
-.

PREDICTIVE DECOMPOSITION OF TIME

SERIES WITH APPLICATIONS TO SEISMIC

EXPLORATION

by

Enders Anthony Robinson

S.B. Massachusetts Institute of Technology

(1950)

S.M. Massachusetts Institute of Technology

(1952)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(1954)

Signature of Author

Certified by

Accepted by

Department of Geology and Geophysics July 26, 1954

Thesis Supervisor

Chairman, 'Deparbmental Committee
on Graduate Students



AKNOWLEDGEMENTS

The author wishes to express his sincere thanks to Prof-

essor G. P. Wadsworth for his help and ideas in the writing

of this thesis. To a large measure, this thesis reflects

what the author has learned from Professor Wadsworth during

the past seven years as one of his pupils and one of his

workers.

The author expresses his sincere thanks to Professor

P. M. Hurley, Dr. J. G. Bryan, and Professor S. M. Simpson

for their encouragement and ideas.

He is indebted to the many people who have contributed

to this thesis, directly and indirectly, through their work

for the Geophysical Analysis Group. He wishes to thank

Dr. M. K. Smith, R. Bowman, D. E. Bowker, H. W. Briscoe,

Miss Irene J. Calnan, J. F. Gilbert, D. Grine, Dr. K. E.

Haq, S. Treitel, Mrs. May S. Turyn, and W. P. Walsh, who

are or have been members of the Geophysical Analysis Group;

Miss Virginia Woodward of Professor Wadsworth's staff;

J. D. Porter and other members of the staff of the MIT Digi-

tal Computer Laboratory; Dr. R. F. Clippinger, Dr. J. H.

Levin, and Dr. B. Dimsdale of the Raytheon Manufacturing

Company; the members of the MIT Illustration Service and

the NIT Photographic Service.



The author is grateful for the suggestions and criticisms

given at the annual meetings by the members of the Advisory

Committee of the oil and geophysical companies which have

supported the Geophysical Analysis Group,

He wishes to thank the Office of Naval Research for making

available Digital Computer Laboratory time.

The author wishes to express his sincere thanks to

Miss Barbara Halpern for her patient and efficient assistance

at every step in the writting of this thesis and for her

careful typing of the thesis and its preparatory drafts.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER I. INTRODUCTION AND SUMMARY

1.1 Introduction......................#.... 1
1.2 Summary of Chapters...................,. 8

CHAPTER II: THEORY OF FINITE DISCRETE LINEAR OPERATORS

2.1 The Finite Discrete Linear Operator..... 16
2,2 Prediction Operators.................... 17
2.3 Smoothing perators..................... 23
2*4 The Transfer Function or Filter

Characteristico...**.................... 26
2.5 Realizability of Linear Operators and

their Relationship to Electric Networks. 31
2.6 The Stable Prediction Operator.......... 42
2.7 The Inverse Linear Operator............. 54
2.8 The Power Transfer Function and Its

Stable Prediction Operator.............. 64

CHAPTER III. THE NON-STATISTICAL ANALYSIS OF TIME
SERIES

3.1 The Functional Approach...............h, 82
3.2 The Periodic Functional Scheme.......... 84
3.3 The Aperiodic Functional Scheme......... 86

3.4 The Filter Problem for Transients.
Finite Linear Operators................. 93

3.5 The Finite Problem for Transients.
Infinite Linear Operators............... 97

3.6 Averaging and the Probabilistic Point
of View.......................** ******* 103



Page

CHAPTER IV. THEORY OF DISCRETE STATIONARY TIME SERIES

4.1 handom Process ..................... 107
4.2 Stationary Time Series ................... 108
4.3 The Autocorrelation ...................... 110
4.4 The Spectrum ......................... 112

4.5 Processes with White Light Spectrum .... 115
4.6 Processes of Moving Summation ............ 119

CHAPTER V. THE PREDICTIVE DECOMPOSITION OF STATIONARY
TIME SERIES

5.1 The Factorization of the Spectrum ........ 125
5.2 The Predictive Decomposition Theorem ..... 136
5.3 Prediction of Stationary Time Series ..... 144
5.4 The Filtering Problem .................... 168
5.5 Time Series with Rational Power Spectrum.. 177
5.6 Multiple Time Series ......-----.......... 195
5.7 General Technique of Discrete Prediction . 210

CHAPTER VI. APPLICATIONS TO SEISMIC EXPLORATION

6.1 The esonse Function ................. 226
6.? The Statistical Determination of Ricker

Wavelets ......... 229

REFERENCES

BIOGRAPHICAL NOTE



ABSTRACT

PREDICTIVE DECOMPOSITION OF TIME SERIES
WITH APPLICATIONS TO SEISMIC EXPLORATION

by
Enders Anthony Robinson

Submitted to the Department of Geology and Geophysics on
July 26, 1954 in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

This thesis presents in an expository manner a treatment
of the theory of discrete stationary time series as developed
by Cramer, Doob, Khintchine, Kolmogorov, Wiener, Wold, Yule,
and others. The central theme deals with the development of
the concept of the predictive decomposition of stationary time
series from the point of view of applications. The Predictive
Decomposition Theorem or Herman Wold ( A Study in the Analysis
of Stationary Time Serles, Almqvist and Wiksells, Uppsala,
1938) states that a stationary time series ( with an absolutely
continuous spectral distribution) in additively composed of
many overlapping wavelets, or pulses, which arrive as time pro-
gresses. These wavelets all have the same unique stable shape
or form; and the arrival times and strengths of these wavelets
are random and uncorrelated with each other.

Specific mathematical results of this thesis are:

(1) The theory of linear difference equations familiar
to statisticians is united with the theory of linear systems
familiar to electrical engineers. It is ushown that the condi-
tion that a linear difference equation formed by the coeffi-
cients of a discrete linear operator be a stable difference
equation is the condition that the Fourier transform of the
linear operator has no singularities or zeros below the axis
of real frequency. In other works, a stable difference equa-
tion has filter characteristics with minimum phase-shift char-
acteristic. Computational formulae are given for the deter-
mination of this minimum phase-shift characteristic from the
absolute gain characteristic of the desired filtering proper-
ties of a linear operator.

(2) The function which Wiener ( The Extrapolation. In-
teroolation, and Smoothing of Stationary Time Series with
Engineering A1olications. National Defense Research Coun-
cil ( Section D2) MIT DIC Ontract 6037, Cambridge 1942)
designates as the coefficient function to be used directly
in making an optimum prediction for discrete stationary time
series with absolutely continuous spectral distributions is
shown to be the same function obtained by Wold ( 1938) for
this purpose.



(3) The expression which Wiener (1942) gives for the
mean square error of the optimum prediction is shown to be
the same expression given by Wold (1938).

(4) The general solution of the filtering problem for
discrete stationary time series given by Wiener (1942; Cyber-
netics, John Wiley, New York, 1948) is shown to be a direct
consequence of the Predictive Decomposition Theorem.

(5) Wiener (1942) recommends that the geophysicist use
a certain technical point in the computation of spectra for
Wiener's general technique of discrete prediction. It is
shown that if the geophysicist does follow this recommenda-
tion, the general technique of discrete prediction will fail.

The applications to seismic exploration deal with the case
in which a section of seismic trace (recorded with automatic
volume control) is additively composed of seismic wavelets, or
Ricker wavelets, where each wavelet has the same stable shape,
and where their strengths and arrival times may be considered
to be random and uncorrelated with each other. For this case,
the Predictive Decomposition Theorem tells us that the section
of seismic trace is a section of a stationary time series.
The problem of the separation of the dynamic component (the
wavelet shape) from the random components (the strengths and
arrival times of the wavelets) is considered.

For an infinite discrete stationary time series, the solu-
tion of this problem consists of the following steps:

(1) Average out the random components of the time series
so as to yield the unique stable wavelet shape. This stable
wavelet shape is shown to be the Fourier transform of the fac-
tor of the power spectrum of the time series, where this fac-
tor is required to have no singularities or zeros below the
axis of real frequency.

(2) From the wavelet shape thus found, compute the in-
verse wavelet shape, which is shown to be the prediction opera-
tor for unit prediction distance.

(3) Compute the prediction errors by applying this pre-
diction operator, or inverse wavelet shape, to the time series.
These prediction errors are shown to represent the arrival
times and strengths of the wavelets.

For finite discrete time seriessuch as the section of
seismic trace, the solution of this problem consists of estima-
ting the prediction operator directly by the Gauss method of
least squares, and then using this prediction operator to de-
trmine estimates of the wavelet shape and prediction errors.

esis Supervisor: Dr. P. M. Hurley
Title: Professor of Geology



CHAPTER I

INTRODUCTION AND SUMMARY

1.1 Introduction

In exploration seismology, a charge of dynamite is

exploded under controlled conditions, and the resulting vi-

brations at various points on the surface of the ground are

detected by geophones and are recorded as seismic traces on

the seismogram. The analysis of such seismic records yields

valuable information about the structure of the sedimentary

rock layers in potential oil producing areas, and such in-

formation is of considerable economic value in increasing

the probability of locating new oil fields.

Present day techniques require the visual examination

and mental interpretation of seismograms, with considerable

importance placed on the detection of reflected energy or

"reflections" which indicate reflecting horizons of sub-

surface sedimentary layers. From this information the geol-

ogic structure of an area may be estimated.

Although reflection seismology is only about a quarter

of a century old, it has played an important role in the

discovery of many of the world's oil fields. The credit

1.



for much of this success belongs to the oil companies and

geophysical companies which have the practical task of

locating new petroleum reserves. It was the working geo-

physicist of these companies who developed a large part of

the seismic method of today. To help him in his job, the

engineer, who in many instances is the geophysicist him-

self, has developed the instrumentation needed for the

ever increasing demands of seismic exploration. In addi-

tion, the research scientist has taken an active role in

the development of the basic scientific theory of ex-

ploration seismology.

For a further discussion of the seismic method, togeth-

er with references to the literature, the reader is referred

to books by Dix (1952), Dobrin (1952), Heiland (1940), Jakosky

(1950), and Nettleton (1940), and also to GEOPHYSICS, the

quarterly journal of the Society of Exploration Geophysicists.

A large part of basic seismic research is directed to-

ward a better understanding of the physical processes involved

in the seismic method. Such an approach is fundamentally

sound. From this point of view, the seismic trace is the re-

sponse of the system consisting of the earth and recording

apparatus to the impulsive source, the explosion. This sys-

tem, although usually very complicated, is susceptible to a



deterministic (non-random) approach toward its analysis.

To this end, controlled experiments may be carried out, and

mathematical and physical models may be set up from the re-

sulting data. Careful replication of the experiment and

high precision of measurement can render such data very accu-

rate.

On the other hand, large numbers of seismic records,

which have as many as twenty or more traces per record, are

needed to carry out an exploration program over a geographic

area. This quantity of data necessarily requires the con-

sideration of each record as a member of a larger group or

ensemble of records. Thus the reliability of a single re-

cord is considerably less than the reliability of the ensemble

of records in connection with the description of the geologic

conditions existing in that area. Also from an economic

standpoint, the amount of control in such an exploration pro-

gram must be kept at the bare minimum consistent with worth-

while results. Thus, as a rule, the controlled experiment

aspect of exploration seismology, although possible, falls

short of the needs of a research scientist who wishes to

set up a mathematical or physical model. As a result, in

these cases the working geophysicist must proceed to fit his

3.
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emoirical information into the larger overall framework with-

out the aid of elaborate mathematical or physical models.

In particular, he is faced with the general problems of des-

cription, analysis, and prediction (Cramer, 1946).

That is, first, the working seismologist is faced with

problems of the description of the overall exploration seismic

picture. In particular, he wishes to replace the mass of

original data, which is of a complicated nature, by a small

number of descriptive characteristics; that is, he is faced

with the problem of the reduction of data.

Next, he is concerned with the problems of analysis in

which he wishes to argue from the sample, the evidence from

a limited number of seismograms, to the population the geo-

logic structure of the area. In other words, from the sample

data he wishes to find estimates of the true values which

describe the geologic structure.

Finally, the working geophysicist is concerned with the

problem of prediction, that is, from knowledge of past ex-

perience what course of action should he take in the future.

In particular one of the goals of an exploration program is

to determine favorable drilling sites.

Since the geologic structure is physically fixed and

constant in nature and has no intrinsic random character-



istics, any statistical approach to these problems immediate-

ly encounters difficulties which are commonly associated with

Bayes' Theorem in the statistical literature (Cramer, 1946;

Jeffreys, 1939). Nevertheless modern statistical theory

admits the bypassing of these difficulties, although with

reservation, and hence the working geophysicist may be con-

sidered to be faced with a situation which is essentially

statistical. For example, a reflection which may be followed

from trace to trace, record to record, usually has more value

to the seismic interpreter, and hence is statistically more

significant, than a reflection which appears only on a few

traces. Such a procedure in picking reflections does not

imply that the reflection which appears only on a few traces

is necessarily spurious information, but only that economic

limitations preclude further examination and experimentation

which may render it in a more useful form.

This thesis deals with the analysis of seismic records

from the statistical point of view. In those years in which

the exploration seismic method was first being developed,

the English statistician, G. Udny Yule, was developing methods

of time series analysis which proved to open a new epoch in

the analysis of time functions. The concept which Yule intro-

duced is that a large class of disturbed motions are built
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up in a time sequence from wavelets whose arrival times and

strengths (or amplitudes) are random. Thus the principal

feature of this class of disturbed movements is a continual

shift of phase and change of amplitude as time progresses.

Yule applied this hypothesis, with success, to empirical data,

and thus the analysis of time series was freed for the first

time from either the hypothesis of a strictly periodic var-

iation or aperiodic variation, or the counter hypothesis of

a purely random variation. Yule's concept was formulated

on a firm axiomatic basis in the founding of the theory of

stochastic processes by the Russian statisticians A. Kolmo-

gorov (1933) and A. Khintchine (1933), and in the definition

and basic work in theory of stationary processes by A. Khint-

chine (1934).

The Swedish statistician, Harald Cramer, taught a course

on Time Series Analysis in 1933 which laid the foundation for

a thesis prepared by his student, the Swedish statistician

and economist, Herman Wold (Wold, 1938, Preface). This thesis

was published in book form in 1938. Wold, in the Preface,

describes his work as a trial to subject the fertile methods

of empirical analysis proposed by Yule to an examination and

a development by the use of the mathematically strict tools

supplied by the modern theory of probability. In his work

6.



Wold develops the predictive decomposition of stationary

time series, about which the present thesis is centered.

For the past four years, the author has worked on a

research program at the Massachusetts Institute of Technology

to apply these statistical methods to the analysis of seismic

records under the supervision of Professor G. P. Wadsworth

of the Department of Mathematics, Professor P. M. Hurley of

the Department of Geology and Geophysics, and Dr. J. G. Bryan

of the Division of Industrial Cooperation. This program

was initially supported by the Department of Mathematics.

In February, 1952, the program was incorporated into the

Department of Geology and Geophysics as the Geophysical

Analysis Group. From that time until February, 1953, it

was supported by the Magnolia Petroleum Company, and from

then until the present time by fourteen companies of the

petroleum industry.

Computational and theoretical results of this research

program are given in Wadsworth, et al, (1953) and six re-

ports (MIT GAG Reports No. 1 - No. 6) of the Geophysical

Analysis Group, to which the reader is referred. The pre-

sent thesis attempts to expound more fully on the reasoning

presented there, and, in particular, the predictive tech-

niques 'proposed for the study of seismic records.

7.



In the final analysis, the potential usefulness of the

statistical approach depends upon the coordination of stat-

istical methods with knowledge of practical and theoretical

seismology.

1.2 Summary of ChaDters

In this section we should like to present a summary

of the chapters which follow. Since detailed references

to the literature are given in these chapters, we shall not

state any references in this summary.

In Chapter II we discuss the properties of finite

discrete linear operators. We distinguish between ex-

trapolation or prediction type operators on the one hand,

and interpolation or smoothing type operators on the other

hand. We see that a prediction type operator has an inherent

one-sidedness in that it operates on the past values of a

time series, but not on the future values. Consequently a

prediction type operator is computationally realizable, and

may represent the impulsive responseofarealizable linear

system.

A smoothing type operator, however, operates on both

past and future values of a time series, and thereby is not

computationally realizable. Nevertheless, finite smoothing

operators can be made realizable by introducing a time delay

8.



in the computations so that all the necessary data is available

at the time the computations are to be carried out. The fact

that a seismic disturbance is recorded on paper in the form

of a seismogram means that we have waited until all the per-

tinent information is available. Consequently the necessary

time delay has been introduced to utilize finite time-delay

smoothing operators, which are computationally realizable.

Since a time-delay smoothing operator has the same mathematical

form as a prediction type operator, in the remaining parts of

this thesis we deal chiefly with operators of the prediction

type.

The transfer function is defined as the Fourier trans-

form of the linear operator, and corresponds to the trans-

fer function, the system function, or filter characteristics

of a linear system. By analytic continuation we may extend

the transfer function into the complex plane, where the real

axis represents real angular frequency. Then we see that

the transfer function of a prediction type operator has no

singularities below the axis of real frequency, which is in-

dicative of the realizability of such an operator.

We state the condition that the linear difference equa-

tion formed by the coefficients of a finite prediction type

operatoir be a stable difference equation, that is, its gen-

9.



eral solution be a damped oscillation. We show that this

stability condition is precisely the condition that the

transfer function have zeros all of which lie above the axis

of real frequency. Thus a realizable and stable prediction

type operator has a transfer function with no singularities

or zeros below the axis of real frequency, which is the re-

quirement that its phase characteristic be of the minimum

phase-shift type familiar to electrical engineers. More-

over, we extend this concept of stability to prediction type

operators with an infinite number of coefficients.

We show that each stable prediction type operator has

a unique inverse prediction type operator which is also

stable, and that thdr respective transfer functions are

reciprocals of each other. We see that the inverse operator

may be readily computed in the time domain from a given lin-

ear operator.

Finally in Chapter II we show that in order to design a

stable prediction type operator one should utilize only the

absolute gain characteristics of the desired filtering prop-

erties, and not phase characteristics. That is, the phase

characteristic of the resulting stable operator should be

the minimum phase characteristic which is determined uniquely

from the absolute gain characteristic. We give a direct

10.



computational procedure which may be readily programmed for

a digital computer.

In time series analysis, there are two lines of approach

which we may call the non-statistical and the statistical.

In the non-statistical approach the given time series is

interpreted as a mathematical function, and in the statistical

approach as a random specimen out of a population of math-

ematical functions.

In Chapter III, we treat the methodology used in the

non-statistical or deterministic approach to the study of

time series. Such an approach leads to a perfect functional

representation of the observational or theoretical data. In

particular, the methods of this chapter are applicable to the

determination of linear operations on transient time functions

of finite energy, such as seismic wavelets. Further we ob-

serve that even under a deterministic hypothesis it may be

necessary to utilize methods of averaging for certain pur-

poses such as approximations. Although methods of averaging

may be developed without recourse to the theory of probability,

in many applications, it is not until probability theory is

introduced that certain averaging operations become meaning-

ful in a physical sense. With this situation in mind, in the

following chapters we consider the statistical approach to the

11.



study of time series in which methods of averaging play

a central role.

In Chapter IV, we present concepts from the theory of

discrete stationary time series which represents a statistical

approach to the study of time series. We consider station-

ary stochastic or random processes which generate stationary

time series, and give properties of the autocorrelation and

spectrum. In particular we consider time series which are

"white noise". We see that any time series with an absolutely

continuous spectral distribution is a process of moving sum-

mation.

In Chapter V, we give an heuristic exposition of the

mehtod of the factorization of the power spectrum. We show

how this factorization leads to the predictive decomposition

of a stationary time series. The Predictive Decomposition

Theorem shows that any stationary time series (with an ab-

solutely continuous spectral distribution) can be considered

to be additively composed of many overlapping wavelets. All

These wavelets have the same stable shape or form; and the

arrival times and strengths of these wavelets are random and

uncorrelated with each other. If the wavelet shape represents

the impulsive response of a stable linear system, and if the

uncorrdlated arrival times and strengths represent a "white

12.



noise" input to the linear system, then the stationary time

series represents the output of the linear system.

We then show that the solutions of the prediction and

filtering problems for single time series follows directly

from the Predictive Decomposition Theorem. We examine those

stochastic processes which have power spectra which are ration-

al functions, and see that the autoregressive process and the

process of finite moving averages are special cases of such

processes. We deal with the theory of multiple time series,

in which we see that the concept of coherency plays an im-

portant role, and we treat the general technique of discrete

prediction for multiple time series.

In Chapter VI we deal with applications to seismic ex-

ploration. In particular we consider the situation in which

a given section of seismic trace (recorded with automatic

volume control) is additively composed of seismic wavelets,

where each wavelet has the same stable shape or form, and

where the strengths and arrival times of the wavelets are

random and uncorrelated with each other. Under these

assumption, the Predictive Decomposition Theorem tells us that

the section of trace may be considered to be a section of a

stationary time series.

13.



To illustrate the probabilistic approach, we consider

the problem in which we wish to separate the dynamic compo-

nent (the wavelet shape) from the random components (the

arrival times and strengths of the wavelets).

The theoretical solution of this problem consists of the

following steps:

(1) Average out the random components of the trace so

as to yield the wavelet shape.

(2) From the wavelet shape thus found, compute the inverse

wavelet shape, or prediction operator for unit prediction

distance. Apply this prediction operator to the trace

in order to yield the random components, which are the

prediction errors. That is, the prediction operator

contracts the wavelets to impulses, which are the pre-

diction errors. If one wishes to filter the seismic trace,

one further step is added, namely:

(3) Reaverage the prediction errors by means of a stable

linear operator so as to approximate the desired output.

The practical solution of this problem consists of the

following steps:

(1) Compute the prediction operator, or inverse wavelet

shape, directly by the Gauss method of least squares which

yields operator coefficients which satisfy certain

14.



statistical optimum properties under general conditions.

(2) Use the prediction operator to determine the pre-

diction errors which are the random unpredictable com-

ponents.

Alternatively, from other considerations, one may have

available the shape of the seismic wavelet. Then the pred-

iction operator or inverse wavelet shape, may be readily com-

puted from this wavelet shape. In summary, then, the predic-

tion operator for unit prediction distance is the inverse

seismic wavelet and the inverse prediction operator for unit

prediction distance is the seismic wavelet.

Finally we note that multi-trace operators take into

account the coherency between the traces, which is important

in that seismic traces become more coherent at major reflections.

15.



CHAPTER II

THEORY OF FINITE DISCRETE LINEAR OPERATORS

2.1 The Finite Discrete Linear Operator

In this chapter we wish to consider properties of the

finite discrete linear operator for a single time series,

that is, a linear operator whichbas a finite number of

discrete operator coefficients which perform linear

operations on single discrete time series.

In this thesis we deal almost exclusively with discrete

time series. A discrete time series is a sequence of equidis-

tant observations xt which are associated with the discrete

time parameter t. Without loss of generality we may take

the spacing between each successive observation to be one

unit of time, and thus we may represent the time series as

*.., X t-2t xt-l* Xt, t+1* Xt+2,... (2.11)

where t takes on integer values. As a result the minimum

period which may be observed is equal to two units, and

consequently the maximum frequency which may be observed

is equal to 1/2, which is an angular frequency of T.

16.



Thus, we may require all frequencies f of the discrete time

series to lie between -1/ 2 and 1/ 2, and all angular fre-

auencies w = 2rf to lie between -T and Tr.

Time series x may be finite or infinite in extent, and

may be treated from a deterministic or statistical point of

view. In this chapter we shall develop those properties

of the finite discrete linear operator which are independ-

ent of the nature of the xt time series, whereas in the

following chapters we shall be mainly concerned with the

nature of the x time series.

Following Kolmogorov (1939, 1941) we shall distinguish

between extrapolation or prediction type operators on the

one hand, and interpolation or smoothing type operators on

the other hand.

2.2 Prediction Operators

The extrapolation or prediction operator (Kolmogorov, 1939,

1941) is given by

Xt+a =0 kxt + k xt 1 + ... kIt-M -

(2.21)
M

- Z k x a 00
S=o

17.



where a is the prediction distance. The operator coefficients,

k , ki,..*, kM are chosen so that the actual output, xt+a

approximates the desired output, xt+C, according to some criter-

ion. The operator is discrete since its coefficients are

discrete values, and the operator is finite since there are

only a finite number M of such coefficients.

In Section 5.3 we discuss the solution of the prediction

problem in which the operator coefficients are determined by

the least squares criterion. In general, we shall see that

an infinite number of operator coefficients are required,

although for autoregressive time series (see Section 5.5-B)

only a finite number of operator coefficients are required.

The prediction operator (2.21) is one from which a spec-

ific time function may be generated if a sufficient number

of initial values of the time function are specified. That

is, if we are given the initial values

xox x2X****M+1,l (2.22)

and if we define

A
X for t = N+CL, N+ct+l, M+cL+22 ooo (2.221)

18.



then we may generate the time function x by means of equation

(2.21). For example, let us consider the case given by

A

= 'tt = 1.toX (2.*23)

Then we may generate the time function

A

X = Xt *-5xt-1 for t = 1, 2, 3, ... (2.24)

which is the sequence

(.5), (.5 , (. ),(5), 9(0.). .. (.5)t, (.5)t+iP*

(2*241)

In Section 2.6 we shall see that such a sequence must form

a damped motion in order for the operator to be stable.

Further, the prediction operator (2.21) has the proper-

ty that only the values xt, It-l. xt-2,... of the time series

at time t and prior to time t, and no values xt+l 1 t+2****

subsequent to time t, are required in order to compute the

A

actual output At+. Thus a prediction operator has an in-

herent one-sidedness in that it operates on present and past

values,, but no future values, of the time series. As a result

19.



if time t represents the present calender time, as it is the

case for a meterologist who makes daily weather predictions,

then only observations of the time series at the present time

and at past times, and no observations at future times are

required to carry out the necessary computation.

As we shall see in Section 2.5, the prediction operator

coefficients represent the impulsive response of an equiva-

lent electric network. Thus those impulses which have arrived

at time t or prior to time t will make the network respond,

whereas those impulses which have not yet arrived at time t,

i.e., those impulses which arrive subsequent to time t, can-

not make the network respond. In summary, then, we may say

that a finite prediction operator is computationally realiz-

able to the statistician, and physically realizable to the

engineer.
A

Instead of considering the predicted values as the

output of the prediction operator, one may consider the pre-

diction error E = Xt+a - A as the output (Wadsworth,t+aX Xt+CL

et al, 1953). Then we have

M
t+a t+a = t+ - E kB x (2.25)

s2o
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which may be rewritten

s=o

t-ck x -kt x - . -1 ket-a-M

Let us definem= M+Q and

a = 1, a = 0, a2 = 0...aCL-1 = 0, a = - k ,

a = -ki,..., acL+M = am = -kM

(2.26)

(2.27)

Then the prediction error E may be written as

Et = a0xt + a x + ... + amxtm -

m

=50

(2.271)

a sx a0 = 1

In the sequel we shall be primarily concerned with the

prediction operator for prediction distance a equal to one.

Then equation (2.271) for the prediction error (a=l) becomes

21.



m
t = s axt-sS=o

(2.28)

= Zt + ax1 t-1 + *. + amxtm, ao = 1

and equation (2.27) becomes

a0 = 1, a1 = -k0, a2 = -kl,... am = -kM (2*281)

We shall regard equation (2.28) as the basic form of the pre-

diction type operator, the prediction error operator, or

simply the prediction operator, with the coefficients ao, a1,

a2,.*.m. The prediction error t shall be regarded as the

actual output at time t of the operator (2.28).

In general, the operator coefficients are chosen so that

the actual output approximates a certain desired output

according to some criterion. In Section 5.4 we discuss the

solution to the general filtering problem in which prediction

type operators are used, the coefficients of which are chosen

according to the least squares criterion.

In equation (2.28) we may let the operator coefficients

represent the impulsive response of a network and the time

series x the input. Then Et is the actual output of the

network.
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The prediction operator (2.28) has the same realizability

properties as operator (2.21), as may be readily verified.

2.3 Smoothing Operators

The interpolation or smoothing operator (Kolmogorov, 1939,

1941) is given by

A

xt d-Mxt+M + d-+1I t+M-l+ ... + d_ x

+ d1 xtJ. + d2xt-2 + ... + dM Xt-M

--
54+O

We may consider the smoothing error given by

(2.31)

1 M-

Tt * t d t t-s + x - Z d xt-s(s=-M 8=1

and by letting m=, = 1, and c= -d (s = + 1, + 2,

. M) we have

m

t E -s, % = 1 (S=-M

2.32)

2.33)

In the sequel we shall regard this equation as the basic form

of the smoothing type operator, the smoothing error operator,

23.



or simply the smoothing operator, with operator coefficients

c-m, C-.m+1***** ao = 1, o1' ** om. The smoothing error

t is the actual output of the operator.

The smoothing operator does not have the same properties

in regard to computational or physical realizability as the

prediction operator. In particular, it is not possible to

generate a time function from specified initial values by

means of equation (2.31) as was done in the case of the pre-

diction operator. The smoothing operator (2.33) has the

property that values of the time series xt+m**** X t+20 Xt+l

at times subsequent to time t, as well as values xt, Xt-l'

xt-2 *O* Xt-m at time t and prior to time t, are required to

compute yt. Consequently, if time t represents the present

calender time, as in the example of the meteorologist, then

Tt given by equation (2.33) can not be computed since 
it in-

volves observations xt+1, Xt+2 1 *** Xt+m at future times and

which thereby are not observable at the present time t.

Similarly, the network which would be equivalent to a smooth-

ing type operator would be one which would respond to impulses

which have not yet arrived at the present time t. Consequently,

smoothing type operators are not computationally realizable

to the statistician, or physically realizable to the engineer.

Nevertheless, a very simple trick makes finite smoothing
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type operators computationally and physically realizable.

That is, in order to compute

m

t %8xt-s W -mxt+m + C-m+l 't+m-1 + ... + co xt+
s=-m

(2.33)
+ coxt + l xt-1 + ... + cmXt-m

the statistician must delay his computations until time t + m,

or later, which is a time delay of m or greater, at which time

all the values needed in the computation will have occured.

That is, the statistician delays his computations at least

until time t' = t + m, and then computes

m m

t Z x s t-s -E c xti m-ss=-m s=-m (2.34)

O -m Xto + c-m+l XI 1 + *..+ 0 1 xt'-m1

+ 00 xt'-m + O1xt'-m-1 + ...+ cmxt'-2m

which we shall call the time-delay form of the smoothing

operator with coefficients e8 (s = 0, + 1, .... +m). Such
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r
csxt-s (2.35)

into the physically realizable system (at the time t' = t+m)

(2.36)
L s t-- .s=-m

The fact that a seismic disturbance is recorded on paper

or magnetic tape means that we have waited until all the

pertinent information is available. Consequently the necessary

time delay has been introduced to utilize finite time-delay

smoothing operators, which are computationally realizable.

On the other hand if computations were to be carried out

at the same time as the seismic disturbance is occuring, then

the statistician would not be able to compute such smoothing

type operations.

2.4 The Transfer Function or_ Filter Characteristics

As Wiener (1942) points out, the linear operator is the

26.

an operator is in the form of the prediction type operator

(2.28) with the present time now being t'., That is, t' is the

time at which computations are to be carried out.

Similarly the engineer may introduce a time delay m, or

greater, into his network, (Bode and Shannon, 1950) to

transform the non-physically realizable system (at the time

instant t)
m



approach from the standpoint of time to a filter which is

essentially an instrument for the separation of different

frequency ranges. The filtering action of the linear

operator is brought out by its transfer function, which is

the analogue of the transfer or system function of the linear

system of which the linear operator is the unit impulse re-

sponse.

Smith (1954) gives the following interpretation to the

transfer function. Let the input information xt be points

from a sine wave of angular frequency w. Since the system

is linear, the output will be a sine wave of the same fre-

quency but, in general, will differ in phase and amplitude.

Using the complex notation for a sine wave, xt = e , of

angular frequency w, the transfer ratio at angular frequency

w is the output of the linear operator, which is a complex

sine wave of angular frequency w, divided by the input xt =

e iWt. The transfer function is the totality of these

transfer ratios for -n w ii, and represents the filter

characteristics of the linear operator. As we shall now see

the transfer function is the Fourier transform of the linear

operator. Since the operator is discrete, the transfer func-

tion is in the form of a Fourier series rather than a Fourier

integral.
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For the prediction operator, equation (2.21),

E ks t , a 0,
S=o

by letting xt = e we obtain the transfer ratio

A Z k x E k e
80ia AZ- a t-s = sit=

Xt 1t e

M "i

8=0

The totality of these transfer ratios yields the transfe

function

K(w) = Z k eIWs
8=0

(2 * 41)

r

(2.441)

which is the Fourier transform of the operator coefficients

ks*

By letting x = e be the input for the operator for

the prediction error, equation (2.28),

E = E
S=o

asxt-s , a0 = 1,

we obtain the transfer ratio

28.

A
Xt+Q (2.21)

(2.28)



t_ -iwt
= e-

xt
a eiW(t-s)E S

m
= E ase~ "

S=o

The transfer function is then

m
A(w) = Z

S=o
a e~iws

S (2.421)

which is the Fourier transform of the operator coefficients.

For the smoothing operator, equation (2.31),

Ax = d s xt-s, (2.31)

by letting the imput be xt = eiwt the transfer ratio is

A

= e-iwt
Xt s=-M

s8o

d eiw(t-s) M+-i0s
s=-Ms
sto

and the transfer function is

N
D(w) =

s=-M
s+0

deiws (2.431)

Similarly letting xt = eiwt be the input for the operator

for the smoothing error

29.
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F

(2.33)

we obtain the transfer ratio

Iiwc e- e-is
Xt s=-M 8  s=-m a

so that the transfer function is

C(w) = 1 eo
8=-rnm

(2*44)

(2.441)

Using the same operator coefficients c0 (s = 0, + 1, ..

+ m) but introducing a time delay m, the time-delay smoothing

operator, equation (2.34),

t = Zs=-M os xt'- -s (2.34)

is realizable at the time instant t' = t+m. Since t' now

represents the time instant at which computations are to be

carried out the input is xt' = e . The transfer ratio is

08 eiw(t'-m-s)
m ceiw(s+m)

s=-M

30.

m
'Yt = Z

s=-m

m

s=-rn
(2.45)

os t-s



and its transfer function is

m -iu n is -

Z , e-miw(s+m) = e-im z seis = e-ilm C(w). (2.451)
s=-M s=-M

A summary of the various linear operator forms and their

transfer functions is given in Figures 1 and 2.

2.5 Realizability of Linear Overators and their Relationship. to

Electric Networka

We now wish to summarize those parts of the preceding

sections concerning the realizability of linear operators.

It was seen that operators of the prediction type, for ex-

ample, as represented by the prediction error operator (2.28)

m

= a s xt-s, (2.28)
s-_o

are computationally realizable at the time instant t. On

the other hand, operators of the smoothing type, for ex-

ample, as represented by the smoothing error operator (2.33)

m
let = Z cxt- (2.33)

s=-m

are not computationally realiable at the time instant t.

Nevertheless by delaying the computations at least to the
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Prediction Operator (2.21) M
(Computationally real- x t E
izable at time instant t) s=o

Prediction Error Operator m
(2.28) (Computationally = E
realizable at time instant t) s=o

Smoothing Operator (2.31)
(Not computationally M
realizable at time in- x = Z
stant t) s---M

s5o

Time Delay Smoothing
Operator (Computationally M
realizable at time in- xt = Z
stant t'=t+M) =-M

s+0

Smoothing Error Operator M
(2.33) (Not computationally
realizable at time instant t) "t -m

Time Delay Smoothing
Error Operator (2.34) m
(Computationally real- m
izable at time instant t
t, = t+m) s=-m

Figure 1. Various Types of Finite Discrete
Linear Operators for Single Time

Series
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kxt-, c3 0, M -O

a m, 0 a = 1

d Sx M&s 0

ds t-Ms P

d xt 5  M N - 0
s t'-M-s' N 0

o x ,m 3 0, c0 = 1

%t-s Co = 1

Operator Form



Transfer Function

Prediction Operator (2.21)

Prediction Error Operator
(2.28)

Smoothing Operator (2.31)

Time-delay Smoothing
Operator

M
E
s=-N
s+o

Smoothing Error Operator
(2.33) C(w)

da = e-iwMD(w)

m
=2E

s=-n

Time-delay Smoothing
Error Operator (2.34)

MN
2
s=-M

-seIw(s+m) -iwm(=e C(w)

Figure 2. Transfer Functions of Various
Types of Finite Linear Opera-
tors Given in Figure 1.
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k eK(w)

A(w)

D(w)

s=o

m
=2E

s=o

M
=2E

s=-M
s+0
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-iwse
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ose-ios



time instant t' = t+m, one may compute

m

'tx (2.34)
s=-m t'-m-s

This later form of the smoothing operator, which is called

the time-delay smoothing operator, is therefore computationally

realizable, and indeed has the same form as a prediction type

operator (2.28).

The realizability of these operator forms are reflected

in their respective transfer functions as follows. Let us

consider the complex plane X = w + i o-, where we let the

real w axis denote the angular frequency w. By analytic

continuation, the transfer function of the prediction type

operator becomes in the complex X-plane

A(X) = o a s o=E ase~ e . (2.51)

By examining this equation, we see that A(?A) has no sing-

ularities in the lower half A-plane, that is, for er 0,

which reflects the realizability of the prediction type

operator.

On the other hand, the transfer function of the smoothing

type operator in the complex plane is
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C(N)= E ose- Ae + o e (2.52)
s=-m s=-M s=o

By letting r =-s for s = -M, -m+1*,...-2, -1, the transfer

function becomes

C(ce r eir Oe + Z 5 a -i (2.521)
r=1 r o

which has singularities in the upper half N-plane and in the

lower half A-plane, thereby reflecting the non-realizability

of the smoothing type operator.

The transfer function of the time-delay smoothing opera-

tor,

e-1Am C( A) = e e-iA(s+M) -

s=-m

(2.53)

2m ais+M) -iw(s+m)
Z 0 Se e

B+m=o

has no singularities in the lower half N-plane (o- < 0), which

reflects the realizability of such an operator.

The computationally realizable linear operator corres-

ponds to a physically realizable passive lumped element net-

work together with a single amplifier (Bode and Shannon, 1950).

35.



The linear operator coefficients represent the impulsive re-

sponse of the network, and the transfer function represents

the transfer or system function of the network (Levinson,

1947; Smith, 1954). For example, in equation (2.28) the

operator coefficient a8 may be interpreted as the output

obtained f rom an electric filter at time t+s in response to

a unit impulse impressed upon the input of the filter at

time t. Since a = 0 for s < 0 the output obtained from

the filter is zero for times less than t, and since a = 0

for s y t + m the output is zero for times greater than

t+m, the filter is physically realizable. The transfer

or system function of the electric filter is the transfer

function of the linear operator,

m
A(w) z ase iWs. (2.421)

S=o

Smoothing type operators, on the other hand, are not

realizable to the statistician unless he introduces a time

delay in his computations, or to the engineer unless he

introduces a time delay in his network. Nevertheless, for

problems in which physical calendar time is not important,

for example, as in the analysis of seismic records, one may

make computations based on the time-delay smoothing operator,
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but consider these computations

the smoothing operator itself.

may be carried out with respect

function

e-i;m C(X)

from the point of view of

In other words, computations

to the realizable transfer

(2.53)

of the time-delay smoothing operator, but considered as if they

were carried out with respect to the non-realizable trans-

fer function

C ( 2) (2.521)

of the smoothing operator with the same operator coefficients.

This same procedure is available to the engineer in such

cases (Bode and Shannon, 1950).

The prediction operator

E W E a x
S=o

has the transfer function

A(w) = ea s i
s=o

with real part

37.
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m
Re [A(w)] = Z as cos ws (2.541)

S=o

and imaginary part

m
Im [A(w)] = Z a8 sin ws. (2.542)

8=0

Since both the real and imaginary parts of the transfer

function depend on the same variables, namely the operator

coefficients ao, al,... am, the real part Re [A(w)] and the

imaginary part Im [AM(w)] cannot be chosen independently

(Smith, 1954). In other words, knowledge of Re LA(w)] lets

us compute the values of the operator coefficients a(s =

0, 1, ... m) by means of the equation

f ReLA(w)] eiWt dw1i 0

IT M
= /r a cos ws cos wt dw =

0 s=o (2.543)

= at, for t = 0, 1, 2,...m.

With the values of the operator coefficients a0, al, ... am

thus found., the imaginary part Im[A(w)J may be computed by

means of equation (2.542).
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On the other hand the smoothing error operator, say

m
'Yt = E csxt-s, M ' 0 (2.33)

has the transfer function

C(w) = z s- , (2.441)
s=-M

with real part

m m
Re[C(w)]= Z cos s = c0 + E (c5 + c_ ) cos ws,

S=-M s=1

(2.551)

and imaginary part

m m
Im[C(w)j = C s sin ws = E (c - c- ) sin Ws. (2.552)

S=-M s=l

Thus the real part of the transfer function depends only on

the symmetric component, (cs + c- ), of the smoothing operator,

and the imaginary part of the transfer function depends only

on the antisymmetric component, (Cs - c- ), of the smoothing

operator. Since the symmetric component, (c, + c-s), is lin-

early independent of the antisymmetric component, (cs - c_ ),

for each value of s = 0,1,2,...m, we see that the real part,
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Re[C(W)],may be chosen independently of the imaginary part,

Im[C(w)), of the transfer function (Smith, 1954).

Now for the smoothing operator (2.33), let us suppose that

the computations are to be carried out with respect to the

time t' where t' = t+p. That is, since t = t' - p, we have

M M

t tIp-s -E csXt'-(p+s). (2.56)
S=-m s=-M

Letting , = e , .the transfer ratio is

1_ elont-(p+)J M-iw(o+s) (2.561)
e 1: a 8- es 2 5 1

and so the transfer function of the operator (2.56), denoted

by C p(w), is

C (w) = Z c e-ii(p). (2.562)
S=-m

Now when p = 0, the operator (2.56) is the smoothing operator

(2.33), with transfer function (2.441), the real and imaginary

parts of which are independent of each other. On the other

hand, when p = m, the operator (2.56) is the time-delay smooth-

ing operator (2.34), which is a prediction type operator, with

transfer function (2.451), the real and imaginary parts of



which are entirely dependent upon each other. For those p

for which O< p< m, the operator (2.56), has transfer function

(2.562), the real and imaginary parts of which are partially

dependent upon each other, and partially independent of each

other. We shall now examine to what extent they a'e depend-

ent and independent.

We see that C (w), given by equation (2.562), is

O (w)S+P iw M. Cw
CP(W) =E e eiW(s+p) - mp eis = e-imp C(e)i

s=-m s=-M
(2.563)

where C(w) is the transfer function (2.441) of the smoothing

operator (2.33). For 0 < p < m, the real part of C (w)

is given by

M-p m+p
ReLC (w)) = . + E (c_ +c Cos WI + E _ cos w4

-p 21(o2 ~+ 2 ~) =m-p+1.

(2.564)
and the imaginary part is given by

rn-p mn+p
Im[C (w)] = E (Ap -CAP) sin wA + Z 0 -p sin wA

(2.565)
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Thus, given Re[C p(w)J, we may compute c.P, (c-_. + 01-P) for

I = 1,2,...m-p, and c 2_ for I = m-p+l, m-p+2,...m+p. The

values (c.,.p - cgp) for A = 1,2,...m-p, which enter into

equation (2.565) for the imaginary part Im[C (w)] are inde-

pendent of the values (c + oCAP) for I = 1,2,..., m-p,

which were computed from the real part Re[C p(w), and thus

reflect the partial independence of the real and imaginary

parts of the transfer function. On the other hand, the values

Co for I = m-p+l, m-p+2,..., m+p, which enter into equation

(2.565) for the imaginary part Im[C (w)] are the same values

c for I = m-p+1, A = m-p+2,...m+p which were computed from

the real part Re[C p(w)), and thus reflect the partial depend-

ence of the imaginary part on the real part of the transfer

function.

2.6 The Stable Prediction Operator

In the remaining sections of this chapter we shall con-

sider only the operator form of the prediction type, namely

m

t = E a xt.. (2.28)
s=o

Let us now consider the linear difference equation

m
E asxt-S = 0 (2.61)

S=o
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obtained from equation (2.28) by requiring t = 0. We see

that the constant coefficients a of the difference equation

are the operator coefficients. There is no loss of generality

in assuming that a0 is equal to one, in conformity with our

usual convention.

The theory of difference equations is presented by various

authors, and the reader is referred especially to Wold (1938)

and Samuelson (1947). In the first part of this section we

state the condition that the difference equation (2.61) be

stable, that is, the condition that its solution x describes

a damped oscillation. Then in the last part of this section

we show that this stability condition is precisely the condi-

tion that Fourier transform of the operator (i.e. the trans-

fer function A() ) has zeros and singularities, all of which

lie in the lower half \-plane, where A w + ip- . In other

words, we show that the difference equation (2.61) is stable

if the transfer function of the operator has minimum phase

shift characteristic. Let us now examine the condition that

the difference equation (2.61) be stable. The characteristic

equation of the difference equation (2.61) is defined to be

m
P() = a 0 + a 1m-1 + .. * + am-l + am = E a tm-s. (2.62)

S=o
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Since P(L) is a polynomial of degree m, it follows from the

fundamental theorem of algebra that P() has m roots or zeros

such that

P()= 0, for j = 1,2,...m (2.621)

As a result P(U) may be written in the form

P(t) = a 7t -t2 *** m)' (2.622)

Since the operator coefficients a (s = 0,1,...M) are real,

the roots or zeros 1- , (2****m must be real or occur in

complex conjugate pairs. Let the distinct real roots of

P() be represented by a , j = 1,2,3....h where each distinct

root a is repeated 'y times (j = 1,2,3...h); that is, the zero

ac is a zero of order y Let the distinct complex roots and

their conjugate roots be represented by P e igi and e 1,

(j = 1,2,...k) where each distinct complex root is repeated

p3 times (j = 1,2,...k); that is, the zero p e' 3 is a zero

of order pj, and the zero Pei3 is also a zero of order

p . Here @ represents the modulus, and @ or - 9 represents

the argument, of the complex root. Consequently, equation

(2.62) becomes



P(L) = a Cm + a Im- + 0.. + am-1 [ + am

m
= IMO(L - )(t - 12) *** tm = a T (I - L

j=1

h T iL

3=1 3=1

a (a-a 1
j=1 j=l

( 2 - 2P Cos [ + P2 )PJ

For an arbitrary set of initial values

Xo' X19 X 2 *OXt- 1 ,
(2.63)

the series xb, It+1, xt+2,.* may be generated by recursive

deductions from the difference equation (2.61), and this series

will form the general solution of the difference equation.

Explicitly the general solution is given by

xt h P T7)l(t) p + FLP (t) cos 9 t + P (t) sin Q 1t
3=J =1 3

(2.631)

where the P (S)(ty denotes a polynomial of order r with ar-

bitrary coefficients, and the h, k, , p , 'y , and p3 are
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given by the characteristic equation (2.623).

The asymptotic behavior of the general solution xt in

equation (2.631) is dependent on the exponential factors

Ut and P . A necessary and sufficient condition that

O 2 26
x and Z Ix ti (264)

t=o t=o

converge for any values taken on by the Pr4)(t) is that the

magnitude of the roots ILJI, j = 1,2,...m, of the character-

istic equation (2.623) be less than one, that is, I < < 1,

j = 1,2,...m, which is

la I 1, j = 1,2,...h (2.641)

P < 1, j = 1,2,...k .

In this case the solution xt of the difference equation (2.61)

describes a damped oscillation, end we shall call the corres-

ponding linear operator

m

=Za xt-s, a = 1 (2.28)
s=0

mathematically stable. That is, a linear operator is stable

if the zeros tk of its associated characteristic equation P(9 )

lie within the periphery ItI = 1 of the unit circle, that is
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1.

Let us now turn our attention to the Fourier transform

of the operator coefficients, that is, the transfer function,

A(w) a e-iws (2.65)
s=o

of the linear operator (2.28). By analytic continuation to

the complex plane N = w + i o-, where the real w axis denotes

angular frequency, the transfer function becomes

A() = ae- = e -i . (2.651)
s=o s=o

We see that A(A) is an entire transcendental function since

it is a finite sum of entire transcendental functions aSe-1AS

(s = 1,2,...m) plus a constant a * Consequently A(A) is

analytic in the whole X plane and may be represented by a

power series in X which converges in the whole plane. Out-

side of every circle in the N plane, A() come arbitrarily

close to every value; that is, A(M) has an essential sing-

ularity at the point at infinity.

Let us apply the transformation z = e , for -i < w S TT,

to the transfer function A(A). The transformation z = e

maps the strip between w = -TT to w = IT of the upper half X

47.



plane ( o- < 0Y into the exterior Izl< 1 of the unit circle

in the z plane; it maps strip between w = -T to w = 7r of the

lower half of the X plane, (o- < 0) into the interior Izi C 1

of the unit circle in the z plane; and it maps the real axis

-TT < w s T of the ?A plane into the periphery IzI = 1 of the

unit circle in the z plane. See Figure 3. Under this trans-

formation the transfer function A(M), equation (2.651) becomes

the polynomial A(z) where

A(z) = E asza + a1z + a22 + ... + am z
S=o

(2.652)

This polynomial or entire rational function, is analytic in

the whole plane and has a pole at infinity. Let us call A(z)

the transfer function in the z-plane.

For a stable linear operator we have seen that the

characteristic equation

m
P( = Z as m-s = a0Lm + a 1ml + ... + am, a 1 (2623)

s=o

has roots (l ,20***m, all of which have modulus Itk| less

than one. Without loss of generality, we assume am 4 0, so

that Itk 4 0 for k = 1,2,...m. Thus the characteristic equa-

tion (2.623) may be written
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P) = (L-i) 2)u***(L m)

= Lm Li 2 ***Lm (LI - ~)
= 1~L 2 i M (~1)t V '

(2.653)

(W - r~)

= am (2 * -l~ m a -1-1 -1

= amjm (t-l _L-l) -1 -1 -LO( "O

- a. (~ - 1~M

2 m'-- 1

-1yL

am (L)m l2***m. (2.654)

Under the transformation z = V1 , the function P(), given

by equation (2.653), becomes

P(t = z7) = E asz

5=0

(2.655)

where we define

z , Z2 = t2 ' m = ~.

Thus the function

50.
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M

zmP( = zl) = E azs = am(z-zi) (z-z2)...(z-zm) (2.657)
S=o

is the function A(z) in equation (2.652) which was obtained

from the transfer function A(P) by the transformation z = e .

That is, the transfer function in the z-plane is

A(z) = z a.z = am1(z-z2)(zz9**~(z-zM) (2.657)
s=o

where the roots zk(k = 1,2,...m) are given by equation (2.656).

Since the stability condition is that the roots Lk have modulus

ILkI less than one, we see that this condition is that the

roots zk of A(z) have modulus

IzkI = I-1 > 1. (2.658)

greater than one.

Thus the finite prediction operator is stable if the roots

zk of the polynomial A(z) all have modulus greater 
than one.

That is, the operator with coefficients ao, a1 ,..., a. is

stable if the transfer function in the z-plane,

A(z) = ao + a z + a2 z2 + ... + amm

(2.66)
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has roots zk where

i zk > 1, k = 1,2,...,m. (2.661)

In other words, the stability requirement is that all the

zeros of A(z) must lie exterior to the periphery |zj = 1 of

the unit circle in the z plane.

For example, let us consider the so-called cosine operator

(Simpson, 1953)

Et = Xt + a 1 xt-1 + a2 xt- 2

(2.67)

- Xt - (2 cos wo) xt-l+xt-2

The coefficients of this operator were chosen by the require-

ment that the prediction error Et = 0 for xt = cos wot. The

transfer function in the z-plane is then

A(z) = 1 + a 1 z + a 2 z2

= 1 -(2 cos w ) z+z 2  (2.671)

= (eiWO - z)(e~iO - z)

so that the roots of A(z) are
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z =e o , z2 = e . (2.672)

Since Iz1  = 1Z2 = 1, the cosine operator is just on the

borderline of unstability. .

Let us consider this stability condition (2.661) in terms

of the transfer function A(2A) in the complex ;-plane. The

stability condition (2.661) becomes, under the transformation

e i = z, that the transfer function

m
A(N) = Za se-is (2.651)

has zeros only in the upper half A plane. See Figure 3. Then

A( A) has no singularities or zeros below the axis of real

frequency w and its logarithm in that half plane is as small

as possible at infinity.

A linear system has minimum phase-shift characteristic if

its transfer function has no singularities or zeros in the

lower half k-plane (Bode and Shannon, 1950; Goldman, 1953).

Thus if we consider A(\) to be a transfer function of a

linear system and if A(P\) satisfies the conditions of a

minimum phase-shift characteristic, then the linear opera-

tor

at =L / A(w) eiwtdo (2.67)t 21T T
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is stable.

In summary, then we see that the stability condition is

that the difference equation (2.28) formed by the operator

coefficients as (s = 0,1,...m is to have a solution which

describes a damped oscillation. This stability condition is

also that the transfer function A(X) of the linear operator

is to have no singularities or zeros below the axis of real

frequency w, and that its logarithm in that half plane is to

be as small as possible at infinity. Briefly, a stable

difference equation yields a minimum phase network, and con-

versely.

2.7 The. Inverse Linear Operator

Let us consider the stable finite prediction operator

m

Z as0t- a0 = 1 (2.28)
S=o

so that its transfer function in the z-plane

m
A(z) = Z asz (2.652)

8=0

has zeros, all of which are exterior to the periphery

1zi = 1 of the unit circle. In other words, the function

A(z) is analytic for Izi * 1, and
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A(z) + 0 for IzI Z 1.,, 0 a(271)
B=o

Consequently the function

A(z)= - m= B(z) (2.711)

Z a zs
S=0

is a function which is analytic for i z| 1, and has no zeros

for IzI 1. As a result we may expand this function in the

power series

AE b z B(z) (2.712)A z, azs t=o
Z~ a s

which converges for jzl < 1, and has no zeros for IzI < 1.

The values of bt for t = 0, 1, 2,... may be found by direct

division of the polynomial a0 + a 1 z + a2z2 + .. + azm into

unity. We shall define bt to be those values given by equa-

tion (2.712) and define

b = 0, for t < 0. (2.713)

From the equation (2.712) we have
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o o
A(z) B(z) =1= a z Z b z

s=o t=o

m OD s+t
=E as Z bt =

s=o t=o

in CO
E as Z bn z

s=o n=s

where we have let n = s+t. Recalling that bt is equal to

zero for t < 0 we have

in 00 xn = D
A(z)B(z) =1=Z a E bn-s =Z ( Z a bn 8 ) .

so n0 n:o s = o
(2.721)

In order for this equation to hold, we see that

ab = (2.722)

m
E asb n-s

S=O
= 0, for n = 1,2,3,...

Since, we let ao = 1, we have bo = 1. Thus, given the

operator coefficients ao, a ,...sam the b1,b2 ,b ... may be

uniquely determined by recursive deductions from the differ-

ence equation

56.
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m

z a bt-s = 0, t = 1,2,3,... (2.723)
S=o

subject to the initial values bt= 0 for t < 0 and b

(a )~ = 1.

Since we have assumed that the linear operator with the

coefficients ao, a1 , a2...am is stable, the difference equa-

tion (2.723) with the constant coefficients ao, al, ... am

has the characteristic equation

M t-
P(t) = E a [-s (2.73)

s=o

all the roots Lk of which lie within the periphery of the

unit circle, that is IkI < 1 for k = 1,2,...m. As a result,

in virtue of equation (2.631) for the general solution of this

difference equation, the solution bt (t = 0,1,2,...) describes

a damped oscillation. In particular, the series

0o Co 2E Ibt| and E bt (2.731)
t=o t=o

converge.

Let us now examine the linear operator, with coefficients

b0,b1 ,b2,... given by
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Oo

Sb-r *(2.7)r=or -

Since b = 0 for t < O, this operator is of the prediction

type, and since the operator has an infinite number of dis-

crete coefficients it may be called an infinite discrete lin-

ear operator. Strictly speaking infinite linear operations

may not be computed because an infinite number of multipli-

cations would be required, and hence in this strict sense

they are not computationally realizable. Nevertheless,

because of equation (2.731), the operator equation (2.74)

may be approximated by the partial sum

Z br t-r (2.741)
r=o

to any degree of computational accuracy by choosing M

sufficiently large, and in this sense the operator equation

(2.74) is computationally realizable.

Since B(z), given by equation (2.711), has no singular-

ities or zeros for IzI % 1, the transfer function of the bt

operator

B(w) = Zb e-ior (2.742)
r=o
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has no singularities or zeros in the lower half ?\ plane where

X = w + i o-, (see Figure 3). Thus the linear operator bt

has minimum phase shift characteristic, and is stable.

In summary, then, the infinite linear operator bt has

the following properties:

b = 0 for t < 0

> 0
bo

to

t=0

(2.75)

2b < o

and the
0O

B(z) = Z
t=o

t
htz + 0 for

and we shall call such infinite prediction operators compu-

tationally realizable and stable.

Let us now examine the significance of the linear opera-

tor

Z brEt-r
r=o

Inserting into this equation the prediction errors Et. Et-l'

Et-2,** given by the prediction operator (2.28), we have

59.
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o b

r=o r t-r
o b

r=o

m
s a

8~

m
Z asxt-r-s

8=0

(2.76)

E
r=o

Letting n = r+s, we have

OD
Z brt t-r

r=o

m

= E0

and recalling br = 0 for r < 0, we have

00o b
Z brEt-rr=o

m 00
ZE as Z bn_ SXt-nS=o n,,-o

o0 m
= Z ( Z as ) xt-n*

n= o S=o

(2.762)

Therefore, because of equations (2.722) and (2.723) we have

E br tt-r ~~ tr=o
(2.77)

That is, the linear operator (2.77) with coefficients bolb ,

b2... operates on the prediction errors Et't-l't-2,** at

time t and prior to time t in order to yield the value of the

time series xte Thus we see that the operator (2.28) with

60.

00
a S E b n- s Xt-nn- s

(2.761)
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coefficients amjaml'...a2, a1, a0 operates on the time series

.... , t xtl' t to yield the prediction errors Et-29

whereas the operator (2.77) with coefficients

.... , b2, b, bo, performs the inverse operation. Therefore

the as operator (2.28) is called the inverse to the b8 opera-

tor (2.77), and conversely.

More generally, the infinite linear operators

O

S a xt (2.78)
s=O

xt= Z bst-s (2.781)
S=o

are realizable, stable, and inverse to each other if the

coefficients at satisfy

a = 0 for t < 0

a > 0

OD 2Z a <o (2.782)
t=o

OD

A(z) = Z a zt 0 for Izi 5 1,
t=o
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if the coefficients bt satisfy

b = 0 for t < 0

bo > 0

"'- 2E b < OD
t=o

B(z) = Eb z + 0 for IzI < 1
t=o

and if

A(z) B(z) = 1.

Hence the at and bt are related by

a b0 = 1

t
Z a s t-sS=o

(2.785)

= 0, for t = 1,2,3,...

Thus, given the set as, the set b. may be uniquely determined,

and vice versa. For example equation (2.785) for t = 1,2,3,

yields

62.
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a1 = - b

S -b +b 2 1

(2.786)

on the one hand, and

b2 = -a 2  1

b3 = -a3 + 2aia2 - a3

on the other hand. Both the at series and the bt series

(t = 0,1,2,...) form damped oscillations.

The transfer functions

O0
A(w) = Z

S=o

O

S=0

a se~WS

b e-iWs

(2.787)

(2. 791)

(2*792)

are free from singularities and zeros in the lower half

?A-plane, N = w + j o-, and have minimum phase shift charac-

63.

and



They are related by

A(w) B(w) = 1, (2.793)

(2.794)= A~1 (w) = B

1 = Bl(w) - AM) (2.795)

(2.796)A~ (w) A(w) = 1,

B 1 (w) B(w) = 1. (2.797)

2.8 The Power Transfer Function and its Stable Prediction

Oper~ator:

The power transfer function J(w) is defined to be the

square of the absolute value IA(w)| of the transfer function

A(w); that is, the power transfer function is given by

(w) = |A(w)12 = A(w) A3

= (Re[A(w)]2 + (Im[A(w)]2 , 0

(2.81)

and

teristic.
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where the bar indicates the complex conjugate. Here IA(w)l

is called the gain of the linear operator, and it is given

by the square root of the power transfer function; that is

|A(w)l =-v 2 (w) (20811)

so that knowledge of the gain of the linear operator and

knowledge of the power transfer function are equivalent.

The power transfer function F(w) of a finite linear

operator ao, al,...am may be expressed by the finite trig-

onometric series

( = m aseitit = aA(w)| 2 ei0 (2.812)
S=o t=o

which is non-negative for -v < w < r. We may rewrite this

expression in the following way

(w) = asate-iw(s-t)
s=o t=o

(2.813)
m =*iWT m

= e E atat+,
T=-m t=o

65.



where T = s-t. Let us define rT to be

rT = E
t=o

atat+T; rT = r_ T

that is,

2
+ + am-2

2 2
+ am-1 + am

+ a a 2 + a 2 a + *.. + am2am-1 +

= aoa2 + a 1a 3 + a2 a 4
+ ... + am-2am

= aoam-1+ alam

Therefore if we are given the linear operator with coefficients

a0, a1 ,..., am, we may find the rT by means of equation (2.814)

and thereby determine the power transfer function

Z(w) = a ei |2 = E
S=O T=-m

r eiWT

(2.815)

= r 0 + 2 Z rT cos wT 0.
T=o

66.
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2a,0
2+ a 2 2

= r 1y = aoa1

* . *

= rl-m

= r-mrm Saa 0om

(2.814)
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In this section we wish to consider the inverse prob-

lem; that is, given the power transfer function 1(w), find

the coefficients ao, al,...am of the linear operator which

yield this power transfer function. This inverse problem,

as it stands, is not unique in that several different linear

operators may yield the same power transfer function j(W).

As we shall see, however, all of these linear operators are

unstable, except one. In other words, given the power trans-

fer function J(w) we wish to find the one, and only one, real-

izable, stable prediction operator which yields the power trans-

fer function F(w). This stable prediction operator has the

transfer function with gain equal to ,(w) and minimum

phase characteristic. The import of this section resides in

the fact that if one wishes to design a stable linear opera-

tor, he needs only to have information about the desired

absolute gain characteristics |A(w)j = / f(w) , and needs

no information concerning the phase characteristics. In

this section, we give direct procedure for the determination

of such stable finite linear operators. This procedure may

be readily programmed for automatic computation on a digital

computer.

Since we wish to consider finite linear operators with

the coefficients ao, a1,.**.am, it is necessary to express the
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power transfer function in terms of a finite trigonometric

series

(w) = z
T=-m

r e ro + 2Z rT cos wT, r0T=1
> 0, rT = r

(2.82)

which is non-negative for -1T < w < TT, and the rT are real.

If the power transfer function is given by the infinite

Fourier series

(W) = po + 2
00

E p COS WT 0, -11 < w < ,
TT. P%.

which is non-negative for -i < w * 11, then the Cesaro partial

sum

PO + (2.822)2 (1 -y) PT COS WT,
T=1

which is also non-negative for.iT < w % TT, may be used as the

finite series approximation to 1(w). We then have

T ) r 0 + 2 E rT cos wT, r
T=l

(2.823)= (1 - ) p
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which may be used for equation (2.82).

Let Q(u) be the polynomial of order m obtained from

M
r+- 2 Z rT (z~T + zT) (2.824)

T=1

by the substitution z + z = u. Wold (1938, Theorem 12),

in connection with his study of the process of moving aver-

ages, shows that a necessary and sufficient condition that

the finite series

r + 2 Z r (e + eiT) (2.825 )
T=1

be non-negative for -TT < w < 1T is that the equation Q(u) = 0

should have no real root of odd multiplicity in the interval

-2 <u< 2.

The method which we give in this section was used by

Wold (1938) in order to factor the power spectrum of the pro-

cess of finite moving averages, and the power spectrum of the

autoregressive process.

As we shall see in Section 5.5-A, the power spectrum

of a process of finite moving averages is given by

M
4 (0) + 2 Z 4(T) cos wT > 0 (5.523)

T=1
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which has the same form as the power transfer function j(w)

given by equation (2.82). Thus by the method to be presented

in this section, we may factor the power spectrum into the

product
M

#(O) + 2 Z 4(T) cos wT = B(w) BFwT (5.523)
T=1

where

M -iws
B(w) = E b e (5.524)

S=o

is free from singularities and zeros in the lower half X-plane.

As we shall see in Section 5.5-B, the reciprocal of the

power spectrum of an autoregressive process is given by

m

r0 + 2 Z r, cos wT (5.542)
T=1

which has the same form as the power transfer function given

by equation (2.82). Thus, by the method to be presented in

this section, the reciprocal of the power spectrum may be

factored into

m

r + 2 Z rT cos wT = A(w) A ~w7 (5.543)
T=1
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where

S= a iWS (5.547)
Z a e-s

8=0

is free of singularities and zeros in the lower half A-plane.

Returning now to the power transfer function let us

suppose that the rT = rT are such that T(w) given by equa-

tion (2.82) is non-negative for -TT < w < TI. Under the trans-

formation z = et , where X = w + i o-, (see Figure 3), the

power transfer fuontion J(w) becomes

m
T(z) = 2 r. z' (2.83)

where (z) is a rational function in z.

We see that

m
zm I(z) = Z rT z (2.831)

T=-m

is a polynomial of order 2m. Expressing this polynomial in

terms of its roots zk (k=1,2,...2m) we have

zm (z) = rm(z-zl)(z-z2 )...(z-z2m) (2.832)
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where we assume rm + 0 so that IzkI * 0 for k = 1,2,.., 2m.

Hence the rational function J(z) may be expressed as

F(z) = z-m rm (z-~l)(z-z2)**(Zz2m)

and the power transfer function is therefore

T(w) = eloM rm(e-i"

(2.833)

- z )(e i - z )***(eiW 2m) (2834)

Since the power transfer function 1(w) is a real function

of w, we have

T(w) = (W = rmeiWm (eiW - z )(eiW - z2 * (e

= rmem (1 - z ( 2 *

=z -2** r mrm1m -i 1-'X(~zlZ 2 ***Z2 mr iie

i 2m

a(-2me iw)

z 2m

(2.835)

Lettilag z = e~i where X = w + i O- we have
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-) - -m -- -1 ( l- )(2.836)
f~)=z z"2***z2m rM z( 1 Z2 ***2m-

Comparing equations (2.824) and (2.831) we see that if zk is

a root of the polynomial zm j(z), then is also a root.

Moreover since the power transfer function V(w) is a

real even function of w, we have

-(-W) = T(w) = I(w) (2.84)

which is

(-w) = rmeiwm( -iw - ) (e-i - z2 ) ** (e Z2m

w) = rmeiwm (e-i - z )(eiw - z 2 )..(eiw 2m) =

Letting z = e , where A = w+ i o-, we have

= m = rm-m(zz 1 )(z-z 2)..(z-z 2m

(2.842)

so that if z is a root of the polynomial zm '(z) then z

is also a root.
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In summary, then, if zk is a root of zm ](z) then zk,

z ,and 1 are also roots. Thus if a is a complex root

of zm V(z) with modulus IlakI + 1, then ak, s , are distinct

from each other, and are all roots of zm I(z). If Pk is a

real root of zm J(z) with modulus 1pk1 + 1, then Pk andk
are distinct from each other, and are both roots of z m (z).

If k is a complex root of zm W(z) with modulus ITk = 1, then

Yk k are distinct from each other, and are both roots

of zm E(z). Let Pk represent the real roots of zm'(z) with

modulus p 1

Accordingly, the polynomial zm 1(z) may be expressed as

zm ((z) = m k ( -~)(z- 1) (z-Pk)k(z-
k=1 k=1

(z-yk)(ak ) (z- pk) (2.85)
k=1 k=l

where any root of order p is repeated p times.

Let us now turn our attention to equation (2.812),

e(w) = a e ate (2.812)
S=o t=o
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which expresses the relationship of the power transfer func-

tion T(w) with the coefficients ao, al,...am of the predic-

tion operator which yields M(w). Under the transformation

z = e i, A\ = w + 1 0-, (see Figure 3), we have

m m
(z) = z agz E

S=o t=o
atz~ (2.86)

We thus have

zm (z) = z
T=-m

m m
r zT+4 = z aszs E azm-t

S-=O t=o

In section 2.6 we defined A(z), called the transfer function

in the z plane, to be

m
A(z) = Z asz- (2.652)

so equation (2.86) becomes

J(z) = A(z) A(z-') (2.862)

and equation (2.861) becomes

75.

(2.861)



zm t(z) = LA(z)] LzmA(z'l)] (2.863 )

which is

rm 2 m + rm-lz 2 m-1 + ... + r 1 zm+1 + rzm + r zm-1 +... + rm-lz+rm

-(a. + a z + +.. am-lzm-1 + )(aozm + alzm-1 + ... + am-lz+a ).

(2.863)

In order to factor zm P(z) into the two real polynomials

A(z) and zmA(z~), we see that one of the real polynomials

-1 -1
(z-ak)(z-~k) or (z-ak )(Z-x ) must be a factor in the poly-

nomial A(z). Since pk is real, then either (z-Pk) or (z-@~)

is a factor in A(z). On the other hand, since the factors

) and (z-'k) are complex, both of them must be contained

in A(z). Likewise (z-pk) must appear in A(z). Thus it is

necessary that the roots -k and pk, which have modulus 1,

appear an even number of times, that is I = 22' and n = 2n'.

This condition that roots of modulus one appear an even

number of times is satisfied since T(w) 3 0. Thus we have
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ft (z~ f-r (Z Yk(Z-' ) 'IA(z) = am (z-ak)(z-ak) k- k (z'Pk)k=1 k=1 k=1 k=1

(2.87)

and

zmA(z T =H Z.kd (z- k ) f k-p1k (2.871)
k=1 k=1

(z- )(zTkz k1)
k=1 k=1

- -.1 -1 -l
since yk = k * k =k and Pk = Pk

Thus if the zeros of A(z) are zk, then the zeros of zmA(zl)

are zk . In order for the linear operator with coefficients

ao,al,..eam to be strictly stable, then all the roots of

m
A(z) = Z a zs (2.652)

s=o

must have modulus IzkI > 1. Thus if the transfer function

J(W) yields roots yk and Pk which do have modulus IYkI =

I PkI equal to one, then there is no strictly stable linear

operator which yields this transfer function , although
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there is a linear operator on the borderline of stability,

such as the cosine operator (2.67).

Let us suppose that T(w) yields no roots Yk nd k with

modulus equal to one. Then we have

A(z) = am (z-cL)(z-~0k) k) = Za (2.88)
k=1 k=1 s=o

and

ZmA(z~l) = (z-I)(z.-4 ) (z-() = Z a s-z (2.881)
k=1 k=1 s=o

where la kJ I 1 for k = 1,2,...h and 'pk1 4 1 for k = 1,2,.. j.

If the zeros of A(z) are zk for k = 1,2,...M, then the zeros

of zmA(z") are zk for k = 1,2,...M, and since 1 zk1 4 1, it
follows that half of the 2m roots of

zm J(z) = A(z)zm A(z~1 ) (2.863)

have modulus greater than one, and the other half of the 2m

roots has modulus less than one.

Thus if we choose those m roots of zm (z) which have

modulus greater than one, and call these roots the ak
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(k = 1,2,...h), the 7k (k = 1,2,...h), and the s k = l,2,...h)

which appear in equation (2.872), then A(z) will represent

the transfer function in the z plane, of a stable linear

operator. That is, since A(z) has roots, all of which have

modulus greater than one, the transfer function

A(w) = s ase-iWs (2.421)
8=0

will be free from zeros in the lower half plane of A = w +

i cr, and be of the minimum phase shift type. The prediction

type operator, with coefficients

at I I A(w)e dt (2.864)t 211
-TT

is then stable.

On the other hand, if we did not choose the roots in the

above fashion, there being at most 2 different ways of

choosing the roots, then A(z) would have roots, some of which

have modulus greater than one, and some of which have mod-

ulus less than one. Consequently the transfer function A(M)

would not be of the minimum phase shift type and its linear

operator would not be stable.
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Let us summarize the computational procedure required to

determine the stable operator coefficients aosa 1 ,...am from

the power transfer function

() = Z r T e0 r >0. (2.82)
T=-M

Form the polynomial

zm ((z) = Z r zT+m (2.831)
T=-m

and solve for its roots zz 2,'**z 2 m. Let z', z,...z be

those zk(k = 1,2,...2m) of modulus greater than one and also

those zk of modulus one counted half as many times. (In

order for there to be a strictly stable operator, there may

be no zk of modulus one). Then we form the polynomial

m
A(z) = (z-z')(z-z)...(z-z)= F agz , (2.89)

s=o

and the operator coefficients are given by the as. They

represent a stable linear operator, the transfer function of

which has minimum phase characteristic. Thus we have shown

that the power transfer function T(w), equation (2.82), may

be factored into
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J(w) = A(w) I~w)

where the transfer function

(2.891)

(2.892)
m -W

A(w) = T., a e~
s=o

will be free from singularities and zeros in the lower half

A-plane.
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CHAPTER III

THE NON-STATISTICAL ANALYSIS OF TIME SERIES

3.1 The Functional Apnroach

In the last chapter those properties of the finite

discrete linear operator were developed which are independ-

ent of the properties of the time series xt under consider-

ation. In this chapter we wish to consider the methodology

of the non-statistical or deterministic approach to the study

of discrete time series xt Since this approach leads to per-

fect functional representations of the empirical data, the

various schemes of analysis are called functional schemes.

As we shall see, the harmonic analysis of the time series, that

is the analysis interms of e iWt, plays an important role in

these functional schemes.

As an introduction to the concept of the functional

approach, let us for the moment consider the continuous time

series x(t). If the integral which represents the total energy

of x(t), given by

ODa
f x (t) dt (3.11)
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is finite, then the Fourier integral representation of x(t),

OD
x(t) = f X(w) eiwt dw, (3.12)21T

-co

is a perfect functional representation of x(t). Here the

function X(w), given by the inverse Fourier transform

0oo
X(w) = I x(t) e-it dt, (3.13)

-c0

is a function which contains the same information as x(t),

but is in the frequency domain rather than inthe time do-

main as x(t).

In this chapter in which we consider only discrete time

series, we first indicate the methodogy of the periodic

functional scheme. We then consider the aperiodic functional

scheme for transient time series, especially in connection with

the so-called linear filtering problem, which is the transform-

ation of one transient time series into another transient by

linear operations. Finally we see that the functional approach

in certain cases requires methods of averaging in order to

approximate certain functions for computational purposes. Since

in many cases methods of averaging become more physically

meaningful from the standpoint of probability theory, in the
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last three chapters we shall consider the analysis of time

series from the statistical point of view.

In particular, in Chapter V, we shall see that a sta-

tionary time series (with an absolutely continuous spectral

distribution) may be considered to be additively composed

of wavelets, all with the same shape, and with random strengths

and arrival times. As we shall see, methods of averaging

play an important role in the determination of the wavelet

shape. Since the shape of such a wavelet represents a

deterministic transient time function, it may be treated

by the methodology of this chapter.

3.2 The Periodic Functional Scheme

The various periodic functional schemes assume that

the time series under consideration are composed of strictly

periodic components. Since such schemes are treated in de-

tail in the literature and since they have limited applica-

tion in seismology, we shall only briefly indicate the

methodology used. For more detailed discussions, the read-

er is referred to Schuster (1898, 1900) and Whittaker and

Robinson (1926).

Let an observational time series be given by

x1. x2 '*** XT (3.21)
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for the time range 1 % t 6 T, where the mean value of xt is

zero. We shall consider the case in which it is assumed that

the observational data are strictly periodic, say with per-

iod T. Then the infinite time series is given by the sequence

*..XTXl'29  *XTXl'X2 s****T Il@2**XTiX, ... 3.22)

Representing this time series by x t(-0 < t < o), the dif-

ference equation

Xt - Xt-T = 0 (3.23)

holds for any t. The solution of this difference equation

(where for simplicity we let T be even) is

T/2 2nr 2nr
nt = (An Cos Tnt - Bn sin T nt)

(3.24)
T/2 2-fr

= C cos (-- nt +Q)
n=1

where

B
C2  A 2 + B 2  tan 9 = (325)n n n' n A *(.5n
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The Fourier analysis of the time series xt will yield the

An and Bn, so that equation (3.24) will be a perfect func-

tional representation of the original data.

3.3 The Aneriodic Functional Scheme

The aperiodic functional scheme deals with that class

of discrete time series xt whose total energy

00 2
E xt (3.31)

is finite. Examples of such time series are transient time

functions, such as the seismic wavelets of Ricker (1940, 1941,

1943, 1944, 1945, 1949, 1953a, 1953b).

We see that all observational time series of finite time

duration , say from t = 0 to t = T, fall into this class, if

we define the time series xt to be zero outside the basic

time interval, that is,

xt = 0 for t < 0 and t > T. (3.311)

Hence the time series x defined for all time has finite to-

tal energy given by

OD 2 T 2E xt Z xt (3.312)
t=-cOD t=o
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For the remaining parts of this Chapter we shall deal

with finite time series which are defined to be zero outside

of their basic time interval. Although the non-statistical

methods of this chapter can be applied to any time series of

finite duration, we do not wish to imply that they should be

applied to the analyses of all time series of finite time

duration. Instead the methodology to be used, statistical or

non-statistical, should depend upon the type of problem to

be solved, and should be chosen with consideration to all

prior knowledge and experience about the problem.

In particular, the methodology of this chapter is appli-

cable to wavelets which damp toward zero sufficiently rapidly

so that they may be approximated by zero outside of a finite

time interval, and especially applicable to wavelets which

are stable in the sense of Section 2.6, where we let the

wavelet x be the linear operator at*

As we shall see in the following chapters, a stationary

time series (with an absolutely continuous spectral distri-

bution function) may be considered to be additively composed

of wavelets, all of the same shape, but with random strengths

and arrival times. Let us outline heuristically how one, in

effect, determines a certain linear operation for such a time

series. First the random elements of the time series are
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destroyed by averaging, (i.e. the computation of the auto-

correlation function), and a unique stable wavelet shape

(i.e. the ti(t) of Levinson (1947) which is our bt in the

following chapters) is preserved. Then the particular lin-

ear operation may be determined by non-statistical methods

on this deterministic wavelet shape. Since the time series

is additively composed of such wavelets, this linear opera-

tion applies equally as well to the time series itself.

The aperiodic functional scheme is a functional scheme

because it leads to a perfect functional representation of

the observational or theoretical data. This functional

representation is given by the Fourier integral representa-

tion of the function

x 1 T X(w) eiWt dw (3.32)

where X(w), called the (complex) phase and amplitude spec-

trum of xt, is given by

X(w) = t-iwt T -iWt 3.321)XW = E x te E x xte(321
t=- O t=o

since xt = 0 for t < 0 and t > T. Equation (3-32) gives a

perfect functional representation of xt, and we see that the
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function X(w) contains the same information as the function

x . The energy spectrum 1(w) of xt is defined to be

I )= X( X(w) = IX(w)12 > ,-r < w n, (3.33)

which is equal to

t(w) = Eo
t=o

iwt T
xtse E

t=-co s=- o

O0

T

T=-T

e-iw

e iWT

Sx e-iw(s-t)

E- 0 x t xt+T
t=- oc

t=o
xt t+T

where T = s - t. Let us define the autocorrelation function

of xt to be

T-T

#x (T)= E
t=o

(3.332)

where we see
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(3.331)
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XX (T) xx(T

$ (T) = 0 for IT| > T.

Then equation (3.331) becomes

#X (T) eiW
T

- (0) + 2 z
T=1

T() cos wT(3.334)

which expresses the energy spectrum as the Fourier transform

of the autocorrelation. On the other hand, the transform

of the energy spectrum is the autocorrelation, as seen by

w 1. n T

(w) e dw=- 2rr / E-TI T=-T
4) (T)eWT eiWt dw= (t)

(3.34)

because

T/

-n
eiWT eiwt dw =

0 Tft

2n T=t
(3.341)

for integer values of t ani T. We see that the total energy

of Xt is given by

90.

T
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12 2 1 1 T
4)__(0) = E X 2T f ) dw (3.342)

t=o -1

Equation (3.33), which may be written

(= ) = X(A) XTY, A = w + 1 o (3.35)

generally does not represent a factorization of the spectrum

which satisfies the Wold-Kolmogorov conditions. (See Section

5.1) In other words, the factor X() generally will not be

free from singularities and zeros in the lower half ?-plane.

This condition will hold only if the finite time series xt

satisfies the same stability conditions which we gave for a

finite linear operator at in Section 2.6. Since kx(w) in

equation (3.334) is expressed in a finite non-negative

trigonometric series, the method of Section 2.8 may be used

to factor (w) into the product

(W) = B(w) BTwY

where B() is free of singularities and zeros in the lower

half ?-plane. The function B(w) may then be used in prefer-

ence to X(w) in many applications, although we shall not
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explicitly make use of B(w) in the remainder of this chapter.

Suppose that we have another time series yt of finite

time duration, say from t = 0 to t = T. As in the case of

xt, we let

(3.36)y =0,fort < Ot > T.

Similar relations hold for yt as for the function xt. As a

matter of notation, the complex phase amplitude spectrum is

denoted by Y(w), the energy spectrum by ky(w), and the auto-

correlation by yy(T).

The cross energy spectrum of xt and yt is

(3.37)

which is equal to

ky(W) =

T

t=o
xeiWt Ttoz

S=O

T
E xtyt+T
t=o

where T = s-t. The

is defined to be

cross-correlation function of xt and y

92.

Yseiws

T

T=-T
e&iWT

(3.371)

I (W) = XITY(W)



T-T
(T) Z

t=0
(3.38)Xtyt+T

where

xy-T) yx(T)

(3.381)

4Y (T) = 0 for ITI > T

Equation (3.371)

T

T=-T

4X (T) eiWT

1

-VI
(W) ei dw = $P (t). (3.39)

3. The Filter Problem for Transients, Finite Linear Oerators

The filter problem is concerned with the determination

of the linear operator which transforms the transient time

series x (t = 0,1,2,.,.T) into the transient time series

St (t = 0,1,2,...T). The time series xt may be called the

input, the signal plus noise, or the perturbed signal. The

time series st may be called the output, the signal, or the

93.
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desired information. Under the aperiodic functional scheme,

the observational values of x (t = 0,1,2,...T) and s (t

0,1,2,... T) are assumed to be known, and not all equal to

zero.

In this section we shall consider the case in which the

linear operator is required to have a finite number of coef-

ficients, and more particularly, the same number of coefficients

as the number of terms in the time series xte Thus the desired

linear operation is represented by

T
S = E asxt-s, t = 0,l,2,...T (3.41)

s=0

This equation represents the system of simultaneous linear

equations, given by

s0 =a 0 x0

s 1 ao +a, xo (3.42)

S2 a 0 x2 + a x 1 + a2 xo

sT =a. xT + a1 xT 1 + a2 XT-2 + .. + aTXo.

in which the operator coefficients a0, a1, a2 ,... aT are the

unknowns. Without loss of generality, we may assume xo 4 0,
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and consequently the determinant of this system, which is

equal to x , does not vanish. As a result, the system of

equations has a unique solution which yields the values

ao, al, a2, ... aT for the operator coefficients.

Under the aperiodic functional scheme we set x t = 0

for t less than zero and for t greater than T. As a result

if we assume the equation

T
s= E a x (3.43)

S=o

holds for all t (-oo < t < co), then we see that this equation

specifies the values of st outside of the range 0 < t < T, in

which range the values of st were given in the original state-

ment of the problem. In particular, this specification is

S = 0, t < O,

T
s= E asxt-s, t = T+1, T+2,... 2T

S=O
(3.44)

st =0, t > 2T.

Consequently, for these values of st the operator equation

(3.43) is valid for all integer values of t. Thus by multi-

plying each side of equation (3.43) by e-iwt and summing over
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teiWt O

Z a e
So s

e-iWt T
s=o

OD-i t-
t=- o

which is

-iwt T
ste = E

s=o

'iWS 
T

a e T
n=0

2T
S(w) = z

t=o

T
A(w) = Z

s=O

X(w) = Z
n=0

e~iwn

equation (3.45) becomes
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t=- 00

(3.45)

2T
E

t=o

Letting

(3.451)

(3.452)

and

(3.453)

(3.454)

a s t- S

e -ion

st*-itt

age~1*w



S(w) = A(w) X(w) (3.46)

which is

A (w) = () a s -e (3.461)
S=o

The linear operator a (s = 0,1,...m), determined from X(w)

and S(w) by this equation, is not necessarily stable.

In Figure 4, a symmetric smoothing type linear operator

is given which contracts a symmetric Ricker wavelet (Ricker,

1953b) into one of lesser breadth. The respective Fourier

transforms are shown to the right of these time functions.

3.5 The Filter Problem for Transients Infinite Linear Ouerators

In this section we wish to consider the filtering prob-

lem, which is the transformation of the time series xt ( t

0,1,2,.,.T) into the time series s (t = 0,1,2,...T) under

the aperiodic hypothesis that

s = xt = 0, for t < 0, t > T. (3.51)

That is, the values of st and x are specified for allialues

of t. Thus we wish to find the linear operator, with coef-

ficients hs, which we shall not restrict in number, such that
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00
t = E h 5 xt-s,

S=- 00
-CO < t < OD.

Since this equation represents an infinite system of simul-

taneous equations, that is one equation for each value of t,

this system in general will require an infinite number of un-

knowns h. for a solution. That is, the linear operator is

allowed to be a smoothing operator of infinite extent.

The formal solution for this linear operator may be found

in terms of its transfer function

OD
H(W) = 0

s=- 0o
hs e-iWS (3.53)

Equation (3.53) becomes

Z s
t=- 00 00

00

s=- 00

-wiwt 00
e

s=-c O

dwis00
hee Ei

t=-0O

which is

T -iwt O0
t se= =

t=o 8--00

(3.52)

h xt-s

(3.54)

xt-s

hs eiWS
T
E

n---o
x e-iUM (3.541)
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O0
Xf(W) = E

n= - o O

OD
S(w) = Z

t=- o

xe~i =

ste-iwt =

equation (3.541) becomes

S(w) = H(w) X(w). (3.55)

Thus the formal solution, given by the transfer function of

the desired linear operator, is

h eiws = H(w) = (3.551)

The linear operator with coefficients h. is not necessarily

stable. The real part of H(w) is

Re[H(w)] [H+Ni =C + )
x

=Tx + S
2XX

(3.552)

100.

Letting

and

T

n=o
x~aeiufl (3.542)

T
E

t=o
(3.543)st e-iwt

xx



and the imaginary part

Im[H(w)] 2 H L L - X2 2 X 2XX

(3.553)

This result corresponds to that given by Smith (1954)

obtained by requiribg that the sum of squared errors

T OD
I= Z (s - Z hst-s

t=o s=-co

(3.56)

= 2T / IS(w) - H(w) X(w)2 dw > 0
- 1

be a minimum. We see that the linear operator thus found,

with transfer function H = S/X yields the minimum value

min = 2TT f TS(w) - X(w)12 dwmm7

(3.561)

=21 / S(w) - S(w)2 dw = 0
-T

which is zero,
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In other words, the linear operator hs precisely trans-

forms the input xt into the signal st. Consequently the addi-

tion of more information, say in the form of a second input

time series yt, cannot improve this transformation in the sense

of reducing the error, which is already zero for all values

of t. That is, let us consider the transformation

OD 00

t =x +sE bsyt-s (3.57)
t S=-CO t s =-00D

where sb, Xt, yt are specified to be equal to zero for t < 0

and t > T. The formal solution of this equation is given by

the A(w) and B(w) for which the equation

S(w) = A(w) X(w) + B(w) Y(w), (3.571)

holds. This equation holds for A(w) and B(w) given by

A(w) = y (3.572)

B(w) =(-y)

where y is any number. The solution given by equation (3.551)

is the case for which y = 1. Since 7 is arbitrary there is

no unique solution for the a and b in equation (3.57).
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This condition is reflected in the fact that the coher-

ency matrix, given by,

!LX(W) I ((W) XX

(3.58)

(m)W 17{w) ZXC Y

is singular, that is, its determinant is equal to zero. That

is, since we have complete knowledge of st, and indeed may

represent s in functional form in terms of x b alone, as given

by equation (3.52), we can introduce no new information about

st into its representation in the form of an additional time

series yt* Further discussion of this type of problem is

given in Section 5.7.

3.6 AveraanZ and the Probabilistic Point of View

For practical purposes one may only utilize linear opera-

tors with a finite number of coefficients. As a result any

linear operator with an infinite number of coefficients must

be approximated by one with a finite number of coefficients.

Thus, for example, we must approximate the infinite linear

operator hs (-co < s < oo) of the preceding section by a fin-

ite linear operator, say h' (-m s < m), or, in other words,

approximate the transfer function
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O0
H(w) = Z

s=- OD
h~e'mi)s =3.- (3.551)

by the transfer function

M
H' (w) = E

s=-m
h e -ios (3.61)

Such an approximation procedure requires that a certain amount

of information contained in the infinite linear operator h8
be lost in order to obtain the approximate finite linear opera-

tor ht and consequently we shall need to utilize some type

of averaging process to carry out this approximation. One such

averaging process is to require that the sum of squared errors

00
I = O

t=0o

in.. M- iTT1

(s- h ei) 2 = 2r / JS(w) - H'(w)X(w) 2dw
t s=-M -1T

(3.62)

be a minimum. Smith (1954) writes this equation in the form

I = 2nf I X(w)2j - H ' (w)1 2 dw = 2i XX(H-H')(H-H') dw

(3.63)

since H = S/X.
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Thus, in many cases, even if one utilizes a purely func-

tional approach it is necessary to develop methods of averag-

ing in order to obtain certain desired goals. These methods

of averaging may be carried out with respect to certain de-

sirable criteria, where such criteria may be established and

justified from a purely mathematical or functional point of

view.

Although one may work with various averaging procedures

with no recourse to the theory of probability, in many appli-

cations it is not until probability theory is introduced that

certain procedures become meaningful in a physical sense. The

theory of stationary time series, as conceived by Yule (1921,

1926, 1927), and established in full generality by Khintchine

(1934), makes use of averaging procedures which were arrived

at from the probability point of view. This theory has

found many applications in pure and applied science. In fact,

Wiener (1942) emphasizes the probabilistic or statistical point

of view for engineering problems and applies the theory of

stationary time series toward their solution.

Although seismic records are not stationary in the sense

of Khintchine (1934), nevertheless one may treat sections of

these records as being approximately stationary and consequent-

ly apply statistical methods to their analyses (Wadsworth, et al,
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1953). Further discussion of this problem is given in Chap-

ter VI. For numerical computational purposes discrete time

series must be utilized, and so in the next two chapters we

shall present theory of discrete stationary time series. Much

of this theory was first established as a general theory by

the Swedish statistician and economist, Herman Wold (1938),

the work of Khintchine (1934) being confined to continuous

stationary time series.
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CHAPTER IV

THEORY OF DISCRETE STATIONARY TIME SERIES

4.1 .Ranom Processes

In a recent paper by Wadsworthet al, (1953), concepts

from the theory of stationary time series were presented.

In this chapter, and in the next, we wish to extend this

presentation in regard to discrete stationary time series,

and in particular to develop the concept of the predictive

decomposition of stationary time series. For more compre-

hensive presentations of the theory of discrete stationary

time series, the reader is referred to Wold (1938), Doob

(1953), and Wold (1953).

A discrete time series is a sequence of equidistant

observations xt which are associated with the discrete time

parameter t. Without loss of generality we may take the

spacing between each successive observation to be one unit

of time, and thus we may represent the time series as

* te lnt-21 t-l9 talue it+2n * n*i*ty *

where t takes on all integer values from minus infinity to
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infinity (- oD < t < co). Thus all angular frequencies w may

be required to lie between -n and 1T.

Any observational time series xt (-o < t < co) may be

considered as a realization of a so-called random process,

or stochastic process, which is a mathematical abstraction

defined with respect to a probability field. In many phe-

nomena, the number of observational time series supplied by

a random process is limited. It is often the case, especially

in economic applications, that only one time series is gen-

erated by a random process. Such a case, nevertheless, is in

full accord with the frequency interpretation of probability.

4.2 Stationary Time Series

A time series is said to be stationary if the probabili-

ties involved in the stochastic process are not tied down

to a specific origin in time; that is, the probability of

any event associated with the time t is equal to the prob-

ability of the corresponding event associated with the time

t + T, where t and T are any integer values.

For any stochastic process, one may form averages with

respect to the statistical population or "ensemble" of

realizations x for a fixed value of time t. Such averages

are called ensemble averages or space averages, and we shall
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denote such an averaging process by the expectation symbol

E. In particular the mean value m = E[x t] and the variance

o-2 = EC(xt - m)2] of a stationary stochastic process are

independent of time t. Likewise, the (unnormalized) auto-

correlation coefficients

#(T) = E[xt Xt+T] (4.21)

are independent of t, and constitute an even function of the

time lag T, that is

(T) = 4(-T). (4.22)

Also we have J#(T)j O(O) (4.221)

The normalized autocorrelation function is defined to

be

E[(x -m)(x -in))
#(T) = cx-( t+T-l (4.222)

E[xt-m)] 2

so that

4(i) = 1, h$(T)I 4 1. (4.223)

In what follows we shall assume that the mean value m is

equal to zero which we may do without loss of generality.

Also we shall utilize the unnormalized autocorrelation (4.21).
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There is another type of average known as a time aver-

age or phase average in which the averaging process is carried

out with respect to all values of time t for a fixed realiz-

ation x t(-oD < t < o) of the stochastic process. If a sta-

tionary process has the property that

T
T-.oo T Z (T) = 0, (4.23)

the process is called an ergodic process, and the ensemble

averages and time averages are equal with probability one.

As a result the autocorrelation of an ergodic process may

be expressed as the time average

lim t+T Xt. (4.24)
t=-T

4.3- The Autpporelation

The autocorrelation function #(T) is a non-negative

definite function, that is,

4(T) = $-)

N N
S Z l(j-k) a ak >' O, N = 1,2,... (4.31)

j=1 k=1
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$(0)

$(-1)

F (N)

# (0)

0 **

4 (-N)

0 0

(-N+1) * C0)

(4.32)

is symmetric, has its elements equal along its diagonal and

along any super or sub diagonal, has non-negative eigenroots

X 0 (j = 1,2,...N), has a non-negative determinant, and

has a non-negative definite quadratic form given by equation

(3.31). The non-negative definiteness of the autocorrelation

follows from the inequality (Wold, 1938)

N N
E E
j=1 k=l

N N
#(j-k) aa k= E E

j=1 k=1

N N

j=l k=l

N

E[a jakx j xk

a x )2] , 0

111.

(4.33)

for every real set of al,a2 ,...aN. Thus, the autocorrelation

matrix (N = 1,2,...)

O(I j-kl) a a k



4.4 The Soectrum

The property that the autocorrelation function $(T) is

non-negative definite is equivalent to its representation

by the Fourier transform

= I f cos wT d A (w) (4.41)
0

where A (w), called the integrated spectrum or the spectral

distribution function, in a real monotone non-decreasing func-

tion of w(O % w . rr) with A (0) = 0 and A (n) = u. This

theorem, usually known as the Wiener-Khintchine theorem, was

used by Wiener (1930) and was first used in this setting by

Khintchine (1934) in his development of the theory of con-

tinuous stationary time series. The theorem for discrete

stationary time series stated here was first given by Wold

(1938).

The inversion formula (Wold, 1938) expresses the inte-

grated spectrum in terms of the autocorrelation, that is,

A (w) = w + 2 c sin wT,O wo r (4.42)
T=1 T

Moreover, Wold (1938) shows that if Z 1$(T)j is conver-
T*=o

gent, then A (w) will be absolutely continuous, with the
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continuous derivative

A (w) = d A() =(w) = 1 + 2 Z (T) COS WT
T=l

= E (T) COS WT (4.43)
T=-C

In the remaining part of this thesis, we shall confine our-

selves to stochastic processes for which the spectral distri-

bution function A (w) is absolutely continuous and for which

El#(T)j < 0o, unless it is otherwise stated. Wiener (1942)

restricts himself to those processes where the spectral dis-

tribution function A (w) is absolutely continuous, whereas

Wold (1938) and Kolmogorov (1939,1941) treat such processes

as special cases.

The derivative 1(w) = A' (w) is called the spectral

density function, the power spectrum, or simply the spectrum.

Since C(w) is the slope of a real monotone non-decreasing

function A (w), we have

D(o 0 O (4.44)

and T(w) may be considered to represent the power density in

the time series xt (-oo < t < co). In order to have equal
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power at w and -w, let us define (w) to be an even function

of w, that is,

P(-W) = I(W), -nT ' W * IT (4.45)

Equation (3.41) thus becomes

TT

f
T

C(T= ITf cos wT w)d 2T
e JW F(W) d~w

(4.46)

and, in particular, we have

#(o) = --
Ti

f
-Ti

J(w) dw (4.461)

To show that the autocorrelations 4(T) as given by equa-

tion (4.46) is a non-negative definite function, we let

N -w
HN(w) = Zake-iok

k=1
(4.47)

where ak (k = 1,2,...N) is any arbitrary set of real numbers.

Then the quadradic form of the autocorrelation matrix is

a( -k) a ak =.
-T

T N N
E J
j=1 k=1

a ake O(w) dw

(4.48)
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which is equal to

' HN(w) HIW 1(w) dw = f IHN(W) 2 (w) dw > 0, N=1,2,...

(4.49)

Thus equation (4.31) is verified for $(T) given by equation

(4.46)

The important role played by the harmonic analysis of

a stationary time series is brought out by the Spectral

Representation Theorem due to Harald Cramer (1942) and others.

The theorem allows the time series xt to be represented by a

stochastic integral which involves the harmonic components

of the time series. For a statement of and a discussion of

this theorem, the reader is referred to Doob (1953, p 481),

who also gives the historical background of this theorem

(Doob, 1953, p 637).

4.5 Processes with White Light Spoectra

A process is said to have a white light spectrum if its

power spectrum has a constant value, that is,

1(w) = constant, -Tr w TT. (4.51)

In this section we wish to consider two types of processes

which have white light spectra, namely, the purely random
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process and the mutually uncorrelated process. Yor a further

discussion of these processes, see Doob (1953) and Wold (1953).

As a matter of terminology, one should distinguish between

the "purely random process" and a "random process". The pure-

ly random process is defined in this section. On the other

hand, a random or stochastic process designates any process

which generates one or more observational time series, and

such processes range from purely random processes to non-

random or deterministic processes.

A realization from a purely random process is the time

series t(-co < t < oo) where each Et is an independent ran-

dom variate from a single probability distribution function.

Therefore the joint distribution functions of the Et's are

simply products of this probability distribution function.

Consequently, we have

ECts] = E[EtI E[t I sft (4.52)

Such a process is stationary and ergodic. In order to norm-

alize the process so that it will have zero mean and unit

variance, we let

E[Et] = 0, E[2] = 1. (4.53)
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The autocorrelation function is then given by

$(O) E= 1

(4.531)

$(T) = E[ I=t+T Et E t+T] = 0, T = +1 + 2 + 3,...

An alternative assumption as to the nature of the [

leads to the definition of the so-called mutually uncorrelated

process. That is, if instead of assuming the t a t+T are

independent, we assume for a mutually uncorrelated process

that they are uncorrelated in pairs, that is

E[ts] = E[ t] E[Es] set (4.54)

which is the same as equation (4.52). That is, independent

random variables are uncorrelated, but the converse is not

necessarily true. Again we shall normalize the E as in

equation (4.53), in which case the uncorrelated random var-

iables Et are called orthogonal random variables. The

tt
orthogoniality is illustrated by

E[[ ] = 1,

E[t ]I = 0. t 4: s k4.55)
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In what follows, we shall assume all uncorrelated random

variables are normalized inthis manner (equation (4.53)) so,

alternatively, we may call them orthogonal random variables.

Since equation (4.531) holds for a (normalized) uncorrelated

process we see that this process has the same autocorrelation

coefficients as the purely rendom process. Also, an uncorre-

lated process is stationary and ergodic.

The spectral distribution function, equation (4.42), of

a purely random process or of an uncorrelated process is

given by

A (w) = w, o ' W < T (4.56)

and the power spectrum, by equation (4.43), is a constant

given by

1(w) = 1, -< W < T (4.57)

These processes therefore have white light spectra, and the

Et may be called "white" noise (Wiener, 1930).

In summary, then, the purely random process and the un-

correlated process both have white light spectra and have

autocorrelation coefficients which vanish except for lag

zero.
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4.6 Processes of IMovina Summation

An important theorem states that a time series with an

absolute continuous spectral distribution function is gen-

erated by a process of moving summation, and conversely. In

this section we shall define what is meant by a process of

moving summation, and then indicate in an heuristic way why

this theorem holds. For a rigorous proof, the reader is re-

ferred to Doob (1953).

For the fixed realization

0***t-l' t' t+1* t+2,... (4.61)

of a purely random process or of a mutually uncorrelated

process, the corresponding fixed realization of a process

of moving summation is

*..t-l, Xt Xt+1' xt+2,... (4.62)

where
00

= Z ok0nk, n = t, t.l, t.2,... (4.621)
Yn=k=-cODknk

Since two random variables are uncorrelated if they are

independent, whereas the converse is not always true, in what

follows we shall impose only the weaker restriction on the
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and thus only assume they are mutually uncorrelated (ie.

orthogonal) in the definition of the process of moving sum-

mation. (See Section 4.5). In particular, we assume

E[t ] = 0, E[ 2] = 1, E[ tts] = E[Et] ECS] = 0 for t + s.

(4.63)

The mean of the xt process is

ELxt = Z OkECit-k] = 0
k=-cM

and the variance is

ECx) = k
k=-) C

2CC OD 2E[ -k =- kk=-oo

The autocorrelation coefficients are

OD OD
#(T) = E[x txt+T] = E ct-Tat = Zt=-o t=-OD

otCt+T.(4.642)

We now wish to indicate why a process of moving summation

has an absolutely continuous spectral distribution function.
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Let x be a process of moving summation given by equation

(4.621). Define F(w) by

(4.65)F(w) = ke-ik
k=- o

which is the transfer function of the infinite smoothing

operator ck* Then, by equation (4.642) we have

C C 
o j-T

= c
2T -T j-T

O ok-iwk

k=- co

(4.651)

since

/1Te iWj eiwk dw =
InF

for integer j and k, by letting j-T = I,

2rr, j=k

0 jik

we have

$(T) = L.2rr / eiwTr 00 il0 -iwke E e E ke dw.
I=- o k=- o

(4.653)

Then, using equation (4.65), we have
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1T iWTI- T2 W(T) =w)(Te dw f IF(w) e Tdw
-1r , 2TT 11

(4.654)

which is in the form of equation (4.46) with the power spec-

trum

7(w) = IF(w)12. (4.655)

Thus the spectral distribution function

w
A (w) = / i (u) du (4.656)

0

is absolutely continuous.

Conversely, any process with absolutely continuous

spectral distribution is a process of moving summation, and

in this paragraph we wish to indicate some reasons for this

theorem. Because of equation (4.44) which states that the

spectrum (w) is non-negative for every value of w, we may

set

(w) = IF( w)1 2 = F(w) FGI) (4.66)

where F(w) is the Fourier series of any square root of (w).
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Let us represent this Fourier series by

OD -iwk
F(w) = E oke- (4.661)

k=-o

Using the coefficients ok we may define the process of mov-

ing summation

00
x = E Okit-k. (4.662)

k=-cOD

The autocorrelation of the process (4.662) will be given by

equation (4.642). The Fourier transform of this autocorrela-

tion function gives the power spectrum of the process (4.662)

which is the same as the original power spectrum in equation

(4.66). Thus the process xt given by equation (4.662) is a

process of moving summation which has the given power spectrum

(4.66).

Hence, for the process of moving summation represented by

CO
Xt =E Ckt-k' (4.621)

k=-cOD

the ok represents a linear operator, and the Et-k represents

white "noise". The transfer function is given by F(w) in

equation (4.65), and the power transfer function is then the
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power spectrum of the process, that is

J(w) = IF(w)12. (4.655)

Thus the time series x is the output of a linear system,

with power transfer function l(w), into which white "noise"

is passed. 6ince the ck may be an infinite smoothing opera-

tor, this system need not necessarily be realizable or stable.

In Section 5.1 we shall see that a unique realizable and

stable prediction operator may be found, which leads to the

predictive decomposition of stationary time series given

in Section 5.2.

Finally, let us note that processes of moving summation

are ergodic, and for a proof the reader is referred to Doob

(1953) and Wold (1953).
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CHAPTER V

THE PREDICTIVE DECOMPOSITION OF STATIONARY TIME SERIES

5.1 The Factorization of the Spectrum

In the preceeding chapter we saw that the power spec-

trum of a time series xt may be regarded as a power transfer

function of a linear system into which white noise tis

passed in order to obtain the time series xt as output. The

gain characteristic of this linear system is -/ (W) . The

problem of the factorization of the spectrum is the problem

of determining the phase characteristic so that the system

is physically realizable and stable, with minimum phase char-

acteristic for the gain v (W). Thus the transfer function

of the desired physically realizable minimum phase network

may be given by

B(w) = IB(w)I eig(W) -/ (w) e i(w) (5.11)

where-/ () is the gain, and G(w) represents the desired

minimum phase characteristic.

Kolmogorov (1939) gave the general solution of this fac-

torization problem. A rigorous exposition of his results may

be found in Doob (1953), and in this section we wish to give
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an heuristic exposition.

Let us first turn our attention to the properties of a

realizable, stable linear system with minimum phase-shift

characteristic. As we have seen in Section 2.7, the condi-

tions that the transfer function be physically realizable

and minimum phase is that it may be expressed as

CO
B(w) =O

s=o
be-iWS

b =0 for s < 0

o

s=o

(5.12)

(5.121)

(5.122)2b < 00,

=
s=0

be , =w + i o- (5.123)

has no singularities or zeros in the lower half X plane

(c- < 0). Under the transformation z = e (see Figure 3),

this last condition becomes that
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o
B(z)=

s=o
bs (5.124)

have no singularities or zeros for Izi 1 1. Under these

conditions, log B(z) will be analytic for Izi < 1, and con-

sequently has the power series representation

lo B
log B(z) = Eptzt for |z <,

t=o
(5.125)

and, as IzI approaches 1, this series converges to

ODiwt
log B(w) = P e

t=o

00 00
=PO + Z Pt cos wt - 1 Z Ptsin wt.

t=1 t=l

Let us now turn our attention to the power spectrum

(w). The spectrum T(w) is a real function of w, such that

1(w) = (-w), I(w) , -S r < w ' IT. (5.13)

Moreover, the following conditions on T(w) must be satisfied:

(w) = 0 (5.131)

at most on a set of Lebesque measure zero,
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and

f (w) dw < O
-T

Tr
f log (W) d~w > -CO.

-TI

Under these conditions, log ,(w) , which is an even real

function of w, may be expressed in the real Fourier cosine

series

ao

log - (w) = E at cos wt

where the Fourier coefficients a are given by

t 2T

2TT

f cos wt log,/ T(w) dw

cos wt log T(w) dw.

From this equation we see that at is an even real function of

t, that is

Ct -a . (5.136)
t -t
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Consequently the Fourier expansion (5.134) of log (W)

becomes

00
log 1(w) = 0 + 2 a cos wt. (5.137)

t=1L

Equation (5.11), which gives the transfer function B(w)

for the desired minimum phase network, is

B(w) = IB(w)l ei* = (w) ei (5.11)

where /() is the gain, and Q(w) represents the minimum

phase characteristic. By taking the logarithm of each side

of this equation, we have

log B(w) = log-I I(w) + i Q(w) (5.14)

which, by equation (5.137) is

log B(w) = a 0 + 2 Z a cos wt + i Q(w). (5.141)
t=l

Now equation (5.126) gives an expression for log B(w)

which was derived from the knowledge that log B(z) be analytic
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for IzI 5 1, whereas equation (5.141) gives an expression for

log B(w) derived from the knowledge that the gain IB(w) be

equal to -/ (w) . Setting these two equations equal to each

other, we have

OD OD
log B(w) = P0 + E pt coswt- 1E

t=l t
(5.126)pt sin wt

+ Z 2at Cos wt + i (w).
t=1

We therefore have

Re Llog B(w)] = log-I /(w)

= + E Pt cos wt
t=1

= a + Z 2at cos wt
S t=1 t

(5. 15)

so that

PO = a, (5.151)p = 2a for t = 1,2,3,...

where a (t = 0,1,2,...) is given by equation (5.135).

also have
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Im [log B(w)j = Q(w) = - _ sin wt

which, by equation (5.151) is

9(w) = -2 E a t sin wt.
t=1

This equation expresses the minimum phase characteristic

Q(w) in terms of the at (t = 1,2,...), which are computed from

knowledge of the power spectrum T(w) by means of equation

(5.135).

As a result the operator coefficients b may be deter-

mined in the following manner. Equations (5.12) and (5.11)

give

B(w) = b b e~W J (w) ei (w)
s=o

(5.17)

which, because of equations (5-15) and (5.161), yields

log B(w) = Re[log B(w)] + i Im~log B(w)]

= log.I /(w) + i Q(w)

=C 0 + Z 2 at Cos wt-i 2 at sin wt
t=l t=1

= + 2 E
t=1

at e~iWt
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Since

B(w) = elogB(w)

and using equation (5.12) we therefore have

CO a9 + 2t~ ODat- "
B(w) = bSeiWS = e + ( e

S=o

Letting A = w + i a- and making the substitution z = e

we have

ogao + 2 Ectza) 0 t-l
B(z) = Z bz S t=1

s=O
, Izi * 1.

By means of this equation, we may solve for the linear opera-

tor b in terms of the at. In particular, we have from equa-

tions (5.174) and (5.135) that

a blo = edw
0 b0 =e 2 > 0- (5.175)

Therefore Kolmogorov (1939) shows that the power spe,-

trum 1(w) may be factored in the following manner:
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T(W) = | B(w)I = I E
t=o

bte-it 2 (5.181)

where the linear operator bt may be determined from

b t= 0, for

b = e
1. /

bsz

t < 0,

log T(w) dw

(5.121)

> 0, (5.175)

OD t
th itz

(5.182)

The transfer function of the linear operator bt, given by

OD -iwt
B(w)= bte

t=o
5.12)

has gain

I B(w)I = (w)

and minimum phase @(w) given by equation (5.161).

fer function B(w) is the factor of the spectrum.

The trans-

Since
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bt = 0 for t <0, (

bo > 0

o 2
Z b tt=o

Z Ibti
t=o

< o

< co

Z b z + 0, for zJ 5 1,
t=o

(5.175)

(5.122)

(5.184)

(5.124)

the linear operator bo, bl, b2 *..is physically realizable and

stable.

In order to conform with Wold's notation, Kolmogorov

(1939) normalizes the bt so that b0 = 1. That is, he gives

B(w) = e 21 log (()

-1 Tr
e 2 o o TW

(5.19)

(1 + b1eiw + b2 eiw2 + .0.)
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where

log (w) = 2a0 + 4a cos w + 4a2 cos 2w + -. (5.191)

and

exp [2(a lz + a22+ ...) = 1 + b 1 z + b2 z2 + ... (5.192)

Kolmogorov (1939) concludes that the linear operator bt
has here the same significance as in Theorem 7 of the book

by Wold (1938). In the next section we shall examine this

theorem which is called the Predictive Decomposition Theorem

for stationary time series, and in Sections 5.3 and 5.4 we

shall see that this theorem is the fundamental theorem used

in the solution of the prediction and filtering problems.

For further discussion on the results of this section

see Theorems 4.1 and 4.3 of Chapter XII in Doob (1953).

The concept of the factorization of the power spectrum

is due to Cramer and Wold (Wold, 1938, p 123). As we shall

see in Section 5.5 (together with Section 2.8), Wold (1938)

factored the spectra of the autoregressive process and the

process of finite moving averages, both of which have ration-

al spectra, in order to yield the realizable and stable linear
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operator bt. Kolmogorov's method given in this section is

essentially a generalization of Wold's method to more gen-

eral spectra, that is, spectra which are not necessarily

rational functions. Accordingly we shall refer to B(w) given

by equation (5.181) as the Wold-Kolmogorov factor of the pow-

er spectrum.

Although Wold (1938) did not have Kolmogorov's more gen-

eral method of determining the operator bt (Kolmogorov, 1939)

Wold did anticipate correctly the existence of such an opera-

tor, and accordingly gave the results of the following two

sections.

5.2 The Predictive Decomoosition Theorem

In the preceding section we have seen that the power

spectrum _(w) may be factored in the following manner:

2 C -iws,2
1(w) = B(w) B(w) = IB(w)| = Z E bse

S=o
(5.181)

where

b 0s = , s< 0 (5.121)

b 0> (5.175)

o0 2b < O (5.122)
s=o

co
Z |bs < Co (5.184)

s=o
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and where

00
B( = bS W + (5.123)

S=o

has no singularities or zeros in the lower half X plane (- < 0).

In other words, the linear operator represented by bo, bl, b2 f***

is realizable and stable, and its transfer function B(w) has

minimum phase characteristic.

In Section 4.6 we saw that a time series with an absolute-

ly continuous spectral distribution function may be represented

by a process of moving summation. We see that equation (5.181)

may be used in place of equations (4.66) of section 4.6. In

other words we may replace the linear operator c of Section

4.6 by the realizable and stable prediction operator bt of

Section 5.1. Thus the process of moving summation is given

by
0o

Xt = Zb t =o t + bitt-l+ b2tt-2 + *.. (5.21)
S=O

which replaces equation (4.662) of Section 4.6. In this equa-

tion Et (-CO < t < o) represents a realization from a mutu-

ally uncorrelated process, the xt is the time series with pow-

er spectrum 91(w), and bo, b1 , b2 ,... is the realizable and

stable operator determined as in Section 5.1. More particu-

larly, the variables (t(-oo < t < o) have zero mean E((t)= 0,
unit variance E() = 1, and are mutually uncorrelated E( )
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= 0 for t + s, and consequently have a white light spectrum,

(see Section 4.5).

That all stationary processes with absolutely continuous

spectral distribution functions may be represented in the

form (5.21) is a special case of the more general Predictive

Decomposition Theorem of Herman Wold (1938), his Theorem 7.

That is, the more general form of this theorem (Wold, 1938)

is not restricted to processes with absolutely continuous spec-

tral distribution functions. Statements of and further dis-

cussions of this theorem may be found in Wold (1938, Theorem 7),

Doob (1953, Theorem 4.2 of Chapter XII, p 576) and Wold (1953,

Theorem 1 of Chapter 12.6, p 200).

Let us now state the Predictive Decomposition Theorem

for a stationary process with an absolutely continuous spectral

distribution: Given a stationary process xt (-co < t < co)

with discrete time parameter t, suppose xt (-co < t < o) has

an absolutely continuous spectral distribution. Then xt

(-oo < t < oo) allows the decomposition

xt = b Ot + b it- 1 + b2 tt- 2 + ... (5.21)

where the components (- w < t < oo) have the following properties

A. Each of the variables Et is linear in xt , xt-l Xt-2****
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B. The variables E have zero mean, ELiti = 0; unit

variance, [ ]= l2 and are mutually uncorrelated,
stt

E[ s4t] = 0 for s + t.
2 2 2

C. We have b0 >0, and b2 + b2 + b2 + ... Co.

D. The representation (5.21) is unique in the sense that

xt(-co < t < oo) allows no other decomposition of the

type (5.21) with components which have the properties

A, B, and C.

The predictive Decomposition Theorem, as expressed by

equation (5.21), renders the time series xt in terms of a

stable prediction operator b01blb 2,.., operating on the pre-

sent and past values Et.,t-j',t-2,*** of a realization of a

mutually uncorrelated process. That is, the value of xt is

expressed in terms of the present value Et and past values

it't-l* 1 tt-2, .. but no future values tt+l tt+2'*** In

other words, equation (5.21) represents a "predictive" de-

composition of the time series, xt*

Whereas Wold (1938) explicitly found the b01 b11 b2 ***

only for the auto-regressive process and the process of finite

moving averages which have rational spectra, Kolmogorov (1939)

gave the method of Section 5.1 which explicitly yields the

b0 ,bl,b2 ,... for processes with arbitrary power spectra I(w).
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In addition Kolmogorov (1941) shows that the decomposition

(5.21) is unique (Property D of our statement of the Decomposi-

tion Theorem). That is, there is only one sequence of con-

stants b01 b1 ,b2,... and only one sequence of random variables

Et satisfying the conditions of the T2heorem.

Let us now consider the predictive Decomposition Theorem

in the language of the engineer (Bode and Shannon, 1950). The

non-random or deterministic elements of a stochastic process

may be represented by a physically realizable and stable elctric

or mechanical network or filter. This filter has minimum phase

characteristic. The time function bt(t = 0,1,2,3,...) is

equal to the output obtained from the filter in response to

a unit impulse impressed upon the filter at time t = 0. That

is, the linear operator bt is the impulsive response of the

filter, and we shall call it the response function of the

stochastic process.

The random or non-deterministic elements of the stochastic

process are represented by the Et (-oD < t < oo), which may be

considered to be the mutually uncorrelated impulses of wide-

band resistance noise or "white" noise. The time series xt

(-co < t < oo) is the response of the filter to the white noise

input E.(-co < s < t). That is ts(-cc < s < t) may be re-

garded as an impulse of strength t,, which will produce a
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response tsbt-S at the subsequent time t. By adding the con-

tributions of all the impulses s(-c < s < t), we obtain the

total response, which is the time series x t

-00
x = Z b t-s. (5.22)

s=t

Letting t-s = n, we have

00
Xt n o bt-n = bott + bEt + b2 tt- 2 + ... (5.21)

n=ontn o -

which is the predictive decomposition (5.21).

Since the impulsive response of the filter is given by

bt(t > 0) with bt = 0 for t < 0, its transfer function is the

Fourier transform

co
B(w) = 2 bseiWS (5.23)

S=O

which has gain

IB(w)I = -i(w) (5.231)

and has minimum phase characteristic, given by equation (5.161).

The power spectrum of the tt, which is equal to 1 (-n < w I rr),

multiplied by the Dower transfer function of the filter, which



is JB(w)J 2, yields the power spectrum J(w) of the time series

xt. The transfer function B(w) is the Wold-Kolmogorov factor

of the power spectrum T(w).

We see that the Predictive Decomposition Theorem states

that any stationary time series (with an absolutely continuous

spectral distribution) can be considered to be composed of

many overlapping pulses, or wavelets, or responses, all with

the same shape b n where bn = 0 for n < 0. The arrival times

of these wavelets, and their relative weighting, is given by

the impulses t-n. The response function b , which is the

shape of these wavelets, reflects the dynamics of the process,

whereas the mutually uncorrelated impulses Es-t reflects the

statistical character of the process.

The wavelet shape bn is physically stable, that is, it

is the solution of a stable difference equation. The auto-

correlation function of the stochastic process is

E~xt t+T E[ E bs Et-s Z br Et+T-r]S=o r=o

o
=Z b bs +T. (5.232)

S=

Thus the autocorrelation function of the wavelet bs (where

b = 0 for s < 0) is the same as the autocorrelation function
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of the time series xt. As a result the energy spectrum of the

wavelet (see Section 3.3) is the same function as the power

spectrum of the time series xt, a fact of which we made use

in Section 5.1 where we determined the shape of the wavelet

bn from the power spectrum T(W) of the time series xt*

Since the filter is realizable and stable with minimum

phase, there exists the inverse filter which is also realizable

and stable with minimum phase. Let the response function of

this inverse filter be a (t >, 0) with at = 0 for t < 0, so

that its transfer function is

A(w) = B~1 (w) = a e , (5.24)
s=0 2 b e-iws

s=0

so that

OD -iws 1W
B~ (w) B(w) = aseio s be = 1. (5.241)

s=0 s=0

The relationships of the inverse filter, AW) with the

response at, to the filter B(w) with the response bt, both of

which are realizable and stable, are given in equations (2.78)

through (2.787) of Section 2.7. In Section 2.7 the response

functions at and bt are referred to as linear operator coef-

ficients,
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Accordingly, the white noise t (-co < t < co) is the

total response at t of the inverse filter to the input x

(-oo < s * t). That is, the xs(-co < s s t) may be regarded

as an impulse of strength xs, which will produce a response

xsat at the subsequent time t. Adding all these contribu-

tions we have the total response

-00

=xSat.s (5.25)
s=t

which, by letting n = t-s, is

0o
= E ax = ax + a x + a2xt-t non t-n 0 t 1lt-1 a 2 t2~n=o

'(5.26)

Since the present value xt and the past values xt-1 1 Xt-29***

yield the value of t, we see that knowledge of xt up to the

time t is equivalent to knowledge of Et up to time t. The

representation (5.24 ), which is the predictive decomposition

of the impulse it, will be called the inverse predictive de-

composition of the time series xt*

5.3 PredictionL of Stationary Time Series

The value xt+a of the time series at time t+, because

of the predictive decomposition (5.21), is given by



t+a s o bt t+a-s

= (bOt t+ + b it+a-i+ *..+ba jE t+l)+(b +ba+1t +..).

(5.31)

Let us now consider time t to be the present time with respect

to the filter; that is, time t is the time at which the compu-

tations are to be carried out. As a result, all values of the

time series x (-co < s < t) at and prior to time t are known

at time t, and consequently all values of the white noise f

(-co < s < t) at and prior to time t may be found by means of

the inverse filter, represented by

E = E a xs-n for -co < s < t. (5.26)
n=o

Thus the component

(butt + bu+15t- 1 + bu+2Et- 2+...) (5.311)

of the value of xt+, given by equation (5.31) may be computed

at time t, since the values tt't-l'tt-2,**. are available at

time t. On the other hand, the component
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(bo Et+cL + btt+1 a- 1 +***+ ba- ft+1) (5.312)

of Xt+, given by the predictive decomposition (5.31) can not

be computed at time t, since the values Et+1' Et+2'*00t+a

are not available at time t. In other words, the component

(5.311) is the predictable component of xt+a at time t, and

the component (5.312) is the unpredictable component of xt+a

at time t. That is, the predictable part of xt+a is made up

of the response due to the impulses Et' Et-ls It-2,... which

have occured at and prior to time t, and the unpredictable

part is made up of the impulses Et+1* Et+29**** tt+, which

occur between the present time t and the time t + a.

Thus Wold (1938) gives the following solution of the pre-

diction problem for stationary time series with absolutely

continuous spectral distribution functions. Since this

solution follows directly from the Predictive Decomposition

Theorem (5.21) which utilizes the operator bt, it was not

until Kolmogorov (1939) gave the method of section 5.1 which

explicitly yields the bt that the general solution of the

prediction problem was fully established.

Since the impulses Et are uncorrelated, Wold (1938) by

utilizing the Gram-Schmidt process of orthogonalizing random

vectors shows that the best linear forecast in the sense of

principle of the least squares is yielded by
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A

Xt+a = bJ t + ba+1tt-i + ba+2tt-2 + ... ; a = 1,2,... (5.32)

The forecast (5.32) is the predictable component (5.311).

For the forecast (5.32) the error is given by the unpredic-

table component (5.312), and Wold (1938) shows that the mean

square error, given by the expectation

m = ECxt+Ca - Xt+ai 2 = E[bot t+a + bit t+a-1 + ... + b*( t+1 2

(5.321)

is a minimum. Since E( ts ) = 0 for t + s, this minimum value is

Imin = E x t Xt+at2 = (b + b + ... + ba)E[E ]t

(5.322)

By letting E[[ ] = 1, we have

a-1
Imin =

n-o
(5.323)

thereby showing that the efficiency of the forecast decreases

as the prediction distance a increases. Since
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2L~ 0EE )2) 2 CO 2E~x ]I = E[( Z bs t-S_ = E[[ ] I b, (5.324)
s-0 t=0

the prediction error I tends toward E[x2 as the prediction

distance a tends toward infinity and hence for large values of
A

the prediction distance a the trivial forecast of xt+U = 0 has

about the same efficiency as the forecast(5.32).

Kolmogorov (1939) generalizes Wold's result (5.323) by

showing that the minimum mean square prediction error for a

process with a non-absolutely continuous spectral distribution

is given by

-1 2
I = Z bn. (5.325)

n=o

Let us use the Wold-Kolmogorov normalization, which is that

b = 1. Then B(w) is given by equation (5.19) and Imin becomes

Im exp log T(w) dw] (1 + b2 + ... + b )

(5.326)

Kolmogorov states that

exp [ I I log (w) dw] = 0 (5.327)
0

and consequently Imin = 0 if I(w) = 0 on a set of positive mea-

sure and also if the integral
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f log J(w) dw (5.328)
0

diverges, referring to this situation as the singular case of

Wold (1938). Thus we see the reasons for the restrictions

(5.131) and (5.133) in Section 5.1.

Doob (1953, p 584) points out that in the transformation

of discrete time series, with the spectrum B(w) to continuous

time series, with the spectrum W(w), the integrals

f log I(w) dw, j dw (5.329)
-r -00 1 + w

are finite and infinite together. The condition that the

second integral be finite may be referred to as the Paley-

Wiener criterion (Paley and Wiener, 1934), and Wiener (1942)

uses this condition in the same connection as Kolmogorov (1939).

Let us now summarize the solution of the prediction prob-

lem for stationary time series with absolutely continuous spectral

distribution functions as given by Wold (1938).

In order to obtain the predicted values xt+, from the values

xt, Xt. , xt.2 ,.. we first apply the linear operator

= Z a x _- for -co < s * t (5.26)
n=o
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to yield the values *.., tt-2 t-l0 Et, and then apply the

operator

A-

It+aL=os=o boA+s t-s

A
to yield the predicted value Xt+L. The operations on the past

values xt, xt-l, Xt-2 ,..., represented by equations (5.26) and

(5.32) may be combined into

A COD
Xt+ = E

S=o
ba+ s tt-s = Z ba+ S anxt-s-n.

S=o n-o

which becomes, by letting r = s+n, and recalling that a

for t < 0,

(5.33)

= 0

A 00
Xt+a = Zb+s E ar-sXt-r

s=o r=o

o 0o
= Z ( Z ba=sar-s) xt-r.(5.331)

r=o s=o

Let us define

kr (a) = E
S=o

ba+sar-s

so that equation (5.331) becomes
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A 0

Xt+a= Z kr(L) Xt-r* (5.333)
r'=o

A

This equation thereby expresses the predicted value xt+a in

terms of the present value x and past values xt, xt-2, Xt-3'

..., and has the same form as the pure prediction operator

(2.21) Chapter II except that we now allow the number of operator

coefficients k. to becomes infinite. Also the dependence of the

operator coefficients k. on the value a of the prediction dis-

tance, is indicated. We note that k ,(a) = 0 for s less than

zero, so that the operator is realizable. Also ks (a) is stable

since the operators at and bt are stable.

Further, Wold (1938) shows that

A A A A a
t+a = 1- a t+a- - 2 t+a-2 ... -a - ax1

(5.34)

and he also shows that the operator coefficients kr(a) satisfy

k (a) + a k0 (c-1) + a2ko(a-2) + ... + a k (1) + a = 0

k (a) + alk (a-l) + a2 k (ct-2) + .. * + a -k1 (1) + aa+1 = 0

(5.35)
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Figure 5 illustrates the least squares linear operator

for unit prediction distance. That is, the operator coefficients

are determined by the condition that the mean square prediction

error be a minimum. The operator is in the form of equation

(2.28) From the expression for (w) in Figure 5, we see that

time series is an autoregressive time series (see Section 5.5-B)

and thus the solution of the simultaneous equations given in

Figure 5 may be found by the method of the factorization of the

autoregressive spectrum given in Section 2.8.

In the remaining part of this section, we wish to compare

the solution of the prediction problem for discrete time series

with absolutely continuous spectral distribution functions as

given jointly by Wold (1938) and Kolmogorov (1939), with the

solution given by Wiener (1948) in his book Cybernetics. Since

Wiener works chiefly with continuous time series, and then trans-

lates his final results to the discrete case, we shall translate

his entire solution to the discrete case. In the main, this

translation consists of rewriting stochastic integrals of the

Stieltjes-Lebesque type by the corresponding discrete summa-

tions (i.e. rewriting stochastic integral equations as stochas-

tic difference equations) and converting all equations to the

same notation and conventions which we have used up to now.

Stochastic integrals are discussed by Doob (1953), who points
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out that they were introduced by Wiener (1923). In regard to

the conventions used, Wiener (1942, 1948) in his various sol-

utions of the prediction and filtering problems at times in-

terchanges with respect to our convention past with future on

the various time scales, that is, left with right in the basic

ergodic transformation, and also interchanges the interior and

exterior of the unit circle. For a further discussion of this

point, see Hammerle (1951). So that the reader may follow our

mathematical argument in relation to that of Wiener (1948), we

shall give the number of his corresponding equation in paren-

theses on the left-hand side of our equation. Also correspond-

ing equation numbers of Wiener (1942) are written in brackets

on the left hand side of our equation.

Wiener considers the ensemble of time series

O
(3.34),(3.940) E ot+T IT = Xt (4.621)

-O

generated by a process of moving summation (Section 4.6) so that

the process is ergodic and has an absolutely continuous spectral

distribution function. The autocorrelation function is

OD OD

(3.35) $(T) = E cSCS+T = cS+t Cs+t+T. (4.642)
s=-0 s=-OD
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The infinite smoothing operator coefficients cs (-n < s < 00)

are real, and the only significant quantity connected with them

is (T). Thus one wishes to replace them by a physically real-

izable and stable operator bt where bt = 0 for t < 0, for which

[2.038]
Z bsbS+ T

B=O
= ~(T)

which is the only independent statistical parameter of the time

series. We have called bt the response function of the time

series, that is, it is the shape of the wavelets which may be

considered to comprise the time series.

Wiener's method of determining bt is the same as that of

Kolmogorov (1939), which we gave in Section 5.1. Thus Wiener

puts

2r

() = Z

-ao

-00

_TTWI T (w) e dw

--Tw.

a cos tw
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(5.232)

(3.925)
[1.167] (4.46)

or

(3.926)
[2.605]

He lets

(3.927)

(4.43)

(5.134)



1 a OD
2(w) = } g(w) = } log BW = + E2 2 1oBw= + 1

(5.171)

which yields

(3.929)

[2.620]

which is

g (W) = B(w) (5.172)

exp(a 0 + 2 Ct e-it) = B(w)

B(w) = B(z=e~ I) =
03

E b seeis
s=o

is the boundary value on the unit circle Izi = 1 of a function

B(z) without zeros or singularities inside the unit circle, where

w is the angle.

(3.930)

(See Figure 3). Thus, we have

JB(w)12 = (w). (5-281)

The method of Wiener (1948) to determine the operator which
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[2.625]

(5.173)
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furnishes the optimum prediction for processes with absolutely

continuous spectral distribution functions is the same as that

of Wold (1938), which we gave in the first part of this Section.

Thus Wiener also starts with the predictive decomposition of the

time series

OD
(3.75) x = Z ht+TE-o = bOt + b tt-i+ b2tt-2 +

T=-t (5.21)

We note that in his equations, Wiener lets time -t for the

t time series correspond to time +t for the x time series.

That is, whereas Wold lets the past of the x time series

correspond to the past of the E time series, Wiener for the

E time series interchanges left with right, and accordingly

lets the past of the x time series correspond to the future of

the E time series. As we have stated.all the equations which

we give are converted to Wold's convention, i.e. the convention

which we have been using.

Wiener gives the inverse predictive decomposition

(3.77)

[Second E = E at+-- X ax + a xt. + a2xt-2
equation C-=-t
below (5.25)
2.038]
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which has the f ormal property

xt =Z t+T E
T=-t er = T

a. (2.762), (2.77)

The transfer functions are B(w) and A(w) which have the

representation

(3.80a)

(3.933)
2as=

a I.

and

(3.80b)

I B( ) eiWs dw

f/" A(w) eiWS dw
-TI

where

(3.82), (3.935)
(5.24)= A(w).

Thus the past and present of determine the past and present

of xt and vice versa; the Predictive Decomposition Theorem.

For the prediction distance a > 0, we have

(3.83)
[First
equation
below
2.038]

It+a T=- t-aL
bt+U+T t- T

bt+a+T E-T + -
T=-t

bt+a+T E-T
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= (bott+a + bitt+C -1+...+ bc itt+1)+(bc t + ba+ t..).

(5.31)

Wiener states that the first term of the last expression de-

pends on a range of ts of which knowledge of x for o- < t tells

us nothing, that is, it is the unpredictable component. The

mean square value of this unpredictable component is

(3.84) -t-1 2 U~l 2

[2.645] 1 min E t+a+T = b T. (5.323)
T=-t-A T=o

The best prediction in the sense of least squares is the last

term, the iredictable component, xt+,, given by

(3.85) A 00

Xt+a =Z- bt++T -= _ bt+a+T E aT+, x,

T=tT=t t~c+ ~ .. 3
(5.33)

The first term, the unpredictable component, is not necessarily

independent of the second term, the predictable component, as

Wiener (1948, p99) states, but we can only state (Wold, 1938) that

the unpredictable component is uncorrelated with the predictable

component. That is, the tt in general are not independent, as

Wiener (1942, p62) states, but in general are uncorrelated. Thus,
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we infer from Wiener that the unpredictable component will have

zero expectation for any fixed values of Et' t-l' tt-2'****

whereas we can in general assert that the unpredictable compo-

nent will be of zero expectation only when formed with respect

to the joint distribution of Ett Et-ls Et-20*** *

The predictable component (5.311) may be written

A00 CO 00
Xt+a = Z bn =Z bn+a Z aSxt-n-s (5.33)

n=o t n = 0 s=o

where n = t+T and s = t+o-- n = o-- T. Let us define the pre-

diction operator coefficients ks(a) so that

tO
A

(3.931) xt+a t-S ks (a). (5.333)
S=o

The transfer function K (w) may be found by applying the opera-

tor (5.333) to Xt= eiwt, and then dividing by e IWt, as in

Section 2.4. Thus we have

(3.87) Zb ea ae (tns) eiWt Ka (w)
n= ~S=nao s=o

(5.37)
iwt ODiwe Zk (a) e-is

s=O
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Let us put

B (t+ e t
t=o

00
K (w) = E

n=o

00
b n+

S=O

Z b e-u
n=o

= B (w) A(w).

Therefore, because of equations (5.24) and (5.36), we have

(3.88),(3.932)

[2.630]

Ka(w)
B (w)
B(w)

1 OD -io(t-aL)-- bt e
t=CL

1 2
=2TTB W)

O -iw(t-a) n iutZ e f B(u) e du
t-a -T

161.

(3.86

Then

(5.371)

as -iw(n+s)

s=0
aseiWS

(5.372)



2nTB(w) s=s1 o
e-iws - B(u)eiu(s+a) du.

-T

This equation may

(3*934) Ka(w)

be written

=E kr (c))er
r=o

B (w)

B (w)

i wa 1e z
i-ci

t=o
bte -iwt

= e i (

CO
= =

s=O

- -iwt

Z b e-iwt
0 t

ase~iws

we have
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b e wt

Since

(5.374)

(3.935) (5.24)



(3.936)

K (w) = k -iwr

r=o
e Ziw bte-i E a e )

t=o s=o

(5.375)

For prediction distance a = 1, we have

E kr eiWr e eiW(1-b 0  Z a e-iWs), a=1 (5.376)
S=o

kr(1) = -ar+1 o = -ar+1 , b0 =1.

Thus the prediction for one step ahead is

A

xt+21
O,

E ar+1 t-rr__o

and by step-by-step prediction, the prediction for any predic-

tion distance a may be found. This statement is equivalent to

equation (5.34) given by Wold (1938).

The prediction operator in the time domain is
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so that

(3.938)

(3.939)
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[2.635]

kt 2L

Utilizing equation (5.362) for Ka(w), and letting r = s+n, we

have

kt(a) = Se E ane
-IT n-=o

Eb ei dw
S=0

1 T / e t O es -w -iw(r-s)
2Trf e L+ Se- Z a r-s e

-T S=o r=o

l T iwt 00 -cir O 00
= p f eE e ( a a aZs b aa-2TT -ei (Z bCL+a a r-sU~

0 r S=o S=O

(5.381)

which is the Wold (1938) solution for kt (uY given by equation

(5.332).

As a final exercise let us take the Fourier transform of

the equation (5.332), which gives the filter characteristics

K (w) = Z k (a)e-wr = Z e-ior Z b +sar-s
r=o r=o S=O
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which is

K (w) Z b e-is Z ars e-iw(r-s)
s=o r=o

(5.383)

Recalling that r = s+n and that at = 0 for t < 0, we have

OD -iws
K (w)= Z bQ+B e

s5o

n
a e-iwn (5.384)

We recall from Section 5.1 that the Kolmogorov (1939) factor

of the power spectrum is

02 -iws
B(w) b -e

s 5
= A~ (w) (5.12), (5.24)

so therefore

B(w) e iwt =
2nT

/i

-Ti

T-

e iWS eiwt =

00) -iws iwt
Z be e dw=bts=o

o s4t

2w2 s=t

for integer s and t. Accordingly, by letting a + s = t in

equation (5.385) we have
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ba- = S11 B(w) eiw(a+s) dw.
-Tr

Let us define

Ba(w)= E b,+,
S=o

which, by equation (5.387), is

B (w)= e-iWS
S=o

Also, equation (5.24) shows that

00
A(w) = EZ

n=c

B(w) eiw(U+s) dw.

where B(w) is the Kolmogorov (1939) factor of the power spec-

trum. Therefore the transfer function Ka(w), equation (5.384),

becomes

D Go -iw
Ka(w)=( z ane~I ")( Z bo+se

n=o 8=0

- A(w) B (w) =
B (w)
B W (5.389)
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which by using equation (5.388) becomes our equation (5.373)

Ka ) e-s f Bueiu(a+S) du (5.373)
S=o -1-

which is equation (2.630) of Wiener (1942), (where the last

should be a + Z/ ), and is equation (3.932) of Wiener (1948).

Equation (5.389) for the transfer function for the optimum

prediction operator may be interpreted (Bode and Shannon, 1950)

as first passing the time series x (-oo < s < t) through the in-

verse filter A(w), which yields the impulses E (-xO < s : t),

and then passing the impulses through the transfer function

B (w) which yields Xt+a'

In conclusion, then, Wold (1938, pp 102-103) actually

obtains a coefficient function kt(a) (which in Wold's notation

is fa, t), to be used directly in making an optimum prediction

for a discrete stationary time series with an absolutely con-

tinuous spectral distribution function. Further, Wold develops

an expression for the mean square error of prediction, given

by equation (5.322). Wiener (1942, 1948) also obtains the

coefficient function kt (a) which in the notation of Wiener

(1942) is K(t) and the expression for the mean square error of

prediction. In addition, Wiener (1942, 1948) gives the r olution

of the prediction problem for the continuous station-ary time

series together with its analytic aspects and empnarosizes the
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applicability of these methods to electrical engineering prob-

lems.

d.4 The Filterinza Problem

The solution of the filtering problem for stationary time

series, continuous and discrete, with absolutely continuous

spectral distribution functions is given by Wiener (1942, 1948).

As in the case of the prediction problem the solution of the

filtering problem is a direct consequence of the Predictive

Decomposition Theorem. Again we shall translate the solution

of Wiener (1948) for continuous time series to discrete time

series, with his equation numbers on the left. The predictive

decomposition of the time series xt consisting of message plus

noise is

(3.89)
OD

t= mt + n = E bT Et-T. (5.41)
T=o

Since the message has an absolutely continuous spectral dis-

tribution function it may be represented by the process of

moving summation (see Section 4.6) given by

(3.90) mt T tt-T + E r Yt-T (5.411)
T=-C0 T=-COD

where the random variables E and y are mutually uncorrelated,

that is,
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EC(t] = 1, ECE tt+k] = 0 for k + 0,

EEt ] = 0, EEy 2] = 0 E t+k = 0 for k 0.

The predictable part of the message m(t+a), where a is the

(5.412)

lead, is

(3.901)
A
m t+ UT+a t-T

T=O
Z qT E t-T-L

T=O(

and the (minimum) mean square error of prediction is

(3.902) Imin
'^ 2 "' 2
Z qT + r T.

- O -O

From equations (5.41) and (5.411) we see that noise nt is given

nt =Z bT ft-T
T=O

q T E t-T - E r Tyt-T.
-=- O

Thus the autocorrelation #22 (t) of the noise is given by

(3.903)

2 2 (t) = E[nt+TnT

= Z (bItI+T
T=O

~ qlt|+T)(bT - qT)
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-l
+ Ez

T=-ItI

-|tj -1
+ E

-O

(bItI+T - tj+T T

q, t+T qT
00

+ _Z r Itj+T rT
-O

bI tI+TbT - E=g t|+T b -E- qbI t|+TT=o T=-I t|

E rltl+T rT.
r=- ao (5. 42Y

The autocorrelation $ 11(t) of the message is

(3.904)

411(t) = E[mItI+T flm)

(5.421)

T=- IO tI+T
rIt|+. r .

00

The cross-correlation $ 12 (t) of the message and noise is

(3.905) #12 (t) = E[mt+T nTI

E[mt+T(mT +n)- mt+T MT)
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T=0

00
+ T gltj+T q T +

T=- o



= E[m t+ (M% T + n 4]. 1 1 (-r)

00 00
= EC Z b er +t ET-r Z q0a ET - - q 1 1 (

er =-1 er =- t

(5.422)= E b t+T qT - 11(T).
T=-t

Let us define

(3.907)
00 w

B(w) = z bs iW
s=O

S=- O

00 -iws
R (W) =E rse *Zs=-o (5,423)

The Fourier transforms of the correlation functions 22(t),

(t), and 412 (t) are the power spectrum ( 2 2 (w) of the noise,

the power spectrum 1 1 (w) of the message, and the cross-spectrum

12(w) of the message and noise respectively, and are given by
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(3.906) 122 (w) = BB + QQ - Q - B+ R

()= Q + ER

11 2 (w) = BQ - QQ, - RE = BQ, - l(w). (5.43)

Therefore, we have

(3.908) 1(w) + 112(w) + 112 (w) + 122(w) = BB = IB(w)I2

(5.431)

In order to compute B(w), we must have the sum of spectra given

by the left hand side of this equation. Let us call this sum

that is

l) (w) + 2Re [ 12()' + 22(W). (5.432)

We see that (w) is the power spectrum of the time series

xt, equation (5.41), and thus 1(w) may be computed directly from

this time series. We factor 1(w) into B(w) B~w) according to

the method of Section 5.1. In addition, from equations (5.43)

we have

BQ = 112 (w) + [1(w) (5.433)
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(3.909) QB = 12(w) + Ill(W) = Ell () + 21(W)

because

(5 . 435)

Thus we have

(L) + 121(w)

B~w)T

Q(w) dw = 1.21T

rI
f.

-r
il.)'+;21 (*

B ~(1___)~

(5.437)

We let the inverse predictive decomposition of the time series

Xt = Mt + n be

OD = E agxt-s
s=O

- as ( mt-S + nt.s=O
(5.44)

which gives the prediction errors Et (for unit prediction distance)

of the time series xt Thus equation (5.413), which gives the
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predictable part of m(t+a), consists of reaveraging these pre-

diction errors by the realizable linear operation

A

Mt+cL qTO -
T=0 T=O

+a
ZTC a s(m tT-S

(5.441)

The transfer function Ha(w) of this linear operator is the

totality of transfer ratios obtained by letting m t + n =

eiwt in equation (5.441) and dividing by eiwt that is

(3.913)',

(3.941)

O
H (w) = E

T=o

T=o

w)

c a e-iw(T+S)

T+a s sa

q e iWT

00
E

8=0

neiw(n-)

00 -iw(t-a)Z e
T1

/
.4?T

() I+ 2 1 (W) eiwtdw.
Be do

(5.45)
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As Wiener (1948) points out, the equation for continuous

time series (Wiener's equation 3.913) which corresponds to our

equation (5.45) for discrete time series is the transfer function

of what electricians know as a "wave filter". The quantity a

is the lead of the filter, and may be positive or negative.

When it is negative, -a is known as the lag. Wiener also points

out that apparatus corresponding to this equation may be always

constructed with as much accuracy as we like, and he refers to

papers by Dr. Y. W. Lee.

The mean square filtering error (5.414) is

CL 2 00 22 o
Ii T2CI + Z rT (5.414)

mm -o -00

where the first term on the right depends on the lag -a, where-

as the second term does not. For infinite lag, that is, a = -0o,

the error becomes

O 2OD
(3.914) Imi (a-- ) o 0 2 = (0)L2 - 2 (5.46)

T=- 00 T=-)

because of equation (5.421), with t = 0. Equation (5.46) be-

comes
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(3.914)

Imin (a=- Go) = 1
2Tr

TI 2(

(w + E1 2 (w) + 12 1 (w) + E2 2 (w)

(5.461)

which is

Imin(c= 00)

Determinant of Coherency Matrix of Message and of Noise

Power Spectrum of Message plus Noise

(5.462)

Thus if message and noise were completely coherent, then

I (a=- o) = 0. The part of I in depending on lag is

(3.915)

2z q
D

/. T2TI

.Tr

al(w) + ;(w) eiWt dw

In conclusion, then, we see that the general solution of

the filtering problem for the time

averaging the prediction errors Et

series xt = mt + nt consist of re-

(for unit prediction distance)
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of the time series xt by means of the operator

0o
Mt+L E qT+CL t-T. (5.441)

T=0

Here the operator coefficients q are determined from

() Wwhich is the power spectrum of the message mt, from

21(w) which is the cross-spectrum of the noise nt and the

message mt, and from I which is the Wold-Kolmogorov factor

of the power spectrum J(w) of the time series xt = mt + n .

5.5 Time Series with Rational Power SDectra

Of particular interest to the working statistician are

those time series with power spectra J(w) which are rational

functions in z = e iw (see Figure 3).

A. Process of Finite Moving AveragZes

Let the stable response function bt be of finite extent,

that is

bt =0 for t < 0 and t > M,

b 0 0, b + 0. (5.51)

Then the predictive decomposition of the time series xt, with

this response function, is

Xt = be 0t + b, i + ... + t [t-M (5.511)
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which represents a stationary process with an absolutely con-

tinuous spectral distribution.

Strictly speaking, the process xt given by this de-

composition is defined to be a process of finite moving aver-

ages if white noise E (-a < t < oo) is a purely random process,

that is, if all of the components E are independent random

variables with the same distribution function. Nevertheless,

we shall also include in this defihition, those processes

(5.511) for which the tt(-oo < t < oo) represents a mutually

uncorrelated process. See Section 4.5. We shall let Et have

mean value zero and unit variance. Thus, the t (-o0 t OD)

is a process such that

E((t) = 0

E( 2) = 1

E ) = 0 s + t . (5.512)

The autocorrelation is given by

Mi- T
O(T) = E[x txt+T]= E b bt+T (5.513)

t=o

so that

((T) = 0 for |TI > M. (5.514)
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The power spectrum of the process of finite moving averages

is then

M K
(w) = $(O) + 2 Z 4(T) COS wT = E

T=1 T=-M
4(T) e iT (5.515)

which is a rational function in z = eiw . Let B(w) be the

transfer function

N -iws
B(w) = bs e

s=o
(5.516)

so we see that

(w) = B(w)
M

U~(~7 = JB(w)|2 =-
T=-M

is non-negative.

In general, an arbitrary set of coefficients

W(), $(1), (2),..., C(M) (5.52)

will not be such that the rational function

F M
#(O) + 2 Z C(T) cos wT = E

T=1 T=-M
4(T) e~ *

is non-negative, and hence it is not an acceptable function
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to represent the power spectrum of a process of moving aver-

ages.

Thus Wold (1938) gives the following theorem, his Theorem

12.

Theorem 12. Let Q(u) be the polynomial of order M obtained

from

(0) + T #(T) [z~ + Z
T=l

by the substitutuion z 1 + z = u. A necessary and sufficient

condition that 4(O), #(1), #(2),...(p(M) be the correlogram

of a process of moving averages (5.511) is that the poly-

nomial should have no real root of odd multiplicity in the

interval -2 < u < 2.

Thus for a sequence (5.52) which does fulfill the condi-

tions of Woldts Theorem 12, the function

4(o) + 2 E #(T) cos wT ) 0 (5.522)
T=1

is non-negative and hence may represent the power spectrum

I(w) of a process of moving averages. In order to determine

the response function bt (t = 0,1,2,...M) of the process with

this power spectrum (5.522), it is necessary to factor this

power spectrum into
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M
(w)= (C) + 2 Z

T=1

{(T) COS WT = B(w) B~u)

N -iws
B(w) = Z b s e

s=o

is free from singularities and zeros in the lower half \ plane.

Then the stable operator bt is given by

bt 'n

n1
f,

-Tr
B(w) eiWt dw, t = 0,1,2,..., M.

In order to carry out the factorization (5.523), Wold

(1938) gave the method which we presented in Section 2.8.

That is, we let 1(w), given by equation (5.523) be the 1(w)

of Section 2.8, given by equation (2.82). Then we determine

the stable finite linear operator bt from T(w) in the same

manner as given in Section 2.8. The inverse predictive de-

composition is given by

St = a0 xt + a 1 xt-1 + a2xt-2 + ... =
o
Z

s=o
asxt-s (5.526)

where the inverse linear operator at (see Section 2.7) is real-

izable, stable, and infinite in extent,
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The process of finite moving averages was introduced by

Yule (1921, 1926) and Slutsky (1927), and consequently was

the first stochastic process studied which was neither a

purely random or an uncorrelated process (Section 4.5) nor

a deterministic strictly periodic process (Section 3.2).

The solution of the prediction problem for such processes

for the special case in which

bt - - (5.527)

is given by Kosulajeff (19/).

B. The Autoregressive Process

The autoregressive process is a stochastic process for

which the response function bt (t = 0,1,2,...) is of infinite

extent, but the inverse response function at (t = 0,1,2,...m)

is of finite extent. Thus the inverse predictive decomposition

of an autoregressive time series xt of the m-th order is

m
E = a X + a mxtt-1 + ... + am5tm E a sxt- (5.53)

S=O

and the predictive decomposition is

0o
t = bost + btt_1+ b2 + ... b (5531)

8s- Sto
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where the operators at and bt are stable and inverse to each

other. See Section 2.7. Such a process is stationary with

an absolutely continuous spectral distribution.

Strictly speaking, in the definition of the autoregressive

process, the impulses E t which are independent with the same

distribution function, but we shall also admit Et which are

mutually uncorrelated. We shall let t be a process such that

EQ2E((t) = 1

ts

E([tJs) 0 S + t. (5.-o532)

The autoregressive process, or the process of disturbed

harmonics, was introduced by Yule (1927), and was a major step

forward toward the establishment of the general theory of

stochastic processes by Kolmogorov (1933) and Khintchine (1933).

Because equation (5.53) for the prediction error Et (for unit

prediction distance) has only a finite number of operator coef-

ficients, ao, a1, a2,...am, the prediction operator for any

prediction distance will require only a finite number of coef-

ficients, as seen by equation (5.34).

The autocorrelation function is given by
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$(T) = E [ xtxt+T ]= btbt+T
T=O

and the power spectrum by

I(w) = F.
T=- o

$(T)eWT B()2 _ I-- = 2 0
IA(w)12

B(w) = E
s=o

A(w) = B~(w) = z a se-i"s
S=O

IA(w)12  m e~ S12Z= aSe
s=o

m r e1 (5.537)
T=-M

where

S=O

184.

(5.533)

where

(5.534)

and

b se~ Ws (5.535)'

Since

(5.536)
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4-iwwe see that the power spectrum is a rational function in e

In general the rational function in e~ -i

[=m -1e ~Z r e~" (5.54)
T=-M

will not be a non-negative integrable function for -n < w 5 T.

The function (5.54) will be non-negative if the r0,r1,r2... rm

satisfy the conditions of Wold's Theorem 12, which we stated

in Part A of this Section in connection with the process of

finite moving averages. The function (5.54) will be integrable

for -1T < w * TT if the polynomial

M mT
z I rTz (5.541)

T=-m

has no roots of modulus one. If these conditions are satis-

fied, then we may let the rational function (5.54) represent

the power spectrum 1(w) of an autoregressive process. Then

the inverse power spectrum

J(w) = r -=e = r + 2 Z r COS WT.
I(w) T=-m T=1

(5.542)

?nay be factored according to Wold's method given in Section

2.8 so that
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.(w) = A(w) A~w (5.543)

where

m
A(w) = z a eiS (5.545)

s=0

has no zeros or singularities in the lower half A-plane.

Then the spectrum is given by

I(w) = A = B(w) ETET (5.546)

where the factor

- = B(w) (5.547)

is also free of singularities and zeros in the lower half

A-plane. In Figures 6 and 7, the various time and frequency

functions of a particular second order autoregressive process

are given. Two fundamental sets of difference equations (Wold,

1938; Kendall, 1946) exist for the autoregressive process

O
t= Z brtt-r. (5.55)

r=o

Let us multiply this equation by the equation for the inverse

decomposition at t+n:
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Z asxt+n-s = tt+n,
s=o

n > 0

which yields

x aX= F ,
t axst+n- s ' t+n r=o r t-r,

and, by taking the expectation of each side,

n > 0

we have

m
Z as ELxtXt+n-s =

s=o
n > 0 (5.553)

o0

Z b r E[E t+n t t-r],r=o

which yields the set of difference equations

M
z

S=o
a $P(n-s) = 0,

Let us multiply the process (5.55) by the inverse de-

composition at t-n:

Z asxt-n-s t-n * ', 0
s=o

(5.555)

which yields

t E asxt-n-s t-n br t-r' n > 0.

(5.556)
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Taking the expectation of each side, we obtain the other set

of difference equations

M
Z a s $(n+s) = bn, n > 0. (5.557)

s=o

The first m-1 linear equations of the set (5.554) are

$(1) + aj$(O) + a2 $(1) + ... + a1 #(m-1) = 0

$(2) + a 1 $(1) + a2 $(0j + ... + a$(m-2) = 0

$3) + a1$(2) + a2 $(1) + ... + am4(m-3) = 0

$(m-1) +a(i(m-2)+a 2 $(m-3)+ ... +am$(1) 0

$(m) +a1 $(m-l)+a 2 $(m-2)+ ... +a $(0) = 0 (5.56)

which correspond to the normal equations of the Gauss method

of least squares (equations (40) of Wadsworth, et al (1953)).

Thus, if we know the values of C(O), (l),..., $O(m), that is,

the first m lags of the autocorrelation function, we may com-

pute ao = 1, a1, a2, 0. am. It is this property which makes

the autoregressive process a fundamental model in statistical

work. That is, the statistician need only estimate the first

m lags of the autocorrelation to specify an m-th order auto-

regressive process. Under the autoregressive hypothesis, the

higher lags of the autocorrelation function may be found by

successive recursions of equation (5.554).
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C. The Markov Process

An autoregressive process of the first order as defined

in Section 5.5-B is a Markov process. For a more general

definition of the Markov process, see Feller (1950) and Doob

(1953). Applications of the autoregressive process and Markov

process to economic analysis are given by the author (1952).

In order to obtain a Markov process, we let m=1 in equa-

tion (5.53). Hence the impulse Et has the representation

tt ! Xt + a1xt-1 , ao = 1, la | < 1. (5.57)

The resoonse function b (t=0,1,2,...) may be found by re-

peated iterations of the difference equation

0 = bt + a1bt- 1, t = 1,2,... b0 = 1 (5.571)

which yields

bt = - ab 1 = (-a 1 ) . (5.572)

Thus the predictive decomposition of the Markov process is

0o OD
Xt = Z b st-s = Z (-a )s tt-s. (5.573)

s=O s=O
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The autocorrelation function is

0D

(T) = E[x tXt+Tj = E
t=o

btbt+ T
0D

= E (-a ) T > 0 (5.574)
t=o

which is

$(T) = (-a
OD 2t (-a 1)II

E (-a )2 2t=o (1-a )
(5.575)

Thus we see that the autocorrelation of such a Markov process

is an exponential which is the case of pure persistance. Equa-

tion (5.575) is the discrete time series analogue of equation

(16) in Wadsworth, et al (1953).

The spectrum I(w) is given by equation (5.534) with m = 1;

that is,

(5.576)
+a -io 2 ao =a 1 < 1 .

The prediction operator kt(a), given by equation (5.332), be-

comes

k (a) = b = (-a )a

k (C) = 0, for t = 1,2,3,... (5.58)
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so that the optimum prediction is given by

Xt+a = (-al)f xt. (5.581)

The filter characteristics of the prediction operator are

K (w) = Z k t(a)e-
t=O

= ( ) (5.582)

The mean square error of prediction given by equation (5.323),

becomes

'min 2 2 2, +

+ + a + + 2a-2
1 1+ *+ 1

(5.583)

Let x be a process with power spectra, which is a ration-

al function in e-iW.

I() = B 2
1A(w)12

m
A(w) =

s=O
ase iws

(5.59)

(5.591)
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and

B(w)= as~ . (5.592)
s=O

Here the polynomials A(z) and B(z), z = e~W, are required

to have no common factors, the roots of A(z) to have modulus

greater than one, and the roots of B(z) to have modulus greater

than or equal to one (6ee Figure 3). Then Doob (1949, 1953)

shows that the process xt, with spectrum J(w), is an hybrid

between an autoregressive process and a finite moving average

process. That is, we have

m
Z a xt-s = 't (5*593)

S=o

where y is the moving average

M

'yt = b s t-s (5.594)
S=o

with

E([) = 1.

E( t~s) =O0for s et. (5.595)
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5.6 Multiple Time Series

In this section, and in the next, we wish to consider

multiple discrete stationary ergodic time series with absolutely

continuous spectral distribution functions. We shall have to

modify our previous notation to some extent in order to accom-

modate the bulk of notation required. Let us consider the

set of stationary processes x (t), (j=1,2,...n) which we take

to be retal functions. From now on, where two or more second-

ary symbols appear,' subscripts will denote the particular time

series under consideration, whereas the time parameter will

appear in the parentheses following the symbol for the function.

We define the correlation functions (Cramer, 1940) to be

T
%jk(T) = E[x (t+T)x k(t)] =im 2 E x (t+T) xk(t).

t=-T

(5.61)

For j = k this equation gives the autocorrelation function of

xI(t), whereas for j + k it gives the cross-correlation func-

tion of x (t) and xk(t). We have

()j = 192p,... n (5,611)

which states that the autocorrelation function is an even func-

tion of T. For the cross-correlation functions, we have
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jk (kj(-T), k 4 j,

Since the time series x (t) are real functions of time t, the

correlation functions are real functions of T. From their

definition (5.61), the Schwarz inequality gives

I|jk (T)I $ I 1 (0) #kk (o) (5.613)

which provides a basis for normalizing the correlation func-

tions.

Cramer (1940) shows that these correlation functions may

be expressed as Fourier-Stieltjes integrals of the form:

Tjk 2T

TT

f
-TT

e LTIk (LO d-w, for J,k =l,2, ... no

(5.62)

The inverse transforms may be written as

OD

T=- OC

-iw k(T)

Here the Tjk(w) are the spectra of the set of stationary

processes. For j = k, we have the power spectrum of xj(t):
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(W) = Ijj(-w), j = 1,2,...n (5.631)

which is a positive real function of w. For j # k, we have

the cross-power spectrum o jk (t) and xk(t). The cross-

power spectrum, which is a complex valued function of the

real variable w, satisfies

(w) =kj(-w) (5.632)

and

Ijk(W) = Ikj(w) (5.633)

where the bar indicates the complex conjugate. Consequently,

we have

Ijk(w) jk(-w). (5.634)

Thus we see that the real part of the cross spectrum

Re [ Tjk(w)] = Re [ ljk(-w)] (5.635)

is an even function of the real variable w, whereas the

imaginary part
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Im[ Ijk(o)3 = -Im [ Ljk(-o)]

is an odd function of the real variable w.

By letting T = 0 in equation (5.62), we see that

#j(0) L 1.jrk T I T k -

-T jk~w Tr

k ]

0 f Rle jk(WI d~w

Let us consider the linear combination

n
x(t) = E a x (t)11 1 (5.65)

which defines the time series x(t). Here the weighting coef-

ficients a are real. If x (t), j = 1,2,...n, represents the

traces on a seismogram, and if a = 1, j = 12,...n, then

x(t) is the so-called Reber trace. The autocorrelation

of x(t) is

=T-poo 2T+ 1
T
Z x(t+T) x(t)

t=-T

nlim _ T
= Z Z a ak T-+Co 2T+1 E

j=1 k=1 t=-T
j(t+T) X k(t)

(5.66)

which is
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n
= E

3=1 k~
E a ak cjk(T).
:=1 0

(5.661)

Since #(T) is the autocorrelation function of the time series

x(t) it is an even function of T:

4dT) = c~(-T). (5.662)

The spectrum of x(t)

00
(D) = E

is given by the hermitian form

n n
#(T) e dT Z= E a a kj=1 k=1

which is a non-negative function of w, (Cramer, 1940).

matrix of hermitian form (5.67) may be represented by the

hermitian matrix

II lk(w)], for J, k = 1,2,..., n

which is
(w)

121 (W)

1fl(w)

* *0

(12 W

122 (W)

;n2(w)

** in()

... n(w)

(5.671)

(5.672)
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We shall call this matrix, which determines the spectra of all

possible linear combinations of x 1 (t),...., (t), the

coherency matrix. The elements of our coherency matrix are the

derivatives of the elements of hIiener's coherency matrix

(Wiener, 1930, 1942).

FVurther, for the time series x1 (t) and x 2 (t) with the

coherency matrix

1(w)

112 (W)
122(w)j (5.673)

the significant invariants of this Hermitian matrix are

cohl2 (w) =

L(w) (

which Wiener (1930) calls the coefficient of coherency of

xi(t) and x2 (t) for frequency w, and

er, (W) =

122(W)
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and

C2)1 (w 122(w) (5.676)

In (W)

which Wiener (1930) calls the coefficients of regression

respectively of x on x2 and of x2 on x1. Wiener (1930)

points out that the modulus of the coefficient of coherency

represents the amount of linear coherency between x (t) and

x2 (t) and the argument,the phase-lag of this coherency. The

coefficients of regression determine in addition the relative

scale for equivalent changes of x 1 (t) and x2 (t).

Cramer (1940) shows that the determinant

In (w) 122(w) - 12(w) 121 (w) (5.677)

of the coherency matrix (5.673) is non-negative. Therefore

we have

12 21.zi() 1. 12 2 l (u122 (w) (5.678)

so that the magnitude of the coefficient of coherency,

I12()
Icohl 2 (w)i = (5.679)

11(w )12 2 w
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E -CD 1 (T)e
T=- 00

OD
E:
S=- 00

2 ( iWs s ) e(Tse-iWT 22 () e-ios

T=- Z Cs=- CD

(5.68)

which is

OD 00CiDTr

Z E =-C 12 (T) 12 (r) - -e
r=- Co T=- CO r=- cDo

00 -iwiw(T -r)

T22
T=- coLL

(5.681)

or

Z en
n=- co

00 00 -iumO
Z w 12 (n+r) r 12 ( 2 e Z

r=- OD n=- 00 r=

This inequality states that for two stationary time series the

Fourier transform of the autocorrelation of their cross-correla-

tion cannot exceed the Fourier transform of the cross-correla-

tion of their autocorrelations.

As Wold (1953, Chapter 12.7, p 202) observesin view of

the abundance of possible variations and combinations available

202.
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(5.682)

lies between zero and one.

Inequality (5.678) may be written



in the extention of the theory of one dimensional stochastic

processes to multiple stochastic processes, the main difficulty

does not lie in developing formulae of great generality, but

rather in picking out those processes for further study that

merit interest from the point of view of applications. This

observation 'is particularly pertinent concerning seismic appli-

cations, where any statistical approach to the study of mul-

tiple seismic traces should originate from considerations of

the physical phenomena which generate these traces in time and

space.

As an example of multiple time series let us consider the

special case in which two stationary time series have the

predictive decompositions (see Section 5.2),

OD
x1 (t) = E b [t-s (5.683)

S=O

cc
x2 (t) = Z d yt-s

s=o

where the prediction error [t t l(t) represents a mutdally

uncorrelated process, that is,

E[[2] = 1, E[Et s] = 0, t + s,
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where the prediction error of x 2 (t) yT represents a mutually

uncorrelated process, that is

Ey 2] = 1, E[Tt s] = 0, t + s, (5.684)

and where the cross-correlation of the prediction errors, E

and Tt, is given by

E[Et t+T] =
p for T=a

0 otherwise.

The inequality (5.682) becomes

p2 'C 1.

The autocorrelation 41 1 (T) of x 1 (t) is

CO
T) = E[x 1 (t)X1 (t+T)] = Z b bs+T

S=o

and the spectrum is

l,(w) = B(w) B(w = IB(w)12

co
B(w) = E bse~WS

s=O
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Likewise we have

2 2 (T) = d S adS+T
S=o+

22(7) = D(w) D(w) = ID(w)|2j

D(w) = d e
S=O

(5.692)

The cross-correlation of x 1 (t) and x2 (t) for this special

case is

12 (T) = E[x 1 (w)x 2 (t)] = p E bsds+T-Cs=o
(5.693)

and the cross-spectrum is

12(W) = p Z
T=- CC

(5.694)(Z bSdS+T- e~
S=o

pe bsd s e-ium
n=-w0 s=O

= pe iwa D(w),
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Thus the coherency matrix, equation (5.673), for this special

case is

BU pe-iwaDBB pe D]

(5.695)

pewc BD DD

and the coefficient of coherency is

coh 2(W) - pe-iwa | |D , (5.696)

the magnitude of which is

1 P1 I 1. (5.697)

We see that the coherency of the two time series, x (t) and

x2 (t), depends on the cross-correlation of their respective

prediction errors, E and yt'

In general, if the magnitude of the coefficient of

coherency is equal to one, we say the two time series are

completely coherent; if equal to zero, completely incoherent,

For completely coherent time series, the coherency matrix is

singular.
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The study of multiple time series may lead into the con-

sideration of various structural systems, for example, recursive

systems and non-linear systems, (Wold, 1953). For any set of

multiple time series with well-defined moments, a theorem of

Wold (1948, 1953) secures a recursive representation in which

the endogenous variables form a recursive causal chain. Also

Wold (1953) discusses the conditions under which a unique pre-

dictive decomposition of a system of multiple time series may

be obtained.

The concept of coherency is an important one in the study

of seismic records. Computations carried out by the MIT

Geophysical Analysis Group indicate that seismic traces are

more coherent on the average in an interval containing a major

reflection than in an adjacent non-reflection interval. This

coherency property of reflections assists the visual detection

of reflections on a seismogram, and hence may be exploited in

the detection of weak reflections by statistical methods.

In these computations, the coherency was estimated through the

estimation of the various power spectra and cross-spectra.

The problem of how to estimate spectra from finite time series

is a major problem. In Figure 8, we show examples of corre-

lation functions and spectra computed according to the method

of Tukey (1949) and Tukey and Hamming (1949) from MIT Record

No. 1 (supplied by the Magnolia Petroleum Co.) over the time
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interval from 1.05 seconds to 1.225 seconds. Further discussion

of this Figure and of MIT Record No. 1 is given in Wadsworth,

et al, (1953) where also the method of Tukey and Hamming for

the estimation of power spectra is presented. Also the reader

is referred to MIT GAG Report No. 5 for an extention of the

method of Tukey and Hamming to the estimation of cross-spectra.

Under the hypothesis that a finite section of a seismic

trace is a section of a stationary time series, which we dis-

cuss in the next chapter, a good estimate of the prediction

operator for a single trace is one which yields prediction

errors which satisfy statistical tests of being mutually un-

correlated. Then another approach to the study of coherency

involves the examination of the cross-correlation existing

between the sets of prediction errors for the various traces.

Here again the estimation problem is a major problem.

Much of the book of Wold (1953) is devoted to the linear

least-squares regression method which is the method for the

determination of linear operators by the Gauss method of least

squares (Wadsworth, et al, 1953). In particular Wold considers

least-squares regression methods for time series from the

viewpoint of sampling theory, and -obtains conditions under

which empirical operator coefficients computed from a finite

amount of data are unbiased and consistentestimates of the

theoretical operator coefficients of the stochastic process.
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A simple test to determine whether the empirical operator

for a stationary time series is a good estimate of the theo-

retical operator consists of testing whether the empirical pre-

diction errors are mutually uncorrelated.

5.7 General Technique of Discrete- Prediction

In this section we should like to review the "General

Technique of Discrete Prediction" of Wiener (1942, Section

4.6). In particular we should like to question his tech-

nical point concerning the computation of power spectra for

finite time series because, for one reason, it leads to an

indeterminate solution in the application of his general

technique of discrete prediction to finite time series.

His technical point is that the correlation functions of

the finite time series x1 (t), (-N ' t : N), should be computed

by the formula

[4.625]

i(T) = x (n+T)X(n) i,j =ij 2~l-N n N N
-N * n+T N (5.71)

which, except for the constant factor (2N+1)~ , is the same

formula as used for the computation of the correlation functions

of finite time series considered to be aperiodic functions.
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xt( t) = 0 for t < -T and t > T (5.711)

in the computation of the correlation function (5.71).

As we have seen in Section 3.3 the phase and amplitude

spectra are given by

X (w) = ; x (t)e-iwt
t=-N

(5.712)

and the spectra by

N.
(W)= XI (W-TX() =

T=-N
ii (T)eIWT

which are terminating series in positive and negative powers

of e1iW. In equation (5.713) the correlation function $ (T)

is given by formula (5.71). Thus equation (5.713) represents

the spectra computed according to Wiener's technical point.

Wiener states that the most essential property of a single

(T) is that it may be written inthe form

211.

(5.713)

(See Section 3.3) Wiener (1930) also suggests formula (5.71)

for the computation of correlation functions for finite time

series. That is, in effect, Wiener (1930, 1942) assumes that

the finite time series xi(t) are aperiodic functions such that



A

(4.61) f et d A (w) (5.714)
-T

where A (w) is monotonically increasing; that is, the power

spectra 1 (w) must be non-negative. Letting i = j in equa-

tion (5.713), we have the power spectrum given by

ii(W) = E ((T) cos wT = X i(w) Xi(w) IX.(w) 2 - 0
T=-N

(5.715)

which is non-negative. Therefore we see that the condition

that the power spectrum JI(w) will be non-negative is satis-

fied for those cases in which we compute the spectrum accord-

ing to the aperiodic hypothesis given in Chapter III, that is,

according to Wiener's technical point as expressed by our

equations (5.713) and (5.71).

Wiener's second condition is that the quadratic form

(4.62) E E E E $ 1 (T-X) aTa. (5.716)
i j T \

must be non-negative. This condition is also satisfied for

the correlation functions computed according to Wiener's

technical point.

Instead of examining this quadratic form in more detail,

let us examine the hermitian form
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E (w) a. a (5.72)
i j

which because of equation (5.67) is non-negative. The coher-

ency matrix, which is the matrix of this hermitian form, is

given by equation (5.672) where the Jj(w) are computed by

Wiener's technical point, that is, by equation (5.713), to-

gether with equation (5.71). Explicitly, this coherency matrix

is

N
LCoh(w)] = [ [ (w)] = C 4 j$(T) e'WTI] = [ -jCTiX (W)]

T=-N

(5.722)

where i,j = 1,2,...n, and where the correlations #i (T) are

given by equation (5.71).

The hermitian matrix (5.722) for finite time series given

by Wiener (1930), and again by Wiener (1942), is singular,

that is, its determinant is equal to zero. This fact readily

follows from the representation

[Coh (w)] = [XS X 3. (5.723)

Let us now examine the solution to the prediction oroblem

for multiple discrete time series given by Wiener (1942', Section
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4.6). We shall write the equation number of Wiener (1942)

in brackets to the left of our corresponding equation. Thus

we start with the fundamental set of equations (discrete an-

alogue of Wiener-Hopf integral equation)

[4.635]

n CO

4lk(U+t) = z jk(t-T) q3 (T), t > 0 k =1,2,..n,
J1 T=0

(5.73)

the solution of which yields the linear operator qj(T) where

T = 0,1,2,... Since this set of equations need not hold for

t < 0 we shall define the residual for t < 0 to be pt*
(The p-t for t < 0 used here is Wiener's function bt for t > 0,

in his Section 4.6. To avoid confusion in this section we

shall follow Wiener's notation quite closely except, as before,

we let small letters refer to time functions and caoital letters

refer to frequency functions.) We have

[4.635]

n o 0 t > 0
lk(a+t) - z (t-T) q (T) =

=1 T0 - t < 0

(5.731)

where the residual f-t for t < 0 may be arbitrarily chosen
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so that the equation (5.73) is satisfied for t , 0. Let us put

no

E.-c k(n) e i

E
n--o

(5-732)- jk((W)

- ~j(w). (5.733)

Then we have

n co cc
-j= E t

Jj T=O t=-c00

-1

t=-oc

which is

00 1k (t)e i ( t- C)t=-co
n cc -iWT k -ITeI(t-T)

- j e qj(T) o jk(t-T)e
Jj To - 0

-o P-te-it (5.735)

or

215.

[4. 64]

and

[4.643

to

0z lk (a+t )e-iwt

P-t e-iwt (5.734)

q (n) e-i""

e- iot jk (t-T ) qj( T)



_ n co
e Elk ( Q.() k (MO =

j=1 t=1 Pt eiwt for k = 1,2,...n.

(5.736)

For n = 1, (the prediction problem for a single tiie

series), we have

eiWaX InlW - In W (W =

Let us factor the power spectrum so that

111(w) = IB(w)12 = B(w) BwT (5.741)

where

B(w) = b +
n
E b. e-s
1

(The b0, b 1 ,.. .b which we use here is our stable response

function bt of section 5.2, which in Wiener's notation is

do, ds *,* m). That is, Wiener assumes that (w) is given

by a terminating series in positive and negative powers of

e i so that it is the spectrum of a process of finite moving

averages. The factorization may then be carried out as described
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in Section 5.5-A. Here B(w), given by equation (5.742), is

to have no zeros or singularities below the real axis.

Then we have

[ei" - QL(w)J B(w) = P e . (5.743)
t=1 B(W)

Let us define et(t = 1,2,3,...) by

tO

t=l

t=o

co

t=1
bteiWt

eteiwt (5.744)

Then equation (5.743) becomes

- Qi(w)B(w) = E
t=l

iwtete -
s=o

bseiW(5-)

where the left hand side contains only non-positive powers of

e i, whereas the right hand side contains only positive powers

of e *. Thus each side is respectively equal to zero, so we

have
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b e-i(s-a) - Q (w) B(w) = 0, (5.746)

and solving for the filter characteristic Q2(w) we have

B ( ) e (s-.)
s=a.

b 2n f
IT

(5.747)

(5.748)B(u) eius du,

OD

Q(=) =2C
S=a

e-tWs-a) f B(u) eius du
-TT

(5.749)

which is equation (5.373).

For n = 2, (the prediction problem for double time series)

we have

[4.65]

[eiaw - Q (o U j1(w)

Le ia Q1 w) 112(w)

-2 1(w) Q2(U) s P elos
s=1

1 2 2 (w) Q2(w) S 
s=1

(5. 7.5)
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we have

[2.630]



where the residuals of the Wiener-Hopf equation (5.73) are

p. and cs (s = 1,2,3,...) for k = 1 and k = 2 respectively.

The determinant of these equations is

1(w) = [ (w) 121(wi E1l(w) 122(w) -2121(m) 12"

,222()J 
(5.751)

which is the determinant of the coherency matrix of the time

series x 1 (t) and x2(t). If we compute the coherency matrix

according to Wiener's technical point given by our equations

(5.71) and (5.713), the matrix will be singular, as we have

seen by equation (5.723). Thus the determinant of the matrix

of the simultaneous equations (5.75) vanishes, that is,

X1 1)(X) - (;X)(XX2 ) = 0.

Consequently, equations(5.75) have no solution, or an in-

determinate solution. In other words, Wiener by his technical

point, in effect, suggests that the aperiodic functional scheme

(Section 3.3) be utilized for multiple finite time series,

and hence the same type of difficulty is encountered for

multiple linear operators as we described in Section 3.5.

Thus ir his section 4.6, Wiener (1942) suggests that the
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geophysicist utilize a certain technical point for his compu-

tations. If the geophysicist does utilize this technical

point, and if he does utilize Wiener's method of determining

multiple linear operators given in the same section as the

technical point, the geophysicist will obtain nonsense results.

Thus if we are to use Wiener's general technique of dis-

crete prediction, which is a statistical technique, let us

estimate our correlation functions and spectra according to

formulae chosen for statistical reasons, and not for formal

mathematical reasons. In particular we refer to the method

of Tukey (1949) and Tukey and Hamming (1949) for the estima-

tion of power spectra. That is, under a statistical hypothesis

observational time series are not completely coherent, and

thus one should utilize formulae which provide estimates of

the theoretical coherency which actually exists between them.

Thus for time series which are not completely coherent,

the determinant of the coherency matrix does not vanish,

and equations (5.75) will have a solution for the coefficients

of the multiple linear operator as given by Wiener (1942) in the

remainder of his section 4.6.

For finite observational time series, the Gauss method

of least squares (Wadsworth, et al, 1953) takes into account

the empirical coherency existing between finite time series,

220.



and thus yields a unique solution for the empirical operator

coefficients.

In the practical task of computation, for example, on

a digital computer, one must utilize discrete approximations

of continuous integrals, as illustrated in Figure 9 in which

the trapezoidal rule is utilized. Figures 10 and 11 illus-

trate discrete approximations of sets of sine and cosine waves.

Finally, we note that Michel Loeve (1946) has obtained a

Predictive Decomposition Theorem for a non-stationary random

process which generates time series x(t) of finite time dur-

ation 0 E t t T. Karhunen (1947) also treats this decomposi-

tion problem. Davis (1952) applies this predictive decomposi-

tion to the prediction problem for non-stationary time

series. Since the time series are non-stationary, ensemble

averages are used instead of time averages. Thus the auto-

correlation function, which plays a central role in this

Predictive Decomposition Theorem, is given by

$(t,s) = E[x(t) x(s)] (5.76)

which now is a function of the two time instants t and s,

and is no longer a function of only their dIfference T = t-s

as for a stationary process. Toward the d etermination of the

applicability of this Predictive Decomposition Theorem to
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seismic data, an exploratory step would be to carry out com-

putations to determine what degree of statistical regularity

exists for estimates of the autocorrelation function (5.76).
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CHAPTER VI

APPLICATIONS TO SEISMIC EXPLORATION

6.1 The Response Function

From a physical point of view, the seismic trace is the

response of the system consisting of the earth and recording

apparatus to the impulsive source, the explosion. This system,

although usually very complicated, is susceptible to a deter-

ministic approach toward its analysis. The explosion may be

considered to yield an impulse, t, of relatively short time

duration, so that the impulse Et is equal to zero before the

explosion and is equal to zero a short time after the ex-

plosion. In some instances the impulse function Et may be

considered to be sharp impulsive disturbance of very short

duration. In other instances, for example, the occurence of

bubble pulses in seismic prospecting over bodies of water

(Worzel and Ewing, 1948), the shape of the impulse Et may

have a more complicated form.

The impulse Et yields the energy of the seismic distur-

bance. This energy is dissipated in various ways as it spreads

out from the source. Some of this energy is transmitted to

the geophones and recorded in the form of seismic traces.

Such recorded energy may be considered to be the response
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function to the impulse . The study of this response function,

that is, the response of the earth and recording system to

the seismic explosion, has led to many important contributions

to theoretical and practical seismology, and the reader is

referred to GEOPHYSICS. Instead of dealing with the response

function as such, which is a time function, one may deal with

its Fourier transform which is the frequency and phase com-

ponents of this function in the form of spectra.

Nevertheless, the complicated nature of seismograms taken

in seismic exploration many times precludes the study of the

overall response of the earth and recording system as a whole.

Also in the final analysis one is interested in the various

components of this total response, for example, one wishes

to separate components of reflected energy from those of

non-reflected energy.

In a sequence of fundamental papers, Norman Ricker (1940,

1941, 1943, 1944, 1945, 1949, 1953a, 1953b) proposes the

wavelet theory of seismogram structure. A seismogram, accord-

ing to Ricker is an elaborate wavelet complex, and the analy-

sis of a seismogram consists in breaking the record down into

its components.

Ricker (1940) points out that, according to the theory

of the propagation of elastic waves in homogeneous, isotropic
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media, a wave form remains unchanged as it is transmitted.

Thus a wave due to a sharp impulse, such as explosion, should

be propagated without change in form and received at a dis-

tance as the same wave form. Consequently in media strictly

obeying the elastic equations a seismogram should consist

of a succession of knife-sharp disturbances, due to waves

which have traveled different paths by refractions and re-

flections. Ricker goes on to state that if such a sharp and

clear-cut series of impulses did constitute a seismogram many

of the difficulties in seismic prospecting would disappear.

As we know, however, no such simple seismogram is received in

the propagation of seismic waves through the earth. Instead

he points out that we obtain more complicated seismograms,

F which are familiar to every geophysicist.

In order to exolain this complicated nature of a seismo-

gram, Ricker proposes his wavelet theory of seismogram

structure. The reader is referred to Ricker's work in which

he demonstrates mathematically and experimentally that a sharp

seismic disturbance, or impulse, gives rise to a traveling

wavelet, the shape of which is determined by the nature of

the absorption spectrum of the earth for elastic waves. The

shape of this wavelet, which is a time function, is the response

of the earth to the sharp seismic disturbance, or impulse.

A seismogram, then, consists of many of these wavelets, with
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different strengths and arrival times, due to disturbances

which have traveled different paths by refractions and re-

flections.

6.2 The Statistical Determination of Ricker Wavelets

Thus the seismogram may be visualized as the totality

of responses to impulses, each impulse being associated with

a disturbance which has traveled a certain path by refractions

and reflections. These responses, or response functions, are

the seismic wavelets or Ricker wavelets. The analysis of

a seismogram consists in breaking down this elaborate wavelet

complex into its component wavelets. In particular we desire

the arrival times of the theoretical sharp impulses which pro-

duce these wavelets or responses.

There are two basic approaches which one may use toward

the solution of this problem, the deterministic approach and

the probabilistic or statistical approach. In the determin-

istic aporoach one utilizes basic physical laws, for example,

in order to determine the shape of the wavelet, or the adsorp-

tion spectrum of the earth. At all stages in such an investi-

gation, one may compare mathematical results with direct and

indirect observation of the physical phenomenon.

In this thesis we are concerned with the statistical

approach. Such an approach in no way conflicts with the
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deterministic approach, although each approach has certain ad-

vantages and disadvantages which do not necessarily coincide.

The emphasis we place on the probabilistic approach is due

to its being the subject of investigation of this thesis.

In practice the two approaches may be utilized in such a

manner so as to compliment each other.

Let us apply the probabilistic approach to one specific

problem, which, as we shall see, is a problem treated by

Wadsworth, et al, (1935). Let us set up a hypothetical sit-

uation. Let us assume that a given section of seismic trace

is additively composed of Ricker wavelets, where each wavelet

has the same shape or form. We shall assume that the shape

of the wavelet is mathematically stable, that is, the dis-

crete representation of the wavelet shape is a solution of

a stable difference equation. Further, we assume that from

knowledge of the arrival time of one wavelet we cannot

predict the arrival time of another wavelet; and, we assume

that from knowledge of the strength of one wavelet we cannot

predict the strength of another wavelet. Finally, let us

assume that the seismic trace is an automatic volume control

(AVC) recording so that the strengths of these wavelets have

a constant standard deviation (or variance) with time.

The specific problem which we wish to consider is the

following: given the seismic trace described in the above
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paragraph, determine the arrival times and strengths of the

Ricker wavelets, and determine the basic wavelet shape. We

shall discuss a theoretical solution of this problem, and shall

also discuss a practical solution which involves statistical

estimation.

Let us translate our assumptions about the seismic trace

into mathematical notation for discrete time t. First let

the shape of the fundamental Ricker wavelet be given by the

discrete stable time function bt where bt = 0 for t less than

zero. That is, b0 is the initial (non-zero) amplitude of the

wavelet. Discrete stable time functions are discussed in

Section 2.6.

Let the strength, or weighting factor of the wavelet which

arrives at time t be given by it. That is, Et is a constant

weighting factor which weights the entire wavelet whose arrival

time is time t. The variable t is the theoretical knife-

sharp impulse of which the particular wavelet (i.e. the one

which arrives at time t) is the response. For example, if

no wavelet arrives at a particular time t, then E = 0.

In our discussion of the nature of the seismic trace, we

shall call the knife-sharp impulses it "random variables".

Our use of the term "random variable t " does not imply that

the variable it is one whose value is uncertain and can be

determined by a "chance" experiment. That is, the variable E
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is not random in the sense of the frequency interpretation

of probability (Cramer, 1946), but is fixed by the geologic

structure. Frechet (1937).describes this type of variable as

"nombre certain" and "function certaine" and Neyman (1941)

translates these terms by "sure number" and "sure function".

Another example of a "sure number" is the ten thousandth

digit of the expansion e = 2.71828..., which, although un-

known, is a definite fixed number. Since the knowledge of

working geophysicist about the entire deterministic setting

is far from complete, we shall treat this incomplete knowledge

from a statistical point of view. We thus call E a"random

variable", although we keep in mind that it is a "sure number".

Further discussions about this general type of problem may be

found in the statistical literature with discussions about

the theorem of the English clergyman Thomas Bayes and with

discussions about statistical estimation (Cramer, 1946;

Jeffreys, 1939). The relationship of the use of Bayes' Theorem

in statistical estimation to other methods of statistical

estimation is discussed by the author (1950).

Without loss of generality, we may center the knife-

sharp impulses Et so that their mean E[EtJ is equal to zero.

Nevertheless the following discussions may be carried out,

by some minor modifications, without centering the t*
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Our assumption about the unpredictability of the arrival

times and strengths of wavelets means mathematically that the

knife-sharp impulses Et are mutually uncorrelated random var-

iables; that is,

E[[ts , I = t. (6.21)

An explanation of the expectation symbol E is given in Section

4.2; mutually uncorrelated variables, Section 4.. Our assump-

tion that the knife-sharp impulses E are mutually uncorre-

lated with each other is an orthogonality assumption, and is

a weaker assumption than the assumption that the E are

statistically independent, which we need not make.

Returning again, for the moment, to our discussion about

the "sure" nature of the knife-sharp impulses Et, we see that

the assumption that they are mutually uncorrelated in time

and in strength does not hold in completely deterministic sys-

tem. Nevertheless, such an assumption is a reasonable one

again for the working geophysicist whose knowledge of the

entire deterministic setting is far from complete, and who is

faced with essentially a statistical problem.

In other words, we assume that knowledge of the arrival

time and strength of one wavelet does not allow us to pre-

dict the arrival time and strength of any other wavelets.
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In particular, we assume that an arrival time and magnitude

of a reflection from a certain reflecting horizon does not

allow us to predict the arrival time and magnitude of a re-

flection from a deeper reflecting horizon.

The use of AVC recordings means mathematically that the

strengths t have a constant variance, which without loss of

generality we shall take to be unity,

E ]= 1. (60211)~t)

Finally since we assume that the seismogram trace xt is

additively composed of wavelets, all with shape bt, and

strengths Et, we may write this wavelet complex mathematically

as

aD
x = Z b is t for t ti t * t2  (6.22)

s=o

where the time interval (t1 4 t < t2 ) comprises our basic

section of seismic trace. This equation includes tails of

wavelets with shape bt, these wavelets being due to knife-

sharp impulses t 1, 1 -1, Et -2,'* which occur before time

ti. Equation (6.22) is illustrated in Figure 12, in which

the top diagram shows the knife-sharp impulses t the center

diagram shows the Ricker wavelets bt weighted by these im-

pulses, and the bottom diagram shows the seismic trace x
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which is obtained by adding the wavelets of the center diagram.

For the purposes of our theoretical discussion, let us

assume that our assumptions about the time series x , equation

(6.22), now hold for all time. That is, we consider the math-

ematical abstraction in which equation (6.22) holds for all t,

where Et now represents a stationary mutually uncorrelated

process (Section 4.5). Thus equation (6.22) becomes

Xt E bst- for -o < t < Co . (6.221)
so

Equetion (6.221) is the mathematical representation of the

Predictive Decomposition Theorem of Wold (1938) for a station-

ary time series with an absolutely continuous spectral dis-

tribution function. For further discussion of this theorem,

see Section 5.2. Thus the infinite time series xt given by

equation (6.221) is a stationary time series with an absolutely

continuous spectral distribution, and the finite time series

xt given by equation (6.22) represents a finite section of

the infinite time series (6.221).

In other words, the Predictive Decomposition Theorem

states that a stationary time series is the summation of the

responses of a stable linear system to impulses E which have

uncorrelated strengths and arrival times. The response to

each impulse has the same stable shape or form bt, and the
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variance E ] of the impulses is constant with time.

In equation (6.221), the wavelet bt represents the dynamics

of the time series, whereas the impulses E represents the

"random" nature of the time series. The basic problem which

we wish to consider consists of the separation of the dynamic

from the random components of the time series, or seismic trace.

Will the computation of the Fourier transform of the trace

effect this separation? The answer is no because it merely

transforms time information into equivalent frequency infor-

mation. As an illustration, let us consider the following

example.

To avoid difficulties with end effects, let us assume,

for this example, that the wavelet bt damps sufficiently

rapidly so that we may let

bt = 0 for t > M. (6.23)

Then the predictive decomposition becomes

xt = b . (6.231)t st-s*
s=o

Also, for this example, let us assume the trace for t1 % t 1 t2

consists of only those responses to impulses t which arrive

for times t 5 t % t2  - X. The Fourier transform of this

section of the trace becomes
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N ios 2 -io(t-s)
Z e ) ( 2-

Niw t 2 41 IWt)

=CZ be WS e Z t e
S=o t=t

= B(w) I(w) (6.232)

where B(w) is the Fourier transform Ior spectrum, of the Ricker

wavelet and I(w) is the Fourier transform of a realization of

the uncorrelated knife-sharp impulses. Although the Fourier

transform X(w) contains the dynamic and random elements of a

seismic trace, it does not help us to separate the dynamic

component B(w) from the random component I(w) since X(w) is

the product of the two.

In order to separate the random components Et from the

dynamic component bt of the seismic trace one may use

statistical method of averaging. The basic probabilistic

approach from a theoretical point of view consists of the
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following operations on the mathematical abstraction of the

seismic trace, (i.e., the stationary time series xt, given

by equation (6.221)):

(1) Average out the random components E t so as to yield

the wavelet shape bt*

(2) Using the wavelet shape thus found, remove this wave-

let shape from the trace, thereby leaving, as a residual, the

random components 4 (which are the prediction.errors for

prediction distance a = 1).

If one wishes to filter the seismic trace (see Section 5.4)

one further step is added, namely:

(3) Reaverage the prediction errors Et by means of a

stable linear operator q so as to approximate the desired

output or message mt+,. That is, compute

O

mt+a ~ q a t(5.441)

which is optimum filtered time series in the sense of least

squares. In Section 5.4 we describe how the linear operator

q is determined from the spectra and cross-spectra of mes-

sage and noise.

The theoretical procedure for carrying out these opera-

tions has been treated in detail in our discussion of station-

ary time series (with absolutely continuous spectral distri-
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butions) in the oreceding chapters. Let us review this

theoretical procedure for infinite stationary time series.

(1) Compute the autocorrelation function of the time

series
T

~(-* Tlo 2T+1 t-T t+T t+T

= Z btbt+T = b-bT + b bT+l + b2bT+2
t= 

(5.232)

This computation averages out the random elements E and

preserves the dynamic elements bt in the form of the auto-
OD

correlation function btht+T of the wavelet. That is
t=o

the autocorrelation of the time series xt is the same function

as the autocorrelation function of the wavelet bt*

From this autocorrelation function, compute the shape bt

of the wavelet in the following manner. Take the Fourier trans-

form of the autocorrelation function which yields the power

spectrum T(W) of the time series xt, which is also the energy

spectrum IB(w)1 2 of the wavelet bt; that is

e e (W = |B()2 (6.24)
T=- CC

where
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B(w) = t (6.241)
t=o

is the Fourier transform of the wavelet bt. Thus we have

2
determined IB()j2 but not B(w). Although there may be many

wavelet shapes which yield the energy spectrum IB(w)1 2, all

of these wavelet shapes are unstable, except one. Therefore

it is not unreasonable to assume that this unique stable

waveletis the wavelet generated by a physical phenomenon,

and that the unstable ones are not. The Fourier transform,

B(w), of this stable wavelet may then be found by the Wold-

Kolmogorov method of factoring the power spectrum (see Section

5.1) expressed by

T(w) = |B(w)|2 B(w) ET (5.181)

where B(O\) is required to have no singularities or zeros in

the lower half A plane, where A = w + I o- . In the language

of the engineer, B(w) is a transfer function with minimum

phase-shift characteristic. Having thus determined B(w),

the stable wavelet (or linear operator) bt is given by

bt = ! B(w) eiWt dw. (6.242)
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(2) From this wavelet shape bt, we find the inverse wave-

let shape at, where at is equal to zero for t less than zero.

If we let the bt represent the coefficients of a linear opera-

tor, then the at are the coefficients of the inverse linear

operator (Section 2.7). Thus the values of at are found by

at =0 for t <0,

aob0 =-1,

t
Z at- =0 for t = ,2,3...

sCo (2.785)

Since the wavelet b is stable, the inverse wavelet at is also

stable. Let A(w) be the Fourier transform of at, that is

A(w) = a se . (2.791)
S=o

Then A(w) and B(W) are related by

A(w) = B m) (2.795)

and A(w) also has minimum phase-shift characteristic. Swartz

and Sokoloff (1953) in their Figures 12 and 13 plot the atIAM0I
(in reverse manner) and Afor empirical prediction operators.
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The reciprocal of IA(w)l then gives IB(u)l which is the ab-

solute value of the wavelet spectrum.

We use the inverse wavelet shape at to remove the wave-

lets, which are of shape bt, from the time series xt, by com-

pressing the wavelets into the knife-sharp impulses Et. That

is, the linear operator at is the prediction operator for unit

prediction distance, and the prediction errors E are yielded

by the computation

CO

E asXt. (6.25)

To see that this computation does yield the E we use the

predictive decomposition (6.221) for x and thus obtain

Co o co
Za x = Z a8  E b Ts t-s s Tt-s-T
S=O S=O T0o

Co 00
S E a E bn-s (6.251)

S=O n=s

Recalling that br = 0 for r < 0, and using equation (2.785),

we have

aO o0 00

Z aSt- = ( E asbn-s Et-n * (6.252)
S=o n=o S=O
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as xt- Et (6.253)
s=O

which is the prediction error, or knife-sharp impulse.

Thus by these theoretical steps we may separate the

dynamic component, represented by the response function or

wavelet shape bt, from the random component, represented by

the knife-sharp impulses Et which represent arrival times and

strengths of the wavelets which comprise the time series, These

theoretical steps are illustrated in Figure 13. In this Fig-

ure, as in others, we plot the discrete time functions as

points and then draw smooth curves through these points.

The practical solution of the problem of separating the

dynamic and random components of a finite section of seismic

trace involves statistical estimation. One method consists

of estimating the prediction operator, or inverse wavelet

shape, directly from the finite section of seismic trace.

For this purpose one may use the Gauss method of least squares

as described in Wadsworth, et al (1953). Since the method

described there is more general, let us write down the equa-

tions to be used for our specific problem in which we consider

only one trace xt for a prediction distance equal to one.
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Let us note these differences in notation: the prediction

distance k of Wadsworth, et al (1953) is our a; the operator

coefficients a (s=O,1,...M) of Wadsworth, et al, are respec-

tively our operator coefficients k (s=0,1,...M) of equation

(2.21); and the operator coefficients b8 for the y-trace of

Wadsworth, et al, are not our operator coefficients b. in

this thesis. In other words, our use of the symbols as and

bs is different from the use of the symbols a. and b. in

Wadsworth, et al (1953).

Then utilizing our notation, equation (37) of Wadsworth,

et al (1953) becomes for the special case of our problem:

A M

(37) t+1 = c + Z k5  Xt-s (6.26)
s=o

where we use the same notation except for the differences

we have just noted. According to our convention, we have

let the spacing h=l, so that the running index t is the same

as the running index i. Equation (6.26) is equation (2.21)

with a=1., except that a constant c also appears in equation

(6.26) to take account of the mean value of the time series,

since now we do not require the mean to be zero.

The operator time interval (Wadsworth, et al, 1953) is

chosen to be the time interval of the section of our hypo-
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thetical trace which we assume to be a section of a stationary

time series. The normal equations (40) become

(40)

cn + Z k E xt-S E xt+1
S t t

c X t-r + E (k E Xt-r Xt-s t-r xt+l, for r=0,1,...
t s t t

(6.261)

where, as in Wadsworth, et al (1953), summations on the index

t are for t = N-1 to t = N+n-2 since a=l, and all summations

on the index s are for s=0 to s=M. The solution of the norm-

al equations (6.261) yields the operator coefficients c, ko,

kl,...kM. Then the inverse wavelet shape, at, is given by

equation (2.281) which is

a0 = 1, a = -ko, a2 = -k1 ,..., m = -k (2.281)

with m = M+l. As we have noted in Section 2.2, although

both at and kt represent the coefficients of the same opera-

tor, as seen by equation (2.281), we call at the standard
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form of the prediction operator. Also as we have noted, our

ko, klk 2 ,...kP in equation (2.281) are respectively the

a a a2, ... aM of Wadsworth, et al, (1953). The constant

c of equation (6.26), which adjusts for the mean value of the

empirical trace, is not used in determining the shape at of the

wavelet. Since a0 =1, the inverse wavelet at may be called a

"unit" inverse wavelet.

The shape bt of the hicker wavelet may be readily computed

by means of equations (2.785), which may be rewritten in terms

of the prediction operator k5 of equation (6.26) as

bt = 0 for t < 0

b 1

mM
bt+1= Z a. t+l-s = kbt-s, for t > 0. (6.262)

s=1 s=o

That is, the wavelet shape bt for t > 0 is determined by

successive step-by-step predictions from its past values, where

we let the initial values be bt = 0 for t < 0 and bo = 1.

As we have seen, the Gauss method of least squares des-

cribed yields an empirical estimate of the theoretical pre-

diction operator, or inverse wavelet shape. This empirical

estimate has certain optimum statistical properties under

general conditions. For a treatment of the optimum proper-

ties of linear least-squares estimates, see Wold (1953).

A good estimate of the prediction operator should yield

prediction errors which are not significantly autocorrelated.
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In other words, the prediction errors Et should be mutually

uncorrelated at some preassigned level of significance. Let

it be noted that we are confining our attention to the hy-

pothetical section of the trace which we assumed to be a

section of a stationary time series; that is, we are deal-

ing with the prediction errors in the so-called operator

time interval. For example, if the prediction errors are

significantly autocorrelated, more coefficients may be re-

quired in the empirical prediction operator.

In Figure 16, in the left hand diagram, we show the pre-

diction operator a computed for trace N650 for the time in-

terval 0.350 seconds to 0.475 seconds on MIT Record No. 1

(supplied by the Magnolia Petroleum Co.). This seismogram is

illustrated and described in Wadsworth, et al (1953). In

the computation of this inverse wavelet shape, as, we used

equations (6.261) to find the k8, and then used equations

(2.281) to find the as* In the right hand diagram of Figure

16, we show the inverse prediction operator, which is the

shape of the Ricker wavelet bt. The shape of the Ricker

wavelet was "predicted" by means of equation (6.262). In

these computations, we used discrete time series where the

spacing h = 2.5 milliseconds. In plotting as and bt we

followed our usual procedure which is to plot discrete time
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functions, such as as and bt, as discrete ooints, and then to

draw a smooth curve through these discrete points. Also in

Figure 16, the time axes are shifted by one discrete time unit

(which is 2.5 milliseconds), which is not the convention we

have used in our other Figures. Thus in Figure 16, a = 0

is plotted at time lag s = 0, and ao = 1 is plotted at time

lag s = 0.0025 seconds. Similarly b.1 = 0 is plotted at time

t = 0.OCOO seconds. As is our usual convention, the prediction

operator as is plotted in the reverse manner, as described

by Swartz and Sokoloff (1954); that is, the time lag s runs

in the positive direction toward the left. Swartz and Sokoloff

(1954) also describe the filtering action of discrete linear

operators, and their relation to the continuous response func-

tions of electric filters.

Here we have described a statistical method to determine

the shape of a Ricker wavelet. Alternatively, from other

considerations, one may know the shape of the seismic wave-

let. Then the prediction operator, or inverse wavelet shape,

may be computed by-means of equations (2.785).

So far we have confined ourselves to a section of seismic

trace which we assume to be approximately stationary. The

prediction operator transforms this section of trace into the

uncorrelated prediction errors Et, the mean square value of



which is a minimum. As we have seen the operator cannot pre-

dict from past values of the trace the initial arrival of a

new wavelet, and thus a prediction error tt is introduced at

the arrival time of each wavelet. Nevertheless, for times

subsequent to the arrival time of the wavelet, the prediction

operator which is the inverse to the wavelet can perfectly

predict this wavelet, thereby yielding zero error of pre-

diction.

Nevertheless, a seismic trace is not made up of wavelets

which have exactly the same form and which differ only in am-

plitudes and arrival times. Thus if a prediction operator,

which is the unique inverse of a certain wavelet shape, en-

counters a different wavelet shape, the prediction error will

no longer be an impulse, but instead will be a transient time

function. Thus the prediction errors yielded by this predic-

tion operator acting on a time series additively composed of

wavelets of different shapes will not have a minimum mean square

value. Since reflected wavelets in many cases have differ-

ent shapes than the wavelets comprising the seismic trace in

a given non-reflection interval, a prediction operator det-

ermined from this non-reflection interval will yield high

errors of prediction at such reflections. Such a procedure

provides a method for the detection of reflections, (Wadsworth,
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et al, 1953). In igures 14 and 15, running averages of the

squared prediction errors are plotted. The peaks on these

prediction error curves indicate reflections on the seismogram.

Since two-trace operators were used, the empirical coherency

existing between the two traces was utilized in the determin-

ation of these prediction errors. The arrow indicates the

operator time interval. Further description of these Figures

is given in MIT GAG Report No. 6. Since only the information

existing in the operator time interval is utilized in the

determination of linear operators by this method, one may ex-

pect greater resolving power if more information on the seis-

mogram is utilized in the determination of various other types

of operators. Further research on this general subject is now

being carried out by the Geophysical Analysis Group.
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