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ABSTRACT

Sickle cell disease is nowadays one of the most challenging blood diseases, where patients

suffer from both chronic and acute episodes of painful medical conditions. In particular,

unpredictable crises due to blood vessel occlusion remain one of the least understood stages of the

disease, which focuses the attention of medical research. A novel methodology has been developed

to address sickle cell disease, based on highly descriptive mathematical models for blood flow in the

capillaries. The main focus of our original sickle cell model is the coupling between oxygen delivery

and red blood cell dynamics, which is crucial to understanding sickle cell crises and is unique to this

blood disease. Based on an original physical description of polymerizing sickle hemoglobin (HbS), an

extensive study of blood dynamics was initiated through simulations of red cells deforming within

the capillary vessels. Our investigations relied on the use of a large mathematical system of equations

describing oxygen transfer, blood plasma dynamics and red cell membrane mechanics. Abnormal

dynamics were characterized in terms of resistance to blood flow (apparent viscosity), and oxygen

delivery performance. The results presented in this thesis describe successfully qualitative and

quantitative aspects of blood dynamics preceding sickle cell crises, through a detailed comparison of

normal blood with sickle cell blood. Potential therapeutical directions were successfully identified,

and assessed through simulations and systematic analysis of our results. This research is expected to

spur the development of innovative strategies to study sickle cell disease, and also raise interest in

other related fields of blood research, promoting analysis-driven development of new therapeutical

directions.

Thesis supervisor: Wesley L. Harris
Title : Professor of Aeronautics and Astronautics, Associate Provost for Faculty Equity.
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Conventions and Nomenclature

Conventions :

References to the cylindrical coordinate system use z as the axial coordinate, r as the radial

coordinate, and 0 as the polar angle coordinate. Additionally, we define for each point of the

axisymmetric red blood cell membrane, # as the azimuthal angle between the surface normal

vector and the axis of symmetry, and s as the curvilinear coordinate (see Figure 2.1.3). The time

variable is represented by t.

General Nomenclature (notations used only in Appendices are not reported for clarity):

Latin letters:

A numerical state vector
a , b, c , d Apori-Harris model parameters
B bending modulus (N.m= kg.m2/s2 = j)

numerical second term
c oxygen concentration (c: mol/m3 or kg/m 3)
D diffusion constant, a.k.a. diffusivity (m2/s)
d rate of production of free oxygen (c /s)

distance to membrane function of sickle cell hemoglobin polymer (m)
dA local area differential element (m2)
F membrane force component (N = kg.m/s 2 Jim)

f membrane force per unit area component (Pa)
h gap size between red blood cell and capillary wall (m)
[Hb] total hemoglobin concentration (c)
Hct hematocrit (dimensionless)
K Hill factor (mmHg ")

elastic modulus (Pa.m = kg/s2 = Jim2)
misc. model constant

k kinetic dissociation rate constant of oxyhemoglobin (1/s)
membrane curvature (1/m)
spring constant of sickle hemoglobin model (N/m = kg/s 2 = J/m 2)

L half-axial elongation of bolus flow (m)
spatial period (m)

1 length function of sickle cell hemoglobin polymer (m)
M rate of oxygen consumption (c /s)

numerical rigidity matrix
[Mb] total myoglobin concentration (c)
m bending moment (N = kg.m/s 2 = J/m)



N oxygen-binding capacity of hemoglobin (c)
n Hill coefficient/exponent (dimensionless)
p static pressure (Pa)

pO2 oxygen partial pressure (mmHg)

Q volume flow (m3/s)
q shear force per unit length (N/m = kg/s2 = J/m2)
R fixed radius (m)

red blood cell membrane radius function (m)
S fractional saturation of oxygen-binding molecule (dimensionless)
s fractional saturation of oxyhemoglobin (dimensionless)

red blood cell stiffness
t surface tension component (Pa.m = kg/s2 = J/m 2)
U velocity constant (m)
u Apori-Harris model velocity (m/s)

VRBC red blood cell volume (m 3)

v velocity field component (m/s)
Z red blood cell membrane axial coordinate function (m)

Greek letters and mathematical symbols :

V nabla operator (gradient, divergence)
a partial derivative symbol
D, d material derivative/differential quantity symbols
ln, sin, cos mathematical functions (logarithm, sine, cosine)
a oxygen solubility constant (c /mmHg)

misc. model constant (dimensionless)
A difference between 2 values

Dirac distribution
A. membrane extension ratio (dimensionless)
p dynamic viscosity (Pa.s for fluid, Pa.m.s for 2-D membrane)
;r pi constant
p fluid density (kg/m 3)

summation symbol
O isotropic tension constant (Pa.m kg/s2 = J/m2)

viscous stress value/tensor
oc proportional to

dot product
00 infinity

, ~~ approximately equal to

Subscripts and superscripts :

0 , ref reference value
1,2 reference directions



1,2 (,3) misc. model constants (enumerated)
50% equilibrium value at 50% saturation
app apparent (or effective) value for whole blood
b value in whole blood

boundary component
bu bulk
d deviatoric component
Hb hemoglobin
HbS sickle cell hemoglobin
i value in the interstitium

at the capillary wall-interstitium interface (R,)
i, k numerical indices
in boundary value at capillary vessel inlet
K at the Krogh cylinder radius (RK)

Mb myoglobin
max maximal model ratio constant
n , t normal and tangential components on the membrane

p value in blood plasma
RBC value in the red blood cell cytoplasm

steady-state value for the whole red blood cell (vc)

red blood cell membrane model value (plc )

s ,6 curvilinear components on the membrane
sh shear
t value in the surrounding tissue

at the interstitium-surrounding tissue interface (R,)

w value in the capillary wall
at the capillary vessel-capillary wall interface (R,)

z , r spatial vector components

Overbar symbols :

-> (e.g. i ) vector
'(e.g. z') moving reference frame with the red blood cell at steady-state

- (e.g. t) average quantity/main component



1. Motivation and relevant background research

1.1. Presentation of sickle cell disease

Sickle cell disease is a blood disorder that affects millions of people. Patients with sickle cell

disease are characterized by a state of anemia, or deficiency of hemoglobin, the molecule carrying

oxygen and found in erythrocytes (also commonly called red blood cells). In sickle cell disease, red

blood cells take an abnormal crescent shape upon deoxygenating (see Figure 1.1.1), which causes

major complications in blood circulation, including ischemia (restriction in blood supply), vaso-

occlusion (formation of blood clots), and as a result, hypoxia (lack of oxygen in the organs), multiple

organ damage and periodic painful attacks, also known as sickle cell crises.

Figure 1.1.1 : Normal (right) and Sickle (left) Red Blood Cells
(source:http://carnegieinstitution.org).

Although the medical symptoms related to sickle cell disease have been known for centuries, the

clinical observations and documentation of sickle cells appeared only very lately in 1874 by surgeon

A. Horton from Sierra Leone, and in 1904, by the Chicago cardiologist James B. Herrick. The disease

was named sickle cell anemia in 1922 by Vernon Mason. Linus Pauling and colleagues were the first,
18
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in 1949, to demonstrate that sickle-cell disease occurs as a result of an abnormality in the hemoglobin

molecule. This was the first time a genetic disease was linked to a mutation of a specific protein,

which is seen a major milestone in the emergence of molecular biology (source

http://en.wikipedia.org/wiki/Sickle-cell disease).

1.1.1. Genetics of sickle cell disease

Sickle cell disease is an "autosomal recessive disease caused by a point mutation in the

hemoglobin beta gene found on chromosome 11p15.5" (source : http://www.ncbi.nlm.nih.gov).

Although sickle cell disease causes multiple pathologies and can be lethal, it has proven to be an

evolutionary advantage against malaria : the presence of the parasite responsible for malaria in sickle

red blood cells causes the rupture of the cell, making it effectively unable to reproduce. Additionally,

the polymerization of hemoglobin caused by sickle cell disease prevents the parasite to digest it. In

sickle cell disease, while a patient receiving the sickle cell trait from both parents (homozygous) will

develop the disease, a patient with both normal and abnormal genes (heterozygous) will remain

healthy, but nonetheless a carrier. Heterozygous patients produce both sickle and normal red blood

cells, and have an evolutionary advantage in malaria-stricken areas [88]. Consequently, this genetic

disease is mainly persistent in Africa, the Mediterranean, India and the Middle East (see Figure 1.1.2).

It is also the most common inherited blood disorder in the United States, affecting an estimated

number of 75,000 African Americans in 2009 (source : http://www.ncbi.nlm.nih.gov - see Figure

1.1.3).



Figure 1.1.2: Compared geographical distributions of malaria and sickle cell trait in Africa
(source:http://images.encarta.msn.com).
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Figure 1.1.3 : Sickle cell disease among ethnic groups in the United States
(May 1996 FDA Consumer - source:http://www.pueblo.gsa.gov).
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1.1.2. Pathophysiology

Carriers of the sickle cell gene produce structurally abnormal hemoglobin (HbS) due to the

mutation of a single nucleotide, which is normally benign but causes the hemoglobin to polymerize

under low oxygen conditions (see Figure 1.1.4).

YeNqhm.bin A DO ISMobbi A

Figure 1.1.4 : Schematic representation of normal (HbA) and sickle (HbS) haemoglobin.
The haemoglobin tetramer is composed of 2 a-proteins and 2 fl-proteins. The /6 mutation is

indicated as a protrusion from the tetramer in the /2 subunit and the hydrophobic pocket is a
nick in the /1 subunit (source:http://www.sicklecellinfo.net).

Polymerization of hemoglobin is a major alteration of the internal structure of the red blood cell,

by facilitating the emergence of long, stiff fibers in the cytoplasm (see Figure 1.1.5). These are

responsible for the distortion of the shape of the cell (sickling), and a decreased global elasticity of

the erythrocyte.

Elasticity is of crucial importance for red cells, which need to be able to deform to pass through

capillary vessels (capillary vessels are present in every organ of the body and are the narrowest

vessels, with a diameter ranging from 2 [Lm to 10 tm, typically smaller than a normal red blood cell

at rest). Sickle cells forced into capillaries consequently suffer from membrane damage, progressively

lose their ability to return to a normal shape upon reoxygenation, and can eventually block blood

flow, leading to inflammatory reactions, vessel occlusion, and ischemia.

Sickle cell damages also dramatically reduce their lifespan to 10 to 20 days, while healthy red

blood cells typically live 90 to 120 days (source : http://emedicine.medscape.com/article/778971-

overview). This effectively reduces the hematocrit (relative volume of red cells in blood), from values

between 0.36 and 0.54 in a healthy adult, to values between 0.2 and 0.3 ["1.
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Figure 1.1.5 : Electron micrograph of deoxy-HbSfibers
(source:http://www.sicklecellinfo. net).

However, the high variability in formation rates of the HbS fibers explains why red blood cells

do not sickle systematically before getting reoxygenated in the lungs. Blood samples thus present two

types of red blood cells : reversibly sickled cells (RSC) and irreversibly sickled cells (ISC). As of 2009,

it is not exactly known whether ISC formation results from "gradual alteration of RSC properties

during repeated cycles of sickling", or whether "they form as a consequence of a single event of

sequestration and prolonged hypoxia" [67.

1.1.3. Treatment of sickle cell disease

Sickle cell disease has currently no fully efficient treatment, and remains a chronic and lifelong

disease. Modern medicine administered to patients mainly aims at avoiding crises, relieving

symptoms and preventing complications.

Acute vaso-occlusive crises are mostly treated symptomatically through analgesics, together with

opioids for pain management. Further complications leading to bone, joints and organ damage or
22



stroke usually require hospitalization, where HbA hemoglobin is administered. Further treatment

essentially consists in limiting long-term sequelae.

The only approved treatment as of today, for prevention of chronic attacks and other

complications of the disease, consists in administering hydroxyurea, a drug that has been approved

very recently in the United States (1998). The main benefic effect of hydroxyurea is to reactivate fetal

hemoglobin (HbF) as a replacement to the deficient hemoglobin (HbS). There is however little

knowledge of long-term effects of the drug, and its use does certainly not eliminate the risks of acute

states.

In addition to drug research and crises management, recent medical research has also included

bone marrow transplantation (proven to be effective in children), and gene therapy.

One of the main challenges of sickle cell disease remains in fully understanding the onset of

vaso-occlusive crises, which has been investigated for only a few decades. The emergence of

improved models for blood circulation in the capillaries, reinforced by the most recent techniques

used to investigate mechanical and chemical properties of blood cells, creates the opportunity for

new tools to study sickle cell disease, and potentially identify new therapeutic orientations. This is the

main motivation of this doctoral work.

1.2. Blood models and background work towards a chemical and

mechanical description of red blood cells (RBC)

A mathematical model for sickle cell disease needs to take into account three aspects of blood

circulation. As oxygen is a major factor affecting blood dynamics in sickle cell disease, we first

include a model to analyze oxygen transport, from Red Blood Cells (RBC) where the oxygen is

bound to hemoglobin, to the surrounding tissue. A proper fluid dynamics model incorporates

oxygen convection, and allows us to characterize blood flow with respect to pressure drop, viscosity

of the blood plasma and cytoplasm, and other geometrical and physical parameters. Since RBCs

essentially flow individually at the capillary level, blood dynamics are mainly dependent upon their

individual mechanical properties, which are also to be incorporated with a membrane model.

This section presents successful theoretical works which constitute major inputs to our current

simulation model, reviewing main hypotheses and modeling choices that have evolved with research.



1.2.1. Blood as an oxygen carrier: chemical modeling of the capillaries and

surrounding tissue

The first successful model describing oxygen transport from the capillaries to surrounding tissues

was achieved by Krogh [l as early as 1919, and updated only recently by Hoofd [21, McGuire and

Secomb [3, then Vadapalli, Goldman and Popel [108*. The original Krogh model was extensively used

until the 1990's by many theoretical researchers such as Berger [1231, because of its simplicity and

flexibility. This conceptual model was based on Krogh's observation of the distribution of capillary

vessels in muscular tissues (see Figure 1.2.1), and consequently distinguished 3 areas of interest : (1)

the cytoplasm contained in the RBC, (2) the plasma surrounding it, and (3) the tissue surrounding the

capillary vessel, where oxygen is consumed. These 3 areas correspond to regions where oxygen

production/diffusion, convection/diffusion and consumption/diffusion respectively, are the main

characteristics of oxygen transport. This 3-layer model is represented in Figure 1.2.2, as used by

Berger.
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Figure 1.2.1 : Schematic representation of the distribution of capillaries in muscular tissue
(black dots), and Krogh's subsequent modeling [.
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where a is the solubility constant taking the value a, in blood, Equation (1) can be reduced to:

I + N n K ab" c"n-1 ac D 2c 1 ac
v 1 + N aZ= Db[2 + (5)

(1 + K ab- c"2 2 r &r

More details about hemoglobin dissociation are given in Appendix A. Alternatively, Equation (5) can

be normalized with the value of oxygen partial pressure at 50% saturation of hemoglobin, to be used

in replacement of K, p 0 2, 50%" =K

n p02,50%n a c ac nD1L 2  1ac I5vz 1 + N - ~ nC) z= Db + - - ~ (5')
{ po2,so5 + bs"c 2B 2 rB

- In the surrounding tissue :

D +- = M, (6)
'ar 2 r iar

where D, is the (radial) oxygen diffusivity in the tissue (axial diffusion being simply neglected), and

M is the rate of consumption of oxygen (given as a constant).

- At the capillary-tissue interface :

ac ac
D = D, 1 , (7)

Br=R,- Cr=R,*

which represents continuity of the oxygen flux and where R, is the radius at the capillary wall, and:

C - , 
(8)

ab r=RW a r=Rw*

which represents continuity of oxygen partial pressure, assuming an infinitely thin membrane, with

a, the oxygen solubility constant in the tissue.

- At the axis of symmetry:

c = 0, (9)
ar r=0

which is a necessary condition for c to be continuously derivable everywhere (the oxygen radial flux

must cancel at r = 0).

- At the Krogh cylinder radius:



c = 0, 
(10)

arr=RK

where RK is the average half-distance between two capillaries in this ideal model (it can also be

interpreted as a characteristic radius of "effective oxygen supply" of the capillary).

Berger and King used these simple equations to solve mathematically the oxygen distribution for

given flows along capillary vessels, depending on rheological parameters and other parameters

derived from modeling the flow of blood for normal and sickle red blood cells. These models and

their results will be discussed further in Section 1.2.5.

The main contribution of Hoofd (21 was to introduce the myoglobin as an oxygen-binding protein

to describe unsteady oxygen consumption in the surrounding tissue. This essentially led to replace

Equation (6) with the following equation:

ac 82c 1 ac- r 2 + - -- M+db(c), (11)
at Or2 r ar

where d,,(c) represents the rate of oxygen released by myoglobin, which can be expressed in a

similar way than for hemoglobin, leading to the equation :

a-1  Oc _ 2c 1 ac
+ + J -D +- -- - M (12)

{p" 0, + a,-1 C) 2 at ' r r2 r ar'

where we used a Hill constant n equal to 1 for myoglobin, which is characteristic of non-cooperative

binding (see Appendix A).

McGuire and Secomb I3] later added considerations about intravascular resistance to oxygen

diffusion, as an apparent jump in oxygen partial pressure. Vadapalli, Goldman and Popel [108]

eventually used a more advanced model, adding the 2 layers of the vascular wall and interstitial space

between the capillary vessel and the surrounding tissue, defining the RBC as a separate region with

specific equations, and taking into account hemoglobin-bound oxygen kinetics inside the RBC.

Assuming unidirectional steady flow, their full equations for unsteady oxygen transport are expressed

in terms of the oxygen partial pressure p 02

- In the RBC:

__2 _ _02 oa O 02a + v = c D - - r r 2
RC(at RCaz C "Cr ar ar az2



n

+ k Hb r SHb ( Hb (13)
P 02,50%

where aRBC is the oxygen solubility constant in the cytoplasm, vc is the RBC (axial) velocity

(constant for steady flow), Dec is the isotropic oxygen diffusivity, kHb is the kinetic dissociation

rate constant of oxyhemoglobin, [Hb] is the total concentration of hemoglobin (bound and not

bound to oxygen) present in the RBC, SHb is the fractional saturation of oxyhemoglobin, n is the

Hill coefficient of the oxyhemoglobin dissociation curve, and pO"2,5 0% is the oxygen partial pressure

at an equilibrium corresponding to SHb = 0.5 . To this equation must be added the transport

equation of oxyhemoglobin:

SHb 1 Hb aHb a2sHb
- + VRC a =D"C - - r - + aZ2

t z r rar ar

-k Hb sHb s Hb P02 (14)
P 2,5o

where Dc is the isotropic diffusivity of oxyhemoglobin. Equations (13) and (14) naturally reduce

to Equation (5') under steady state and at chemical equilibrium, neglecting diffusion of

oxyhemoglobin compared to diffusion of oxygen, and with N = [Hb].

- In the blood plasma surrounding RBCs :

Po2 apo, apo2 r a P2 a2PO2a Lat + VT + vz L =aD - -D(r ar 9+ az2  (15)a t ' r a z ' r or r a z2

where a, is the oxygen solubility constant in the plasma, Vr and v. are the velocity components of

the flow (in this model reduced to Stokes flow for low Reynolds number), and D, is the

corresponding isotropic oxygen diffusivity.

- In the capillary wall:

a, = a D - -{r 2 + P 2  - M, (16)at r ar ar az

where a, is the oxygen solubility constant, D, is the isotropic oxygen diffusivity, and Mw is the

rate of oxygen consumption.



- In the interstitium :

p i a( aPO2  a202 (7
a, = a, D. - - ir ar)+ a , (17)at 'r Or rz2

where a, is the oxygen solubility constant and D, the isotropic oxygen diffusivity specific to this

region.

- In the muscular tissue:

Mb N
a, + [Mb] P02,5o% OPO, _

(PoAsos + p 02) 2  at

a, D, + D, [Mb] 2 L r Oo2 + 2o2 -M, , (18)
(Po2,s% + p0 2) r Br ar ) az

where a, is the oxygen solubility constant, [Mb] is the total concentration of myoglobin (bound and

not bound to oxygen) present in the tissue, D," is the isotropic diffusivity of myoglobin, D, the

isotropic oxygen diffusivity, and M, the rate of oxygen consumption.

This model of Vadapalli, Goldman and Popel being the most advanced to this date, we will use it

as our main reference for oxygen transport equations, with an adapted set of flow hypotheses.

1.2.2. Blood as a viscous flow: fluid dynamics of microcirculation

Burton [41 and Fung [5 [61 [121 were pioneers in developing hemodynamics, which is the study of

fluid dynamics applied to blood flow. Their work, together with the work of Batchelor [, Charm [8]

and Cokelet [9], has largely contributed to provide detailed and accurate models to describe blood

flow, both specifically in large vessels, as described in Pedley [10], and in the microcirculation, as

described by Wiedeman ["'l. In particular, Charm's work includes an extensive study of blood

viscosity, its non-Newtonian properties and potential models, and the influence of red blood cells in

shear-thinning and shear-thickening situations [8]. Also, Wiedeman's book includes a description of

capillary networks and flow distribution. A couple of other useful sources include Milnor [13], Sumpio

[14, and Pedrizzetti [1]

Fung defines blood as "a non-Newtonian incompressible viscoplastic fluid", behaving when it is

not flowing "like an elastic solid", with a small yield stress (when the yield condition is reached, the

blood flows) ["I. One of the main reasons for blood to be non-Newtonian is the presence of red



blood cells, which tend to flow away from the vessel walls and aggregate. In capillary vessels, the

flow was first described similarly to larger vessels with steady flow, using Poiseuille's equation for a

homogeneous, viscous flow down a cylinder. Poiseuille's assumptions lead to the classical pressure-

flow relation:

dp 8 p Q (19)

dz T R,4

where z is the axial coordinate along the vessel, p is the static pressure, p is the dynamic viscosity

of whole blood, R, is the radius of the cylinder, and Q is the total volume flow. This result assumes

a parabolic distribution of the axial velocity v2 across the cylinder. To accommodate non-Newtonian

flow, experiments were carried out to determine the equivalent p,,,p or apparent whole blood

viscosity, matching Equation (19) for different values of Q, R, or the shear stress at the vessel wall.

However the previous model proved to be insufficient, as none of these parameters could

individually determine p,,p, and a better insight was desired. Fung's study of the bolus flow (flow

between 2 red cells in the capillaries) originated an idealized geometry separating individual cells

periodically (see Figure 1.2.3). In this model the RBCs flow one-by-one, effectively dragging a thin

cylinder of flow at velocity U. The flow between 2 cells can be determined solving Stokes flow, and

Fung determined that for a low Reynolds number the velocity profile differs from a Poiseuille flow

by less than 1% at an axial distance of 1.3 It from the RBC cylinders 1.
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Figure 1.2.3: Idealized geometry for bolus flow (from Fung [12])

In this last model, the actual flow around a red blood cell remains to be calculated, and depends

on the modeling of the RBC itself as a deformable cell (see Section 1.2.3). More advanced models

emerged eventually with advanced numerical capabilities to solve more complicated fluid dynamics,



so that currently the flow is generally computed everywhere using the full Navier-Stokes equations or

Stokes flow for low Reynolds number under steady conditions.

1.2.3. Blood as a cell suspension: mechanical modeling of the red blood cell

membrane

One of the main features of the microcirculation is its non-homogeneous flow. With typical

vessel diameter ranging from 2 tm to 10 lim, simple microscope observation shows that red blood

cells flow individually in the smallest vessels (see Figure 1.2.4), and therefore need to be taken into

account to describe blood dynamics appropriately. Basic descriptions of red blood cells refer to them

as "pellets", or "sacks" filled with cytoplasm and oxygen-fixing hemoglobin. Therefore they are

usually described by a deformable, infinitely thin membrane, filled with homogeneous fluid of

identical or close properties to blood plasma (with a few exceptions such as dynamic viscosity). Fung

and Skalak were among the main researchers who developed this model, producing until the late

1970's major results for rigid spheres, disks, mathematically-modeled RBC shapes (see Figure 1.2.5),

and other rigid axisymmetric particles under steady axisymmetric flow. Skalak later defined for the

isotropic 2-dimensional model of the RBC membrane the strain energy [17 and elastic moduli, studied

the variability of the defined elastic moduli, and determined numerical solutions for deformable

shapes under different conditions of flow and capillary sizes [191 [201 [221 [241. In Evans and Skalak's

Mechanics and Thermodynamics of Biomembranes1 91, the constitutive equations describing isotropic RBC

membranes are derived for small isothermal deformations:

dA
t =Coo + Kb dA 20)

t 1 1 2 - A22 j d
1+---

dA.

m = + - B (k- ko), (22)
dA0

where t and td are the principal components of tension (t is the isotropic or mean term, and td the

shear or deviatoric term, derived directly from the stress tensor), o- is the isotropic tension for the

reference state (commonly called surface tension for liquids), Kbu is the isothermal area



compressibility modulus (or 2-D bulk modulus), Ksh is the 2-D
dA

shear modulus, dA represents the

area change with respect to the reference state, and 41 and A2 are the extension ratio in the

dA
reference directions (hence = Al A2 - 1). In Equation

dAO
(22), m is the bending moment in

any principal direction, B is the bending modulus, k is the total curvature (sum of curvatures in

reference directions), and ko the reference value of k at rest ("natural" curvature).

A more complex model incorporates viscoelastic behavior, although it was designed for low-

stress situations where viscous stresses are not negligible (i.e. in-vitro, micropipette testing

experiments) [. In that particular case, Equations (20) and (21) take the form:

t = o + Kb dA + /b"

dA + dA

d~o

td 2
1

do

Ksh (A,2 - A222) + 'aRBC

dA"
dA
at

A2

(20')

(21 )at2
at

where pRC and pbu are the coefficients of dynamic (shear) viscosity and bulk viscosity of the

modeled 2-D RBC membrane.

Figure 1.2.4 : Microscopical section of human liver: c-capillary vessels with RBCs (anucleated)
and white cells (nucleated), a-nucleus of liver cell, 3-nucleus of cellfrom capillary wall (source:

Alcohol, Its Production, Properties, Chemistry, And Industrial Applications, by Charles
Simmonds).
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Figure 1.2.5: Skalak's modeled RBC shape

Secomb has also largely contributed to the modeling of RBC membranes, and in a 1988 paper

rederived the first order linear stresses for a model of superposed leaflets, leading to a modification

of the membrane model to incorporate the interaction between bending and tension forces .231* To

simplify the model, Secomb also added the hypothesis of axisymmetry, removed non-leading-order

terms related to area changes, and used curvilinear coordinates following the RBC geometry (see

Figure 1.2.6). The new equations are [101 :

- t, + to dA
t = = -0 + Kb, , (23)

td --to K '2 _-2 I B (k k, k k ko) (24)
d ~ ~ d A(A

m = B (k, + k, - ko) , (25)

where td is given for a set of principal axes on the RBC along s and 9. The viscoelastic variant can

be easily obtained by adding the last term of equation (21') to (24):

td = Ksh s2 - - B (k, - ko ) (k, + k, - ko + 2 p . (24')

2 2S As 2t

These constitutive equations were completed by equilibrium equations to successfully achieve the

computation of RBC shapes at rest. In Secomb's model, the equilibrium equations reduced to [101:

1 d(R q,)
Ap = - t, k, - t0 ko - 1 , (26)

R ds



I d(R t,) I dR
-r=- - t,-- q ,k, , (27)

R ds R ds

0 = -m + q, , (28)
ds

where Ap is the local pressure difference between external and internal fluids, r is the local

tangential (shear) stress in the s direction, caused by both external and internal fluids, q, is the shear

force per unit length in the membrane, and R is the membrane radius (function of s). Derivation of

Equations (26)-(28) is detailed in Appendix E. Figure 1.2.6 shows these membrane stresses with the

chosen conventional orientations.

Figure 1.2.6: Curvilinear coordinates for axisymmetric RBC membrane
and membrane stresses convention (model of superposed leaflets).
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In 2005, Arslan and Boyce have defined a model for the lipid bilayer and underlying spectrin

network, representing the RBC membrane at the molecular level [271. Hianik's 2006 presentation of

RBC membrane models also contributes to encourage more research in this direction [231. Both these

works show the opportunities to use molecular-scale models for the RBC membrane, with possible

benefits over 2-D homogeneous surface models.

To complement these models and determine the corresponding (visco)elastic properties of RBC

membranes, early models used viscometric measurements, sieving and micropipette experiments.

Some more recent techniques use optical tweezers [251 [261, and ferrimagnetic microbead [01. Also,

recent researchers have investigated the influence of cytoskeleton remodeling on RBC deformation

response[291, paving the way for an increasing complexity in modeling RBC mechanics.

1.2.4. Combined models of red blood cell dynamics and oxygen delivery

Together with Fung, Lighthill is one of the first scientists to research hemodynamics, and study

the motion of RBCs through narrow vessels. In a 1968 paper 196, Lighthill tries to resolve

mathematically the flow for this specific problem using some very simple, yet justified assumptions.

Using Burton's [4], and Fung's [51 analysis of blood flow in capillary vessels, and the observation of low

Reynolds numbers for capillary flow, Lighthill develops a lubrication layer model to effectively

determine the flow around the RBC. Following his work, Fitz-Gerald extended the lubrication model

and obtained a series of equations between the leakback flow per circumferential length Q' around

the RBC, the gap size between the RBC and the capillary wall h(z'), and the pressure gradient along

the capillary dp . Assuming axisymmetric, steady, quasi-unidirectional, viscous-dominated flow, with
dz'

the RBC moving at a constant speed, the Lighthill-Fitz-Gerald equations for the lubrication layer

lead to:

1 dp 22 2RW h - h2
1 (2Rh-h2) 2R 2 - 2R h+ h2  2 R h-h 2

16pR dz R

R, - h



1 2 _2 R h -h 2

- U - R 4 + R, Q' . (29)
2 4 In RW

R, - h

Assuming a small gap thickness compared to the capillary radius h(z') << R,, Equation (29)

reduces to:

dp 6 p U 12 p Q'
d-' = - + 3 , (30)dz ' h 2 h 3

where U is the (constant) velocity of the RBC, z' = z - U t is the reference frame moving with

the RBC and centered at its upstream front or "head", and p is the dynamic viscosity of blood

plasma. Details of the derivation of (29) and (30) are given in Appendix D. In addition to Equations

(29) and (30) a very simple elastic model for the RBC is added:

K, z'92
h = R 1 - 1 - + K 2 (p - po), (31)

R,

where the basic RBC shape is assumed to be elliptic at a reference pressure po taken to be the

pressure at the "head" of the RBC. K, and K 2 are model constants. These two equations allow to

determine the pressure everywhere for a given leakback flow, and through an integral equation one

can also estimate the pressure drop across the RBC (a simple control volume analysis around the

RBC, writing equilibrium of forces gives the pressure drop as a function of the leakback flow Q').
In this early model one of the most limiting assumptions was undoubtedly the elliptic RBC

shape. Although inferred from observations and following the purpose of a simple descriptive

example, it mostly illustrated the absence of detailed insight about RBC membrane stresses. With the

emergence of Skalak's model of the RBC membrane [171, the first calculations of equilibrium RBC

shapes were developed. Jenkins derived and solved a system of 4 differential equations, and obtained

families of mathematical solutions for varying pressure differences between the interior and exterior

of the RBC, with encouraging biconcave shapes ["I]. Fischer et al. calculated buckling solutions for

RBC membranes as a function of RBC volume, using Evans and Skalak's equations incorporating

the shear modulus KSh and the bending stiffness B, and assuming constant surface area ["9.

Secomb's important breakthrough was to combine the equations of lubrication theory with

Skalak's complete equations of membrane mechanics. Secomb thus gathered Equations (20), (21),

36



(22), (26), (27), (28) with (29) to obtain a closed system of equations, fully describing RBC dynamics

in capillary vessels [0I. Secomb then obtained numerically the first parametric results for different

sizes of capillaries and RBC velocity (see Figure 1.2.7). Subsequent work by Secomb included

updates and extensions to this model, using Equations (23), (24), (25) instead of (20), (21), (22) 1"1.

Secomb successfully calculated theoretical RBC shapes for very narrow capillaries (see Figure 1.2.8),

larger capillaries (see Figure 1.2.9), between 2 parallel plates (instead of a cylindrical vessel) [0,

through micropores [1041, and for a viscoelastic RBC membrane flowing in capillaries of slightly

varying diameters 11"5. Extensions on microvascular networks were also researched ["1, as well as

asymmetric tank-treading behavior (migration of RBC towards the centerline) ['17, and tumbling

behavior [1181

Pozrikidis's work focused on deformations through time of RBCs modeled as oblate or prolate

spheroids [1021, and as elastic biconcave disks [1091 under shear flow. His calculations included advanced

3-D models of the full RBC membrane. Similar developments of 3-D calculations were reviewed in

2005 in a paper by Christini and Kassab 121. Other work on the dynamics of capillary blood flow

includes Chakraborty's simulations of flowing RBCs using a modeled apparent viscosity [1.

5 6 7 8 pmn 0.05 0.01 0.002 cm/s

Figure 1.2.7: Cell shapes calculated for different vessel diameters - U=O. 01cm/s (left), and
different RBC velocities - Rv=3pm (right) (from Secomb "00).
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Figure 1.2.8 :Cell shapes calculated for different vessel diameters - (a) Rw=1.5p1m (b)
R,=1.52pum (c) R =1.55um (d) R,=1.6pum. Critical radius is 1.42 pm (from Halpern and Secomb

[101])

A 2009 paper by Kaoui and coworkers has shown recent studies of the asymmetric RBC shapes

observed in some experimental results [121. Interestingly, slipper-like asymmetric shapes may be

preferred configurations under low flow velocity due to bending stiffness and membrane rigidity

only. The calculations made by Kaoui do not correspond to confined, small capillaries at this point,

but developments in this direction may lead to seriously reconsider the assumption of axisymmetry.
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Figure 1.2.9: Cell shapes calculated for different RBC velocities, Rw=4.5pm (units unknown)
(from Secomb [11).

Adding to RBC dynamics the problem of oxygen delivery, one of the major contributions in the

recent years has been achieved by Popel. Popel with his collaborators developed a two-phase model

for the capillary flow [1051, before starting to study oxygen delivery in brain [1061 and pursued studies of

RBC dynamics in various blood vessels such as in venules 1"]. In 2002 together with Vadapalli and

Goldman, gathering a large amount of data from various researchers, they formulated one of the

most advanced models of oxygen diffusion, incorporating oxygen binding to hemoglobin and

myoglobin, as well as oxygen transport through a 5-layer model, with specific equations within the

RBC, blood plasma, capillary wall, interstitium, and surrounding tissue where oxygen is consumed

[108] (see Equations (13) to (18) given in Section 1.2.1). Popel's ongoing research focuses on RBC

aggregation dynamics [110] [1201 [1221 and oxygen delivery through capillary networks [119. A 2005 paper

reviews the major advances made in hemorheology ["3. Interestingly, RBC dynamics and oxygen

delivery are uncoupled problems for normal RBCs, which explains why Popel like other

researchers always addressed both separately. Sickle cell modeling, on the other hand, needs to

address the coupling of oxygen delivery and blood dynamics, and has been pursued by a different

group of researchers.



1.2.5. Modeling sickle cell disease: challenges and outcomes

A few researchers have investigated theoretical models for sickle cell disease, trying to

understand how affected RBC dynamics could explain episodic vaso-occlusion and crises. Early

observations of sickling RBCs upon deoxygenation thus made it crucial to study the apparent

coupling between oxygen transfer and RBC dynamics.

Berger was one of the first researchers to develop a model for sickle cell blood. In 1980 Berger

and King assumed a direct relation between RBC global compliance (a measure of its membrane

elasticity) and average oxygen concentration in the capillary at a given section [1231. Berger and King

also included the rightward shift of sickle oxyhemoglobin dissociation curve, observed

experimentally (and showed in Appendix A). Their results show increased blood speed and higher

oxygen levels on average in capillaries of sickle cell patients, potentially explaining how sickling could

be compensated by a dynamic "feedback" and how crises would remain rare despite the rheological

changes caused by the disease. Berger and King's model includes the Krogh model corresponding to

Equations (1) to (10), with the rightward shift of sickle oxyhemoglobin corresponding

mathematically to:

N sckle ( d8 \sickle sickle normal

dc N ' K" 1.4 (32)

N normal ds normal N normal K sickle

dc)

RBC dynamics are described using the Lighthill-Fitz-Gerald lubrication layer model given in

Equations(29) and (30), combined with the assumption of a simple crescent ("parachute") shape for

the RBC, with membrane mechanics described by a global compliance coefficient between local

pressure and RBC radius at a given section ("fairly crude approximation to the truth", as reported by

Fitz-Gerald [97). Finally, the RBC stiffness (inverse of the compliance) is coupled to average oxygen

concentration using an "ad-hoc and speculative" power law [123] based on microsieving data collected

by Usami, Chien and Bertles [631, and can be written essentially as

S = Sre a for c > cre, (33)

a + (1Q a)c
cre



P2 A\

S = Sre tor C i Cref (34)

where s is the RBC stiffness, a is a model constant, and sref and cref are reference values for RBC

stiffness and oxygen concentration. In 2004 Berger and Carlson extended this model to a network of

capillaries, showing aggravated consequences at macroscopic levels, with the possibility of large scale

stasis [4]

Following Berger and King's model, Discher and Cima investigated possible causes of acute

crises [1241 [1281. The observed increase in plasma viscosity during sickle cell crises states [651 was

hypothesized as a critical factor initiating sickle cell crises. Their collaborative work successfully

identified a theoretical multivalued solution for the RBC velocity for different values of plasma

viscosity and other fixed parameters (see Figure 1.2.10). The lower-velocity solution at high plasma

viscosities would then explain a sudden drop in blood flow, followed by inflammatory reactions and

further complications. The increased plasma viscosity is believed to be related to an elevated level of

proteins (caused by infection or thrombosis of ischemic injury), in particular fibrinogen (a clotting

protein), and globulin (with an observed increased ratio with respect to albumin). Arguably, it is

important to note that in this model the increased plasma viscosity is assumed to be a cause of the

crises, and not a consequence of a pre-crises state of blood (Cima also discusses the probable

correlation of both factors, acting as a vicious cycle).
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Figure 1.2.10 : blood velocity vs. plasma viscosity -normal level is 1.42mPa.s
(from Cima et al 128]).

One of the main challenges of modeling sickle cell disease resides in the polymerization process

of sickle hemoglobin (HbS) and its consequences. Early research includes various intracellular and

extracellular models with limited success, in general due to apparent incompleteness of the models
[21 . Dou and Ferrone were among the first researchers to develop a convincing kinetic model for

HbS polymerization, obtaining striking qualitative results showing the development of a sickle shape

(see Figure 1.2.11) [1271. However, this molecular approach remains far from being applicable to a

blood flow model, and Ferrone's ongoing investigations (which include estimations of elastic

properties of HbS polymers [50] ) are promising and should be carefully followed.
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Another model for sickle HbS polymerization was achieved by Makhijani et al., focusing on the

complex chemical mechanisms of oxygen unloading, transport, and HbS polymerization reactions

solved altogether [1261. The results show a parametric study of oxygen unloading times for sickle cells.

Some attempts to interpret sickle blood dynamics at a larger scale have also been developed, such

as Rocsoreanu, Georgescu and Giurgiteanu's hemodynamic model [1.301 However, the extensive study

of its mathematical implications, with such results as bifurcation models, relies on many

simplifications and mathematical assumptions that seem difficult to interpret physically.

In 1998 Apori and Harris attempted to reformulate Cima's model with a simple set of 4

autonomous equations with time as the only variable (see Equations (35) to (38)), to be studied as a

chaotic dynamical system simulating sickle cell crises [1291.131] 132] 133]. Although Apori's thesis was used

as a preliminary study to this doctoral work [135], the difficulties of interpreting the Apori-Harris

system of equations physically led us to a new direction corresponding to the present thesis. This

model remains nonetheless a potential simplification to keep in sight and be researched.

dc
- = al c + a 2 u p + a3 u (35)

du
d = b u + b2 p s + b3 s , (36)
dt

- = c s + c 2 c , (37)
dt

= dlp + d2 c (38)
dt

where c , U., s and p are the 4 state variables describing capillary flow (oxygen concentration,

blood velocity, cell stiffness and plasma viscosity), and al, a2 , a3, b1 , b2 , b3 , c 1, c2, di and d2 are

coupling parameters of the system, corresponding to the main physical relationships between the 4

state variables, and that Apori determined based on dimensional considerations, leaving a more

precise physical interpretation to further research. In his work, Apori showed that a change of the

parameter c 2 relating RBC stiffness to oxygen, transformed the Apori-Harris system of equations

from a stable, asymptotically periodic solution, to a chaotic system. Based on Berger's work and

Cima's calculations, Apori related qualitatively c 2 to the stiffness-concentration relation (Equations

(33)-(34)), and concluded that this coefficient might indeed be crucial to represent the onset of sickle

cell crises.

Finally, Higgins's successful experiment proved that vessel occlusion was due to the

characteristics of sickle blood only (and not to any interaction with the capillary wall), and led him to
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suggest a new mathematical model describing blood flow and apparent viscosity as a function of

oxygen concentration, with the proportion of sickled RBCs as a dependent variable [1361. Higgins's

model lacks precise figures to be applied to this day (see Figure 1.2.12), but represents one of the

most promising paths between mathematical models and experimental results.

0-
0

Time

-0

0 -
[RBC~d]

Sinplihfed qualitaive model of vaso-occlusion. As the concentratio of oxygen decreases with
ime, the sickle cell concentration increases leading tora diverging viscosity of the blood which stops flowing.

Figure 1.2.12: Qualitative model of sickle cell vaso-occlusion (from Higgins [13])

In light of the different existing models for sickle cell disease, a couple of noteworthy points can

be made at this point:

- Models of sickle cell disease exist at 2 different length scales : the molecular scale (Ferrone,

Makhijani), and the blood flow scale (Berger, Discher, Cima, Apori, Rocsoreanu, Higgins). Despite

increasing knowledge of the different abnormal factors affecting sickle cell patients, there is still very

little understanding of how sickling affects directly the shape of RBCs, and the resulting abnormal

blood flow.

- The lack of an apparent connection between these models mainly results from differences in the

investigators' objectives and research goals. Whether one factor is put forward (plasma viscosity in



Berger), or another (sickling RBCs in Higgins), whether a model is designed for a transitional

situation (pre-crises state in Berger) or an asymptotic one (crises state in Apori), various conclusions

tend to come from different models, and confusion arises as to what really causes the impaired sickle

blood dynamics, and sickle cell crises.

- Some recent models seem to ignore recent advances in capillary flow modeling or do not attempt

to improve older models and question certain assumptions, although increasing complexity is now

possible and may be beneficial to our understanding of the disease.

Consequently, this research will seek to define a mathematical model for sickle cell disease, which

would both try to fill the gap between molecular and vascular descriptions of the disease, and extend

the previous models to incorporate improved knowledge of capillary flow, oxygen transfer and RBC

mechanical behavior. An important factor limiting the complexity of our model will also be the

experimental data available to characterize both normal and sickle blood flow.

1.3. Relevant experimental research

All blood models have physical constants that need to be determined by experimental data. A

careful review of the related research will also address the ranges of acceptable values for the cases

studied, and assess to some extent the validity of the chosen models. In this section we present some

of these experimental works, to be used eventually to either justify the hypotheses of our model, or

validate its results.

1.3.1. Normal blood properties and their variability

Mortillaro's Physiolog and Pharmacolog of the Microcirculation is one of the many books that describe

specific properties of capillary vessels [321, together with Fung's Biodynamics : Circulation [12] and Charm

and Kurland's Blood Flow and Microcirculation [']. In particular Mortillaro gives very detailed specific

characteristics of the microcirculation for 14 different organs. Among general facts (vessel sizes,

typical pressure ranges, oxygen levels, blood composition and density), it is noticeable that capillary

vessels, unlike larger arteries, do not have a strongly pulsatile flow, i.e. oscillations are highly damped

between the heart and the arterioles to reach a quasi-steady pressure input (this is due mainly to the

viscoelastic response of the artery walls, and the action of smooth muscle surrounding them).

Capillary flow, unlike arterial or vein flow, is characterized by large viscous stresses in comparison to

inertia, with small Reynolds number (see dimensional analysis in Appendix C). Because of their
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important role as an exchange surface, the capillary walls also have very particular characteristics

compared to other vessels, such as the absence of smooth muscles used in vasoconstriction and

vasodilatation (see Figure 1.3.1 and Table 1.3.1).

Percent of total blood volume

Cross-sectional area (cm 2 )

Velocity (cm/sec)

Mean pressure (mm Hg)
5000- 50 1 0 0 -

4000-

20-43000-

2000-

1000-

0-

Quantitative aspects of the circulatory system (from Berne and Levy, 1972,
Cardiovascular Physiology, C. V. Mosby Co.).

Figure 1.3.1 : Comparison of blood vessels (from Charm and Kurland [8]).
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Composition (%)

Vessel Length Diameter Thickness
(mm) m) Endotheu Elastic Smooth Fibrous

Tissue Muscle Muscle

Aorta 500 25000 2000 5 40 25 30

Artery 500 4000 1000 5 35 40 20

Arteriole 10 50 2000 5 25 45 25

Precapillary 0.2 35 30 15 15 50 20
sphincter

Capillary 1 8 1 100 0 0 0

Venule 2 20 2 25 0 0 0

Vein 250 5000 500 5 40 30 25

Vena cava 500 30000 1500 5 25 35 35

Table 1.3.1: Typical geometry and structure of various blood vessels (from Charm and Kurland 181).

As mentioned in the previous sections, 3 physical models need to be considered : a model for

fluid flow, a model for oxygen transport, and a model for the elastic RBC membrane. All these

models come with physical assumptions supported by observations or thorough dimensional analysis

(see Appendix C).

The "fluid" part consists in blood plasma and RBC cytoplasm. Both are to be modelled with

continuous fluid mechanics. Blood plasma and RBC cytoplasm are also modelled as a homogeneous

fluid of constant density (incompressible) and constant viscosity, with the viscosity of cytoplasm

about 8 times the viscosity of blood plasma. The very low compressibility of blood (about 4.10-40

................................. .................



m 2/N, which corresponds to a bulk modulus of 2.5.109 Pa) justifies the assumption of constant

density E4'1. As for neutrophils, both plasma and cytoplasm have a decreasing viscosity with

temperature, and little variation with pH [311. However, the regulation of blood in vivo is such as to

not induce significant changes in normal situations. Also, physical activity leads to systemic control

of blood flow through regulated vasoconstrictions and vasodilatations of arterioles and venules [4].

This leaves further fine regulation to capillary walls and generally ensures stable conditions of

temperature, pressure and blood composition. Hence circulatory adjustments to dynamic exercise

allow us to consider constant blood properties. Additionally, ionic and osmotic equilibria regulate

RBC volume and cytoplasm properties, which can also generally be considered as constants [.

Nevertheless, deoxygenation of blood leads to an increase of about 2% of the RBC volume, and of

about 5% for the hematocrit 1411. Although not entirely negligible, this doesn't seem to have ever been

accounted for in any model. Also interestingly, RBC internal viscosity increases with haemoglobin

concentration [38. Although in normal cases both remain quasi-constant, in sickle cell cases the

observed small dehydration of RBCs leads to a small increase in cytoplasmic viscosity [841. Finally, the

role of the cytoskeleton in cytoplasm dynamics is usually ignored because not entirely known, despite

ongoing research [291.

Oxygen transport is best described by the Vadapalli-Goldman-Popel extension of the Krogh

cylinder model, using various research sources to determine oxygen, hemoglobin, and myoglobin

constants, with a large set of diffusion constants from Bouwer et al 1401, but also oxygen solubility

coefficients, characteristic concentrations, kinetic dissociation rate and Hill dissociation curve

parameters [108].

RBC membrane properties are evidently associated with the models used by researchers to

interpret their experimental measurements. Steck was one of the first to study the composition of the

RBC membrane and infer some of its properties [18. Hochmut et al. calculated in 1983 a membrane

thickness of 7.8 nm with a light-microscope technique [211, which justified largely the use of 2-D

models as presented in Section 1.2.3. Recent experiments by Dao et al. [251, Mills et al. [261, and Puig-

de-Morales-Marinkovic et al. [3 show the ongoing research to determine precisely nonlinear and

viscoelastic properties of the RBC membrane.

Global blood dynamics have also been subject to recent experiments, to determine whole blood

properties such as apparent viscosity and RBC shapes in the microcirculation. To this end, Kubota et

al. have carried experiments on RBCs flowing in vitro [391. Long et al. measured blood viscosity by

hemodilution without assumptions regarding the Fihrxus and Fahrxus-Lindqvist effects (see

Appendix F), which can arguably differ between in vivo and in vitro situations 1441. Pries and Secomb,



in a recent paper modelling the influence of the endothelial surface layer, produced micrographs of

both in vivo and in vitro capillary blood flow, showing expected RBC shapes in the microcirculation

[46] (see Figure 1.3.2). Finally, one of the rare experiments on transient dynamics has been made by

Alonso et al. in vitro with tubes of variable diameter [137. Transient dynamics remain rarely studied in

the microcirculation because of the expected small and slow variation of blood flow. This is not the

case with sickle cell disease though, where transient dynamics need to be studied to understand

irregular blood flow leading to vessel occlusion.
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Micrograps of red blood cells flowing through small-bore glass Ubles
(lop 4 micrographs) and mesenteric mirovessels (bottow 2 aricrographs). In
the inaernediate range of vessel diameter from -6-13 sa, cells may flow in
single ie at low hemiocrits. With increasing hematocrit, more cells are
present in a vessel cross section. leading to a transition to multifie flow and
increased interaction of cells with dhe wall

Figure 1.3.2 Micrographs of capillary bloodflow (from Pries and Secomb [46] [115])



1.3.2. Experimental observations and studies of sickle cell disease

As presented in the introduction, the observation and systematic study of sickle cell disease is less

only about a century old. Chien, Usami and Bertles were among the first to study the abnormal

rheology of sickle cell blood. Their experiments successfully showed the decreased hematocrit and

increased whole blood viscosity among sickle cell patients [621 [631 (see Figure 1.3.3). Plasma protein

concentration and its influence on blood viscosity were also documented, and the rheological

difference between Reversibly Sickled Cells (RSC) and Irreversibly Sickled Cells (ISC) was

investigated. Figure 1.3.4 shows how the actual RBC sickling is directly responsible for most of the

rheological changes. Based on these results, a large number of models for sickle cell disease have

made the hypothesis that RBC changes of shape is primarily responsible for affected blood

dynamics, which lead eventually to blood clots and sickle cell crises.
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scale) for oxygenated Hb SS blood (n=5) and normal blood (n=6) at 45%
hematocrit. Values shown are means ±ess.

Figure 1.3.3: Compared whole blood viscosities between normal and sickle blood (from Chien,
Usami and Bertles [62])
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Figure 1.3.4: Compared whole blood viscosities between sickle cell types (from Chien, Usami
and Berties [62])

As sickle cell crises is a consequence of vessel occlusion, the interactions of the endothelium with

sickle cells were also investigated (endothelial cells are the cells lining the interior surface of the

capillary wall). Until the very recent interest in endothelial cells, and growing understanding of their

large role in blood regulation, the description of blood clotting was mainly though platelet adhesion

and the extensive documentation of coagulation factors, as given by Fogelson [55]. Later, abnormal

levels of endothelium-regulated proteins associated with blood vessel inflammation were found in

sickle cell patients [561, paving the way for potential novel therapeutic studies. These included reducing

endothelial cell activation [57], counter-acting it with vaso-dilating agents [58], using circulating

endothelial cells as markers of pre-occlusive states [59], using inhibitors to endothelial cell activation

[60] and prevent sickle cell adhesion to endothelial cells by changing its adhesive potential [61].

In 1975 Zarkowsky investigated sickling times of RBCs. It was found that RSCs had a sickling

time of about 2 seconds, while ISCs were sickling faster than the experiment could measure [64

Higgins's recent experiments using a microfluidic device showed the occlusion of capillary vessels

under sudden deoxygenation [801[81 (see Figure 1.3.5). Zarkowsky's and Higgins's results suggest that

vessel occlusion can be achieved independently from any interaction with the endothelium, and that
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this interaction would rather be an aggravating factor, coming with if not accelerating complications

associated with vessel inflammation. Further similar experiments, with several controlled oxygen

levels, pressure constraints, and different channel widths, may be key to understanding the behavior

of sickle RBCs undergoing deoxygenation. These are also very interesting to simulation models, as

they may give more quantitative information on the different steps preceding vessel occlusion,

independently of a lot of chemical factors (onset of sickling, RBC shape and apparent viscosity vs.

oxygen level and volumetric flow, differences between RSCs and ISCs, and critical

pressure/volumetric flow couples leading to vessel occlusion).
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Figure 1.3.5: Vessel occlusion in oxygen-deprived microfluidic device (from Higgins [).

Various studies have been pursued to determine the apparent viscosity of blood for different

types of RBCs, following the work of Chien, Usami and Bertles. Kaul and coworkers studied the 3

main sickle erythrocyte types in detail, isolating ISCs and 3 types of RSCs (see Figure 1.3.6). ISCs are

the most flow-obstructing cells, with under a shear rate of 230 s-', a measured viscosity in oxygenated

blood of about 3.10- Pa.s (5.5.10-3 Pa.s in deoxygenated blood), 10% more than the most viscous

subpopulation [". Tripette and coworkers have compared sickle cell disease with the rare form of

sickle-hemoglobin C disease, where a patient combines sickle-cell hemoglobin trait (HbS) with

another abnormal hemoglobin allele (HbC), with enhanced sickling compensated by the presence of

HbC, but other consequences leading to a less severe condition [851 (some details of the sickle cell
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disease variants are given in Interpretation of diagnostic tests by Jacques Wallach, pp.4 0 8 -4 0 9 [83, and in

Disorders of Hemoglobin by Steinberg et al.). Damay has also investigated white blood cells in sickle cell

disease, which were shown not to have a significant role on vaso-occlusion at the dynamical level

(through measured viscosity), as opposed to their known involvement in the resulting vessel

inflammation [76]

Another set of studies have explored the clinical aspects of sickle cell disease, such as abnormal

venous function leading to leg ulceration F71, and variation of rheological and physiological factors

preceding, during and following the crises F31. Steady-state viscosity was also shown to be correlated

with frequency of painful events and end organ failures [721, as well as measured viscosity of flow in

oscillating harmonic sinusoidal mode [s21

With the increasing efficiency of blood separation techniques, more details of the blood rheology

were also found. As mentioned in previous sections, Laogun et al. showed an average increase of

plasma viscosity from 1.4.10- Pa.s to 1.7.10- Pa.s for sickle cell patients in crises state, suggesting a

strong connection between the crises and the plasma protein content, either as a cause, consequence

or correlated factor [611. However, the pre-crises state doesn't present any particular increase in plasma

viscosity. Finally, as stated in Greer et al.'s Vintrobe's clinical hematology (p.1042) [84], the little

dehydration of sickle cells causes a decrease in RBC volume, and a little increase in cytoplasmic

viscosity.
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Figure 1.3.6 : The 4 major RBC subpopulations in sickle cell disease (from Kaul et al. [66,)j



Another major breakthrough was achieved in 1984 by Nash, Johnson and Meiselman, who were

among the first to focus their attention on mechanical properties of the RBCs, and successfully

showed an important decrease of flexibility of the RBC membrane [671 (see Figure 1.3.7). This led to

new studies considering the variation of RBC viscoelasticity with oxygen partial pressure [68],

temperature and hemoglobin concentration 1701. As shown in Figure 1.3.8, the RBC viscosity increases

with temperature and depravation of oxygen. Another study showed the decreased elasticity of

RBCs among heterozygous sickle gene (HbS-HbA) carriers E9].
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RSCt 6.7 10.8 0.131 t 0.025 5.9 * 2.2 0 - 8.6 * 0.3
(n - 10) (20%) (16%) (23%)

ConvolselI 5.6 * 0.4 0.144 * 0.017 8.1 * 1.1 0 - .6 * 0.2
In - 10) (11%1 (16%) (24%)

ConroIs N In - 4)
Fresh 5.6 * 0.4 0.132 ± 0.023 7.4 * 1.4
Strsd 24 hr 5.8 ±0.5 0.135 0.014 7.9 1,4

*Dat. represent mean ± sdard dviastion of means fvom n donors; fies in prdnthses the rageCVfr the samples. For controls and RSC,
8 osei were meaured in each dono semplr; and for ISC. 6 cels were measured per donor. The RSC data am minly from msuAments on Ow MID
Oraction (S donors) akhough for I dor. RSC om dractionstaed blood were studed. L. ISC length: W fSC width: 0. dis dinwmr.

t7t diffewncs betwsen ISC and Convol I de siseuic mosw and surfae -insoiy rWeW sinct (p < 0.001).
trhs dlrnce betwsn RSC and Convol I dheeleetni modu s sigsiscen (p < 0.006).
canrols IwefOr 10 dnar. whose RC wsre messuredon day of bloodwith*ewd. Conrol N we for 4 dona wos red ens were measured both

on the day of blood withdawul and sfter 24-hr storage at 4C in hapwrnisd plasma.

Figure 1.3.7: Mechanical properties of ISCs, RSCs, and normal RBCs (from Nash et al. [671).

At the same time, other experiments were successfully isolating sickle hemoglobin HbS and

showing its polymerization upon deoxygenation. Kinetics of HbS fiber aggregation was studied by

Wilson and Makinen [48, and Christoph, Hofrichter and Eaton [521. Wang et al. determined the

mechanical properties of isolated HbS fiber, modeled as long cylindrical rods ['01. While a promising

path, polymerization and crowding of sickle hemoglobin still has to be fully understood to determine

larger-size mechanical properties. These mechanisms are currently investigated by Ferrone and

Rotter [51. Recent research is also investigating depolymerization of sickle hemoglobin [5], and

affected membrane permeability in sickle cell disease, which could be responsible for changes in

osmotic equilibrium and RBC dehydration [54].
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Figure 1.3.8: Mechanical properties of sickle RBCs at different ter eratures and oxygen partial
pressures (from Mackie and Hochmut [70).

The studies of hemoglobin polymerization introduced a new research problem, since measured

viscoelasticities of RBCs, first attributed to the membrane, were indeed "effective cell" elasticities, as

remarked by Mackie and Hochmut I. Messman et al.'s calculations of membrane properties also

showed variability among cell types, with an increased rigidity associated with ISCs 7. Reciprocally,

Liu, Derick and Palek showed how induced deformation of RBCs by the polymerized hemoglobin

would produce a permanently reorganized RBC membrane structure, hence changing membrane

properties irreversibly [4'1. In 1992 Dong, Chadwick and Schechter were the first to address directly

the problem of determining whether impaired blood dynamics were due primarily to the presence of



hemoglobin polymers, or to affected membrane properties [4]. In their model the RBC interior is

modeled as a Voigt viscoelastic homogeneous solid to account for the polymerized HbS structures,

while the membrane has a simple shear elastic modulus. Using experimental data, they successfully

showed a "transition from membrane to internal polymer dominance of deformability" as oxygen

level is lowered. Nevertheless, as reported by Hiruma et al. this transition is at a very high oxygen

level, and even a small polymer fraction can be primarily responsible for impaired dynamics (the

transition is estimated by Hiruma et al. at a level of oxyhemoglobin saturation above 95%) 751. These

contributions are a major argument in favor of not modeling the RBC membrane as a primary cause

of affected dynamics, but modeling instead the RBC interior. Modeling both contributions should be

nevertheless an eventual objective.

As a side note, therapeutic research has produced another considerable set of data supporting the

abnormal blood flow as a cause of complications leading to sickle cell crises. This was shown in

particular through the effects on blood flow of blood transfusion [871 and of hydroxyurea, which

reactivates the production of the benign fetal hemoglobin HbF [891 [901 [941. Another noteworthy

research result is the 2006 Stroke Prevention Trials, which successfully used transcranial Doppler

ultrasonography on children having sickle cell disease, to detect increased velocity in the internal

carotid artery and correlate it with proven increased risks of stroke [91][92][93]

The importance of all the experiments described in this section is undeniable. Not only these

results provide rheological parameters applicable to our model, but they also justify the hypotheses

that will be made in Section 2.1, since the complexity of blood chemistry and mechanics cannot be

entirely, fully modeled to this day. Alternatively, some data will also be used as validation to our

results.

1.4. Conclusions : objectives and hypotheses of current research

In light of the current existing models for blood microcirculation, and the experimental data

available, the present doctoral work proposes to design a novel advanced model, combining the most

recent sub-models available for oxygen transfer, fluid dynamics, and RBC membrane mechanics.

This model will first extend the existing models for normal blood and reconsider some hypotheses,

in order to be applicable to sickle cell disease. Secondly, we will develop a new model for sickle cell

disease, based on an intermediate description between the molecular level (HbS polymerization), and

the vascular level (effect on blood dynamics). Physical parameters will be adjusted with experimental

data, and we will compare our results with various sources for validation of the model. Thirdly, a
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numerical model will be implemented to produce simulation results, which will be carefully examined

to identify the main parameters affecting blood microcirculation, and crucial to study sickle cell

disease. Finally, based on a systematic analysis, we will consider potential therapeutic directions that

have been or may be further researched.

With these research goals defined, our specific objectives are:

(1) to derive and validate a "standard" mathematical model describing blood flow in capillary vessels.

This model and its range of application will be rigorously defined to address the complexity of

microcirculation using the most recent theoretical descriptions available, and as a consequence will

be usable as a base for any further study of blood dynamics. Also, the model will be designed

specifically to allow the inclusion of the sickle cell problematic (oxygen-dependent dynamics).

(2) to design a comprehensive model to address sickle cell disease. This model is to be based on our

understanding of the pathophysiology leading to abnormal blood dynamics. Therefore, we will

propose to build a new original model, as a tradeoff between the molecular complexity of sickle

hemoglobin polymerization and vascular flow observations.

(3) to identify the driving factors of blood dynamics and sickle cell disease. The model derived will be

used extensively for numerical simulations, and will be used to determine a few useful synthetic

quantities. Some results will be presented to show implications of single parameter changes,

reflecting natural or induced variations in the body, and giving us an interpretation of various

situations affecting blood flow and sickle cell dynamics.

(4) to identify, assess and propose new therapeutic opportunities based on simulation results. Varying

parameters will first be selected based on potential interest for medical research, then a systematic

analysis will allow us to quantify the resulting effects, and conclude on the opportunities of existing

or new therapeutic targets.

(5) to open larger investigations on blood dynamics. Our model is expected to constitute a strong

basis to elaborate advanced tools useful to medical research and study of the blood microcirculation.

Extensions of our work may be pursued to investigate other blood diseases, incorporate more

realistic variable-inflow models, study vessel networks, or simulate the effect of various drugs. The

results obtained may also help the elaboration of new diagnostic tools. All these bear a large range of

potential benefits for the pharmaceutical industry.

This work will be based on the following main hypotheses:

(1) The system of equations assembled gives an accurate description of the dynamics of red blood

cells, and the numerical model associated allows us to perform realistic simulations for a large range
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of situations. Furthermore, the proposed model used to describe sickle cell disease is a correct

approximation to the underlying mechanisms, and leads to significant progress in the understanding

of the disease. A careful validation through previous theoretical and experimental results will address

this hypothesis.

(2) Our choice of a few representative quantities correctly synthesizes the state of blood

microcirculation for all the simulations performed. We will show that blood microcirculation and the

problematic of sickle cell disease can be successfully reduced to some key features, described

efficiently by those macroscopic quantities. This will eventually constitute our basis to analyze the

efficiency of potential therapeutic actions.

(3) Our systematic parametric analysis correctly assesses some opportunities of available therapeutical

action. We assume that our choice of therapeutical targets reflect current possibilities of medical

intervention leading to reasonable changes in blood properties. Our simulation results will give

decisive conclusions on these hypotheses, and allow us to devise which specific targets may be

relevant for further therapeutical research.



2. Simulation model for RBC dynamics and sickle cell disease

In this chapter we first present the physical model used to determine the characteristics of

capillary blood flow, with its assumptions and extension to sickle cell disease. Secondly we define a

numerical model to allow simulations to be performed, and determine appropriate numerical

parameters. Finally, we validate our simulation results with some basic case studies corresponding to

results found in the literature.

2.1. Physical model: constitutive equations and flow hypotheses

The mathematical problem is defined in this section through 3 steps. The scope of our

calculations is defined in the first part, by stating precisely the modeling hypotheses and geometrical

constraints. Then, we present the system of equations to be solved for the normal RBCs, and discuss

the values of all the associated physical parameters. Finally, we present the design of our proposed

model for sickle cells.

2.1.1. Physical model hypotheses, geometry and conventions

To study sickle blood and compare its characteristics to normal blood, we intend to isolate

specific factors that influence blood dynamics. Hence, we will generally distinguish 2 categories of

differing features between normal and sickle blood. Physical properties that differ by small relative

amounts will be generally ignored, while other varying physical properties will be addressed

separately to isolate their respective influences (quantitative discussion of the varying parameters will

be explicitly addressed in Section 2.1.3). All properties will be given in the S.I. (metric) system of

units, except for pressure, usually expressed in millimeters of mercury (mmHg) in medical science.

In order to study the abnormal rheology of sickle blood, we assume that a main feature of sickle

cell disease, eventually responsible for vessel occlusion, is the abnormal dynamics caused by sickle

blood. This hypothesis is generally admitted among researchers, and is supported by numerous

experiments such as Higgins's experiments on vessel occlusion [8I]. Since vessel occlusion can be

obtained without participation of endothelial cells, we will therefore ignore all possible chemical

interactions of the RBCs with the blood vessel environment. RBCs will be also considered in local
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chemical equilibrium with the blood plasma. In other terms, no osmotic imbalance or chemical

interaction will be taken into account besides oxygen transfer, consumption, and binding to

hemoglobin and myoglobin.

Consequently, RBC volume is to be considered constant. Typical volume of RBCs is between

80 and 95 fL (1 fl = 1 femtoliter = 10-18 m3 ) [85]. In our study we will use 9.10-4 M 3 . The decrease in

RBC volume observed in sickle cells is relatively small [85], and will be ignored, although it could be

easily included in further models.

To represent a capillary vessel, we will use an axisymmetric cylinder of constant radius. This

restriction emphasizes geometrical simplicity to avoid fluctuations due to varying vessel sizes and

focus our interest on other factors. Despite this constraint, but in order to observe various situations,

our study will use radius sizes between 2.5 Vm and 5.0 Vm, a representative range where significant

changes of the RBC geometry are expected (see Figure 1.2.7). At this scale, RBCs flow individually

along the capillary vessel. Thus, although RBC-RBC interactions and formation of rouleaux (trains of

agglutinated cells) is an important factor of blood flow for larger vessels, in our case we will assume

that RBCs flow at a regular pace, and our calculations will focus on the dynamics of a single RBC.

To set appropriate boundaries to our domain, we will assume periodic flow of RBCs. For normal

cells, the uncoupling of oxygen transfer equations and RBC dynamics allows this assumption to be

valid far from the capillary entrance, and corresponds to what is commonly called "fully developed

flow" (see detailed mathematical formulation in Appendix D). In the case of sickle cells, we will

simply assume that the changes due to oxygen consumption are relatively small on the scale of a

spatial period, which is supported by the observation of typical capillary lengths [8, and verified in

our results. This implies that given a set of oxygen levels, we can reconstruct sickle RBC behavior

based on local pseudo-periodicity. Figure 2.1.1 illustrates our geometrical model with the given

boundary conditions.

The model for oxygen transport will have the same geometry as in Vadapalli, Goldman and

Popel's model of extended Krogh cylinder, completed with periodic conditions on the oxygen

pattern (oxygen level is assumed to have the same profile at inlet and exit). Again, this assumed local

pseudo-periodicity is expected to allow us to interpolate the trend at larger length scales, and was

retrospectively checked in our results. The radial thicknesses of the capillary wall and

interstitium are taken as respectively 0.3 pim and 0.35 pm, and the Kroch cylinder radius is taken

as 20 pm [1"8]. Figure 2.1.2 illustrates these geometrical constraints.



The spatial period L is easily calculated using the hematocrit (proportion of RBC in volume) :

L = VcBC (39)
Hct )r R,

where VRc is the RBC volume, Hct is the hematocrit, and R, is the radius of the blood vessel up

to the capillary wall. The most important factors of variability for the hematocrit are age and gender

(source : http://www.medicinenet.com/hematocrit/article.htm), and normal values for adults are

between 0.36 and 0.54 1851. Although the hematocrit of any individual is sensitive to a large variety of

environmental factors (altitude, smoking, dehydration, nutrition, sickness...), its changes are

generally incremental (unless the integrity of the vasculature is compromised). Hence we will use a

reference value of 0.45 for normal blood hematocrit. Sickle cell patients, on the other hand,

present a reduced hematocrit between 0.2 and 0.3 [851. In order to isolate the effects of the reduced

hematocrit from other factors, we will study sickle cell blood using both values of 0.45 and 0.25.

RBC Plasma

(zi,,r) i(z + L,r)= i(z,r)

p(zi,r) p(z + L,r)= p(z,r)- AP

po2 (z,, r) po 2 (z, + L,r)= po2(z,,r)- APo2
4 L

z z, z= z, + L

Figure 2.1.1 Individual RBCs periodic flow model.
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Foling thiceobls work m , the RBC membrane isto be modeled as a -D surfaceeo

superposed leaflets generating tension, moments and shear stresses [2.] Figure 2.1.3 recalls this

model already presented in Section 1.2.3, with the curvilinear coordinates defined along the

membrane and the conventional orientations used. As discussed in Section 1.2.3, viscous properties

of the membrane can be neglected for normal flow situations. The RBC surface area at minimal

surface tension is taken as 135 pim 2
[11, and is also to be used as initial parameter.
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Figure 2.1.3 : Curvilinear coordinates for axisymmetric RBC membrane
and membrane stresses convention (model of superposed leaflets).

2.1.2. System of equations and physical parameters for normal RBCs

With the geometry defined in Section 2.1.1, the constitutive equations used to calculate fluid flow

everywhere are simply the axisymmetric Navier-Stokes equations written in cylindrical coordinates.

As mentioned in Section 1.3.1, both plasma and cytoplasm are assumed to be incompressible,

Newtonian viscous fluids:

- 10 8
Vil = -(r v,) + -v = 0,

r r r z

+p vr +v rv -= - -+ p -r + ,
2

Vr V

(f1t 'r + zz ar r tr ar + r2

(40)

(41)

:::::: : :q-: : :: :::::: - : ' ZZ-M.Y. ", , --- - - = ....................



p Z + v. + v = - - +r K + a , (42)
(at ' r a z 8z r ar ar atz2

where v,.(z,r,t) and vz(z,r,t) are the components of the velocity field, p(z,r,t) is the static

(mechanical or thermodynamic) pressure, u is the dynamic viscosity, taken as equal to 1.4.10-3

Pa.s in the plasma [65] and 5.89.10-3 Pa.s in the RBC cytoplasm '08], and p is the plasma/cytoplasm

density, taken as equal to 1025 kg/m 3. Although density is reported as slightly higher in the

cytoplasm (1125 kg/m 3), we ignore this small difference for simplicity (source :

http://hypertextbook.com/facts/2004/MichaelShmukler.shtml), especially since the cytoplasm is

constrained spatially by the RBC membrane and does not deform as much as the surrounding fluid.

Additionally, all fluid motion is ignored outside the capillary, i.e. il = 0 for r > R,.

The constitutive equations for oxygen transport are based on Vadapalli, Goldman and Popel's

model [108I. The generalized equations are:

a + [Mb] Po2,s0%2 + v P2 + v P02  _

(PoMs5% + Po))2 at ' ar az )

Mb aD Da [aPO2 + 2

aD+ Dmb [vfb] P02,50% 2~~~ r
(P so%+ po2 2 r Br - r + 2

+ kHb [Hb] SHb _ Hb 0 2  - M (43)
P0 2, 50%

asHb asHb Hb Hb Hb 2Hb
+v + v= D r + -

at +V r ± z r br i r ± Z 2

K ~n'

k Hb sHb s Hb 2 (44)
P02,50%

where po 2(z,r,t) is the partial pressure of dissolved oxygen, SHb(z,r,t) is the fractional saturation

of oxyhemoglobin, p Mb% is the oxygen partial pressure at an equilibrium corresponding to 50%

saturation of myoglobin (taken as 5.3 mmHg = 706.6 Pa), p Hb is the oxygen partial pressure atP02,50%

an equilibrium corresponding to SHb = 0.5 (taken as 29.3 mmHg = 3906.3 Pa), a is the oxygen

solubility constant, D is the (isotropic) oxygen diffusivity, DM is the (isotropic) diffusivity of
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myoglobin (taken as 6.10-11 m 2 /s), DHb is the (isotropic) diffusivity of oxyhemoglobin (taken as

1.3783.10-11 m2 /s), [Mb] is the total concentration of myoglobin (bound and not bound to oxygen),

[Hb] is the total concentration of hemoglobin (bound and not bound to oxygen), kHb is the kinetic

dissociation rate constant of oxyhemoglobin (taken as 44 s-), n is the Hill coefficient of the

oxyhemoglobin dissociation curve (taken as 2.2), and M is the rate of oxygen consumption. All the

parameters given above are determined using Vadapalli, Goldman and Popel's sources [181, with the

other parameters having different values in the 5 regions reported in Table 2.1.1. Conversions were

made using standard data for the molar mass of hemoglobin, 16.11 kg/mol (the definition of "mole"

is applied to each of the 4 tetramers or protein subunits assembled in hemoglobin), and 25.766

L/mol as the molar volume of oxygen, which has been calculated from standard conditions using the

Van der Waals equation for oxygen, at body temperature 37'C (source

http://www.combro.co.uk/nigelh/diver/vdw.htm).

- P a D [Hb] [Mb] M
v (Pa.s) (m2 /s) (mol/m) (mol/m 3) (mol/m 3/s)

Tissue 6 / 1.5059.10-3 2.41.10~9 0 0.4 6.1321.10-3

Interstitium / 1.0906.10-3 2.18.10-9 0 0 0

Capillary 0 / 1.5097.10-3 8.73.10-10 0 0 3.8811.10-3
wall

Plasma (vzv,) 1.4.103 [651 1.0906.10-' 2.4.10-9 0 0 0

RBC v, v,.) 5.89.10 1.3118.10~ 9.47.10~10 21.099 0 0
cytoplasm

Table 2.1.1: Velocity and varying parameters in the 5 layers (from Vadapalli, Goldman and Popel [108).

Finally, the constitutive equations for the RBC 2-D elastic membrane are taken from Secomb's

model presented in Section 1.2.3 101] :

- t, + to ds R
t== UO + Kbu - 1 , (45)

2 ds0 RO

t, - to KSh ds ) fR )2) B d# sin#d# sin#
td 2 2 dso) Ro, 2 ds R ds R 0) (4)



q =+ (47)S ds2 ds R

where s(so,t) is the curvilinear coordinate of a point on the RBC membrane, function of time and

its position at initial time (s(so,O) = so), ds(so,t) is a local distance between 2 infinitesimally close

points of the membrane along the s direction (with ds(so,O) = dso), R(s) is the membrane radius

(with R(s 0 ) = R0 ) and #(s) is the local angle of the normal vector to the axis of symmetry r = 0

(see Figure 2.1.3), t, (s) and to (s) are the surface tensions in the s and 0 directions, I(s) and

td(s) are the isotropic (mean) tension and shear (deviatoric) tension, q, (s) is the shear force per

unit length in the s direction, o- is the isotropic tension at the reference state (estimated at 7.10-2

kg/s 2 
[19]), Kbu is the isothermal area compressibility modulus (or 2-D bulk elasticity modulus,

taken as 0.5 kg/s 2 [1011), Kh is the 2-D shear modulus (taken as 4.2.10- kg/s 2 
[o), B is the

bending modulus (taken as 1.8.1019 kg.m 2 /s 2 [1011), and ko is the total curvature at the reference

moment-free state (chosen to be a spherical configuration, i.e. homogeneous curvature, for the same

RBC volume):

ko = + . (48)
ds , _-0 R mO

Using the reference RBC volume of 90 Vm
3 [101], we get for ko 7.1941.10- m-1.

The membrane radius and local angle at any position s are also simply related by:

R= COS . (49)
ds

Finally, these stresses are combined into the local normal and tangential forces per unit area of

the membrane:

dF, = d sin#0 - 1 d(R q,) (50)

dA ds R R ds

dF 1 d(R t,) cos# d#-t to - q , (51)
dA R ds R 5ds

and Equations (50) and (51) can be projected onto cylindrical coordinates, to give the total force

components per unit area exerted from any point on the membrane:

dF dF
f,.(s) = " s + cos , (52)

dA dA
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dF,, dF
(S) = " cos# + ' sin# (53)

dA dA

All the derivation details of Equations (40) to (51) can be found in Appendices B-1, B-2 and B-3.

In order to "connect" the membrane surface equations to the Navier Stokes equations, one can

either use boundary conditions or discretize Equations (52)-(53). The first method consists in

integrating Equations (41)-(42) in an infinitesimal volume over the membrane surface, and balancing

the result with the membrane contribution. The second method consists in discretizing a Dirac

distribution localizing the membrane in space, to add an equivalent force per unit volume to the

Navier-Stokes equations (The added term is presented in a generalized form of the Navier-Stokes

equations in Appendix B-2). This choice is closely related to the numerical method used to solve the

boundary problem. Hence its mathematical formulation will be later discussed in Section 2.2.

To close the mathematical problem, we use the following boundary conditions : no-slip at the

capillary wall, continuity of oxygen partial pressure and oxygen transport across the model layers, and

no-radial-transport at the Krogh radius. The absolute static pressure level at the inlet can be set

arbitrarily to 30 mmHg + 1 atm ~ 101325 Pa (average pulse at capillary entrance - see Figure 1.3.1).

We also set the conditions on the inlet side for the average blood velocity and oxygen partial

pressure. The values used will be case-dependent, with reference values of 0.25 mm/s, and 95

mmHg and 40 mmHg respectively. At the RBC membrane, the no-slip condition is equivalent to

an implicit convection equation:

d = ds sin(#b)Ci (Z(s),R(s)) , (54)
dt R dt cos(#)

where Z(s) and R(s) are the two functions mapping the RBC membrane position in the cylindrical

reference frame. Equation (54) forms the "implicit feedback" of the fluid dynamics to the membrane

(i.e. defines implicitly s as a function of time).

In the following section, we present the model used for sickle cells and the physical parameters

associated.

2.1.3. System of equations and physical parameters for sickle RBCs

In accordance with our work hypotheses, abnormal sickle RBC dynamics are primarily the

consequence of both a shift in the values of some parameters, and the emergence of a polymerized

structure inside the RBC. While the first can easily be implemented in a blood flow model, the



second needs a specific physical model for sickling RBCs. More precisely, we want to investigate

Reversibly Sickled Cells (RSCs) as they turn into Irreversibly Sickled Cells (ISCs), i.e. we want to

capture the sickling mechanism happening upon deoxygenation, within the capillary vessels (RSCs

travel too quickly to undergo significant sickling, while ISCs are permanently sickled).

Our motivation to design a novel model for sickling RBCs, is to use and combine the knowledge

from Dou and Ferrone's work at the molecular level, showing the growth of sickling hemoglobin

polymers [127], and Berger's model at the cellular level, using modified RBC membrane stiffness for

sickle cell patients [. While implementing Ferrone's model would require unprecedented levels of

complexity due to large multi-scale computations, Berger's model can be modified to reflect more

accurately the sickling phenomenon with its molecular origin, keeping in mind Usami's experimental

results showing modified RBC dynamics [621. Based on Dou and Ferrone's results, we hence propose

to model the sickling hemoglobin polymer chain as a long, C-shaped structure growing inside the

RBC. As a first approach, the position of the polymer chain will follow an approximate RBC midline

(the midline formulation is described in Section 2.2). This structure will generate elastic stresses on

the RBC membrane, both axially and laterally (see Figure 2.1.4). To preserve the axisymmetry of the

problem, we assume that the sickling polymer structure is also axisymmetric, effectively making it a

deforming "curved plate" generating additional forces on the membrane, directed outwards.

Figure 2.1.4: Schematic model of curved plate for sickling RBC.
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To model the elastic stresses, we use a simple linear spring model. Stresses are to be proportional

to the difference between the actual length and a reference length "at rest" of the hemoglobin chain.

This reference length is to be proportional to the oxygen level in order to characterize oxygen-

dependent sickling. Additional parameters to the spring constant set the boundaries of this dynamical

model, namely the reference oxygen level below which sickling starts, and the maximal polymer

elongation (corresponding to no oxygen). Axial stresses are thus described by the following

equations:

FHbS kHbs (HbS ref(P02 HbS) , (55)

HbS~PO rf 2_ref - 02

lHbS ref(PO 2  0 1 - ref (56)
0 max 2 _ ref

where FHbs is the total force exerted by the hemoglobin polymers (in Newtons), kHbs is the effective

spring constant of the polymer chain (in kg/s 2), HbS is the curvilinear length of the chain, lbs_ref is

the expected length of the chain for a given oxygen concentration/partial pressure, l is the

reference length before sickling, corresponding to the oxygen partial pressure po ref, and

rlubs ref is the maximal relative elongation of the chain with respect to the reference state.

Since we expect to observe the effects of the chain growth, kuos should be sufficiently high to

counterbalance stresses in the membrane and reshape the RBC. In this study, to emphasize the

dependence of polymer growth on oxygen level we will assume that the elongation of HbS polymer

chains is basically not stopped by the membrane. We thus set kHbs to an arbitrarily high value

(determined by the numerical limits), to essentially keep lHbs and lHbs_ref equal, and use

HbSef] as the main parameter for the sickle model to be determined by experimental data. In
k. 0 2max

other terms, our definition of the spring force becomes simply a dynamical substitute to a fixed

polymer length condition, with Equation (56) defining how the polymer chain should elongate. This

rough simplification, while being arguable, follows the purpose of keeping our model as simple as

possible.



To avoid large local curvatures (formation of a corner), we also consider a localized thickness of

the hemoglobin fibers. This corresponds in practice to representing a polymer with multiple strings,

to spread out the resulting axial force on the membrane (see Figure 2.1.5).

Lateral stresses exerted by the polymer chain on the RBC membrane use a similar formulation,

with the forces defined for each control point of the structure, as acting on the closest membrane

point facing it laterally (see Figure 2.1.5) :

FHbS kHbs (dHbS ref(P2) dHbS), (57)

d fdHb ref O2 ref ~0 2

dHbS ref(PO2 ) = d 1e- -- II , (58)f Kp) d o )max PO, ref

where FHbS is the lateral force exerted on a point facing laterally one of the polymer control points,

kHbS is the same spring constant, dHbS is the actual distance between a control point and its

opposing point on the RBC membrane, dHbS ref is the expected distance for a given oxygen

concentration/partial pressure, do is the reference distance before sickling corresponding to the

oxygen partial pressure p0  ref , and H br is the maximal relative elongation of this lateral

distance, with respect to the reference state.

Figure 2.1.5 shows the resulting model, which corresponds in practice to representing the

polymer chain as a "tree" of hemoglobin fibers forming along the RBC midline. To simplify the

analysis, we will only consider the lateral stresses on the upper (convex) side of the RBC. Since the

flow strain rate is much higher near the capillary walls, stresses on the lower (concave) side are not

expected to have significant effects on the RBC dynamics (besides reshaping). To fit our linear spring

model into an axisymmetric average problem, the resulting forces are to be spread out

axysimmetrically.



F H bs 

bSF 
S

HbSL

FHbs V

Fos

b S of,"'d ~bs

df /tsd b

Z

HbS

Figure 2.1.5: Schematic model of curved plate for sickling RBC (detail).

As a case study, we set the model constants as follows. l0 and do are to be defined by the non-

sickle case, using the RBC midline calculated under steady flow conditions (with respect to the

moving RBC). po_re is set to an upper limit of 95 mmHg, which corresponds to an assumption of

early sickling, at highly oxygenated blood. These 2 hypotheses mean that sickling will start as soon as

the RBC arrives in the capillary, with a polymer chain just reaching the size of the RBC when

entering the capillary (this fits precisely to our motivation to represent RSCs turning into ISCs). Since

the growing polymer chain cannot exert an overall force on the RBC (pushing it down the flow or

dragging it), the sum of all forces need to be zero. This physical constraint effectively reduces the

definition of HbS)r and dHosre a to one constant (in other terms, lateral forces must
0)ma td 0 ma
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compensate axial forces). The remaining parameter is "tuned" to match a chosen set of experimental

data, namely the ratio of apparent viscosity of 1.5 observed for larger vessels, observed in results

from Usami and coworkers [621. The obtained value for o ref is approximately 10 when kHbs

is set to 5.10-' kg/s (the value of kHbs determined to meet numerical limitations is discussed in the

Section 2.2). This ratio is evidently an upper bound for the theoretical maximal elongation.

For the sickle cell model, Equations (40) to (54) will still be used. To study separately the impact

of the modeled sickling RBC and of the varying parameters due to the disease, we will carry

calculations first with the same values for all the physical parameters. As a supplemental

preliminary study, we will then study the effect of the reduced hematocrit in the sickle case, set to

0.25 in accordance with experimental data [85]. Further work is encouraged to examine the impact of

other varying parameters, which is expected to be as important as the variation of their relative value

roughly suggests. Following the discussion on available experimental data in Section 1.3.2, these

parameters include plasma viscosity (increased to 1.7.10- Pa.s in the crisis state), decreased RBC

volume and increased cytoplasmic viscosity (due to dehydration), changes in pHb and the Hillp02,50%

coefficient n corresponding to the shift in the oxyhemoglobin dissociation curve, and increased

shear modulus Ksh corresponding to the irreversible reorganization of the RBC membrane structure

(other elastic coefficients being potentially affected too). Finally, some physical parameters such as

plasma viscosity could be modified to reflect interactions with the endothelial cell layer, although

[81.Higgins's work proved it not to be necessary to achieve reversible vessel occlusion
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Figure 2.1.6: System of equations of the full capillary flow model.

+
at

v- + v

a za

r ar

+ a 2 Vr

r 2

ar vJ + az

(40)

(41)

(42)

asHb

at

dF"
dA

asHb
+ v, a

t ds
s ds

-Hb P02,Hb
p02,50%

- M (43)

(44)

- to cos
R

(50)-(51)

- koJ ,

(45)

(46)

(47)

(I _ SHb) 
P02
Hb

P02,50%,

'ds



FHbS HbS (lHbS ref (PO 2  HbS

FIS = kHbS (dHbS ref(p 2 ) dHbS),
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Figure 2.1.7:. Additional equations for the sickling RBC model (local axial and lateral forces exerted on the RBC membrane).

(Fluid) Dynamics Oxygen Transport RBC Elastic Membrane HbS Elastic Model

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value(units) (units) (units) (units) (units)

Vc 9.10-1p 1025 a ~1. 10-...* k 7.1941.105 kHbS

(m) (kg/m) (mol/m 3/mmHg) ~1.51.10-3  
(m'_) (kg/s 2)

APc 1.35.10-10 /' 1.4.10-* D ~1.10-9 ...* {sodso} R,-case {10,do} R -case

(m) (Pa.s) 5.89.10-1 (m2/s) 2.41.10-9 {m} dependent {m} dependent

R >2.5.10-6 M 0... * { Ro } R.-case dHbS _ref

(m) 4.5.10-6 (mol/m 3/s) 6.1321.10-3 m} dependent do ) m10

R- Rw 1-6 k Hb C~o 102 P02r
R,-)W 0.3.1 n 2.2 k Hb 7.1- P Oef 95

(m) (S~) (kg/s) (mmHg)

RT-R' 0.35.10-6 P0O,5o% 29.3 [Hb] 0 * KbU 0.5
(M) (mmHg) (mol/m3) 21.099 (kg/s2)

RK 20.10-6 DHb 7.i3-" DiA 6.10 1 Ksh 4.2. 10-6

(m) (m2/s) (m2/s) (kg/s 2)
Mb[Ab0

Hct 0.25 P0 .3 5.3 [Mb] 0 * B 1.8.10-11
0.25 (mmHg) I(mol/m) 0.4 (kg.m2 /s 2 )

Table 2.1.2: Summary of physical parameters of the model ( sickle case - * see also Table 2.1.1).

(55)-(56)

(57)-(58)

Geometry

(59)
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Figures 2.1.6 and 2.1.7 summarize the dynamical system of equations for both normal and sickle

cases, and Table 2.1.2 lists the parametric values of the physical constants (except for the inlet

average velocity, static pressure and oxygen partial pressure). Equations (49) and (54) implicitly

complete the system. For normal RBCs, the resulting mathematical problem consists in 11 equations

for the 11 unknowns vZ, Vr p , p 0 2 SHb, R(s), Z(s), $(s), t,, t9 and q,. Besides the 2 families

of control points (so, RO) defining the membrane in its preferred configuration, the total number of

physical parameters is 25 (35 specific parametric values for the 5 layers), and there are 3 fixed

boundary values (average velocity, static pressure and oxygen partial pressure). In the sickle case,

there are additionally 2 vectors of control points (10 , do) with as many equations, 1 supplemental

parametric value for the hematocrit, and 3 new model parameters. The next section defines the

solving method retained and the associated numerical parameters.

2.2. Numerical model: Immersed Boundary Method

In order to solve the large system of differential equations mentioned in the previous sections,

various numerical techniques were first investigated.

Traditional methods use simultaneous solvers with separate formulations for the 5 layers

considered, and coupled through boundary conditions. The fluid dynamics equations are usually

considered by far the most complex part to solve, and there is considerable literature on various

advanced methods. Finite elements methods are a standard technique used to calculate complex

flows [1381. A main specificity, and major difficulty of our problem, is to have a deformable boundary

corresponding to the RBC membrane. To address this problem, finite elements methods can be

applied with structured grids [1391, unstructured grids [140], overset grids [141] and other advanced space

mapping techniques 1421. Finite volume methods are also an alternative technique [144, using an

integral form of the physical equations [1431, and having specific advantages since it enforces

conservation principles directly at the local scale. In the late 90's, Peskin developed the Immersed

Boundary Method (IBM) as a novel alternative which proved to be very well suited to problems

involving deformable boundaries with specific mechanics. This method quickly gained popularity

among researchers and developers of numerical methods, with the noteworthy variant called the

Immersed Interface Method (IIM) [1481 [1501 [1511, and is likely to become a new standard due to its

simplicity and ease of use compared to previous methods. While its efficiency was not explicitly

compared to other methods for our problem, time considerations and advising by MIT faculty made
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it the ideal candidate for numerical implementation. The IBM is explained in detail by Peskin [147],

who also discussed the possible degrees of numerical precision [1451 [149] and showed some examples of

application [4]

2.2.1. Application of the IBM and discretization scheme

The IBM consists in solving the fluid dynamics equations in an extended form, to combine the

surrounding fluid (here plasma) with the moving boundary containing similar or different fluid (here

the RBC membrane). Both fluid dynamics and transport equations are therefore to be generalized to

the combined space, and to replace boundary conditions representing the RBC membrane, the

boundary forces are to be added into the fluid as a localized force field. In other terms, the 2-D

boundary is replaced by an equivalent 3-D, localized force using a Dirac distribution. While the

oxygen transport equations are unchanged, the generalized Navier-Stokes equations become:

- 1a a
V-il = (r v,) + -v = 0 , (40)r r z

K-v, l 8V, v,. 8p 1 + I v,. a v, v,. z Zs)

p + +v v -- =- + p - r + f,. () - (( (60)P(8at ' Br Z az ar r r r az2 r2 r R(s)

p +V Z -+v +p--r ary + 2)+f - ,Zyy))) (61)8 t ' ar Z Bz 8z r ar ar az 2 r R(s)

where 1 is the Dirac distribution mapping the 2-D membrane into the 3-D combined space, and fr

and fz are the forces per unit area exerted by the RBC membrane on the flow, given in Equations

(52) and (53). To solve numerically the generalized system of equations, a spatial discretization

scheme is to be applied to 5 in addition to all the field variables, effectively "smearing out" the

boundary into the fluid. In the resulting combined space, it is important to note the emergence of

discontinuous parameters (viscosity, oxygen diffusion constant, hemoglobin concentration and

oxygen solubility constant), which are to be carefully specified as a function of location in the

numerical method.

Using the IBM allows considerable simplification of the numerical problem. The 4 regions of

space left (blood flow, capillary wall, interstitium and surrounding tissue) are defined by fixed

boundaries, which allows us to use a very simple, permanent, structured mesh for each case study. In

this simplified framework, the 3 fundamental steps left to define our numerical method are time



discretization, space discretization, and specification of the algorithm procedure and its numerical

parameters.

Time discretization for first-order dynamics is typically performed by explicit and implicit

methods, the first being in general simpler to implement and the second being more stable. The

resulting system is to be solved at each iteration, using typically iterative methods or linearization and

Gaussian elimination. We choose to use the second one for simplicity. Because this method is better

suited for linear systems, we use a specific implicit method to compromise stability with the non-

linear terms. More precisely, in the Navier-Stokes equations all linear terms are to be calculated

implicitly (i.e. expressed as their value at the next time step), and all non-linear terms are calculated

explicitly (i.e. expressed at the current time step). The resulting time discretization scheme gives the

following equations from time step t to time step t + dt :

1la 8
I a(r v) + -va = 0 , (62)

Vr 8( 8Vr 9 r _

t+dt ar t+dt

vrr vr (r Zs)

p- -p - -jr +I + =

dt ,+dt r ar r zd2 r 2r t
t+dt

v _v _v,. (z Z .(s)

p -'- - VZ - v + fr(s) 9 - , (63)dt *r az r R(s)
a2V

p - p -- r + +
dt ,,, r ar ar )z 2 d 10z ,,d,

p VZ v, V vn , - + fZ(s 8 . (64)dt ar az r R(s)

In the oxygen transport equations, a similar discretization scheme is applied, with convective terms

expressed explicitly, diffusion terms implicitly (with the exception of the myoglobin-related non-

linear term appearing in the factorization), and the remaining (non-linear) kinetic terms calculated

explicitly :
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dt ' ar az p P0,50%

Finally, the RBC membrane position is iterated implicitly, using the calculated velocity field:

Z(s),,t, = vz(Z(s),R(s))t+ddt , (67)

R(s)|,,d, - Vr(Z(s),R(s)i,,,dt . (68)

Spatial discretization is performed using a finite difference scheme, with a simple cylindrical

mesh of regularly placed points (i.e. a rectangular mesh when projected in 2-D). As shown in Figure

2.2.1, all the field variables are expressed at the same points with the exception of the static pressure,

placed on an out-of-phase grid (staggered mesh) to express discretized pressure gradients naturally

and avoid possible numerical issues (due to the central difference scheme). First-order central

differences are used to replace the various space differentials :

aA A., - Ai_1, aA Ai,+, - Ai,_1
(z, - iI , -(z,,rj) -> , (69)-(70)

az 2 dz ar 2 dr

A2A + A,_1j -2A, a2A A, 1J+ A 1 1 -2A
az 2 (z1,r1) -2 >or 2 (z,r) - r2  (71)-(72)

P (z,,rj ) -> P '12 - P-112,1+u2 +Pi+112,j-,2 - P- 112,j-1 2 ,(73)
az 2dz



8p Pi+1/2,j+1/2 - PI+1/2,J-1/2 + P_ 1 /2,j+1/2 - Pi-I/2,-1/2 (74)
ar 2 2dr

where i and j are the indices of the 2-D discretized space grid points, z, and rj are the

corresponding coordinates, dz and dr represent the spatial distance between two neighbor points in

the main directions, A11 represents any field variable except static pressure (velocity components,

oxygen partial pressure, oxyhemoglobin saturation) at the location (z,,rj), and Pia/2,;a 2 is the

static pressure on the staggered mesh. The resulting discretized system of equations is very large and

of little interest to our discussion, hence its full expression is left to the reader.

t

Ip(i+1/2,j
4 1./2)

11
--- --- -- - ---------------

Figure 2.2.1 : Spatial discretization with staggered mesh and interpolated pressure gradients.
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The RBC membrane is discretized into cylindrical segments represented in 2-D by the family of

points (s) (see Figure 2.2.2). The obtained polygonal shape is used to calculate membrane stresses,

using the discretized radii Rk, segment lengths between two points dsk+112, and corresponding

angles #+112 . The multiple derivatives of #needed at the control points (sk) are determined by a

combination of first-order central differences and (linearly interpolated) averaging:

Rk+ -k #+11 2 dsk_1/2 + #k-112 dsk+112
COS#k+1I 2 = dsk+112 , S' )k _ dsklI 2 dsk+112 , (75)-(76)

dk+112

d4(sk) -> 2 *k+1/2 -#O- 12  ,

ds dsk+112 +dsk-1i 2

d# d# d 2Ok+ d 2 d 2Ok -1/2

ds (sk+1 d ds (s) d ds 2  s12 + ds2 dsk12

ds ' ds (sk) - k+112 k 2

dsk.1 2 ds 2 dsk-112 dsk+112

d2#k+1i 2  d2 k1lI 2

d%# ds2 ds2
d (sk) -> 2 k+1,2 k-1/2
ds3 dsk+112 dsk-112

=d#b sin#~(so* )
so,k = sk(sOt= 0 ) , ko(sk) (SO,) + 'ds Rk

(77)

, (78)-(79)

(80)

(81)-(82)
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Figure 2.2.2 RBC membrane discretization, and discrete derivatives of .

The resulting stresses on the membrane are also obtained with a combination of centered differences

and averaging:

dsk+1, 2 ds 12 + k-1/2 s2
dsok+l12  ds.1 / 2
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which allows the resulting forces to be calculated at each point on the discretized RBC membrane:

dF, dq ______k
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dF dt t (si) cos#(sk) d#9
' (sk) - (s) + cos#b(sk) - t-

dA ds Rk Rs ds

and in cylindrical coordinates :

dF dF
f,(sk) = (si) sin#(sk) + ' (sik) cos#(sk) (91)dA dA

_ dF, dF
fz(sk) = " (sk) cos b(sk) + ' (si) sin#(sk) . (92)dA dA

Finally, we use a discretized Dirac distribution inspired by Peskin's work 1471. In 2 dimensions, the

forces per unit area are first integrated on the RBC membrane surface they represent (see Equation

(93)). The resulting point forces are effectively distributed among the 16 closest mesh points using a

cosine bell function (see Figure 2.2.3). The discretization in cylindrical coordinates is similar to

Peskin's formulation in the z-direction, and is modified in the r-direction to fulfill Peskin's postulates

(in particular, the postulate that the force is split evenly on each side of the membrane point after

integration - the torque identity (6.5) as defined by Peskin 147) :

zi Z(s-) ((r dsk,1 2 (Rkl_ + 3 Rk)+ dsk+1 2 (3 Rk + Rk+ )
gr R(s) , 4

(93)

(zl,Z(sk)) = 1z + cojzZs |z-Z(s)| 2 dz , (94)
4 dz 2 dz )

8,2 (rj,R(sk)) = I + COS ) , rj -R(sk)I K 2 dr (95)
8 ; r dr 2 dr

Note that Equation (95) needs to be modified near the centerline. A useful alternative is:

1 r ( -R(sk )'
8,(rj,R(sk)) = 8 1 + COSt7 r, r -R(sk)I 2dr (95b)

8 xr R(s ) dr 2 dr,

which can be used for the radial component to distribute RBC forces evenly on points of higher and

lower r-coordinate (the original force on the RBC membrane being considered homogenous per unit

area, this formulation is more appropriate for the r-component). Also, for the points where

R(sk )< dr the discrete value of 6,2 is normalized specifically to take into account symmetric radial

terms and the Dirac distribution overlapping.
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Figure 2.2.3 Immersed Boundary Method applied to the discretized RBC membrane (in red).

The RBC velocity at the membrane points (needed in Equations (67)-(68)) is interpolated using the

same discretized Dirac functions. This constitutes the implicit "feedback" from the flow to the RBC

membrane position.

In the sickle case, the RBC midline formula was determined as a compromise between extreme

simplicity and subjective appreciation of the result. The 2 basic control points of the sickling

hemoglobin polymer were set to the RBC midpoint on the axis of symmetry, and the point on the

RBC membrane with the lowest z-coordinate or "furthest RBC point downstream". These 2 points

separate the RBC membrane in 2 pieces, called "upper" and "lower" sides of the RBC membrane.

The first attempt to determine a RBC midline was simply a curvilinear average between the 2 pieces

(see Figure 2.2.4). However the result proved to follow poorly the membrane shape near the second

basic point, as the point sampling was sparser on the upper side than on the lower side. To enhance

the result, a couple of improvements were tested on the sampling of the RBC control points on the

lower surface. The use of linear, hyperbolic, then double-hyperbolic sampling formulas gave
86



significant visual improvements (see Figures 2.2.5, 2.2.6 and 2.2.7), and the latter one was retained

for our model. To give the polymerized structure an effective reference thickness, 2 more series of

control points were determined, placed at a lateral distance based on local discretization of the RBC

(see Figure 2.2.8). The resulting sets of control points were used to apply Equations (55)-(59), with

the resultant forces added to the forces exerted on the RBC membrane at each point Sk.

I I I I

Figure 2.2.4 : RBC midline calculation (homogeneous sampling - Note:only r>0 is plotted).
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Figure 2.2.5: RBC midline calculation (green:homogeneous sampling, purple:linear sampling).
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Figure 2.2.6: RBC midline calculation (green:homogeneous sampling, purple:hyperbolic
sampling).
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Figure 2.2.7: RBC midline calculation (green:homogeneous sampling, red:double-hyperbolic
sampling).

Figure 2.2.8 : HbS modeled polymer structure (Note:a potential double-thickness layer is shown
for illustration).
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2.2.2. Numerical procedure, parametric adjustments, and limitations of the

method

The resulting discrete system of equations is a sparse linear system that can be written as:

Vz

Vr

A,= p (), (96)

P0 2

S Hb
{z,,r,}

M A,+d = B(A,) , (97)

where A, is the state vector of the system at time t, M is the rigidity matrix of the system,

comprising all the linear terms expressed implicitly, and B(A,) is the second term. This system is

solved at each iteration using Gaussian elimination in Matlab@ (backslash "\" operator). Note that,

since the oxygen convection terms are non-linear terms (therefore put in B(A,)), M is diagonal by

blocks, and Equation (96) can be split in 2 sub-systems, for the fluid dynamics and the oxygen

transfer respectively.

The numerical procedure consists in iterating these steps

1) using the current RBC position, calculate RBC membrane stresses (Equations (75)-(92)),

2) calculate the resulting RBC membrane forces on the fluid mesh (Equations (93)-(95b)),

3) calculate the second term B(A,) and the rigidity matrix M on the discrete mesh (Equations (62)-

(66), (69)-(74)),

4) solve the system for the state vector at the next time iteration Atd,,

5) calculate the new RBC position (Equations (67)-(68)).

Some "tweaks" can be easily added to this numerical scheme, such as non-dimensionalization and

adaptive time step, and also some "hard" numerical procedures, for example to enforce global RBC

volume conservation after a large number of iterations (compensating numerical leaks). Other

considerations on improving the numerical method are left to further work (e.g. iterative methods

based on trapezoid rule and higher-order Runge-Kutta methods, n-point finite difference schemes,

boundary integral methods, lattice-Boltzman methods, partial linearization of nonlinear terms...).

Also, determination of the RBC stresses based on its approximate shape can use higher-order

interpolation schemes such as rational splines [s21[33154]



Numerical parameters vary depending on the case studies, with typically 100 to 200 points

defining the RBC shape and 40 to 65 vertical divisions of the capillary vessel (and other vertical and

horizontal meshing such that mesh size is as homogeneous and square as possible). Finally, the time

step is set to be always smaller than the mesh size divided by the flow velocity. Given our case

studies dt was set for all our calculations to 1.45555.10-- s. Certain RBC membrane stresses may

need a smaller time step to be properly implemented, but would considerably slow down

calculations. Instead, decision was taken to effectively reduce Kb. to 1.10-4 kg/s 2 and set kHbs to

5.10- kg/s 2 to ensure numerical stability without significant changes in the results (RBC surface area

remaining effectively quasi-constant, always within 2% in all our results). Convergence was based on

a determined total number of iterations, corresponding for the worst case to a maximal change in

relative positions of RBC control points of less than 1%, for a time equivalent to traveling at least 2

spatial periods. From the observed asymptotic trends and due to the numerical precision, we roughly

estimated a global precision of around 2% for all spatial variables, and at most 5% for the synthetic

variables (such as apparent viscosity). For more details or to ask for a copy of the code used in this

work, please contact fleflochgalum.mit.edu.

Peskin discussed in details the limitations and issues of the Immersed Boundary Method in his

publications [1451.[146] [147][149. One important difficulty we encountered was the relation between mesh

size and RBC discretization : if RBC points are too close, the calculated stresses on the RBC

membrane do not lead to sufficient "feedback" from the flow, and may result in the RBC membrane

folding onto itself (due only to this numerical phenomenon). Inversely, if RBC points are too far

apart, the distributed forces on the flow grid are not connected, and may result in local flow vortices

and instability. As a consequence, the resolution chosen for the RBC membrane (200 points)

imposed very tight restrictions on the mesh precision. Varying geometries (e.g. varying capillary sizes

or hematocrit) were also subject to recalculations of the most appropriate mesh dimensions, to

obtain stable RBC local dynamics. For this resolution, full calculations on one case until reaching

steady state lasted about 5 days on an Intel Core i7-965 processor (3.2 GHz). With longer calculation

times, improvements in terms of precision and range of situations or parametric values are clearly

possible, and the 12 Gb of RAM should allow for an increase in variable space of at least a factor 5

in each of the 2 dimensions. The use of a compiled code (Fortran or C/C++) is also to be

considered for future extensive use, despite longer development times.



2.3. Validation of the simulation model

The designed model is now to be validated with results from previous models and experiments,

before further examination of the results.

As a qualitative assessment, the obtained RBC shapes under steady flow are first examined.

Figure 2.3.1 shows our results compared to RBC micrographs obtained by Secomb, for a capillary

vessel of radius 3.5 tm ". The superposition of our results with the observed RBC shapes shows a

remarkably good fit. Figure 2.3.2 also shows a fairly good agreement of our results with Secomb's

simulation model ["4.

fflP -

Figure 2.3.1 : Comparison of obtained RBC shapes with Secomb's micrographs [461.
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0.029 cm/s

Figure 2.3.2 : Comparison of obtained RBC shapes with Secomb 's model (R=3pum) [JO"]I

On Figure 2.3.3 we compare our results with literature data. Measurements of the apparent

viscosity (or whole blood viscosity, showing the overall resistance of RBCs and plasma) are reported

by Goldsmith and coworkers in the shaded area [3.] We observe that the inversion of the Fahraeus-

Lindqvist effect at near-minimal capillary radii corresponds to our case study range, where RBCs

tend to flow individually along the centerline. We see that our data slightly overestimates the

apparent viscosity. The reason here is that we use a low flow velocity (0.25 m/s) for all the cases

reported, corresponding to the lower end of capillary sizes (leftmost point on our plot). In reality

blood velocity is known to increase with vessel size (see Figure 1.3.1), and Figure 2.3.4 shows

adjusted results based on a velocity of 0.5 in/s corresponding to the higher capillary vessel size

(rightmost point). Since the exact relation between vessel size and blood velocity is unknown, we

were unable to determine exactly where the intermediate points should be, but from Figures 2.3.3

and 2.3.4 it seems that we would fit fairly well the upper side of Goldsmith's curve.

-- ------------------- =_= -
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Figure 2.3.3 : Relative viscosity vs. vessel size (left: literature data [35 ; right: our results).
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Figure 2.3.4 : Relative viscosity vs. vessel size (left: literature data [35]; right: our results) -
adjusted velocity for higher capillary vessel sizes.



Comparison of our data with results from Secomb and coworkers [10 is presented in Figures

1
2.3.5 and 2.3.6. Secomb used the apparent intrinsic viscosity here, defined as

Hct
flapp

P ""-1
pt

On

Figure 2.3.5 we see that a direct comparison suggests that we overestimate the apparent viscosity.

However, Secomb's work was based on a value of plasma viscosity of 1 centipoise (1.10-3 Pa.s).

Figure 2.3.6 shows adjusted results to take this plasma viscosity into account, using a simple linear

extrapolation. The adjusted data points now slightly underestimate the apparent viscosity, which is

probably due to the linear extrapolation. The trends however are in good agreement with Secomb's

data.
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RBC Simulation - Apparent Intrinsic viscosity at steady state
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normal case, P2-40mmH
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Variation of KT with cell velodity u.: comparison of present study with other theoretical
and experimental studies. Vessel diameter in pm is shown on each curve, Theoretical results: 0,
lubrication model including shearelasticity butneglecting bending; 0, lubrication model including
both shear and bending elasticity; A, finite-element results of Tozeren & Skalak (1980).
Ezperimental results:- - - -, results of Lee & Fung (1969) using macroscopic model cells; -- -- - ,
results of Lingard (1979) sing human red blood cells - -- -, results of Driessen e al. (1984) using
rat red blood cells.

Figure 2.3.5 : Apparent intrinsic viscosity vs. RBC velocity (left: Secomb et al. f100]; right: our
results).
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Figure 2.3.6 : Apparent intrinsic viscosity vs. RBC velocity - extrapolation for plasma viscosity
of 1 centipoise (left: Secomb et al. "00]; right: our results).

The measurements from Chien, Usami and Bertles (seen in Figure 1.3.3) cannot be compared to

our simulations directly : not only were the conditions very different (viscometer imposing a

Couette-like shear flow), but also the shear rates. Measured at the capillary wall, they evolve between

200 and 1000 s-, which is clearly out of the range of the measurements from Usami et al. Figure

2.3.7 shows that our results, however, are expected to be compatible with their experimental

observations, with again observation of the inversion of the Fahraeus-Lindqvist effect.
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Figure 2.3.7 : Apparent viscosity vs. shear rates (left: experimental data [62]; right: our results).
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Curves obtained experimentally by Mackie and Hochmut have also been investigated, looking at

the resulting apparent viscosity. The concentration used for RBC hemoglobin in our simulations is

34 g/I (or 340 kg/m 3), but the viscosities obtained in Mackie and Hochmut's results correspond to

pure hemoglobin solutions so that absolute values cannot really be compared directly. Nevertheless,

we can observe on Figure 2.3.8 comparable trends in our results, with the characteristic rise in the

case of sickle cells.

X 1b AA 331idi 2$'C
. jb aS 29 gIdI 25*Ca
a Hb SS 29 gI 37'C
o Rb 6 S3 GIdI 25*C
*Hb SS 33 g0I 37*
0ab SS 46gMI 25*c -

* lb SS 46g1 37*

20 40 60 so 100 120 140 160 180

Po2 mmHg)

Figure 2.3.8 : Viscosity vs. oxygen level (left: literature data [70;

concentration is 34 g/dl, R, = 4.5 pm).
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Comparison of our results with Higgins's clogging and unclogging time scales for sickle blood

seems also inappropriate at this point. As seen in Higgins's results and supporting videos (available

online at http://www.pnas.org/content/suppl/2007/12/19/0707122105.DC1), the microfluidic
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device used in Higgins's experiment deals with large channels (7 mm to 30 mm) where RBCs do not

flow individually, and with larger time scales (tens to thousands of seconds compared with tens of

milliseconds in our simulations). The onset of vessel occlusion in Higgins's experiment is evidently

specific to his device size, and would need a model of a different scale (dynamical models for larger

vessels and taking into account RBC interactions exist, but are yet to be completed with a sickle cell

model).

Lipowsky and coworkers also provided some experimental data of sickle cell blood, reported in

Table 2.3.1 below [691. As we see, for an average vessel diameter of 10 jim the measured RBC velocity

is around 0.72 mm/s, which is fairly high compared to the existing models we reviewed.

Unfortunately the technique used did not provide measurement of any pressure gradient, which

prevents us from comparing it to our simulation data. It is important to stress, however, that this

research suggests the possible availability of complete measurements in vivo in a near future.

Resting and Hyperemic emnsodynamic Charaeristics in NaUWd Capillaries

Sutim N.. ON mr .. Daon.w~ V. 0. vIsV- rA r- NOIN

ec ify at's * S

HbAA controb
(n - 14) 90 31.5*0.27 9.7*0.30 0.71*0.04 0.058*0.0043 1.95±0.07 39.6*5.2 55.7*4.8 0.47

HbSS crisis-free
(n - 20) 202 32.3*0.18 10.0*0.17 0.72*0.03 0.061*0.004 2.05*0.05 35.9*2.9 63.8*3.9 0.61

HbSS crisis
(n = 10) 46 32.2*0.38 10.6±0.31 0.98*0.06 0.0680.006 .76±0.06 55.6t7.0 84.7*8.8 0.39

f tes SS crisa-free
vs. SS crisis NS NS P <0.001 P < 0.001 P < 0.01 P < 0.01 P < 0.05

Values are means*SE; we Faj. 6 and 7 for SD. Tw.. skn aempture; Die. cWainary dia'neW Vm. control red eeB wlodty, Q. estimated
control volumetric Bow rae V,,peak red cell velocity during reactive hyperaia; rT. dime to anain peak 'bc velocity durims rea*tive YPR'I*
To", time to repay 50% of fow debt incurred during no-aow este; Nms/N, t'action of capillaries which repay 50% of Sow debt incurred during
no-Gow.

Table 2.3.1 : Measured characteristics of sickle cell blood (Lipowsky et al. [691).

Finally, considering the drop in oxygen partial pressure between the ends of the capillary vessels

from approximately 95 mmHg to 40 mmHg, we can estimate the total capillary length across a model

organ. Averaging the oxygen partial pressure gradients, we obtain approximately a range from 4.10-4

to 1.4.10-3m, which is in agreement with the order of magnitude given in Table 1.3.1 (1.10-' m) (see

Figure 3.1.15).



2.4. Conclusions on the proposed model

This section completes the presentation of the physical and numerical modeling. We have now

defined a model for the blood microcirculation, included a model describing sickle cell disease,

implemented a numerical solver for the system of equations, and validated some of our results with

experimental and simulation data from various sources. In particular, our proposed model for sickle

cells has shown trends in good agreement with experimental data, which allows us to consider its use

for further study of the disease. The following sections will now present more detailed results of our

simulations, using this model.
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3. Insights on blood microcirculation and sickle cell disease

This chapter presents a thorough analysis of the results produced by our model, for a

comprehensive set of variations of a few parameters. After presenting the case studies used, we first

present our original findings for normal RBCs and review some main parametric trends of capillary

blood flow. Secondly, we present results of our sickling RBC model and analyze the simulated flow

behavior. Based on these original results and our improved understanding of sickle blood dynamics,

we were able to determine a set of analytical quantities to best describe affected blood properties.

Finally, we conclude on the new perspectives unveiled by this study, and its effect on developing an

analytical, simulation-based, sickle cell treatment strategy.

3.1. Presentation of a few case studies

We propose now to perform a comprehensive study of RBC dynamics, focusing on comparisons

between normal and sickle cells. As a pilot study, we look at results of simulated blood flow for

series of typically varying parameters. In each series of calculations, 3 cases will correspond to the

high oxygen partial pressure end (95 mmHg), the low oxygen partial pressure end (40 mmHg) for

normal cells, and the low oxygen partial pressure end (40 mmHg) for sickle cells. The high

oxygenation level corresponds to both normal and sickle cells as they give identical results. The first

series of calculations will constitute baseline cases with a vessel radius of 4.5 [m and a hematocrit of

0.45. The sickle case will have 2 baselines corresponding to the same normal case, depending on the

fixed boundary condition being either the same total blood inflow, or the same pressure gradient

along the capillary vessel. In the following series of calculations, we will examine the effects of a

lower inlet velocity, then of a radius varying between 2.5 jim and 5.0 [Lm in increments of 0.5 m. In

order to encompass the diversity of situations, the series with varying radii will be obtained with the

same fixed average velocity at inlet, and then with the same pressure gradient for all cases. The

former situation is to reflect possible variations along a capillary vessel length, while the latter

illustrates differences that can be observed between vessels in a parallel alignment, such as across an

organ. Finally, we will show the effects of a reduced hematocrit of 0.25, typically encountered in

sickle cell patients. The obtained series of results will allow us to analyze general flow characteristics,

present some key features of blood microcirculation through synthetic quantities, compare oxygen
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delivery performance, and characterize the aggravated state in the sickle cell case. Table 3.1.1

(dpi_summarizes the case studies listed above. Vi,, is the reference velocity, 0.25 mm/s, and is set
Kdz)

to the corresponding pressure gradient for the baseline case with normal cells (case 1a), i.e.

approximately 3.25.105 Pa/m. The simulation results corresponding to the constant velocity cases

(series 3), and constant pressure gradient cases (series 4), were used to validate the model in the

previous chapter.
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Case Capillary Oxygen Partial Normal/Sickle Fixed Boundary
Pressure Level Hematocrit

(Series) Radius ([im) (mmHg) Cells Conditions

la 4.5 95 both Vn, 0.45
(baseline) dz)

lb - dp
lba 4.5 40 normal v,,, 0.45

(baseline) dz

(baseline) 4.5 40 sickle V, , 0.45

- j -i.v-,
2a 4.5 95 both in in - 0.45

4 '2' 4

2b 4.5 40 normal Vin in , in 0.45
4' 2'4

2c 4.5 40 sickle Vin, in ,n 0.45
4 '2' 4

3a 2.5, 3.0, 3.5, both Vin 0.45
4.0, 4.5, 5.0

3b 2.5, 3.0, 3.5, 40 normal V 0.45
4.0, 4.5, 5.0 '"

3c 2.5, 3.0, 3.5, 40 sickle Vn 0.45
4.0, 4.5, 5.0

4a 2.5, 3.0, 3.5, 95 both 0.45
4.0, 4.5, 5.0 dz)

4b 2.5, 3.0, 3.5, 40 normal dp0.45
4.0, 4.5, 5.0 dz)

4c 2.5, 3.0, 3.5, 40 sickle 0.45
4.0, 4.5, 5.0 dz

5a 4.5 95 both ' ' 0.45,035,
dz) 0.25

5b 4.5 40 normal 0.45,035,
dz 0.25

5c 4.5 40 sickle dp 0.45,035,
1 _dz 0.25

Table 3.1.1 : Summary of case studies.
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3.2. Parametric study of the dynamics of Red Blood Cells

The results provided by our case studies allow us to demonstrate and compare several trends. In

particular, the preliminary study presented in this chapter will focus on analyzing the effects of:

-varying vessel sizes, with constant blood flow (case series 3),

-varying vessel sizes, with constant pressure gradient (case series 4),

-constant vessel size, with varying blood flow (case series 2),

-constant vessel size, with varying hematocrit at constant pressure gradient (case series 5).

Our findings will be presented in detail for all of the above variations, and considering the 2 different

oxygen levels prescribed (cases series "a" and "b"). The results of our modeled sickling cells (case

series "c") will be discussed later in Section 3.3.

Our first observation concerns qualitative aspects of the RBCs under different conditions. Figure

3.2.1 shows the various asymptotic shapes reached at steady state conditions, for different vessel

sizes (to improve visibility, velocity vectors in blue are represented in the relative frame moving with

the RBC). Not only do we observe the expected "squeezing" of RBCs similar to Secomb's analysis,

but also that, depending on whether velocity or pressure gradient is constant, the resulting shape

changes significantly differ. In fact, at constant pressure gradient the velocity decreases with

decreasing vessel radius since the RBCs obstruct more and more the flow. At the cases of lower radii,

the obtained RBC shapes are less squeezed than when the velocity is kept constant. The squeezing of

RBCs explains the shear-thinning property of blood in capillary vessels (increasing resistance to flow

with increasing shear rate), which matches the trend observed experimentally in the region of

reversed Fahraeus-Lindqvist effect. From our comparison of cases 3 and 4, the increase of blood

resistance to flow is expected to be stronger at constant pressure gradient (case series 4). Otherwise,

we observe the formation of vortices as the RBCs get further apart when the vessel radius decreases,

which suggest possible additional losses and increased resistance to flow. Since for normal RBCs

there is no coupling between oxygen transport and fluid dynamics, series "a" and "b" give exactly the

same results here.
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(3a) RBC Simulation -velocity vectors - t-2.795e+02 ms (iteration 19200)
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S10
RBC Simulation -velocity vectors - t-1.048e+03 ms (iteration 72000)(3a)
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-6 RBC Simulation -velocity vectors - t=1.886e+03 ms (iteration 129600)(3a)
R2 =

2.5 pm

3.51 3.53 3.54 3.55 3.57 3.50 3.59 3.6 3.62 3.63 3.64 3.5
axial distance in meters

3.67 3,68 3.69

X 10

Figure 3.2.1 : RBC asymptotic shapes for varying radii (cases are indicated at the top left).

Figure 3.2.2 shows the curves of apparent viscosity of whole blood as a function of vessel size.

The different results for cases 3 and 4 prove that the apparent viscosity depends at least on 2 case

variables : vessel size, and flow velocity or pressure gradient. This feature illustrates the difficulty of

reconciling simulations with experimental data, as the velocity function of vessel size remains

unknown and does not seem to ever have been addressed. Figure 3.2.3 and Figure 3.2.4 represent
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RBC velocity and discharge hematocrit for the same cases. RBC velocity and hematocrit reflect both

changes in flow velocity (giving larger variations in cases 4), and changes of the lubrication layer

(which increases with vessel size). Comparison of Figures 3.2.2, 3.2.3 and 3.2.4 shows quantatively

how cases 3 and 4 lead to different results, and how cases "a" and "b" lead to the same results as

oxygen transfer is not coupled to fluid dynamics (plots are superposed). We observe that RBC

velocities are always higher than the average flow, due to their alignment on the centerline, which is

consistent with the notion of higher discharge hematocrit than actual vessel hematocrit, known as

the Fihraeus effect. As cases 4 keep the pressure gradient constant, flow velocities are lower than in

the cases 3 for the lower vessel sizes, and lead to higher apparent viscosities. Interestingly, we find a

correlation between apparent viscosity and discharge hematocrit that seems to fit all the cases (see

Figure 3.2.5). This striking result was observed experimentally by Pries and coworkers at larger vessel

sizes, and here presents an inverted trend for vessels of capillary radius less than 5 [Lm 36.

RBC Simulation - Apparent viscosity at steady state

(4a-4b)

-normal case, P02-95mmHg
-normal case. P02-40mmHg
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max. error

vessel radius (in m)

Figure 3.2.2 : Apparent viscosity vs. vessel size.
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104 RBC Simulation - RBC velocity at steady state
4.5 ---

normal case, P02=95mmHg

4 normal case, P02=40mmHg
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max. error

(3a-3b)
3 -- 1

2.5-
RBC velocity

(in m/s)
2-

1 ~ (4a-4b)

0.5-

2.5 3 3.5 4 4.5 5
vessel radius (in m) x 10

Figure 3.2.3 : RBC velocity vs. vessel size.

RBC Simulation - Discharge hematocrit at steady state
0.57 1

- normal case, P02=95mmHg
0.58 - normal case, P02=40mmHg

estimated
0.55- max. error

0.54-

0.53 (3a-3b)
Hematocrit

0.52
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0.5
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Figure 3.2.4 : Discharge hematocrit vs. vessel size.
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< 10* RBC Simulation -Apparent viscosity vs. discharge hematocrit at steady state
6.5 -- r------,---

-normal case, PO2-95mml-g

normal case, P02-40mmHg
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apparent viscosity (4a-4b)
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3.5-
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Hematocrit

Figure 3.2.5: Apparent viscosity vs. discharge hematocrit.

Oxygen transport is a separate problem for normal RBCs. Its characteristics are directly

dependent on the flow features, but do not produce any dynamical effects. Hence while the observed

previous trends gave the same results for cases labeled "a" and "b", oxygen transport results will

differ for those cases. Figure 3.2.6 shows the steady state oxygen profiles for cases 3a, 3b and 4a. The

profiles for cases 4b follows the expected combined trends from decreased oxygen level (3a to 3b)

and reduced velocity under constant pressure gradient (3a to 4a). On Figure 3.2.6 we see that oxygen

profiles follow RBC membrane contours in the vessel, showing that convection is the main

mechanism of transfer locally, followed by lateral diffusion across the streamlines. We see here how

oxygen transported by RBCs imposing a "plug flow" is more efficient than if it were transported

freely in blood plasma (the diffusion gradients are greater in the plasma and at the capillary wall). We

see also that even in low oxygen conditions, convection still dominates oxygen transfer, although

more signs of lateral transfer appear within the RBCs (diffusion visible in the 3b cases). The higher

velocities of cases 3a compared to 4a result in higher concentration gradients that are visible across

the vessel and in the surrounding tissue (contours ard' less steep). In cases 3b, the lower oxygen level

also results in higher gradients and more diffusion across the surrounding tissue. Figure 3.2.7 shows

the resulting oxygen drops per unit length along the capillary, for all cases 3a, 4a, 3b and 4b. In

Figure 3.2.8 the same data is represented as equivalent capillary length to have oxygen partial

pressure drop from 95 mmHg to 40 mmHg. We note that:
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(1)- as already observed in Figure 3.2.6, higher oxygen levels lead to higher transfer to the

surrounding tissue (since consumption is the same, it means that more oxygen gets transferred from

the hemoglobin to the myoglobin, used as local storage).

(2)- calculations of the corresponding capillary length to have oxygen drop from 95 mmHg to 40

mmHg gives a precise range and quite good estimation of the effective capillary length where oxygen

is exchanged, here about 1.10- m.

(3)- the 95 mmHg case allows us to observe a peak of oxygen consumption, which seems

surprisingly independent of whether blood flow velocity or pressure gradient is constant, at a radius

between 3.5 [m and 4.0 ptm. This shows two competing effects. Large vessels prevent good oxygen

transfer because of an increased distance between RBC hemoglobin and the capillary wall, while

small vessels seems to suffer from the oxygen-deprived bolus flow, an inconstant oxygen supply and

of course a smaller external vessel area. This last effect is emphasized for the lower oxygen level

cases, where the peak of maximal oxygen delivery seems to be at a larger vessel size, here out of

range.

(4)- the peak of oxygen consumption is more important for cases 4 than cases 3 at 95 mmHg, which

shows the greater emergence of this peak for variable flow velocities. This means that the optimality

of vessel size would be more emphasized in a network of vessels than in a single vessel of varying

diameter. In the case 4 at 95 mmHg, the oxygen transfer even gets below the 40 mmHg case for

vessel sizes greater than 10 ptm.
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-0 RBC Simulation - contours of oxygen partial pressure (mmlg)- t-2.795e.92 ms (iteration 19200)(3a)
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X RBC Simulation -contours of oxygen partial pressure (mmHg) - t-1.048e403 ms (iteration 72000)
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(3a) , 4 BC Simulation - contoursof oxygen partial pressure (mmug) - -1.886e.03 mn (iteration 129500)
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Figure 3.2.6 : Oxygen partial pressure contours (cases are indicated at the top left).
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RBC Simulation - Oxygen pressure drop at steady state
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Figure 3.2.7: Oxygen partial pressure gradient vs. vessel size.
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Figure 3.2.8 : Oxygen partial pressure gradient vs. vessel size (equivalent vessel length).
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Case 2 is used to emphasize the previous observations for varying flow velocities. The resulting

curves showing blood dynamics are presented in Figures 3.2.9, 3.2.10, 3.2.11 and 3.2.12. Figure 3.2.9

supports directly our claim that the apparent viscosity generally decreases with increasing blood flow

(shear thinning or pseudoplastic behavior). Figure 3.2.10 shows also that RBC velocity correlates well

with average blood velocity for the cases where R, = 4.5 [im. As a direct consequence, the discharge

hematocrit also increases with increasing blood flow (see Figure 3.2.11). Figure 3.2.12 is found to

follow the same behavior as Figure 3.2.5, with apparent viscosity and discharge hematocrit located

on the same curve for all cases.

RBC Simulation - Apparent viscosity at steady state (R,=4.5 m)
4.4 r -- r - - -r - r-- - --
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Figure 3.2.9 : Viscosity vs. average flow velocity.
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ABC Simulation - RBC velocity at steady state (Rv=4.5pm)
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Figure 3.2.10 : RBC velocity vs. average flow velocity.
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Figure 3.2.11 :Discharge hematocrit vs. average flow velocity.
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RBC Simulation -Apparent viscosity vs. discharge hematocrit at steady state (R -4.5pm)
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3.6-
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Figure 3.2.12: Viscosity vs. discharge hematocrit.

The oxygen transfer results for case 2 are shown in Figures 3.2.13 and 3.2.14. We notice that

oxygen transfer clearly decreases with increasing flow velocity for an oxygenation level

corresponding to po2,in = 95 mmHg. This trend disappears almost completely at po2,in = 40 mmHg,

however, as the limits of oxygen supply capabilities are reached and oxygen release and diffusion

become limiting factors (as opposed to blood flow). Below the velocity of 2.5.104 m/s, oxygen

supply is found to remain quasi-constant at the venous end of the capillary, suggesting in vivo an

effective lack of oxygen supplied to the tissue, and illustrating the direct relation between ischemia

(restriction in blood supply) and hypoxia (shortage of oxygen).
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RBC Simulation -Oxygen pressure drop at steady state
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Figure 3.2.13 : Oxygen partial pressure gradient vs. average flow velocity.
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Figure 3.2.14 : Oxygen partial pressure gradient vs. average flow velocity (equiv. vessel length).

To identify the effects of reduced hematocrit, cases 5a and 5b are presented in the following

figures for a vessel hematocrit of 0.45 and 0.25. Firstly, Figure 3.2.15 shows the resulting blood flow,
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compared to the case of hematocrit 0.45. We see that a lower hematocrit results not only in more

spaced RBCs, but also in a different configuration, where the cells are more squeezed and more RBC

volume is confined around the centerline. The lubrication flow between the RBCs and the capillary

wall also seems to have a larger width, which shows how more stresses are supported by each RBC

on average.

RBC Simulation -velocity vectors - t-4.192et02ms (iteration 28800)(5a)
Hct =
0.45

radial distance
in meters

(5a)
Hct =
0.25
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Figure 3.2.15: Comparison of normal and low hematocrit blood flows.
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Figures 3.2.16, 3.2.17 and 3.2.18 show the resulting changes in dynamics. We see on Figures

3.2.16 and 3.2.17 how a drop in hematocrit from 0.45 to 0.25 leads to a drop of about 25% in

apparent viscosity, and an increase of about 37% in RBC velocity, with the same pressure gradient

along the capillary. Figure 3.2.18 shows that relative to the vessel hematocrit, the new cases still fit

remarkably well the apparent viscosity vs. discharge hematocrit curve obtained for cases 3 and 4.
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Figure 3.2.16: Viscosity vs. vessel hematocrit.
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RBC Simulation - RBC velocity at steady state (R .. 4.5pm)

--normal case. PO2=45mHg
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Figure 3.2.17 : RBC velocity vs. vessel hematocrit.
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Figure 3.2.18 : Viscosity vs. hematocrit ratio.

Figures 3.2.19 and 3.2.20 show the oxygen transfer performance profiles. We see that the lower

hematocrit levels lead to a significant decrease in oxygen delivery performance (- 21%), mainly due
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to the lack of oxygen supply, even though blood flow is increased. This shows once again the direct

relation between ischemia (restriction in blood supply) and hypoxia (shortage of oxygen).
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Figure 3.2.19 : Oxygen partial pressure gradient vs. vessel hematocrit.
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Figure 3.2.20 : Oxygen partial pressure gradient vs. vessel hematocrit (equivalent vessel length).
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Table 3.2.1 recaps qualitatively the main features of normal blood flow observed in the proposed

parametric study. The physical explanations are proposed to explain the trends observed:

(1)- variable vessel radii at constant velocity and hematocrit reflect local changes along a capillary

vessel. Since RBCs restrict viscous friction to the lubrication layer, it is expected that larger vessel

sizes correspond to lower resistance to the flow and slightly higher RBC velocity relative to the total

flow. While at smaller vessel sizes oxygen delivery is limited by diffusion, at larger vessel sizes and at

95 mmHg of oxygen partial pressure convection is the limiting phenomenon.

(2)- variable vessel radii at constant pressure gradient and hematocrit reflect variable vessel size for

capillary vessels arranged in parallel. Here the characteristics of the flow follow similar trends as the

previous case, amplified by the variations of total blood flow.

(3)- variations of total flow correspond to changes in blood supply, such as possibly due to hyper-

and hypotension. Increased blood flow is naturally expected to increase the elastic stresses in RBCs,

allowing them to flow faster, with a lower resistance to flowing. At a vessel size corresponding to

convection-limited oxygen transfer for a level of 95 mmHg of oxygen, increases in flow velocity

decrease the transfer as stiffer diffusion profiles emerge. On the other hand, at 40 mmHg, the

diffusion-limited oxygen transfer is very slightly improved by increasing blood flow.

(4)- variations of hematocrit at constant pressure gradient illustrates how the presence of RBCs affect

the flow under the same discharge constraints. At higher hematocrit levels the RBCs form trains of

cells that can bear the shear stresses and resist blood flow very efficiently, which leads naturally to

increased apparent viscosity and decreased RBC velocity. Oxygen transfer is also directly related to

the absolute concentration of oxygen carriers (hemoglobin), and increases with the hematocrit.
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the wall. Figure 3.3.2 shows the same results as Figure 3.3.1 at a constant pressure gradient (cases 4c

and 4a/4b). As we see, under low velocity flow the sickling RBC shape deteriorates considerably and

may obstruct the flow very differently. For vessel sizes below R, = 4 tm our algorithm leads to

form secondary "corners", as the polymerizing structure starts to fold onto itself. Without even

considering reorganization of the polymerized hemoglobin, we have already an illustration of how

sickled cells may come to completely obstruct the flow, even at the individual level. Also, for vessel

sizes below R, = 3.5 m the resulting RBC is found to reach computational limits, as it gets as close

as one numerical cell from the capillary wall. In the following analysis, we will therefore mention

these last results with caution (unconnected points and/or dashed lines).
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RBC Simulation- velocity vectors - t-1.048e+03 ms (iteration 7200o)
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Figure 3.3.1 :Compared steady state RBC shapes (left: normal; right: sickle).
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Figure 3.3.2 : Compared steady state RBC shapes (left: normal; right: sickle).

Figure 3.3.3 shows the apparent viscosity as a function of vessel size. As expected, we see for all

cases a significant increase in viscosity in the sickle case. In the case of constant velocity, between the

radii of 4 [Lm and 5 [Lm the apparent viscosity is always about 1.5 times higher than normal blood,

which follows the experimental observations of Chien, Usami and Bertles [621 and validates the use of

this value to set the baseline case. In the case of constant pressure gradient, we also observe a large
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increase in viscosity. At vessels of radius less than 4 .im, we observe a slight decrease in viscosity due

to the fact that the RBC gets squeezed and gets forced into a shape of smaller aspect ratio, giving

more "space" for the hemoglobin polymer to stretch (i.e. the lateral forces generated by our polymer

are slightly less important) We observe also secondary folding features in case 4 as observed in

Figure 3.3.2,. Since the obtained shapes become arguable, and are likely to go beyond the limits of

application of our model, we report these data points as dashed parts of the sickle case curves in

Figure 3.3.3. In the case (4c) for R, = 3 jm, although the result is numerically arguable, the obtained

result may be interpreted as an upper bound for the resistance to the flow.

RBC Simulation - Apparent viscosity at steady state

0.03 both cases, P02=95mnHg
normal case, P02=40mmHg
sickle case, P02=40mmHg

0.025 - estimated
max. error
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0.01-
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(3a-3b)

3 3.5 4 4.5 5
vessel radius (in m) X 10b

Figure 3.3.3 Apparent viscosity vs. vessel size.

Figure 3.3.4 shows RBC velocity as a function of vessel radius. We see here how the sickling

results in significant decreases in RBC velocity, even in the case of imposed flow velocity. This is

easily understood by the decrease of the lubrication layer between RBC and capillary wall. In the

constant pressure gradient cases (4), for vessel sizes between 3.5 tm and 4.5 rim, the RBC velocity

decrease represents 50% to 70% of the value for normal blood cells. Figure 3.3.4 illustrates the

"vicious cycle" described previously by Berger. Sickling RBCs resist more and more the flow as they

deoxygenate, which in turn makes them slow down, lose more oxygen, sickle more, and so on until

the RBC vessels get blocked.
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Figure 3.3.4 : RBC velocity vs. vessel size.

Figure 3.3.5 shows the discharge hematocrit as a function of vessel size. The decreased RBC

velocity in the sickle cases observed previously leads to a significant reduction in flowing hematocrit.

For vessel sizes below 4 rim, we notice that the shape changes shown previously lead to less stresses

from the hemoglobin polymer, and may decrease this effect.
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Figure 3.3.5 : Discharge hematocrit vs. vessel size.

Figure 3.3.6 shows the apparent viscosity as a function of discharge hematocrit. We observe here

a quasi-perfect correlation between the two variables along one curve, for all cases 3 and 4. The

relationship between apparent viscosity and discharge hematocrit is therefore a purely hydrodynamic

behavior of our model, independent of the sickling characteristics of RBCs. All the changes in

resistance to blood flow are directly related to how much the RBC obstructs the flow and how fast

cells flow compared to the total blood flow. Interestingly, even the most arguable sickle cases leading

to deformed RBCs fit very well on the curve, as does the case 4c with R, = 3 tm (point far on the

upper left side).
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RBC Simulation - Apparent viscosity vs. discharge hematocrit at steady state
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Figure 3.3.6: Apparent viscosity vs. discharge hematocrit.

Comparison between oxygen profiles between cases 3b and 3c is shown in Figure 3.3.7, and

between cases 4b and 4c in Figure 3.3.8. We see that for all cases sickling RBCs lead to a stretching

of the contour plots, indicating the lower RBC velocity, increased diffusion in comparison, and

overall less effective oxygen transfer to the surrounding tissue. Since the sickling RBCs are closer to

the capillary wall, they are more likely to transfer oxygen closer to the capillary walls, and the oxygen

profiles are therefore steeper. On the other hand, oxygen delivery becomes less homogeneous with

higher-oxygen regions at the sickling RBC corners, creating distorted oxygen profiles likely to

transport oxygen less efficiently (this is particularly visible on Figure 3.3.7 for R,= 4.0 pm).

Diffusion is increased here, but not homogeneously and since convection is reduced (RBC velocity is

lower), the overall oxygen transfer is reduced compared to normal cases.
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Figure 3.3.8 : Comparison of oxygen partial pressure levels (left: normal ; right: sickle).

Figure 3.3.9 and Figure 3.3.10 show the oxygen partial pressure gradients for the sickle cases. We

see here quantitatively how sickled cells lead to lower oxygen gradients. The oxygen delivery,

compared between normal and sickle cases at 40 mmHg (cases "b" and "c"), at radius 5 tm drops

from about 1.7.10' mmHg/m to 1.4.10' mmHg/m (- 18%), and at radius 3.5 jim from about

0.75.10' mmHg/m to 0.5.10' mmHg/m (- 33%).
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Figure 3.3.9 : Oxygen partial pressure gradient vs. vessel size.
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Figure 3.3.10 : Oxygen partial pressure gradient vs. vessel size (equivalent vessel length).
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Figures 3.3.11, 3.3.12, 3.3.13 and 3.3.14 show the analysis of RBC dynamics for case 2 including

the sickle cell model. We observe that:

(1)- the apparent viscosity of blood is considerably increased in the sickle case, for all the flow

velocities considered. With a vessel radius R, = 4.5 Lm, the ratio of viscosities between the normal

and sickle case is also found to decrease a little with decreasing flow velocities, from 1.5 at s,, =

2.5.10-4 m/s, to approximately 1.25 at ,i, = 6.25.10-5 m/s.

(2)- RBC velocity remains fairly well correlated with average flow velocity, with a small relative

difference at the parametric values considered. Sickle cases lead to a slight decrease in the RBC

velocity for all cases.

(3)- the discharge hematocrit is found to be significantly reduced in the sickle case, which is

obviously due to the reduced lubrication layer. The reduction in hematocrit value goes approximately

from 0.03 at Vi,, = 2.5.10-4 m/s, to 0.02 at in,, = 6.25.10~' m/s.

(4)- the relationship between viscosity and discharge hematocrit remains unchanged, and follows the

same curve as observed for cases 3 and 4. Sickle cases have both a higher apparent viscosity and

discharge hematocrit.

5

apparent viscosity
(in Pa.s)

4.5

4

RBC Simulation -Apparent viscosity at steady state (R,-4.5pm)
TI' F

both cases, P2-95mmHg
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I I I I I I ~
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Figure 3.3.11 : Viscosity vs. average flow velocity.
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64 RBC Simulation - RBC velocity at steady state (R,=4.5pm)
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Figure 3.3.12 : RBC velocity vs. average flow velocity.
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Figure 3.3.13 : Discharge hematocrit vs. average flow velocity.
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Figure 3.3.14 : Viscosity vs. discharge hematocrit.

Figures 3.3.15 and 3.3.16 present the analysis of oxygen delivery for the same case. Our results

show how sickling RBCs have worse oxygen transfer performance than normal cells. Especially at a

low oxygen level of po2,n = 40 mmHg, the already diffusion-limited oxygen transport to the

surrounding tissue is even more reduced by sickling.
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Figure 3.3.15 : Oxygen partial pressure gradient vs. average flow velocity.
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Figure 3.3.16: Oxygen partial pressure gradient vs. average flow velocity (equiv. vessel length).

Figure 3.3.17 presents results for the sickle case under low hematocrit. We observe a similar

deformation at a hematocrit 0.25 than at 0.45, with a RBC stretching towards the capillary walls. Like
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the normal case, sickle cells are more stretched along the flow in the low hematocrit case, which is

again due to more flow stress supported by each cell.

Figure 3.3.17 : Comparison of normal and low hematocrit bloodflow for the sickle cases.

Figures 3.3.18, 3.3.19 and 3.3.20 show the dynamical analysis of sickle cells for the 2 different

hematocrit levels. We see in Figure 3.3.18 how the reduced hematocrit leads again to a reduced
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apparent viscosity. The obtained result is believed to explain the relation between low hematocrit and

the deteriorated RBC structure : sickling RBCs lead to a high resistance to the flow per cell, which

reduces the RBC lifespan and/or production so much that the effective hematocrit decreases to a

low level. We see here that with our simple model the apparent viscosity obtained for sickle cells at a

hematocrit of 0.25 (3.44.10-' Pa.s), is very close to the value for normal blood at a hematocrit of 0.45

(3.31.10-3 Pa.s). This striking result strongly supports the hypothesis of a physiological adaptation to

stiffer sickle cells, in order to maintain an "acceptable" resistance to the flow in the capillary vessels,

and correspond to a sustainable cardiac pulse pressure. Comparably, we see on Figure 3.3.19 that the

RBC velocity at steady state is also increased at low hematocrit. This not only is a consequence of the

reduced viscosity, but is also bears the advantage of compensating the lower oxygen delivery by a

larger inflow. Figure 3.3.20 shows that the physiological relation between apparent viscosity and

hematocrit ratio is still verified, as all the points of all the cases studied fit on the same curve.

RBC Simulation -Apparent viscosity at steady state (RW=4.5m)

both cases, P02=95mmHg
normal case. P02=40mmHg
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5 - max. error

apparent viscosity
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3

0.25 0.3 0.35 0.4 0.
vessel Hematocrit

Figure 3.3.18 : Viscosity vs. vessel hematocrit.
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Figure 3.3.19 : RBC velocity vs. vessel hematocrit.
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Figure 3.3.20 : Viscosity vs. hematocrit ratio.

Finally, Figures 3.3.21 and 3.3.22 show the oxygen performance comparisons. We find that

unlike the normal cases, in the sickle case the reduced hematocrit considerably deteriorates the
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oxygen delivery. Despite the increase in RBC velocity, oxygen transfer remains really low, and gets

even much lower than all the normal cases. This result successfully reflects the anemic state of sickle

cell patients, and shows how, despite the dynamical adaptation to sickle cells, oxygen delivery cannot

be assured at normal levels. Since at lower hematocrit the blood oxygenation is expected to be lower

than normal at the capillary start, we see how this essentially results in both a shift of oxygen levels

(and gradients) to lower values, and poor delivery in surrounding tissues.

RBC Simulation - Oxygen pressure drop at steady state (R,=4.5m)
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Figure 3.3.21 Oxygen partial pressure gradient vs. vessel hematocrit.
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Figure 3.3.22 : Oxygen partial pressure gradient vs. vessel hematocrit (equivalent vessel length).

Table 3.3.1 summarizes the influence factors for the sickle cases. We see that besides the case of

low hematocrit, these variations are essentially the same than for normal RBCs, although the levels

are different. This illustrates how in the sickle case the dynamics follow generally the same

parametric behavior, with a system operating at different conditions leading to the state of anemia.

Because of the adapted dynamics in sickle cell disease at low hematocrit level, blood clogging is

therefore expected to be particularly rare and acute, and preceded by a seemingly "normal" blood

flow. The main indication of increased risks of vascular occlusion remains associated with the

increased proximity of the RBCs with the capillary walls.
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Table 3.3.1 : Influence factors of the blood microcirculation - sickle case (vessel radius range : 2.5-5.0 pm).

The simulation results presented in this section successfully show both qualitatively and

quantitatively the consequences of sickle cell disease. We have demonstrated that our dynamical

model allows a precise estimation of the changes in flow resistance and oxygen delivery performance,

for a large variety of parametric values corresponding to either variable physiological conditions

(such as vessel size) or disease characteristics (such as hematocrit level).

3.4. Synthesis of the simulation results, limits of the model and unveiled

perspectives towards a systematic study of therapeutic opportunities

This study successfully identified some major features of sickle cell disease. From the few cases

presented in Table 3.1.1, abnormal flow characteristics were determined precisely:

-the sickle model successfully reproduced the sickling RBC phenomenon. The current range of

application covers the capillary radii from approximately 3.5 lim to 5.0 lim for a flow velocity of 0.25
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mm/s. Lower velocities can reduce this range of application in the lower radii end (but changes in

numerical parameters may overcome this difficulty).

-abnormal flow characteristics were clearly reported as increased apparent viscosity of blood for the

whole range of vessel sizes at constant hematocrit level, with some variation depending on the cases.

This increase correlated perfectly with the decrease of discharge hematocrit.

-oxygen delivery performance was compared for all the cases. Abnormal oxygen delivery in the sickle

case was assessed quantitatively and was showed also to be correlated with the decrease of discharge

hematocrit.

-the combination of sickle characteristics with a reduced hematocrit of 0.25 successfully showed how

abnormal blood flow is likely to be compensated dynamically by the organism, leading to seemingly

normal dynamics and the characteristic unpredictability of sickle cell crises due to sudden vessel

occlusion. However, this still results in greatly affected oxygen delivery performance. The model

designed predicts successfully both influences of the 2 stages leading to serious permanent anemia

(i.e. due to sickling and due to low hematocrit).

The results presented here constitute a crucial step to advance towards larger-scale parametric

studies. Based on our detailed analysis, we can now reformulate the problematic of sickle cell disease

in terms of 2 major consequences observed. The increased apparent viscosity synthesizes the

dynamical effects, while the decreased oxygen partial pressure gradient captures the gravity of the

state of anemia. It is with these 2 quantities that we now propose to analyze quantitatively the effects

of therapeutical directions. The work presented in the next chapter is based on this conclusion.
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4. Identification and assessment of therapeutic opportunities

This chapter presents synthetically a large-scale, systematic analysis of a selected set of parametric

variations that would constitute therapeutic opportunities. We will first explain our selection of target

parameters in this study. Secondly, we will show and analyze for each case the results of our

simulations. Finally, we will conclude by a discussion on the found therapeutic opportunities, and

how these results can help to devise new directions for medical research.

4.1. Sickle cell treatment strategy

As mentioned in chapter 2, the full system of equations used in our model contains 38

parameters, excluding sickle cell models and numerical parameters. At this point these could all

constitute potential targets for therapeutical research. We propose to analyze the effects of existing

or alternative therapies through reasonable variations of these parameters in our model. Our study is

to be restricted to the parameters whose variations are perceived as realistic options for a near future,

considering the current state of availability of pharmaceutical treatments or short-term developments

in medical research.

4.1.1. Excluded parameters

Oxygen solubility, binding and dissociation constants regroup 11 parameters : a (oxygen

solubility - 5 values), kHb (kinetic dissociation rate constant of oxyhemoglobin), n (Hill coefficient),

pHb50 % (equilibrium oxygen partial pressure at 50% saturation of hemoglobin), and p O

(equilibrium oxygen partial pressure at 50% saturation of myoglobin), to which are added DHb

(diffusivity of hemoglobin) and D" (diffusivity of myoglobin). We believe at this point that changes

among these parameters would be either ineffective or undoable. Oxygen solubility can only be

changed through pressure or temperature unless blood composition is affected, which does not seem

to be a valid option as of today. And while changing the pressure can have more direct effects on the

flow and will be discussed later, changing blood temperature does not look either like a realistic

option. An increase in the kinetic dissociation rate constant is not expected to produce significant
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changes, as our analysis showed that it was never a limiting factor of oxygen transport. The

remaining parameters seem to be deeply associated with the chemical processes of oxygen binding to

hemoglobin and myoglobin, and we have found no research grounds to support possible

enhancements of oxygen release.

Mechanical elastic constants associated with the RBC membrane regroup 5 parameters : 0-0

(membrane tension at rest), Kb. (2-D bulk modulus), K,, (shear modulus), B (bending modulus),

and ko (curvature at rest). Changing these parameters seems unrealistic at this point, since it would

concern the membrane structure at the molecular level, and not only raise questions about how to do

it, but also about all the other functions of the RBC membrane that may be affected. Also, no

research was found on a possible implementation of such changes.

Excluded geometrical parameters regroup 5 parameters : RK (radius of the Krogh cylinder

model of oxygen transport), RT - R, (thickness of the interstitium), R, - R, (thickness of the

capillary wall), VRBC (RBC volume), and ARC (RBC surface area). Changes to the model geometry

could be achieved in theory by promoting vessel growth (angiogenesis) within an organ, effectively

making the capillary network more dense. VEGF-based treatments for example could constitute a

therapeutical option for research. However, increasing the vascularization is also likely to increase the

risks of vessel occlusion and sickle cell crises, especially as it would decrease the flow in each vessel.

In vivo changes of the geometry of the interstitium and capillary wall do not seem applicable either.

As for the RBC geometry, the only known process of volume change is regulated by osmotic

pressure, but departing from a normal osmotic equilibrium would undeniably be very adventurous.

To the previous group of parameters we should add that changing initial RBC dimensions

through the set of variables { s. , dso } and { R0 } follows the same arguments against changing VRBC

and ARBC, and are unlikely to constitute a therapeutical objective.

Finally, the local concentrations of hemoglobin, [Hb], and myoglobin, [Mb] are also not

considered of therapeutical interest. No research has been found to demonstrate the feasibility of

"packing" more hemoglobin inside a RBC. The underlying reason is probably that the natural

concentration of hemoglobin is already relatively high within the RBC. Alternatives such as

hemoglobin carriers outside the RBC will be discussed later. Myoglobin is also at a relatively high

concentration in muscular tissue, which is likely to limit any possible treatment (promotion of

myoglobin production is likely to simply result in increased muscular volume, not concentration).

161



4.1.2. Parameters independent of any permanent therapeutical action

(uncontrollable)

Parameters related to oxygen consumption, M. (in the capillary wall), and M, (in the muscular

tissue), reflect essentially normal metabolism and physical activity, which is not really controllable as

such by medical treatments and constitute rather external factors imposed on the rheology, and are

therefore excluded from our study.

The oxygen level at capillary entrance, po 2 i (95mmHg), is also not considered as a potential

target in our study : while increasing the level of oxygen is possible with oxygen masks and

hyperbaric oxygen therapy, it is more considered here as a temporary measure used for emergency

treatment. Both treatments, under permanent use, are also subject to a large range of secondary

effects from nausea and vertigo to oxygen toxicity (or oxygen poisoning), potentially resulting in

major damages to cells and the central nervous system. Reduced exposure on a regular basis may

constitute an alternative [951, although the improvement may only be transient [81. Further research on

the possible benefits and drawbacks could definitely allow us to address this possibility as a potential

therapeutical target. Interestingly, the same type of study may be used to address the adverse effects

of an impaired air ventilation (such as due to pulmonary infections, or obesity), and prolonged

exposure to low-pressurized environments, such as in altitude or space.

4.1.3. Therapeutical targets retained, working hypotheses and possible

implementations

The 12 remaining parameters are R. (capillary vessel radius), in, (average inlet velocity),

(average pressure gradient between 2 RBCs), Hct (vessel hematocrit), P (plasma/cytoplasm

viscosity), D (oxygen diffusion constant - 5 values), and p (blood density).

Acting on capillary vessel size comes directly from our previous analysis : since sickling RBCs

tend to obstruct more blood flow, we will consider dilating capillary vessels as a first option for

therapeutical treatment. Vasodilating drugs exist currently to achieve vessel size augmentation,

although the absence of smooth muscle in the small capillaries does not make it appropriate for such

vessels, and suggests a need for research for alternative techniques. The main drawbacks of a
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vasodilating treatment are connected to hypotension symptoms, reduction of blood flow potentially

leading to coagulation and formation of peripheral blood clots, and compensation by the heart

through pulse acceleration. Also, avoiding exposure to cold environments is desirable to prevent

vasoconstriction.

Increasing blood flow was also researched as a way to enhance sickle cell disease, taking

advantage of the blood shear thinning properties. Cardiotonic drugs such as digitalis, Common

Inotropic and Cardiotonic Drugs (CICDs), or even caffeine, can be used effectively to increase

cardiac output. Platelet antiaggregants would reinforce the effects of such drugs by decreasing plasma

viscosity (hence facilitating increase in velocity instead of increase in blood pressure). However,

undesired effects may result from pulse acceleration (tachycardia), and a reaction of the organism

leading to vasodilatation, in order to compensate an increased peripheral blood viscosity.

Increasing pressure levels in the organism is very similar to increasing blood flow, since it implies

also a stimulating action on the heart. Again, we hypothesize here positive effects from "forcing" the

RBCs to flow down the capillaries. Cardiotonics without platelet antiaggregants are a possible

implementation, to increase cardiac output, but not reduce blood viscosity to obtain lower flow for

the same pressure level. Again, major issues may rise at the cardiac level due to pulse acceleration,

but also in the peripheral circulation due to the abnormal high pressure (organ damages in the brain,

the lungs, and other hypertension symptoms).

Increasing the hematocrit was a hypothesis formulated to compensate directly the poor oxygen

delivery performance, especially starting from the low hematocrit of 0.25 in sickle cell patients. Here

a large variety of implementations exist, such as EPO injections. However when the hematocrit goes

beyond normal levels (polycythemia), risks of occlusion may become very important. Platelet

antiaggregants and anticoagulant drugs may decrease the risks, but only up to a certain level.

Decreasing the viscosity of blood plasma or cytoplasm directly is also a very interesting idea that

we would like to explore to reduce the resistance of whole blood. For simplicity, we will restrict our

study to varying plasma viscosity, since it is expected to be both easier to implement, and more

consequential. Here as mentioned earlier platelet antiaggregants would be a possible implementation

that we consider, keeping in mind the limits associated with these drugs. Also, avoiding dehydration

is known to favor a lower plasma viscosity.

To act on the low oxygen delivery performance of sickle cell patients, we also propose to

examine possible action on oxygen diffusion constants. The opportunity of improving oxygen

transport is supported by recent research on free oxygen carriers, such as free plasma hemoglobin

presented in the work of Vadapalli, Goldman and Popel [1"8. As the most plausible implementation,
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our study will focus on increasing diffusivity of blood plasma only, as an implicit model for such

therapies, and ignore variations of diffusivity in other regions.

Finally, we propose to examine the possible effects of changes in blood density. Although the

implementation is highly questionable, we hypothesize that diuretic therapies or other methods

favoring water retention or elimination may lead to such changes in blood density.

Table 4.1.1 recaps the list of target parameters selected, effectively reduced to 7 parametric

studies.

Parameter idea how ? comments/secondary effects

increase vasodilating drugs hypotension, peripheral clots,
pulse acceleration

cardiotonics (digitalis, caffeine) +v,, increase cardeo t (itia fene) pulse acceleration, vasodilatation
platelet antiaggregants

increase cardiotonics (digitalis, caffeine) pulse acceleration, organ damage

dz (brain, lung)

EPO (+ platelet antiaggregants + peripheral clots, polycythemia if
Het increase anticoagulants) too high

p decrease platelet antiaggregants very few adverse effects

D, increase plasma oxygen carriers relatively recent research

P decrease diuretic action ? blood range of variation is relatively
supplements ? small

Table 4.1.1 : target parameters for sickle cell treatment strategy.

It is important to note that, although most of the drugs cited are generally used to restore a

normal state, we are here considering their theoretical use to depart from a normal state, with the

idea to compensate sickle cell dynamics by another mechanism. One must keep in mind that, since

we are not advising a typical use of these drugs, the organism may not only respond unexpectedly to
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such constraints, but also react against therapeutical implementations and enforce the natural

physiological regulation of the body functions.

For our simulations, we note that v, and cannot be changed independently at a constant
d z

vessel radius, but only at a varying radius. Therefore, the 7 proposed parametric studies of potential

therapeutical targets will consist in:

- varying vn, at constant RW, Hct, p, D, and p. The proposed values are 0.0625 mm/s, 0.125

mm/s, 0.1875 mm/s, and 0.25 mm/s (velocities higher than 0.25 mm/s were numerically more

unstable, so we chose to do our analysis starting at lower velocities).

- varying R., at constant Vi,,, Hct, p,, D, and p. The capillary radii examined are the same as in

the previous chapter, i.e. 2.5 Vm, 3.0 pm, 3.5 Rm, 4.0 Rm, 4.5 Rm, and 5.0 Rm. To give an idea of

the relevance of these values, one can note that for our set parameters (in particular RBC volume and

surface area), the minimal radius possible for RBCs to be able to flow down a capillary vessel is

1.4227 jim, and the maximal theoretical radius to maintain RBCs aligned on the centerline under no

flow is 6.6348 jim at hematocrit 0.45, and 8.9015 jim at hematocrit 0.25.

(dp~
- varying R., at constant dz Hct, p,, D, and p. We use the same values of capillary size as

above.

- varying Hct, at constant R., , p,, D, and p. The hematocrit will take the values 0.25,

0.35, 0.45, and 0.55 as representative cases.

- varying p,, at constant R., , Hct, D, and p. The work of Laogun et al. [651 shows that in

sickle cell patients undergoing crises, p, can raise from 1.4.10- Pa.s to 1.7.10-3 Pa.s. We will

therefore consider as a reasonable set of values 1.1.10-3 Pa.s, 1.4.10-3 Pa.s, and 1.7.10- Pa.s (1.1.10-

Pa.s being our hypothesized improvement opportunity).

- varying D,, at constant R., z, Hct, p, and p. Published work by Menchaca et al. [45]

suggests a possible improvement of 30% of oxygen diffusive transfer, so that we will consider values

of 1.7.10-9 m2 /s, 2.4.10-9 m 2/s, and 3.1.10-9 m2/s to illustrate the range of possible values (3.1.10-

m 2/s being the hypothesized improvement opportunity).
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- varying p, at constant R,, dz-, Hct, p and D,. Since the density of cytoplasm is about 10%

higher than that of plasma (1125 kg/m 3 instead of 1025 kg/m 3), we hypothesize a characteristic

range of accessible values from 925 kg/m 3 , to 1125 kg/m 3, and include again the reference 1025

kg/m 3 .

These case studies will be denoted A through H (including the baseline). For each of them, our

analysis will compare the cases of RBCs at 95 mmHg, normal RBCs at 40 mmHg, and sickle cells at

40 mmHg. We will focus exclusively on the effects of parametric changes on both apparent

viscosity, and oxygen consumption characteristic length (equivalent length at a given oxygen

partial pressure gradient, to decrease the level from 95 mmHg to 40 mmHg).

4.2. Simulation results, and comparative analysis of therapeutical

hypotheses

In order to appropriately estimate and compare the benefits of each parametric variation, we will

represent the results with the same synthetic curve, showing explicitly the tradeoff between oxygen

consumption and apparent viscosity of the calculated flow. Since we have cases at constant velocity

and constant pressure gradient, we set 2 baseline cases corresponding to either i, = 0.25 m/s or

-- 3.25.10 5 Pa/m, and R, = 4.5 tm, Hct = 0.45, p = 1.4.10- Pa.s, D, = 2.4.10-' m 2/s and

p = 1025 kg/m 3 (see Table 4.2.1). Together with whole blood apparent viscosity, oxygen

consumption is represented by the equivalent capillary length, calculated to get from 95 mmHg to 40

mmHg at the partial pressure gradient obtained by our simulations. Figure 4.2.1 shows the results for

the 2 baseline cases.

R( vin Hct p D, p
__ dz)

4.5 pim 0.25 m/s 3.25.105 Pa/m 0.45 1.4.10- Pa.s 2.4.10-' m2 /s 1025 kg/m 3

Table 4.2.1 : baseline values of the target parameters.
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Figure 4.2.1 : baseline cases (A).
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o both cases, P02-95mmHg
o normal case. P02-40mmHg
o sickle case, P02-40mmHg

estimated
max. error

S g

U
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Figure 4.2.2: baseline cases (A) : schematic of therapeutical objective.
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As we see on Figure 4.2.1, the problematic of sickle cell disease can be summarized in our

context, as follows : the potential therapies we want to assess by simulations will focus on both

bringing back apparent viscosity to levels corresponding to the normal cases (about 3.3.10-3 Pa.s),

and improving oxygen delivery to bring back the characteristic length to a normal value (about 0.4

mm, which is to be interpreted as the "effective" capillary length of oxygen absorption predicted by

our model). Figure 4.2.2 illustrates this double objective.

Figure 4.2.3 shows the theoretical results obtained after changes in the inlet velocity i,,

corresponding to the first proposed parametric study (B). Our simulations show that varying inflow

does not seem to be able to both improve blood dynamics and oxygen delivery of low-oxygenated

sickle blood : while increasing velocity decreases the apparent viscosity, it penalizes oxygen delivery

as the RBCs get further from the capillary walls. RBCs flowing faster may improve oxygen transfer

by convection, but it is largely overcome by the penalty on oxygen diffusion due to the larger gap

between RBCs and capillary. Inversely, decreasing velocity improves oxygen transfer but deteriorates

greatly the dynamics.

S10-- RBC Simulation - Oxygen transfer vs. Apparent viscosity - varying inlet velocity

- both cases, P02=95mmHg
-normal case, P02=40mmHg

sickle case, P02=40mmHg

estimated
max. error

Oxygen consumptic n Vn (nis)
characteristic lengt 1

(in m) 0.25

0.0625

0.5-

0 1 2 3 4 5 6 7 8
apparent viscosity (in Pas) 3

Figure 4.2.3 : case study B : variable inflow.
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Figure 4.2.4 shows the potential effects of increasing vessel size at constant inlet velocity. As we

see here, there is a clear opportunity for improvement of both dynamics and oxygen delivery. In

particular, we notice that for sickle blood at 40 mmHg, increasing the radius from the baseline case,

R, = 4.5 tm, to R, = 5 tm, brings both apparent viscosity and oxygen consumption characteristic

length below the calculated values of normal blood at the same oxygen level. The dashed part of the

blue curve indicates questionable results due to secondary folding of the sickled cells.

1. 3 RBC Simulation - Oxygen transfer vs. Apparent viscosity - varying capillary size. cst Inlet velocity

1 - T 1 1
-both cases, P02-g5mmHg

normal case, PO2=40mmHg
/ sickle case, P02-40mmHg

Oxygen consumptik n
characteristic lengt N

(in m)

0.5-

5.0 4

0 1 2 3 4 567B
apparent viscosity (in Pays) cs10

Figure 4.2.4 : case study C: variable radius, constant inflow.
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Figure 4.2.5 shows comparatively the same vessel size variations as Figure 4.2.4, but at constant

pressure gradient across the cases. As we see, there is again a great opportunity for improvement of

both blood dynamics and oxygen delivery. Moreover, we see that the change between R, = 4.5 jim

and R, = 5 jim, leads to a greater relative decrease in apparent viscosity than in case study C. The

improvement of oxygen delivery performance is slightly smaller (oxygen consumption characteristic

length reaches 0.41 mm), but still very close to the value of normal blood at 40 mmHg (0.40 mm). At

R, = 5 jim, the sickle case results in blue get very close to the normal cases, suggesting a quasi-

normal behavior of sickle blood with an acceptable oxygen performance.

x10 RBC Simulation -Oxygen transfer vs. Apparent viscosity - varying capillary size, cst pressure gradient
1.5 - - - - - - - - -

both cases, P02=95mmHg
normal case, P02-40mmHg
sickle case, P02=40mmHg

1

Oxygen consumptic
characteristic lengi

(in m)

estimated
max. error

R, (pm) 2.5 -

5.0 N'

apparent viscosity (in Pa.s)
a

x 1O

Figure 4.2.5 : case study D : variable radius, constant pressure gradient.
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Figure 4.2.6 shows the potential effects of enforcing different values of blood hematocrit. The

curve representing low-oxygenated sickle blood (in blue) shows how varying hematocrit would not

be efficient. While increasing the hematocrit is shown to improve oxygen delivery, the impact on

apparent viscosity is terrible. We notice that, in accordance with our conclusions in Chapter 3, the

low hematocrit of sickle cell patients, 0.25, seems to result from a natural bias, favoring normal blood

dynamics over reduced oxygen delivery. Keeping this result in mind, we can hypothesize therapeutic

strategies combining this natural behavior with another induced parametric variation. This would

lead to possible benefits in 2 ways. One idea would be to research a potential therapy that would

mainly improve oxygen delivery, assuming that the hematocrit regulation would be enforced by the

organism in order to maintain the apparent viscosity to a normal level. The other idea would be to

research a potential therapy that would reduce greatly the apparent viscosity (i.e. below normal

levels), and expect the organism to regulate the hematocrit back towards 0.45, or even maybe higher

levels, to restore a normal apparent viscosity, with an eventual benefit in oxygen delivery. As an

example put to the test, the results of case study B present a very similar curve to that of variable

hematocrit, so that very little improvement would be expected from any combination of the 2

parametric variations.

X 103 RBC Simulation -Oxygen transfer vs. Apparent viscosity - varying hematocrit, cst pressure gradient

- both cases, PO2-95mmHg
normal case P02-40mmHg
sickle case, P02-40mmHg

estimated
max. error

Oxygen consumptikn HCt
characteristic length

(in m) 0.25

0.55

0,5

0 1 2 3 4 5 6 7 a
apparent viscosity (in Pa.s) x 10'

Figure 4.2.6: case study E : variable vessel hematocrit.
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Figure 4.2.7 shows the results of variations in plasma viscosity. As expected, decreasing plasma

viscosity acts directly on decreasing whole blood viscosity, even though it brings it down only half-

way towards the value of normal blood. Unfortunately, we also see that the oxygen consumption

characteristic length increases a little when plasma viscosity decreases, which effectively means

worsening the state of anemia. In light of the results of case study E, it may be possible to consider

the success of a therapy based on combining reduced plasma viscosity with hematocrit regulation.

One of the main challenges of such a therapy would reside in being able to reduce considerably the

plasma viscosity, by extrapolation about twice as much as we hypothesized for the lowest value (in

other terms plasma viscosity would have to be decreased to 0.5.10- Pa.s, which is below water at

body temperature, 0.7.10-3 Pa.s...). Even though this result does not seem to be accessible, it is

important however to keep in mind, that even a partial improvement of the disease remains an

opportunity worth being considered for therapeutical research.

x 10 RBC Simulation - Oxygen transfer vs. Apparent viscosity - varying plasma viscosity, cst pressure gradient

both cases, P02=95mmHg
normal case, P02=40mmHg
sickle case, P02=40mmHg

estimated
max. error

Oxygen consumptic n
characteristic lengt ip (Pa. s)

(in m)

.1.7. 10

0.5-

0 1 2 3 4 5 6 7 8
apparent viscosity (in Pa.s) X 103

Figure 4.2.7: case study F : variable plasma viscosity.
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Figure 4.2.8 shows the potential benefits from changing the effective oxygen diffusion constant

in the blood plasma. We see here that our estimated window for improvement of oxygen diffusion,

up to about 30%, can decrease the oxygen consumption characteristic length from 0.56 mm to 0.44

mm, which is very close to the value of our baseline case for normal low-oxygenated blood (0.40

mm). However no significant change of the apparent viscosity was observed.

1 8BC Simulation -Oxygen transfer vs. Apparent viscosity - varying oxygen diffusion constant, cst pressure gradient
1 T-1

both cases, P02-95mmHg
normal case, PO2-40mmHg
sickle case, P02-40mmHg

estimated

17.1- II max. error

1I
Oxygen consumptikn D, (m2/s)
characteristic lengt 4

(in m) 3.1.10-9

0.5

0'
0 1 2 3 4 5 6 7 a

apparent viscosity (in Pa.s) x 10'

Figure 4.2.8: case study G: variable oxygen diffusion constant in blood plasma.
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Following our results for case study G, we extrapolated the impact of varying oxygen diffusion

constant for low-oxygenated, sickle blood at a hematocrit of 0.25. Figure 4.2.9 shows these results in

addition to case study G. We see now that not only the oxygen performance becomes nearly that of

normal blood, but also the apparent viscosity, down from 5.63.10-3 Pa.s to 3.45.10-3 Pa.s (to be

compared with the calculated value in the baseline case for normal low-oxygenated blood, 3.32.10-3

Pa.s).

RBC Simujr - Oxygen transfer vs. Apparent viscosity - varying oxygen diffusion constant, cst pressure gradient (extrapolation Hct=0.25)
1 .5r----r------r--- r----r

1
Oxygen consumptic
characteristic lengt

(in m)

4
apparent viscosity (in Pa.s)

8
x 10'3

Figure 4.2.9: case study G: variable oxygen diffusion constant in blood plasma (with dashed
points as extrapolation of the case Hct = 0.25).
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Finally, Figure 4.2.10 shows the results of case study H, where we vary blood density. As we see,

the small relative variation of blood density does not lead to any appreciable change, neither in

apparent viscosity, nor in oxygen delivery performance. In fact, the changes obtained end up well

below the estimated precision of our simulations.

x 103 RBC Simulation - Oxygen transfer vs. Apparent viscosity - varying blood density, cst pressure gradient
1.5 ~ ~ ~ ~

both cases, P02-95mmHg
normal case, PO2-40mmHg
sickle case, P02-40mmHg

estimated
max. error

1- 925
Oxygen consumpt n3
characteristic longt N

(inm 1125

0.5-

0 1 2 3 4 5 6 7 8
apparent viscosity (in Pas) X 10'

Figure 4.2.10: case study H: variable blood density.

4.3. Conclusions on potential directions for medical research

Table 4.3.1 recaps the results obtained in the proposed study of potential therapeutical targets.

Our research has demonstrated with the current model, the existence of 2 potential therapeutic

opportunities accessible by a single parametric variation. The first positive result is related to an

enlargement of capillary vessel size, where we have showed the considerable impact on both blood

dynamics and oxygen delivery. Although the feasibility remains highly arguable, this result constitutes

a very powerful direction for medical research. The second positive result is related to an increase in

the effective oxygen diffusion constant, which combined with the low hematocrit of sickle cell

patients constitutes an original research hypothesis to treat sickle cell disease. This important result
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strongly supports further research on free oxygen carriers in blood plasma as a possible new therapy

for sickle cell disease. Finally, our simulation results suggested that decreasing plasma viscosity may

be a possible third option for improvement, although apparently limited in extent.

Parameter idea efficient target ? comments

better at constant pressure
R, increase Yes gradient (= within organ) than at

constant inflow (=along capillary)

i increase

No decreases apparent viscosity,
but deteriorates oxygen transfer

(dp. increase

dz

Hct increase No improves oxygen transfer,
but increases apparent viscosity

decreases apparent viscosity,

p decrease Maybe and oxygen delivery may be
partially restored by the organism

(hematocrit compensation)

improves greatly the state of

Dp increase Yes anemia, and is likely to be a happy
combination with a low

hematocrit level

P decrease No very limited effects, at a high risk

Table 4.3.1 : Conclusions of the case studies on potential therapeutical targets.
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5. Conclusions

5.1. Doctoral contribution

The doctoral work presented in this thesis has successfully:

- defined a rigorous model for blood dynamics in the microcirculation. This model not only gathers

the most recent and most detailed theoretical description of blood dynamics and oxygen transport,

but is also designed to be able to address specific issues that require the combination of fluid

dynamics, RBC membrane mechanics and oxygen convection, diffusion and consumption.

The resulting number of physical parameters has offered possible implementations of a large variety

of scenarios and comparative studies.

- designed a comprehensive model for sickle cell disease. This model is based on an original

modeling of the sickling mechanism, taking advantage of recent progress made in understanding the

molecular growth of sickle hemoglobin (HbS) polymers. This innovative model has allowed a

systematic assessment of the abnormal characteristics of blood flow, with a strong emphasis on the

physical causes and the chain mechanism leading to impaired blood properties.

- used simulation results to improve our knowledge of blood microcirculation and sickle cell disease.

In particular, we have successfully demonstrated the quantitative influence of some parameters

reflecting a variety of physiological situations. Among the many observations, we were able to report

the evidence of a maximum of oxygen transport with respect to varying vessel sizes. We also

identified clearly the consequences of a reduced hematocrit among sickle cell patients, being

beneficial to the apparent viscosity, but aggravating oxygen delivery performance. The modified

dynamics of sickle blood at low hematocrit strongly support the hypothesis of a natural adaptation to

sickling RBCs, and provide also a rational explanation to the unpredictability of sickle cell crises.

Sickle cell anemia has thus been quantitatively related to its combined causes, sickling RBCs and

reduced blood hematocrit. Finally, from our improved understanding has emerged a concise

problematic to address potential therapies for sickle cell disease. To provide a quantitative
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assessment of potential therapeutical targets, our methodology proposed to focus on the measured

impact of induced parametric changes on both apparent viscosity and oxygen delivery performance.

- identified and assessed therapeutic directions for the treatment of sickle cell disease. The

opportunity of further research on specific therapeutical targets was established, based on available

medical implementations, on the simulated effects on blood dynamics and oxygen delivery, and on

possible compensatory mechanisms by the organism (i.e. the adaptation of hematocrit to regulate

blood viscosity).

This research has unveiled the possibilities of novel medical research based on large-scale

numerical simulations and systematic analysis of parametric variations, and intends to pave the way

for the development of innovative therapeutic directions.

5.2. Future steps for sickle cell research, determination of risk factors for

crises

In light of our results, the need for further research has emerged in a few directions. Firstly,

experimental research is obviously needed to complement our results. Not only would we benefit

from getting more information about the disease, and refining our model, but also from being able to

verify our hypotheses, our predictions and conclusions. Direct measurements of quantities such as

apparent viscosity in capillary-sized vessels, whether in vitro or in vivo, is an example of data where

very little documentation was found for sickle cell disease. On the other hand, more details about the

mechanisms of hemoglobin polymerization would also improve our model, allow us to estimate

more directly the model spring constants and length function of the HbS polymer, or even suggest

larger model improvements, such as a direct implementation of Ferrone's model.

The second research opportunity is clearly to use our results to identify risk factors for crises.

With medical research showing the driving factors of sickle cell crises, the current model could be

used to identify possible correlations between the risk of crises and blood dynamics. For example,

the occurrence of crises could be compared to how close to the capillary wall the RBCs end up in

our model, for varying physiological situations. Then, modern techniques to visualize blood flow in

real time could be used to measure various quantities such as blood velocity in a sickle cell patient,

and our model would participate in the elaboration of simple diagnostic tools. This would be a first
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step to potentially provide successful monitoring of physical activity, blood composition and other

physiological factors as many indicators of risk probabilities of vessel occlusion. To extend this field

of research, we could also look at situations involving physical activity and reduced oxygenation from

the lungs (such as in low-pressurized environments).

A third research opportunity resides in using numerical simulations to predict the effects of

existing or upcoming therapies. For example, a recent paper suggested possible improvements in the

condition of sickle cell patients from the combination of EPO with hydroxyurea ['41. An appropriate

numerical model could help us here in understanding better the mixed interactions between such

drugs and sickle blood, determine the optimal proportions and measure the possible drawbacks.

5.3. Simulation model as an analytical tool: extension of parametric

studies, integration in larger models

Finally, we hope that our work can contribute to the development of other blood research topics.

Firstly, further work is expected to address more complex descriptions of blood flow

(converging-diverging channels, asymmetric time-dependent flow, bifurcations, ... ). Various research

publications address these issues separately, and can be already used to grow our model.

Recent bioengineering models have found a large echo in the field of cardiovascular diseases and

artificial heart engineering. On the other end models of the microcirculation have also expanded

recently, and our work is intended to participate in the development of this area. Through the study

of blood dynamics in vessel networks, and the development of organ-specific models, the

cardiovascular and microcirculation research fields are eventually expected to meet and allow a

complete modeling of blood circulation. With this perspective in mind, our work emphasizes the

possibilities of large multi-variable studies, to successfully reproduce, interpret and predict various

physiological observations, for both natural and induced situations, with the possibilities of a

complete global assessment of the blood circulation.

The inclusion of the problematic of oxygen delivery, and its exploitation to achieve specific

research purposes, can be generalized to any substance subject to blood distribution and regulation,

with considerable impact on medical research. Our work not only showed the investigation of a

particular research problem, but also the design of a whole methodology to approach research topics

involving blood transport. In this context, similarly-designed blood simulation models are to be used
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not only to improve our understanding, but also to help redefine research objectives in very specific

terms, and use synthetic quantitative methods for systematic assessment of research hypotheses.

Last but not least, our work could be used to address directly other blood diseases with minor

changes. This includes investigation of other RBCs abnormalities, in size (anisocytosis, macrocytosis,

microcytosis), in shape (acanthrocytes, echinocytes, elliptocytes, keratocytes, spherocytes, spicules,

leptocytes a.k.a. target cells, dacrocytes a.k.a. teardrop cells, RBC rouleaux), or in intracellular

structure (normoblasts a.k.a. nucleated cells, reticulocytes, siderocytes, basophilic stippling, Heinz

bodies, Cabot's rings). This includes also dynamics of normal and abnormal white blood cells. Last

but not least, recent findings have shown evidence of abnormal RBC dynamics among patients

infected with malaria [47], which therefore constitutes another potential topic for future research.
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Appendix A: Oxygen dissociation curves

The 2 main proteins binding oxygen in the human body are hemoglobin and myoglobin. Despite

their similar function, they have indeed very different binding properties. Myoglobin is a globular

protein (globin) containing a non-protein heme group (which binds oxygen through an iron ion),

whereas hemoglobin is an assembly of 4 globin subunits, each having its own heme group. Oxygen

binding to a hemoglobin tetramer comes with conformational changes, which are significantly

improving the binding capability of the other empty sites. Therefore, the binding of oxygen to

hemoglobin is characteristic of "cooperative binding", while myoglobin is not.

These properties are reflected in the oxygen dissociation equations and profiles of myoglobin and

hemoglobin.

The binding of oxygen to myoglobin is chemically represented by the following reaction:

Mb + 02 4 M2

Using the law of mass action and assuming dilute solutions (to use concentrations instead of

activities), the equilibrium expression is :

[MbO 2]K = ,(A.1)

[Mb] [02]

where [02], [Mb], [MbO 2 ] are respectively the concentrations of free oxygen, unbound myoglobin

and bound myoglobin, and Km is the reaction equilibrium constant, mainly dependent on

temperature and pH. Substituting in Equation (A.1) the unbound myoglobin by the total (bound and

unbound) myoglobin [Mb],0 , , we can rewrite equilibrium as:

K, [O2]3

[MbO 2] = [M3b]t 0o1 .0 ] (A.2)
I + KMb [021

Then defining the myoglobin saturation Smbas the ratio of bound myoglobin to total myoglobin,

Equation (A.2) becomes:

s =b ,2 (A.3)
I + KAM [02]1
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which is the Hill equation applied to myoglobin, (non-cooperative binding form). Using Henry's law

for a dilute solution of oxygen, [02] = a p 0 2 with a the solubility constant, and replacing the

constants with the partial pressure at 50% saturation, Equation (A.2) becomes

s = A P02 , (A.4)
p0 2,50% + po2

where p0 2 ,50% = (KA a) 1 .

Similarly, the binding of oxygen to hemoglobin is represented by the following equation:

Hb4 + 402 * Hb4O8

Note that this assumes that all oxygen molecules would bind together, and neglects the presence of

all intermediate compounds. Using the law of mass action, the equilibrium expression is:

KHb = [Hb4O8  , (A.5)
[Hb4] [O2]

where [02], [Hb4], [Hb4 08] are respectively the concentrations of free oxygen, unbound

hemoglobin and bound hemoglobin, and KHb is the reaction equilibrium constant, mainly dependent

on temperature, pH, and also on concentration of some interfering molecules such as C0 2 , CO and

some compounds produced in the erythrocytes (such as the 2,3-DPG organophosphate).

Substituting in Equation (A.5) the unbound hemoglobin by the total (bound and unbound)

hemoglobin [Hb],,,, we get:

[Hb40 8] = [Hb],0 , - . (A.6)
1 + KHb [02

Then defining the hemoglobin saturation SHb as the ratio of bound hemoglobin to total hemoglobin,

Equation (A.6) becomes:

sHb KHb [02]4 (A.7)
1 + KHb [02 ]

which is the Hill equation applied to hemoglobin, (cooperative binding form). In Equation (A.7) the

Hill coefficient is 4, which assumes an elementary binding mechanism where the 4 oxygen molecules

bind simultaneously to hemoglobin, and leads to the associated increased propensity to bind

(cooperativity). However, the assumption of all oxygen molecules binding together (infinite

cooperativity) is never matched (intermediate compounds exist), and moreover the equilibrium
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constants are different for the a- and the p-globins binding to oxygen. Experimental data has shown

that the effective Hill coefficient of the oxyhemoglobin dissociation profile was significantly lower

than 4, about 2.2 at the temperature and pH of human body 108]. Using Henry's law and introducing

the equilibrium partial pressure at 50% saturation, Equation (A.7) becomes:

n

SHb 2 , (A.8)

p02, P
Hb n-n

where n is the effective Hill coefficient, and p2,5so% = (KHba)

The oxygen dissociation curves are shown in Figure A.1 (Note: the constants used there slightly

differ from our model). The myoglobin curve is hyperbolic, while the hemoglobin curve is sigmoidal.

Among factors known to influence the dissociation curve, temperature shifts it upwards, pH

downwards (which is known as the Bohr effect), and 2,3-DPG concentration shifts it upwards. More

complex empirical models exist, such as Kelman's equation, with extensions to include temperature,

pH and other factors (Source : http://www.ventworld.com/resources/oxydisso/dissoc.html).

100 -
Myoglobin

Hemoglobin
80 -

4 hemes
Hemoglobin found in RBC

60 - 02/CO 2 transport

4 Myoglobin

PO PSO I home
20 found in muscle

02 storage

0
30 60 90

Po, (mm Hg)

Figure A.] : Hemoglobin and myoglobin dissociation curves
(source:http.//www.colorado.edu/intphys/Class/IPHY3430-200).
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In the case of sickle hemoglobin, experimental data shows a rightward shift of the profile, as

presented by Berger and King [1231. Figure A.2 shows this shift, which Berger has related to a simple

change in p H , from about 25 mmHg to 40 mmHg (n is also closer to 3).
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pot (mmNg)

Oym diawooiie carYe of husaa mri aa bagiabin ad bemoglabi fow i&ividmals
with uAsicidsam auimi.

Figure A.2 : Sickle hemoglobin dissociation curve (from Berger and King 1).
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Appendix B-1 : Derivation of the generalized constitutive

equations - fluid dynamics

The dimensions of interest of our research (-rn) are appropriate to use classical continuum

mechanics throughout this work. In this context blood plasma and cytoplasm are to be described

with fluid mechanics, starting with the generalized Navier-Stokes equation:

ap + i-Yp + pv-9 = 0 , (B.1)
at

p - + (- = V .T + p4 i + , 5(F - Xb), (B.2)

where p(i,t) is the fluid density, i(F,t) is the velocity vector, V the del operator (spatial vector

differential), k(F,t) the total body force per unit mass, T(i,t) the total stress tensor in the fluid

(force per unit surface), fb (Xb) the total force per unit surface at the fluid boundary, whose surface

is defined by Xb (gb , t) and parameterized by Wb , and 5 is a 1-dimensional Dirac distribution. In our

case body forces are essentially gravitation (Lorentz electromagnetic forces are ignored since we

ignore ionic activity). Examination of the Froude number further justifies ignoring gravitation. Also,

the very low Mach number justifies assuming the fluid incompressible, i.e. of constant density (see

dimensional analysis in Appendix C). Equations (B.1) and (B.2) thus become:

V = 0 , (B.3)

p -+ (-V) = VT+ f, ( - Xb) (.-4)
P( t

The stress tensor is usually first split in isotropic and deviatoric (traceless) tensors. The trace of

the stress tensor is the mean normal (volumetric) stress, whose opposite number is commonly

referred to as the mechanical pressure pm:

T = PMI + TD (B.5)

V T= - + D (B.6)
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where I is the identity tensor. With the tensor double dot product notation, a mathematical way to

express pm and TD is:

PM = - T:I, (B.7)

TD = T :I) I . (B.8)

The common assumption of Newtonian fluid corresponds to 3 hypotheses. The first hypothesis

are that stresses departing from equilibrium (static fluid at rest) are caused by strain rates only, to

which they are linearly proportional (this differs noticeably from elastic behavior, typical of solids,

where stresses are usually associated with the strain tensor). Assuming that the fluid at rest is

characterized by only normal, isotropic thermodynamic forces, this leads to express the stress tensor

alternatively as the sum of a hydrostatic pressure tensor and a viscous stress tensor:

T = -pI + T , (B.7)

V -T = -Vp + V-Ty, (B.8)

where the thermodynamic pressure p is only a function of temperature and density, while T, is a

linear function of the strain rate tensor (in fact, p is the resultant of stresses associated with thermal

velocities, which are not accounted for as velocity components in continuum mechanics). The

second and third hypotheses are that fluid stresses are isotropic, i.e. independent of rotation of the

coordinate system, and that only the symmetric part of the strain rate tensor causes stress (the anti-

symmetric part corresponds to fluid rotation). The 3 hypotheses of Newtonian fluid reduce T, to a

simple expression involving only 2 parameters :

T == I I + 2 (B.9)

2

where A and p are scalar constants that depend mainly on the temperature, e is the symmetric

strain rate tensor, and e I is the trace of the strain rate tensor (double dot product with the identity

tensor). T, is usually reorganized in its normal stress component (diagonal terms) and shear stress

component (no diagonal terms). Because the viscous stress tensor is isotropic, the normal stress

components are all equal, and the shear stress can be expressed as a deviatoric term :
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+ 2 ~iI~ 1

3 (~:7)7jJ~ (B.11)

or using e:I = V- and substituting A for p~b = A +

V= pb V )I + 2p
3

(B.12)

We have now decomposed the viscous stress Tv with a mean normal stress and a shear deviatoric

term (shear means no diagonal term). Therefore we can identify for a Newtonian fluid the second

term (shear stress tensor) with the deviatoric tensor TD, and relate mechanical and thermodynamic

pressure:

PM = P - pb - .

The general form of the Navier-Stokes equations for a Newtonian fluid is therefore:

8p + - + p i; = 0
at

(B.13)

(B.1)

- p (9-) + - 2p + fb 8( - b), (B14)

where p and pb are commonly called the dynamic (shear) viscosity and bulk viscosity. The bulk

viscosity is generally small compared to the dynamic viscosity (see Appendix C). However, if we

assume incompressibility and constant viscosity coefficients (or constant temperature), we get:

V - = 0 , (B.3)

at

at
+ (-9 = - Yp + p1 V 2i + fb 5(i - ) , (B.15)

where we have used Y;= + Y(9-j)).
2

Note that, expressed separately inside and

outside the RBC, Equations (B.15) can be written without the last term, which becomes a boundary

condition.
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Appendix B-2 : Derivation of the generalized constitutive

equations - oxygen transport

In the context of classical continuum mechanics, oxygen transport is characterized by the general

scalar transport equations :

ac --

- + 9 -N = R, (B.16)at
N = cv + J, (B.17)

where c(r, t) is the oxygen concentration in moles per unit volume, N is the local oxygen flux

vector, R is the rate of (algebraic) production of free oxygen, V- is the velocity vector, and J is the

local diffusion flux (there is no other known source of flux for oxygen, which differs from transport

equations applied to other quantities like energy, which can be subject to radiative transfer for

example). The diffusion flux is expressed using Fick's law of diffusion:

J = - D Vc , (B.18)

where D is the diffusion constant or diffusivity, which depends on various factors such as

temperature, density, or chemical composition of the fluid. Assuming constant temperature and

density (see Appendix C for dimensional analysis), we limit the possible values of D to the different

regions of our capillary flow model, and assume that each of these values is constant. Therefore the

transport equation simplifies to:

ac
- + V-(ci) = DV 2 c + R, (B.19)at

The production/consumption of free oxygen is of 3 sorts in our case. First, a pure consumption

rate is hypothesized in some regions, with a constant rate M. Secondly, free oxygen binds and is

released by hemoglobin proteins in the RBCs. This is characterized by the law of mass action derived

from the oxyhemoglobin dissociation reaction:

Hb4 + 4 02 * Hb4 08

R Hb C Hb b k" [Hb4O8 ] - 4 k/Hb [Hb4] c4 , (B.20)at e
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where k/Hb and k'f are the kinetic reaction rate constants of the forward and backward reactions,

and [Hb4 ] and [Hb4O8] are respectively the concentration of unbound hemoglobin and (bound)

oxyhemoglobin. Note that for simplicity, we assume for now that all oxygen molecules bind together

at once (infinite cooperativity). Substituting [Hb4 ] by the total (bound and unbound) hemoglobin

concentration [Hb4 ],,,, and defining the oxyhemoglobin saturation SHb, we get:

[Hb4] = [Hb4],1, - [Hb4O8] , (B.21)

SHb _ [Hb4O8] (B.22)
[fHb4 ]ot

(B.23)R Hb _ a Hb = [Hb4],t, (4 kb SHb - 4 k/Hb ( - SHb) 4 ) ,
atchem

Substituting the second reaction constant, Equation (B.23) can be reformulated:

H I (B.24)

R Hb - a _ =4 kHb [Hb4 ],t, SHb (at chem

where cH is the equilibrium oxygen concentration at

oxyhemoglobin is implicitly expressed in the resulting

transport equation to determine S Hb (i, t)

sHb' 
C )4

HbC Hb , (B.25)
50%

50% saturation. Since the concentration of

equation through SHb we need to add a

aS Hb -RH
+ V-(S Hb ) = DHb V 2SHb - " , (B.26)

at 4 [Hb4 ]ot

where DHb is the diffusivity of oxyhemoglobin, and its production rate was determined using the

same reaction. Finally, introducing the total hemoglobin concentration in terms of moles of protein

subunits per volume, [Hb], Equations (B.25) and (B.26) become:

Hb )4

RHb - ac kHb [fHb] SHHb-(- S, (B.27)
at chem C50/

as Hb R Hb
+ V-(SHb i) = DHbV 2SHb (B.28)

at [fHb]

At equilibrium, the rate of production of oxygen is zero, leading to the familiar result represented in

the oxyhemoglobin dissociation curve (See Appendix A).

189



At this point, the assumption of infinite cooperativity needs to be addressed. Experimental data

shows that intermediate components cannot be totally ignored, so that our simple reaction does not

really qualify as "elementary" to apply the law of mass action, and that a more complex group of

intermediate reactions would need to be taken into account to be more accurate. To resolve this

problem, experimental data is used to determine the Hill coefficient to replace the exponent 4 at

equilibrium (see Appendix A). The resulting semi-empirical model gives:

Hib n

RHb _ c _ he Hb [Hb] SHb - (1 - S H ) ( J , (B.29)
achem C50%

where the Hill coefficient n is approximately equal to 2.2 (and close to 3 for sickle hemoglobin).

Finally, free oxygen is bound and released by myoglobin in the muscular tissue. The binding

reaction of myoglobin is very similar to the one of hemoglobin, except that only one molecule of

oxygen binds each protein:

Mb + 02 * MbO22 2'

Deriving the rate of oxygen production in a similar manner to the case of hemoglobin, we obtain

with similar notations:

Rm- - M _ k [Mb] SA - (1 - SM). (B.30)
chem 5

+ V-(Sm"%) = D" (V2 SB (1.31)
t[Mb]

However, the oxy-myoglobin dissociation rate constant is much higher than for the hemoglobin

(see Appendix C), which allows us to assume local equilibrium of oxygen with the myoglobin. This

corresponds to :

S+ b C , (B.32)
C50%+C

Combining now Equations (B.19), (B.28), (B.29), (B.30) and (B.31), we obtain:

+ V-(ci) = DV 2  + kHb [Hb] S" - (1 - SHb)

± [] - -30%

+ kmb [M] Sm - (I - Sm) + M ,(B.33)
50%
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V-(SHbi) = DHb V 2SHb _ kHb SHb - (1 -SHb) C5 i)nHb

c50%

asb
[Mb] tat + .-(S b i) = Dm [Mb] V 2 SI& - kb [Mb] Smb - (1 - ST ) OjJ .

(B.35)

Deriving from Equation (B.32):

dS* co dce,
(C5A% + C)2

(B.36)

and substituting Equation (B.36) in (B.35), then summing it with (B.33), we finally get the generalized

system of equations for oxygen transport:

+ [Mb] c50%

(csAl + c)2 at
+ -(ci) = D +

+ kHb [Hb] SHb

Mb

D*b [Mb] C50% 2 V 2c
(CMb + c)2

-(1 _ SHb) ( C )

Hb O
C50%

+ M , (B.37)

.(SHb i) = D Hb v 2sHb - k Hb sHb
-(1 

_ SHb) ( C )
Hb

c50%

To complete this derivation, we introduce Henry's law to convert oxygen concentration to partial

pressure (which has the additional property of being continuous across an infinitely thin membrane) :

c = a po2, (B.38)

where a is the solubility constant of oxygen, and po2 (F,t) is the partial pressure of oxygen.

Assuming also flow incompressibility (see justification in Appendix C), substitution of variables gives

eventually :

Mb

a +[Mb] P02,50%

(p 2, 50% + p 02)2 + -po2
CPO2

at

( Mlb

= aD+D*m[Mb] P0,50% 2
(P o2,soO% + p 2 )2

+ kHb [Hb] SHb - (1 - sHb) P02
H Hb

P02,50%,
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aSHb
+

at
(B.34)

asHb
+

at
(13.34)

v 2P 02

, (B.39)



Hb n

BS + i -V SHb = DHbV 2SHb - kHb SHb Hb(12 , (B.40)
at ps

where po0 2 50% and p0 2b50% are the equivalent partial pressures of oxygen at 50% saturation of

myoglobin and hemoglobin, respectively.
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Appendix B-3 : Derivation of the generalized constitutive

equations - membrane mechanics

In this appendix we derive the constitutive equations for the RBC membrane. For simplicity, we

assume an axisymmetric configuration and will use cylindrical coordinates. The membrane is to be

modeled as a 2-D elastic solid, subject to surface tensions, bending moments and shear stresses.

Figure B.1 recalls some definitions and orientation conventions used throughout this thesis.

S ms /s

Figure B.I : Curvilinear coordinates for axisymmetric RBC membrane
and membrane stresses convention (model of superposed leaflets).

Because of axisymmetry, the membrane surface is parameterized with only one curvilinear

variable s. Any point on the surface is defined by a minimum-stress configuration with a position
193
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"at rest" so, so that s is a function of so and t : s = s(so ,t). To replace the membrane stresses

within the surrounding plasma and cytoplasm, we use in addition to the cylindrical coordinates

(z,r,9) the local angle of the normal to the surface to the axis to symmetry, #(s). Denoting the

radius of the membrane at a position s by R(s), we get the simple geometrical relation:

dR
_= cos(#) . (B.41)

ds

Let us now write the components of the total forces and moments, by analyzing them on a

differential surface element from s to ds and from 0 to dO (represented by the enlargements on

the upper part of Figure B.1, and the 3 sketches on Figure B.2). Because of axisymmetry, local shear

stresses only exist in the s direction, and the total moment about the s axis is zero everywhere. The

differential components of total normal force, total tangential force, and total moment about the 0

direction are derived from the local tensions in the s and 0 directions, t, (s) and to (s), the shear

stress in the s direction q, (s), and the local moments per unit area, about the 0 direction, m, (s),

and about the s direction, m9 (s) (the swapped notations for the local moments are inherited from

Secomb's model 011) :

dF = - t, (s + ds) sin(#(s + ds) - #(s)) R(s + ds) dO - t9 (s) sin((9 + dO) -0) sin(#) ds

+ q,(s) R(s) dO - q,(s+ds) R(s+ds) dO, (B.42)

dF = - t, (s) R(s) dO + t, (s + ds) R(s + ds) dO - t9 (s) sin((O + dO) - 0) cos(#) ds

- q,(s + ds) sin(#(s + ds)-#(s)) R(s + ds) dO , (B.43)

dM9 = - m,(s) R(s) dO + m,(s+ds) R(s+ds) dO - mo(s) sin((O+dO)-O) cos(#) ds

- q,(s+ds) ds R(s+ds) dO . (B.44)

Defining the area of the differential element dA = R dO ds , the last 3 equations reduce to:

dF, d# sin(#) 1 d(R q,)
,= - ts to (B.45)

dA ds R R ds

dF,_ 1 d(Rt,) cos(#~) d#dAt - R ds - to q 5 d , (B.46)
dA R ds R 'ds

dM - 1 d(R m,) _ cos(#b) - (B.47)
dA R ds R
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dMe
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t,(s)

m,(s)

dFt

t8(s)

te(s) ds

dFn

m,(s+ds)

$(s+ds)

t,(s+ds)

q,(s+ds)

me(s)

dO

ne(s)

dF

O(s)

-~__

O(s)

dO

Figure B.2 : Membrane tensions, stresses and moments on a differential element.
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Since the membrane is submerged in plasma and cytoplasm fluids, normal forces are naturally

opposing pressure forces, while tangential forces oppose viscous stresses. There is no source of

torque in the fluid, however, nor within the membrane. Therefore the total moment about the 0

direction must cancel, giving:

1 d(R m,) _ cos(#b)
0 = -- m9  - q. (B.48)

R ds R

Finally, the bending moments are assumed to be locally isotropic, which is justified in the model

of superposed leaflets for small area compressibility (for details see Evans and Skalak, p.1 0 9 [9). This

leads to m, = M = m, and using Equation (B.41), our system of equations reduce to:

dF, d# sin(#) 1 d(R q,)
=- ts - to (B.45)

dA ds R R ds

dF 1 d(Rt,) cos(#O) d#.

dA R ds R (ds'

dm m
d = q,. (B.49)
ds

To complete these equations, we use constitutive equations for the local tensions and moment

per unit area. These were presented in Section 1.2.3 and synthesized in Section 2.1.2 as:

t, + to ds R
t = = O + Kb, - 1 (45)

2 ds0 Ro

t - to _Kh S R 2 B d# sin#) d# sin#(2 2 ds0 Ro , 2 ds R ds R '

d2# d sin#
qS = B 2+ -(47)

ds 2  ds ' (47

with all the moduli coefficients and index notations defined in Section 2.1.2. Equation (47) is derived

from the constitutive equation for the local moment per unit area, combined with Equation (B.49).

196



Appendix C : Dimensional Analysis

In this appendix we apply dimensional analysis to support hypotheses used in our model, or in

other models we refer to.

The use of continuum mechanics is related to the Knudsen number. The Knudsen number is the

ratio of the molecular mean free path to a reference length of the problem:

mfp
Kn = , (C.1)

dl

where dl will be an order of magnitude of the smallest numerical length used in our simulations.

The numerical scheme used gives for dl about 1.10' m. The mean free path of a liquid is of the

order of magnitude of intermolecular distances because of the important molecular interactions.

Given its density p , and molecular weight M , we can determine roughly mfp as:

mfp (C.2)
Mf p NA

where NA is Avogadro's number. Taking p equal to 1025 kg/m 3 , M to 18 g/mol (i.e. roughly

water, which is the main constituent of plasma at about 92% by volume), and NA to 6.10' /mol,

we get mfp - 3.08.10-1" m and Kn ~ 3.08.10-3. The Knudsen number is much smaller than 1 and

justifies the use of continuum mechanics and the Navier-Stokes equations.

The assumption of constant density is related to the square of the Mach number for fluids

undergoing isentropic or quasi-isentropic changes. In a more general case we can assess the relative

changes in density from two basic thermodynamic coefficients : the coefficient of thermal expansion

a and the coefficient of isothermal compressibility XT

1 (ap
a = -, (C.3)

p 8T ,~

1 (ap p
XT = . (C.4)

Using water as a rough approximation to blood, we have a - 2.07.10' /K and VT 4.6.1010 /Pa

(values at 25*C, available in a large variety of sources). A variation of 1C being an upper limit for

temperature, this means that thermal expansion is easily negligible. Also, even if pressure changes
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reached atmospheric levels (-10' Pa), the relative change in density would still be negligible. As a

side note, speed of sound in water is about 1500 m/s, to be compared with the low velocity we use

for blood in the capillaries (of order 0.5 m/s), giving a Mach number of 3.3.104. Density can thus

reasonably be considered constant in blood.

The Reynolds number is commonly used in fluid mechanics to compare momentum advection

and viscous diffusion of momentum. It is defined as:

Re = pUL , (C.5)
P

where p is the fluid dynamic viscosity (1.4.10- Pa.s in the plasma), and U and L reference velocity

and length. Taking U - 0.5 m/s and L ~ 1.10-6 m, we get Re ~ 0.366. This small Reynolds number

shows that viscous forces must be taken into account. However, it is not small enough to consider

the flow viscous-dominated, except in certain cases (see Appendix D on the lubrication layer model).

The Froude number compares inertial forces with gravitational forces. It is defined as

U 2

Fr = L, (C.6)

where g is the local gravitational acceleration field, taken equal to 9.81 m/s 2 . With the values of U

and L given above, this gives Fr - 2.55.104. The large Froude number indicates that gravitational

effects can reasonably be neglected.

The Weber number compares inertial forces to surface tension. It is defined as

We = pU 2  , (C.7)
t

where t represents the greatest component of surface tension.

The capillary number compares viscous forces to surface tension, and corresponds to the ratio of

the Weber number by the Reynolds number:

Ca= We U (C.8)
Re t

Both capillary and Weber numbers are useful in our research as they give an idea of the order of

magnitude of tension stresses sustained by the RBC flowing down the capillary vessel. Using the

numbers given above and assuming quasi-equilibrium states where We and Ca are of order unity,

we get for t an order of magnitude between 1.10-' and 1.10 4 kg/s 2.

Since stresses and moments at the surface of the RBC come from 3 different forces, and 4

different constants, we can naturally compare the resulting tensions to this order of magnitude, using
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the values given in Section 2.1.2. The isotropic tension 0o is estimated at 7.10-2 kg/s 2, the

isothermal area compressibility modulus KU is taken as 0.5 kg/s 2 , the 2-D shear modulus Kh is

4.2.10-6 kg/s 2, and the bending modulus B is 1.8.10-19 kg.m 2 /s 2. Comparing these figures gives

considerable insight on the RBC mechanics. Firstly, the isotropic tension is small compared to the

compressibility modulus. Secondly, the very high area compressibility modulus justifies the

assumption of constant area in the RBC, often used in membrane models (the reason why we kept

Kbu is mainly numerical, to ensure area conservation dynamically). Thirdly, we see that RBC shape is

going to be determined mostly by shear stresses, and bending stresses locally when the curvature is

B 
-

of the order 2.1.10- m or smaller (this is not small compared to dl, so bending stresses

should be observed to significantly round corners).

The Schmidt number is also used to compare the relative thicknesses of the viscous shear layer

and the diffusion boundary layer. It is defined as :

Sc = , (C.9)
pD

where D is the diffusion constant (in our case, of oxygen), taken approximately equal to 1.10-9 m 2 /s.

With the values of p and p given above, it gives Sc - 1.4.103. This indicates that we should expect

velocity profiles to be sharper than oxygen level profiles near the capillary wall. Also, it means that

oxygen diffusion in the capillary vessels is normally expected to be a limited process (i.e. capillary

blood should retain most of its oxygen locally, up to a large number of capillary size length scales).

To compare oxy-myoglobin dissociation rate, oxyhemoglobin dissociation rate, and other

phenomena, we use the Damk6hler numbers. In the case of myoglobin, the main phenomenon will

be diffusion, so that:

DaA = k , (C.10)
D M

where k" is the oxy-myoglobin dissociation rate constant and RK the radius of the Krogh cylinder,

used as a reference length. k is taken to be about 15 s4 
[42], RK is 2. 1- 5 m, and DM = 6.10-"

m2/s. This gives Da' 100, which justifies that oxy-myoglobin is always considered locally in

chemical equilibrium with oxygen. In the case of hemoglobin, convection with the cytoplasm flow is

to be assessed. However it should be less, if not of the same order, than diffusion (especially near

steady state of the RBC). We will thus consider diffusion to be also the determining phenomenon:
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k Hb L2
DaHb= DHb (C.11)

where L is the order of magnitude of capillary flow (and by extension, of the RBC dimensions),

taken as before as 1.106 m. Using kHb = 44 s-1 and DHb 1.4.10-" m2 /s, we get DaHb 3.14. As

we see, the kinetic rate of dissociation of oxyhemoglobin is not high enough to ignore diffusion.

Finally, we can compare diffusion of oxygen and its bound counterpart in myoglobin. The

appropriate non-dimensional ratio is :

aD

1 ,(C.1 2)
D* [Mb] ,

Po2 ,50%

with the notations used in Section 2.1.2. With the oxygen partial pressure at an equilibrium

corresponding to 50% saturation of myoglobin, p Mbe taken as 5.3 mmHg, the oxygen solubility

constant in myoglobin taken as 1.5.10-3 mol/m 3/mmHg, the oxygen diffusivity taken as 2.41.10-

m2 /s, the diffusivity of oxy-myoglobin as 6.10" m 2 /s, and the total myoglobin concentration as 0.4

mol/m 3, we get a ratio of 0.798. This clearly indicates that diffusion of both bound and unbound

species have comparable impact, and neither one should be ignored.

Table C.1 recaps the main non-dimensional groups described in this appendix.
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Parameter value conclusion

Kn = mfp 3.08.10-3 continuum mechanics appropriate
dI

U
Ma speed of sound 3.3.10 -4 incompressible flow

Re= pUL 0.366 both inertia and viscous stresses

R need to be considered

U2 4
Fr = 2.55.104 gravitational effects negligible

g L

p U2L scales tension stresses in RBC
We t membrane

Ca = We= U1 scales tension stresses in RBC
Re t membrane

KSh 4.10-2 - 4.10-1 flow-induced stresses => shear

t deformation

Ksh -6 RBC membrane locally

Kbu incompressible (constant area)

.070 0.14 pressure discontinuity (from
Kbu surface tension at rest) negligible

Sc = 1.4.103 viscous boundary layers smaller

pD than oxygen diffusion layers

Da"b R- myoglobin dissociation kinetics

~ Dm Dnegligible (quasi-equilibrium)

k Hb L2

DaHb = 3.14 hemoglobin dissociation kinetics

D Hb not negligible

a D

D4 [Mb] 1 0.798 myoglobin diffusion not negligible
R2b

Po2,50%

Table C. 1: Summary of non-dimensional parameters.
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Appendix D : The lubrication layer model

To simplify calculation of the RBC shape and associated flow quantities at equilibrium, one of

the most successful model is the lubrication layer model, developed by Lighthill [I"]. The lubrication

layer model applies to flow between the RBC and the capillary wall in a quasi-equilibrium or

equilibrium state, and for capillaries small enough to consider the flow locally fully developed. Most

of the flow around the RBC is then either at a constant velocity, or in the lubrication layer (see

Figure D.1).

Ca, wall

lubrication
layer

flow

Figure D.I : Lubrication layer model.

To justify this model, we use Schlichting's equations for the shear layer. As reported in the

author's master's thesis, fully developed flow is characterized by a bell-shaped dissipation function,

where the Reynolds number and the distance of mixing are inversely combined (see Entropy

Generation in Fluid Mixing [16], p.52). With a mixing distance ratio of 5 corresponding to a Reynolds

number of 100, we can then interpolate the mixing length of our problem. At a Reynolds number
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close to unity, this would correspond to a mixing length ratio of 0.05. The flow is to be considered

fully developed within 5% of the RBC-capillary wall distance at its entry.

With the assumption of fully developed flow given in Equations (D.1-3), the Navier Stokes

equations in the lubrication layer reduce to Equation (D.4) in cylindrical coordinates:

Vr << Vz, (D.1)

avz 0

az

ap ap<< L ,Br Bz

(D.2)

(D.3)

a> p =p(z),v,=v(r),- a = 0,at

In Equation

pUL,

,p L,

dv, dp p d (rdvz"

dr dz r dr dr

(D.4) the inertial term left, compared to the viscous term left,

(D.4)

scales like

L
ReL 'L , where L, and L,. are reference lengths in the axial and radial directions.

Even for a Reynolds number close to unity, this ratio is small enough to consider the inertial terms

negligible for a narrow capillary (in other terms, the lubrication layer model is valid provided that the

RBC is stretched on a significant length Lz >> Lr, and as long as the local radial dimension variation

S

is small). With the RBC radius R(s) redefined locally as a function of z (z = oli+ bsinto(s) ds
So

and RW the capillary radius, Equation (D.5) is to be solved with the following boundary conditions:

dp p d (rddvz

dz r dr dr

v5(R,) = 0

vz (R(z)) = U

where U is the steady velocity of the RBC. Integration leads to:

Rd2 L 2 In R,
vZ = (RW - R 2) - + (

4pu dz *RW R2 I R

(R),

R,

+ U .r

I Rw
SR ),
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We can note that in this solution vZ always decreases with an increasing pressure gradient. The total

volume flow Q is obtained by integrating further:

Q = Rv 27rrdr = p d (R 2-R2) (Rw2+ R2)+ " + z U -R2+ R
fV8p dz inR"1 R.

R R ,

(D.9)

In some notations the "leakback" flow is determined instead. Also, the radius of the RBC can be

replaced by the gap size h , so that R = R - h and R - R2 = 2R~h - h2 . Finally, if we change the

frame of reference to the reference frame moving with the RBC (where the pressure gradient is

;r(R 2 -R 2)U -Q
constant through time), we have z'= z-Ut and Q '= I as the leakback flow per

2zr R,

capillary circumferential length in the moving reference frame. This leads to an alternative result to

Equation (D.9), presented in Section 1.2.4:

Sdp (2 R h - h2) 2 R 2 - 2 R, h + h2_
16 p dz

2 RW h -h2

1 2 2 R h -h 2

-U -R + R
2wR 4 l4n hJ

L R, - h

Assuming a small gap thickness compared to the capillary radius R ~ R, or h(z') <<

(D.8), (D.9) and (D.10) reduce to :

1 dp R__-r
v = I d (R, -r) (r - R) + U (r~Rw)

2,p dz R,- R

Q = (R,-R)3 R, + ;rUR,(R,-R)
6pu dz

dp 6puU 12pQ'
- -+ ,

dz' h2 h3

w Q'. (D.10)

R., Equations

(D.11)

(D.12)

(D.13)
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which is Lighthill's original result [96. In the other limit R << R, or h(z')~ R,, Equations (D.8),

(D.9) and (D.10) reduce to:

r dp 2
4pu dz LW

S=dj
8p d

In R
r r

InR"
R

r2j +

RRW R 2 _nR12 + g U
z**In R" w)

(R,

dp 8 p U 16 p Q'
-- = 2 + 3dz' R, R

r
U ,

21n(R,~

R

(D.14)

(D.15)

(D.16)

Furthermore, if the RBC dimensions become so small compared to the vessel dimensions that its

influence on the flow vanishes (i.e. its inertia becomes negligible), we get:

vZ = -- I (R,7 - r 2 ), (r>>R) (D.17)
4 p dz

Q idp R4 or dp 8u Q

8,u dz " dz z R,
(D.18)

which is the Hagen-Poiseuille equation.

To complete Equation (D.10), which relates pressure gradient, RBC velocity and leakback flow in

the lubrication layer model, a model is needed for the membrane, giving the stresses as a function of

R, and leading to an integral equation summing up the forces on the membrane, and equating them

with the pressure forces exerted on the flow (see Lighthill's original derivation of the integral

equation [96])
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Appendix E : Membrane equilibrium equations

In this appendix we consider the special case of steady flow, and RBC at equilibrium with the

surrounding flow. In the reference frame moving with the RBC, all variables are constant with time.

For this case the incompressible Navier-Stokes equations give :

p ('-9')i' = - 9'p + p V' 2i ' + fl t(: - ') , (E.1)

where ;' is the velocity field in the moving reference frame, p is the blood density, p the

thermodynamic pressure, p the dynamic viscosity (different inside and outside the RBC), Xb the

position vector of the RBC membrane boundary, where tension forces per unit area fb are exerted,

V' is the del operator in the moving reference frame, and 1 is the Dirac distribution mapping the

RBC surface in 3-D space. The cylindrical components of fb are resulting from normal and

tangential forces combined as follows in our model:

dF, dF
f,(S't) = " sin# + dF' cos#dA dA

dF, dF
(st) =cos#0 + ' sin#,

dA dA

(E.2)

(E.3)

with these forces themselves resulting from tension, shear stresses and bending stresses as follows :

dF, t d#od" = -dt
dA *Sds

sin 0
R

1

R

dF 1 d(R t,) cos#
to -

dA R ds R '

d(R q,)

ds
(E.4)

(E.5)d#
ds

and the constitutive equations to model the RBC elastic behavior:

- ts + to
t = = o

2
+ Ku

ds 0
(45)

q= - B __B d2o

B

2

d sin#

dsR
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2
K,( ds) R )2

2 ds 0 Ro ,

d# sin#) d#
ds R )(ds

sin#+
R

- koJ , (46)

(47)



The full derivation of the RBC membrane equations, and the notations used can be found in

Appendix B-3. To express the boundary conditions on the membrane, we project Equation (E.1)

onto the local normal and tangential directions (Equations (E.6)-(E.7)), and integrate on a small

control volume across the membrane (i.e. in the normal direction h, over an infinitesimal length

going to zero on both sides of the membrane):

p (I.V ')v,' = - + P V' 2 v"' + dF" s(F- ), (E.6)
an dA

8p dF_p ( ' = - + P V' 2 v + F t( - 5b, (E.7)
8t dA

Jp ( n'')v 'dn = dn + p V'2v' dn + d 8( F- Xb) dn, (E.8)
an dA

Jp (i' ')v,' dn = - dn + V' 2 v,' dn + f' s(: - Xb ) dn, (E.9)
at dA

where "+" and " -" represent the external and internal limits of the RBC membrane, respectively.

Noting that the velocity field components are continuous across the membrane, using mass

conservation on each side, and taking the limit as the thickness of the control volume tends towards

zero, we get:

'V ' av 'v' v '
"(+) " (-) = ' (+) + t() = 0, (E.10)

an an at at

p(+) p-) dF, (E.11)
dA

_v a v ' dF
-+ p ' (+ + p_ ' (-) = '.(E.12)n an dA

Figure (E.1) illustrates these results. Equations (E.11) and (E.12) combined with (E.4), (E.5) lead to

Secomb's equations of membrane equilibrium, presented in Section 1.2.3:

1 d(R q,)
Ap =-t, k, - to k, , (26)

R ds

-r = - t - to - q k,, (27)
R ds R ds

where Ap and r replace the local pressure difference, and shear stress on the membrane, and k,

and ko are defined as the local curvatures.
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As a side note, if we neglect bending and shear stresses, these equations reduce to the more

familiar "bubble" equations:

- Ap = i (k, + k,), (E.13)

(E.14)
ds

Equation (E.13) is the Young-Laplace equation, and Equation (E.14) describes the Marangoni

effect.

no slip conditions

vn(+)= vn(-)1 and multiple

vt(+) = vt(-) j t-derivatives

dFt

Figure E.1 : Continuity and equilibrium boundary conditions on the RBC membrane.
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Appendix F : The Fuhraeus and Fahraeus-Lindqvist effects

In capillary vessels RBCs tend to align on the centerline to minimize resistance to flow. This is

known to increase the proportion of RBC flowing with respect to whole blood present in the vessels.

The "discharge" flow therefore has a higher hematocrit than the vessel, which is known to be the

Fihraeus effect. More precisely, if the average velocity of the RBC is U, the discharge hematocrit is :

U
HctD = Hct - (F.1)

vz

where 72 is the average velocity of the whole blood, and Hct is the local hematocrit. At steady

conditions, because of the presence of the RBC the shear stress exerted on the capillary wall must be

greater for a same total volume flow (see Figure F.1), so that the pressure gradient to balance it must

be greater too. Reciprocally, for a same pressure gradient the total flow is decreased by the presence

of the RBC. Hence the average velocity of whole blood Vi7 must be smaller than U, and the

discharge hematocrit is always greater than the local hematocrit.

Using the results from the lubrication layer theory (see Appendix D), we have for large vessels:

R << RW => ;r R 2Z R 2 RW 2- + ;r U R2 ,(F.2)
8p dz In* R" 21n RW
12p 2 R R

Hct =Hct K R 2 +n2 1 21n W, (F.3)
D 8p z dz * In R

R )

and replacing iV by its asymptotic first-order value (Poiseuille flow), in the limit HctD=2Hct .

Equation (F.3) shows two results experimentally observed. First, the discharge hematocrit tends

towards twice the local vessel hematocrit for very large vessels. Second, as the relative size of the

RBC increases (and the vessel size decreases), the discharge hematocrit increases. In other terms, the

Fahraeus effect increases with decreasing vessel size. Alternatively, for vessels of small diameter,

comparable to the size of the RBC, we have:

R~ R => R = -;r (R,-R) R, + 7 U R,(R,-R) (F.4)
6p dz
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(F.5)HctD = HctI dp (R, -R) 2 + (RR .
6p :F, dz (R, - R)

Equation (F.5) shows that the Fihraeus effect is inversed at very small diameters. When the gap

between the RBC and the capillary wall becomes small compared to the vessel radius, the average

velocity must tend towards U. Therefore, the discharge hematocrit must tend towards 1, which

means that it has to decrease greatly as the vessel size tends toward the minimal RBC size possible

(the terms in parentheses must asymptotically add up to 1).

equivalent
Poiseuille flow

lubrication layer

homogeneous

flow z

lubrication layer

Figure F.I : Lubrication layer model - velocity profile.
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The Fahraeus effect is largely documented, and an example of the resulting experimental curve is

shown in Figure F.2.

HT
HD

2 3 4 5 10 50 100

Figure F.2 : The Fdhraeus effect (cross-hatched region contains literature data) [35].

The Fihraeus-Lindqvist effect is related to the measure of the apparent viscosity for the same

problem, as vessel size decreases. The apparent viscosity is defined as the viscosity of the equivalent

Poiseuille flow:

app - 8 ; dp RQ +, 2U)8 dz (Q + 7 R 2

(F.6)

where Q is the total volume flow between the RBC and the capillary wall. Using the lubrication layer

theory, we get for large vessels :

1 - +

In (R
SR

I dp RlIn R
4 dz ( R )

UR 2  , (F.7)

- dp R
8 dz

and as for large vessels U tends towards 2iV , using the Poiseuille flow we can simplify Equation

(F.7) to:
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R << R, =app , (F.8)

1 +

R.

Equation (F.8) shows that the apparent viscosity can be smaller than the plasma viscosity due to the

presence of the RBC. This phenomenon called the Fahraeus-Lindqvist effect is due to the alignment

of the RBCs around the centerline, which is perfect in our model. Also, the apparent viscosity tends

towards the plasma viscosity for very large vessels, and decreases as the vessel diameter decreases.

For vessels of small diameter the bolus flow between RBCs must be taken into account. The bolus

flow is roughly a Poiseuille flow, of extent determined by the hematocrit:

;T (R 2
- R2 ) RBC

Hct ~ (F.9)
71Rw(lolu, + /B

'blu 1 'R-

RBC Hct R ,)

where lo,,, and lRBC are the respective lengths of the bolus flow (between 2 RBCs) and the RBC-

driven flow. The apparent viscosity is then :

( ~ 4 NL dp R4
lbolus P + 1RBC -

8 dz Q
/app l + , / RBC (F.11)

bolus RBC

which gives at small vessel diameters

2

papp = p 1 - Hct LRR J + 4 ) Het. (F.12)
R,-R_ _R_-R +U R -R)'

3 RW 1 dp R2 RW
8 p dz w

Using the result for the discharge hematocrit which tends toward the local hematocrit, Equation

(F.12) simplifies to:

R RW => [app -1- Hct 3 Hct (F.13)
P R,-R 4 R,-R)' R.-R

R, R, R,

which for very small vessels simplifies roughly to :
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R~ RW =>

5

app = 1 + - Hct
P 4 RW-R)

(F.13)

This shows the inversion of the Fahraeus-Lindqvist effect for small vessel diameters. As the vessel

radius decreases, the apparent viscosity becomes very high, and reaches a limit as the vessel size

reaches the minimal size of a RBC. Figure F.3 shows experimental data for the Fihraeus-Lindqvist

effect.

* I

- I

- I
I -

6 a -wie erne

IV £4XvMI%"& Syfn is

1000

Figure F.3 : The Fohraeus-Lindqvist effect (cross-hatched region contains literature data) [3*.
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