t which have
uncorrelated strengths and arrival times. The response to

each impulse has the same stable shape or form bt’ and the
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variance E[ﬁi] of the impulses is constent with time.

In equation (6.221), the Wavelet'bt represents the dynamics
of the time series, whereas the impulses Et represents the
"random®™ nature of the time series., The basic problem which
we wish to consider consists of the separation of the dynasmic
from the random components of the time series, or seismic trace.

Will the computation of the Fourier transform of the trace
effect this separation? The answer 1s no because it merely
transforms time information into equivalent frequency infor-
mation. As an illustration, let us consider the following
example.

To avoid difficulties with end effects, let us assume,
for this example, that the wavelet bt damps sufficiently

rapidly so that we may let

b, =0 for t > M, (6.23)

t
Then the predictive decomposition becomes

sl toge (6.231)
Also, for this example, let us assume the trace for tls t st
consists of only those responses to impulses Et which arrive
for times tls t ¢ t, - M. The Fourler transform of this

section of the trace becomes
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t t
2 2 M
X(w) = £ xe ™o 5 5 vt o
tl =tl 8=0
t
M 2
= 3 b olws o ¢ e—iw(t—s)
8 t-8
8=0 t=tl
M t.-M
8=0 =t1
= B(w) I(w) (64232)

where B(w) is the Fourier transform or spectrum, of the Ricker
wavelet and I(w) is the Fourier transform of a realization of
the uncorrelated knife-sharp impulses. Although the Fourler
transform X(w) contains the dynamic and random elements of a
seismic trace, it does not help us to separate the dynamic
component B(w) from the random component I(w) since X(w) is
the product of the two.

In order to separate the random components Et from the
dynamic component bt of the seismic trace one may use

statistical method of averaging. The baslc probabllistic

approach from a theoretical point of view consists of the
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following operations on the mathematical abstraction of the
seismic trace,(i.e., the stationary time series Xy éiven
by equation (6.221):

(1) Average out the random components it so as to yield
the wavelet shape bt‘

(2) Using the wavelet shape thus found, remove this wave-
let shape from the trace, thereby leaving, as a residual, the
random components Et (which are the prediction.errors for
prediction distance « = 1).

If one wishes to filter the seismic trace (see Section 5.4)
one further step is added, namely:

(3) Reaverage the prediction errors it by means of a
stable linear operator qq SO as to approximate the desired

output or message my That is, compute

+0°

A o'
m = TEO SN gt_,r (5.441)
which 1s optimum filtered time series in the sense of least
squares. In Section 5.4 we describe how the linear operator
Ay is determined from the spectra and cross-spectra of mes-
sage and nolse.
The theoretical procedure for carrying out these opera-
tions has been treated in detail in our discussion of station-

ary time series (with absolutely continuous spectral distri-
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butions) in the oreceding chapters. Let us review this
theoretical procedure for infinite stationary time series.

(1) Compute the autocorrelation function of the time

series

T

O(r) = (MBS

T—soo 20T+1 2 o TtRpeT T Elxyxyy ]

9]
= E btbt""T = bObT + ble+l + bsz+2 K
(5.232)

This computation averages out the random elements it and
preserves the dynamic elements bt in the form of the auto-

@
correlation function I btbt+1 of the wavelet. That 1s,

the sutccorrelation og—ihe time series X is the same function
as the autocorrelation functien of the wavelet bt‘

From this autocorrelation function, compute the shape bt
of the wavelet in the following manner. Take the Fourier trans-
form of the autccorrelation function which yilelds the power

spectrum ﬁhﬁ) of the time series Xy which is also the energy
spectrum lB(w)I2 of the wavelet b.; that is

QO
5 0(7) &7 = T(w) = |B(w)|? (6.24)
T== @

where
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8

B(w) = o~lwt (6.2041)

t

b
o

™

t

i1s the Fourler transfqrm of the wavelet bt’ Thus we have
determined lB(w)lZ but not B(w). Although there may be many
wavelet shapes which yield the energy spectrum IB(w)Iz, all
of these wavelet shapes are unstable, except one. Therefore
it 1s not unreasonable to assume that this unique stable
déveletis the wavelet generated by a physical phenomenon,
and that the unstable ones are not. The Fourier transform,
B(w), of this stable wavelet may then be found by the Wold-

Kolmogorov method of factoring the power spectrum (see Section

5,1) expressed by

P(w) = |B(w)|2 = B(w) Blw) (5.181)

where B(2) is required to have no singulerities or zeros in
the lower half X plane, where A = w + 1 oo. In the language
of the engineer, B(w) is a transfer function with minimum
phase-shift characteristic. Having thus determined B(w),

the stable wavelet (or linear operator) bt i1s given by

1wt 44. (6.242)

1 m
by = 35 -ﬁ B(w) e
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(2) From this wavelet shape by, we find the inverse wave-
let shape 8y where ay is equal to zeroc for t less than zero.
If we let the bt represent the coefficients of a linear opera-
tor, then the a, are the coefficients of the inverse linear

operator (Section 2.7). Thus the values of a, are found by

a, =0 for t<0,
aobo =1,
t .
SEO asbt‘s = Q0 for t = 1,2,3000.
= (2.785)

Since the wavelet b, is stable, the inverse wavelet a, 1s also

stable. Let A(w) be the Fourier transform of 8y that is

Q
Alw) = = ase'i‘”s. (2.791)
S=0

Then A(w) and B(w) are related by

Alw) = 5ty (2.795)

and A(w) also has minimum phase-shift characteristic. Swartz
and Sokoloff (1953) in their Figures 12 and 13 plot the ay

A
(in reverse mamner) and for empirical prediction operators.
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The reciprocal of |A(w)| then gives |B(w)| which is the ab-
solute value of the wavelet spectrum.

We use the inverse wavelet shape &y to remove the wave-
lets, which are of shape b, from the time series x,, Yy com-
pressing the wavelets into the knife-sharp impulses it. That
is, the linear operator ay is the prediction operator for unlt
prediction distance, and the prediction errors Et are ylelded

by the computation

e (6.25)

To see that this computation does yield the £t we use the

predictive decomposition (6.,221) for > S and thus obtaln

Q (8] (s8]

z ax = ¥ a T b ¢
s=o 8"t-s 8=0 [ T=0 T °t-8=~T
Ta % ¢ (6.251)
= za Z b . 251
S=0 8 n=s n-s " t-n

Recalling that b, = O for r < O, and using equation (2.785),

we have

s o]
U T e ) by =t (6.252)

@
z aXe o =
S=0

B M8
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Thus we have

oo}

sio ag X o = by (6.253)
which is the prediction error, or knife-sharp impulse.

Thus by these theoretical steps we may separate the
dynamic component, represented by the response function or
wavelet shape bt’ from the random component, represented by
the knife-sharp imnulses gt which represent arrival times and
strengths of the wavelets which comprise the time series, These
theoretical steps are illustrated in Figure 13. In this Fig-
ure, as in others, we plot the discrete time functlons as
points and then draw smooth curves through these points.

The practical solution of the prohlem of separating the
dynamic and random components of a finlte sectlon of selsmic
trace involves statistical estimation. OCne method consists
of estimating the prediction operator, or inverse wavelet
shape, directly from the finite section of seismic trace.

For this purpose one may use the Gauss method of least squares
as described in Wadsworth, et al (1953). Since the method
described there is more general, let us write down the equa-
tions to be used for our specific problem in which we consider

only one trace X for a prediction distance equal to one.
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Let us note these differences in notation: the prediction
distance k of Wadsworth, et al (1953) is our a; the operator
coefficients a (8=0,1,...M) of Wadsworth, et al, are respec-
tively our operator coefficients kg (s=0,1,...M) of equation
(2.21); and the operator coefficients by for the y-trace of
Wadsworth, et al, are not our operator coefficients by 1in
this thesis. In other words, our use of the symbols a  and
b, is different from the use of the symbols ag and b, in
Wadsworth, et al (1953).

Then utilizing our notation, equation (37) of Wadsworth,
et al (1953) becomes for the special case of our problem:
(37) Xppgp =C+ Tk (6.26)
where we use the same notation except for the differences
we have just noted. According to our convention, we have
let the spacing h=1, so that the rumning index t is the same
as the running index i. Equation (6.26) is equation (2,21)
with a=1, except that a constant c also appears in equation
(6.26) to take account of the mean value of the time series,
since now we do not require the mean to be zero,

The operator time interval (Wadsworth, et al, 1953) is

chosen to be the time interval of the section of our hypo-
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thetical trace which we assume to be a section of a stationary

time series. The normal equations (40) become

(40)

cn+ T 0k z X = I X
g 8 & t-8 t t+1

°§ T’ g s i gy Fpog) = % Xpop Xgaps for r=0,1,...H

(6.261)

where, as in Wadsworth, et al (1953), summations on the index
t are for t = N-1 to t = N+n-2 since a=1, and all summations

on the index s are for s=0 to s=M. The solution of the norm-
al equations (6.261) yields the operator ccefficients c, Ky»

Kqyeoekpye Then the inverse wavelet shape, 8y, 18 given by
equation (2.281) which is

a =1, a, = -k

O’ a2 = "kl,s..’ a = "kM (20281)

m

with m = M+l, As we have noted in Section 2.2, although

both a, and kt revresent the coefficients of the same opera-

t
tor, as seen by equation (2.281), we call a; the standard
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form of the prediction operator. Alsc as we have noted, our
kos kq,kp,eeeky 1n equation (2.281) are respectively the
8538180, 408y Of Wadsworth, et al, (1953). The constant
c of equation (6.26), which adjusts for the mean value of the
empirical trace, is not used in determining the shape at of the
wavelet, Since a,=1, the inverse wavelet a, may be called a
"unit" inverse wavelet.

The shape bt of the Hicker wavelet may be readily computed
by means of equgtions (2.?85), which may be rewritten in terms

of the predictlon operator kS of equation (6.26) as

by =0 for t < 0
b, =1
m M
b,,=~-Z a_b = ¥ kb __, for t > O, (6.262)
t+1 g=1 B t+1l-s g=o S t-s?

That is, the wavelet shape bt for t > O is determined by
successive step-by-step predictions from its past values, where
we let the initial values be bt =0 for t < 0 and bO = 1.

As we have seen, the Gauss method of least squares des-
cribed ylelds en empirical estimate of the theoretical pre-
diction operator, or inverse wavelet shape. Lhis empirical
estimate has certain optimum statistical properties under
general conditions. Yor a treatment of the optimum proper-
ties of linear least-squares estimates, see Wold (1953).

A good estimate of the prediction operator should yield

prediction errors which are not significantly autocorrelated.
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In other words, the prediction errors Et should be mutually
uncorrelated at some preassigned level of significance. Let
it be noted that we are confining our attention to the hy-
pothetical section of the trace which we ascumed to be a
section of a stationary time series; that is, we are deal-
ing with the prediction errors in the so-called operator
time interval. For example, if the prediction errors are
significantly autocorrelated, more coefficlents may be re-
quired in the empirical prediction operator.

In Figure 16, in the left hand diagram, we show the pre-

diction operator a_ computed for trace N650 for the time in-

S
tervel 0,350 seconds to 0.475 seconds on MIT Record No. 1
(supplied by the lMagnolia Petroleum Co.). This seismogram is
1llustrated and described in Wadsworth, et al (1953). 1In
the computation of this inverse wavelet shape, ag, we used
equations (6.261) to find the k. , end then used equations
(2.281) to find the a_. In the right hand diagram of Figure
16, we show the inverse prediction operator, which is the
shape of the Ricker wavelet bt‘ The shape of the Ricker
wavelet was "predicted" by means of equation (6.262)., In

these computations, we used discrete time series where the

spacing h = 2.5 milliseconds. In plotting a

s and bt we

followed our usual procedure which is to plot discrete time
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functions, such as a  and b., as discrete points, and then to
draw a smooth curve through these discrete points. Also in
Figure 16, the time axes are shifted by one discrete time unit
(which is 2.5 milliseconds), which is not the convention we
have used in our other Figures. Thus in Figure 16, a_q = 0

1s plotted at time lag s = O, and a, = 1l is plotted at time

lag s = 0,0025 seconds. Similarly b_l = 0 is plotted at time

t = 0,0000 seconds. As is our usual convention, the prediction

operator a_ is plotted in the reverse manner, as described

s
by Swartz and Sokoloff (1954); that is, the time lag s runs

in the positive direction toward the left. Swartz and Sokoloff
(1954) also describe the filtering action of discrete linear
operators, and their relation to the continuous response func-
tions of electric filters,

Here we have descriped a statistical method to determine
the shape of a Ricker wavelet. Alternatively, frou. other
considerations, one may know the shape of the seismlc wave-
let. Then the prediction operator, or inverse wavelet shape,
may be computed by means of equations (2.785).

So far we have confined ourselves to a section of selsmic
trace which we assume to be aporoximately stationary. The

prediction operator transforms this section of trace into the

uncorrelated prediction errors £t, the mean square value of
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which is a minimum. As we have seen the operator cannot pre-
dict from past values of the trace the initlal arrival of a
new wavelet, and thus a prediction error ﬁt is introduced at
the arrival time of each wavelet. Nevertheless, for times
subsequent to the arrival time of the wavelet, the prediction
operator which 1s the inverse to the wavelet can perfectly
predict this wavelet, thereby ylelding zero error of pre-
dictiom.

Nevertheless, a selsmic trace is not made up of wavelets
which have exactly the same form and which differ only in am-
plitudes and arrival times. Thus if a prediction operator,
which is the unique inverse of a certain wavelet shape, en-
counters a different wavelet shape, the prediction error will
no longer be an impulse, but instead will be a transient time
function. Thus the prediction errors ylelded by this predic-
tion operator acting on a time series additively composed of
wavelets of different shapes will not have a minimum mean square
value. Since reflected wavelets in many cases have differ-
ent shapes than the wavelets comprising the selsmic trace in
a given non-reflection interval, a prediction operator det-
ermined from this non-reflection interval will yield high
errors of prediction at such reflections. Such a procedure

provides a method for the detection of reflections, (Wadsworth,
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et al, 1953). In Figures 14 and 15, running averages of the
squared prediction errors are plotted. The peaks on these
predictlion error curves indicate reflections on the selsmogram.
Since two-trace operators were used, the empirical coherency
existing between the two traces was utilized in the determin-
ation of these prediction errors. The arrow indicates the
operator time interval. Further description of these Figures
is given in MIT GAG Report No. 6. Since only the information
existing in the operator time interval is utilized in the
determination of linear operators by this method, one may ex-
pect greater resolving power if more information on the sels-
mogram is utilized in the determination of varioug other types
of operators. Further research on this general subject 1s now

being carried out by the Geophysical Analysis Groupe.
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