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ABSTRACT

Sickle cell disease is nowadays one of the most challenging blood diseases, where patients
suffer from both chronic and acute episodes of painful medical conditions. In particular,
unpredictable crises due to blood vessel occlusion remain one of the least understood stages of the
disease, which focuses the attention of medical research. A novel methodology has been developed
to address sickle cell disease, based on highly descriptive mathematical models for blood flow in the
capillaries. The main focus of our original sickle cell model is the coupling between oxygen delivery
and red blood cell dynamics, which is crucial to understanding sickle cell crises and is unique to this
blood disease. Based on an original physical description of polymerizing sickle hemoglobin (HbS), an
extensive study of blood dynamics was initiated through simulations of red cells deforming within
the capillary vessels. Our investigations relied on the use of a large mathematical system of equations
describing oxygen transfer, blood plasma dynamics and red cell membrane mechanics. Abnormal
dynamics were characterized in terms of resistance to blood flow (apparent viscosity), and oxygen
delivery performance. The results presented in this thesis describe successfully qualitative and
quantitative aspects of blood dynamics preceding sickle cell crises, through a detailed comparison of
normal blood with sickle cell blood. Potential therapeutical directions were successfully identified,
and assessed through simulations and systematic analysis of our results. This research is expected to
spur the development of innovative strategies to study sickle cell disease, and also raise interest in
other related fields of blood research, promoting analysis-driven development of new therapeutical

directions.
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Conventions and Nomenclature

Conventions :

References to the cylindrical coordinate system use z as the axial coordinate, » as the radial
coordinate, and @ as the polar angle coordinate. Additionally, we define for each point of the

axisymmetric red blood cell membrane, ¢ as the azimuthal angle between the surface normal

vector and the axis of symmetry, and s as the curvilinear coordinate (see Figure 2.1.3). The time

variable is represented by .

General Nomenclature (notations used only in Appendices are not reported for clarity) :

Latin letters :

A numerical state vector
a,b,c,d Apori-Harris model parameters
B bending modulus (N.m = kg.mz/s2 =1J)

numerical second term
c oxygen concentration (c: mol/m’® or kg/m3)
D diffusion constant, a.k.a. diffusivity (m?/s)
d rate of production of free oxygen (c/s)
distance to membrane function of sickle cell hemoglobin polymer (m)

dA local area differential element (m?)

F membrane force component (N = kg.m/s2 =J/m)

f membrane force per unit area component (Pa)

h gap size between red blood cell and capillary wall (m)
[Hb] total hemoglobin concentration (c¢)

Hct hematocrit (dimensionless)

K Hill factor (mmHg ™)

elastic modulus (Pa.m = kg/s* = J/m?)
misc. model constant
k kinetic dissociation rate constant of oxyhemoglobin (1/s)
membrane curvature (1/m)
spring constant of sickle hemoglobin model (N/m = kg/s® = J/m?)

L half-axial elongation of bolus flow (m)
spatial period (m)
/ length function of sickle cell hemoglobin polymer (m)
M rate of oxygen consumption (¢ /s)
numerical rigidity matrix
[Mb] total myoglobin concentration (c)
m bending moment (N = kg.m/s* = J/m)
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N oxygen-binding capacity of hemoglobin (c¢)
n Hill coefficient/exponent (dimensionless)
p static pressure (Pa)
Po, oxygen partial pressure (mmHg)
0 volume flow (m3/s)
q shear force per unit length (N/m = kg/s”> = J/m?)
R fixed radius (m)
red blood cell membrane radius function (m)
S fractional saturation of oxygen-binding molecule (dimensionless)
s fractional saturation of oxyhemoglobin (dimensionless)
red blood cell stiffness
t surface tension component (Pa.m = kg/s2 = J/m?)
U velocity constant (m)
u Apori-Harris model velocity (m/s)
Vesc red blood cell volume (m®)
v velocity field component (m/s)
z red blood cell membrane axial coordinate function (m)
Greek letters and mathematical symbols :
\% nabla operator (gradient, divergence)
0 partial derivative symbol
D,d material derivative/differential quantity symbols
In, sin, cos mathematical functions (logarithm, sine, cosine)
a oxygen solubility constant (¢ /mmHg)
misc. model constant (dimensionless)
A difference between 2 values
) Dirac distribution
A membrane extension ratio (dimensionless)
Y7, dynamic viscosity (Pa.s for fluid, Pa.m.s for 2-D membrane)
T pi constant
P fluid density (kg/m®)
2 summation symbol
o, isotropic tension constant (Pa.m = kg/s* = J/m?)
T viscous stress value/tensor
oc proportional to
dot product
0 infinity
R, ~ approximately equal to
Subscripts and superscripts :
0, ref reference value
1,2 reference directions
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1,2(,3) misc. model constants (enumerated)

50% equilibrium value at 50% saturation
app apparent (or effective) value for whole blood
b value in whole blood
boundary component
bu bulk
d deviatoric component
Hb hemoglobin
HbS sickle cell hemoglobin
i value in the interstitium
at the capillary wall-interstitium interface (R,)
i,j,k numerical indices
in boundary value at capillary vessel inlet
K at the Krogh cylinder radius (R, )
Mb myoglobin
max maximal model ratio constant
n,t normal and tangential components on the membrane
p value in blood plasma
RBC value in the red blood cell cytoplasm

steady-state value for the whole red blood cell (v, )

red blood cell membrane model value ( 12%*¢)

5,0 curvilinear components on the membrane
sh shear
t value in the surrounding tissue

at the interstitium-surrounding tissue interface (R, )

w value in the capillary wall
at the capillary vessel-capillary wall interface (R,)

zZ,r spatial vector components

Overbar symbols :

- (e.g. V) vector
'(e.g. z") moving reference frame with the red blood cell at steady-state
- (e.g. ;) average quantity/main component
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1. Motivation and relevant background research

1.1. Presentation of sickle cell disease

Sickle cell disease is a blood disorder that affects millions of people. Patients with sickle cell
disease are characterized by a state of anemia, or deficiency of hemoglobin, the molecule carrying
oxygen and found in erythrocytes (also commonly called red blood cells). In sickle cell disease, red
blood cells take an abnormal crescent shape upon deoxygenating (see Figure 1.1.1), which causes
major complications in blood circulation, including ischemia (restriction in blood supply), vaso-
occlusion (formation of blood clots), and as a result, hypoxia (lack of oxygen in the organs), multiple

organ damage and periodic painful attacks, also known as sickle cell crises.

Figure 1.1.1 : Normal (right) and Sickle (left) Red Blood Cells
(source:http://carnegieinstitution.org).

Although the medical symptoms related to sickle cell disease have been known for centuries, the
clinical observations and documentation of sickle cells appeared only very lately in 1874 by surgeon
A. Horton from Sierra Leone, and in 1904, by the Chicago cardiologist James B. Herrick. The disease

was named sickle cell anemia in 1922 by Vernon Mason. Linus Pauling and colleagues were the first,
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in 1949, to demonstrate that sickle-cell disease occurs as a result of an abnormality in the hemoglobin
molecule. This was the first time a genetic disease was linked to a mutation of a specific protein,

which is seen a major milestone in the emergence of molecular biology (source

http://en.wikipedia.org/wiki/Sickle-cell disease).

1.1.1. Genetics of sickle cell disease

Sickle cell disease is an “autosomal recessive disease caused by a point mutation in the
hemoglobin beta gene found on chromosome 11p15.5” (source : http://www.ncbi.nlm.nih.gov).
Although sickle cell disease causes multiple pathologies and can be lethal, it has proven to be an
evolutionary advantage against malatia : the presence of the parasite responsible for malaria in sickle
red blood cells causes the rupture of the cell, making it effectively unable to reproduce. Additionally,
the polymerization of hemoglobin caused by sickle cell disease prevents the parasite to digest it. In
sickle cell disease, while a patient receiving the sickle cell trait from both parents (homozygous) will
develop the disease, a patient with both normal and abnormal genes (heterozygous) will remain
healthy, but nonetheless a carrier. Heterozygous patients produce both sickle and normal red blood
cells, and have an evolutionary advantage in malaria-stricken areas ®*¥. Consequently, this genetic
disease is mainly persistent in Africa, the Mediterranean, India and the Middle East (see Figure 1.1.2).
It is also the most common inherited blood disorder in the United States, affecting an estimated
number of 75,000 African Americans in 2009 (source : http://www.ncbi.nlm.nih.gov — see Figure
1.1.3).
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Figure 1.1.2 : Compared geographical distributions of malaria and sickle cell trait in Africa
(source:http://images.encarta.msn.com).
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Figure 1.1.3 : Sickle cell disease among ethnic groups in the United States
(May 1996 FDA Consumer - source:http://www.pueblo.gsa.gov).

20



1.1.2. Pathophysiology

Carriers of the sickle cell gene produce structurally abnormal hemoglobin (HbS) due to the
mutation of a single nucleotide, which is normally benign but causes the hemoglobin to polymerize

under low oxygen conditions (see Figure 1.1.4).

Oxyhemoglobin Dooxyhemoglohin A
. . Deoxyhemoglobin 8 polymerizes inlo flaments
Oxyhemoglobin Deoxyhemogliobin 8

Figure 1.1.4 : Schematic representation of normal (HbA) and sickle (HbS) haemoglobin.
The haemoglobin tetramer is composed of 2 a-proteins and 2 B-proteins. The 6 mutation is
indicated as a protrusion from the tetramer in the 2 subunit and the hydrophobic pocket is a
nick in the B1 subunit (source:http://www.sicklecellinfo.net).

A

Polymerization of hemoglobin is a major alteration of the internal structure of the red blood cell,
by facilitating the emergence of long, stiff fibers in the cytoplasm (see Figure 1.1.5). These are
responsible for the distortion of the shape of the cell (sickling), and a decreased global elasticity of
the erythrocyte.

Elasticity is of crucial importance for red cells, which need to be able to deform to pass through
capillary vessels (capillary vessels are present in every organ of the body and are the narrowest
vessels, with a diameter ranging from 2 pm to 10 pm, typically smaller than a normal red blood cell
at rest). Sickle cells forced into capillaries consequently suffer from membrane damage, progressively
lose their ability to return to a normal shape upon reoxygenation, and can eventually block blood
flow, leading to inflammatory reactions, vessel occlusion, and ischemia.

Sickle cell damages also dramatically reduce their lifespan to 10 to 20 days, while healthy red
blood cells typically live 90 to 120 days (source : http://emedicine.me e.com/article/778971-
overview). This effectively reduces the hematocrit (relative volume of red cells in blood), from values

between 0.36 and 0.54 in a healthy adult, to values between 0.2 and 0.3 183,
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Figure 1.1.5 : Electron micrograph of deoxy-HbS fibers
(source:http://www.sicklecellinfo.net).

However, the high variability in formation rates of the HbS fibers explains why red blood cells
do not sickle systematically before getting reoxygenated in the lungs. Blood samples thus present two
types of red blood cells : reversibly sickled cells (RSC) and irreversibly sickled cells (ISC). As of 2009,
it is not exactly known whether ISC formation results from “gradual alteration of RSC properties
during repeated cycles of sickling”, or whether “they form as a consequence of a single event of

sequestration and prolonged hypoxia” 7.

1.1.3. Treatment of sickle cell disease

Sickle cell disease has currently no fully efficient treatment, and remains a chronic and lifelong
disease. Modern medicine administered to patients mainly aims at avoiding crises, relieving
symptoms and preventing complications.

Acute vaso-occlusive crises are mostly treated symptomatically through analgesics, together with

opioids for pain management. Further complications leading to bone, joints and organ damage or
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stroke usually require hospitalization, where HbA hemoglobin is administered. Further treatment
essentially consists in limiting long-term sequelae.

The only approved treatment as of today, for prevention of chronic attacks and other
complications of the disease, consists in administeting hydroxyurea, a drug that has been approved
very recently in the United States (1998). The main benefic effect of hydroxyurea is to reactivate fetal
hemoglobin (HbF) as a replacement to the deficient hemoglobin (HbS). There is however little
knowledge of long-term effects of the drug, and its use does certainly not eliminate the risks of acute
states.

In addition to drug research and crises management, recent medical research has also included
bone marrow transplantation (proven to be effective in children), and gene therapy.

One of the main challenges of sickle cell disease remains in fully understanding the onset of
vaso-occlusive crises, which has been investigated for only a few decades. The emergence of
improved models for blood circulation in the capillaries, reinforced by the most recent techniques
used to investigate mechanical and chemical properties of blood cells, creates the opportunity for
new tools to study sickle cell disease, and potentially identify new therapeutic orientations. This is the

main motivation of this doctoral work.

1.2. Blood models and background wotk towards a chemical and

mechanical description of red blood cells (RBC)

A mathematical model for sickle cell disease needs to take into account three aspects of blood
circulation. As oxygen is a major factor affecting blood dynamics in sickle cell disease, we first
include a model to analyze oxygen transport, from Red Blood Cells (RBC) where the oxygen is
bound to hemoglobin, to the surrounding tissue. A proper fluid dynamics model incorporates
oxygen convection, and allows us to characterize blood flow with respect to pressure drop, viscosity
of the blood plasma and cytoplasm, and other geometrical and physical parameters. Since RBCs
essentially flow individually at the capillary level, blood dynamics are mainly dependent upon their
individual mechanical properties, which are also to be incorporated with a membrane model.

This section presents successful theoretical works which constitute major inputs to our current

simulation model, reviewing main hypotheses and modeling choices that have evolved with research.
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1.2.1. Blood as an oxygen carrier : chemical modeling of the capillaries and

surrounding tissue

The first successful model describing oxygen transport from the capillaries to surrounding tissues
was achieved by Krogh ™ as early as 1919, and updated only recently by Hoofd ¥, McGuire and
Secomb ¥l, then Vadapalli, Goldman and Popel "®. The original Krogh model was extensively used
until the 1990’s by many theoretical researchers such as Berger *), because of its simplicity and
flexibility. This conceptual model was based on Krogh’s obsetvation of the distribution of capillary
vessels in muscular tissues (see Figure 1.2.1), and consequently distinguished 3 areas of interest : (1)
the cytoplasm contained in the RBC, (2) the plasma surrounding it, and (3) the tissue surrounding the
capillary vessel, where oxygen is consumed. These 3 ateas correspond to regions where oxygen
production/diffusion, convection/diffusion and consumption/diffusion respectively, are the main
characteristics of oxygen transport. This 3-layer model is represented in Figure 1.2.2, as used by

Berger.

Fig. & Traneverse section of injected mmuscle Fig. €. Bos text.
of the tongue of the cat.  x 26 '

Figure 1.2.1 : Schematic representation of the distribution of capillaries in muscular tissue
(black dots), and Krogh’s subsequent modeling .
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Figure 1.2.2 : Krogh’s model for oxygen delivery in the capillaries, as used by Berger

Following Krogh’s model and until recently, the 3-layer model was described by the following
equations, under the assumptions of steady state and axisymmetric, unidirectional flow :

- In the capillary :

e Oe  l&
or’ r or

= d(o), M

where z, r are spatial variables (cylindrical coordinates), ¢ represents the oxygen concentration
(typically expressed in molar volume or in volume fraction), v, is the axial blood velocity (taken as a
constant, i.e. as the radial area average), D, is the (radial) oxygen diffusivity in blood, and d(c)
represents the rate of production of free oxygen through dissociation of oxyhemoglobin (oxygen-
bound hemoglobin found in RBCs). In Berger and King ", d(c) is expressed as linearly related to

the rate of fractional saturation of hemoglobin :

Ds
dic) = - N —, 2
(© Dr @
where N is the oxygen-binding capacity of hemoglobin and s is the fractional saturation. Using the
Hill equation for the oxygen partial pressure p,, 02y .
K Pozn
ST K ®
% Po,
where K and n are coefficients depending on ionic strength and pH, and Henry’s law > ;
¢ = & po,> )
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where @ is the solubility constant taking the value &, in blood, Equation (1) can be reduced to :

Pl e S

o |14y Ka e e _ p |0, 1& )
: 1+ Ka,”c") '

More details about hemoglobin dissociation are given in Appendix A. Alternatively, Equation (5) can

be normalized with the value of oxygen partial pressure at 50% saturation of hemoglobin, to be used

in replacement of K, poz,smn = K"
M L D, Pe, 1l )
i (Do, 500 + @ c")? | oz or? r or
- In the surrounding tissue :
D, 2725 + % % = M, ©)

where D, is the (radial) oxygen diffusivity in the tissue (axial diffusion being simply neglected), and

M is the rate of consumption of oxygen (given as a constant).

- At the capillary-tissue interface :

oc oc
D, > D, — v
rlr=r or r=R*

which represents continuity of the oxygen flux and where R, is the radius at the capillary wall, and :

< : ®

+
r=R,

a, a

r=R,” t
which represents continuity of oxygen partial pressure, assuming an infinitely thin membrane, with
a, the oxygen solubility constant in the tissue.

- At the axis of symmetry :

oc

> =0 )

r=0

which is a necessary condition for ¢ to be continuously derivable everywhere (the oxygen radial flux
must cancel at » =0).

- At the Krogh cylinder radius :

26



= =0, (10)

where R, is the average half-distance between two capillaries in this ideal model (it can also be

interpreted as a characteristic radius of “effective oxygen supply” of the capillary).

Berger and King used these simple equations to solve mathematically the oxygen distribution for
given flows along capillary vessels, depending on rheological parameters and other parameters
derived from modeling the flow of blood for normal and sickle red blood cells. These models and
their results will be discussed further in Section 1.2.5.

The main contribution of Hoofd ¥ was to introduce the myoglobin as an oxygen-binding protein
to describe unsteady oxygen consumption in the surrounding tissue. This essentially led to replace

Equation (6) with the following equation :

ac ’c 1 éc
E:Dt¥+:5'-—M+de(C), (11)

where d,,;(c) represents the rate of oxygen released by myoglobin, which can be expressed in a

similar way than for hemoglobin, leading to the equation :

« 2 e 1
(péfiso% + 05,‘1 c)’ | ot " or? r or

1 + N™

- M, (12)

where we used a Hill constant n equal to 1 for myoglobin, which is characteristic of non-cooperative
binding (see Appendix A).

McGuire and Secomb ¥ later added considerations about intravascular resistance to oxygen
diffusion, as an apparent jump in oxygen partial pressure. Vadapalli, Goldman and Popel '*
eventually used 2 more advanced model, adding the 2 layers of the vascular wall and interstitial space
between the capillary vessel and the surrounding tissue, defining the RBC as a separate region with
specific equations, and taking into account hemoglobin-bound oxygen kinetics inside the RBC.

Assuming unidirectional steady flow, their full equations for unsteady oxygen transport are expressed

in terms of the oxygen partial pressute p,, :

-In the RBC:
o, o, 1 o op,, * po,
e [+ e 2] = e D |1 2 G2+ T
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Hb
Po,,50%

+ k™ [Ep]| 5™ - 1 - s™) [ Po, J , (13)
where @gp- is the oxygen solubility constant in the cytoplasm, Vg, is the RBC (axial) velocity
(constant for steady flow), Dy, is the isotropic oxygen diffusivity, k™ is the kinetic dissociation
rate constant of oxyhemoglobin, [Hb] is the total concentration of hemoglobin (bound and not
bound to oxygen) present in the RBC, S™ is the fractional saturation of oxyhemoglobin, 7 is the
Hill coefficient of the oxyhemoglobin dissociation cutve, and pgzb,w% is the oxygen partial pressure

at an equilibrium corresponding to S™ =0.5 . To this equation must be added the transport

equation of oxyhemoglobin :

aSHb . 6SHb _ DHb l i . aSHb . aZSHb
ot R &z Bl r or or oz*
_ kHb SHb _ (1 _ SHb)[%] R (14)
0,,50%

where D2 is the isotropic diffusivity of oxyhemoglobin. Equations (13) and (14) naturally reduce
to Equation (5) under steady state and at chemical equilibrium, neglecting diffusion of
oxyhemoglobin compared to diffusion of oxygen, and with N = [Hb].

- In the blood plasma surrounding RBCs :

0 0 0 0 0*
a, | 2oy Py, Po =apr13rp°2 v 2o (15)
P ot or oz r Or or oz

where @, is the oxygen solubility constant in the plasma, v, and v, are the velocity components of

the flow (in this model reduced to Stokes flow for low Reynolds numbet), and D, is the

corresponding isotropic oxygen diffusivity.

19/ 15/ 0’
aw!(;—;”—=aw0w(l ﬁ(r p"’)+ Poz]_Mw’ (16)

- In the capillary wall :

r Or or oz*

where «,, is the oxygen solubility constant, D, is the isotropic oxygen diffusivity, and M, is the

rate of oxygen consumption.
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- In the interstitium :

0 1o/ 0’
a; Lo, _ a; D, 19 r Po, + p20’ , (17)
ot r or or oz

where @, is the oxygen solubility constant and D, the isotropic oxygen diffusivity specific to this
region.

- In the muscular tissue :

Mb
Po, s0% op 0,

a, + (Mb =
[ ] (pgfjso% + po,)2 ot

M 0 0’
[a, D, + DM [Mb] Po, s ][l i(r po’) + —pOZJ - M,, (18)

(Pgﬁso% + poz)2 r Or or oz’

wherte @, is the oxygen solubility constant, [Mb] is the total concentration of myoglobin (bound and
not bound to oxygen) present in the tissue, D is the isotropic diffusivity of myoglobin, D, the

isotropic oxygen diffusivity, and M, the rate of oxygen consumption.

This model of Vadapalli, Goldman and Popel being the most advanced to this date, we will use it

as our main reference for oxygen transport equations, with an adapted set of flow hypotheses.

1.2.2. Blood as a viscous flow : fluid dynamics of microcirculation

Burton ™ and Fung ® ¥ 1% were pioneers in developing hemodynamics, which is the study of
fluid dynamics applied to blood flow. Their work, together with the work of Batchelor !, Charm
and Cokelet ), has largely contributed to provide detailed and accurate models to describe blood

19" and in the microcirculation, as

flow, both specifically in large vessels, as described in Pedley
described by Wiedeman " In particular, Charm’s work includes an extensive study of blood
viscosity, its non-Newtonian properties and potential models, and the influence of red blood cells in
shear-thinning and shear-thickening situations Bl, Also, Wiedeman’s book includes a description of
capillary networks and flow distribution. A couple of other useful sources include Milnor %, Sumpio
04 and Pedrizzett ",

Fung defines blood as “a non-Newtonian incompressible viscoplastic fluid”, behaving when it is
not flowing “like an elastic solid”, with a small yield stress (when the yield condition is reached, the

blood flows) "%, One of the main reasons for blood to be non-Newtonian is the presence of red
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blood cells, which tend to flow away from the vessel walls and aggregate. In capillary vessels, the
flow was first described similarly to larger vessels with steady flow, using Poiseuille’s equation for a
homogeneous, viscous flow down a cylinder. Poiseuille’s assumptions lead to the classical pressure-

flow relation :

dp 8 uQ
&~ TR <19>

where z is the axial coordinate along the vessel, p is the static pressure, s the dynamic viscosity
of whole blood, R, is the radius of the cylinder, and Q is the total volume flow. This result assumes
a parabolic distribution of the axial velocity v, across the cylinder. To accommodate non-Newtonian

flow, expetiments were carried out to determine the equivalent g, ,, or apparent whole blood

viscosity, matching Equation (19) for different values of Q, R, or the shear stress at the vessel wall.
However the previous model proved to be insufficient, as none of these parameters could

individually determine g,,,, and a better insight was desired. Fung’s study of the bolus flow (flow

between 2 red cells in the capillaries) originated an idealized geometry separating individual cells
periodically (see Figure 1.2.3). In this model the RBCs flow one-by-one, effectively dragging a thin
cylinder of flow at velocity U. The flow between 2 cells can be determined solving Stokes flow, and
Fung determined that for a low Reynolds number the velocity profile differs from a Poiseuille flow

by less than 1% at an axial distance of 1.3 R, from the RBC cylinders "%,
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Figure 1.2.3 : Idealized geometry for bolus flow (from Fung

In this last model, the actual flow around a red blood cell remains to be calculated, and depends
on the modeling of the RBC itself as a deformable cell (see Section 1.2.3). More advanced models

emerged eventually with advanced numerical capabilities to solve more complicated fluid dynamics,
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so that currently the flow is generally computed everywhere using the full Navier-Stokes equations or

Stokes flow for low Reynolds number under steady conditions.

1.2.3. Blood as a cell suspension : mechanical modeling of the red blood cell

membrane

One of the main features of the microcirculation is its non-homogeneous flow. With typical
vessel diameter ranging from 2 um to 10 pm, simple microscope observation shows that red blood
cells flow individually in the smallest vessels (see Figure 1.2.4), and therefore need to be taken into
account to describe blood dynamics appropriately. Basic descriptions of red blood cells refer to them
as “pellets”, ot “sacks” filled with cytoplasm and oxygen-fixing hemoglobin. Therefore they are
usually described by a deformable, infinitely thin membrane, filled with homogeneous fluid of
identical or close properties to blood plasma (with a few exceptions such as dynamic viscosity). Fung
and Skalak were among the main researchers who developed this model, producing until the late
1970’s major results for rigid spheres, disks, mathematically-modeled RBC shapes (see Figure 1.2.5),
and other rigid axisymmetric particles under steady axisymmetric flow. Skalak later defined for the
isotropic 2-dimensional model of the RBC membrane the strain energy ' and elastic moduli, studied
the variability of the defined elastic moduli, and determined numerical solutions for deformable
shapes under different conditions of flow and capillary sizes [ P% P4 #, In Evans and Skalak’s
Mechanics and Thermodynamics of Biomembranes™, the constitutive equations describing isotropic RBC

membranes are derived for small isothermal deformations :

t = o, + K, 57‘4, (20)
0
1 1
ty = > —— Ko 4" - 4, (1)
i)
I+ —
dd,
dA
=1+ Z\B®k - k), 22
m ( dAOJ ( o) (22)

where ¢ and ¢, are the principal components of tension (¢ is the isotropic or mean term, and ¢, the
shear or deviatoric term, derived directly from the stress tensor), g, is the isotropic tension for the

reference state (commonly called surface tension for liquids), K,, is the isothermal area
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compressibility modulus (or 2-D bulk modulus), K, is the 2-D shear modulus, g} represents the

0

area change with respect to the reference state, and A4, and A4, are the extension ratio in the

reference directions (hence L A A, — 1). In Equation (22), m is the bending moment in
0
any principal direction, B is the bending modulus, & is the total curvature (sum of curvatures in
reference directions), and &, the reference value of k at rest (“natural” curvature).
A more complex model incorporates viscoelastic behavior, although it was designed for low-
stress situations where viscous stresses are not negligible (i.e. in-vitro, micropipette testing

experiments) . In that particular case, Equations (20) and (21) take the form :

dA
: e a(zﬂ
t = o, + K,, + e T (207
dd, ,, 44 o
d4,

L laF - sl g [i % _ 1 aiJ 1)

where ™ and p/*¢ are the coefficients of dynamic (shear) viscosity and bulk viscosity of the

modeled 2-D RBC membrane.

Figure 1.2.4 : Microscopical section of human liver : c-capillary vessels with RBCs (anucleated)
and white cells (nucleated), a-nucleus of liver cell, 3-nucleus of cell from capillary wall (source:
Alcohol, Its Production, Properties, Chemistry, And Industrial Applications, by Charles
Simmonds).
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Figure 1.2.5 : Skalak’s modeled RBC shape o7,

Secomb has also largely contributed to the modeling of RBC membranes, and in a 1988 paper
rederived the first order linear stresses for a model of superposed leaflets, leading to a modification
of the membrane model to incorporate the interaction between bending and tension forces . To
simplify the model, Secomb also added the hypothesis of axisymmetry, removed non-leading-order
terms related to area changes, and used curvilinear coordinates following the RBC geometry (see

Figure 1.2.6). The new equations are "™V :

_ ot o+t
PR . 23)
2 dA,
t, -t 1 _ 1
t, = 2= K, (ﬂ's2 - A’s 2) Ty B(ks - kﬁ) (kS + k‘9 - ko)’ 24
2 2 2
m = Bk, +k, — k), (25)

where ¢, is given for a set of principal axes on the RBC along s and . The viscoelastic variant can

be easily obtained by adding the last term of equation (21°) to (24) :

1
td=§

K, (Aﬁ - 1;2) - % Bk, - &)k + k, - k) + 2 ™ [li a;s] L)

These constitutive equations were completed by equilibtrium equations to successfully achieve the

computation of RBC shapes at rest. In Secomb’s model, the equilibrium equations reduced to aot,

1 dRgq,)
R ds

Ap = -t k, — t,k, — , (26)
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dm
0:—--+ , 28
s q, (28)

where Ap is the local pressure difference between external and internal fluids, 7 is the local
tangential (shear) stress in the s direction, caused by both external and internal fluids, g, is the shear

force per unit length in the membrane, and R is the membrane radius (function of ). Derivation of
Equations (26)-(28) is detailed in Appendix E. Figure 1.2.6 shows these membrane stresses with the

chosen conventional orientations.

v

Figure 1.2.6 : Curvilinear coordinates for axisymmetric RBC membrane
and membrane stresses convention (model of superposed leaflets).
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In 2005, Arslan and Boyce have defined a model for the lipid bilayer and underlying spectrin
network, representing the RBC membrane at the molecular level */. Hianik’s 2006 presentation of
RBC membrane models also contributes to encourage more research in this direction %, Both these
works show the opportunities to use molecular-scale models for the RBC membrane, with possible
benefits over 2-D homogeneous surface models.

To complement these models and determine the corresponding (visco)elastic properties of RBC
membranes, early models used viscometric measurements, sieving and micropipette experiments.

23 29 and ferrimagnetic microbead P, Also,

Some more recent techniques use optical tweezers
recent researchers have investigated the influence of cytoskeleton remodeling on RBC deformation

response!™, paving the way for an increasing complexity in modeling RBC mechanics.

1.2.4. Combined models of red blood cell dynamics and oxygen delivery

Together with Fung, Lighthill is one of the first scientists to research hemodynamics, and study
the motion of RBCs through narrow vessels. In a 1968 paper “, Lighthill tries to resolve
mathematically the flow for this specific problem using some very simple, yet justified assumptions.
Using Burton’s 1, and Fung’s ¥ analysis of blood flow in capillary vessels, and the observation of low
Reynolds numbers for capillary flow, Lighthill develops a lubrication layer model to effectively
determine the flow around the RBC. Following his work, Fitz-Gerald extended the lubrication model

and obtained a series of equations between the leakback flow per circumferential length Q' around

the RBC, the gap size between the RBC and the capillary wall A(z'), and the pressure gradient along
the capillary d_p' . Assuming axisymmettic, steady, quasi-unidirectional, viscous-dominated flow, with
2

the RBC moving at a constant speed, the Lighthill-Fitz-Gerald equations for the lubrication layer

lead to:
2R, h— K
——l—d—p(2Rwh—h2) 2R’ -2R, b+ W - ————| =
16 u dz' R
In| —»—
R, - h
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+ R,Q0'. (29)

Assuming a small gap thickness compared to the capillary radius h(z') << R, Equation (29)

reduces to :
d 6 uU 12 '
@ _ 282 22 o (30)
dz' h h

where U is the (constant) velocity of the RBC, z' = z — U ¢ is the reference frame moving with

the RBC and centered at its upstream front or “head”, and g is the dynamic viscosity of blood

plasma. Details of the derivation of (29) and (30) are given in Appendix D. In addition to Equations
(29) and (30) a very simple elastic model for the RBC is added :

KlzIZ
h=R,|1- 1 - R + K, (p — po) > 31

where the basic RBC shape is assumed to be elliptic at a reference pressure p, taken to be the

pressure at the “head” of the RBC. K, and K, are model constants. These two equations allow to
determine the pressure everywhere for a given leakback flow, and through an integral equation one
can also estimate the pressure drop across the RBC (a simple control volume analysis around the
RBC, writing equilibrium of forces gives the pressure drop as a function of the leakback flow Q).

In this early model one of the most limiting assumptions was undoubtedly the elliptic RBC
shape. Although inferred from observations and following the purpose of a simple descriptive
example, it mostly illustrated the absence of detailed insight about RBC membrane stresses. With the
emergence of Skalak’s model of the RBC membrane '/l the first calculations of equilibrium RBC
shapes were developed. Jenkins derived and solved a system of 4 differential equations, and obtained
families of mathematical solutions for varying pressure differences between the interior and exterior
of the RBC, with encouraging biconcave shapes ™. Fischer et al. calculated buckling solutions for
RBC membranes as a function of RBC volume, using Evans and Skalak’s equations incorporating

the shear modulus K, and the bending stiffness B, and assuming constant surface area .

Secomb’s important breakthrough was to combine the equations of lubrication theory with

Skalak’s complete equations of membrane mechanics. Secomb thus gathered Equations (20), (21),
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(22), (26), (27), (28) with (29) to obtain a closed system of equations, fully describing RBC dynamics
in capillary vessels "*\. Secomb then obtained numerically the first parametric results for different
sizes of capillaries and RBC velocity (see Figure 1.2.7). Subsequent work by Secomb included
updates and extensions to this model, using Equations (23), (24), (25) instead of (20), (21), (22) ot
Secomb successfully calculated theotetical RBC shapes for very narrow capillaries (see Figure 1.2.8),
larger capillaries (see Figure 1.2.9), between 2 parallel plates (instead of a cylindrical vessel) nos
through micropores "™, and for a viscoelastic RBC membrane flowing in capillaries of slightly
varying diameters " Extensions on microvascular networks were also researched U4 as well as
asymmetric tank-treading behavior (migration of RBC towards the centetline) 171 and tumbling
behavior %,

Pozrikidis’s work focused on deformations through time of RBCs modeled as oblate or prolate

[102} [109]

spheroids "™, and as elastic biconcave disks under shear flow. His calculations included advanced

3-D models of the full RBC membrane. Similar developments of 3-D calculations were reviewed in
2005 in a paper by Christini and Kassab %, Other work on the dynamics of capillary blood flow

includes Chakraborty’s simulations of flowing RBCs using a modeled apparent viscosity i

S 6 \7\ SMm 0.002 cm/s

Figure 1.2.7 : Cell shapes calculated for different vessel diameters - U=0.01cm/s (left), and
different RBC velocities — R,,=3um (right) (from Secomb [1007),
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(a)

(b)

(d)

Figure 1.2.8 : Cell shapes calculated for different vessel diameters — (a) R,,=1.5um (b)

Rw=1.52um (c) R,,=1.55um (d) R,,=1.6um. Cr[iltll;cal radius is 1.42 um (from Halpern and Secomb
1),

A 2009 paper by Kaoui and coworkers has shown recent studies of the asymmetric RBC shapes
observed in some experimental results "*!). Interestingly, slipper-like asymmetric shapes may be
prefetred configurations under low flow velocity due to bending stiffness and membrane rigidity
only. The calculations made by Kaoui do not correspond to confined, small capillaries at this point,

but developments in this direction may lead to seriously reconsider the assumption of axisymmetry.
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Figure 1.2.9 : Cell shapes calculated for different RBC velocities, R,~4.5um (units unknown)
(from Secomb [''%),

Adding to RBC dynamics the problem of oxygen delivery, one of the major contributions in the
recent years has been achieved by Popel. Popel with his collaborators developed a two-phase model

for the capillary flow '™, before starting to study oxygen delivery in brain ol

and pursued studies of
RBC dynamics in various blood vessels such as in venules ", In 2002 together with Vadapalli and
Goldman, gathering a large amount of data from various researchers, they formulated one of the
most advanced models of oxygen diffusion, incorporating oxygen binding to hemoglobin and
myoglobin, as well as oxygen transport through a 5-layer model, with specific equations within the
RBC, blood plasma, capillary wall, interstitium, and surrounding tissue where oxygen is consumed
1% (see Equations (13) to (18) given in Section 1.2.1). Popel’s ongoing research focuses on RBC

[110} [120} [122)

aggregation dynamics , and oxygen delivery through capillary networks *'. A 2005 paper
reviews the major advances made in hemorheology "' Interestingly, RBC dynamics and oxygen
delivery are uncoupled problems for normal RBCs, which explains why Popel like other
researchers always addressed both separately. Sickle cell modeling, on the other hand, needs to
address the coupling of oxygen delivery and blood dynamics, and has been pursued by a different

group of researchers.
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1.2.5. Modeling sickle cell disease : challenges and outcomes

A few researchers have investigated theoretical models for sickle cell disease, trying to
understand how affected RBC dynamics could explain episodic vaso-occlusion and crises. Early
observations of sickling RBCs upon deoxygenation thus made it crucial to study the apparent
coupling between oxygen transfer and RBC dynamics.

Berger was one of the first researchers to develop a model for sickle cell blood. In 1980 Berger
and King assumed a direct relation between RBC global compliance (a measure of its membrane
elasticity) and average oxygen concentration in the capillary at a given section "%, Berger and King
also included the rightward shift of sickle oxyhemoglobin dissociation curve, observed
experimentally (and showed in Appendix A). Their results show increased blood speed and higher
oxygen levels on average in capillaries of sickle cell patients, potentially explaining how sickling could
be compensated by a dynamic “feedback” and how crises would remain rare despite the rheological
changes caused by the disease. Berger and King’s model includes the Krogh model corresponding to
Equations (1) to (10), with the rightward shift of sickle oxyhemoglobin corresponding
mathematically to :

Nt (ﬁjﬂwe ikl I
e N\ Sickle g norma
ds)nomzal T prermal K Sickle

Nnormal (_
dc

~ 14 . (32)

RBC dynamics are described using the Lighthill-Fitz-Gerald lubrication layer model given in
Equations(29) and (30), combined with the assumption of a simple crescent (“parachute™) shape for
the RBC, with membrane mechanics described by a global compliance coefficient between local
pressure and RBC radius at a given section (“faitly crude approximation to the truth”, as reported by
Fitz-Gerald ). Finally, the RBC stiffness (inverse of the compliance) is coupled to average oxygen
concentration using an “ad-hoc and speculative” power law '* based on microsieving data collected

by Usami, Chien and Bertles ), and can be written essentially as :

S =8, l for ¢ 2 ¢, , (33

a+ (1 - a) (L]
Cro
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S = S, for ¢ < ¢, , (34
where s is the RBC stiffness, @ is a model constant, and s, and c,,, are reference values for RBC

stiffness and oxygen concentration. In 2004 Berger and Catlson extended this model to a network of
capillaries, showing aggravated consequences at macroscopic levels, with the possibility of large scale
stasis (4,

Following Berger and King’s model, Discher and Cima investigated possible causes of acute

(63} was

crises "2 " The observed increase in plasma viscosity during sickle cell crises states
hypothesized as a critical factor initiating sickle cell crises. Their collaborative wotk successfully
identified a theoretical multivalued solution for the RBC velocity for different values of plasma
viscosity and other fixed parameters (see Figure 1.2.10). The lower-velocity solution at high plasma
viscosities would then explain a sudden drop in blood flow, followed by inflammatory reactions and
further complications. The increased plasma viscosity is believed to be related to an elevated level of
proteins (caused by infection or thrombosis of ischemic injury), in particular fibrinogen (a clotting
protein), and globulin (with an obsetved increased ratio with respect to albumin). Arguably, it is
important to note that in this model the increased plasma viscosity is assumed to be a cause of the

crises, and not a consequence of a pre-ctises state of blood (Cima also discusses the probable

correlation of both factors, acting as a vicious cycle).
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Figure 1.2.10 : blood velocity vs. plasma viscosity -normal level is 1.42mPa.s
(from Cima et al '*).

One of the main challenges of modeling sickle cell disease resides in the polymerization process
of sickle hemoglobin (HbS) and its consequences. Eatly research includes various intracellular and
extracellular models with limited success, in general due to apparent incompleteness of the models
%), Dou and Ferrone were among the first researchers to develop a convincing kinetic model for
HbS polymetization, obtaining striking qualitative results showing the development of a sickle shape
(see Figure 1.2.11) !#. However, this molecular approach remains far from being applicable to a
blood flow model, and Ferrone’s ongoing investigations (which include estimations of elastic

properties of HbS polymers %) are promising and should be carefully followed.
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Figure 1.2.11 : Simulated formation of polymerized sickle hemoglobin HbS
(from Dou and Ferrone ''?7),



Another model for sickle HbS polymerization was achieved by Makhijani et al., focusing on the
complex chemical mechanisms of oxygen unloading, transport, and HbS polymerization reactions
solved altogether ?. The results show a parametric study of oxygen unloading times for sickle cells.

Some attempts to interpret sickle blood dynamics at a larger scale have also been developed, such
as Rocsoreanu, Georgescu and Giurgiteanu’s hemodynamic model "*. However, the extensive study
of its mathematical implications, with such results as bifurcation models, relies on many
simplifications and mathematical assumptions that seem difficult to interpret physically.

In 1998 Apori and Harris attempted to reformulate Cima’s model with a simple set of 4
autonomous equations with time as the only variable (see Equations (35) to (38)), to be studied as a
chaotic dynamical system simulating sickle cell crises [P IPAM3 Although Apori’s thesis was used
as a preliminary study to this doctoral work ", the difficulties of interpreting the Apori-Harris
system of equations physically led us to a new direction corresponding to the present thesis. This

model remains nonetheless a potential simplification to keep in sight and be researched.

%=alc+a2u,u+a3u, (35)
ﬂ=blu+b2,us+b3s, (36)
dt

ds

E=cls+czc, (37)

d

SS=dutdec, (38)

where ¢, u, s and u are the 4 state variables describing capillary flow (oxygen concentration,
blood velocity, cell stiffness and plasma viscosity), and a,, a,, a;, b,, b,, b,, ¢, c,, d, and d, are
coupling parameters of the system, corresponding to the main physical relationships between the 4

state variables, and that Apori determined based on dimensional considerations, leaving a more

precise physical interpretation to further research. In his work, Apori showed that a change of the
parameter ¢, relating RBC stiffness to oxygen, transformed the Apori-Harris system of equations
from a stable, asymptotically periodic solution, to a chaotic system. Based on Betrger’s work and
Cima’s calculations, Apori related qualitatively c, to the stiffness-concentration relation (Equations

(33)-(34)), and concluded that this coefficient might indeed be crucial to represent the onset of sickle
cell crises.
Finally, Higgins’s successful experiment proved that vessel occlusion was due to the

characteristics of sickle blood only (and not to any interaction with the capillary wall), and led him to
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suggest a new mathematical model describing blood flow and apparent viscosity as a function of
oxygen concentration, with the proportion of sickled RBCs as a dependent variable 39, Higgins’s
model lacks precise figures to be applied to this day (see Figure 1.2.12), but represents one of the

most promising paths between mathematical models and experimental results.
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Simplified qualitative model of vaso-occiusion. As the concentration of oxygen decreases with
time, the sickle cell concentration increases leading to a diverging viscosity of the blood which stops flowing,

Figure 1.2.12 : Qualitative model of sickle cell vaso-occlusion (from Higgins [13e)

In light of the different existing models for sickle cell disease, a couple of noteworthy points can
be made at this point :
- Models of sickle cell disease exist at 2 different length scales : the molecular scale (Ferrone,
Makhijani), and the blood flow scale (Berger, Discher, Cima, Apori, Rocsoreanu, Higgins). Despite
increasing knowledge of the different abnormal factors affecting sickle cell patients, there is still very
little understanding of how sickling affects directly the shape of RBCs, and the resulting abnormal
blood flow.
- The lack of an apparent connection between these models mainly results from differences in the

investigators’ objectives and research goals. Whether one factor is put forward (plasma viscosity in

45



Berger), or another (sickling RBCs in Higgins), whether a model is designed for a transitional
situation (pre-crises state in Berger) or an asymptotic one (crises state in Apori), various conclusions
tend to come from different models, and confusion arises as to what really causes the impaired sickle
blood dynamics, and sickle cell crises.

- Some recent models seem to ignore recent advances in capillary flow modeling or do not attempt
to improve older models and question certain assumptions, although increasing complexity is now
possible and may be beneficial to our understanding of the disease.

Consequently, this research will seek to define a mathematical model for sickle cell disease, which
would both try to fill the gap between molecular and vascular descriptions of the disease, and extend
the previous models to incorporate improved knowledge of capillary flow, oxygen transfer and RBC
mechanical behavior. An important factor limiting the complexity of our model will also be the

experimental data available to characterize both normal and sickle blood flow.
1.3. Relevant experimental research

All blood models have physical constants that need to be determined by experimental data. A
careful review of the related research will also address the ranges of acceptable values for the cases
studied, and assess to some extent the validity of the chosen models. In this section we present some
of these experimental works, to be used eventually to either justify the hypotheses of our model, or

validate its results.
1.3.1. Normal blood properties and their variability

Morttillaro’s Physiology and Pharmacology of the Microcircnlation is one of the many books that describe
specific properties of capillary vessels P, together with Fung’s Biodynamics : Circnlation ' and Charm
and Kutland’s Blood Flow and Microcirculation ™. In particular Mortillaro gives very detailed specific
characteristics of the microcirculation for 14 different organs. Among general facts (vessel sizes,
typical pressure ranges, oxygen levels, blood composition and density), it is noticeable that capillary
vessels, unlike larger arteries, do not have a strongly pulsatile flow, i.e. oscillations are highly damped
between the heart and the arterioles to reach a quasi-steady pressure input (this is due mainly to the
viscoelastic response of the artery walls, and the action of smooth muscle surrounding them).
Capillary flow, unlike arterial or vein flow, is characterized by large viscous stresses in comparison to

inertia, with small Reynolds number (see dimensional analysis in Appendix C). Because of their
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important role as an exchange surface, the capillary walls also have very particular characteristics

compared to other vessels, such as the absence of smooth muscles used in vasoconstriction and

vasodilatation (see Figure 1.3.1 and Table 1.3.1).
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Quantitative aspects of the circulatory system (from Berne and Levy, 1972,
Cardiovascular Physiology, C. V. Mosby Co.).

Figure 1.3.1 : Comparison of blood vessels (from Charm and Kurland 13,
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Wall Composition (%)
Length Diameter
Vessel ‘Thickness
(mm) (wm) (um) el Elastic Smooth Fibrous
Endothelium
Tissue Muscle Muscle
Aorta 500 25000 2000 5 40 25 30
Artery 500 4000 1000 5 35 40 20
Arteriole 10 50 2000 5 25 45 25
Precapill
R 0.2 35 30 15 15 50 20
sphincter
Capillary 1 8 1 100 0 0 0
Venule 2 20 2 25 0 0 0
Vein 250 5000 500 5 40 30 25
Vena cava 500 30000 1500 5 25 35 35

Table 1.3.1 : Typical geometry and structure of various blood vessels (from Charm and Kurland ’8’).

As mentioned in the previous sections, 3 physical models need to be considered : a model for
fluid flow, a model for oxygen transport, and a model for the elastic RBC membrane. All these
models come with physical assumptions supported by observations or thorough dimensional analysis
(see Appendix C).

The “fluid” part consists in blood plasma and RBC cytoplasm. Both are to be modelled with
continuous fluid mechanics. Blood plasma and RBC cytoplasm are also modelled as a homogeneous
fluid of constant density (incompressible) and constant viscosity, with the viscosity of cytoplasm

about 8 times the viscosity of blood plasma. The very low compressibility of blood (about 4.10™°
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m?/N, which corresponds to a bulk modulus of 2.5.10° Pa) justifies the assumption of constant
density ™. As for neutrophils, both plasma and cytoplasm have a decreasing viscosity with
temperature, and little variation with pH !l. However, the regulation of blood in vivo is such as to
not induce significant changes in normal situations. Also, physical activity leads to systemic control
of blood flow through regulated vasoconstrictions and vasodilatations of arterioles and venules B,
This leaves further fine regulation to capillary walls and generally ensures stable conditions of
temperature, pressure and blood composition. Hence circulatory adjustments to dynamic exercise
allow us to consider constant blood properties. Additionally, ionic and osmotic equilibria regulate
RBC volume and cytoplasm properties, which can also generally be considered as constants P,
Nevertheless, deoxygenation of blood leads to an increase of about 2% of the RBC volume, and of
about 5% for the hematocrit !, Although not entirely negligible, this doesn’t seem to have ever been
accounted for in any model. Also interestingly, RBC internal viscosity increases with haemoglobin
concentration ¥, Although in normal cases both remain quasi-constant, in sickle cell cases the
observed small dehydration of RBCs leads to a small increase in cytoplasmic viscosity *!. Finally, the
role of the cytoskeleton in cytoplasm dynamics is usually ignored because not entirely known, despite
ongoing research 1,

Oxygen transport is best described by the Vadapalli-Goldman-Popel extension of the Krogh
cylinder model, using various research sources to determine oxygen, hemoglobin, and myoglobin
constants, with a large set of diffusion constants from Bouwer et al %, but also oxygen solubility
coefficients, characteristic concentrations, kinetic dissociation rate and Hill dissociation curve
parameters "%,

RBC membrane properties are evidently associated with the models used by researchers to
interpret their experimental measurements. Steck was one of the first to study the composition of the
RBC membrane and infer some of its properties **. Hochmut et al. calculated in 1983 a membrane

thickness of 7.8 nm with a light-microscope technique *'

I, which justified largely the use of 2-D
models as presented in Section 1.2.3. Recent experiments by Dao et al. 3 Mills et al. ®, and Puig-
de-Morales-Marinkovic et al. ®” show the ongoing research to determine precisely nonlinear and
viscoelastic properties of the RBC membrane.

Global blood dynamics have also been subject to recent experiments, to determine whole blood
properties such as apparent viscosity and RBC shapes in the microcirculation. To this end, Kubota et
al. have carried experiments on RBCs flowing in vitro . Long et al. measured blood viscosity by

hemodilution without assumptions regarding the Fihrzus and Fahraus-Lindqvist effects (see

Appendix F), which can arguably differ between in vivo and in vitro situations 1, Pries and Secomb,
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in a recent paper modelling the influence of the endothelial surface layer, produced micrographs of
both in vivo and in vitro capillary blood flow, showing expected RBC shapes in the microcirculation
15 (see Figure 1.3.2). Finally, one of the rare experiments on transient dynamics has been made by
Alonso et al. in vitro with tubes of variable diameter . Transient dynamics remain rarely studied in
the microcirculation because of the expected small and slow variation of blood flow. This is not the
case with sickle cell disease though, where transient dynamics need to be studied to understand

irregular blood flow leading to vessel occlusion.

HD 15,D 7 pm
Ay 2 ¥ 3
HD 30

HD ca, 35, D ca. 126 pm
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Micrographs of red blood cells flowing through small-bore glass tubes
(top 4 micrographs) and mesenteric microvessels (botfom 2 micrographs). In
the intermediste range of vessel diameters from ~6-13 pm, cells may flow in
single file at low hematocrits. With increasing hematocrit, more cells are
present in a vessel cross section, leading to a transition to multifile flow and
increased interaction of cefls with the wall.

Figure 1.3.2 : Micrographs of capillary blood flow (from Pries and Secomb [ (1)
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1.3.2. Experimental observations and studies of sickle cell disease

As presented in the introduction, the observation and systematic study of sickle cell disease is less
only about a century old. Chien, Usami and Bertles were among the first to study the abnormal
theology of sickle cell blood. Their expetiments successfully showed the decreased hematocrit and
increased whole blood viscosity among sickle cell patients Y ! (see Figure 1.3.3). Plasma protein
concentration and its influence on blood viscosity were also documented, and the rheological
difference between Reversibly Sickled Cells (RSC) and Irteversibly Sickled Cells (ISC) was
investigated. Figure 1.3.4 shows how the actual RBC sickling is directly responsible for most of the
theological changes. Based on these results, a large number of models for sickle cell disease have
made the hypothesis that RBC changes of shape is primarily responsible for affected blood

dynamics, which lead eventually to blood clots and sickle cell crises.
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hematocrit. Values shown are means *sem.

Figure 1.3.3 : Compared whole blood viscosities between normal and sickle blood (from Chien,
Usami and Bertles [%).
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Figure 1.3.4 : Compared whole blood viscosities between sickle cell types (from Chien, Usami
and Bertles %),

As sickle cell crises is a consequence of vessel occlusion, the interactions of the endothelium with
sickle cells were also investigated (endothelial cells are the cells lining the interior surface of the
capillary wall). Until the very recent interest in endothelial cells, and growing understanding of their
large role in blood regulation, the description of blood clotting was mainly though platelet adhesion
and the extensive documentation of coagulation factors, as given by Fogelson ™. Later, abnormal
levels of endothelium-regulated proteins associated with blood vessel inflammation were found in

b9, paving the way for potential novel therapeutic studies. These included reducing

sickle cell patients
endothelial cell activation P7 counter-acting it with vaso-dilating agents "% using circulating
endothelial cells as markers of pre-occlusive states using inhibitors to endothelial cell activation
9 and prevent sickle cell adhesion to endothelial cells by changing its adhesive potential €,

In 1975 Zarkowsky investigated sickling times of RBCs. It was found that RSCs had a sickling
time of about 2 seconds, while ISCs were sickling faster than the experiment could measure **,
Higgins’s recent experiments using a microfluidic device showed the occlusion of capillary vessels
under sudden deoxygenation ® ®! (see Figure 1.3.5). Zarkowsky’s and Higgins’s results suggest that

vessel occlusion can be achieved independently from any interaction with the endothelium, and that
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this interaction would rather be an aggravating factor, coming with if not accelerating complications
associated with vessel inflaimmation. Further similar experiments, with several controlled oxygen
levels, pressure constraints, and different channel widths, may be key to understanding the behavior
of sickle RBCs undergoing deoxygenation. These are also very interesting to simulation models, as
they may give more quantitative information on the different steps preceding vessel occlusion,
independently of a lot of chemical factors (onset of sickling, RBC shape and apparent viscosity vs.
oxygen level and volumetric flow, differences between RSCs and ISCs, and critical

pressure/volumetric flow couples leading to vessel occlusion).

X 1=124s

Vdacly (normalized % inial)

Time ()

Figure 1.3.5 : Vessel occlusion in oxygen-deprived microfluidic device (from Higgins [*").

Various studies have been pursued to determine the apparent viscosity of blood for different
types of RBCs, following the work of Chien, Usami and Bertles. Kaul and coworkers studied the 3
main sickle erythrocyte types in detail, isolating ISCs and 3 types of RSCs (see Figure 1.3.6). ISCs are
the most flow-obstructing cells, with under a shear rate of 230 s, a measured viscosity in oxygenated
blood of about 3.107 Pa.s (5.5.10” Pa.s in deoxygenated blood), 10% more than the most viscous
subpopulation Y. Tripette and coworkers have compared sickle cell disease with the rare form of
sickle-hemoglobin C disease, where a patient combines sickle-cell hemoglobin trait (HbS) with
another abnormal hemoglobin allele (HbC), with enhanced sickling compensated by the presence of

HbC, but other consequences leading to a less severe condition ™ (some details of the sickle cell
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disease variants are given in Interpretation of diagnostic tests by Jacques Wallach, pp.408-409 ) and in
Disorders of Hemoglobin by Steinberg et al.). Damay has also investigated white blood cells in sickle cell
disease, which were shown not to have a significant role on vaso-occlusion at the dynamical level
(through measured viscosity), as opposed to their known involvement in the resulting vessel
inflammation .

Another set of studies have explored the clinical aspects of sickle cell disease, such as abnormal
venous function leading to leg ulceration ", and variation of rheological and physiological factors
preceding, during and following the crises . Steady-state viscosity was also shown to be correlated

2]

with frequency of painful events and end organ failures ™, as well as measured viscosity of flow in

oscillating harmonic sinusoidal mode .

With the increasing efficiency of blood separation techniques, more details of the blood rheology
were also found. As mentioned in previous sections, Laogun et al. showed an average increase of
plasma viscosity from 1.4.10” Pa.s to 1.7.10° Pa.s for sickle cell patients in crises state, suggesting a
strong connection between the crises and the plasma protein content, either as a cause, consequence
ot cotrelated factor . However, the pre-ctises state doesn’t present any particular increase in plasma
viscosity. Finally, as stated in Greer et al’s Wintrobe's clinical hematolagy (p.1042) ®4) the little

dehydration of sickle cells causes a decrease in RBC volume, and a little increase in cytoplasmic

viscosity.
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SEM of the four major HbSS erythrocyte subpopulations (fractions 1-1V) of a single
patient (S.M.) separated on Percoll-Renografin density gradients. Oxy fractions: Fraction 1 is
characterized by the presence of a large number of reticulocytes; young reticulocytes appear
multilobulated (7). Fraction 1l is composed mainly of discocytes. Fraction I11 contains dense
discocytes and some ISC. Fraction 1V is comprised mainly of 1SC. Deoxy fractions: Following
deoxygenation typical sickle forms are seen in fraction I and I1. The multilobulated reticulocytes
:m tlo assume multispiculated appearance. Little or no transformation is seen in fractions

a V.

Figure 1.3.6 : The 4 major RBC subpopulations in sickle cell disease (from Kaul et al. 1),
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Another major breakthrough was achieved in 1984 by Nash, Johnson and Meiselman, who were
among the first to focus their attention on mechanical properties of the RBCs, and successfully
showed an important decrease of flexibility of the RBC membrane " (see Figure 1.3.7). This led to
new studies considering the variation of RBC viscoelasticity with oxygen partial pressure %
temperature and hemoglobin concentration . As shown in Figure 1.3.8, the RBC viscosity increases

with temperature and depravation of oxygen. Another study showed the decreased elasticity of

RBCs among heterozygous sickle gene (HbS-HbA) carriers .

Shoar Calculsted
Elastic Modulus Time Conetent Surface Viecosity Dimensions
Semple (10" dyna/em) {sac) (10°* dyne - sec/em) ("
ISCt 129: 256 0.181 1 0.03?7 208 :8.2 L=126208
n=T7 (36%) (37%) (50%) Wa 63108
RSCt 6.7:08 0.131 2 0.025 89222 D- 88:03
n- 10} (20%) (16%) (23%)
Controls 1§ 56+ 04 0.144 = 0.017 8.1z 1.1 O=- 85202
n=-10) (1%} {(16%) (24%)
Controls H (n = 4)
Fresh 56:04 0.132 =+ 0.023 743214
Stored 24 hr 58205 0.1356 £ 0.014 79214

*Data represent meen + standard devistion of mesns from n donors; figures in parentheses are the average CV for the samples. For controls and RSC,
8 celis were messured in each donor sample; and for ISC, 6 calis were messured per donor. The RSC data are mainly from messurements on the MID
fraction (8 donors) sithough for 2 donors, RSC from unfractionated blood were studied. L, ISC length; W, ISC width; D, disc diemeter.

1 The differences between iSC and Control | sheer slsstic modulus snd surface viecosity are significant (p < 0.001).

$The difference between RSC and Control | shear elestic modulus is significant (p < 0.006).

§Conrols | are for 10 donors whoss REBC were meesured on dey of blood withdrawsl. Controls N are for 4 donors whose red cslis wers messured both
on the day of blood withdrawsl and after 24-Iw storage at 4°C in heperinized piesms.

Figure 1.3.7 : Mechanical properties of ISCs, RSCs, and normal RBCs (from Nash et al. %),

At the same time, other experiments were successfully isolating sickle hemoglobin HbS and
showing its polymerization upon deoxygenation. Kinetics of HbS fiber aggregation was studied by
Wilson and Makinen ¥, and Christoph, Hofrichter and Eaton "%, Wang et al. determined the
mechanical properties of isolated HbS fiber, modeled as long cylindrical rods ™. While a promising
path, polymerization and crowding of sickle hemoglobin still has to be fully understood to determine

larger-size mechanical properties. These mechanisms are currently investigated by Ferrone and

[51] [53]

Rotter “". Recent research is also investigating depolymerization of sickle hemoglobin ", and
affected membrane permeability in sickle cell disease, which could be responsible for changes in

osmotic equilibtium and RBC dehydration P4,
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Figure 1.3.8 : Mechanical properties of sickle RBCs at different temferatures and oxygen partial
pressures (from Mackie and Hochmut [,

The studies of hemoglobin polymetization introduced a new research problem, since measured
viscoelasticities of RBCs, first attributed to the membrane, were indeed “effective cell” elasticities, as
remarked by Mackie and Hochmut "”. Messman et al’s calculations of membrane properties also
showed variability among cell types, with an increased rigidity associated with ISCs " Reciprocally,
Liu, Derick and Palek showed how induced deformation of RBCs by the polymerized hemoglobin
would produce a permanently reorganized RBC membrane structure, hence changing membrane
properties irreversibly . In 1992 Dong, Chadwick and Schechter were the first to address directly

the problem of determining whether impaired blood dynamics were due primarily to the presence of
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hemoglobin polymers, ot to affected membrane properties 4. In their model the RBC interior is
modeled as a Voigt viscoelastic homogeneous solid to account for the polymerized HbS structures,
while the membrane has a simple shear elastic modulus. Using experimental data, they successfully
showed a “transition from membrane to internal polymer dominance of deformability” as oxygen
level is lowered. Nevertheless, as reported by Hiruma et al. this transition is at a very high oxygen
level, and even a small polymer fraction can be primarily responsible for impaired dynamics (the
transition is estimated by Hiruma et al. at a level of oxyhemoglobin saturation above 95%) ™, These
contributions are a major argument in favor of not modeling the RBC membrane as a primary cause
of affected dynamics, but modeling instead the RBC interior. Modeling both contributions should be
nevertheless an eventual objective.

As a side note, therapeutic research has produced another considerable set of data supporting the
abnormal blood flow as a cause of complications leading to sickle cell crises. This was shown in
particular through the effects on blood flow of blood transfusion ®7, and of hydroxyurea, which
reactivates the production of the benign fetal hemoglobin HbF # P% P4 Another noteworthy
research result is the 2006 Stroke Prevention Trials, which successfully used transcranial Doppler
ultrasonography on children having sickle cell disease, to detect increased velocity in the internal
carotid artery and correlate it with proven increased risks of stroke PP 03,

The importance of all the experiments described in this section is undeniable. Not only these
results provide rheological parameters applicable to our model, but they also justify the hypotheses
that will be made in Section 2.1, since the complexity of blood chemistry and mechanics cannot be
entirely, fully modeled to this day. Alternatively, some data will also be used as validation to our

results.
1.4. Conclusions : objectives and hypotheses of current research

In light of the current existing models for blood microcirculation, and the experimental data
available, the present doctoral work proposes to design a novel advanced model, combining the most
recent sub-models available for oxygen transfer, fluid dynamics, and RBC membrane mechanics.
This model will first extend the existing models for normal blood and reconsider some hypotheses,
in order to be applicable to sickle cell disease. Secondly, we will develop a new model for sickle cell
disease, based on an intermediate description between the molecular level (HbS polymetization), and
the vascular level (effect on blood dynamics). Physical parameters will be adjusted with expetimental

data, and we will compare our results with various sources for validation of the model. Thirdly, a

58



numerical model will be implemented to produce simulation results, which will be carefully examined
to identify the main parameters affecting blood microcirculation, and crucial to study sickle cell
disease. Finally, based on a systematic analysis, we will consider potential therapeutic directions that
have been or may be further researched.

With these research goals defined, our specific objectives are :
(1) to derive and validate a “standard” mathematical model describing blood flow in capillary vessels.
This model and its range of application will be rigorously defined to address the complexity of
microcirculation using the most recent theoretical descriptions available, and as a consequence will
be usable as a base for any further study of blood dynamics. Also, the model will be designed
specifically to allow the inclusion of the sickle cell problematic (oxygen-dependent dynamics).
(2) to design a comprehensive model to address sickle cell disease. This model is to be based on our
understanding of the pathophysiology leading to abnormal blood dynamics. Therefore, we will
propose to build a new original model, as a tradeoff between the molecular complexity of sickle
hemoglobin polymerization and vascular flow observations.
(3) to identify the driving factors of blood dynamics and sickle cell disease. The model derived will be
used extensively for numerical simulations, and will be used to determine a few useful synthetic
quantities. Some results will be presented to show implications of single parameter changes,
reflecting natural or induced variations in the body, and giving us an interpretation of various
situations affecting blood flow and sickle cell dynamics.
(4) to identify, assess and propose new therapeutic opportunities based on simulation results. Varying
parameters will first be selected based on potential interest for medical research, then a systematic
analysis will allow us to quantify the resulting effects, and conclude on the opportunities of existing
or new therapeutic targets.
(5) to open larger investigations on blood dynamics. Our model is expected to constitute a strong
basis to elaborate advanced tools useful to medical research and study of the blood microcirculation.
Extensions of our work may be pursued to investigate other blood diseases, incorporate more
realistic variable-inflow models, study vessel networks, or simulate the effect of various drugs. The
results obtained may also help the elaboration of new diagnostic tools. All these bear a large range of

potential benefits for the pharmaceutical industry.

This work will be based on the following main hypotheses :
(1) The system of equations assembled gives an accurate description of the dynamics of red blood

cells, and the numerical model associated allows us to perform realistic simulations for a large range
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of situations. Furthermore, the proposed model used to describe sickle cell disease is a correct
approximation to the underlying mechanisms, and leads to significant progress in the understanding
of the disease. A careful validation through previous theoretical and experimental results will address
this hypothesis.

(2) Our choice of a few representative quantities correctly synthesizes the state of blood
microcirculation for all the simulations performed. We will show that blood microcirculation and the
problematic of sickle cell disease can be successfully reduced to some key features, described
efficiently by those macroscopic quantities. This will eventually constitute our basis to analyze the
efficiency of potential therapeutic actions.

(3) Our systematic parametric analysis correctly assesses some opportunities of available therapeutical
action. We assume that our choice of therapeutical targets reflect current possibilities of medical
intervention leading to reasonable changes in blood properties. Our simulation results will give
decisive conclusions on these hypotheses, and allow us to devise which specific targets may be

relevant for further therapeutical research.
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2. Simulation model for RBC dynamics and sickle cell disease

In this chapter we first present the physical model used to determine the characteristics of
capillary blood flow, with its assumptions and extension to sickle cell disease. Secondly we define a
numerical model to allow simulations to be performed, and determine approptiate numerical
parameters. Finally, we validate our simulation results with some basic case studies corresponding to

results found in the literature.
2.1. Physical model : constitutive equations and flow hypotheses

The mathematical problem is defined in this section through 3 steps. The scope of our
calculations is defined in the first part, by stating precisely the modeling hypotheses and geometrical
constraints. Then, we present the system of equations to be solved for the normal RBCs, and discuss
the values of all the associated physical parameters. Finally, we present the design of our proposed

model for sickle cells.
2.1.1. Physical model hypotheses, geometry and conventions

To study sickle blood and compare its characteristics to normal blood, we intend to isolate
specific factors that influence blood dynamics. Hence, we will generally distinguish 2 categories of
differing features between normal and sickle blood. Physical properties that differ by small relative
amounts will be generally ignored, while other varying physical properties will be addressed
separately to isolate their respective influences (quantitative discussion of the varying parameters will
be explicitly addressed in Section 2.1.3). All properties will be given in the S.I. (metric) system of
units, except for pressure, usually expressed in millimeters of mercury (mmHg) in medical science.

In order to study the abnormal rheology of sickle blood, we assume that a main feature of sickle
cell disease, eventually responsible for vessel occlusion, is the abnormal dynamics caused by sickle
blood. This hypothesis is generally admitted among researchers, and is supported by numerous
expetiments such as Higgins’s experiments on vessel occlusion ®!). Since vessel occlusion can be
obtained without participation of endothelial cells, we will therefore ignore all possible chemical

interactions of the RBCs with the blood vessel environment. RBCs will be also considered in local
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chemical equilibrium with the blood plasma. In other terms, no osmotic imbalance or chemical
interaction will be taken into account besides oxygen transfer, consumption, and binding to
hemoglobin and myoglobin.

Consequently, RBC volume is to be considered constant. Typical volume of RBCs is between
80 and 95 fL. (1 fLL. = 1 femtoliter = 10" m? ™. In our study we will use 9.10" m’. The decrease in
RBC volume observed in sickle cells is relatively small 3 and will be ignored, although it could be
easily included in further models.

To represent a capillary vessel, we will use an axisymmetric cylinder of constant radius. This
restriction emphasizes geometrical simplicity to avoid fluctuations due to varying vessel sizes and
focus out interest on other factors. Despite this constraint, but in order to observe various situations,
our study will use radius sizes between 2.5 pm and 5.0 pm, a representative range where significant
changes of the RBC geometry are expected (see Figure 1.2.7). At this scale, RBCs flow individually
along the capillary vessel. Thus, although RBC-RBC interactions and formation of rouleaux (trains of
agglutinated cells) is an important factor of blood flow for larger vessels, in our case we will assume
that RBCs flow at a regular pace, and our calculations will focus on the dynamics of a single RBC.
To set appropriate boundaries to our domain, we will assume periodic flow of RBCs. For normal
cells, the uncoupling of oxygen transfer equations and RBC dynamics allows this assumption to be
valid far from the capillary entrance, and cotresponds to what is commonly called “fully developed
flow” (see detailed mathematical formulation in Appendix D). In the case of sickle cells, we will
simply assume that the changes due to oxygen consumption are relatively small on the scale of a
spatial period, which is supported by the observation of typical capillary lengths |, and verified in
our results. This implies that given a set of oxygen levels, we can reconstruct sickle RBC behavior
based on local pseudo-periodicity. Figure 2.1.1 illustrates our geometrical model with the given
boundary conditions.

The model for oxygen transport will have the same geometry as in Vadapalli, Goldman and
Popel’s model of extended Krogh cylinder, completed with periodic conditions on the oxygen
pattern (oxygen level is assumed to have the same profile at inlet and exit). Again, this assumed local
pseudo-periodicity is expected to allow us to interpolate the trend at larger length scales, and was
retrospectively checked in our results. The radial thicknesses of the capillary wall and
interstitium are taken as respectively 0.3 pm and 0.35 pm, and the Kroch cylinder radius is taken

as 20 pm 08 Figure 2.1.2 illustrates these geometrical constraints.
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The spatial period L is easily calculated using the hematocrit (proportion of RBC in volume) :

v,
L= Het ::CR i &)

where Vi is the RBC volume, Hct is the hematocrit, and R, is the radius of the blood vessel up

to the capillary wall. The most important factors of variability for the hematocrit are age and gender
(source : http://www.medicinenet.com/hematoctit/article.htm), and normal values for adults are
between 0.36 and 0.54 9. Although the hematocrit of any individual is sensitive to a large variety of
environmental factors (altitude, smoking, dehydration, nutrition, sickness...), its changes are
generally incremental (unless the integrity of the vasculature is compromised). Hence we will use a
reference value of 0.45 for normal blood hematocrit. Sickle cell patients, on the other hand,
present a reduced hematocrit between 0.2 and 0.3 . In order to isolate the effects of the reduced

hematocrit from other factors, we will study sickle cell blood using both values of 0.45 and 0.25.
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Figure 2.1.1 : Individual RBCs periodic flow model.
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Figure 2.1.2 : Extended Krogh cylinder model (periodic).

The use of an axisymmetric geometry justifies assumptions of axisymmetry for all the field
variables under fully developed flow. We will naturally use cylindrical coordinates (z,r,8) and

assume independence of all variables with respect to &.

With a thickness of less than 10 nm ", the RBC membrane is to be modeled as a 2-D surface
containing 2 homogeneous solution of hemoglobin. Modeling the cytoplasm as a continuous fluid
is justified by the size of a hemoglobin molecule (hemoglobin is nearly spherical with a diameter of
5.5 nm - source : http://biology.kenyon.edu/BMB/Chime/Lisa/FRAMES /hemetext.htm), and its
non-binding normal characteristics (the sickle case will be discussed later).

Following Secomb’s work, the RBC membrane will be modeled as an elastic surface made of
superposed leaflets generating tension, moments and shear stresses 23 Figure 2.1.3 recalls this
model already presented in Section 1.2.3, with the curvilinear coordinates defined along the
membrane and the conventional orientations used. As discussed in Section 1.2.3, viscous properties
of the membrane can be neglected for normal flow situations. The RBC surface area at minimal

2 [101)

surface tension is taken as 135 pm™ """, and is also to be used as initial parameter.
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Figure 2.1.3 : Curvilinear coordinates for axisymmetric RBC membrane
and membrane stresses convention (model of superposed leaflets).

2.1.2. System of equations and physical parameters for normal RBCs

With the geometry defined in Section 2.1.1, the constitutive equations used to calculate fluid flow
everywhere are simply the axisymmetric Navier-Stokes equations written in cylindrical coordinates.

As mentioned in Section 1.3.1, both plasma and cytoplasm are assumed to be incompressible,
Newtonian viscous fluids :
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where v,(z,r,t) and v,(z,r,t) are the components of the velocity field, p(z,r,t) is the static
(mechanical or thermodynamic) pressure, g is the dynamic viscosity, taken as equal to 1.4.10
Pa.s in the plasma ! and 5.89.10° Pa.s in the RBC cytoplasm " and p is the plasma/cytoplasm

density, taken as equal to 1025 kg/m’. Although density is reported as slightly higher in the
cytoplasm (1125 kg/m’), we ignore this small difference for simplicity (source

http://hypertextbook.com/facts/2004/MichaelShmukler.shtml), especially since the cytoplasm is

constrained spatially by the RBC membrane and does not deform as much as the surrounding fluid.
Additionally, all fluid motion is ignored outside the capillary, i.e. v = 0 for r2 R,.

The constitutive equations for oxygen transport are based on Vadapalli, Goldman and Popel’s

model %, The generalized equations are :
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where p,, (z,7,2) is the partial pressure of dissolved oxygen, § H(z,r,t) is the fractional saturation
of oxyhemoglobin, pg: sovs 18 the oxygen partial pressure at an equilibrium corresponding to 50%
saturation of myoglobin (taken as 5.3 mmHg = 706.6 Pa), pgzso% is the oxygen partial pressure at
an equilibrium corresponding to S =0.5 (taken as 29.3 mmHg = 3906.3 Pa), a is the oxygen

solubility constant, D is the (isotropic) oxygen diffusivity, D* is the (isotropic) diffusivity of
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myoglobin (taken as 6.10™ m?/s), D™ is the (isotropic) diffusivity of oxyhemoglobin (taken as
1.3783.10™ m?/s), [Mb] is the total concentration of myoglobin (bound and not bound to oxygen),
[Hb] is the total concentration of hemoglobin (bound and not bound to oxygen), k™ is the kinetic

dissociation rate constant of oxyhemoglobin (taken as 44 s), n is the Hill coefficient of the
oxyhemoglobin dissociation curve (taken as 2.2), and M is the rate of oxygen consumption. All the

0% with the

parameters given above are determined using Vadapalli, Goldman and Popel’s sources
other parameters having different values in the 5 regions reported in Table 2.1.1. Conversions were
made using standard data for the molar mass of hemoglobin, 16.11 kg/mol (the definition of “mole”
is applied to each of the 4 tetramers or protein subunits assembled in hemoglobin), and 25.766
L/mol as the molar volume of oxygen, which has been calculated from standard conditions using the

Van der Waals equation for oxygen, at body temperature 37°C  (source

http://www.combro.co.uk/nigelh/diver/vdw.html).

a
v (Pg.s) ;E‘r’rll/é’; (mlz)/s) (nfgz]n’) (nfgbr]n’) (mol%f/ s)
Tissue 0 / 1.5059.10° | 2.41.10° 0 04 |6.1321.10°
Interstitium 0 / 1.0906.10° | 2.18.10° 0 0 0
Ca\iﬂﬁ‘w 0 / 1.5097.10° | 8.73.10™° 0 0 3.8811.10°
Plasma v,,v,) [1.4.10°)1.0906.10°| 2.4.10° 0 0 0
cytl;];lgsm v.,v,) |5.89.10% | 1.3118.10%] 9.47.10™ | 21.099 0 0

Table 2.1.1 : Velocity and varying parameters in the 5 layers (from Vadapalli, Goldman and Popel ["°%).

Finally, the constitutive equations for the RBC 2-D elastic membrane are taken from Secomb’s

model presented in Section 1.2.3 1

ds R
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d*¢ d ( sin
q, = — B ds2 + '[;;( R¢) s (47)

where $(s,,t) is the curvilinear coordinate of a point on the RBC membrane, function of time and
its position at initial time (5(s,,0) =s,), ds(s,,?) is a local distance between 2 infinitesimally close
points of the membrane along the s direction (with ds(s,,0)=ds,), R(s) is the membrane radius
(with R(s,)=R,) and @(s) is the local angle of the normal vector to the axis of symmetry =0
(see Figure 2.1.3), t.(s) and #,(s) are the surface tensions in the s and @ directions, #(s) and
t,(s) are the isotropic (mean) tension and shear (deviatoric) tension, g,(s) is the shear force per
unit length in the s direction, o, is the isotropic tension at the reference state (estimated at 7.107
kg/s’ "M, K,, is the isothermal area compressibility modulus (or 2-D bulk elasticity modulus,
taken as 0.5 kg/s” ') K, is the 2-D shear modulus (taken as 4.2.10° kg/s* ") B is the

bending modulus (taken as 1.8.10™ kg.m?/s* ") and k, is the total curvature at the reference

moment-free state (chosen to be a spherical configuration, i.e. homogeneous curvature, for the same

RBC volume) :

d .
K = % sing (48)
dS m=20 R m=20
Using the reference RBC volume of 90 pm® """, we get for &, 7.1941.10° m™.
The membrane radius and local angle at any position s are also simply related by :
dR
— = cosg . 49)
ds

Finally, these stresses are combined into the local normal and tangential forces per unit area of

the membrane :

i d(R
ﬂz_ts@_tgsm;b_i (qs)’ (50)
dA ds R R  ds
dRt
ahLAEL) 8, B 1)
dA R ds R ds
and Equations (50) and (51) can be projected onto cylindrical coordinates, to give the total force
components per unit area exerted from any point on the membrane :
dF, dF,
= “ sing + —X cos¢ , 52
f(s) = —F sing + — cosg (52)
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fi(s) = - CZ" cos¢g + fg}’ sing . (53)

All the derivation details of Equations (40) to (51) can be found in Appendices B-1, B-2 and B-3.

In order to “connect” the membrane sutface equations to the Navier Stokes equations, one can
either use boundary conditions or discretize Equations (52)-(53). The first method consists in
integrating Equations (41)-(42) in an infinitesimal volume over the membrane surface, and balancing
the result with the membrane contribution. The second method consists in discretizing a Dirac
distribution localizing the membrane in space, to add an equivalent force per unit volume to the
Navier-Stokes equations (The added term is presented in a generalized form of the Navier-Stokes
equations in Appendix B-2). This choice is closely related to the numerical method used to solve the
boundary problem. Hence its mathematical formulation will be later discussed in Section 2.2.

To close the mathematical problem, we use the following boundary conditions : no-slip at the
capillary wall, continuity of oxygen partial pressure and oxygen transport across the model layers, and

no-radial-transport at the Krogh radius. The absolute static pressure level at the inlet can be set
arbitrarily to 30 mmHg + 1 atm =~ 101325 Pa (average pulse at capillary entrance — see Figure 1.3.1).
We also set the conditions on the inlet side for the average blood velocity and oxygen partial
pressure. The values used will be case-dependent, with reference values of 0.25 mm/s, and 95
mmHg and 40 mmHg respectively. At the RBC membrane, the no-slip condition is equivalent to
an implicit convection equation :

d(Z) ds(sin(¢)) _
Z(RJ = E(cos@s)) = ¥ (Z(s),R(s)) , (54)

where Z(s) and R(s) are the two functions mapping the RBC membrane position in the cylindrical
reference frame. Equation (54) forms the “implicit feedback™ of the fluid dynamics to the membrane
(i.e. defines implicitly s as a function of time).

In the following section, we present the model used for sickle cells and the physical parameters

associated.
2.1.3. System of equations and physical parameters for sickle RBCs

In accordance with our work hypotheses, abnormal sickle RBC dynamics are primarily the
consequence of both a shift in the values of some parameters, and the emergence of a polymerized

structure inside the RBC. While the first can easily be implemented in a blood flow model, the
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second needs a specific physical model for sickling RBCs. More precisely, we want to investigate
Reversibly Sickled Cells (RSCs) as they turn into Irreversibly Sickled Cells (ISCs), i.e. we want to
capture the sickling mechanism happening upon deoxygenation, within the capillary vessels (RSCs
travel too quickly to undergo significant sickling, while ISCs are permanently sickled).

Our motivation to design a novel model for sickling RBCs, is to use and combine the knowledge
from Dou and Ferrone’s work at the molecular level, showing the growth of sickling hemoglobin
polymers "1 and Berger’s model at the cellular level, using modified RBC membrane stiffness for
sickle cell patients [, While implementing Ferrone’s model would require unprecedented levels of
complexity due to large multi-scale computations, Berger’s model can be modified to reflect more
accurately the sickling phenomenon with its molecular origin, keeping in mind Usami’s experimental
results showing modified RBC dynamics . Based on Dou and Ferrone’s results, we hence propose
to model the sickling hemoglobin polymer chain as a long, C-shaped structure growing inside the
RBC. As a first approach, the position of the polymer chain will follow an approximate RBC midline
(the midline formulation is described in Section 2.2). This structure will generate elastic stresses on
the RBC membrane, both axially and laterally (see Figure 2.1.4). To preserve the axisymmetry of the
problem, we assume that the sickling polymer structure is also axisymmetric, effectively making it a

deforming “curved plate” generating additional forces on the membrane, directed outwards.

Ar

NV

Al
Figure 2.1.4 : Schematic model of curved plate for sickling RBC.
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To model the elastic stresses, we use a simple linear spring model. Stresses are to be proportional
to the difference between the actual length and a reference length “at rest” of the hemoglobin chain.
This reference length is to be proportional to the oxygen level in order to characterize oxygen-
dependent sickling. Additional parameters to the spring constant set the boundaties of this dynamical
model, namely the reference oxygen level below which sickling starts, and the maximal polymer
elongation (cotresponding to no oxygen). Axial stresses are thus described by the following

equations :

Fips = ks (leS_ref(poz) - les)’ (45)

s re Po, _ry — Po,
Lins v (Po,) = 1o |1 = [[”l—f) - IJ [—————J : (56)
0 max poz_ref

where F, is the total force exerted by the hemoglobin polymers (in Newtons), &, is the effective
spring constant of the polymer chain (in kg/s?), I, is the curvilinear length of the chain, /s ,,, is
the expected length of the chain for a given oxygen concentration/partial pressure, [, is the

reference length before sickling, corresponding to the oxygen partial pressure p, ., and

/
(M) is the maximal relative elongation of the chain with respect to the reference state.
0 max

Since we expect to obsetve the effects of the chain growth, k¢ should be sufficiently high to

counterbalance stresses in the membrane and reshape the RBC. In this study, to emphasize the

dependence of polymer growth on oxygen level we will assume that the elongation of HbS polymer

chains is basically not stopped by the membrane. We thus set ks to an arbitrarily high value

(determined by the numerical limits), to essentially keep /s and [/, ., equal, and use

/
(—Hb“lvjef J as the main parameter for the sickle model to be determined by experimental data. In
0 max

other terms, our definition of the spring force becomes simply a dynamical substitute to a fixed
polymer length condition, with Equation (56) defining how the polymer chain should elongate. This
rough simplification, while being arguable, follows the purpose of keeping our model as simple as

possible.
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To avoid large local curvatures (formation of a corner), we also consider a localized thickness of
the hemoglobin fibers. This corresponds in practice to representing a polymer with multiple strings,
to spread out the resulting axial force on the membrane (see Figure 2.1.5).

Lateral stresses exerted by the polymer chain on the RBC membrane use a similar formulation,
with the forces defined for each control point of the structure, as acting on the closest membrane

point facing it laterally (see Figure 2.1.5) :

Fips = ks (desJef(Po) - des)’ 67

d p > rej - p 2
d s ref(poz) =d, |l - (M) -1 o e > (58)
h dO max pOZ_ref

where Fy,¢ is the lateral force exerted on a point facing laterally one of the polymer control points,
ky,s is the same spring constant, dj,, is the actual distance between a control point and its
opposing point on the RBC membrane, d; ,, is the expected distance for a given oxygen

concentration/partial pressure, d, is the reference distance before sickling corresponding to the

deS _ref

J is the maximal relative elongation of this lateral
0 max

oxygen partial pressute p, ., and (

distance, with respect to the reference state.

Figure 2.1.5 shows the resulting model, which corresponds in practice to representing the
polymer chain as a “tree” of hemoglobin fibers forming along the RBC midline. To simplify the
analysis, we will only consider the lateral stresses on the upper (convex) side of the RBC. Since the
flow strain rate is much higher near the capillary walls, stresses on the lower (concave) side are not
expected to have significant effects on the RBC dynamics (besides reshaping). To fit our linear spring
model into an axisymmetric average problem, the resulting forces are to be spread out

axysimmetrically.
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Figure 2.1.5 : Schematic model of curved plate for sickling RBC (detail).

As a case study, we set the model constants as follows. /; and d, are to be defined by the non-
sickle case, using the RBC midline calculated under steady flow conditions (with respect to the
moving RBC). p, ., is set to an upper limit of 95 mmHg, which corresponds to an assumption of
early sickling, at highly oxygenated blood. These 2 hypotheses mean that sickling will start as soon as
the RBC arrives in the capillary, with a polymer chain just reaching the size of the RBC when
entering the capillary (this fits precisely to our motivation to represent RSCs turning into ISCs). Since
the growing polymer chain cannot exert an overall force on the RBC (pushing it down the flow or

dragging it), the sum of all forces need to be zero. This physical constraint effectively reduces the

/ d

- HbS HbS ;

definition of [—"ef and | =2 | to one constant (in other terms, lateral forces must
0 max 0 max
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compensate axial forces). The remaining parameter is “tuned” to match a chosen set of expetimental

data, namely the ratio of apparent viscosity of 1.5 observed for larger vessels, observed in results

deS _ref

from Usami and coworkers ¥, The obtained value for ( J is approximately 10 when £

0
is set to 5.10° kg/s (the value of k,,. determined to meet numerical limitations is discussed in the
HbS

Section 2.2). This ratio is evidently an upper bound for the theoretical maximal elongation.

For the sickle cell model, Equations (40) to (54) will still be used. To study separately the impact
of the modeled sickling RBC and of the varying parameters due to the disease, we will carry
calculations first with the same values for all the physical parameters. As a supplemental
preliminary study, we will then study the effect of the reduced hematocrit in the sickle case, set to
0.25 in accordance with experimental data *. Further work is encouraged to examine the impact of
other varying parameters, which is expected to be as important as the variation of their relative value
roughly suggests. Following the discussion on available experimental data in Section 1.3.2, these

parameters include plasma viscosity (increased to 1.7.10° Pa.s in the crisis state), decreased RBC
volume and increased cytoplasmic viscosity (due to dehydration), changes in szb,so% and the Hill
coefficient n corresponding to the shift in the oxyhemoglobin dissociation curve, and increased
shear modulus K, corresponding to the irreversible reorganization of the RBC membrane structure

(other elastic coefficients being potentially affected too). Finally, some physical parameters such as
plasma viscosity could be modified to reflect interactions with the endothelial cell layer, although

Higgins’s work proved it not to be necessary to achieve reversible vessel occlusion 'L
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Figure 2.1.6 : System of equations of the full capillary flow model.
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Figure 2.1.7 : Additional equations for the sickling RBC model (local axial and lateral forces exerted on the RBC membrane).

L
L

Po, ry

pOZ _ref

— Po, JJ
—_— ], (55)-(56)

poziref

pOZ_ref

= Po,
H ,  (37)-(58)

Geometry (Fluid) Dynamics Oxygen Transport RBC Elastic Membrane HbS Elastic Model
Pararpeter Value Paran}eter Value Parameter Value Paran:xeter Value Pararpeter Value
(units) (units) (units) (units) (units)

VRBC -17 P (94 "'1.10-3...* ko 5 kHbS
() 9.10 (kg/m?) 1025 Neno/mo/mmttg)~151.10%| (@t | O] 0e %
Awe | 13510710 ~ 1.4.10° * D |~L10%. % {so,ds} | Ry-case | {lp,do} | R,-case
(m?) (Pa.s) 5.89.10° (m*/s) 2.41.10° {m} dependent {m} dependent
R, >2.5.10° M 0. * {R} R, -case (dﬂbs_,e,] <10
(m) 34.5.10-6 (mol/ms/s) 6.1321.10-3 {m} dependent dO max

- Hb

Ri-Ry 1 0310 n 2.2 K 44 70 7.107 Po. rg 95

(m) ) (kg/s") (mmHg)

_ Hb *

Br =R ) 935100 | Powsos 29.3 LEb] 21050 K 0.5
(m) (mmHg) (mol/m’) : (ke/s’)
Ry -6 D™ 11 DM 11 K, 6
20.10 1.3783.10 6.10 ; 4.2.10
(m) (m?/s) (m®/s) (kg/s?)
0.45 Pgﬁso% [Mb] o * B -19

Het 0.25° (mmHp) >3 (mol/m?’) 0.4 (kg.m*/s’) 1.8.10

Table 2.1.2 : Summary of physical parameters of the model (° sickle case - * see also Table 2.1.1).
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Figures 2.1.6 and 2.1.7 summarize the dynamical system of equations for both normal and sickle
cases, and Table 2.1.2 lists the parametric values of the physical constants (except for the inlet
average velocity, static pressure and oxygen partial pressure). Equations (49) and (54) implicitly

complete the system. For normal RBCs, the resulting mathematical problem consists in 11 equations

for the 11 unknowns v,, v,, p, Po > S™  R(s), Z(s), ¢(s), t,, t, and gq,. Besides the 2 families

of control points (s,,R,) defining the membrane in its preferred configuration, the total number of

physical parameters is 25 (35 specific parametric values for the 5 layers), and there are 3 fixed

boundary values (average velocity, static pressure and oxygen partial pressure). In the sickle case,
there are additionally 2 vectors of control points (/,,d,) with as many equations, 1 supplemental

parametric value for the hematocrit, and 3 new model parameters. The next section defines the

solving method retained and the associated numerical parametets.
2.2. Numerical model : Immersed Boundary Method

In order to solve the large system of differential equations mentioned in the previous sections,
various numerical techniques were first investigated.

Traditional methods use simultaneous solvers with separate formulations for the 5 layers
considered, and coupled through boundary conditions. The fluid dynamics equations are usually
considered by far the most complex part to solve, and there is considerable literature on various
advanced methods. Finite elements methods are a standard technique used to calculate complex
flows " A main specificity, and major difficulty of our problem, is to have a deformable boundary

corresponding to the RBC membrane. To address this problem, finite elements methods can be

[139 [141]

applied with structured grids ", unstructured grids 049 overset grids and other advanced space

144

mapping techniques . Finite volume methods are also an alternative technique 04 using an

integral form of the physical equations "), and having specific advantages since it enforces
conservation principles directly at the local scale. In the late 90’s, Peskin developed the Immersed
Boundary Method (IBM) as a novel alternative which proved to be very well suited to problems
involving deformable boundaries with specific mechanics. This method quickly gained popularity
among researchers and developers of numetical methods, with the noteworthy variant called the
Immersed Interface Method (ITM) U 3% 51 and is likely to become a new standard due to its

simplicity and ease of use compared to previous methods. While its efficiency was not explicitly

compated to other methods for our problem, time considerations and advising by MIT faculty made
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it the ideal candidate for numerical implementation. The IBM is explained in detail by Peskin ™7,

[145§ [149]

who also discussed the possible degrees of numerical precision and showed some examples of

application ",

2.2.1. Application of the IBM and discretization scheme

The IBM consists in solving the fluid dynamics equations in an extended form, to combine the
surrounding fluid (here plasma) with the moving boundary containing similar or different fluid (here
the RBC membrane). Both fluid dynamics and transport equations are therefore to be generalized to
the combined space, and to replace boundary conditions representing the RBC membrane, the
boundary forces are to be added into the fluid as a localized force field. In other terms, the 2-D
boundary is replaced by an equivalent 3-D, localized force using a Dirac distribution. While the

oxygen transport equations are unchanged, the generalized Navier-Stokes equations become :

. 1 o 0
Vo= =~ — + —v, =0, 40
Y r ar(rv’) 6zvz (40)
v ov v ap 16 v, o, v z) (Z(s)
L+ L4y, —~|=—— - Lo+ —— |+ f, I - 60
p[ a o e az) ar“{r 6r(r 6r) = 7)) ke ) @O

o, L ) 19( ov,) 0%, 2\ (Z(s)
p( a o 62) R ;{r 6r(r arJ+ GZZJ i 5HJ (R(S)D D

where & is the Dirac distribution mapping the 2-D membrane into the 3-D combined space, and f,

and f, are the forces per unit area exerted by the RBC membrane on the flow, given in Equations
(52) and (53). To solve numerically the generalized system of equations, a spatial discretization
scheme is to be applied to & in addition to all the field variables, effectively “smearing out” the
boundary into the fluid. In the resulting combined space, it is important to note the emergence of
discontinuous parameters (viscosity, oxygen diffusion constant, hemoglobin concentration and
oxygen solubility constant), which are to be carefully specified as a function of location in the
numerical method.

Using the IBM allows considerable simplification of the numerical problem. The 4 regions of
space left (blood flow, capillary wall, interstitium and sutrounding tissue) are defined by fixed
boundaries, which allows us to use a very simple, permanent, structured mesh for each case study. In

this simplified framework, the 3 fundamental steps left to define our numerical method are time
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discretization, space discretization, and specification of the algorithm procedure and its numerical
parameters.

Time discretization for first-order dynamics is typically performed by explicit and implicit
methods, the first being in general simpler to implement and the second being more stable. The
resulting system is to be solved at each iteration, using typically iterative methods or linearization and
Gaussian elimination. We choose to use the second one for simplicity. Because this method is better
suited for linear systems, we use a specific implicit method to compromise stability with the non-
linear terms. More precisely, in the Navier-Stokes equations all linear terms are to be calculated
implicitly (i.e. expressed as their value at the next time step), and all non-linear terms are calculated
explicitly (i.e. expressed at the current time step). The resulting time discretization scheme gives the

following equations from time step ¢ to time step +df :

1 o
- = + — =0, 62
r 6r(rv’),+d, azvz t+dt ( )
v, 1o av,), v v op
P — H|— T te—> | t5 =
dt|,, . r or\_ or 0z r O | ar
t+dt
v ov LY z) (Z(s)
Jr r - r + 5 —_ N 63
p(dt e -, az), £,) (@ (R(S)Dm -
), 1 a( 8vz) o, op
Pl — M| T P ..
dt vt r or or 0z P oz t+dt
v oy ov z Z(s)
Tz z 2 + 6 —_ . 64
p(dt b2, aZJ’ £.65) (U (R(S)Dm o

In the oxygen transport equations, a similar discretization scheme is applied, with convective terms
expressed explicitly, diffusion terms implicitly (with the exception of the myoglobin-related non-
linear term appearing in the factorization), and the remaining (non-linear) kinetic terms calculated

explicitly :
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aD + D" [Mp]— 2"
Po, B (Po,s0% + Po,) 10 opo, N azpo2 .
dt Mb r or 4 or 0z* B
t+dt o + [Mb] Mbpoz,so% . t4ds
(poz,so% + poz)
t
J [Hb] g _ (1 _ SHb)[ I;Oz } - M
a 3 Po, 5%
Po, r Po, v, Po, || | . (65)
dt or oz ) Pl
a + [Mb]l——— >
(poz,so% + poz)
t
S—Hb ~ DHb —1— -6_ rasHb N aZSHb _
. r or\ or oz*
t+dt t+dt
SHb aSHb asHb "
2y, — v, — ks (1 - s®)|Le| | 66
dt or 0z Po, 50%

Finally, the RBC membrane position is iterated implicitly, using the calculated velocity field :

Z(s)|,,, = v.(Z(),.R($)),, 4 (67)

R(s),, = v.(Z().R(s)),, 4t - (68)

Spatial discretization is performed using a finite difference scheme, with a simple cylindrical
mesh of regularly placed points (i.e. a rectangular mesh when projected in 2-D). As shown in Figure
2.2.1, all the field variables are expressed at the same points with the exception of the static pressure,
placed on an out-of-phase grid (staggered mesh) to express discretized pressure gradients naturally
and avoid possible numerical issues (due to the central difference scheme). First-order central

differences are used to replace the various space differentials :

A, —A, A —A .
a—A(zi,rj) oy M L , a—A(z,.,rj) —y b ThA , (69)-(70)
0z 2dz or 2dr
0’4 A, +A,,—24,. 0’4 A g+ A4, =24,
- (z,,1;) > — dz‘; 2 (o) - s d’r’; Lo (T1)-(72)

Pivr2,j+12 ~ Piciz,jeirz ¥ Pisiajoiz — Piciiz,jaiz

2dz ’

Z—’Z’(z,-,rj) R 73
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Pinrzjaiz ~ Pinsajuiz T Piasajnz ~ Piasz,j-12

2dr :

i (74)

—gg(z,rj) —

where i and j are the indices of the 2-D discretized space grid points, z, and r; are the
corresponding coordinates, dz and dr represent the spatial distance between two neighbor points in
the main directions, 4, represents any field variable except static pressure (velocity components,
oxygen partial pressure, oxyhemoglobin saturation) at the location (z,,#;), and P, ./, is the

static pressure on the staggered mesh. The resulting discretized system of equations is very large and

of little interest to our discussion, hence its full expression is left to the reader.

Figure 2.2.1 : Spatial discretization with staggered mesh and interpolated pressure gradients.
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The RBC membrane is discretized into cylindrical segments represented in 2-D by the family of

points (s, ) (see Figure 2.2.2). The obtained polygonal shape is used to calculate membrane stresses,
using the discretized radii R,, segment lengths between two points ds,,,;,,, and corresponding

angles @,,,,,. The multiple derivatives of @needed at the control points (s,) are determined by a
combination of first-order central differences and (linearly interpolated) averaging :

R...—R, Pevir2 ASiant Bersy ASpann

cos = , #(s,) — , 5)-(76
P2 ds, . P(s,) s, ds, ) (75)-(76)
¢(Sk) _) 2 ¢k+1/2 ¢k 1/2 , (77)
dsy ., +ds,
d*¢,, d’g,_
d? i‘—b—(s,m) ¢(sk) d> “;—mdsk-1/2++”2dsk+l/z
Priir _ ds ¢ (s,) - A dsi_z (78)-(79)
dsl?n/z dsk+1/2 © ds? dsy 1y +dSgn
s b
d3 2 2
_?(Sk) -5 2 APRYD AP (80)
ds dsy,, +ds,
d sin (s, )
Sox = 5. (50,t=0) , ky(s,) = _?‘(So,k) + A~ (81)-(82)
ds R,
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Figure 2.2.2 : RBC membrane discretization, and discrete derivatives of @.
The resulting stresses on the membrane are also obtained with a combination of centered differences

and averaging :

ds ds
k+1/2 k-1/2
ds,,, + sy

= ds P
i(s,) = o, + K, 0,k+1/2 0,k-1/2 o, (83)
dsy iy + dSp Ry,
dsin _ dsy_y;
2 dso,knfz dsosz | R,
dsin + dSiyn Ro,k
dt
d—(sk) - K, , (84)
5 dsy. 0 s ds_ii d R+ Ry _ Ry + R,
% Sto1/2 Ski1/2 R R R R
” 0,k+1/2 S0k-1/2 2 o+ T o ok T84
ds,y;, + dSis dsy, + ds, ),
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Sing, ./, _ sing,

. d? R..,+R R, +R,_
_ g (?(s,,) - sz(sk)] d?(sk) P el | IO

" /s ASpap + dSi,
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5.) > — Bl —5(s) + 2
q,(s;) ds* (5:) dsia;, + dse

+ 45 P12 Sy

S 12 (A4 dg _4 Sing,.1/2 COS P12 _ oSy, (d_¢ dg )
dq d’¢ R, +R, (ds )+ ds s )) (R, +R,) R, +R, \ds () ds Gt (R, +R,.)
ds () > - B|—()+
s ds dsgyy + s,
(88)
which allows the resulting forces to be calculated at each point on the discretized RBC membrane :
dF, d¢ sing(s,) _ dg 4.(s,)
2(s,) = —t.(s,) —(s,) — t,(s - 2(s,) — —=——== cos¢g(s,) , 89
dA(k) (50 ds(k) o (Si) R, dS(k) R, P(s,) 89
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IF di
f’d;’(sk) = %(sk) + t‘g") cosd(s,) — ¢, %k(s") - q,(5) %(sk) , (90)
and in cylindrical coordinates :
£s0) = ‘Z (s,) sing(s;) + %(sk) cosd(s,) | o1)
£ = = Z2(s) cosds) + ‘Z (s,) sing(s,) . ©02)

Finally, we use a discretized Dirac distribution inspired by Peskin’s work ", In 2 dimensions, the
forces per unit area are first integrated on the RBC membrane surface they represent (see Equation
(93)). The resulting point forces are effectively distributed among the 16 closest mesh points using a
cosine bell function (see Figure 2.2.3). The discretization in cylindrical coordinates is similar to
Peskin’s formulation in the z-direction, and is modified in the r-direction to fulfill Peskin’s postulates
(in particular, the postulate that the force is split evenly on each side of the membrane point after

integration — the torque identity (6.5) as defined by Peskin ") :

5[(zij_(z(sk)JJ — 52 (Zi,Z(Sk)) 5r2 (rj,R(Sk )) T (dsk—l/Z (Rk—l +3Rk) + dsk+1/2 (3Rk + Rk+l)J ,

r; R(s,) 4
©3)
1 z,—Z(s,)
0(z,,2(s,)) = — |1 + cos| 7 Z—2L 1 —Z(s)| < 2dz, 94
z(zt (k)) 4dZ ( co [ 2dZ ]] |Zl (k)l iz ( )
1 r; — R(s;)
Jf(rj,R(sk)) = m [1 + COS(ﬂ' JZT , |rj—R(sk)l < 2dr, 95)
Note that Equation (95) needs to be modified near the centerline. A useful alternative is :
1 r.—R(s,)
5 (r,,R = ————— |1 + cos|w =—==||, |r—R < 2dr, 95b
, (r;5R(s,) 8 7 R(s,) dr ( co [” > dr |r; (Sk)l ¥ (95b)

which can be used for the radial component to distribute RBC forces evenly on points of higher and
lower r-coordinate (the original force on the RBC membrane being considered homogenous per unit

area, this formulation is more appropriate for the r-component). Also, for the points where
R(s,) < dr the discrete value of 8 is normalized specifically to take into account symmetric radial

terms and the Dirac distribution overlapping.
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Figure 2.2.3 : Immersed Boundary Method applied to the discretized RBC membrane (in red).

The RBC velocity at the membrane points (needed in Equations (67)-(68)) is interpolated using the
same discretized Dirac functions. This constitutes the implicit “feedback” from the flow to the RBC
membrane position.

In the sickle case, the RBC midline formula was determined as a compromise between extreme
simplicity and subjective appreciation of the result. The 2 basic control points of the sickling
hemoglobin polymer were set to the RBC midpoint on the axis of symmetry, and the point on the
RBC membrane with the lowest z-coordinate or “furthest RBC point downstream”. These 2 points
separate the RBC membrane in 2 pieces, called “upper” and “lower” sides of the RBC membrane.
The first attempt to determine a RBC midline was simply a curvilinear average between the 2 pieces
(see Figure 2.2.4). However the result proved to follow poorly the membrane shape near the second
basic point, as the point sampling was sparser on the upper side than on the lower side. To enhance
the result, a couple of improvements were tested on the sampling of the RBC control points on the

lower surface. The use of linear, hyperbolic, then double-hyperbolic sampling formulas gave
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significant visual improvements (see Figures 2.2.5, 2.2.6 and 2.2.7), and the latter one was retained
for our model. To give the polymerized structure an effective reference thickness, 2 more series of
control points were determined, placed at a lateral distance based on local discretization of the RBC
(see Figure 2.2.8). The resulting sets of control points were used to apply Equations (55)-(59), with

the resultant forces added to the forces exerted on the RBC membrane at each point s, .

Figure 2.2.4 : RBC midline calculation (homogeneous sampling - Note:only r>0 is plotted).
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Figure 2.2.7 : RBC midline calculation (green:homogeneous sampling, red:double-hyperbolic
sampling).

Figure 2.2.8 : HbS modeled polymer structure (Note:a potential double-thickness layer is shown
for illustration).
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2.2.2. Numerical procedure, parametric adjustments, and limitations of the

method

The resulting discrete system of equations is a sparse linear system that can be written as :

vZ
vr
4, =|p @, 96)
Po,
SHb
{z;.r;}
MAt+dt = B(At) > (97)

where A4, is the state vector of the system at time ¢, M is the rigidity matrix of the system,

comprising all the linear terms expressed implicitly, and B(4,) is the second term. This system is
solved at each iteration using Gaussian elimination in Matlab® (backslash “\” operator). Note that,
since the oxygen convection terms are non-linear terms (therefore putin B(4,)), M is diagonal by
blocks, and Equation (96) can be split in 2 sub-systems, for the fluid dynamics and the oxygen
transfer respectively.

The numerical procedure consists in iterating these steps :
1) using the current RBC position, calculate RBC membrane stresses (Equations (75)-(92)),
2) calculate the resulting RBC membrane forces on the fluid mesh (Equations (93)-(95b)),
3) calculate the second term B(4,) and the rigidity matrix M on the discrete mesh (Equations (62)-
(66), (69)-(74),

4) solve the system for the state vector at the next time iteration 4,,,,

5) calculate the new RBC position (Equations (67)-(68)).

Some “tweaks” can be easily added to this numerical scheme, such as non-dimensionalization and
adaptive time step, and also some “hard” numerical procedures, for example to enforce global RBC
volume conservation after a large number of iterations (compensating numerical leaks). Other
considerations on improving the numerical method are left to further work (e.g. iterative methods
based on trapezoid rule and higher-order Runge-Kutta methods, n-point finite difference schemes,
boundary integral methods, lattice-Boltzman methods, partial linearization of nonlinear terms...).
Also, determination of the RBC stresses based on its approximate shape can use higher-order

interpolation schemes such as rational splines [*41>1134,
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Numerical parameters vary depending on the case studies, with typically 100 to 200 points
defining the RBC shape and 40 to 65 vertical divisions of the capillary vessel (and other vertical and
horizontal meshing such that mesh size is as homogeneous and square as possible). Finally, the time
step is set to be always smaller than the mesh size divided by the flow velocity. Given our case
studies df was set for all our calculations to 1.45555.10° s. Certain RBC membrane stresses may

need a smaller time step to be propetly implemented, but would considerably slow down
calculations. Instead, decision was taken to effectively reduce K, to 1.10™ kg/s’ and set ks to

5.10° kg/s” to ensure numerical stability without significant changes in the results (RBC surface area
remaining effectively quasi-constant, always within 2% in all our results). Convergence was based on
a determined total number of iterations, corresponding for the worst case to a maximal change in
relative positions of RBC control points of less than 1%, for a time equivalent to traveling at least 2
spatial periods. From the observed asymptotic trends and due to the numerical precision, we roughly
estimated a global precision of around 2% for all spatial variables, and at most 5% for the synthetic
variables (such as apparent viscosity). For more details or to ask for a copy of the code used in this
work, please contact flefloch@alum.mit.edu.

Peskin discussed in details the limitations and issues of the Immersed Boundary Method in his
publications 1 M4 041041 One important difficulty we encountered was the relation between mesh
size and RBC discretization : if RBC points are too close, the calculated stresses on the RBC
membrane do not lead to sufficient “feedback” from the flow, and may result in the RBC membrane
folding onto itself (due only to this numetical phenomenon). Inversely, if RBC points are too far
apart, the distributed forces on the flow grid are not connected, and may result in local flow vortices
and instability. As a consequence, the resolution chosen for the RBC membrane (200 points)
imposed very tight restrictions on the mesh precision. Varying geometries (e.g. varying capillary sizes
or hematocrit) were also subject to recalculations of the most appropriate mesh dimensions, to
obtain stable RBC local dynamics. For this resolution, full calculations on one case until reaching
steady state lasted about 5 days on an Intel Core i7-965 processor (3.2 GHz). With longer calculation
times, improvements in terms of precision and range of situations or parametric values are cleatly
possible, and the 12 Gb of RAM should allow for an increase in variable space of at least a factor 5
in each of the 2 dimensions. The use of a compiled code (Fortran or C/C++) is also to be

considered for future extensive use, despite longer development times.
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2.3. Validation of the simulation model

The designed model is now to be validated with results from previous models and experiments,
before further examination of the results.

As a qualitative assessment, the obtained RBC shapes under steady flow are first examined.
Figure 2.3.1 shows our results compared to RBC micrographs obtained by Secomb, for a capillary
vessel of radius 3.5 um ™. The superposition of our results with the observed RBC shapes shows a
remarkably good fit. Figure 2.3.2 also shows a fairly good agreement of our results with Secomb’s

simulation model '™,
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Figure 2.3.1 : Comparison of obtained RBC shapes with Secomb’s micrographs '**/,
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Figure 2.3.2 : Comparison of obtained RBC shapes with Secomb’s model (R=3um) Lo,

On Figure 2.3.3 we compare our results with literature data. Measurements of the apparent
viscosity (or whole blood viscosity, showing the overall resistance of RBCs and plasma) are reported
by Goldsmith and coworkers in the shaded area "*. We observe that the inversion of the Fihraeus-
Lindqvist effect at near-minimal capillary radii corresponds to our case study range, where RBCs
tend to flow individually along the centerline. We see that our data slightly overestimates the
apparent viscosity. The reason here is that we use a low flow velocity (0.25 m/s) for all the cases
reported, cotresponding to the lower end of capillary sizes (leftmost point on our plot). In reality
blood velocity is known to increase with vessel size (see Figure 1.3.1), and Figure 2.3.4 shows
adjusted results based on a velocity of 0.5 m/s corresponding to the higher capillary vessel size
(rightmost point). Since the exact relation between vessel size and blood velocity is unknown, we
were unable to determine exactly where the intermediate points should be, but from Figures 2.3.3

and 2.3.4 it seems that we would fit fairly well the upper side of Goldsmith’s curve.
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Comparison of our data with results from Secomb and coworkers is presented in Figures

2.3.5 and 2.3.6. Secomb used the apparent intrinsic viscosity here, defined as —— @—l . On

Het | u
Figure 2.3.5 we see that a direct comparison suggests that we ovetrestimate the apparent viscosity.
However, Secomb’s work was based on a value of plasma viscosity of 1 centipoise (1.10° Pa.s).
Figure 2.3.6 shows adjusted results to take this plasma viscosity into account, using a simple linear
extrapolation. The adjusted data points now slightly underestimate the apparent viscosity, which is

probably due to the linear extrapolation. The trends however are in good agreement with Secomb’s

data.
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both shear and bending elasticity; A, finite-element results of Tozeren & Skalak [1980)
Experimental results: - — — - . results of Lee & Fung (1969) using macroscopic model cells; 1+ =+ - -
results of Lingard (1970) using human red blood cells; . - - -, results of Driessen el al. {1984) unng
rat red blood cells.

Figure 2.3.5 : Apparent intrinsic viscosity vs. RBC velocity (left: Secomb et al. " right: our
results).
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Figure 2.3.6 : Apparent intrinsic viscosity vs. RBC velocity — extrapolation for plasma viscosity
of 1 centipoise (left: Secomb et al. 11901 yight: our results).

The measurements from Chien, Usami and Bertles (seen in Figure 1.3.3) cannot be compared to
our simulations directly : not only were the conditions very different (viscometer imposing a
Couette-like shear flow), but also the shear rates. Measured at the capillary wall, they evolve between
200 and 1000 s, which is clearly out of the range of the measurements from Usami et al. Figure
2.3.7 shows that our results, however, are expected to be compatible with their experimental

observations, with again observation of the inversion of the Fahraeus-Lindqvist effect.
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Figure 2.3.7 : Apparent viscosity vs. shear rates (left: experimental data % right: our results).
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Curves obtained experimentally by Mackie and Hochmut have also been investigated, looking at
the resulting apparent viscosity. The concentration used for RBC hemoglobin in our simulations is
34 g/l (or 340 kg/m?), but the viscosities obtained in Mackie and Hochmut’s results cotrespond to
pure hemoglobin solutions so that absolute values cannot really be compared directly. Nevertheless,
we can observe on Figure 2.3.8 comparable trends in our results, with the characteristic rise in the

case of sickle cells.
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B Hb 55 46gld1 37°C

8o

(10°5R)

I
-

%10’ REC Simulation - Apparent viscosity at steady state

60 " ’ . |~ bocases_Po2egsmmHa |
F | |7 normal case, Fozndﬂmmﬂgﬂ
i L=+ sieko case . PO2=d0mmtg |
’ |
40_ - appamrﬁ
nras : '
3 3
20F g { 7 5
§ - |
3 Ig g 1 ‘
. L 1 ] 1 1 i 1 - - o . . " . ‘
20 40 60 80 W00 120 140 160 180 ° 2 2 e - o

‘oxygen partial pressure level (in mmHg)

Po, (mmHg)

Figure 2.3.8 : Viscosity vs. oxygen level (left: literature data’"; right: our results, Hb
concentration is 34 g/dl, R, = 4.5 um).

Compatison of our results with Higgins’s clogging and unclogging time scales for sickle blood
seems also inappropriate at this point. As seen in Higgins’s results and supporting videos (available
online at http://www.pnas.org/content/suppl/2007/12/19/0707122105.DC1), the microfluidic
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device used in Higgins’s experiment deals with large channels (7 mm to 30 mm) where RBCs do not
flow individually, and with larger time scales (tens to thousands of seconds compared with tens of
milliseconds in our simulations). The onset of vessel occlusion in Higgins’s experiment is evidently
specific to his device size, and would need a model of a different scale (dynamical models for larger
vessels and taking into account RBC interactions exist, but are yet to be completed with a sickle cell
model).

Lipowsky and coworkers also provided some expetimental data of sickle cell blood, reported in
Table 2.3.1 below ). As we see, for an average vessel diameter of 10 um the measured RBC velocity
is around 0.72 mm/s, which is fairly high compared to the existing models we reviewed.
Unfortunately the technique used did not provide measurement of any pressure gradient, which
prevents us from comparing it to our simulation data. It is important to stress, however, that this

research suggests the possible availability of complete measurements in vivo in a near future.

Resting and Hyperemic Hemodynamic Characteristics in Nailfold Capillaries

Subject No. capilleries Tam Diameter Vom G Vsl Ve T T Nua/N
*c . mn/s nifs s s

HbAA controls

(n=14) 90 31.510.27 9.720.30 0.71+0.04 0.05830.0043 1.95+0.07 39.6+5.2 55.714.8 047
HDSS crisis-free

(n = 20) 202 32.8+0.18 10.01£0.17 0721003 0.061+0.004 2.05+0.05 359229 63.8+3.9 061
HUbSS crisis .

{n=10) 46 32.240.38 10.6+0.31 0.9810.06 0.08810.006 1.76+0.08 55.627.0 84.7+8.8 0.39
1 test: SS crisis-free

vs. SS crisis NS NS P < 0.001 P <0.001 P <001 P <001 P <005

Values are means+SE: sce Figs. 6 and 7 for SD. T, skin temperature; Dis, capillary dia Vewns i red cell velocity Q...flﬁmlwd
comolvolumicmwrm:V,.mwdmmmwn.ﬁuwuﬁnmmmmmw
T,.,.,ﬁmetorep-ymdﬂwmmduﬂuwﬂwm;Ng/MﬁmiondugﬂhﬁuwﬁchmSOlofﬂwdehincmeddmu
no-flow.

Table 2.3.1 : Measured characteristics of sickle cell blood (Lipowsky et al. *%).

Finally, considering the drop in oxygen partial pressure between the ends of the capillary vessels
from approximately 95 mmHg to 40 mmHg, we can estimate the total capillary length across a model
organ. Averaging the oxygen partial pressure gradients, we obtain approximately a range from 4.10*

to 1.4.10” m, which is in agreement with the order of magnitude given in Table 1.3.1 (1.10° m) (see
Figure 3.1.15).
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2.4. Conclusions on the proposed model

This section completes the presentation of the physical and numerical modeling. We have now
defined a model for the blood microcirculation, included a model describing sickle cell disease,
implemented a numerical solver for the system of equations, and validated some of our results with
experimental and simulation data from various sources. In particulat, our proposed model for sickle
cells has shown trends in good agreement with experimental data, which allows us to consider its use
for further study of the disease. The following sections will now present more detailed results of our

simulations, using this model.
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3. Insights on blood microcirculation and sickle cell disease

This chapter presents a thorough analysis of the results produced by our model, for a
comprehensive set of variations of a few parameters. After presenting the case studies used, we first
present our original findings for normal RBCs and review some main parametric trends of capillary
blood flow. Secondly, we present results of our sickling RBC model and analyze the simulated flow
behavior. Based on these original results and our improved understanding of sickle blood dynamics,
we were able to determine a set of analytical quantities to best describe affected blood properties.
Finally, we conclude on the new perspectives unveiled by this study, and its effect on developing an

analytical, simulation-based, sickle cell treatment strategy.
3.1. Presentation of a few case studies

We propose now to petform a comprehensive study of RBC dynamics, focusing on comparisons
between normal and sickle cells. As a pilot study, we look at results of simulated blood flow for
series of typically varying parameters. In each series of calculations, 3 cases will correspond to the
high oxygen partial pressure end (95 mmHg), the low oxygen partial pressure end (40 mmHg) for
normal cells, and the low oxygen partial pressure end (40 mmHg) for sickle cells. The high
oxygenation level cotresponds to both normal and sickle cells as they give identical results. The first
series of calculations will constitute baseline cases with a vessel radius of 4.5 um and a hematocrit of
0.45. The sickle case will have 2 baselines corresponding to the same normal case, depending on the
fixed boundary condition being either the same total blood inflow, or the same pressure gradient
along the capillary vessel. In the following series of calculations, we will examine the effects of a
lower inlet velocity, then of a radius varying between 2.5 pm and 5.0 um in increments of 0.5 um. In
order to encompass the diversity of situations, the series with varying radii will be obtained with the
same fixed average velocity at inlet, and then with the same pressure gradient for all cases. The
former situation is to reflect possible variations along a capillary vessel length, while the latter
illustrates differences that can be observed between vessels in a parallel alignment, such as across an
organ. Finally, we will show the effects of a reduced hematocrit of 0.25, typically encountered in
sickle cell patients. The obtained series of results will allow us to analyze general flow characteristics,

present some key features of blood microcirculation through synthetic quantities, compare oxygen
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delivery performance, and characterize the aggravated state in the sickle cell case. Table 3.1.1

: - — : dp) .
summarizes the case studies listed above. V,, is the reference velocity, 0.25 mm/s, and (_p is set
z
to the corresponding pressure gradient for the baseline case with normal cells (case 1a), i.e.
approximately 3.25.10° Pa/m. The simulation results corresponding to the constant velocity cases
(series 3), and constant pressure gradient cases (series 4), were used to validate the model in the

previous chapter.
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Case Capillary Oxygen Partial | Normal/Sickle | Fixed Boundary - )
ematocrit
(Series) Radius (um) Pre(i:;rlilgvel Cells Conditions
la _ (dp
(baseline) 4.3 95 both Vin s A 0.45
1b _ (adp
(baseline) 4.5 40 normal Vs e 0.45
1c : _ [(dp
(baseline) 4.5 40 sickle V., pa 0.45
2a 45 95 both g, i Vo Y 0.45
_____ 4 "2 4
2b 45 40 normal | 7,0 Yo Vi 0.45
___________ 4 2 4
2 45 40 sickle 5 Vi Vi Vn 0.45
4 "2 4
2.5,3.0,3.5, —
3a 40,45 50 95 both v, 0.45
2.5,3.0,3.5, =
3b 4.0,45,5.0 40 normal Vi 0.45
2.5,3.0,3.5, . —
3¢ 4.0,45,50 40 sickle i 0.45
2.5,3.0,3.5, dp
4a 40,45 5.0 95 both e 0.45
2.5,3.0,3.5, dp
® | 40,4550 40 normal & 045
2.5,3.0,3.5, , dp
4c 40,45 50 40 sickle e 0.45
dp 0.45,0.35
5 “r ’ s
a 4.5 95 both Y 025
dp 0.45,0.35
Sb A 1 b bl
4.5 40 normal & 0.25
. dp 0.45,0.35,
5¢ 4.5 40 sickle P 0.25

Table 3.1.1 : Summary of case studies.
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3.2. Parametric study of the dynamics of Red Blood Cells

The results provided by our case studies allow us to demonstrate and compare several trends. In
particular, the preliminary study presented in this chapter will focus on analyzing the effects of :
-varying vessel sizes, with constant blood flow (case seties 3),

-varying vessel sizes, with constant pressure gradient (case series 4),

-constant vessel size, with varying blood flow (case seties 2),

-constant vessel size, with varying hematocrit at constant pressure gradient (case series 5).

Our findings will be presented in detail for all of the above vatiations, and consideting the 2 different

6,2
a

oxygen levels prescribed (cases seties and “b”). The results of our modeled sickling cells (case
series “c”) will be discussed later in Section 3.3.

Our first observation concerns qualitative aspects of the RBCs under different conditions. Figure
3.2.1 shows the various asymptotic shapes reached at steady state conditions, for different vessel
sizes (to improve visibility, velocity vectors in blue are represented in the relative frame moving with
the RBC). Not only do we observe the expected “squeezing” of RBCs similar to Secomb’s analysis,
but also that, depending on whether velocity or pressure gradient is constant, the resulting shape
changes significantly differ. In fact, at constant pressure gradient the velocity decreases with
decreasing vessel radius since the RBCs obstruct more and more the flow. At the cases of lower radii,
the obtained RBC shapes are less squeezed than when the velocity is kept constant. The squeezing of
RBCs explains the shear-thinning property of blood in capillaty vessels (increasing resistance to flow
with increasing shear rate), which matches the trend observed experimentally in the region of
reversed Fihraeus-Lindqvist effect. From our comparison of cases 3 and 4, the increase of blood
resistance to flow is expected to be stronger at constant pressure gradient (case series 4). Otherwise,
we observe the formation of vortices as the RBCs get further apart when the vessel radius decreases,
which suggest possible additional losses and increased resistance to flow. Since for normal RBCs

78]
a

there is no coupling between oxygen transport and fluid dynamics, series and “b” give exactly the

same results here.
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RBC Simulation - velocity vectors - t=1.048e+03 ms (iteration 72000)
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Figure 3.2.1 : RBC asymptotic shapes for varying radii (cases are indicated at the top left).

Figure 3.2.2 shows the curves of apparent viscosity of whole blood as a function of vessel size.
The different results for cases 3 and 4 prove that the apparent viscosity depends at least on 2 case
variables : vessel size, and flow velocity or pressure gradient. This feature illustrates the difficulty of
reconciling simulations with experimental data, as the velocity function of vessel size remains
unknown and does not seem to ever have been addressed. Figure 3.2.3 and Figure 3.2.4 represent
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RBC velocity and discharge hematocrit for the same cases. RBC velocity and hematocrit reflect both
changes in flow velocity (giving larger variations in cases 4), and changes of the lubrication layer
(which increases with vessel size). Comparison of Figures 3.2.2, 3.2.3 and 3.2.4 shows quantatively
how cases 3 and 4 lead to different results, and how cases “a” and “b” lead to the same results as
oxygen transfer is not coupled to fluid dynamics (plots are superposed). We observe that RBC
velocities are always higher than the average flow, due to their alignment on the centerline, which is
consistent with the notion of higher discharge hematocrit than actual vessel hematocrit, known as
the Fahraeus effect. As cases 4 keep the pressure gradient constant, flow velocities are lower than in
the cases 3 for the lower vessel sizes, and lead to higher apparent viscosities. Interestingly, we find a
correlation between apparent viscosity and discharge hematocrit that seems to fit all the cases (see
Figure 3.2.5). This striking result was observed experimentally by Pries and coworkers at larger vessel

sizes, and here presents an inverted trend for vessels of capillary radius less than 5 wm P9,
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Figure 3.2.2 : Apparent viscosity vs. vessel size.
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x40 REC Simulation - RBC velocity at steady state

e —— a— : g
— normal case, PO2=95mmHg
4| normal case, PO2=40mmHg
estimated
ask max. error
(3a-3b)
3r s +
o _—t -+ t
25
RBC velocity
(in m/s)
L .
15[ g
1 7" (4a-4b ]
e (4a-4b)
08— :
0 1 i | ]
25 3 35 o 4 45 5
vessel radius (in m) x10°
Figure 3.2.3 : RBC velocity vs. vessel size.
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Figure 3.2.4 : Discharge hematocrit vs. vessel size.

112



3 RBC Simulation - Apparent viscosity vs. discharge hematocrit at steady state
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Figure 3.2.5 : Apparent viscosity vs. discharge hematocrit.

Oxygen transport is a separate problem for normal RBCs. Its characteristics are directly
dependent on the flow features, but do not produce any dynamical effects. Hence while the observed
previous trends gave the same results for cases labeled “a” and “b”, oxygen transport results will
differ for those cases. Figure 3.2.6 shows the steady state oxygen profiles for cases 3a, 3b and 4a. The
profiles for cases 4b follows the expected combined trends from decreased oxygen level (3a to 3b)
and reduced velocity under constant pressure gradient (3a to 4a). On Figure 3.2.6 we see that oxygen
profiles follow RBC membrane contours in the vessel, showing that convection is the main
mechanism of transfer locally, followed by lateral diffusion across the streamlines. We see here how
oxygen transported by RBCs imposing a “plug flow” is more efficient than if it were transported
freely in blood plasma (the diffusion gradients are greater in the plasma and at the capillary wall). We
see also that even in low oxygen conditions, convection still dominates oxygen transfer, although
more signs of lateral transfer appear within the RBCs (diffusion visible in the 3b cases). The higher
velocities of cases 3a compared to 4a result in higher concentration gradients that are visible across
the vessel and in the surrounding tissue (contours aré less steep). In cases 3b, the lower oxygen level
also results in higher gradients and more diffusion across the surrounding tissue. Figure 3.2.7 shows
the resulting oxygen drops per unit length along the capillary, for all cases 3a, 4a, 3b and 4b. In
Figure 3.2.8 the same data is represented as equivalent capillary length to have oxygen partial

pressure drop from 95 mmHg to 40 mmHg. We note that :
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(1)- as already observed in Figure 3.2.6, higher oxygen levels lead to higher transfer to the
surrounding tissue (since consumption is the same, it means that more oxygen gets transferred from
the hemoglobin to the myoglobin, used as local storage).

(2)- calculations of the corresponding capillary length to have oxygen drop from 95 mmHg to 40
mmHg gives a precise range and quite good estimation of the effective capillary length where oxygen
is exchanged, here about 1.10° m.

(3)- the 95 mmHg case allows us to observe a peak of oxygen consumption, which seems
surprisingly independent of whether blood flow velocity or pressure gradient is constant, at a radius
between 3.5 pum and 4.0 um. This shows two competing effects. Large vessels prevent good oxygen
transfer because of an increased distance between RBC hemoglobin and the capillary wall, while
small vessels seems to suffer from the oxygen-deprived bolus flow, an inconstant oxygen supply and
of course a smaller external vessel area. This last effect is emphasized for the lower oxygen level
cases, where the peak of maximal oxygen delivery seems to be at a larger vessel size, here out of
range.

(4)- the peak of oxygen consumption is more important for cases 4 than cases 3 at 95 mmHg, which
shows the greater emergence of this peak for variable flow velocities. This means that the optimality
of vessel size would be more emphasized in a network of vessels than in a single vessel of varying
diameter. In the case 4 at 95 mmHg, the oxygen transfer even gets below the 40 mmHg case for

vessel sizes greater than 10 pm.
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RBC Simulation - contours of oxygen partial pressure (mmHg) - t=2.795e+02 ms (iteration 19200)
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(3 a) i REC Simulation - contours of oxygen partial pressure (mmHg) - 1=1.8862+03 ms (teration 129600)
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Figure 3.2.6 : Oxygen partial pressure contours (cases are indicated at the top left).
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- RBC Simulation - Oxygen pressure drop at steady state
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Figure 3.2.7 : Oxygen partial pressure gradient vs. vessel size.
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Figure 3.2.8 : Oxygen partial pressure gradient vs. vessel size (equivalent vessel length).
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Case 2 is used to emphasize the previous observations for varying flow velocities. The resulting
curves showing blood dynamics are presented in Figures 3.2.9, 3.2.10, 3.2.11 and 3.2.12. Figure 3.2.9
supports directly our claim that the apparent viscosity generally decreases with increasing blood flow
(shear thinning or pseudoplastic behavior). Figure 3.2.10 shows also that RBC velocity correlates well

with average blood velocity for the cases where R, = 4.5 pm. As a direct consequence, the discharge

hematocrit also increases with increasing blood flow (see Figure 3.2.11). Figure 3.2.12 is found to
follow the same behavior as Figure 3.2.5, with apparent viscosity and discharge hematocrit located

on the same curve for all cases.

RBC Simulation - Apparent viscosity at steady state (R, =4.5um)
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Figure 3.2.9 : Viscosity vs. average flow velocity.
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RBC Simulation - RBC velocity at steady state (R =4.5um)
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Figure 3.2.10 : RBC velocity vs. average flow velocity.
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Figure 3.2.11 : Discharge hematocrit vs. average flow velocity.
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§ RBC Simulation - Apparent viscosity vs. discharge hematactit at steadly state (R, =4.5um)
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Figure 3.2.12 : Viscosity vs. discharge hematocrit.

The oxygen transfer results for case 2 are shown in Figures 3.2.13 and 3.2.14. We notice that
oxygen transfer clearly decreases with increasing flow velocity for an oxygenation level
corresponding to p,, ;, = 95 mmkHg. This trend disappears almost completely at p,, ,, = 40 mmHg,
however, as the limits of oxygen supply capabilities are reached and oxygen release and diffusion
become limiting factors (as opposed to blood flow). Below the velocity of 2.5.10" m/s, oxygen
supply is found to remain quasi-constant at the venous end of the capillary, suggesting in vivo an

effective lack of oxygen supplied to the tissue, and illustrating the direct relation between ischemia

(restriction in blood supply) and hypoxia (shortage of oxygen).
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RBC Simulation - Oxygen pressure drop at steady state
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Figure 3.2.13 : Oxygen partial pressure gradient vs. average flow velocity.
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Figure 3.2.14 : Oxygen partial pressure gradient vs. average flow velocity (equiv. vessel length).

To identify the effects of reduced hematocrit, cases 5a and 5b are presented in the following

figures for a vessel hematocrit of 0.45 and 0.25. Firstly, Figure 3.2.15 shows the resulting blood flow,
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compared to the case of hematocrit 0.45. We see that a lower hematocrit results not only in more
spaced RBCs, but also in a different configuration, where the cells are more squeezed and more RBC
volume is confined around the centerline. The lubrication flow between the RBCs and the capillary
wall also seems to have a larger width, which shows how more stresses are supported by each RBC

on average.
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Figure 3.2.15 : Comparison of normal and low hematocrit blood flows.
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Figures 3.2.16, 3.2.17 and 3.2.18 show the resulting changes in dynamics. We see on Figures
3.2.16 and 3.2.17 how a drop in hematocrit from 0.45 to 0.25 leads to a drop of about 25% in
apparent viscosity, and an increase of about 37% in RBC velocity, with the same pressure gradient
along the capillary. Figure 3.2.18 shows that relative to the vessel hematocrit, the new cases still fit

remarkably well the apparent viscosity vs. discharge hematocrit curve obtained for cases 3 and 4.
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Figure 3.2.16 : Viscosity vs. vessel hematocrit.
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o RBC Simulation - RBC velocity at steady state (R =4.5um)
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Figure 3.2.17 : RBC velocity vs. vessel hematocrit.
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Figure 3.2.18 : Viscosity vs. hematocrit ratio.

Figures 3.2.19 and 3.2.20 show the oxygen transfer performance profiles. We see that the lower

hematocrit levels lead to a significant decrease in oxygen delivery petformance (— 21%), mainly due
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to the lack of oxygen supply, even though blood flow is increased. This shows once again the direct

relation between ischemia (restriction in blood supply) and hypoxia (shortage of oxygen).
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Figure 3.2.19 : Oxygen partial pressure gradient vs. vessel hematocrit.
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RBC Simulation - Oxygen pressure drop at steady state (R =4.5um)
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Figure 3.2.20 : Oxygen partial pressure gradient vs. vessel hematocrit (equivalent vessel length).
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Table 3.2.1 recaps qualitatively the main features of normal blood flow obsetved in the proposed
parametric study. The physical explanations are proposed to explain the trends observed :

(1)- variable vessel radii at constant velocity and hematocrit reflect local changes along a capillary
vessel. Since RBCs restrict viscous friction to the lubrication layer, it is expected that larger vessel
sizes correspond to lower resistance to the flow and slightly higher RBC velocity relative to the total
flow. While at smaller vessel sizes oxygen delivery is limited by diffusion, at larger vessel sizes and at
95 mmHg of oxygen partial pressure convection is the limiting phenomenon.

(2)- variable vessel radii at constant pressure gradient and hematocrit reflect variable vessel size for
capillary vessels arranged in parallel. Here the characteristics of the flow follow similar trends as the
previous case, amplified by the vatiations of total blood flow.

(3)- variations of total flow correspond to changes in blood supply, such as possibly due to hyper-
and hypotension. Increased blood flow is naturally expected to increase the elastic stresses in RBCs,
allowing them to flow faster, with a lower resistance to flowing. At a vessel size corresponding to
convection-limited oxygen transfer for a level of 95 mmHg of oxygen, increases in flow velocity
decrease the transfer as stiffer diffusion profiles emerge. On the other hand, at 40 mmHg, the
diffusion-limited oxygen transfer is very slightly improved by increasing blood flow.

(4)- variations of hematocrit at constant pressure gradient illustrates how the presence of RBCs affect
the flow under the same discharge constraints. At higher hematocrit levels the RBCs form trains of
cells that can bear the shear stresses and resist blood flow very efficiently, which leads naturally to
increased apparent viscosity and decreased RBC velocity. Oxygen transfer is also directly related to

the absolute concentration of oxygen carriers (hemoglobin), and increases with the hematocrit.
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the wall. Figure 3.3.2 shows the same results as Figure 3.3.1 at a constant pressure gradient (cases 4c
and 4a/4b). As we see, under low velocity flow the sickling RBC shape deteriorates considerably and

may obstruct the flow very differently. For vessel sizes below R, = 4 pm our algorithm leads to
form secondary “corners”, as the polymerizing structure starts to fold onto itself. Without even

considering reorganization of the polymerized hemoglobin, we have already an illustration of how

sickled cells may come to completely obstruct the flow, even at the individual level. Also, for vessel

sizes below R, = 3.5 pm the resulting RBC is found to reach computational limits, as it gets as close

as one numerical cell from the capillary wall. In the following analysis, we will therefore mention

these last results with caution (unconnected points and/or dashed lines).
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Figure 3.3.1 : Compared steady state RBC shapes (left: normal ; right: sickle).
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Figure 3.3.2 : Compared steady state RBC shapes (left: normal ; right: sickle).

Figure 3.3.3 shows the apparent viscosity as a function of vessel size. As expected, we see for all
cases a significant increase in viscosity in the sickle case. In the case of constant velocity, between the
radii of 4 pm and 5 pm the apparent viscosity is always about 1.5 times higher than normal blood,
which follows the experimental observations of Chien, Usami and Bertles “ and validates the use of

this value to set the baseline case. In the case of constant pressure gradient, we also observe a large
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increase in viscosity. At vessels of radius less than 4 pm, we obsetve a slight decrease in viscosity due
to the fact that the RBC gets squeezed and gets forced into a shape of smaller aspect ratio, giving
more “space” for the hemoglobin polymer to stretch (i.e. the lateral forces generated by our polymer
are slightly less important) We observe also secondary folding features in case 4 as observed in
Figure 3.3.2,. Since the obtained shapes become arguable, and are likely to go beyond the limits of
application of our model, we report these data points as dashed parts of the sickle case curves in

Figure 3.3.3. In the case (4c) for R, = 3 um, although the result is numerically arguable, the obtained

result may be interpreted as an upper bound for the resistance to the flow.
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Figure 3.3.3 : Apparent viscosity vs. vessel size.

Figure 3.3.4 shows RBC velocity as a function of vessel radius. We see here how the sickling
results in significant decreases in RBC velocity, even in the case of imposed flow velocity. This is
easily understood by the decrease of the lubrication layer between RBC and capillary wall. In the
constant pressure gradient cases (4), for vessel sizes between 3.5 pm and 4.5 pm, the RBC velocity
decrease represents 50% to 70% of the value for normal blood cells. Figure 3.3.4 illustrates the
“vicious cycle” described previously by Berger. Sickling RBCs resist more and more the flow as they
deoxygenate, which in turn makes them slow down, lose more oxygen, sickle more, and so on until

the RBC vessels get blocked.

138



RBC Simulation - RBC velocity at steady state
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Figure 3.3.4 : RBC velocity vs. vessel size.

Figure 3.3.5 shows the discharge hematocrit as a function of vessel size. The decreased RBC
velocity in the sickle cases observed previously leads to a significant reduction in flowing hematocrit.
For vessel sizes below 4 pm, we notice that the shape changes shown previously lead to less stresses

from the hemoglobin polymer, and may decrease this effect.
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RBC Simulation - Discharge hematocrit at steady state
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Figure 3.3.5 : Discharge hematocrit vs. vessel size.

Figure 3.3.6 shows the apparent viscosity as a function of discharge hematocrit. We observe here
a quasi-perfect correlation between the two variables along one curve, for all cases 3 and 4. The
relationship between apparent viscosity and discharge hematocrit is therefore a purely hydrodynamic
behavior of our model, independent of the sickling characteristics of RBCs. All the changes in
resistance to blood flow are directly related to how much the RBC obstructs the flow and how fast
cells flow compatred to the total blood flow. Interestingly, even the most arguable sickle cases leading

to deformed RBCs fit very well on the curve, as does the case 4c with R, = 3 pm (point far on the

upper left side).
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RBC Simulation - Apparent viscosity vs. discharge hematocrit at steady state
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Figure 3.3.6 : Apparent viscosity vs. discharge hematocrit.

Comparison between oxygen profiles between cases 3b and 3c is shown in Figure 3.3.7, and
between cases 4b and 4c in Figure 3.3.8. We see that for all cases sickling RBCs lead to a stretching
of the contour plots, indicating the lower RBC velocity, increased diffusion in comparison, and
overall less effective oxygen transfer to the surrounding tissue. Since the sickling RBCs are closer to
the capillary wall, they are more likely to transfer oxygen closer to the capillary walls, and the oxygen
profiles are therefore steeper. On the other hand, oxygen delivery becomes less homogeneous with
higher-oxygen regions at the sickling RBC corners, creating distorted oxygen profiles likely to

transport oxygen less efficiently (this is particularly visible on Figure 3.3.7 for R = 4.0 pm).

Diffusion is increased here, but not homogeneously and since convection is reduced (RBC velocity is

lower), the overall oxygen transfer is reduced compared to normal cases.
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Figure 3.3.7 : Comparison of oxygen partial pressure levels (left: normal ; right: sickle).
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(4b 6 RBC Simulation - contours of oxygen partial pressure (nmHg) - t=1.467e+03 ms (iteration 100800) (40)
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Figure 3.3.8 : Comparison of oxygen partial pressure levels (left: normal ; right: sickle).

Figure 3.3.9 and Figure 3.3.10 show the oxygen partial pressure gradients for the sickle cases. We
see here quantitatively how sickled cells lead to lower oxygen gradients. The oxygen delivery,
compared between normal and sickle cases at 40 mmHg (cases “b” and “c”), at radius 5 um drops
from about 1.7.10° mmHg/m to 1.4.10° mmHg/m (- 18%), and at radius 3.5 pm from about
0.75.10° mmHg/m to 0.5.10° mmHg/m (- 33%).
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Figure 3.3.9 : Oxygen partial pressure gradient vs. vessel size.
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Figures 3.3.11, 3.3.12, 3.3.13 and 3.3.14 show the analysis of RBC dynamics for case 2 including
the sickle cell model. We observe that :

(1)- the apparent viscosity of blood is considerably increased in the sickle case, for all the flow

velocities considered. With a vessel radius R, = 4.5 um, the ratio of viscosities between the normal
and sickle case is also found to decrease a little with decreasing flow velocities, from 1.5 at v,, =

2.5.10" m/s, to approximately 1.25 at V,, = 6.25.10° m/s.

(2)- RBC velocity remains fairly well correlated with average flow velocity, with a small relative
difference at the parametric values considered. Sickle cases lead to a slight decrease in the RBC
velocity for all cases.

(3)- the discharge hematocrit is found to be significantly reduced in the sickle case, which is
obviously due to the reduced lubrication layer. The reduction in hematocrit value goes approximately

from 0.03 at ¥, = 2.5.10* m/s, to 0.02 at ¥,, = 6.25.10° m/s.

(4)- the relationship between viscosity and discharge hematocrit remains unchanged, and follows the
same curve as observed for cases 3 and 4. Sickle cases have both a higher apparent viscosity and

discharge hematocrit.

RBC Simulation - Apparent viscosity at steady state (R =4.5um)
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Figure 3.3.11 : Viscosity vs. average flow velocity.
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RBC Simulation - RBC velocity at steady state (R,,=4.5um)
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Figure 3.3.12 : RBC velocity vs. average flow velocity.
RBC Simulation - Discharge hematocrit at steady state (R =4.5um)
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Figure 3.3.13 : Discharge hematocrit vs. average flow velocity.

150



5 RBC Simulation - Apparent viscosity vs. discharge hematocrit at steadly state (R =4.5um)
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Figure 3.3.14 : Viscosity vs. discharge hematocrit.

Figures 3.3.15 and 3.3.16 present the analysis of oxygen delivery for the same case. Our results

show how sickling RBCs have worse oxygen transfer performance than normal cells. Especially at a

low oxygen level of p, ;, = 40 mmHg, the already diffusion-limited oxygen transport to the

surrounding tissue is even more reduced by sickling.
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< 10° RBC Simulation - Oxygen pressure drop at steady state
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Figure 3.3.15 : Oxygen partial pressure gradient vs. average flow velocity.
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Figure 3.3.16 : Oxygen partial pressure gradient vs. average flow velocity (equiv. vessel length).

Figure 3.3.17 presents results for the sickle case under low hematocrit. We observe a similar

deformation at a hematocrit 0.25 than at 0.45, with a RBC stretching towards the capillary walls. Like
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the normal case, sickle cells are more stretched along the flow in the low hematocrit case, which is

again due to more flow stress supported by each cell.

1l ¥

Figure 3.3.17 : Comparison of normal and low hematocrit blood flow for the sickle cases.

Figures 3.3.18, 3.3.19 and 3.3.20 show the dynamical analysis of sickle cells for the 2 different
hematocrit levels. We see in Figure 3.3.18 how the reduced hematocrit leads again to a reduced
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apparent viscosity. The obtained result is believed to explain the relation between low hematocrit and
the deteriorated RBC structure : sickling RBCs lead to a high resistance to the flow per cell, which
reduces the RBC lifespan and/or production so much that the effective hematocrit decreases to a
low level. We see here that with our simple model the apparent viscosity obtained for sickle cells at a
hematocrit of 0.25 (3.44.10° Pa.s), is very close to the value for normal blood at a hematocrit of 0.45
(3.31.10° Pa.s). This striking result strongly supports the hypothesis of a physiological adaptation to
stiffer sickle cells, in order to maintain an “acceptable” resistance to the flow in the capillary vessels,
and correspond to a sustainable cardiac pulse pressure. Comparably, we see on Figure 3.3.19 that the
RBC velocity at steady state is also increased at low hematocrit. This not only is a consequence of the
reduced viscosity, but is also bears the advantage of compensating the lower oxygen delivery by a
larger inflow. Figure 3.3.20 shows that the physiological relation between apparent viscosity and

hematocrit ratio is still verified, as all the points of all the cases studied fit on the same cutve.

RBC Simulation - Apparent viscosity at steady state (R, =4.5um)
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Figure 3.3.18 : Viscosity vs. vessel hematocrit.
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RBC Simulation - RBC velocity at steady state (R =4.5um)
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Figure 3.3.19 : RBC velocity vs. vessel hematocrit.
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Figure 3.3.20 : Viscosity vs. hematocrit ratio.

Finally, Figures 3.3.21 and 3.3.22 show the oxygen petformance comparisons. We find that

unlike the normal cases, in the sickle case the reduced hematocrit considerably deteriorates the
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oxygen delivery. Despite the increase in RBC velocity, oxygen transfer remains really low, and gets
even much lower than all the normal cases. This result successfully reflects the anemic state of sickle
cell patients, and shows how, despite the dynamical adaptation to sickle cells, oxygen delivery cannot
be assured at normal levels. Since at lower hematocrit the blood oxygenation is expected to be lower
than normal at the capillary start, we see how this essentially results in both a shift of oxygen levels

(and gradients) to lower values, and poor delivery in surrounding tissues.

RBC Simulation - Oxygen pressure drop at steady state (R,,=4.5um)
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Figure 3.3.21 : Oxygen partial pressure gradient vs. vessel hematocrit.
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RBC Simulation - Oxygen pressure drop at steady state (R,=4.5um)
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Figure 3.3.22 : Oxygen partial pressure gradient vs. vessel hematocrit (equivalent vessel length).

Table 3.3.1 summarizes the influence factors for the sickle cases. We see that besides the case of
low hematocrit, these variations are essentially the same than for normal RBCs, although the levels
are different. This illustrates how in the sickle case the dynamics follow generally the same
parametric behavior, with a system operating at different conditions leading to the state of anemia.
Because of the adapted dynamics in sickle cell disease at low hematocrit level, blood clogging is
therefore expected to be particularly rare and acute, and preceded by a seemingly “normal” blood
flow. The main indication of increased risks of vascular occlusion remains associated with the

increased proximity of the RBCs with the capillary walls.
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Table 3.3.1 : Influence factors of the blood microcirculation — sickle case (vessel radius range : 2.5-5.0 um).

The simulation results presented in this section successfully show both qualitatively and
quantitatively the consequences of sickle cell disease. We have demonstrated that our dynamical
model allows a precise estimation of the changes in flow resistance and oxygen delivery performance,
for a large variety of parametric values cotresponding to either variable physiological conditions

(such as vessel size) or disease characteristics (such as hematocrit level).

3.4, Synthesis of the simulation results, limits of the model and unveiled

perspectives towards a systematic study of therapeutic opportunities

This study successfully identified some major features of sickle cell disease. From the few cases
presented in Table 3.1.1, abnotmal flow characteristics were determined precisely :
-the sickle model successfully reproduced the sickling RBC phenomenon. The current range of

application covers the capillary radii from approximately 3.5 pm to 5.0 um for a flow velocity of 0.25
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mm/s. Lower velocities can reduce this range of application in the lower radii end (but changes in
numerical parameters may overcome this difficulty).

-abnormal flow characteristics were clearly reported as increased apparent viscosity of blood for the
whole range of vessel sizes at constant hematocrit level, with some variation depending on the cases.
This increase correlated perfectly with the decrease of discharge hematocrit.

-oxygen delivery performance was compared for all the cases. Abnormal oxygen delivery in the sickle
case was assessed quantitatively and was showed also to be correlated with the decrease of discharge
hematocrit.

-the combination of sickle characteristics with a reduced hematocrit of 0.25 successfully showed how
abnormal blood flow is likely to be compensated dynamically by the organism, leading to seemingly
normal dynamics and the characteristic unpredictability of sickle cell crises due to sudden vessel
occlusion. However, this still results in greatly affected oxygen delivery performance. The model
designed predicts successfully both influences of the 2 stages leading to serious permanent anemia
(i.e. due to sickling and due to low hematocrit).

The results presented here constitute a crucial step to advance towards larger-scale parametric
studies. Based on our detailed analysis, we can now reformulate the problematic of sickle cell disease
in terms of 2 major consequences observed. The increased apparent viscosity synthesizes the
dynamical effects, while the decreased oxygen partial pressure gradient captures the gravity of the
state of anemia. It is with these 2 quantities that we now propose to analyze quantitatively the effects

of therapeutical directions. The work presented in the next chapter is based on this conclusion.
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4. Identification and assessment of therapeutic opportunities

This chapter presents synthetically a large-scale, systematic analysis of a selected set of parametric
variations that would constitute therapeutic opportunities. We will first explain our selection of target
parameters in this study. Secondly, we will show and analyze for each case the results of our
simulations. Finally, we will conclude by a discussion on the found therapeutic opportunities, and

how these results can help to devise new directions for medical research.
4.1. Sickle cell treatment strategy

As mentioned in chapter 2, the full system of equations used in our model contains 38
parameters, excluding sickle cell models and numerical parameters. At this point these could all
constitute potential targets for therapeutical research. We propose to analyze the effects of existing
or alternative therapies through reasonable variations of these parameters in our model. Our study is
to be restricted to the parameters whose variations are perceived as realistic options for a near future,
considering the current state of availability of pharmaceutical treatments or short-term developments

in medical research.
4.1.1. Excluded parameters

Oxygen solubility, binding and dissociation constants regroup 11 parameters : @ (oxygen
solubility — 5 values), k™ (kinetic dissociation rate constant of oxyhemoglobin), n (Hill coefficient),

pgb’so% (equilibrium oxygen partial pressure at 50% saturation of hemoglobin), and pgf 0%

(equilibrium oxygen partial pressure at 50% saturation of myoglobin), to which are added D™
(diffusivity of hemoglobin) and D* (diffusivity of myoglobin). We believe at this point that changes
among these parameters would be either ineffective or undoable. Oxygen solubility can only be
changed through pressure or temperature unless blood composition is affected, which does not seem
to be a valid option as of today. And while changing the pressure can have more direct effects on the
flow and will be discussed later, changing blood temperature does not look either like a realistic

option. An increase in the kinetic dissociation rate constant is not expected to produce significant
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changes, as our analysis showed that it was never a limiting factor of oxygen transport. The
remaining parameters seem to be deeply associated with the chemical processes of oxygen binding to
hemoglobin and myoglobin, and we have found no research grounds to suppott possible

enhancements of oxygen release.

Mechanical elastic constants associated with the RBC membrane regroup 5 parameters : 0,
(membrane tension at rest), K, (2-D bulk modulus), K, (shear modulus), B (bending modulus),

and k, (curvature at rest). Changing these parameters seems unrealistic at this point, since it would

concern the membrane structure at the molecular level, and not only raise questions about how to do
it, but also about all the other functions of the RBC membrane that may be affected. Also, no

research was found on a possible implementation of such changes.

Excluded geometrical parameters regroup 5 parameters : R, (radius of the Krogh cylinder
model of oxygen transport), R, —R, (thickness of the interstitium), R, —R, (thickness of the

capillary wall), Vg (RBC volume), and Agp. (RBC surface area). Changes to the model geometry
could be achieved in theory by promoting vessel growth (angiogenesis) within an organ, effectively

making the capillaty network more dense. VEGF-based treatments for example could constitute a
therapeutical option for research. However, increasing the vascularization is also likely to increase the
risks of vessel occlusion and sickle cell crises, especially as it would decrease the flow in each vessel.
In vivo changes of the geometry of the interstitium and capillary wall do not seem applicable either.
As for the RBC geometry, the only known process of volume change is regulated by osmotic
pressure, but departing from a normal osmotic equilibrium would undeniably be very adventurous.

To the previous group of parameters we should add that changing initial RBC dimensions
through the set of variables {s,,ds,} and { R} follows the same arguments against changing Vpsc
and Apy., and are unlikely to constitute a therapeutical objective.

Finally, the local concentrations of hemoglobin, [Hb], and myoglobin, [Mb] are also not
considered of therapeutical interest. No research has been found to demonstrate the feasibility of
“packing” more hemoglobin inside a RBC. The underlying reason is probably that the natural
concentration of hemoglobin is already relatively high within the RBC. Alternatives such as
hemoglobin carriers outside the RBC will be discussed later. Myoglobin is also at a relatively high
concentration in muscular tissue, which is likely to limit any possible treatment (promotion of

myoglobin production is likely to simply result in increased muscular volume, not concentration).
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4.1.2. Parameters independent of any permanent therapeutical action

(uncontrollable)

Parameters related to oxygen consumption, M, (in the capillary wall), and M, (in the muscular

tissue), reflect essentially normal metabolism and physical activity, which is not really controllable as
such by medical treatments and constitute rather external factors imposed on the rheology, and are
therefore excluded from our study.

The oxygen level at capillaty entrance, p, ;,, (95mmHg), is also not considered as a potential

target in our study : while increasing the level of oxygen is possible with oxygen masks and
hyperbaric oxygen therapy, it is more considered here as a temporary measure used for emergency
treatment. Both treatments, under permanent use, are also subject to a large range of secondary
effects from nausea and vertigo to oxygen toxicity (or oxygen poisoning), potentially resulting in
major damages to cells and the central nervous system. Reduced exposure on a regular basis may
constitute an alternative *, although the improvement may only be transient ., Further research on
the possible benefits and drawbacks could definitely allow us to addtess this possibility as a potential
therapeutical target. Interestingly, the same type of study may be used to address the adverse effects
of an impaired air ventilation (such as due to pulmonary infections, or obesity), and prolonged

exposure to low-pressurized environments, such as in altitude or space.

4.1.3. Therapeutical targets retained, working hypotheses and possible

implementations

dj
The 12 remaining parameters are R, (capillary vessel radius), v,, (average inlet velocity), (d—p)
[z

(average pressure gradient between 2 RBCs), Hct (vessel hematocrit), g (plasma/cytoplasm
viscosity), D (oxygen diffusion constant — 5 values), and p (blood density).

Acting on capillary vessel size comes directly from our previous analysis : since sickling RBCs
tend to obstruct more blood flow, we will consider dilating capillary vessels as a first option for
therapeutical treatment. Vasodilating drugs exist currently to achieve vessel size augmentation,
although the absence of smooth muscle in the small capillaries does not make it appropriate for such

vessels, and suggests a need for research for alternative techniques. The main drawbacks of a
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vasodilating treatment are connected to hypotension symptoms, reduction of blood flow potentially
leading to coagulation and formation of peripheral blood clots, and compensation by the heart
through pulse acceleration. Also, avoiding exposure to cold environments is desirable to prevent
vasoconstriction.

Increasing blood flow was also researched as a way to enhance sickle cell disease, taking
advantage of the blood shear thinning properties. Cardiotonic drugs such as digitalis, Common
Inotropic and Cardiotonic Drugs (CICDs), or even caffeine, can be used effectively to increase
cardiac output. Platelet antiaggregants would reinforce the effects of such drugs by decreasing plasma
viscosity (hence facilitating increase in velocity instead of increase in blood pressure). However,
undesired effects may result from pulse acceleration (tachycardia), and a reaction of the organism
leading to vasodilatation, in order to compensate an increased peripheral blood viscosity.

Increasing pressure levels in the organism is very similar to increasing blood flow, since it implies
also a stimulating action on the heart. Again, we hypothesize here positive effects from “forcing” the
RBCs to flow down the capillaties. Cardiotonics without platelet antiaggregants are a possible
implementation, to increase cardiac output, but not reduce blood viscosity to obtain lower flow for
the same pressure level. Again, major issues may rise at the cardiac level due to pulse acceleration,
but also in the peripheral circulation due to the abnormal high pressure (organ damages in the brain,
the lungs, and other hypertension symptoms).

Increasing the hematocrit was a hypothesis formulated to compensate directly the poor oxygen
delivery performance, especially starting from the low hematocrit of 0.25 in sickle cell patients. Here
a large variety of implementations exist, such as EPO injections. However when the hematocrit goes
beyond normal levels (polycythemia), risks of occlusion may become very important. Platelet
antiaggregants and anticoagulant drugs may decrease the risks, but only up to a certain level.

Decreasing the viscosity of blood plasma or cytoplasm directly is also a very interesting idea that
we would like to explore to reduce the resistance of whole blood. For simplicity, we will restrict our
study to varying plasma viscosity, since it is expected to be both easier to implement, and more
consequential. Here as mentioned earlier platelet antiaggregants would be a possible implementation
that we consider, keeping in mind the limits associated with these drugs. Also, avoiding dehydration
is known to favor a lower plasma viscosity.

To act on the low oxygen delivery performance of sickle cell patients, we also propose to
examine possible action on oxygen diffusion constants. The opportunity of improving oxygen
transport is supported by recent research on free oxygen carriers, such as free plasma hemoglobin

presented in the work of Vadapalli, Goldman and Popel '®. As the most plausible implementation,
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our study will focus on increasing diffusivity of blood plasma only, as an implicit model for such
therapies, and ignore variations of diffusivity in other regions.

Finally, we propose to examine the possible effects of changes in blood density. Although the
implementation is highly questionable, we hypothesize that diuretic therapies or other methods
favoring water retention or elimination may lead to such changes in blood density.

Table 4.1.1 recaps the list of target parameters selected, effectively reduced to 7 parametric

studies.
Parameter idea how ? comments/secondary effects
ry
. _ hypotension, peripheral clots
R, increase vasodilating drugs yp » periphc ’
pulse acceleration
— . cardiotonics (digitalis, caffeine) + . o
Via increase . pulse acceleration, vasodilatation
platelet antiaggregants
d, . . . S . ulse acceleration, organ damage
L' increase | cardiotonics (digitalis, caffeine) P Ot 018 &
dz (brain, lung)
. EPO (+ platelet antiaggregants + eripheral clots, polycythemia if
Hct increase tp . E8ICE perip » POy
anticoagulants) , too high
H, decrease platelet antiaggregants very few adverse effects
D, increase plasma oxygen carriers relatively recent research
diuretic action ? blood range of variation is relatively
P decrease
supplements ? small

Table 4.1.1 : target parameters for sickle cell treatment strategy.

It is important to note that, although most of the drugs cited are generally used to restore a
normal state, we are here considering their theoretical use to depart from a normal state, with the
idea to compensate sickle cell dynamics by another mechanism. One must keep in mind that, since

we are not advising a typical use of these drugs, the organism may not only respond unexpectedly to
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such constraints, but also react against therapeutical implementations and enforce the natural
physiological regulation of the body functions.

. . - 4 .
For our simulations, we note that v,, and (_p cannot be changed independently at a constant
4

vessel radius, but only at a varying radius. Therefore, the 7 proposed parametric studies of potential
therapeutical targets will consist in :

- varying V,,, at constant R_, Hct, pu_, D and p. The proposed values are 0.0625 mm/s, 0.125
fyl g in w /’lp p p p

mm/s, 0.1875 mm/s, and 0.25 mm/s (velocities higher than 0.25 mm/s were numerically more
unstable, so we chose to do our analysis starting at lower velocities).

- varying R, , at constant V,,, Het, u,, D, and p. The capillary radii examined are the same as in

the previous chapter, i.e. 2.5 um, 3.0 pm, 3.5 um, 4.0 pm, 4.5 um, and 5.0 pm. To give an idea of
the relevance of these values, one can note that for our set parametets (in particular RBC volume and
surface area), the minimal radius possible for RBCs to be able to flow down a capillary vessel is
1.4227 pum, and the maximal theoretical radius to maintain RBCs aligned on the centetline under no

flow is 6.6348 um at hematocrit 0.45, and 8.9015 pum at hematocrit 0.25.

d,
- varying R, at constant (i—), Hcet, p,, D, and p. We use the same values of capillary size as

above.

- varying Hct, at constant R, d_p , , D and p. The hematocrit will take the values 0.25,
rying v My Dy

0.35, 0.45, and 0.55 as representative cases.

- varying u,, at constant R, (%), Hct, D, and p. The work of Laogun et al. 3 shows that in

sickle cell patients undergoing crises, 4, can raise from 1.4.10° Pas to 1.7.10° Pas. We will

therefore consider as a reasonable set of values 1.1.10” Pa.s, 1.4.10” Pa.s, and 1.7.10" Pa.s (1.1.10°

Pa.s being our hypothesized improvement opportunity).

- varying D, at constant R, (j—p), Het, u , and p. Published work by Menchaca et al. (45}
/4

suggests a possible improvement of 30% of oxygen diffusive transfer, so that we will consider values

of 1.7.10° m?/s, 2.4.10° m?/s, and 3.1.10° m?/s to illustrate the range of possible values (3.1.10°

m’/s being the hypothesized improvement opportunity).
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- varying p, at constant R, (Z—p

), Hct, p, and D, . Since the density of cytoplasm is about 10%
z

higher than that of plasma (1125 kg/m”’ instead of 1025 kg/m’), we hypothesize a characteristic
range of accessible values from 925 kg/ m’, to 1125 kg/ m’, and include again the reference 1025
kg/m’.

These case studies will be denoted A through H (including the baseline). For each of them, our
analysis will compare the cases of RBCs at 95 mmHg, normal RBCs at 40 mmHg, and sickle cells at
40 mmHg. We will focus exclusively on the effects of parametric changes on both appatent
viscosity, and oxygen consumption characteristic length (equivalent length at a given oxygen

partial pressure gradient, to decrease the level from 95 mmHg to 40 mmHg).

4.2. Simulation results, and comparative analysis of therapeutical

hypotheses

In order to appropriately estimate and compare the benefits of each parametric variation, we will
represent the results with the same synthetic curve, showing explicitly the tradeoff between oxygen
consumption and apparent viscosity of the calculated flow. Since we have cases at constant velocity

and constant pressure gradient, we set 2 baseline cases corresponding to either ¥, = 0.25 m/s or

[%’i] = 3.25.10° Pa/m, and R, = 4.5 pm, Het = 0.45, u, = 1.4.10° Pa.s, D, = 2.410° m*/s and
/2

p = 1025 kg/m’ (see Table 4.2.1). Together with whole blood apparent viscosity, oxygen

consumption is represented by the equivalent capillary length, calculated to get from 95 mmHg to 40
mmHg at the partial pressure gradient obtained by our simulations. Figure 4.2.1 shows the results for

the 2 baseline cases.

R, v, (d—p] Hct H, D, P
dz

4.5 pm 0.25m/s |[3.25.10° Pa/m 0.45 1.4.10° Pass | 2.4.10° m*/s | 1025 kg/m’

Table 4.2.1 : baseline values of the target parameters.
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x10° RBC Simulation - Oxygen transfer vs, Apparent viscosity - Baseline
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©  both cases , PO2=95mmHg
2 normal case, PO2=40mmHg
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apparent viscosity (in Pa.s) x10°

Figure 4.2.1 : baseline cases (4).

x10° RBC Simulation - Oxygen transfer vs. Apparent viscosity - Baseline
15 T T T T T x x 5
@ both cases , PO2=95mmHg
© normal case, PO2=40mmHg
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Oxygen consumptign
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apparent viscosity (in Pa.s) x10°

Figure 4.2.2 : baseline cases (A) : schematic of therapeutical objective.
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As we see on Figure 4.2.1, the problematic of sickle cell disease can be summarized in our
context, as follows : the potential therapies we want to assess by simulations will focus on both
bringing back apparent viscosity to levels corresponding to the normal cases (about 3.3.10° Pa.s),
and improving oxygen delivery to bring back the characteristic length to a normal value (about 0.4
mm, which is to be interpreted as the “effective” capillary length of oxygen absorption predicted by
our model). Figure 4.2.2 illustrates this double objective.

Figure 4.2.3 shows the theoretical results obtained after changes in the inlet velocity v,,,

cotresponding to the first proposed parametric study (B). Our simulations show that varying inflow
does not seem to be able to both improve blood dynamics and oxygen delivery of low-oxygenated
sickle blood : while increasing velocity decreases the apparent viscosity, it penalizes oxygen delivery
as the RBCs get further from the capillary walls. RBCs flowing faster may improve oxygen transfer
by convection, but it is largely overcome by the penalty on oxygen diffusion due to the larger gap

between RBCs and capillary. Inversely, decreasing velocity improves oxygen transfer but deteriorates

greatly the dynamics.
«10° RBC Simulation - Oxygen transfer vs. Apparent viscosity - varying inlet velocity
e i S e g e
— both cases , PO2=95mmHg
normal case, PO2=40mmHg
" sickle case , PO2=40mmHg
I estimated
. error
1 max
Oxygen consumptign an (mm/s)
characteristic length
{in m) 0.25
0.0625
"'"""*--.h,_
05| Y
o
ﬂ.___
5
SR -
~+
0 i ] ] ! ] 1 ]
0 1 2 3 4 5 6 7 8
apparent viscosity (in Pa.s) x10°

Figure 4.2.3 : case study B : variable inflow.

168



Figure 4.2.4 shows the potential effects of increasing vessel size at constant inlet velocity. As we
see here, there is a clear opportunity for improvement of both dynamics and oxygen delivery. In

particular, we notice that for sickle blood at 40 mmHg, increasing the radius from the baseline case,
R =45um, to R, =5 pm, brings both apparent viscosity and oxygen consumption characteristic
v pm, w % g PP yg p

length below the calculated values of normal blood at the same oxygen level. The dashed part of the

blue curve indicates questionable results due to secondary folding of the sickled cells.

x10° RBC Simulation - Oxygen transfer vs. Apparent viscosity - varying capillary size, cst inlet velocity
15 T T T T T - - T
i — both cases , PO2=895mmHg
/ normal case, PO2=40mmHg |
/ sickle case , PO2=40mmHg
.  I estimated
‘*' -, max. €rror
3 / ) |
f s
Oxygen consumptign T
characteristic length / -y
(inm) P
Rw (“m) 2.5 {
. g
05 A
4{,’-"' -
5.0 ¥
- +
®—t
0 1 1 1 1 1
0 1 2 3 4 5 8 7 8
apparent viscosity (in Pa.s) x10°

Figure 4.2.4 : case study C : variable radius, constant inflow.
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Figure 4.2.5 shows comparatively the same vessel size variations as Figure 4.2.4, but at constant

pressure gradient across the cases. As we see, there is again a great opportunity for improvement of

both blood dynamics and oxygen delivery. Moreover, we see that the change between R, = 4.5 um

and R, =5 um, leads to a greater relative decrease in apparent viscosity than in case study C. The
improvement of oxygen delivery performance is slightly smaller (oxygen consumption characteristic
length reaches 0.41 mm), but still very close to the value of normal blood at 40 mmHg (0.40 mm). At

R, = 5 um, the sickle case results in blue get very close to the normal cases, suggesting a quasi-

w

normal behavior of sickle blood with an acceptable oxygen performance.

x10° RBC Simulation - Oxygen transfer vs, Apparent viscosity - varying capillary size, cst pressure gradient
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apparent viscosity (in Pa.s) x10°

Figure 4.2.5 : case study D : variable radius, constant pressure gradient.
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Figure 4.2.6 shows the potential effects of enforcing different values of blood hematocrit. The
curve representing low-oxygenated sickle blood (in blue) shows how varying hematocrit would not
be efficient. While increasing the hematocrit is shown to improve oxygen delivery, the impact on
apparent viscosity is terrible. We notice that, in accordance with our conclusions in Chapter 3, the
low hematocrit of sickle cell patients, 0.25, seems to result from a natural bias, favoring normal blood
dynamics over reduced oxygen delivery. Keeping this result in mind, we can hypothesize therapeutic
strategies combining this natural behavior with another induced parametric variation. This would
lead to possible benefits in 2 ways. One idea would be to research a potential therapy that would
mainly improve oxygen delivery, assuming that the hematocrit regulation would be enforced by the
organism in order to maintain the apparent viscosity to a normal level. The other idea would be to
research a potential therapy that would reduce greatly the apparent viscosity (i.e. below normal
levels), and expect the organism to regulate the hematocrit back towards 0.45, or even maybe higher
levels, to restore a normal apparent viscosity, with an eventual benefit in oxygen delivery. As an
example put to the test, the results of case study B present a very similar curve to that of variable
hematocrit, so that very little improvement would be expected from any combination of the 2

parametric variations.

<10° RBC Simulation - Oxygen transfer vs. Apparent viscosity - varying hematocrit, cst pressure gradient
1.5 i 1 T ' r . . § X
— both cases , PO2=95mmHg |
normal case, PO2=40mmHg |
sickle case , PO2=40mmHg
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1 max. €rror
Oxygen consumptign Hct
characteristic length
(nm) O.ZN
— 0.55
—
05 +o
e - 5
+
e
-+
U 1 1 1 1 1 1 |

0 1 2 4 5 6 T 8
apparent viscosity (in Pa.s) 10"

Figure 4.2.6 : case study E : variable vessel hematocrit.
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Figure 4.2.7 shows the results of variations in plasma viscosity. As expected, decreasing plasma
viscosity acts directly on decreasing whole blood viscosity, even though it brings it down only half-
way towards the value of normal blood. Unfortunately, we also see that the oxygen consumption
characteristic length increases a little when plasma viscosity decreases, which effectively means
worsening the state of anemia. In light of the results of case study E, it may be possible to consider
the success of a therapy based on combining reduced plasma viscosity with hematocrit regulation.
One of the main challenges of such a therapy would reside in being able to reduce considerably the
plasma viscosity, by extrapolation about twice as much as we hypothesized for the lowest value (in
other terms plasma viscosity would have to be decreased to 0.5.10” Pa.s, which is below water at
body temperature, 0.7.10° Pas...). Even though this result does not seem to be accessible, it is
important however to keep in mind, that even a partial improvement of the disease remains an

opportunity worth being considered for therapeutical research.

x10° RBC Simulation - Oxygen transfer vs. Apparent viscosity - varying plasma viscosity, ¢st pressure gradient
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Figure 4.2.7 : case study F : variable plasma viscosity.
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Figure 4.2.8 shows the potential benefits from changing the effective oxygen diffusion constant

in the blood plasma. We see here that our estimated window for improvement of oxygen diffusion,

up to about 30%, can decrease the oxygen consumption characteristic length from 0.56 mm to 0.44

mm, which is very close to the value of our baseline case for normal low-oxygenated blood (0.40

mm). However no significant change of the apparent viscosity was observed.
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% &BC Simulation - Oxygen transter vs. Apparent viscosity - varying oxygen diffusion constant, cst pressure gradient
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Figure 4.2.8 : case study G

: variable oxygen diffusion constant in blood plasma.
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Following our results for case study G, we extrapolated the impact of varying oxygen diffusion
constant for low-oxygenated, sickle blood at a hematocrit of 0.25. Figure 4.2.9 shows these results in
addition to case study G. We see now that not only the oxygen petformance becomes nearly that of
normal blood, but also the apparent viscosity, down from 5.63.10° Pass to 3.45.10° Pas (to be

compared with the calculated value in the baseline case for normal low-oxygenated blood, 3.32.10

Pa.s).

RBC Siml‘y(ajligm - Oxygen transfer vs. Apparent viscosity - varying oxygen diffusion constant, cst pressure gradient (extrapolation Hct=0.25)
qedt e e e
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05 +
®
:
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Figure 4.2.9 : case study G : variable oxygen diffusion constant in blood plasma (with dashed
points as extrapolation of the case Hct = 0.25).
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Finally, Figure 4.2.10 shows the results of case study H, where we vary blood density. As we see,
the small relative variation of blood density does not lead to any appreciable change, neither in
apparent viscosity, nor in oxygen delivery performance. In fact, the changes obtained end up well

below the estimated precision of our simulations.

«10° RBC Simulation - Oxygen transfer vs. Apparent viscosity - varying blood density, cst pressure gradient
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Figure 4.2.10 : case study H : variable blood density.

4.3. Conclusions on potential directions for medical research

Table 4.3.1 recaps the results obtained in the proposed study of potential therapeutical targets.
Our research has demonstrated with the current model, the existence of 2 potential therapeutic
opportunities accessible by a single parametric variation. The first positive result is related to an
enlargement of capillary vessel size, where we have showed the considerable impact on both blood
dynamics and oxygen delivery. Although the feasibility remains highly arguable, this result constitutes
a very powerful direction for medical research. The second positive result is related to an increase in
the effective oxygen diffusion constant, which combined with the low hematocrit of sickle cell

patients constitutes an original research hypothesis to treat sickle cell disease. This important result
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strongly supports further research on free oxygen cartiers in blood plasma as a possible new therapy
for sickle cell disease. Finally, our simulation results suggested that decreasing plasma viscosity may

be a possible third option for improvement, although apparently limited in extent.

Parameter idea efficient target ? comments
better at constant pressure
R, increase Yes gradient (= within organ) than at
constant inflow (=along capillary)
v, increase
No decreases apparent viscosity,
— but deteriorates oxygen transfer
(ip_j increase
dz
Het increase No irpproves oxygen tran'sfer,.
but increases apparent viscosity

decreases apparent viscosity,

M, decrease Maybe aFld oxygen delivery may bt?
partially restored by the organism

(hematocrit compensation)

improves greatly the state of
D increase Yes anemia, anc.1 is .likely to be a happy

F combination with a low
hematocrit level

P decrease No very limited effects, at a high risk

Table 4.3.1 : Conclusions of the case studies on potential therapeutical targets.
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5. Conclusions

5.1. Doctoral contribution

The doctoral work presented in this thesis has successfully :

- defined a rigorous model for blood dynamics in the microcirculation. This model not only gathers
the most recent and most detailed theoretical desctiption of blood dynamics and oxygen transport,
but is also designed to be able to address specific issues that require the combination of fluid
dynamics, RBC membrane mechanics and oxygen convection, diffusion and consumption.
The resulting number of physical parameters has offered possible implementations of a large variety

of scenarios and comparative studies.

- designed a comprehensive model for sickle cell disease. This model is based on an original
modeling of the sickling mechanism, taking advantage of recent progress made in understanding the
molecular growth of sickle hemoglobin (HbS) polymers. This innovative model has allowed a
systematic assessment of the abnormal characteristics of blood flow, with a strong emphasis on the

physical causes and the chain mechanism leading to impaired blood properties.

- used simulation results to improve our knowledge of blood microcirculation and sickle cell disease.
In particular, we have successfully demonstrated the quantitative influence of some parameters
reflecting a variety of physiological situations. Among the many observations, we were able to report
the evidence of a maximum of oxygen transport with respect to varying vessel sizes. We also
identified clearly the consequences of a reduced hematocrit among sickle cell patients, being
beneficial to the apparent viscosity, but aggravating oxygen delivery performance. The modified
dynamics of sickle blood at low hematocrit strongly support the hypothesis of a natural adaptation to
sickling RBCs, and provide also a rational explanation to the unpredictability of sickle cell crises.
Sickle cell anemia has thus been quantitatively related to its combined causes, sickling RBCs and
reduced blood hematocrit. Finally, from our improved understanding has emerged a concise

problematic to address potential therapies for sickle cell disease. To provide a quantitative
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assessment of potential therapeutical targets, our methodology proposed to focus on the measured

impact of induced parametric changes on both apparent viscosity and oxygen delivery petformance.

- identified and assessed therapeutic directions for the treatment of sickle cell disease. The
opportunity of further research on specific therapeutical targets was established, based on available
medical implementations, on the simulated effects on blood dynamics and oxygen delivery, and on
possible compensatory mechanisms by the organism (i.e. the adaptation of hematocrit to regulate

blood viscosity).

This research has unveiled the possibilities of novel medical research based on large-scale
numerical simulations and systematic analysis of parametric variations, and intends to pave the way

for the development of innovative therapeutic directions.

5.2. Future steps for sickle cell research, determination of risk factors for

crises

In light of our results, the need for further research has emerged in a few directions. Firstly,
experimental research is obviously needed to complement our results. Not only would we benefit
from getting more information about the disease, and refining our model, but also from being able to
verify our hypotheses, our predictions and conclusions. Direct measurements of quantities such as
apparent viscosity in capillary-sized vessels, whether in vitro or in vivo, is an example of data where
very little documentation was found for sickle cell disease. On the other hand, more details about the
mechanisms of hemoglobin polymerization would also improve our model, allow us to estimate
more directly the model spring constants and length function of the HbS polymer, or even suggest
larger model improvements, such as a direct implementation of Ferrone’s model.

The second research opportunity is clearly to use our results to identify risk factors for crises.
With medical research showing the driving factors of sickle cell crises, the current model could be
used to identify possible cortelations between the risk of crises and blood dynamics. For example,
the occutrence of crises could be compared to how close to the capillary wall the RBCs end up in
our model, for varying physiological situations. Then, modern techniques to visualize blood flow in
real time could be used to measure vatious quantities such as blood velocity in a sickle cell patient,

and our model would participate in the elaboration of simple diagnostic tools. This would be a first
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step to potentially provide successful monitoring of physical activity, blood composition and other
physiological factors as many indicators of risk probabilities of vessel occlusion. To extend this field
of research, we could also look at situations involving physical activity and reduced oxygenation from
the lungs (such as in low-pressurized environments).

A third research opportunity resides in using numerical simulations to predict the effects of
existing or upcoming therapies. For example, a recent paper suggested possible improvements in the
condition of sickle cell patients from the combination of EPO with hydroxyurea ™. An appropriate
numerical model could help us here in understanding better the mixed interactions between such

drugs and sickle blood, determine the optimal proportions and measure the possible drawbacks.

5.3. Simulation model as an analytical tool : extension of parametric

studies, integration in larger models

Finally, we hope that our work can contribute to the development of other blood research topics.

Firstly, further work is expected to address more complex descriptions of blood flow
(converging-diverging channels, asymmetric time-dependent flow, bifurcations, ...). Various research
publications address these issues separately, and can be already used to grow our model.

Recent bioengineering models have found a large echo in the field of cardiovascular diseases and
artificial heart engineering. On the other end models of the microcirculation have also expanded
recently, and our work is intended to patticipate in the development of this area. Through the study
of blood dynamics in vessel networks, and the development of organ-specific models, the
cardiovascular and microcirculation research fields are eventually expected to meet and allow a
complete modeling of blood circulation. With this perspective in mind, our work emphasizes the
possibilities of large multi-variable studies, to successfully reproduce, interpret and predict various
physiological observations, for both natural and induced situations, with the possibilities of a
complete global assessment of the blood circulation.

The inclusion of the problematic of oxygen delivery, and its exploitation to achieve specific
research purposes, can be generalized to any substance subject to blood distribution and regulation,
with considerable impact on medical research. Our work not only showed the investigation of a
particular research problem, but also the design of a whole methodology to approach research topics

involving blood transport. In this context, similarly-designed blood simulation models are to be used
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not only to improve our understanding, but also to help redefine research objectives in very specific
terms, and use synthetic quantitative methods for systematic assessment of research hypotheses.

Last but not least, our work could be used to address directly other blood diseases with minor
changes. This includes investigation of other RBCs abnormalities, in size (anisocytosis, macrocytosis,
microcytosis), in shape (acanthrocytes, echinocytes, elliptocytes, keratocytes, spherocytes, spicules,
leptocytes a.k.a. target cells, dacrocytes a.k.a. teardrop cells, RBC rouleaux), or in intracellular
structure (normoblasts a.k.a. nucleated cells, reticulocytes, siderocytes, basophilic stippling, Heinz
bodies, Cabot’s rings). This includes also dynamics of normal and abnormal white blood cells. Last
but not least, recent findings have shown evidence of abnormal RBC dynamics among patients

infected with malaria /), which therefore constitutes another potential topic for future research.
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Appendix A : Oxygen dissociation cutves

The 2 main proteins binding oxygen in the human body are hemoglobin and myoglobin. Despite
their similar function, they have indeed very different binding properties. Myoglobin is a globular
protein (globin) containing a non-protein heme group (which binds oxygen through an iron ion),
whereas hemoglobin is an assembly of 4 globin subunits, each having its own heme group. Oxygen
binding to a hemoglobin tetramer comes with conformational changes, which are significantly
improving the binding capability of the other empty sites. Therefore, the binding of oxygen to
hemoglobin is characteristic of “cooperative binding”, while myoglobin is not.

These properties are reflected in the oxygen dissociation equations and profiles of myoglobin and
hemoglobin.

The binding of oxygen to myoglobin is chemically represented by the following reaction :

Mb + O, = MbO,

Using the law of mass action and assuming dilute solutions (to use concentrations instead of
activities), the equilibrium expression is :

[MbO, ]

= MO, Al
[MB] [0, ] A-D

where [0,], [Mb], [MbO,] are respectively the concentrations of free oxygen, unbound myoglobin
and bound myoglobin, and K,, is the reaction equilibrium constant, mainly dependent on
temperature and pH. Substituting in Equation (A.1) the unbound myoglobin by the total (bound and
unbound) myoglobin [Mb],, , we can rewrite equilibrium as :

Ky [0, ]

[MbO,] = [Mb],, Tk (01

(A.2)

Then defining the myoglobin saturation $*as the ratio of bound myoglobin to total myoglobin,

Equation (A.2) becomes :

Ky [O,]

R
1 + K,, [0,]°

(A.3)
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which is the Hill equation applied to myoglobin, (non-cooperative binding form). Using Henry’s law
for a dilute solution of oxygen, [0,] = a p, with a the solubility constant, and replacing the

constants with the partial pressure at 50% saturation, Equation (A.2) becomes :

Po,

Mo
Po,s0% t Po,

SM = , (A.4)

Mb _
where py s, = (K @) g

Similarly, the binding of oxygen to hemoglobin is represented by the following equation :

Hb, + 4 O, = Hb,0O

Note that this assumes that all oxygen molecules would bind together, and neglects the presence of

all intermediate compounds. Using the law of mass action, the equilibrium expression is :

[Hb,04]

" O =

where [O,], [Hb,], [Hb,O;] are respectively the concentrations of free oxygen, unbound
hemoglobin and bound hemoglobin, and K, is the reaction equilibrium constant, mainly dependent

on temperature, pH, and also on concentration of some interfering molecules such as CO,, CO and

some compounds produced in the erythrocytes (such as the 2,3-DPG organophosphate).
Substituting in Equation (A.5) the unbound hemoglobin by the total (bound and unbound)

hemoglobin [Hb],,,, we get :

Ky, [0,1
1 + K, [0,]"

[Hb403 1= [Hb]mz (A'6)

Then defining the hemoglobin saturation ™ as the ratio of bound hemoglobin to total hemoglobin,
Equation (A.6) becomes :

_ KHb [02]4
T T+ Ky (0] A7

Hb

which is the Hill equation applied to hemoglobin, (cooperative binding form). In Equation (A.7) the
Hill coefficient is 4, which assumes an elementary binding mechanism where the 4 oxygen molecules
bind simultaneously to hemoglobin, and leads to the associated increased propensity to bind
(cooperativity). However, the assumption of all oxygen molecules binding together (infinite

cooperativity) is never matched (intermediate compounds exist), and moreover the equilibrium
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constants are different for the a- and the B-globins binding to oxygen. Experimental data has shown
that the effective Hill coefficient of the oxyhemoglobin dissociation profile was significantly lower
than 4, about 2.2 at the temperature and pH of human body "". Using Henry’s law and introducing
the equilibrium partial pressure at 50% saturation, Equation (A.7) becomes :

n

p
g = 8 , (A.8)

Hb n n
Po,sox T Po,

where n is the effective Hill coefficient, and pgiso% = (K a)™.

The oxygen dissociation cutves are shown in Figure A.1 (Note : the constants used there slightly
differ from our model). The myoglobin curve is hyperbolic, while the hemoglobin curve is sigmoidal.
Among factors known to influence the dissociation curve, temperature shifts it upwards, pH
downwards (which is known as the Bohr effect), and 2,3-DPG concentration shifts it upwards. More

complex empirical models exist, such as Kelman’s equation, with extensions to include temperature,

pH and other factors (Source : http://www.ventworld.com/resources/oxydisso/dissoc.html).
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Figure A.1 : Hemoglobin and myoglobin dissociation curves
(source:http.://www.colorado.edu/intphys/Class/IPHY3430-200).
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In the case of sickle hemoglobin, experimental data shows a rightward shift of the profile, as

presented by Berger and King "*). Figure A.2 shows this shift, which Berger has related to a simple

change in pgf,so% from about 25 mmHg to 40 mmHg (7 is also closer to 3).

% SATURATION

o 20 40 @ 80 100
Foop (MmHg)

Onygea dissociation curves of human aormal bamaglobin and hemoglobin from individuals
with sickle-cell ancmia.

Figure A.2 : Sickle hemoglobin dissociation curve (from Berger and King '*Y).
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Appendix B-1 : Derivation of the generalized constitutive

equations — fluid dynamics

The dimensions of interest of our research (~um) are appropriate to use classical continuum
mechanics throughout this work. In this context blood plasma and cytoplasm are to be described

with fluid mechanics, starting with the generalized Navier-Stokes equation :

aa—’t’ + ¥ Vp+ pV¥ =0, (B.1)
p(% + (ﬁ-?)ﬁ) = VT +p5&+ f, 5(*— )?,,), (B.2)

whete p(F,f) is the fluid density, ¥(7,) is the velocity vector, V the del operator (spatial vector

differential), g(7,f) the total body force per unit mass, ?(?,t) the total stress tensor in the fluid
(force per unit surface), fb (X,) the total force per unit surface at the fluid boundary, whose surface

is defined by X, (5,,f) and parameterized by 5, , and & is a 1-dimensional Dirac distribution. In our

case body forces are essentially gravitation (Lorentz electromagnetic forces are ignored since we
ignore ionic activity). Examination of the Froude number further justifies ignoring gravitation. Also,
the very low Mach number justifies assuming the fluid incompressible, i.e. of constant density (see

dimensional analysis in Appendix C). Equations (B.1) and (B.2) thus become :
Vv =0, B.3)

ov O = = = of- =
p(a " (v-V)vJ = V.T + f,6F - %,). B.4)
The stress tensor is usually first split in isotropic and deviatoric (traceless) tensors. The trace of

the stress tensor is the mean normal (volumetric) stress, whose opposite number is commonly

referred to as the mechanical pressure p,,:

T =-p,0+T,, (B.5)
V.T = - Vp,+ VT, , (B.6)
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where I is the identity tensor. With the tensor double dot product notation, a mathematical way to

express p,, and T}, is:

=
X

i

|
N
~i

, B.7)

=T

)7, ®.3)

The common assumption of Newtonian fluid corresponds to 3 hypotheses. The first hypothesis

T, =T -

are that stresses departing from equilibrium (static fluid at rest) are caused by strain rates only, to
which they are linearly proportional (this differs noticeably from elastic behavior, typical of solids,
where stresses are usually associated with the strain tensor). Assuming that the fluid at rest is
characterized by only normal, isotropic thermodynamic forces, this leads to express the stress tensor

alternatively as the sum of a hydrostatic pressure tensor and a viscous stress tensor :

T =-pl+T,, B.7)
VT = -Vp + V.T, , (B.8)

where the thermodynamic pressure p is only a function of temperature and density, while E is a
linear function of the strain rate tensor (in fact, p is the resultant of stresses associated with thermal
velocities, which are not accounted for as velocity components in continuum mechanics). The
second and third hypotheses are that fluid stresses are isotropic, i.e. independent of rotation of the

coordinate system, and that only the symmetric part of the strain rate tensor causes stress (the anti-

symmetric part cortesponds to fluid rotation). The 3 hypotheses of Newtonian fluid reduce ﬁ to a

simple expression involving only 2 parameters :
f:z@:7)7+2y§, (B.9)

£ = % @5 + @), (B.10)

where A and p are scalar constants that depend mainly on the temperature, & is the symmetric

strain rate tensor, and & : 1 is the trace of the strain rate tensor (double dot product with the identity

tensor). 7}, is usually reorganized in its normal stress component (diagonal terms) and shear stress

component (no diagonal terms). Because the viscous stress tensor is isotropic, the normal stress

components are all equal, and the shear stress can be expressed as a deviatoric term :
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<3|

- (,1 +§yj :7)

= = - 2
otusing £:1 = V.V and substituting A for g, = A4 + E,u:

~
+
[\
=
7~ N\
™l
|
| —
™ |
~
~—
~

) s B.11)

N

= u, (V-9)7 +2 ,u(; - % (v-5) 7). (B.12)

We have now decomposed the viscous stress 7, with a mean normal stress and a shear deviatoric

term (shear means no diagonal term). Therefore we can identify for a Newtonian fluid the second

term (shear stress tensor) with the deviatoric tensor T}, , and relate mechanical and thermodynamic

pressure :
Py = p - 1 (V-9). B.13)

The general form of the Navier-Stokes equations for a Newtonian fluid is therefore :
Z—f+ VVp + pV-¥ =0, (B.1)

p{% ¥ (vﬁ)v) =~ Vp N[(ﬂb - %;,) (Vr,)] e 0bus) s 7o - 1), ®1g

where g and g, are commonly called the dynamic (shear) viscosity and bulk viscosity. The bulk

viscosity is generally small compared to the dynamic viscosity (see Appendix C). However, if we

assume incompressibility and constant viscosity coefficients (or constant temperature), we get :

V=0, B.3)
p(%:- + (v-ﬁ)v] = —Vp+ uvi + §6(F - %,), (B.15)

where we have used V-& = %(VZV + 6(6?5)) Note that, expressed separately inside and

outside the RBC, Equations (B.15) can be written without the last term, which becomes a boundary

condition.
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Appendix B-2 : Derivation of the generalized constitutive

equations — oxygen transport

In the context of classical continuum mechanics, oxygen transport is characterized by the general

scalar transport equations :

oc = =

— + V-N =R, .16
o (B.16)
N =cv+ J, (B.17)

where c(7,t) is the oxygen concentration in moles per unit volume, N is the local oxygen flux

vector, R is the rate of (algebraic) production of free oxygen, v is the velocity vector, and J is the
local diffusion flux (there is no other known source of flux for oxygen, which differs from transport
equations applied to other quantities like energy, which can be subject to radiative transfer for

example). The diffusion flux is expressed using Fick’s law of diffusion :
J = -DVc, (B.18)

where D is the diffusion constant or diffusivity, which depends on various factors such as
temperature, density, or chemical composition of the fluid. Assuming constant temperature and
density (see Appendix C for dimensional analysis), we limit the possible values of D to the different
regions of our capillary flow model, and assume that each of these values is constant. Therefore the

transport equation simplifies to :

% + V-(c¥) = DV% + R, (B.19)

The production/consumption of free oxygen is of 3 sorts in our case. First, a pure consumption
rate is hypothesized in some regions, with a constant rate M . Secondly, free oxygen binds and is
released by hemoglobin proteins in the RBCs. This is characterized by the law of mass action derived

from the oxyhemoglobin dissociation reaction :

Hb, + 4 O, = Hb,0

Hb
R™ = % = 4 k' [Hb,0,] — 4 k® [Hb,] c*, (B.20)

chem
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where k™ and k™ are the kinetic reaction rate constants of the forward and backward reactions,
and [Hb,] and [Hb,0;] are respectively the concentration of unbound hemoglobin and (bound)
oxyhemoglobin. Note that for simplicity, we assume for now that all oxygen molecules bind together

at once (infinite cooperativity). Substituting [Hb,] by the total (bound and unbound) hemoglobin

concentration [Hb,],,,, and defining the oxyhemoglobin saturation § H we get :

[Hb,] = [Hb,],, — [HbG], (B.21)
SHb — M , (B.22)
[Hb4]tot
Hb
R™ = Zj = [Hb,1, (4 K™ 8™ — 4 k™ (1 - S™) c*), (B.23)
chem
Substituting the second reaction constant, Equation (B.23) can be reformulated :
3
Cimy = (ﬁ] (B.24)
k{
oc|™ c !
R™ = ~‘ = 4 k" [Hb],, |S™ - (1 - S™)Y | —1| |, (B.25)
at chem CSO%

where chy, is the equilibrium oxygen concentration at 50% saturation. Since the concentration of
oxyhemoglobin is implicitly expressed in the resulting equation through §™, we need to add a
transport equation to determine S™ (¥,f) :

asHb R RHb
+ V($™y) = D* V§?P - ——— | (B.26)
ot 4 [Hb4]tol

where D™ is the diffusivity of oxyhemoglobin, and its production rate was determined using the

same reaction. Finally, introducing the total hemoglobin concentration in terms of moles of protein

subunits per volume, [ Hb], Equations (B.25) and (B.26) become :

ac|™ c !
R®= =1 = k™ [Hb]|S™ - (1 - $™) |—]| |, (B.27)
Ot hem Cs0%
a Hb . Hb
— * V.(S?*V) = D vigH® — H] (B.28)

At equilibrium, the rate of production of oxygen is zero, leading to the familiar result represented in

the oxyhemoglobin dissociation curve (See Appendix A).
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At this point, the assumption of infinite cooperativity needs to be addressed. Expetimental data
shows that intermediate components cannot be totally ignored, so that our simple reaction does not
really qualify as “elementary” to apply the law of mass action, and that a more complex group of
intermediate reactions would need to be taken into account to be more accurate. To resolve this
problem, experimental data is used to determine the Hill coefficient to replace the exponent 4 at
equilibrium (see Appendix A). The resulting semi-empirical model gives :

Hb

RHb — a_c_
ot

= k™ [Hb] [S”" 1 - S™) [%J J (B.29)

chem cSO%

where the Hill coefficient n is approximately equal to 2.2 (and close to 3 for sickle hemoglobin).
Finally, free oxygen is bound and released by myoglobin in the muscular tissue. The binding
reaction of myoglobin is very similar to the one of hemoglobin, except that only one molecule of

oxygen binds each protein :
Mb + O, = MbO,

Deriving the rate of oxygen production in a similar manner to the case of hemoglobin, we obtain

with similar notations:

ac|™ c
RMb _ = = kX [ Mb] [sMb - (1 - §") [c“” J ] _ (B.30)
chem 50%
a Mb - Mb
—— 4+ V(§™%) = D" VISP - | (B.31)
ot [Mb]

However, the oxy-myoglobin dissociation rate constant is much higher than for the hemoglobin
(see Appendix C), which allows us to assume local equilibrium of oxygen with the myoglobin. This
corresponds to :

oM _ ¢ i B.32)

Mb
Cspop + C

Combining now Equations (B.19), (B.28), (B.29), (B.30) and (B.31), we obtain :

% + V-(c¥) = DV’c + k" [Hb] {Sm’ - - SHb)[ ;b JJ
+kffb[Mb][SMb—(l—Sm)(faJJ+M’ (B33
Cso%
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aSHb
ot

50%

+ V-(§™y) = D™ vis® — ™ [S”” - - s””)( ,fb ) } (B.34)

as™ < Mb = Mb 2 oMb Mb Mb Mb c
[Mb][7+V-(S v)]=D [Mb] V°S™ — kI [Mb]{S -1-S5 )(MJ]

Cs0%
(B.35)
Deriving from Equation (B.32) :
oM
as** = —% __ dc | (B.36)

- Mb 2
(c5p0, + ©)

and substituting Equation (B.36) in (B.35), then summing it with (B.33), we finally get the generalized

system of equations for oxygen transport :

(l + [Mb] c5—A&J (95 + ﬁ(cg)J - [D + D™ [Mb] cae ]V2c

Mb Mb
(Csp0 + 0)2 ot (Csw + C)2

+ k™ [Hb] [S”” -1 - 5™ (%J ) + M, (B37)

50%

aSHb
ot

+ V-(§™9) = D vist _ i [s”” - - 8™ (—; ] J (B.34)
50%

To complete this derivation, we introduce Henry’s law to convert oxygen concentration to partial

pressure (which has the additional property of being continuous across an infinitely thin membrane) :
¢ = apg, (B.38)
where a@is the solubility constant of oxygen, and p, (¥,f) is the partial pressure of oxygen.

Assuming also flow incompressibility (see justification in Appendix C), substitution of variables gives

eventually :

Mb Mb
" 0 ~ -
a +[Mb] Po, 50% J [ Do, + ﬁ.Vpozj = [aD+DMb[Mb] Po, s ] VZPOz

Mb 2 I 2
(Poz,so% + poz) ot (Poz,50% + Poz)

+ K™ [HB]|S™ — (1 - §™) [f,’T"] M, (B39

Po, 50%
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Hb n
+ 5.VS® = pHyrgt _ g | g _q - gy | Pa | (B.40
ot !

where pgffso% and pgf,so% are the equivalent partial pressures of oxygen at 50% saturation of

myoglobin and hemoglobin, respectively.
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Appendix B-3 : Derivation of the generalized constitutive

equations — membrane mechanics

In this appendix we derive the constitutive equations for the RBC membrane. For simplicity, we
assume an axisymmetric configuration and will use cylindrical coordinates. The membrane is to be
modeled as a 2-D elastic solid, subject to surface tensions, bending moments and shear stresses.

Figure B.1 recalls some definitions and orientation conventions used throughout this thesis.

Figure B.1 : Curvilinear coordinates for axisymmetric RBC membrane
and membrane stresses convention (model of superposed leaflets).

Because of axisymmetry, the membrane surface is parameterized with only one curvilinear

variable 5. Any point on the surface is defined by a minimum-stress configuration with a position
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“at rest” s,, so that s is a function of s, and ¢ : s =15(s,,#). To replace the membrane stresses
within the surrounding plasma and cytoplasm, we use in addition to the cylindrical coordinates
(z,7,0) the local angle of the normal to the surface to the axis to symmetry, @(s). Denoting the
radius of the membrane at a position s by R(s), we get the simple geometrical relation :

ar = cos(g) . B.41)
ds

Let us now write the components of the total forces and moments, by analyzing them on a
differential surface element from s to ds and from 6 to d@ (represented by the enlargements on
the upper part of Figure B.1, and the 3 sketches on Figure B.2). Because of axisymmetry, local shear
stresses only exist in the s direction, and the total moment about the s axis is zero everywhere. The

differential components of total normal force, total tangential force, and total moment about the €

direction are derived from the local tensions in the s and @ directions, £ (s) and ?,(s), the shear
stress in the s direction ¢,(s), and the local moments per unit area, about the @ direction, m (s),

and about the s direction, m,(s) (the swapped notations for the local moments are inherited from

Secomb’s model ') :

dF, = — t (s+ds) sin(g(s+ds)—g(s)) R(s+ds) df — t,(s) sin((6+d)-0) sin(g) ds
+ q,(s) R(s) d8 — q,(s+ds) R(s+ds) dO , (B.42)
dF, = — t,(s) R(s) d0 + t(s+ds) R(s+ds) dO — t,(s) sin((@+dO)—0) cos(p) ds
— q,(s+ds) sin(g(s +ds)—¢(s)) R(s+ds) dO , (B.43)
dM, = — m,/(s) R(s) dO + m,(s+ds) R(s+ds) dO — m,(s) sin((8+dO)—8) cos(p) ds
— q,(s+ds) ds R(s+ds) db . (B.44)
Defining the area of the differential element d4 = Rd@ds , the last 3 equations reduce to :
ar, _ . dg ‘ sin(g) id(Rqs)’ (B.45)
dA ds R R ds
dr, 1 d(Rt)) cos(¢) dg
— = sl gy g 2D 46
A R ds o g T g (B.46)
aMm, 1 d(Rm,) cos(g)
= sl oy, g A7
A R ds Mo TR T4 B47)
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Figure B.2 : Membrane tensions, stresses and moments on a differential element.
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Since the membrane is submerged in plasma and cytoplasm fluids, normal forces are naturally
opposing pressure forces, while tangential forces oppose viscous stresses. There is no source of
torque in the fluid, however, nor within the membrane. Therefore the total moment about the &
direction must cancel, giving :

1 d(Rm COS
_ Ld@m) | eosy)
R ds R

(B.48)

Finally, the bending moments are assumed to be locally isotropic, which is justified in the model

of superposed leaflets for small area compressibility (for details see Evans and Skalak, p.109 ). This

leads to m; =m, =m , and using Equation (B.41), our system of equations reduce to :

&, df_ sin) _ 1dRg) 545
dA ds R R ds
dF, 1 d(Rt,) cos(¢@) d¢
e ), 22, 22 46
dA R ds ® R 1 ds ’ (B.46)
dm
am _ ) 49
s q, (B.49)

To complete these equations, we use constitutive equations for the local tensions and moment

per unit area. These were presented in Section 1.2.3 and synthesized in Section 2.1.2 as :

- t +t
PR B=O-O+Kbu££_l (45)
2 ds, R,
Lottt Ka (&) (RY|_B (s _sing)(ds , sing ) g
a4 2 2 ds, R, 2 \ds R ds R A
d*¢ d (sing
qs [dSZ ds[ R J ’ (7)

with all the moduli coefficients and index notations defined in Section 2.1.2. Equation (47) is derived

from the constitutive equation for the local moment per unit area, combined with Equation (B.49).
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Appendix C : Dimensional Analysis

In this appendix we apply dimensional analysis to support hypotheses used in our model, or in
other models we refer to.
The use of continuum mechanics is related to the Knudsen number. The Knudsen number is the

ratio of the molecular mean free path to a reference length of the problem :

Kn = mp , (C.1)
dl
where dl will be an order of magnitude of the smallest numerical length used in our simulations.
The numerical scheme used gives for dl about 1.107 m. The mean free path of a liquid is of the
orderA of magnitude of intermolecular distances because of the important molecular interactions.

Given its density p, and molecular weight M , we can determine roughly mfp as:

7
mfp = [p NAJ , (C2)

where N, is Avogadro’s number. Taking p equal to 1025 kg/m’, M to 18 g/mol (i.e. roughly

water, which is the main constituent of plasma at about 92% by volume), and N, to 6.10° /mol,
we get mfp~ 3.08.10"° m and Kn~ 3.08.10°. The Knudsen number is much smaller than 1 and
justifies the use of continuum mechanics and the Navier-Stokes equations.

The assumption of constant density is related to the square of the Mach number for fluids

undergoing isentropic or quasi-isentropic changes. In a more general case we can assess the relative

changes in density from two basic thermodynamic coefficients : the coefficient of thermal expansion

a and the coefficient of isothermal compressibility y; :

a = — L (-a——p-J , (C.3)
p \oT),
1 (o

X = — (—”J - (C4)
p\op);

Using water as a rough approximation to blood, we have a ~ 2.07.10* /K and y, ~ 4.6.10" /Pa

(values at 25°C, available in a large variety of sources). A variation of 1°C being an upper limit for

temperature, this means that thermal expansion is easily negligible. Also, even if pressure changes
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reached atmospheric levels (~10° Pa), the relative change in density would still be negligible. As a
side note, speed of sound in water is about 1500 m/s, to be compared with the low velocity we use
for blood in the capillaties (of order 0.5 m/s), giving 2 Mach number of 3.3.10*. Density can thus
reasonably be considered constant in blood.
The Reynolds number is commonly used in fluid mechanics to compare momentum advection
and viscous diffusion of momentum. It is defined as :
Re = pUL , (C.5)
i

where 4 is the fluid dynamic viscosity (1.4.10° Pa.s in the plasma), and U and L reference velocity
and length. Taking U ~ 0.5 m/s and L ~ 1.10° m, we get Re ~ 0.366. This small Reynolds number
shows that viscous forces must be taken into account. However, it is not small enough to consider
the flow viscous-dominated, except in certain cases (see Appendix D on the lubrication layer model).
The Froude number compares inertial forces with gravitational forces. It is defined as :
U2

Fr = R
gL

(C.6)

where g is the local gravitational acceleration field, taken equal to 9.81 m/s” With the values of U
and L given above, this gives Fr ~ 2.55.10%. The large Froude number indicates that gravitational
effects can reasonably be neglected.

The Weber number compares inertial forces to surface tension. It is defined as :

UL
we = P25 €7
t

where ¢ represents the greatest component of surface tension.

The capillary number compares viscous forces to surface tension, and corresponds to the ratio of
the Weber number by the Reynolds number :
We y710)

Ca =

Both capillary and Weber numbers are useful in our research as they give an idea of the order of

magnitude of tension stresses sustained by the RBC flowing down the capillaty vessel. Using the

numbers given above and assuming quasi-equilibrium states where We and Ca ate of order unity,
we get for ¢ an order of magnitude between 1.10® and 1.10™ kg/s”.

Since stresses and moments at the surface of the RBC come from 3 different forces, and 4

different constants, we can naturally compare the resulting tensions to this order of magnitude, using
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the values given in Section 2.1.2. The isotropic tension o, is estimated at 7.10% kg/s’ the
isothermal area compressibility modulus K, is taken as 0.5 kg/s? the 2-D shear modulus K, is
4.2.10° kg/s% and the bending modulus B is 1.8.10™ kg.m?/s’. Comparing these figures gives

considerable insight on the RBC mechanics. Firstly, the isotropic tension is small compared to the
compressibility modulus. Secondly, the very high area compressibility modulus justifies the
assumption of constant area in the RBC, often used in membrane models (the reason why we kept

K,, is mainly numerical, to ensure area conservation dynamically). Thirdly, we see that RBC shape is

going to be determined mostly by shear stresses, and bending stresses locally when the curvature is

of the order = ~ 2.1.107 m or smaller (this is not small compared to d/, so bending stresses
sh

should be observed to significantly round corners).
The Schmidt number is also used to compare the relative thicknesses of the viscous shear layer
and the diffusion boundary layer. It is defined as :
Se = £, C9)
pD
where D is the diffusion constant (in our case, of oxygen), taken approximately equal to 1.10° m*/s.
With the values of p and  given above, it gives Sc ~ 1.4.10°. This indicates that we should expect
velocity profiles to be sharper than oxygen level profiles near the capillary wall. Also, it means that
oxygen diffusion in the capillary vessels is normally expected to be a limited process (i.e. capillary
blood should retain most of its oxygen locally, up to a large number of capillary size length scales).
To compate oxy-myoglobin dissociation rate, oxyhemoglobin dissociation rate, and other

phenomena, we use the Damkohler numbers. In the case of myoglobin, the main phenomenon will
be diffusion, so that :
. KRS
Da = D—Mb , (ClO)
where k™ is the oxy-myoglobin dissociation rate constant and R, the radius of the Krogh cylinder,

used as a reference length. k™ is taken to be about 15 s* "3, R, is 2.10® m, and D* = 6.10™

m?/s. This gives Da™ =~ 100, which justifies that oxy-myoglobin is always considered locally in

chemical equilibrium with oxygen. In the case of hemoglobin, convection with the cytoplasm flow is
to be assessed. However it should be less, if not of the same order, than diffusion (especially near

steady state of the RBC). We will thus consider diffusion to be also the determining phenomenon :
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kHb L2
Da™ = ——— | (C.11)
where L is the order of magnitude of capillary flow (and by extension, of the RBC dimensions),

taken as before as 1.10° m. Using k™ = 44 s* and D™ ~ 1.4.10™ m?/s, we get Da™ ~ 3.14. As

we see, the kinetic rate of dissociation of oxyhemoglobin is not high enough to ignore diffusion.
Finally, we can compare diffusion of oxygen and its bound counterpart in myoglobin. The
appropriate non-dimensional ratio is :

aD

I s (C12)
Mb
0,,50%

D™ [Mb]

with the notations used in Section 2.1.2. With the oxygen partial pressure at an equilibrium
corresponding to 50% saturation of myoglobin, pgff son taken as 5.3 mmHg, the oxygen solubility

constant in myoglobin taken as 1.5.10° mol/m’/mmHyg, the oxygen diffusivity taken as 2.41.10”
m®/s, the diffusivity of oxy-myoglobin as 6.10™ m”/s, and the total myoglobin concentration as 0.4
mol/m’, we get a ratio of 0.798. This clearly indicates that diffusion of both bound and unbound
species have comparable impact, and neither one should be ignored.

Table C.1 recaps the main non-dimensional groups described in this appendix.
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Parameter

value conclusion
Kn = % 3.08.10° continuum mechanics appropriate
U 4 . .
Ma = speed of sound 3.3.10 incompressible flow
_ pUL both inertia and viscous stresses
ke = Y7, 0.366 need to be considered
U2
Fr = 3 2.55.10* gravitational effects negligible
g
pUL -1 scales tension stresses in RBC
€= membrane
Ca = We _ prU -1 scales tension stresses in RBC
Re t membrane
K, 4102 - 4.10° flow-induced stresses => shear
t ) ’ deformation
K, 8.4.10° RBC membrane locally
K,, o incompressible (constant area)
o 0.14 pressure discontinuity (from
K,, ) surface tension at rest) negligible
Se = H 14.10° viscous boundary layers smaller
pD o than oxygen diffusion layers
kM R.2 o - L
Da™ = K 100 myoglobin dissociation kinetics
@ = D negligible (quasi-equilibrium)
kb [? e .
Da™ 314 hemoglobin dissociation kinetics
a = Dt : not negligible
aD
D™ [Mb] 1 0.798 myoglobin diffusion not negligible
Pgib,SO%

Table C.1: Summary of non-dimensional parameters.
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Appendix D : The lubrication layer model

To simplify calculation of the RBC shape and associated flow quantities at equilibrium, one of
the most successful model is the lubrication layer model, developed by Lighthill *. The lubrication
layer model applies to flow between the RBC and the capillary wall in a quasi-equilibrium or
equilibrium state, and for capillaries small enough to consider the flow locally fully developed. Most
of the flow around the RBC is then either at a constant velocity, or in the lubrication layer (see

Figure D.1).

Ar Capillary wall
PII I PP PP PP DI PIIIIPIII PPN I PP IS PP I ISP IIIIIIIINIIIIIIIIIIIIIIIIIIINIIIINIII I I I
fubrication
T layer

>

} homogeneous
flow

Figure D.1 : Lubrication layer model.

To justify this model, we use Schlichting’s equations for the shear layer. As reported in the
author’s master’s thesis, fully developed flow is characterized by a bell-shaped dissipation function,
where the Reynolds number and the distance of mixing are inversely combined (see Entropy

116

Generation in Fluid Mixing ", p.52). With a mixing distance ratio of 5 corresponding to a Reynolds

number of 100, we can then interpolate the mixing length of our problem. At a Reynolds number
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close to unity, this would correspond to a mixing length ratio of 0.05. The flow is to be considered
fully developed within 5% of the RBC-capillary wall distance at its entry.
With the assumption of fully developed flow given in Equations (D.1-3), the Navier Stokes

equations in the lubrication layer reduce to Equation (D.4) in cylindrical coordinates :

v, << v_, (D.1)
ov
P 2
% D.2)
op op
- — 3
or << oz’ D.3)

0
=>p=p(2),v.=v.(r), = = 0,

dv dp u d av
i SpFRNE. SV PR 4
P dr dz r dr(r dr] 4

In Equation (D.4) the inertial term left, compared to the viscous term left, scales like

L
7 = Re, L—’ , where L, and L, are reference lengths in the axial and radial directions.
H L "L

Even for a Reynolds number close to unity, this ratio is small enough to consider the inertial terms
negligible for a narrow capillary (in other terms, the lubrication layer model is valid provided that the

RBC is stretched on a significant length L, >> L, and as long as the local radial dimension variation

is small). With the RBC radius R('s) redefined locally as a function of z (z=2z,+ |sing(s)ds),

So

and R, the capillary radius, Equation (D.5) is to be solved with the following boundary conditions :

 _pdf dv.
&z r dr[r dr)’ ©-3)
v.(R,) =0, D.6)
v.(R(z)) = U, (D.7)

where U is the steady velocity of the RBC. Integration leads to :
1 dp

con o)
v,=4—d—(Rw2—R2)— S+ Rr + U Rr
SR R C/ e

®.8)
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We can note that in this solution v, always decreases with an increasing pressure gradient. The total

volume flow Q is obtained by integrating further :

Ry R’ -R? R’ -R?
Q = J"’z 2rrdr = 813—[) (R, -R?) —(Rw2+R2)+w—R +zU —R2+W—R—
R #az h{—wj 2m(—i)
R R
D.9)

In some notations the “leakback” flow is determined instead. Also, the radius of the RBC can be

replaced by the gap size /, so that R=R, —h and sz —R* =2R_h—h*. Finally, if we change the

frame of reference to the reference frame moving with the RBC (where the pressure gradient is
z(R,”-RHU -Q

constant through time), we have z'=z—-Ut and Q'= 7 R as the leakback flow per
ﬂ. w

capillary circumferential length in the moving reference frame. This leads to an alternative result to

Equation (D.9), presented in Section 1.2.4 :

2R, h— K

—1——d—p'(2Rwh—h2) 2R’ -2R h+ hH - —— | =

16 u dz R

ln__w_
R, — h

1 5 2R, h— R

- U ERW + R,Q'. (D.10)
41n__R_W__
R, — h

Assuming a small gap thickness compared to the capillary radius R~ R, or h(z') << R,,, Equations
D.8), D.9) and (D.10) reduce to :

1 dp R, —r
=-— = (R,-nN(@-R +U|H* , (r=R 3y
v, 2 dz (R, -r) (r=R) (RW_RJ (r=~R,) (D.11)
Q= - z dp (R,-R’R, + nUR,(R,-R), D.12)
64 dz
dp 6 pU 12 pQ
@ - + , 13
dz' h? K’ ®49
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which is Lighthill’s original result *. In the other limit R <<R, or h(z')=R,, Equations (D.8),

(1D.9) and (D.10) reduce to :
L h{&) m(_&)
v, = - — Z IR} 1 - 2L - 2|+ U /1, D.14)
In| —- In| —
R R
R’ R}
Q=—81%'1RW2 R~ —os |+ 72U —F, D.15)
Haz In| =2 21n|
R R
dp 8 plU 16 uQ
o + . 16
2 R R (D.16)

Furthermore, if the RBC dimensions become so small compared to the vessel dimensions that its

influence on the flow vanishes (i.e. its inertia becomes negligible), we get :

v, = — 1 @ (R} - r?), (r>>R) D.17)
4u dz
0= -ZP® e o b __ 800 D.18)

8udz dz TR

which is the Hagen-Poiseuille equation.

To complete Equation (D.10), which relates pressure gradient, RBC velocity and leakback flow in
the lubrication layer model, a model is needed for the membrane, giving the stresses as a function of
R, and leading to an integral equation summing up the forces on the membrane, and equating them
with the pressute forces exerted on the flow (see Lighthill’s original derivation of the integral

equation P%).
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Appendix E : Membrane equilibrium equations

In this appendix we consider the special case of steady flow, and RBC at equilibrium with the
surrounding flow. In the reference frame moving with the RBC, all variables are constant with time.

For this case the incompressible Navier-Stokes equations give :

p VY = —Vp + uVi 4 f 8F - X,), E.1)
where V' is the velocity field in the moving reference frame, p is the blood density, p the
thermodynamic pressure, g the dynamic viscosity (different inside and outside the RBC), X , the
position vector of the RBC membrane boundary, where tension forces per unit area fb are exerted,
V' is the del operator in the moving reference frame, and 6 is the Dirac distribution mapping the

RBC sutface in 3-D space. The cylindrical components of fb are resulting from normal and

tangential forces combined as follows in our model :

drF, dF,
s,t) = “ sing + —~ cos¢ , 2
fis,t) = —F sing + —- cosg (E.2)
dF, dF,
s,t) = — —=Z cos¢p + —~ sing , 3
f2(5,0) o St ¢ E3)
with these forces themselves resulting from tension, shear stresses and bending stresses as follows :

i d(R
ﬂ:_tsﬁ_tgsln¢__l_ (qs)’ B4
dA ds R R ds ‘

dF, 1 dR¢t) cos d
dF, _ L ARL) _ cosgdb (E.5)
dA R  ds R ds
and the constitutive equations to model the RBC elastic behavior :
- t, +t
=2 6’=ao+1<,m—“'-s-£—1, (45)
2 ds, R,

s CHGIRICR I
2 2 ds, R, 2 \ds R ds R

SEIEY
% = B(dsz * ds( R } 7
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The full derivation of the RBC membrane equations, and the notations used can be found in
Appendix B-3. To express the boundary conditions on the membrane, we project Equation (E.1)
onto the local normal and tangential directions (Equations (E.G)-(E.7)), and integrate on a small
control volume across the membrane (i.e. in the normal direction #, over an infinitesimal length

going to zero on both sides of the membrane) :

p (VW' = - Z—z + uV?y '+ %ZL 5(* - )"(b), (E.6)

pF V'Y, = - %f— + uV?y, + —% 5(7 - /?b) , E.7)

]p G, dn = - ]‘2‘5‘ dn + ijy Vv dn + ij‘f; oF - %,)dn, E.8)

ij.p @V'W,'dn = - ]‘2—1; dn + ],u V2, dn + Z[% 5(? - A_}b) dn , E.9)
where “+” and “ — represent the external and internal limits of the RBC membrane, respectively.

Noting that the velocity field components are continuous across the membrane, using mass
conservation on each side, and taking the limit as the thickness of the control volume tends towards

zero, we get :

avn' ~ avnv N 6\1,' av’v N
~ (+) an( ) = 2 (+) + 2 = =0, (E.10)
dF,
p(+) - p(-) = 7 1; , (E.11)
av,' avt' Y — dF;
T M) () = (E.12)

Figure (E.1) illustrates these results. Equations (E.11) and (E.12) combined with (E.4), (E.5) lead to

Secomb’s equations of membrane equilibrium, presented in Section 1.2.3 :

1 dRgq,)
= —t k. — t, k, — — R 26
Ap s 0 Ko R ds (26)
1 dR¢t) 1 dR
-7 = — - t, — — — k_, 27
R dS 19R dS qss ()

where Ap and 7 replace the local pressure difference, and shear stress on the membrane, and &,

and k, are defined as the local curvatures.
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As a side note, if we neglect bending and shear stresses, these equations reduce to the more

familiar “bubble” equations :

—Mp = Tk + k), (.13)
df
S = s (E.14)

Equation (E.13) is the Young-Laplace equation, and Equation (E.14) describes the Marangoni

effect.

no slip conditions

Vo(F) =v4() |  and multiple
v(H=v() t-derivatives

Figure E.I : Continuity and equilibrium boundary conditions on the RBC membrane.

208



Appendix F : The Fahraeus and Fahraeus-Lindqvist effects

In capillary vessels RBCs tend to align on the centerline to minimize resistance to flow. This is
known to increase the proportion of RBC flowing with respect to whole blood present in the vessels.
The “discharge” flow therefore has a higher hematocrit than the vessel, which is known to be the
Fahraeus effect. More precisely, if the average velocity of the RBC is U , the discharge hematocrit is :

Hct, = Hct _2 , F.1)
v

where V, is the average velocity of the whole blood, and Hct is the local hematocrit. At steady
conditions, because of the presence of the RBC the shear stress exerted on the capillary wall must be
greater for a same total volume flow (see Figure F.1), so that the pressure gradient to balance it must
be greater too. Reciprocally, for a same pressure gradient the total flow is decreased by the presence
of the RBC. Hence the average velocity of whole blood Vv, must be smaller than U, and the
discharge hematocrit is always greater than the local hematocrit.

Using the results from the lubrication layer theory (see Appendix D), we have for large vessels :

2 ﬂ.'dp 2 2 sz sz
R<<R, => z RV, = = =2 R, R = —os |+ 20—, (F.2)
Haz In| % 21n| v
R R
1 4 R} R
Het, = Het | —— LR - —» _|+1 2ln(7“’J, (F.3)

8uv, dz ln(&)
R

and replacing v, by its asymptotic first-order value (Poiseuille flow), in the limit Hct,, =2 Hct .
Equation (F.3) shows two results experimentally observed. First, the discharge hematocrit tends
towards twice the local vessel hematocrit for very large vessels. Second, as the relative size of the
RBC increases (and the vessel size decreases), the discharge hematocrit increases. In other terms, the
Fihraeus effect increases with decreasing vessel size. Alternatively, for vessels of small diameter,
comparable to the size of the RBC, we have :

7 dp

R=R,=> z RV, = - —== (R,-R’ R, + nUR,(R,-R), (E.4)
6u dz
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1 dp 2 R
Hct,, = Hct — (R,-R < . 5
ct, = He [6}“_,2 — &, -8+ (RW—R)] (F.5)

Equation (F.5) shows that the Fihraeus effect is inversed at very small diameters. When the gap
between the RBC and the capillary wall becomes small compared to the vessel radius, the average
velocity must tend towards U . Therefore, the discharge hematocrit must tend towards 1, which
means that it has to decrease greatly as the vessel size tends toward the minimal RBC size possible

(the terms in parentheses must asymptotically add up to 1).

Capillary wall

fubrication
layer

N VY

[ —

homogeneous
flow

equivalent
Poiseuilfe flow

lubrication layer

| homogeneous

Ib———>
R
| flow
—

>
£

; ¥ .
g } lubrication la yer

Figure F.1 : Lubrication layer model — velocity profile.
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The Fahraeus effect is largely documented, and an example of the resulting experimental curve is

shown in Figure F.2.
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Figure F.2 : The Féahraeus effect (cross-hatched region contains literature data) >

The Fahraeus-Lindqvist effect is related to the measure of the apparent viscosity for the same

problem, as vessel size decreases. The apparent viscosity is defined as the viscosity of the equivalent

Poiseuille flow :

4

7z dp R,
__ LA 6
Hor =78 & (@ + 7 RU) (£

where Q is the total volume flow between the RBC and the capillary wall. Using the lubrication layer

theory, we get for large vessels :

R<<R, => p, = 1 5‘ > ®7)
N AR RY ' 14
In| —= ———przln—w —~—RRW4
R 4 dz R 8 dz

and as for large vessels U tends towards 2v,, using the Poiseuille flow we can simplify Equation

F. 7N to:
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K
R 2

1+[—J
RW

Equation (F.8) shows that the apparent viscosity can be smaller than the plasma viscosity due to the

R<<R,6 => Hopy =

, (F.8)

presence of the RBC. This phenomenon called the Fahraeus-Lindqvist effect is due to the alignment
of the RBCs around the centerline, which is perfect in our model. Also, the apparent viscosity tends
towards the plasma viscosity for very large vessels, and decreases as the vessel diameter decreases.
For vessels of small diameter the bolus flow between RBCs must be taken into account. The bolus

flow is roughly a Poiseuille flow, of extent determined by the hematocrit :

7 (sz_ Rz) Irse

Hct =~ s 9
s sz (lbolus + IRBC ) (F )
] 1 (R,-RY
=> bolus ~ w _ 1 , (F].O)
Lpsc Hct R,

where /, .

and /g, are the respective lengths of the bolus flow (between 2 RBCs) and the RBC-

driven flow. The apparent viscosity is then :

= dp R
8 dz Q
RBC

lbolus + IRBC

lbolus H + lRBC (_

Hyp = , (F.11)

which gives at small vessel diameters :

R Hct

2
R _RJ + 5 3
" 4 (R,-R U R,-R
— +
3( R ] L & p- ( R, )

w

_8,udz "

Using the result for the discharge hematocrit which tends toward the local hematocrit, Equation
(F.12) simplifies to :

Hap  _ | - Hct N 3 Hct
4

2 5 6 >
H R,—-R R,—-R N R,-R

R, R, R,
which for very small vessels simplifies roughly to :
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(F.13)




5
R
R~R,A => Lo _ +%Hct[ * J . (F.13)

This shows the inversion of the Fihraeus-Lindqvist effect for small vessel diameters. As the vessel
radius decreases, the apparent viscosity becomes very high, and reaches a limit as the vessel size
reaches the minimal size of a2 RBC. Figure F.3 shows experimental data for the Fahraeus-Lindqvist

effect.
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Figure F.3 : The Fahraeus-Lindgvist effect (cross-hatched region contains literature data) B33
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