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Abstract

This thesis presents the development of and the findings from the design and evaluation of a hidden semi-
Markov model (HSMM)-based operator state monitoring display. This operator state monitoring display
is designed to function as a decision support tool (DST) for the supervisor of a small team of operators
(between 2 and 4 team members) that are each monitoring and controlling multiple highly autonomous
heterogeneous unmanned vehicles (UVs). Such displays are important in real-time, mission-critical
complex systems because both operator and vehicle state monitoring are difficult, and failure to
appropriately handle emerging situations could have life or mission-critical consequences.

Recent research has shown that HSMM-based models can be used to model the time-sensitive behavior of
operators controlling multiple heterogeneous UVs. Because this method requires substantial knowledge in
probability theory to understand, the difficulty lies in the accurate, useful display of the HSMM
information to a team commander in the field. It must be assumed that the team commander generally
does not have the required background in stochastic processes to understand the method and may be
biased in interpreting probabilistic functions. This further increases the difficulty of the proposed method.
In this thesis, a cognitive task analysis (CTA) was performed to determine the functional and information
requirements of the DST, and a human systems engineering design process was used to develop a
prototype display. A human subject experiment was then conducted to test the effectiveness of the DST.

The DST was shown to improve team supervisor performance in terms of increased decision accuracy,
decreased incorrect interventions, and decreased response times in single alert scenarios. The DST was
also shown to decrease the number of incorrect interventions, while having no affect on decision accuracy
and total response time scenarios when the supervisor faced multiple simultaneous alerts. Additionally,
the DST was not shown to increase operator mental workload, as measured by a secondary task, for any
of the scenarios. Overall, the results suggest that HSMM-based operator state modeling can be effectively
utilized in a real-time DST for team supervisors.

While this research was focused on a team supervisor of multiple operators each independently
controlling multiple heterogeneous UVs, the results are generalizable, and any research in time-critical
team HSC domains may benefit from this work.

Thesis Supervisor: M. L. Cummings
Title: Associate Professor of Aeronautics and Astronautics
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1. Introduction

The movement toward single operators controlling multiple unmanned vehicles (UVs) is gaining

momentum throughout academia and industry as a whole (Cummings, et al., 2007; DoD, 2007b, 2009).

As this transition occurs, multiple operators will likely work together, under the leadership of a team

supervisor, to carry out coordinated tasks similar to present-day air traffic control (ATC) settings. An

example of a similar human supervisory control (HSC) environment in which multiple operators are

working together is the US Navy's Integrated Command Environment Lab, shown in Figure 1.1.

Figure 1.1: US Navy Dahigren Integrated Command Environment Lab

(http://www.navsea.navy.mil/nswc/dahlgren/default.aspx)

There are many ways in which multiple operators and a supervisor could interact in these futuristic

scenarios, one of which places the supervisor in a HSC role over the operators. This creates a complex

HSC system in which decision support tools (DSTs) have been shown to improve supervisor performance

(Mitchell, Cummings, & Sheridan, 2004). This thesis focuses specifically on developing a decision

support tool for a supervisor of multiple, independent operators, i.e. operators are assigned their own

areas of responsibility which do not significantly overlap. ATC sector control is an example of this type

of relationship.



While there has been substantial effort in designing and developing displays for the individual operators

controlling multiple UVs, there has been little research into what type of displays a team supervisor

requires to most efficiently supervise the team (Scott, et al., 2007), even though it is recognized that the

role of the team commander is critical (Burns, 1978; Hackman, 2002). Within the development process of

these types of futuristic displays, it has become evident that the common tasks of navigation, monitoring

the health and status of the UVs, and operating multiple sensors provide each operator with vast amounts

of information (Nehme, et al., 2006). It is unrealistic to provide the supervisor with all this information

from each operator without expecting the supervisor to become overloaded. Therefore, automation may

be useful in assisting a team supervisor in the assessment of operator performance. Of the little research

that begins to address the issue of supervisor displays, supervisors in human operator-unmanned vehicle

teaming environments are only being provided with situational awareness tools capable of identifying

current problems. However, supervisory decision support tools that attempt to predict the onset of

possiblefuture problems have not been explored (Scott, Sasangohar, & Cummings, 2009). This is another

area where automation may be helpful, particularly in real-time complex systems, such as UV command

and control systems, where both operator and vehicle state monitoring are difficult, and failure to

appropriately handle emerging situations could have catastrophic consequences (Leveson, 1986).

Accurately detecting current and predicting possible future problems requires a thorough understanding of

what "normal" operator behavior entails. This is a difficult task in a time-pressured command and control

environment that contains significant uncertainty and unanticipated events. Recent research has shown

that hidden semi-Markov models (HSMMs) can be used to model the time-sensitive behavior of operators

controlling multiple heterogeneous UVs (Huang, 2009). Such models can both describe and predict

operator behaviors. The prediction, expressed as a sequence of the most likely future operator behaviors,

can be compared to learned patterns of normal operator behavior. The supervisor can then be alerted

when the predicted behavior deviates from, or is expected to deviate from, the norm. It is important to

note however, that such models cannot detect whether an abnormal pattern is good or bad, only that it is

different, which is why the supervisor is needed to make the important decision of whether the abnormal

behavior is detrimental and keep the team operating efficiently. Thus, full automation is not feasible; the

human must remain part of the system.

Additionally, HSMM modeling methods require substantial knowledge in probability theory to both

implement and understand. Thus, the difficulty lies in the accurate, useful display of the information to a

team commander in the field who generally does not have the required background in stochastic processes

and may be biased in interpreting probabilistic functions (Tversky & Kahneman, 1974).



This thesis focuses on the creation and evaluation of such a display, specifically utilizing the probabilistic

output of the aforementioned HSMM-based operator model, in order to support a team commander with

little to no background in statistical inferential reasoning. Design requirements were derived from a

cognitive task analysis (Crandall, Klein, & Hoffman, 2006), the DST was developed, and a human subject

experiment was conducted to test the effectiveness of the DST. Results show the DST improved team

supervisor performance in terms of increased Decision Accuracy, decreased Incorrect Interventions, and

decreased Response Times in single alert scenarios. In scenarios where the supervisor faced multiple,

simultaneous alerts, the DST was shown to decrease the number of Incorrect Interventions and have no

affect on Decision Accuracy or total Response Time. Overall, the results validate that HSMM-based

operator state modeling can be effectively utilized in a real-time DST for team supervisors. While this

research was focused on a team supervisor of multiple operators each independently controlling multiple

heterogeneous UVs, the results are generalizable and any research in time-critical team HSC domains

may benefit from this thesis.

1.1 Problem Statement

In order to leverage the recent advances in HSMM-based operator modeling techniques to improve team

performance, it is first necessary to determine the best method for employing these techniques. Such

models could operate either online as a real-time DST or offline as a post hoc evaluation tool. This thesis

focuses on the development and evaluation of a real-time DST to determine whether team supervisors

with a HSMM-based DST perform better than supervisors without the DST in terms of correctly

identifying current and possible future problems, solving current problems efficiently and accurately,

correctly preventing future problems from occurring, and limiting unnecessary interventions. This thesis

also attempts to address the question of how to best display complex probabilistic data, specifically the

HSMM-based operator model output, so that someone with little to no background in statistical inferential

reasoning may efficiently and accurately make time-critical decisions.

1.2 Research Objectives

In order to address the problem statement, the following research objectives were posed:

* Objective 1: Conduct a cognitive task analysis for a supervisor of multiple operators who

are each independently controlling a set of highly autonomous UVs. A cognitive task analysis

(CTA) was conducted in order to understand the decisions the supervisor would need to make in

this domain and determine what information the supervisor would need in order to quickly and



accurately make those decisions. Design requirements were then derived from the CTA in order

to focus the design cycle. The CTA process and results are highlighted in Chapter 3.

* Objective 2: Develop a HSMM-based operator state decision support tool. The design

requirements derived from the CTA were used to design a HSMM-based operator state decision

support tool, herein referred to as the DST. The DST takes into account the applicable literature

in Chapter 2 and a discussion of the design of the DST is included in Chapter 3.

* Objective 3: Evaluate the effectiveness of the HSMM-based operator state decision support

tool in a simulated team supervisory scenario. In order to achieve this objective, a human

subject experiment was conducted in which subject performance while using the DST was

compared to subject performance in a standard team HSC setting. Details about the design of this

experiment are included in Chapter 4. The experimental results and discussion are included in

Chapter 5.

1.3 Thesis Organization

This thesis is organized into the following six chapters:

* Chapter 1, Introduction, provides the motivation for this research, problem statement, and

research objectives of this thesis.

* Chapter 2, Background, presents the findings of a literature review focused on team monitoring,

human behavior pattern recognition and prediction, and the display of probabilistic data. This

chapter identifies the current research gap that this thesis addresses.

" Chapter 3, Design of a HSMM-based Operator State Decision Support Tool, explains the method

used for developing the DST. The CTA is described, as well as how design requirements (DR)

were derived from the process. This chapter then highlights the final design of the DST and

describes how the interface meets the design requirements that were derived from the CTA.

* Chapter 4, Experimental Evaluation, presents the human subject experiment used to test the

effectiveness of the DST in a simulated team supervisory control scenario. Descriptions of the

participants, apparatus, experimental design, and procedure are included.

* Chapter 5, Results and Discussion, explains the results of the experimental evaluation including

the dependent variables of Decision Accuracy, Incorrect Interventions, Response Time,

Secondary Task Ratio, and subjective feedback.

* Chapter 6, Conclusion, reviews the answers to the research questions, discusses the contribution

of this work, suggests design considerations and changes for future iterations of team supervisor

DSTs, and identifies areas for future research.



2. Background

This thesis provides a team supervisor of multiple, independent operators with a DST in order to best

maintain and improve team performance in a HSC setting. A significant body of research exists on team

performance assessment in supervisory control settings, including team monitoring, but no clear

consensus has emerged regarding how to do this effectively. Work has also been produced on the topic of

human behavior pattern recognition and prediction, as well as human difficulties in understanding

probabilistic data. Unfortunately, little literature exists on the topic of providing a team supervisor with

real-time team monitoring support in general. No known research discusses the use of probabilistic

models to provide team monitoring support, although recent work has focused on providing an individual

operator with probabilistic-based decision support in port and littoral zone surveillance (Rhodes, et al.,

2009). These areas of research are discussed in more detail below, and the void that exists at the

intersection, providing a team supervisor with a DST that utilizes probabilistic operator modeling, is

emphasized (Figure 2.1).

Figure 2.1: Literature review visualization

2.1 Team Monitoring

For this thesis, a team is defined as "a distinguishable set of two or more people who interact

dynamically, interdependently, and adaptively toward a common and valued goal/object/mission, who

have each been assigned specific roles or functions to perform, and who have a limited lifespan of



membership" (Salas, et al., 1992, p. 4). The concept of team members having a common valued goal is

critical as it results in team members working together for the completion of that goal and not just out of
self-interest. This concept of a common goal leads to team members assisting each other and improving

overall team performance as they build a "shared mental model" of the current situation, goal, and team

performance (Cannon-Bowers, Salas, & Converse, 1993).

Team monitoring, both from group members monitoring each other and from a team supervisor

monitoring the group, has also been shown to improve team performance by helping a group integrate

related task activities, identify appropriate interruption opportunities, and notice when a team member
requires assistance (Gutwin & Greenberg, 2004; Pinelle, Gutwin, & Greenberg, 2003). While previous
literature has indicated that having a constant team monitoring system in place may negatively influence

operator behavior (Brewer & Ridgway, 1998; Guerin & Innes, 1993), many fields employ constant

monitoring systems, such as ATC, aircraft flight operations, and generally all mission and life-critical

HSC settings. Since UV crews and many military operation teams already operate under monitoring

systems (DoD, 2007b), it is assumed that the team in the multiple UV scenario posed by this work is not

subject to adverse social facilitation influences from a constant monitoring system. Instead, team

supervisors must focus on the positive influence they can have on team performance through direct

action, as well the establishment of team culture, trust, and dedication. Specifically, for a supervisor

monitoring a team, determining the correct timing and number of times to intervene in team behaviors are

the key factors to optimizing team performance (Brewer & Ridgway, 1998; Irving, Higgins, & Safayeni,
1986; Mitchell, et al., 2004).

This key decision, deciding when to intervene, is nontrivial. Operator performance is often difficult to

infer from only observing physical actions and interactions with a computer interface, which may even be

hidden from the team supervisor in HSC settings. The task becomes more difficult when the supervisor

must merge information from a variety of sources, often in a time sensitive environment, to evaluate team

performance. Due to such a high mental workload, the supervisor is subject to poor performance from

operating on the far right side of the Yerkes-Dodson curve shown in Figure 2.2 and may make costly

incorrect decisions (Hancock & Warm, 1989; Yerkes & Dodson, 1908). It has been shown that

performance significantly degrades when supervisors are tasked beyond 70% utilization, or busy time

(Cummings & Guerlain, 2007; Rouse, 1983; Schmidt, 1978). Therefore, the key decision of deciding

when to intervene can benefit greatly from the addition of automation to offload some of the mental

workload in high workload settings.



Good

Figure 2.2: Yerkes-Dodson Law adapted to performance (Hancock & Warm, 1989)

One way automation can assist the supervisor is through real-time monitoring that provides a better

understanding of operator and team performance through the use of a decision support tool, seen as

critical in most HSC settings (Mitchell, et al., 2004). Since researchers recognize that the role of the team

supervisor can be critical in improving team performance (Burns, 1978; Hackman, 2002), the

advancement of supervisor decision support displays may also play a critical role in improving team

performance. This advancement carries great significance in real-time complex systems where state

monitoring is difficult and incorrect decisions could have catastrophic consequences (Leveson, 1986).

Recent studies that have researched team supervisor interfaces have focused on large-screen situation and

activity awareness displays and the design of an Interruption Recovery Assistance display (Scott, et al.,

2007; Scott, et al., 2009; Scott, et al., 2008). The Interruption Recovery Assistance display was not shown

to have a significant impact on supervisor performance (Scott, et al., 2008), while the large-screen

situation and activity awareness displays were shown to have high usability and effectiveness ratings

through an exploratory study (Scott, et al., 2009). Of particular interest is the operator performance panel

outlined by the red dashed box in Figure 2.3. This continuous operator performance monitoring display

was part of a large screen mission status display and served as the original motivation for this thesis. It

was used by experimental subjects to aid in the supervision of three simulated operators, each controlling

three UVs in order to provide surveillance of a specific area of interest. The operator performance display

was based on simple system metrics, such as the number of expected targets in each threat area. Results

showed this operator performance panel was useful, and it was hypothesized that team performance could

0
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benefit from the integration of human behavior pattern recognition and prediction techniques in order to

improve this display. Different types of human behavior pattern recognition and prediction techniques,

discussed in the next section, were then analyzed in the context of creating a real-time continuous

monitoring DST that could improve team performance in HSC settings.

awa em Mission Status Surnmary eie
Mission Clock --- 32 ?

I AlPl nta

Timeline Filters - - operatol 1

Threat Summary &
Strike Schedule Operator Performance Potentia Convoy Threat by Operator Reglon Communication Link Status

Operator
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Panel T -ST__ TEA STARS
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Status Messages

Potential Threat broken down by Communication Status
operator region

Figure 2.3: Large-screen mission status display (Scott, et al., 2007; Scott, et al., 2009)

2.2 Human Behavior Pattern Recognition and Prediction

While some work has focused on using pattern recognition techniques for human behaviors such as

intrusion detection (Terran, 1999) and navigation (Gardenier, 1981), relatively little work has been done

within the HSC realm. Within this domain, human actions have been shown to be appropriately modeled

by serial processes because humans can solve only one complex problem at a time (Broadbent, 1958;

Nehme, 2009; Welford, 1952). Therefore, such human behavior can be analyzed with time series analysis

techniques. This technique departs from previous qualitative methodologies that focus on descriptive

models and have no predictive capability (Hackman, 2002; Klein, 1999). The time series analysis

techniques are beneficial because they provide a formal, quantitative basis for describing human behavior

patterns and for predicting future actions. These techniques are primarily categorized as either statistical

learning or Bayesian techniques and will now be discussed.



2.2.1 Statistical Learning Techniques
The simplest time series analysis technique belonging to the statistical learning category relies on

descriptive statistics of operator behavior (Olson, Herbsleb, & Rueter, 1994). An example is reporting

overall mean performance scores for UAV operators without showing how the performance scores

changed throughout the mission (Nehme, et al., 2008). Descriptive statistics are useful in the analysis of

high level mission performance but do not discriminate the temporal evolution throughout the mission.

Other statistical learning techniques are based on complex neural networks that require supervised

training (Polvichai, et al., 2006), which is a learning technique where a human has to parse and label

operator actions into a priori network outputs. These neural networks tend to have good identification

power. Unfortunately, supervised training requires a large amount of prior knowledge about the system as

a whole in order to assign a specific network output to a specific behavioral input. An example is the

automated written character recognition system the US Postal Service uses to identify hand-written zip

codes (LeCun, et al., 1989).

A technique that does not require supervised learning is algorithmic data mining, and it has been used in

many domains, such as healthcare, marketing, and fraud detection (Witten & Frank, 2005). The goal of

data mining is to find correlation between variables (Kay, et al., 2006). This method is able to parse out

common trends from large amounts of data but is computationally intensive and at risk of finding

correlation between unrelated parameters. Similar to algorithmic data mining, exploratory sequential data

analysis (Sanderson & Fisher, 1994) utilizes data-mining-like techniques with a focus on time series. This

approach results in a less computationally intensive method that shares the same major drawback as data

mining; there is a non-trivial risk of finding correlation between unrelated parameters. An example of

sequential data analysis is an attempt to identify the patterns of behavior in medical students that cause

failure in determining a genetic pedigree (Judd & Kennedy, 2004).

When applied specifically to HSC operator modeling, which is the problem at hand, these techniques fall

short. They all either require known patterns to analyze incoming data or are exclusively used as post hoc

analysis tools. Additionally, all have little predictive power in a sequential, dynamic environment such as

multiple operators controlling multiple highly autonomous UVs.

2.2.2 Bayesian Methods

The previous methods all belong to the family of statistical learning techniques in that they do not assume

an a priori structure and instead rely solely on describing the human behavior as a set of stochastic



functions (Cucker & Smale, 2002). In contrast, Bayesian methods make the assumption of an underlying

structure consisting of states and transitions between those states.' While this assumption restricts the

particular form of the model, it also simplifies the formulation of the state space. Three commonly used

Bayesian methods used for pattern recognition and prediction are partially observable Markov decision

processes (POMDPs) (Sondik, 1971), hidden Markov models (HMI4Ms) (Rabiner & Juang, 1986), and

hidden semi-Markov models (HSMMs) (Guedon, 2003). Specifically applied to operator state modeling,

POMDPs have proven to be successful for facial and gesture recognition (Sondik, 1971); but this domain

is not generally cognitive in nature, and the goal of POMDPs is to compute the optimal policy given the

current belief in the environment. HMMs and HSMvs, however, only focus on describing the most likely

current belief in the environment and do not search for policy decisions. Additionally, HMMs have been

shown to accurately classify and predict hand motions in driving tasks, which is a strong application of

monitoring and prediction of sequential data (Pentland & Liu, 1995). In this work, however, the authors

had access to the unambiguous ground truth linking the state of the model to the known hand positions.

Thus, this method utilizes supervised training which makes it less useful for dynamic environments

typical of HSC settings where the definitions of the states of the model are not known a priori

(Boussemart, et al., 2009).

A recurring drawback of the previous techniques lies in their requirement of supervised training, a task

that is labor intensive and may introduce bias via the human labeling process. However, recent research

has shown success in HSC operator modeling with unsupervised learning of HNMs, as well as with

model selection techniques that promote model generalizability (Boussemart & Cummings, 2008).

Current work on HSMMs has been able to incorporate the temporal component of operator behavior,

which was a limitation of using HMMs. It was also proposed and proven that HSMMs can both recognize

normal operator behavioral patterns and flag abnormal patterns and events (Huang, 2009).

2.2.3 HSMM-based Operator Modeling

It has been hypothesized that the structure of HSMMs makes them well suited for modeling human

behavior (Huang, 2009). Structurally, HSMMs consist of a set of hidden states, observable events,

sojourn time, and transition probabilities. In Figure 2.4, each Si is a hidden state, each at; is a transition

probability between hidden states, the observable probability density functions P(o/S) link the state and

the observable events each hidden state emits, and the sojourn probability density functions di (u)

describe the amount of time an operator is likely to stay in each state.

1In this context, a state is defined as the set of partitions of the behavioral space that most likely explain the
behaviors seen in the training data.
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Figure 2.4: A three-state hidden semi-Markov model (Castonia, 2010)

Each hidden state emits observable events through a certain probability density function. Just as the

hidden states in HSMs must be inferred from observable events, cognitive states of an operator are not

directly visible and must be inferred from his or her actions. Therefore, operator cognitive states can be

likened to the hidden states in an HSMM, and operator interface interactions, i.e. mouse clicks, can be

likened to the HSMM observable events. This structure allows for the prediction of future operator

behavior but is limited by the semi-Markov assumption2 , by the need for accurate training data in order to

ensure the model accurately recognizes the correct patterns, and also by the decrease in confidence in

future predictions as the prediction window increases.

2 The semi-Markov assumption states that the transition to the next state is only based on the current state and the
amount of time that has been spent in that state.



The complex probabilistic nature of the outputs from these models, and all Markov-based models, results

in difficulty in designing a decision support interface for a team supervisor unlikely to possess the

background required to understand them. This issue is discussed in the following section.

2.3 Display of Probabilistic Data

It is highly unlikely that a team supervisor in a complex HSC setting, such as the futuristic environment

previously described, has the background in probability and modeling needed to understand the raw

output from an HSMM-based DST. This is a concern because it has been well established that humans are

often biased and subjective when given even simple probabilistic values (Tversky & Kahneman, 1974).

Therefore, giving a HSC supervisor the raw probability density functions resulting from a HSMM-based

model will likely result in confusion and may result in a negative effect on decision making, especially in

time-critical scenarios. Also, the framing and context within which a probability is given to an individual

may result in strong optimistic or pessimistic biases for the exact same probability (Tversky &

Kahneman, 1981; Weinstein & Klein, 1995). The way in which probabilistic information is displayed,
even as simple percentages in deciding whether or not to keep a set amount of money or take a percentage

risk for an increased payout, has been shown to significantly affect what decision is made with that

information (De Martino, et al., 2006). In a complex monitoring environment, subjects have been shown

to completely ignore changes in a priori probabilities of subsystem failures (Kerstholt, et al., 1996).

Unfortunately, these types of biases are difficult to remove (Weinstein & Klein, 1995), and thus extreme

care must be taken to ensure that probabilistic data is displayed in a manner that reduces the tendency of

operators to succumb to these biases.

The information must also be displayed in such a manner that that the supervisor neither blindly follows

the algorithm's predictions and recommendations (misuse) nor fully disregards the algorithm's output

(disuse) (Dzindolet, et al., 2003; Muir & Moray, 1996; Parasuraman & Riley, 1997). One technique to

combat these biases is to provide the supervisor with information about how confident the algorithm is in

regard to the given prediction (Bisantz, et al., 2000). This technique is important because the time

sensitive nature of a HSC scenario will often require the supervisor to settle for a satisficing strategy as

opposed to being able to evaluate all possible options, which will result in decisions being made with

incomplete knowledge of the full situation (Gigerenzer & Goldstein, 1996). Misuse or disuse of the

algorithm's output could lead to negative effects on decision making in this type of situation and/or

further automation bias (Cummings, 2004).



Previous work confirms it is critical that the information be displayed to the supervisor with minimal

probabilistic information and in a way that is clear, reduces decision biases, includes confidence in

predictions, and promotes quick decision making. Otherwise, the inaccurate and/or biased interpretation

of a probabilistic value may result in an incorrect decision with potentially fatal consequences.

2.4 Background Summary

The complex HSC task of supervising a team of multiple, independent operators each controlling

multiple, heterogeneous UVs produces a difficult team monitoring scenario. Supervisors of such systems

could become quickly overloaded and perform poorly without the aid of automation. One form of

assistance is a decision support tool. Specifically, recent advances in operator modeling through HSMM-

based behavioral pattern recognition and prediction could provide the algorithms to drive a real-time

supervisor's predictive display. However, the difficulty lies in the effective display of the probabilistic

output from the HSMM-based operator model since humans have difficulty interpreting and acting on

probabilities. This thesis seeks to fill the literature gap that exists at the critical intersection of these three

domains: team monitoring, human behavior pattern recognition and prediction, and the display of

probabilistic data. The next chapter addresses the design of the HSMM-based operator state decision

support tool and the steps taken to address the issues raised in this chapter.
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3. Design of a HSMM-based Operator State Decision Support Tool

After reviewing related work, a cognitive task analysis (CTA) was performed in order to generate

requirements, both functional and information requirements, for the task of supervising teams of 2-6

operators, each independently controlling a set of highly autonomous UVs (Castonia, 2009). This team

size is consistent with literature defining small groups as consisting of 3-7 personnel. The types of

interaction that occur with groups of more than 7 people begin to exhibit organizational behavior, as

opposed to team behavior (Levine & Moreland, 1998), which is beyond the scope of this thesis.

Furthermore, these assumptions on team size are ecologically valid because current UV operations are

mostly conducted in teams of three people (DoD, 2007a).

After the completion of the CTA, a standard systems engineering design process (Figure 3.1) was used to

develop a prototype display. The dashed box in Figure 3.1 highlights the portion of the systems

engineering design process, which was the focus of this research and normally occurs in the early aspects

of the acquisition phase. The final design is described in this chapter, while the full design process is

described in more detail in Castonia (2009).

ACQUISITION PHASE UTILIZATION PHASE

E Conceptual- Detail Design and Production Product Use, Phaseout, and
Preminary Design Development or Construction I

D

Figure 3.1: Systems engineering process (Blanchard & Fabrycky, 1998)

3.1 Cognitive Task Analysis

A CTA is a tool used to analyze and represent the knowledge and cognitive activities needed in complex

work domains (Schraagen, Chipman, & Shalin, 2000). Because it was determined that the main purpose

of the DST would be to help supervisors determine if and when potentially detrimental problems could

occur, the scope of the CTA is relatively narrow, focused primarily on the decision of whether to take

action given a model prediction. Furthermore, the process of conducting a more traditional CTA requires

access to subject matter experts, documentation, and predecessor systems to gain insight. However, these

techniques are not applicable in a futuristic scenario, such as the scenario proposed in this work, where

predecessor systems do not exist. The Hybrid CTA (Nehme, et al., 2006) addresses the shortcomings of a

..................... ............................. - .-. - - - -



traditional CTA when dealing with futuristic systems, but given the limited focus of this effort, only

decision ladders were used to descriptively model critical decision processes and generate the functional

and information requirements. The end result of this CTA is a display requirements checklist (Table 3.1)

that details 12 requirements that should be met given DST prototypes with predictive capabilities.

Conducting this, and all CTAs, is an iterative process that becomes more refined as more information

about the situation becomes available.

3.1.1 Decision Ladders

Decision ladders break decisions down into the important information and information-processing

activities required to make a decision. They also help a designer to see the three levels of human behavior

hierarchies that exist within a set of tasks: skill-based, rule-based, and knowledge-based behavior

(Rasmussen, 1983). Figure 3.2 shows a generic decision ladder with these hierarchy levels.

Knowledge-based domain

Skill-based domain

Figure 3.2: A decision ladder with human behavior heirachies shown (Rasmussen, 1983)

The skill-based level relates to activities that take place without conscious control, which are typically

behaviors that have reached a level of automaticity, such as tracking between lane markers while driving.

The rule-based level relates to activities that rely on stored rules from prior experience in similar

situations, such as looking for yellow or red text to appear on a screen when an alert sounds. The



knowledge-based level relates to higher level decision making resulting from the goals and cues from the

environment, such as deciding what UV should be assigned to an emergent target. Each decision ladder

includes boxes that portray the information processing activities and ovals that portray the information or

knowledge that is produced from the information processing activities.

Given the focus of this research, which is to develop a predictive DST that alerts a supervisor to a

possible problem for one or more team members, there are two fundamental decisions:

1. "Is there a problem?"

2. "What should I do to solve the problem?"

A decision ladder was created for each of the two critical decisions, and then functional and information

requirements for the DST were derived from the decision ladders. In keeping with the hybrid CTA

approach, each decision was represented by two decision ladders (an initial ladder and one augmented

with display requirements), provided in Appendices A and B, respectively. These two decisions are

detailed below.

After receiving a visual and/or auditory alert to reference the DST for a possible problem (as

determined by the HSMM-based operator model), the first critical decision the supervisor faces is

determining if there is actualy a problem. First, the source of the alert must be identified. In order

for this to occur, the DST should display the information source that caused the alert so that it is

readily apparent to the supervisor. The supervisor must then determine if operator actions caused

the alert and if so, which actions. Consequently, the DST should display both what the model

infers as the most likely cause of the alert and recent major environmental events, such as

emergent targets, visual tasks, etc. that could have triggered the alert. After determining what

caused the alert, the supervisor must then decide whether the alert requires action. To aid in this

decision, the DST should display the prediction of future model performance to allow the

supervisor the ability to develop appropriate confidence in the automation. If the supervisor

decides the alert does not require action, then the DST must allow the alert to be easily ignored

or reset. If the supervisor decides to change alert threshold levels, then the DST must ensure this

is a quick process so that the supervisor can quickly return to monitoring the rest of the team. If

the supervisor decides to intervene, then a procedure must be formulated by moving into the

"What should I do to solve the problem?" decision ladder (Appendix A).



The second critical decision involves the supervisor determining what must be done to solve the

problem. Optimizing the time and frequency the supervisor intervenes are key factors in

optimizing team performance (Brewer & Ridgway, 1998; Irving, et al., 1986; Mitchell, et al.,

2004). The supervisor must identify possible solutions, such as advising the operator to change

tactics, offloading a target and/or UV to another operator, obtaining an additional UVfrom

another operator, changing alert threshold levels, or any combination thereof This process

should be aided by a DST that allows the supervisor to select the time frame of the data that is

shown, including past operator performance levels. This would allow the supervisor to hone in on

the information he/she desires. The supervisor is assumed to have the ability to view the operator

displays, either remotely or in situ, in order to obtain more detailed information about current

operator resources and actions as well as communicate with the operators.

Throughout this entire decision-making process, the supervisor must be aware of how predictions change

with passing time. As time passes, the problem may no longer require intervention because the operator

may have adjusted his/her behavior accordingly, targets previously identified as hostile may now be

confirmed as neutral, etc. Alternatively, the problem may quickly worsen and may require immediate

intervention. In that case, the supervisor would have to make a decision quickly, and a less than optimal

solution will suffice.

As mentioned earlier, each decision ladder was then used to derive display requirements. Each

information processing activity, denoted by a box in the decision ladder, was assessed to determine which

functional and information requirements would be necessary to allow the supervisor to obtain the

information or knowledge that is contained in the corresponding oval. Figure 3.3 shows the display

requirements derived from the first decision ladder. In this example, in order to recognize which operator

an alert came from and what data caused the alert, the requirement is that the location of the information

source that caused the alert be readily apparent. The completed display requirements for all decision

ladders can be found in Appendix B. Note that the display requirements simply identify what information

needs to be displayed, not how it will be displayed. The decision of how to display the information is

addressed in the conceptual design phase.



"Is there a problem?"
with display requirements for decision support tool

Figure 3.3: Display requirements for the "Is There a Problem?" decision ladder

3.1.2 Display Requirements Checklist

The tangible output from the CTA is the display requirements checklist provided in Table 3.1. It contains

12 different requirements that were obtained through the decision ladder display requirements. These

requirements are divided into the problem identification and problem solving categories, which represent



the two primary functions of the DST. This checklist is designed to aid in the development and evaluation

of prototype displays for team supervisor DSTs that provide predictions of future operator performance.

Table 3.1: Display requirements for DSTs that provide predictions of future operator performance

Type Requirement Description

1. Alerts supervisor when alert thresholds are surpassed (visual and/or auditory)
e 2. Location of alert information source is readily apparent at first glance

3. Displays model's prediction of the cause of the alert
4. Shows recent major operator events (emergent target, visual task, etc.)
5. Displays model's prediction of future performance

3 6. Allows user to reset/ignore alert
7. Communication capability with operators (assumed to be met with other resources)

8. Displays accuracy of model predictions of past events
9. Displays history of operator interactions with UV interface
10. Contains ability for supervisor to alter the view in order to obtain time-range

specific data
11. Displays operator identifying information
12. Alert threshold levels are easily adjustable

3.1.3 Cognitive Task Analysis Summary

The complex work domain of a supervisor and team of operators independently controlling multiple,

highly autonomous UVs was analyzed through the CTA process described in this section. Specifically,

decision ladders were used to generate the functional and informational requirements shown in Table 3.1.

While the chosen operator model did not influence the output of the CTA, it greatly affected the way that

the requirements generated by the CTA were implemented during the design phase, as described in the

following section.

3.2 HSMM-based Operator State Decision Support Tool

Since the DST is designed as a secondary display in the supervisor's suite of displays, it is designed for a

small, possibly portable display with industry standard SXGA resolution (1280 x 1024 pixels). The

display requirements checklist in Table 3.1 was used to develop and revise each display revision. Figure

3.4 identifies the four major sections of the DST that will be discussed in this section.
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Figure 3.4: DST (Castonia, 2009)

3.2.1 Interaction Frequency Plot
The upper left hand corner of the DST contains the Interaction Frequency plot shown in Figure 3.5.

Historical data for operator clicks per minute are shown as a way to give the supervisor an unprocessed

way to infer operator workload (Maule & Hockey, 1993). The horizontal axis ranges from three minutes

in the past (t-3:00) to the current time (t). The vertical axis ranges from zero clicks per minute to 100

clicks per minute.

Figure 3.5: Interaction Frequency plot



One of the display options for the Interaction Frequency plot is the Icons selection box on the left side of

the display. This toggles the display of icons on the Interaction Frequency plot that represent major

operator events as seen in Figure 3.6. The use of icons immediately informs the supervisor to the possible

cause of a recent increase/decrease in operator interaction frequency. Icons are expected to be useful in

helping the supervisor to quickly determine if there is a problem and what must be done in order to solve

the problem. Such time savings could be critical in time-pressured situations typical of command and

control settings.

Figure 3.6: Interaction Frequency plot with icons shown

Figure 3.7: Interaction frequency plot with icons and grid shown

In an attempt to increase the data-ink ratio (Tufte, 1983), the proportion of the display's ink devoted to the

non-redundant display of data-information, unnecessary portions of grid lines and plot outlines are



removed. However, the Grid selection box on the left side of the Interaction Frequency plot allows the

supervisor to turn these grid lines and plot outlines back on if he/she wishes (Figure 3.7).

3.2.2 Model Accuracy Prediction Plot

The upper right hand corner of the DST in Figure 3.4 is the Model Accuracy Prediction plot and is the

portion of the display that most utilizes the HSMM-based operator model. The HSMM-based model

generates transition probabilities between different system states for each instance in time and utilizes

those likelihoods, combined with the observed operator actions, to predict the future accuracy of the

model and to predict the likelihood of future operator behavior being "normal." The HSMM-based model

also provides a prediction as to which operator behavior was deemed to be anomalous by identifying the

discrepancies between the expected state transitions and the observed operator actions. This model

provides the team supervisor with information about how "normal" the operator behavior is predicted to

be, as well as the predicted cause of any alerts that arise from "abnormal" behavior. As a reminder, the

HSMM-based model cannot determine whether the abnormal behavior is detrimental.

Figure 3.8: Model Accuracy Prediction plot

The Model Accuracy Prediction plot (Figure 3.8) incorporates predictions about each future predicted

state and the expected duration inclusive of the next three minutes. The horizontal axis ranges from the

current time (t) to three minutes in the future (t+3:00). The vertical axis ranges from 50% model accuracy

to 100% model accuracy. If the model accuracy prediction is low, then the model is expected to not be

able to accurately predict operator behavior and the operator behavior is considered "abnormal." If the

model accuracy prediction is high, then the model is expected to predict future operator behavior

accurately and the operator behavior is considered "normal." While coding the DST, Huang (2009)

:::::::::: ... .........



showed that the output of the HSMM-based operator model would require a scoring metric, the Model

Accuracy Score (MAS), that represents the current model accuracy based upon the quality and timing of

previous predictions. Hypothetical future operator actions are then appended to the current model state

and the appropriate future MAS predictions are populated. The MAS takes on values from 50-100, which

presents the supervisor with feedback on future prediction accuracy.

The range of possible future model accuracy values, corresponding to the different possible state

transitions patterns, is represented by the gray shaded area in Figure 3.8. As expected, the range of

possible values, and thus the area of the gray shaded region, increases as the model predicts farther into

the future. The white/red/dark gray line represents the midline of the range distribution. When this line

drops below a specified threshold, shown by the blue dashed line in Figure 3.8, an alert is triggered. This

allows the supervisor to easily see how close the Model Accuracy Prediction is to causing an alert.

While the range and midline of the distribution of model accuracy values are important, so is the

confidence the model has in those prediction. This information is available through the color of the

midline (Figure 3.8). Each color is mapped to a level of prediction quality: high (white), medium (gray),

and low (red). The specific quantities used to classify these three levels depend on the underlying models

and supervisor preference. For the given prototype, expected deviations of less than five percent from the

midline were mapped to high confidence, expected deviations of five to ten percent from the midline were

mapped to medium confidence, and expected deviations of greater than ten percent from the midline were

mapped to low confidence. The colors were chosen to reinforce the mental model of white =

definite/confident, gray = uncertainty, and red = warning, that is consistent throughout the display, and to

ensure the DST can be used by supervisors with red-green color blindness. This color scheme is important

since approximately 10% of the male population is color-blind, and 95% of all variations in human color

vision involve the red and green receptor in human eyes (Gegenfurtner & Sharpe, 2001). Since an alert is

generated when the midline drops below a supervisor-dictated threshold and it is expected that the

supervisor will immediately want to know the prediction quality of this alert, this mapping of prediction

quality to midline color will result in minimal search time to obtain the relevant data.

While the design for the midline of the model accuracy distribution has always been linear, the actual

output from the HSMM-based model is discontinuous horizontal lines. The model output gives the

expected amount of time the operator will spend in the current state, the probabilities of moving to each

of the other states, and the expected amount of time the operator will spend in each of those states.

Therefore, each horizontal line in Figure 3.9 represents the most probable next state, where the length of



each line is the predicted length of time the operator will stay in that state. However, a preliminary

experiment was conducted that showed users reported higher understanding and were more confident in

the HSMM-based data presented to them in a curvilinear representation (Figure 3.10 or Figure 3.11) than

in the discrete representation (Figure 3.9) that is most suitable to the actual model output (Castonia,

2009). Therefore, the DST in Figure 3.4 incorporates a curvilinear representation of the HSMM-based

data.

Figure 3.9: Discrete variation of the Model Accuracy Prediction display (Castonia, 2009)

Figure 3.10: Linear variation of the Model Accuracy Prediction display (Castonia, 2009)



Figure 3.11: Curved variations of the Model Accuracy Prediction display (Castonia, 2009)

3.2.3 Confidence History Plot

If alerted to a drop below the set threshold in the Model Accuracy Prediction plot, the supervisor would

likely want to know how well the model has been performing throughout the mission. If the model has

been performing well, then the supervisor may lead toward intervening in the scenario. However, if the

model has been performing poorly, the supervisor may be more inclined to reset the alert. In order to

provide the supervisor with information about model performance over time, a high level view was

created as shown in Figure 3.12.

Figure 3.12: Confidence History plot

To create this display, the historical Model Accuracy Predictions are compared to the observed model

accuracy for each point in time. This comparison allows the supervisor to quickly and confidently identify

how accurate the model has been at making predictions over the course of the entire mission, influencing

the decision of whether to trust the model's predictions and actually intervene when there is an alert, or to



simply ignore it. For each instant in time, the value of the Model Accuracy Prediction midline for the one,

two, and three minute predictions are stored and then compared to the observed model accuracy at the

time when those predictions come to fruition.
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Figure 3.13: Model Accuracy Prediction plot with applicable Confidence History plot values annotated

An example of the applicable values from the Model Accuracy Prediction plot that are used to produce

the Confidence History plot can be seen in Figure 3.13. In this example, the current observed model

accuracy is 81%, the one minute future prediction is 78%, the two minute future prediction is 77%, and

the three minute future prediction is 69%. These values are circled in Figure 3.13. If the current mission

time in Figure 3.13 is 3 minutes (t = 3 minutes), then we see that the Model Accuracy Prediction for a

mission time of 5 minutes (t + 2:00) is 77%. Two minutes later, at a mission time of 5 minutes, assume

that the observed model accuracy is 80%. These two values would then be compared to populate the

Confidence History plot because 77% was the two minute prediction for a mission time of 5 minutes and

80% was the observed model accuracy for a mission time of 5 minutes. The difference is 3%, which

describes how good the model did at predicting two minutes into the future. A smaller difference is

indicative of more accurate predictions, while a larger difference is indicative of less accurate predictions.

The difference between the Model Accuracy Prediction for a specific mission time and the observed

model accuracy for that specific mission time is the information contained in the Confidence History plot.

This information is color coded in a manner similar to the three levels of Prediction Quality: deviations of



less than five percent correspond to high confidence (white), deviations of five to ten percent correspond

to medium confidence (gray), and deviations of greater than ten percent from correspond to low

confidence (red). Therefore, the example just described would result in a white bar (because the deviation

between the predicted and observed values was 3%) starting at the 5 minute location on the horizontal

axis (the mission timeline) and the 2 minute location on the vertical axis (the prediction axis), as

annotated by the highlighted portion of Figure 3.14. That bar would stay white and continue to populate

the plot to the right until the deviation between the two minute Model Accuracy Prediction midline and

observed model accuracy reaches 5% or greater. This appears in Figure 3.14 at a mission time of about

5:20 where the deviation between the two minute Model Accuracy Prediction and observed model

accuracy increased to the medium confidence range, thus changing the bar to gray.
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Figure 3.14: Annotated Confidence History plot

These colored bars allow the supervisor to quickly determine how confident he/she should be in the

current predictions, which has been shown to positively influence decision maker accuracy (Bisantz, et

al., 2000). If the Confidence History plot is mainly white, the model's predictions of operator behavior

have been accurate and the supervisor should have high confidence in the current predictions contained in

the Model Accuracy Prediction plot. If the plot is mainly red, the model's predictions of operator behavior

have not been accurate and thus the supervisor's confidence in current predictions contained in the Model

Accuracy Prediction plot should be low.

The supervisor has several options when using the Confidence History plot. First, the entire plot can be

toggled on/off. This toggle allows the supervisor to focus on the Model Accuracy Prediction and

Interaction Frequency plots when he/she is not concerned about the historical model performance.

Additionally, the supervisor is able to manipulate what information is shown in the plot through the use of

the selection boxes on the left side of the display and the click-and-drag movable vertical axis. The

selection boxes correspond to the one minute, two minute, and three minute predictions from the Model



Accuracy Prediction plot and allow the supervisor to view any combination of the three that he/she

wishes. This is useful if, for example, the three minute predictions have been very inaccurate and the

supervisor has decided not to take them into account any longer. Clicking the corresponding toggle box

removes the confidence history for the three minute predictions, as seen in Figure 3.15, and allows the

supervisor to focus solely on the confidence history for the one and two minute predictions. The click-

and-drag movable axis, highlighted in Figure 3.15, allows the supervisor to hide old data. This is useful if

the mission lasts an extended period of time and the supervisor is no longer concerned about how accurate

the model was much earlier in the mission. Overall, the Confidence History plot provides the supervisor

with a flexible way to evaluate past model performance in order to aid in the important decision of when

to intervene.

Cx]Confidence History

Mission Timeline

Figure 3.15: Confidence History plot with 3 min prediction not shown

3.2.4 Status Panel

The status panel, shown in Figure 3.16, is at the top of the DST and provides the supervisor with the

operator name, access to the alert panel, displays alerts, and provides the interface for the supervisor

interaction once an alert has occurred. The operator name is provided so that the supervisor may utilize

customized alerts that may have been saved to that particular operator from a previous mission and also

so that the supervisor may recall prior experiences that he/she has with that operator in order to influence

the decision making process throughout the mission.

OFpesratoPr 1 Alert Panel

Figure 3.16: Status Panel



As mentioned during the CTA in Section 3.1, it is assumed that the supervisor will be focused on other

displays and tasks until alerted to reference the DST. These alerts are generated when preset alert

thresholds, shown in Figure 3.17, are surpassed.

UIN 1
(DR 12)

UIN 2
(DR 12) ,

Figure 3.17: DST with UIN's highlighted

The requirement that these thresholds are easily adjustable applies not only to specific alerts, but also for

the situation where the supervisor may want different thresholds for different operators, i.e. novices might

have more narrow ranges and experts might have larger ranges of expected behaviors. In order to provide

this functionality, all alert thresholds are designed as user-initiated notifications (Guerlain & Bullemer,

1996) that can be adjusted directly on the interface by a click-and-drag function or through accessing the

alert panel. This allows the supervisor to quickly and easily set different user-initiated notification (UIN)

threshold levels for each operator.

Each UIN threshold line is represented as a blue dashed horizontal line and the description of each UIN in

Figure 3.17 is given in Table 3.2. When the interaction frequency drops below the lower line (UIN 2) or

rises above the upper line (UIN 1), then the DST will display an alert similar to the alert in Figure 3.20.

The UIN threshold line on the Model Accuracy Prediction plot (UIN 3) represents the lowest predicted

model accuracy the supervisor is willing to tolerate before being alerted. When the midline of the model

UIN 3
(DR 12)



accuracy prediction drops below this line, the supervisor is alerted

displayed.

Table 3.2: UIN Descriptions

Plot Location UIN Description

and the predicted cause of the alert is

Alerts supervisor when operator is clicking more often than the
UIN 1 Interaction Frequency

set value.

Alerts supervisor when operator is clicking less often than the
UN 2 Interaction Frequencyvalue.

Alerts supervisor when the midline of the model accuracy
UIN 3 Model Accuracy Prediction

prediction drops below the set value.

The Alert Panel, shown in Figure 3.18, is accessed through the Alert Panel button on the Status Panel.

The supervisor may use the Alert Panel to set the parameter, threshold value, alert window, recurrence

(once or always), and alert type (visual, auditory, or both) for as many UINs as he/she wishes. The

settings for the three UINs shown throughout this chapter and specifically in Figure 3.17 can be seen in

the bottom of the Alert Panel in Figure 3.18. Selecting one of these existing alerts and clicking Edit

allows the supervisor to change any of the settings, such as changing the alert window for the Model

Accuracy Prediction UIN from 'Present - +3 minutes' to 'Present - +2 minutes' because of existing low

confidence in the three minute predictions. The supervisor can also change the recurrence from 'Once' to

'Always' so not to have to create a new UIN once the corresponding alert is triggered. The UIN may also

be reset by clicking the Acknowledge/Reset Alert button on the main display as seen in Figure 3.19.

The Alert Panel also allows the supervisor to set alert thresholds for system events such as emergent

targets, camera/visual tasks, UV losses, neutralization of targets, etc. It is expected that users would

initially rely primarily on preset alerts, while allowing expert users to tailor the DST to his/her preference,

even in real-time.
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Figure 3.18: Alert panel

Each alert has a corresponding alert message. The alert message is displayed on the Status Panel as seen

in Figure 3.19. The message contains the model's prediction of what caused the alert and is kept succinct

in order to allow the supervisor to quickly scan the alert and understand its meaning. The alert message in

Figure 3.19 states that the alert has likely been caused by Operator 1 neglecting the underwater unmanned

vehicles (UUVs) and favoring the high altitude long endurance unmanned vehicles (HALEs).

Operato 1 Alert, Panel Neglect: UUVs InterveIn e

Favor: HALESAcnwegRstAer

Figure 3.19: Status Panel with alert shown

After each alert, the supervisor must decide whether to intervene in the situation or reset the alert. The

Intervene button is designed to interact with other systems to allow the supervisor to implement the

chosen solution. The Acknowledge/Reset Alert button is used if the supervisor determines that the alert

does not require intervention. When the Acknowledge/Reset Alert button is clicked, the alert message is

removed from the Status Panel and the alert is reset. If the alert was set for an occurrence of 'Once,' this

results in the removal of the corresponding blue dashed UIN line. If the alert was set for an occurrence of

. ...... ... .... ........... ..... ......



'Always,' the corresponding blue dashed UIN line will remain on the DST and the supervisor will be

alerted if the line is crossed in the future.

3.3 Summary

The DST brings together the information required to make the two fundamental decisions identified in the

CTA for the task of team supervision of 2-6 operators, each independently controlling a set of highly

autonomous UVs.

1. "Is there a problem?"

2. "What should I do to solve the problem?"

Operator
identification
information

(DR 11 g

Display options
(DR 4)

Operator
interaction

Display options
(DR 10)

Alert Panel Model's predicted
DR 12) cause of alert (DR 1,3)

Intervention
button (DR 7)

Acknowledge/Reset
Alert (DR 6)

Current
confidence

(DR 8)

Most probable
model accuracy

(DR 5)

Source of alert
DR 2)

Figure 3.20: Annotated DST with Design Requirements (DR) shown (Castonia, 2009)

Furthermore, each Design Requirement (DR) listed in Table 3.1 is met by at least one feature on the DST

and there are not any features on the DST that do not meet at least one Design Requirement, as seen in

Figure 3.20. The callouts on Figure 3.20 identify different features of the design as well as the DR from

Table 3.1 met by each feature. The design was developed with the goal of displaying the necessary

information in the simplest method possible, in order to ensure the supervisor can quickly and easily find

whatever he/she needs to answer the questions posed above.



Although the DST is designed with UV operations in mind, the design is applicable to any HSC scenario

given a working model of current and predicted operator behavior. Additionally, since the DST is a

unique design for a futuristic application, formidable testing must be completed in order to evaluate its

effectiveness. The next chapter describes a human subject evaluation that was completed in order to

accomplish this task.



4. Experimental Evaluation

After the completion of the development process described in Chapter 3, an experiment was designed to

test the effectiveness of the resulting DST. Specifically, the experiment was designed to address the

problem statement in Chapter 1, which is determining whether team supervisors with an HSMM-based

DST perform better than supervisors without the DST in terms of correctly identifying current and future

problems, solving current problems efficiently and accurately, correctly preventing future problems from

occurring, and limiting unnecessary interventions.

The experiment involves a supervisor whose job it is to monitor three operators. Each operator has an

independent area of responsibility over which he/she must direct UVs to monitor pre-set and emergent

targets, while avoiding dynamic threat areas. The team supervisor of the three operators must oversee the

mission which, for the purposes of this experiment, is assumed to occur from a remote location. This

simulates a supervisor in a command and control center possibly thousands of miles away from the

operators, such as Air Force unmanned aerial vehicle pilots receiving commands from a supervisor who is

in a remote command center. In this setting, the supervisor is able to view all three operator interfaces

remotely and must make decisions of when to intervene in the different scenarios presented to him/her in

order to best improve team performance.

In this experiment, the operators and all of the interactions with the UVs and targets within the operator

interface were simulated. This was done to ensure consistency of test scenarios and control the variability

in the data. Thus, the only actual humans in this experiment were team supervisors. Details about the

participants, apparatus, procedure, and experimental design will be presented in this chapter.

4.1 Participants

Participants were recruited via email and word of mouth. Of 30 total participants, 21 were male and 9

were female. The average age was 19.73 years with standard deviation of 1.20 years and a range of 18-26

years. Of the 30 participants, 29 were MIT students (27 undergraduate, 2 graduate).

4.2 Apparatus

The experimental environment consisted of three different displays: the operator interface, the team

supervisor interface, and the secondary task display. Each operator interface and the team supervisor

interface were displayed on 17-inch Dell TFT LCD monitors connected to a Dell Dimension tower



containing a Pentium D 2.80GHz CPU and 2.00 GB ram. The secondary task was shown on a 42-inch

(1024x768 pixels) wall-mounted plasma screen. The overall testing environment layout will now be

described, followed by the operator interface, team supervisor interface, and secondary task display.

4.2.1 Testing Environment Layout

The experimental team consisted of three operators (simulated) and a team supervisor. The testing

environment can be seen in Figure 4.1. The three operator workstations were spread around the room so

that it was easy for the experimenter to identify which operator the subject was paying attention to at any

given moment. The subjects were allowed to move around as they wished in order to best supervise their

team. The three operator workstations were started simultaneously over a network connection from a

fourth computer to ensure all scenarios were shown to the subjects in the exact same manner.

Secondary
Task

Operator 2|
Operator 3

Operator 1

Figure 4.1: Testing environment layout

Each operator station was configured as seen in Figure 4.2, with the RESCHU interface, discussed in the

next section, displayed on the top monitor and the DST displayed on the bottom monitor. For the 15

subjects that were randomly selected to conduct the experiment without the DST, the bottom monitor was

turned off.



DST

Figure 4.2: Operator workstation (RESCHU and DST)

4.2.2 Operator Interface: RESCHU

The Research Environment for Supervisory Control of Heterogeneous Unmanned Vehicles (RESCHU)

was chosen as the operator interface because of its functionality of allowing a single operator to control

multiple, heterogeneous UVs in simulated intelligence, surveillance, and reconnaissance (ISR) tasks

(Nehme, 2009). In RESCHU, it is the goal of each operator to visit as many targets as possible in order to

correctly complete visual search tasks and obtain the maximum score. This requires the operator to

dynamically plan and re-plan UV paths due to dynamic threat areas and emergent targets.
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Figure 4.3: Annotated screenshot of the operator display - RESCHU (Nehme, 2009)

As annotated in Figure 4.3, RESCHU consists of five different components: a large map view, payload

camera view, message pane, UV health and status view, and a timeline.

* The map view shows the locations of threat areas (yellow circles), UVs (blue), unknown targets

(gray diamonds), and targets that need to be searched (red diamonds), as well as the current paths

of the UVs (blue lines). The UVs with the green halo around them are the high altitude long

endurance unmanned vehicles (HALEs) that must visit unknown targets before the other UVs

may conduct the search task.

* The payload camera view, shown in Figure 4.4, is only engaged when a UV arrives at a target

that needs to be searched (red diamonds). This view simulates the operator searching for an

object, such as a white car, in the target area. If the operator successfully identifies the correct

object, his/her score is increased by one. At the completion of the visual search task, the target

disappears and the operator may once again guide the UVs to remaining targets.

* The message pane logs system messages, such as when UVs arrive at targets or what the operator

needs to search for in the payload camera view, for quick reference by the operator.

* The UV health and status view provides information such as how much damage the UV has taken

and whether or not the UV is waiting for an input from the operator, about each UV the operator

is controlling.

* The timeline shows the estimated time it will take each UV to arrive at its next target.

MapI f
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Figure 4.4: RESCHU- payload camera view (visual search task)

For this experiment, the operators were simulated by having a subject matter expert play through

RESCHU according to a script that dictated the behavior needed for each operator in each scenario. The

RESCHU interfaces for each simulation were recorded via screen capture software and log files and later

played back as needed to re-create each team scenario. As the team supervisor, each participant in the

experiment used the RESCHU display to observe the simulated operator behavior in order to gather

information about current and potential future operator performance issues.

4.2.3 Team Supervisor Interface: HSMM-based Operator State Decision

Support Tool

Due to the format of the study, specifically that the subjects watched a playback of simulated scenarios

and only interacted with the DST when deciding to intervene in a scenario or reset the alert, a few

changes were made to the DST design explained in Chapter 3. This was done in order to provide greater

experimental control by reducing the number of uncontrolled variables and degrees of interaction

freedom. Thus, the DST used in the experimental evaluation was akin to a part-task trainer (Wharton, et

al., 1994) that allowed the researchers to focus on the critical components which were the overall subject

decision making processes and how access to the DST affected those processes.



A testbed DST screenshot is shown in Figure 4.5. The changes made to the experimental version were

minor, such as not allowing the grid to be toggled on/off for the Interaction Frequency and Model

Accuracy Prediction plots, not allowing the supervisor to hide portions of the Model Performance History

that he/she viewed, not having UIN threshold lines present on the Interaction Frequency plot (the UIN

threshold lines were set at the lower and upper bounds of the y-axis), and not having an Alert Panel for

the subjects to set customizable thresholds. These changes did not impact the ability to take the measures

needed for the experiment.

Figure 4.5: DST screenshot with alert shown

4.2.4 Secondary Task Display

In order to determine if the DST had an effect on mental workload, a secondary task was used to measure

the supervisor's spare mental capacity (Wickens & Hollands, 2000). The large wall screen display, shown

in Figure 4.6, was used to play a different video clip for each scenario. The subjects were instructed to

listen for a certain target utterance, as shown in Table 4.1, and report to the examiner the number of

occurrences of that utterance at the end of the scenario. Paper and pen were provided so that the subjects

would not need to remember the count. The number of missed occurrences of the target utterance was



used as an indication of the supervisor's spare mental capacity, and thus a higher level of missed

occurrences was seen as indicative of a higher level of mental workload.

Table 4.1: Secondary Task target utterance and occurrences

Scenario 1 health care 5

Scenario 2 debt 7

Scenario 3 Perot 4

Scenario 4 unpopular 6

Figure 4.6: Large-screen wall display with scenario 1 video shown

4.3 Experimental Design

The experiment was a 2x2x2 mixed design with the following three factors:

e Operator Situation: 2 levels (true positive and false positive)

* Number of Operators Causing an Alert: 2 levels (single and multiple)

* Assistance Type: 2 levels (with DST or without DST)

The experimental design repeats measures on the Operator Situation and Number of Operators Causing an

Alert factors while the Assistance Type is a between subjects factor. Descriptions of the four scenarios, as

well as the randomized test matrix, are contained in Appendix C.

OccurrencesTarget Utterance

..................... .



4.3.1 Independent Variables

Operator Situation

This factor refers to the operator actions that cause the DST alert, specifically whether the alert requires

intervention. While all alerts are caused by anomalous behavior in that the threshold value is crossed, an

alert does not necessitate that the operator is performing poorly and the situation requires supervisor

intervention. The alert may be caused by a sudden change in the operating environment during which the

operator is correctly handling the new situation, or it may be caused by an operator that is performing in a

way that the model has never experienced before and thus flags as anomalous. Since it is important that

the supervisor accurately identifies whether an alert requires intervention or not, this factor is necessary.

There are two factor levels for operator situation: true positive and false positive.

* True positive - An example of a true positive situation would be if the supervisor is alerted

because the Model Accuracy Prediction dropped below the set UIN threshold, and the alert says

that the operator is neglecting the underwater unmanned vehicles (ULJVs). If a glance at the

operator's RESCHU interface confirms that operator is neglecting the UUVs, then this type of

situation requires supervisor intervention.

* False positive - An example of a false positive situation would be if the supervisor is alerted that

an operator is operating below the low interaction frequency threshold. If a glance at the

operator's RESCHU interface confirms that all of the UVs are on path toward targets that are far

away from their current positions, and the operator does not have anything else to do at that time,

then this type of situation does not require supervisor intervention. While this situation is

anomalous in that operators rarely interact at such a low frequency, resulting in a drop below the

threshold value, the operator is not doing anything wrong.

Number of Operators Causing an Alert

The number of operators causing an alert is broken into two levels: single and multiple. This factor

corresponds to the number of simultaneous alerts that the supervisor receives due to the number of

operators that are exhibiting anomalous behavior. In the multiple alert scenarios, one alert is caused by

true positive behavior, while the other alert is caused by false positive or true positive behavior based on

the Operator Situation factor level. It was hypothesized that the multiple alert scenarios would result in

slower response times and a higher secondary task ratio than the single alert scenarios due to the

simultaneous nature of the alerts.



Assistance Type

The two levels of assistance type are with the DST and without the DST. It was hypothesized that

subjects who used the DST would perform better on all dependent variables than non-DST users.

4.3.2 Dependent Variables

Decision Accuracy

Decision Accuracy is a binary yes/no value of whether the subject correctly identified the need to

intervene or not intervene for each operator situation that caused an alert.

Incorrect Interventions

An Incorrect Intervention was recorded if a subject chose to intervene in a situation when the operator

was acting normally and an intervention was not necessary. This metric does not include decisions made

in response to the operator actions that caused an alert. For example, if the correct response to the

operator actions that caused an alert was to not intervene and the subject chose to intervene, this was

considered an incorrect decision and affected Decision Accuracy. This example would not be counted as

an Incorrect Intervention. A choice to intervene during normal operator actions that did not correspond to

one of the alerts was recorded as an Incorrect Intervention.

Response Time

Response Time is the amount of time in seconds that passes from when an alert is triggered until the

supervisor makes the decision of whether to intervene or acknowledge/reset the alert. For non-DST users,

the Response Time is calculated from the mission time that the alert would have been triggered if they

were using the DST.

Secondary Task Ratio

The Secondary Task Ratio is the difference between the reported total number of occurrences of the target

utterance in the secondary task video and the actual total number of occurrences of the target utterance in

the video, normalized by the actual total number of occurrences.

I # Reported Occurrences - # Actual Occurrences
Secondary Task Ratio - # Actual Ocurrences



DST Understanding

A verbal retrospective protocol was used in conjunction with an analysis of the subjects' interactions with

the DST in order to infer higher level strategies and understanding. Additionally, the Post Experiment

Questionnaire in Appendix D was used to obtain subjective feedback from subjects that used the DST.

4.4 Procedure

After being welcomed and thanked for participating in the experiment, each subject read and signed a

consent form (Appendix E) and filled out a demographic survey (Appendix F). The experimental task was

then explained in detail through a self-paced presentation of the applicable training slides (Appendices G

and H, respectively). The subject was given a chance to ask any questions before moving into the first of

two practice trials. The practice trials and each of the four experimental trials were all controlled from a

networked computer. The experimenter talked through the two practice trials with the subject in order to

point out and reinforce important information from the training slides. In the second half of the second

practice trial, the experimenter stopped talking and allowed the subject to continue the scenario as if it

were an experimental trial.

Next, the subject was given another chance to ask any questions before moving on to the four

experimental trials, one for each combination of the Operator Situation and Number of Operators Causing

an Alert factor levels as shown in Table 4.2. Assistance Type was a between subjects factor. These trials

lasted approximately five minutes each and were presented in the counterbalanced order shown in

Appendix C. During each trial, the experimenter took notes on subject behavior such as scan pattern, how

each subject kept track of the secondary task occurrences, the mission time at which each decision to

intervene or reset an alert was made, and anything else of notable interest.

Table 4.2: Experimental scenario descriptions

DSeripon Operator 1 Behavior Operator 2 Behavior Operator 3 Behavior

Scenario 1 true positive normal normal True alert - Neglect
single alert HALEs (t=3:30)

true positive True alert - low True alert - excessiveScenario 2 multiple alerts interaction frequency status checking (t=3:20) normal
(t=3:20)

fals postiv Fale alrt Negect True alert - excessive
Scenario 3 false ositves normal Fals art - get waypoint modification

(t=2:15)

false positive False alert - low
Scenario 4 single alert interaction frequency normal normal

singl ale(t=1:14) 1_1_1



After each trial, the experimenter re-started the same scenario, this time without the secondary task video,

and conducted a verbal retrospective protocol during which the subjects explained their thought process

throughout the scenario. The experimenter also asked questions in an open-ended interview format in

order to gain more insight, such as what portions of the displays most helped the subject in making the

crucial decision of whether to intervene or not. After the experimental trials were completed, DST

subjects filled out the post-experiment questionnaire in Appendix D. All subjects were then paid a

nominal fee and thanked for their participation. In order to encourage subjects to perform their best, they

were instructed before the experiment began that the top performer, based on the dependent variables

listed in Section 4.3.2, would receive a $200 gift card.

4.5 Experimental Evaluation Summary

As with any design, it is important to test prototypes early in the design cycle in order to ensure the design

warrants moving forward to more expensive production and testing methods. This chapter explained the

experimental evaluation designed to evaluate the proposed DST design from Chapter 3. Each subject

participated in four different trials as the team supervisor of three simulated operators in order to provide

data to be used to evaluate the effectiveness of the DST on Decision Accuracy, the number of Incorrect

Interventions, Response Time, and the Secondary Task Ratio. Independent variables included Operator

Situation, Number of Operators Causing an Alert, and Assistance Type, making this experiment a 2x2x2

study. The next chapter contains the results from this experiment.
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5. Results and Discussion

This chapter presents the results of the experiment described in Chapter 4. The descriptions of each of the

four experimental scenarios, from Table 4.2, are reproduced below for quick reference. Recall that the

multiple alerts in Scenarios 2 and 3 were simultaneous; they appeared at the exact same time for DST

users.

Table 4.2: Experimental scenario descriptions

Scenain Operator 1 Behavior Operator 2 Behavior Operator 3 Behavior
___________ Description ___________________________________

Scenario 1 true positive normal normal True alert - Neglect
single alert HALEs (t=3:30)

true positive True alert - low True alert - excessiveScenario 2 multiple alerts interaction frequency status checking (t=3:20) normal
(t=-3:20)

fals postiv Fale alrt Negect True alert - excessive
Scenario 3 false psierts normal Fa alert -eglect waypoint modification

(t=2:15)

false positive False alert - low
Scenario 4 single alert interaction frequency normal normal

(t-1:14)

All dependent variables were analyzed using non-parametric tests because the parametric assumptions of

normality and/or homogeneity of variance were not met. Furthermore, an a value of 0.10 was used for all

statistical tests. Since subjects had relatively little time to become familiar with the system, Kruskal-

Wallis tests were performed on the order the scenarios were presented. None of the dependent variables

showed a statistically significant learning effect. These tests, as well as all supporting statistics from this

chapter, are included in Appendix I. The results for each dependent variable are described below.

5.1 Decision Accuracy

Decision Accuracy was analyzed by comparing the correct response to each alert with the decision each

subject made. The correct response, either to intervene in the scenario or determine that intervention was

not necessary and reset the alert, was determined a priori via the scripted behavior of the different

operators in each scenario. The number of correct decisions for DST users was then compared with the

number of correct decisions for non-DST users with Mann-Whitney U tests.3 For the single alert

scenarios, the possible number of correct decisions was zero or one per scenario. For the multiple alert

scenarios, the possible number of correct decisions was zero, one, or two per scenario. The Decision

3The Mann-Whitney U test is a non-parametric test used to determine if two independent samples of observations
are from the same distribution.



Accuracy results for DST and non-DST users are shown in Table 5.1 (statistically significant results are

highlighted in gray).

Table 5.1: Decision Accuracy results

Decision Accuracy

Scenario 1 100% 47%

Scenario 2 73% 83%
Scenario 3 77% 87%
Scenario 4 100% 93%
True Positive Scenarios (1 and 2) 82% 71%
False Positive Scenarios (3 and 4) 84% 89%
Single Alert Scenarios (1 and 4) 100% 70%
Multiple Alert Scenarios (2 and 3) 75% 85%
All Scenarios 83% 80%

The scenarios were analyzed individually as well as by each independent variable. In Scenario 1, DST

users were shown to have a significantly higher Decision Accuracy than non-DST users (U = 52.5, ni= n2

= 15, p = 0.00 1). When analyzing the Decision Accuracy of the single alert scenarios together (Scenarios

1 and 4), it can be seen in Figure 5.1 that non-DST users made the correct decision 70% of the time (21 of

30), as compared to DST users who made the correct decision 100% of the time (30 of 30). A Mann-

Whitney U test proved that this was a statistically significant result (U = 315.0, ni = n2= 30, p = 0.001).

100% -

80%

60%

40% -

20% -

0% -

70%

* With DST
a Without DST

Single Alert Scenarios (1 and 4)

Figure 5.1: Mean Decision Accuracy per subject

Nine Mann-Whitney U tests were run on this dependent variable, thus Kimball's Inequality4 requires

individual tests to have p < 0.012 in order to maintain a family-wise a value of 0.10. The two tests

4 aamiay -wise = 1 - (1- aeach test)# tests

Without DSTWith DST

Mean Decision
Accuracy



reported as statistically significant meet this stricter standard. So, while the DST was not shown to have

an effect on Decision Accuracy for subjects that responded to two simultaneous alerts (Scenarios 2 and 3

grouped together), the DST did have a positive effect on Decision Accuracy for subjects that responded to

one alert at a time (Scenarios 1 and 4 grouped together).

5.2 Incorrect Interventions

An Incorrect Intervention was recorded if a subject chose to intervene in a situation when the operator

was acting normally and an intervention was not necessary. This does not include decisions made in

response to operator actions that caused an alert. For example, if the correct response to operator actions

that caused an alert was to not intervene and the subject chose to intervene, this was considered an

incorrect decision and affected Decision Accuracy. This example would not be counted as an Incorrect

Intervention. In contrast, a choice to intervene during normal operator actions that did not correspond to

one of the alerts was recorded as an Incorrect Intervention. The mean number of Incorrect Interventions

made by subjects with respect to the scenario type and whether or not they were using the DST are shown

in Table 5.2 (statistically significant results are highlighted in gray).

Table 5.2: Incorrect Interventions results

Mean Number of Incorrect Interventions per Subject
With DST Without DST

Scenario 1 0.40 1.40
Scenario 2 0.13 0.67
Scenario 3 0.07 0.73
Scenario 4 0.00 0.20
True Positive Scenarios 1 and 2) 0.27 1.03
False Positive Scenarios (3 and 4) 0.03 0.47
Single Alert Scenarios (1 and 4) 0.20 0.80
Multiple Alert Scenarios (2 and 3) 0.10 0.70
All Scenarios 0.15 0.75

Non-DST users made significantly more Incorrect Interventions than DST users in all scenarios (U =

1174.5, n, = n2= 60, p< 0.001). This result was consistent throughout individual scenario analysis (Figure

5.2) and analysis by independent variable grouping. All relevant statistics are provided in Appendix I.

Nine Mann-Whitney U tests were run on this dependent variable, thus Kimball's Inequality requires

individual tests to have p < 0.012 in order to maintain a family-wise a value of 0.10. The test on all

scenarios meets this stricter standard.
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Figure 5.2: Mean Number of Incorrect Interventions per subject

5.3 Response Time

Response Time was analyzed by recording the amount of time in seconds that passed from when operator

actions caused an alert, either true positive or false positive, until the supervisor made the decision of

whether to intervene. For DST users, the time was recorded when the subject clicked either the Intervene

or Acknowledge/Reset Alert button. For non-DST users, the time was recorded when the subject notified

the experimenter that they wanted to intervene by saying the word "Intervene" as instructed in the pre-

experiment training. For non-DST users, this "Intervention" time was then compared to the mission time

that an alert would have occurred if the subject had been using the DST since the non-DST users did not

receive any alerts. There was no way to record when the non-DST users made decisions to

"Acknowledge/Reset Alert" since they did not receive alerts, and thus only "Intervene" Response Times

were recorded for the non-DST users.

Additionally, since both the non-DST users and the DST users could intervene whenever they wanted, it

was possible for subjects to recognize a problem requiring intervention before the mission time when an

alert would occur. If the supervisor did intervene before the mission time when the alert would occur, this

resulted in a negative Response Time and is referred to as an Early Intervention. Thus, negative Response

Times/Early Interventions were possible and are shown in the results. Early Interventions were most

prevalent in Scenario 2, when an operator abruptly stopped interacting with the RESCHU interface.

Many supervisors, especially non-DST users, recognized this problem in just a few seconds, while the

algorithm required a couple state transitions before identifying the deficiency and thus took several

seconds before presenting an alert to the supervisor.

The mean first Response Times per subject (the response to the first alert in each scenario) are shown by

individual scenario in Figure 5.3 and by relevant groupings in Figure 5.4. Non-DST users were shown to

have a quicker first Response Time than DST users when analyzing all four scenarios together (U =



742.0, ni = 35, n2 = 60, p = 0.017). However, the scenario that allowed the most direct comparison, the

true positive, single alert scenario (Scenario 1), showed a statistically significant result that the non-DST

users had a slower response time than the DST users (U = 26.5, ni = 7, n2 = 15, p = 0.067). This scenario

was analyzed separately, as opposed to with the false positive, single alert scenario (Scenario 4), because

the Response Time data for non-DST users was not obtainable if they did not intervene in the scenario,

and Scenario 4 did not require an intervention. Thus, there was only one data point for a non-DST user

first Response Time in Scenario 4. The multiple alert grouping (Scenarios 2 and 3 together) resulted in

faster mean Response Times for non-DST users as compared to DST users (U = 241.5, n1 = 27, n2 = 30, p

= 0.009). Non-DST users also had faster mean Response Times than DST users for Scenario 2 (U = 40.0,

n1=n2=15, p = 0.003). Six Mann-Whitney U tests were run on this dependent variable, thus Kimball's

Inequality requires individual tests to have p < 0.0 174 in order to maintain a family-wise a value of 0.10.

The tests run on Scenario 2, the multiple alert grouping (Scenarios 2 and 3 together), and all scenarios

grouped together meet this stricter standard.
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Analysis of the second Response Time was limited to the multiple alert scenarios, since they were the

only scenarios that required two responses. The second Response Time can also be considered the total

Response Time, since it is the total amount of time, in reference to the alerting time, that each subject

took in order to respond to both operator situations. The second Response Time data for non-DST users

was not obtainable if they did not intervene in the scenario. Thus, the false positive, multiple alert

scenario (Scenario 3), which only required one intervention, resulted in only one data point for a non-DST

user second Response Time. Therefore, since the true positive, multiple alert scenario (Scenario 2)

required two responses, it was analyzed separately (Figure 5.5). There was not a statistically significant

difference in second Response Time (total Response Time) between non-DST and DST users for the true

positive, multiple alert scenario (U 45.0, ni= 10, n2= 12, p = 0.322).

15.0
11.1T

Mean Second 10.0
Response Time 5.9 E With DST

[seconds] 5.0 Without DST

0.0
True Positive, Multiple Alert Scenario (2)

Figure 5.5: Mean second Response Times (total Response Time) per subject

However, non-DST users did have a significantly longer interval of time between first responses and

second responses for the true positive, multiple alert scenario (Scenario 2) when compared to DST users

(U = 28.5, n1 = 10, n2 = 12, p = 0.038). This can be seen in Figure 5.6.
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Figure 5.6: Mean response interval per subject

An Early Intervention corresponds to a situation where the subject intervenes in the scenario before the

alert occurs for a DST user, or before the mission time when the alert would have occurred for a non-DST

user. The number of Early Interventions for each scenario is shown in Table 5.3. A majority of the Early



Interventions took place during Scenario 2, which included the operator who abruptly stopped moving his

cursor on the screen.

Table 5.3: Early Interventions

Early Interventions
With DST Without DST

Scenario 1 0 1
Scenario 2 7 18
Scenario 3 1 3
Scenario 4 0 0
All Scenarios 8 22

In summary, the DST was shown to have a positive effect on Response Time for the true positive, single

alert scenario (Scenario 1), a negative effect on first Response Time in the multiple alert scenarios

(Scenarios 2 and 3), and no effect on total Response Time. Additionally, non-DST users appeared to

intervene before the alert time more often than DST users, and non-DST users took a longer amount of

time between responding to the two positive alerts (Scenario 2).

5.4 Secondary Task Ratio

The Secondary Task Ratio is defined as the difference between the reported total number of occurrences

of the target utterance (such as the word "debt") in the secondary task video and the actual total number

of occurrences of the target utterance in the video, normalized by the actual total number of occurrences.

For example, a Secondary Task Ratio of 0.0 would indicate that the operator reported the correct number

of utterances. The Secondary Task Ratio results for DST and non-DST users are shown in Table 5.4.

There was not a significant difference between non-DST users and DST users for any of the scenarios or

groupings of scenarios, which indicates that the DST did not have a significant impact on secondary task

workload.

Table 5.4: Secondary Task Ratio results

Mean Secondary Task Ratio per Subject
With DST Without DST

Scenario 1 0.37 0.40
Scenario 2 0.34 0.37
Scenario 3 0.35 0.35

Scenario 4 0.25 0.21
All Scenarios 0.33 0.33



5.5 Subjective DST Understanding

DST users answered the first seven questions in the post-experiment questionnaire in Appendix D,

reproduced in Table 5.5, using the following Likert scale:

1 - Strongly disagree

2 - Somewhat disagree

3 - Neutral

4 - Somewhat agree

5 - Strongly agree

Table 5.5: DST Understanding - Likert scale descriptive statistics

Std.
Minimum Maximum Mean Median Mode Deviation

1. It was easy for me to
understand the data presented 2 5 4.4 5 5 .83
in the Interaction Frequency
plot.

2. It was easy for me to
understand the data presented 2 5 3.8 4 4,5 1.15
in the Model Accuracy
Prediction plot.

3. It was easy for me to
understand the data presented 1 5 2.9 3 3 1.03
in the Confidence History plot.

4. It was easy for me to 4 5 4.7 5 5 .46
understand the DST alerts.
5. It was easy for me to
understand the data presented 2 5 3.8 4 4 1.01
in the DST as a whole.
6. The information presented
on the DST was beneficial in
helping me make my decision 1 5 3.6 4 4 1.35
of whether to intervene or not
intervene.
7. I primarily referenced the
DST when making my 1 4 2.9 3 4 1.19
decision to intervene or not
intervene.
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Figure 5.7: DST Understanding - Likert scale box plots

As can be seen by the results shown in Table 5.5 and Figure 5.7, user understanding of the Interaction

Frequency plot (#1) and DST alerts (#4) was quite high. User understanding of the Model Accuracy

Prediction plot (#2) had an above neutral median with a wide range of responses. User understanding of

the Confidence History plot (#3) had a neutral median. Users seemed to agree that they were able to

easily understand the data presented in the DST as a whole (#5) and that the information was beneficial in

helping to make the decision of whether to intervene or not intervene (#6). However, users did not seem

to primarily reference the DST when making the decision of whether to intervene (#7). This finding was

reinforced by many comments from DST users (8 subjects out of 15) stating that the DST was useful in

alerting them to scenarios they might not have otherwise seen and gave them a good idea of what to look

for in the scenario, but users gathered detailed information about the situation primarily from the

RESCHU interface in order to decide whether to intervene. Overall, the DST received neutral to positive

feedback (medians 3-5) overall all seven questions that were asked.



5.6 Discussion of Experimental Findings

Summarizing the results, the proposed DST has been shown in single alert scenarios to improve

performance in terms of increased Decision Accuracy, decreased Incorrect Interventions, and decreased

Response Time (for the single alert, true positive scenario only), while having no effect on supervisor

mental workload (as measured by a secondary task). These results were obtained for a team supervisor of

three simulated operators, each independently controlling a set of highly autonomous UVs. In scenarios

where the supervisor faced multiple, simultaneous alerts, the DST was shown to decrease the number of

Incorrect Interventions, and have no effect on Decision Accuracy, total Response Time, or supervisor

mental workload (as measured by a secondary task). Subjects reported high understanding of the

Interaction Frequency plot and DST alerts while expressing difficulty with the Confidence History plot.

Overall, users found the information in the DST beneficial in making the decision of whether to intervene,

but did not primarily reference the DST when making the decision of whether to intervene. These results

are discussed below.

5.6.1 Decision Accuracy

The DST gave subjects a possible cause of each alert, such as "low interaction frequency," and thus gave

DST users an indication of what type of information to analyze when making the decision of whether to

intervene. This focused the attention of DST users to the likely cause of the alert, and whether the alert

required action, as opposed to the non-DST users that had to continuously search through all available

information to determine if a situation required intervention. Subjects were told their performance would

be evaluated first on their ability to correctly decide when to intervene (maximizing Decision Accuracy

and minimizing Incorrect Interventions) and second on Response Time. Therefore, the subjects knew they

were in a time critical situation and needed to make decisions quickly. This added pressure of needing to

make a decision quickly likely led to subjects that made decisions without full confidence that they were

correct. For DST users, having their attention focused on the mostly likely cause of the alert may have

been the reason for improved Decision Accuracy in the single alert scenarios, both the true positive and

false positive variants.

While the DST was not shown to have a significant impact on Decision Accuracy for multiple alert

scenarios, this result is possibly due to the simultaneous nature of the alerts. The DST users may have felt

that they needed to rush their first response after being alerted in order to quickly work on the second

alert, and thus sacrificed accuracy for time. Non-DST users did not have this same dynamic as there were

no alerts, and thus the non-DST users could finish dealing with the first operator who seemed to be acting



abnormally without knowing that another operator was in a situation waiting to be addressed. The non-

DST users serially dealt with one alert at a time, while the DST users dealt with the parallel recognition of

two simultaneous alerts. Although it is conceivable that non-DST users could identify two problems in

parallel as well, this does not seem to be the case. Non-DST users had a significantly longer interval of

time between first responses and second responses in the multiple alert, true positive scenario (Scenario 2)

when compared to DST users.

This difference between parallel and serial recognition of alerts may have influenced why the DST did not

impact Decision Accuracy in the multiple alert scenarios; humans can only solve one complex problem at

a time (Broadbent, 1958; Nehme, 2009; Welford, 1952). Therefore, the DST users' focused attention

advantage from the single alert scenarios may have been counteracted by the negative influence of having

to simultaneously react to two alerts. A future study should evaluate multiple alert scenarios that have

different spacing between alerts in order to determine if the DST has an impact in non-simultaneous

multiple alert scenarios.

5.6.2 Incorrect Interventions
Frequent Incorrect Interventions by a supervisor may have negative consequences on team performance

because operators may become irritated, experience a loss of situational awareness, or lose trust in the

team supervisor (Brewer & Ridgway, 1998; Irving, et al., 1986; Mitchell, et al., 2004). When analyzing

the effect of the DST on the number of Incorrect Interventions, it is important to note that the DST

notified the subjects of possible abnormal operator behavior, while non-DST users had no such help. DST

users were also given trend information in the Model Accuracy Prediction plot that allowed the DST users

to predict when alerts might occur. This allowed subjects to identify and analyze suspicious operator

behavior before being alerted. Many of the DST users reported that they assumed operator behavior was

normal if they were not alerted to a situation and trusted they would be alerted when abnormal behavior

was occurring. This automation bias (Cummings, 2004) may result in substantial misses of abnormal

behavior that the system does not provide an alert for (i.e, Type II error) and should be studied in future

work.

Despite the training scenarios that attempted to help non-DST users identify abnormal behavior without

the aid of the DST, and thus understand how abnormal was "abnormal enough" to intervene, the non-DST

users may not have fully understood what type of operator actions required intervention. Many subjects

described strategies such as looking for blinking lights (blinking lights were indicative of UVs that were

waiting for operator input, such as to begin a visual task or engage a target) and making sure the operators



were moving their input devices and interacting with the interface. Very few subjects described more

complex strategies such as ensuring the operators were prioritizing correctly with the different types of

UVs and tasks. This lack of understanding of operator actions, combined with the absence of alerts, may

have been the reason non-DST users had more Incorrect Interventions. However, there was not a

statistically significant learning effect for any of the dependent variables (Table 1.22), suggesting that

additional training may not be enough to decrease the number of non-DST user Incorrect Interventions.

These same results may not be found with subjects who have experience with the underlying operator

control system, RESCHU in the case of this experiment, and this factor should be evaluated in future

work.

5.6.3 Response Time

The overall slower first Response Time (all scenarios grouped together) for DST users may have been

caused by the fact that DST users had more information to process via the additional plots and text on the

DST. Additionally, the effect may have been caused by the same automation bias that resulted in DST

users having a lower number of Incorrect Interventions; DST users were unlikely to intervene without

being alerted. Some DST users even stood at the DST interface waiting to click the Intervene or

Acknowledge/Reset Alert button because they deduced an alert was coming based on the trend of the

Model Accuracy Prediction plot, but waited until that alert occurred to take action. Only 8 instances

occurred of DST users intervening in a situation before an alert, as opposed to 22 instances of non-DST

users intervening in a situation before the alert would have occurred had they been using the DST. The

additional information that DST users had to process, combined with their bias toward not intervening

before being alerted, may be the reason DST users had overall slower first Response Times than non-DST

users.

It is worth noting that in operational settings, the timing of each alert is affected by the user-set threshold

values. Thus, giving the user the option to change the threshold values could result in dramatically

different response times. This option was included in the design of the interface but was not made

functional in this experiment in order to decrease variance between subjects and provide more

experimental control. The analysis of this feature should be studied in future work.

DST users did, however, have quicker Response Times in the single alert, true positive scenario. This

quicker response may have been caused by the serial recognition of the single alert as opposed to the

parallel recognition of the multiple alert scenarios, similar to Decision Accuracy. In multiple alert

scenarios, DST users could not focus solely on an individual alert, since they had to choose one of the



simultaneous alerts to respond to first before moving on to the second alert. While this could greatly

increase the second Response Time (total Response Time) for DST users as they had to first take care of

one alert before reorienting to the other operator to deal with the second alert, this was not shown to be

the case. DST users and non-DST users were not shown to have differing second Response Times (total

Response Time).

Additionally, since each alert was for a different type of operator behavior, it is possible that some types

of abnormal behavior are easier for humans to identify before being alerted and thus certain types of

operator behavior may result in increased early interventions. This seemed to be the case in Scenario 2

when one of the operators suddenly stopped interacting with the interface. A low interaction frequency

alarm was triggered, but not for several seconds after the operator's cursor stopped moving. The lack of

cursor movement was quickly recognized by the non-DST subjects and resulted in many Early

Interventions for Scenario 2. This quick recognition would become more difficult for a supervisor of

more than 3 operators, and thus the scalability of the DST system should be evaluated in future work.

5.6.4 Secondary Task Ratio
The DST was not shown to have a significant impact on mental workload as measured by the secondary

task. Since the addition of the DST to the RESCHU interface doubled the number of screens, the team

supervisor needed to monitor from 3 to 6, the DST would have theoretically increased mental workload if

it were poorly designed. The increased Decision Accuracy, decreased Incorrect Interventions, and quicker

Response Time for DST users in single alert scenarios did not come at the cost of increased mental

workload as shown by the statistically insignificant results.

Additionally, there was anecdotal evidence that the DST may help to lower mental workload if the

supervisor has a team of more than 3 operators. All 8 of the DST users who reported relying primarily on

the RESCHU interface for the intervention decision stated they would rely on the DST more if the

number of operators was increased. Therefore, the scalability of the RESCHU-DST system should be

tested in future work to see if the RESCHU-DST system can still maintain or even decrease mental

workload of a supervisor in charge of a larger number of operators.



5.6.5 Subjective Feedback

Subjective feedback showed that user understanding of the Interaction Frequency plot and DST alerts was

very high. This high understanding is not surprising as these were very simple aspects of the DST that did

not use any information from the HSMM-based operator model.

User understanding of the Model Accuracy Prediction plot varied. Of the 15 DST users, 9 reported that

the Model Accuracy Prediction plot was the most beneficial aspect of the DST in deciding whether to

intervene. This feedback indicates that the Model Accuracy Prediction plot was useful, but one user

reported that he would make the trend lines larger in order to facilitate quicker Response Times. Another

user stated that the Model Accuracy Prediction plot did not seem useful outside of the window between

current mission time and +1:00 minute. This forecasting problem of determining how far in the future the

predictions from the model are beneficial for the user could be evaluated in future work.

Overall, the Confidence History plot seems to require a redesign, if not deleted altogether. It received the

lowest feedback for user understanding, and 7 of 15 DST users made specific comments about how they

did not understand or did not use the Confidence History plot. There are many possible causes for this

response. One possible cause could be that the training for this study did not clearly explain the

Confidence History plot or focused too much on the math that occurs in the background in order to

produce the Confidence History plot. Additionally, the concept of comparing past performance on

different prediction horizons was difficult for subjects to grasp. The design of the Confidence History plot

should be re-evaluated to determine if it is beneficial to keep in the DST, and if so, what changes should

be made in order to ensure its usefulness.

As stated in Section 5.5, the DST was useful in alerting users to scenarios they might not have otherwise

seen and gave them a good idea of what to look for in the scenario, but users gathered detailed

information about the situation primarily from the RESCHU interface in order to decide whether to

intervene. It may be useful to see how supervisors equipped with only the DST alerts, or possibly the

DST alerts and interaction frequency plot, would perform as compared to supervisors equipped with the

DST in its entirety. Perhaps the Model Accuracy Prediction plot and Confidence History plot do not

significantly influence the overall effectiveness of the DST. One subject reported, "It was hard trying to

read three graphs during a time-sensitive, stressful situation. Maybe digital readings would be more

helpful..." Future work will be needed to evaluate this claim.



5.6.6 Summary of Results

In summary, the proposed DST was shown to increase Decision Accuracy, decrease Incorrect

Interventions, and decrease Response Times (single alert, true positive scenario only) in single alert

scenarios, while not affecting supervisor mental workload. However, the current design does not produce

the same positive results in multiple alert scenarios. There are several possible reasons for this variance,

including difficulties associated with parallel recognition of simultaneous alerts and DST users exhibiting

possible automation bias in not intervening without an alert. This automation bias could prove detrimental

to overall system performance if the underlying algorithm, combined with user settings, results in a

situation where the supervisor is not alerted to an operator problem. Additionally, the quantitative and

qualitative results obtained from this experiment have highlighted areas where design changes to the DST

may result in performance increases across multiple alert domains. More importantly, the experiment

showed that recent advances in HSMM-based operator modeling techniques can be leveraged in a real-

time decision support tool to improve team supervisor performance. In the next chapter, conclusions and

future work are addressed.
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6. Conclusions

The goal of this thesis was to develop and evaluate a real-time decision support tool to determine whether

team supervisors with the HSMM-based DST perform better than supervisors without the DST in terms

of correctly identifying current and possible future problems, solving current problems efficiently and

accurately, correctly preventing future problems from occurring, and limiting unnecessary interventions.

This thesis also sought to address the question of how to best display complex probabilistic data,

specifically the HSMM-based operator model output, so that someone with little to no background in

statistical inferential reasoning can efficiently and accurately make time-critical decisions. These research

questions were addressed through the following methods:

* A CTA was conducted in order to understand the decisions the supervisor would need to make in

this domain and to determine what information the supervisor would need in order to quickly and

accurately make those decisions. Design requirements were then derived from the CTA in order

to focus the design cycle (Chapter 3).

* The design requirements derived from the CTA were used to design the DST. The DST takes into

account the applicable literature in Chapter 2, and a discussion of the design of the DST is

included in Chapter 3.

* A human subject experiment was conducted in a simulated team supervisory setting in which

subject performance while using the DST was compared to subject performance in a standard

team HSC setting without the DST. Details about the design of this experiment are included in

Chapter 4. The experimental results and discussion are included in Chapter 5.

The answers to the research questions will now be addressed, followed by future work.

6.1 Supervisor Performance

The DST was shown to increase supervisor Decision Accuracy, decrease Incorrect Interventions, and

decrease Response Times (single alert, true positive scenario only) in single alert scenarios while not

affecting supervisor mental workload. The current design does not, however, produce the same positive

results in multiple alert scenarios. DST users in multiple alert scenarios had significantly less Incorrect

Interventions, but demonstrated no difference in Decision Accuracy or total Response Time, and had

slower first Response Times than the non-DST users. There are several possible reasons for this

discrepancy between single and multiple alert scenarios. One reason may be due to the DST users having

more information to process for two simultaneous alerts than non-DST users because of the addition of

the DST. Another reason may be due to DST users showing an automation bias in not intervening without

an alert, which led to slower first Response Times in the multiple alert scenarios, especially Scenario 2.



Subjective feedback suggested that simple design changes such as separating the Intervene and

Acknowledge/Reset Alert buttons may result in quicker first Response Times as users would not need to

be as precise with mouse position when making sure to not accidentally click the wrong button.

6.2 Display of Probabilistic Data

Subjects showed mixed feelings toward the way that the HSMM-based operator modeling output was

displayed. The Model Accuracy Prediction plot was well understood (median response = 4 of 5). Many

users commented on how they relied on the future trend data in order to decide which operators they

should be paying more attention to, thus leading to increased attentiveness and situational awareness

when operators began to show abnormal behavior. This method of displaying probabilistic data with trend

lines and uncertainty visualized as background shading seemed beneficial in this application.

Alternatively, the Confidence History plot was not well understood (median response = 3 = neutral).

Almost half of the users (7 of 15) reported the Confidence History plot was confusing and not very

helpful. This representation of past model performance data, multiple color-coded horizontal bar graphs,

was not beneficial. It was especially difficult for users to understand the difference between the three

horizontal bars as applied to the different predictions (1 minute, 2 minute, and 3 minute) and what exactly

the colors meant in relation to past model performance. These results suggest the Confidence History plot

needs to be redesigned in order to more intuitively and effectively communicate the historical

performance of the model. This issue of the Confidence History plot provides another example in the

challenge of displaying probabilistic information to humans that are often biased and subjective when

given even simple probabilistic values (Tversky & Kahneman, 1974).

6.3 Future Work

While this work has shown that a real-time DST that leverages HSMM-based operator modeling

techniques increased team supervisor performance in terms of increased Decision Accuracy, decreased

Incorrect Interventions, and decreased Response Times (single alert, true positive scenario only) in single

alert scenarios, the DST is still a prototype and not ready for operational implementation. The experiment

that was conducted had limitations, such as the subjects having less than 15 minutes of training on the

system before being evaluated, the subjects knowing that the operators were simulated, the inability for

the subjects to control many features of the DST such as changing the UIN levels, the independence of

the operators, and the limited number and difficulty of scenarios that were presented. These limitations

should be evaluated with future work before the DST can move closer to real world implementation.



Future studies may benefit from evaluating a larger range of scenarios than what was evaluated in the

aforementioned experiment. Specifically, the effect that the DST has on supervisor performance may not

follow the results reported in Chapter 5 if the multiple alert scenarios had spacing between the alerts as

opposed to both alerts occurring simultaneously.

There are many questions that arise from this work that could be studied further:

* Would DST users be able to correctly identify problematic scenarios if not provided an alert, or

would automation bias result in detrimental performance for problematic scenarios that do not

trigger an alert from the model (Type II errors)?

* Are some types of abnormal operator behaviors (such as low interaction frequency) easier for

humans to identify than the HSMM-based operator model?

* Is the DST scalable to larger numbers of operators and more dynamic operations?

* How many operators would the ideal team consist of for a team supervisor using the DST?

* How far in the future are the HSMM-based operator model predictions beneficial?

* How would the same performance differ if the operators were allowed to see their own DST

throughout the mission?

e Do subjects that are only given the alerts from the DST perform differently than subjects who are

given the DST in its entirety (Interaction Frequency, Model Accuracy Prediction, and Confidence

History plots)?

* How can the DST be adapted to account for a team of multiple, interdependent operators?

6.4 Thesis Summary

As the military and civilian sectors continue to invest in UVs, the scenario suggested in this thesis of a

team supervisor coordinating the efforts of multiple, independent operators each controlling multiple

heterogeneous UVs is likely (Cummings, et al., 2007; DoD, 2007b, 2009). Developing decision support

tools in order aid the team supervisor in making time critical decisions that have possible catastrophic

consequences is essential (Burns, 1978; Hackman, 2002; Leveson, 1986). The DST proposed in this

thesis has demonstrated that using HSMM-based operator modeling to alert the team supervisor to current

and predicted future operator abnormal behavior leads to increased team supervisor performance in terms

of increased Decision Accuracy, decreased Incorrect Interventions, and decreased Response Times (single

alert, true positive scenario only) in single alert scenarios. However, future work needs to be

accomplished before the DST can move into real world production.
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Appendix A: Decision Ladders

Figure A.1: "Is there a problem?" Decision Ladder



Figure A.2: "What should I do to solve the problem?" Decision Ladder
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Appendix B: Decision Ladders with

Decision Support Tool

Figure B.1: "Is there a problem?" Decision Ladder with display requirements
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C: Scenario Descriptions and Test Matrix

Scenario 1 true positive, normal normal True alert - Neglect
single alert HALEs (t=3:30)

. true positive, True alert - low True alert - excessive
Scenario 2 multiple alerts interaction frequency status checking normal

(t=3:20) (t=3:20)
fals poitie, alsealet -Negect True alert - excessive

Scenario 3 fale ositie, normal Fals art -Neget waypoint modification
(t=2:15)

false positive, False alert - low
Scenario 4 interaction frequency normal normal

single alert ~: 14) ____________________

1 4 3 2 yes
2 1 2 4 3 yes
3 3 1 4 2 no
4 2 1 4 3 no
5 3 2 1 4 no
6 3 4 1 2 yes
7 4 2 3 1 no
8 3 4 2 1 yes
9 3 1 2 4 yes

10 1 3 2 4 yes
11 2 4 1 3 no
12 2 1 3 4 no
13 4 1 2 3 yes
14 3 2 4 1 no
15 4 1 3 2 no
16 1 4 2 3 no
17 1 3 4 2 no
18 2 3 1 4 yes
19 2 3 4 1 yes
20 1 2 3 4 yes
21 4 2 1 3 no
22 1 4 3 2 no
23 2 4 3 1 yes
24 4 3 1 2 yes
25 4 3 2 1 yes
26 1 2 4 3 yes
27 2 1 4 3 no
28 3 1 4 2 no
29 3 2 1 4 no
30 3 4 1 2 yes

Scenario
Description Operator 1 Behavior Operator 2 Behavior Operator 3 Behavior

Appendix
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Appendix D: Human Subject Post Experiment Questionnaire

Post Experiment Questionnaire

Use the following scale to answer questions 1-7 below.
1 - Strongly disagree
2 - Somewhat disagree
3 -Neutral
4 - Somewhat agree
5 - Strongly agree

1 2 3 4 5
1. It was easy for me to understand the data presented in the Interaction Frequency plot.
2. It was easy for me to understand the data presented in the Model Accuracy
Prediction plot.
3. It was easy for me to understand the data presented in the Confidence History plot.
4. It was easy for me to understand the DST alerts.
5. It was easy for me to understand the data presented in the DST as a whole.
6. The information presented on the DST was beneficial in helping me make my
decision of whether to intervene or not intervene.
7. I primarily referenced the DST when making my decision to intervene or not
intervene.

Feel free to expand upon your answers and provide more details.

Questions 8-10 do not use the scale above.
8. What changes would you make to the DST to make it easier to use and why?

9. What information on the DST was most beneficial to you in deciding whether to intervene or not
intervene?

10. Additional comments?
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Appendix E: Human Subject Consent Form

CONSENT TO PARTICIPATE IN

NON-BIOMEDICAL RESEARCH

Investigating Team Supervision Interfaces in Collaborative Time-Sensitive Targeting Operations

You are asked to participate in a research study conducted by Professor Mary Cummings Ph.D, (Principal

Investigator) from the Aeronautics and Astronautics Department at the Massachusetts Institute of Technology (MIT)

and Ryan Castonia (student investigator) from the Aeronautics and Astronautics Department at MIT. You were

selected as a possible participant in this study because the expected population this research will impact is expected

to contain men and women between the ages of 18 and 50 with an interest in using computers with possible military

or military-in-training experience. You should read the information below, and ask questions about anything you do

not understand, before deciding whether or not to participate.

PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose whether to be in it or not. If you

choose to be in this study, you may subsequently withdraw from it at any time without penalty or consequences of

any kind. The student investigator may withdraw you from this research if circumstances arise which warrant doing

So.

PURPOSE OF THE STUDY

This experiment will evaluate the effectiveness of a team supervisor real-time Decision Support Tool (DST) on

improving team performance. This DST leverages recent advances in hidden semi-Markov model (HSMM) based

operator state monitoring. The goals of this experiment are twofold. This first goal is to determine whether team

supervisors with a HSMM-based operator modeling DST perform better (in terms of solving current problems

efficiently and accurately, correctly preventing future problems from occurring, limiting unnecessary interventions,

etc.) than supervisors without the DST. The second, more general goal is to address the question of how to best

display probabilistic predictions and associated uncertainty, specifically the HSMM-based operator model output, so

that someone with little to no background in statistics and probabilistic inference can efficiently and accurately make

time-critical decisions.

PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things individually:

* Each participant begins by completing an informed consent form and a background questionnaire that
gathers participants' demographic information. (-5 minutes)

* Attend training and practice session to learn a video game-like software environment that will have you
monitoring the ongoing performance of a team of operators under your supervision and intervening when
mission performance begins to degrade. Your team of operators (simulated in this experiment) will be



supervising and interacting with multiple unmanned vehicles to achieve the goals of your overall mission.
(-20 minutes)

* Execute four trials consisting of the same tasks as above (-20 minutes).
* Fill out a post experiment questionnaire (-5 minutes).
* Attend a debrief session (~10 minutes).
* All testing will take place in MIT building 35, room 220.
* Total time: -1 hr

POTENTIAL RISKS AND DISCOMFORTS

There are no anticipated physical or psychological risks in this study.

POTENTIAL BENEFITS

While there is no immediate foreseeable benefit to you as a participant in this study, your efforts will provide critical

insight into the human cognitive capabilities and limitations for people who are expected to supervise multiple

complex tasks at once, and how decision support visualizations can support their task management.

PAYMENT FOR PARTICIPATION

You will be paid $10/hr for this effort today, and you will also have a chance to win a $200 gift certificate. You will

be notified at the completion of the study if you have won.

CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identified with you will remain

confidential and will be disclosed only with your permission or as required by law. You will be assigned a subject

number which will be used on all related documents to include databases, summaries of results, etc. Only one master

list of subject names and numbers will exist that will remain only in the custody of Professor Cummings.

IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact the Principal Investigator, Mary

L. Cummings, at (617) 252-1512, e-mail, missyc~mit.edu, and her address is 77 Massachusetts Avenue, Room 33-

311, Cambridge, MA, 02139. The student investigator is Ryan Castonia and may be contacted by telephone at (231)

740-1403 or via email at Castonia~amit.edu.

EMERGENCY CARE AND COMPENSATION FOR INJURY

In the unlikely event of physical injury resulting from participation in this research you may receive medical

treatment from the M.I.T. Medical Department, including emergency treatment and follow-up care as needed. Your

insurance carrier may be billed for the cost of such treatment. M.I.T. does not provide any other form of

compensation for injury. Moreover, in either providing or making such medical care available it does not imply the

injury is the fault of the investigator. Further information may be obtained by calling the MIT Insurance and Legal

Affairs Office at 1-617-253-2822.



RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation in this research study. If you

feel you have been treated unfairly, or you have questions regarding your rights as a research subject, you may

contact the Chairman of the Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E32-335, 77

Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253-6787.

SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above and my questions have been answered to my satisfaction. I have been

given a copy of this form.

I understand the procedures described above. My questions have been answered to my satisfaction, and I agree to

participate in this study. I have been given a copy of this form.

Name of Subject

Name of Legal Representative (if applicable)

Signature of Subject or Legal Representative Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and possesses the legal capacity to

give informed consent to participate in this research study.

Signature of Investigator Date



98



Appendix F: Human Subject Demographic Survey

Collaborative TSTDemographic Survey

1. Age:

2. Gender: c Male o Female

3. Native Language:

If native language is not English:

English Proficiency:

c Low

o Moderate

o High

4. Occupation:

If student:

a. Class Standing: o Undergraduate o Graduate

b. Maj or:

If currently or formerly part of any country's armed forces:

a. Country/State:

b. Status: o Active Duty o Reserve o Retired

c. Service: o Army o Navy o Air Force o Other

d. Rank:

e. Years of Service:

5. Have you had experience with remotely piloted vehicles (land, sea, air)?
o Yes

o No

If yes:

a. Vehicle type(s)/class(es):



b. Number of hours:

6. Have you had experience supervising a team of operators piloting vehicles (land, sea, air)?
o Yes

o No

If yes:

b. Vehicle type(s)/class(es):

c. Responsibilities as team supervisor::

d. Size ofteams:

e. Number of hours:

7. Do you have experience supervising a team of people in situations in which time was an
important factor

o Yes

o No

If yes:

f. Types of situations in which time was an important factor:

g. Responsibilities as team supervisor:

c. Size of teams:

d. Number of hours:

8. Do you have experience supervising a team of people in other non time-critical situations
o Yes

o No

If yes:

h. Types of non time-critical situations:
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i. Responsibilities as team supervisor:

c. Size of teams:

d. Number of hours:

9. How often do you play video games?

o Never

o Less than 1 hour per week

o Between 1 and 4 hours per week

o Between 1 and 2 hours per day

o More than 2 hours per day

10. Are you color blind?

o Yes

o No

If yes:

Which type of color blindness (if known)_
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Appendix G: Training Slides - DST User

Decision Support for Hidden Markov
Model Predictions in Supervisory

Control Settings

Ryan Castonia - S-M. Candidate

Prof M.L. Cummings

MIT Humans and Automation Lab - Nov/Dec 09

Ove rview

- You are a supervisor of a team of three
operators who each control multiple
unmanned aerial vehicles (UAVs)

* Your goal is to keep the team working as
smoothly and efficiently as possible

* The instructional slides to follow will cover the
following items:

- Operator Inter-face (RESCHU)

- Supervisor Interface
-Decision Support Tool with predlictive capability
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Supervisor Interface

* Designed for supervisor of RESCHU operators

- Provides supervisor with prediction capabilities

- Able to alert supervisor to present and predicted abnormal
operator behavior so that the supervisor may prevent future
problems from occurring

- Designed to help make two major decisions

- is there really a problem?

- How do I solve the problem?

Supervisor Interface
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Decision Support for Hidden Markov
Model Predictions in Supervisory

Control Settings

Ryan Castonia - S.M- Candidate

Prof M.L Cummings

MIT Humans and Automation Lab - Nov/Dec 09

Overview

-You are a supervisor of a team of three
operators who each control multiple
unmanned aerial vehicles (UAVs)

*Your goal is to keep the team working as
smoothly and efficiently as possible

*The instructional slides to follow will cover the
following items:

- Operator Interface (RESCHU)
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Operator Interface (RESCHU)

-Each operator controls multiple Unmanned aerial
vehicles (U)AV)

-Each operator must perform several tasks: path
planning, path re-planning due to emergent
threat areas, reconnaissance of a Visual task, and
the evaluation of emergent targets

- You only need a basic understanding of what the
operators are doing. You don't need to know the
details behind how everything works.

Summary
- You are a Supervisor of a team of three operators

who each control multiple unmanned aerial
vehicles (UJAVs)

- Your goal is to keep the team working as
smoothly and efficiently as possible (intervene
when you deem necessary)

-The instructional slides covered the following
items:

-Operator Inter-face (RESCHU)
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Appendix I: Supporting Statistics

Numbers in parentheses correspond to Scenario numbers

Table I.1: DST users, True Positive Single Alert Scenario descriptive statistics (1)

N Minimum Maximum Mean Median Mode Std. Deviation

CorrectDecision 15 1 1 1.00 1 1 0.00

IncorrectInterventions 15 0 2 .40 .00 0 .74
ResponseTimel 15 1.3 12.6 6.22 6.2 - 2.88

SecondaryTaskRatio 15 .00 1.00 .37 .40 .40 .28

Table 1.2: Non-DST users, True Positive Single Alert Scenario descriptive statistics (1)

N Minimum Maximum Mean Median Mode Std. Deviation

CorrectDecision 15 0 1 .47 0 0 .52
IncorrectInterventions 15 0 6 1.40 1 1 1.72
ResponseTimel 7 -10.0 26.0 13.14 20.0 - 12.59
SecondaryTaskRatio 15 .00 .80 .40 .40 .20 .24

Table 1.3: DST users, True Positive Multiple Alert Scenario descriptive statistics (2)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 15 0 2 1.47 2 2 .64
IncorrectInterventions 15 0 2 .13 0 0 .52
ResponseTimel 15 -34.0 10.9 -3.81 1.2 - 14.15
ResponseTime2 12 -10.0 22.1 11.11 12.4 - 8.55
SecondaryTaskRatio 15 .00 .71 .34 .29 .29 .26
ResponseInterval 12 3.0 33.0 13.78 9.55 - 9.29

Table 1.4: Non-DST users, True Positive Multiple Alert Scenario descriptive statistics (2)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 15 1 2 1.67 2 2 .49
IncorrectInterventions 15 0 2 .67 0 0 .90
ResponseTimel 15 -35.0 -4.0 -19.93 -20.0 - 9.01
ResponseTime2 10 -8.0 20.0 5.90 6.0 - 10.51
SecondaryTaskRatio 15 .14 .72 .37 .43 .43 .17
ResponseInterval 10 7.0 50.0 25.90 20.0 - 14.91

Table 1.5: DST users, False Positive Multiple Alert Scenario descriptive statistics (3)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 15 0 2 1.53 2 2 .74
IncorrectInterventions 15 0 1 .07 0 0 .26
ResponseTimel 15 -8.0 16.9 6.52 6.8 - 5.50
ResponseTime2 15 10.0 32.0 19.71 17.5 - 6.75
SecondaryTaskRatio 15 .00 .50 .35 .50 .50 .18
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Table 1.6: Non-DST users, False Positive Multiple Alert Scenario descriptive statistics (3)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 15 1 2 1.60 2 2 .51
IncorrectInterventions 15 0 3 .73 1 0 .88
ResponseTimel 12 -15.0 18.0 3.72 5.00 - 10.13
ResponseTime2 1 7.0 7.0 7.0 7.0 - -

SecondaryTaskRatio 15 .00 1.50 .35 .25 .25 .35

Table 1.7: DST users, False Positive Single Alert Scenario descriptive statistics (4)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 15 1 1 1 1 1 0
IncorrectInterventions 15 0 0 0 0 0 0
ResponseTimel 15 2.3 14.6 6.00 5.5 - 3.21
SecondaryTaskRatio 15 .00 .83 .25 .17 .17 .22

Table 1.8: Non-DST users, False Positive Single Alert Scenario descriptive statistics (4)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 15 0 1 .93 1 1 .26
IncorrectInterventions 15 0 1 .20 0 0 .41
ResponseTimel 1 3.0 3.0 3.0 3.0 - -

SecondaryTaskRatio 15 .00 .83 .21 .17 .17 .22

Table 1.9: DST users, True Positive Scenarios descriptive statistics (1 and 2)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 30 0 2 1.23 1 1 .50
IncorrectInterventions 30 0 2 .27 0 0 .64
ResponseTimel 30 -34.0 12.6 1.20 6.0 6.6 11.25
SecondaryTaskRatio 30 .00 1.00 .36 .35 .00 .27

Table 1.10: Non-DST users, True Positive Scenarios descriptive statistics (1 and 2)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 30 0 2 1.07 1 1 .79
IncorrectInterventions 30 0 6 1.03 1 0 1.40
ResponseTimel 22 -35.0 26.0 -9.41 -15.0 - 18.66
SecondaryTaskRatio 30 .00 .80 .39 .42 .20 .20

Table 1.11: DST users, False Positive Scenarios descriptive statistics (3 and 4)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 30 0 2 1.27 1 1 .58
IncorrectInterventions 30 0 1 .03 0 0 .18
ResponseTimel 30 -8.0 16.9 6.26 6.0 - 4.43
SecondaryTaskRatio 30 .00 .83 .30 .25 .50 .21
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Table 1.12: Non-DST users, False Positive Scenarios descriptive statistics (3 and 4)

N Minimum Maximum Mean Median Mode Std. Deviation

CorrectDecision 30 0 2 1.27 1 1 .52
IncorrectInterventions 30 0 3 .47 0 0 .73
ResponseTimel 13 -15.0 18.0 3.85 5.0 - 9.70

SecondaryTaskRatio 30 .00 1.50 .28 .25 .25 .30

Table 1.13: DST users, Single Alert Scenarios descriptive statistics (1 and 4)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 30 1 1 1.00 1 1 .00
IncorrectInterventions 30 0 2 .20 0 0 .55
ResponseTimel 30 1.3 14.6 6.1 5.8 - 3.00
SecondaryTaskRatio 30 .00 1.00 .31 .20 .17 .26

Table 1.14: Non-DST users, Single Alert Scenarios descriptive statistics (1 and 4)

N Minimum Maximum Mean Median Mode Std. Deviation

CorrectDecision 30 0 1 .70 1 1 .47
IncorrectInterventions 30 0 6 .80 0 0 1.38

ResponseTimel 8 -10.0 26.0 11.9 14.0 - 12.20

SecondaryTaskRatio 30 .00 .83 .31 .20 .17 .25

Table 1.15: DST users, Multiple Alert Scenarios descriptive statistics (2 and 3)

N Minimum Maximum Mean Median Mode Std. Deviation

CorrectDecision 30 0 2 1.50 2 2 .68
IncorrectInterventions 30 0 2 .10 0 0 .40
ResponseTimel 30 -34.0 16.9 1.35 6.55 - 11.78
ResponseTime2 27 -10.0 32.0 15.89 16.3 - 8.63
SecondaryTaskRatio 30 .00 .71 .35 .29 .50 .22
ResponseInterval 12 3.0 33.0 13.8 9.6 - 9.29

Table 1.16: Non-DST users, Multiple Alert Scenarios descriptive statistics (2 and 3)

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 30 1 2 1.63 2 2 .49
IncorrectInterventions 30 0 3 .70 0 0 .88
ResponseTimel 27 -35.0 18.0 -9.3 -11.0 - 15.26
ResponseTime2 11 -8.0 20.0 6.0 7.0 - 9.98
SecondaryTaskRatio 30 .00 1.50 .36 .29 .25 .27
ResponseInterval 10 7.0 50.0 25.9 20.0 - 14.91
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Table 1.17: DST Users, All Scenarios descriptive statistics

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 60 0 2 1.25 1 1 .54
IncorrectInterventions 60 0 2 .15 0 0 .48
ResponseTimel 60 -34.0 16.9 3.7 6.1 - 8.85
ResponseTime2 27 -10.0 32.0 15.9 16.3 - 8.63
SecondaryTaskRatio 60 .00 1.00 .33 .29 .00 .24
ResponseInterval 12 3.0 33.0 13.8 9.6 - 9.29

Table 1.18: Non-DST Users, All Scenarios descriptive statistics

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 60 0 2 1.17 1 1 .67
IncorrectInterventions 60 0 6 .75 0 0 1.14
ResponseTimel 35 -35.0 26.0 -4.5 -5.0 - 17.04
ResponseTime2 11 -8.0 20.0 6.0 7.0 - 9.98
SecondaryTaskRatio 60 .00 1.50 .33 .25 .25 .26
ResponseInterval 10 7.0 50.0 25.9 20.0 - 14.91

Table 1.19: All Subjects, All Scenarios descriptive statistics

N Minimum Maximum Mean Median Mode Std. Deviation
CorrectDecision 120 0 2 1.21 1 1 .61
IncorrectInterventions 120 0 6 .45 0 0 .92
ResponseTimel 95 -35.0 26.0 .7 5.2 - 13.04
ResponseTime2 38 -10.0 32.0 13.0 14.7 - 10.00
SecondaryTaskRatio 120 .00 1.50 .33 .27 .00 .25
ResponseInterval 22 3.0 50.0 19.3 15.0 - 13.37
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Table 1.20: Normality Tests for DST vs non-DST distributions

Tests of Normality

Kolmoqorov-Smirnova Shapiro-Wilk
DST Statistic df Siq. Statistic df Siq.

CorrectDecision no .282 60 .000 .791 60 .000
yes .378 60 .000 .709 60 .000

IncorrectInterventions no .294 60 .000 .680 60 .000
yes .522 60 .000 .344 60 .000

ResponseTimel no .103 35 .200* .963 35 .287
yes .250 60 .000 .729 60 .000

ResponseTime2 no .138 11 .200* .933 11 .439
yes .122 27 .200* .953 27 .248

Secondary TaskRatio no .167 60 .000 .863 60 .000
yes .131 60 .012 .942 60 .007

ResponseInterval no .254 10 .067 .900 10 .219
yes .197 11 .200* .896 11 .165

*- This is a lower bound of the true signif icance.
a. Lilliefors Significance Correction

Table 1.21: Homogeneity of Variance Tests for DST vs non-DST distributions

Robust Tests of Equality of Means

Statistica df 1 df2 Sig.

CorrectDecision Brown-Forsy the .564 1 113.088 .454
Incorrectinterventions Brown-Forsy the 14.020 1 79.219 .000
ResponseTimel Brown-Forsy the 7.029 1 44.908 .011
ResponseTime2 Brown-Forsy the 8.274 1 16.427 .011
Secondary TaskRatio Brown-Forsy the .017 1 117.275 .898
ResponseInterval Brown-Forsy the 4.995 1 14.526 .042

a. Asy mptotically F distributed.
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Table 1.22: Kruskal-Wallis tests for ordering effects

Order=1, first Scenario presented to subject

Order=2, second Scenario presented to subject

Order=3, third Scenario presented to subject

Order=4, fourth Scenario presented to subject

Ranks

Order N Mean Rank
CorrectDecision 1 30 66.42

2 30 58.67
3 30 60.05
4 30 56.87
Total 120

Incorrecti nterventions 1 30 57.45
2 30 59.90
3 30 64.22
4 30 60.43
Total 120

ResponseTimel 1 24 48.52
2 23 42.76
3 23 56.46
4 25 44.54
Total 95

ResponseTime2 1 9 21.72
2 12 20.46
3 8 23.81
4 9 12.17
Total 38

Secondary TaskRatio 1 30 56.78
2 30 56.90
3 30 64.18
4 30 64.13
Total 120 1

Test Statistcsa"

Correct Incorrect Response Response Secondary
Decision Interventions Timel Time2 TaskRatio

Chi-Square 1.683 .948 3.399 5.578 1.341
df 3 3 3 3 3
Asy mp. Sig. .641 .814 .334 .134 .720

a. Kruskal Wallis Test
b. Grouping Variable: Order
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DST=O, non-DST user

DST=1, DST user

Table 1.23: Mann-Whitney U Tests -True Positive Single Alert Scenario (1)

Ranks

DST N Mean Rank Sum of Ranks
CorrectDecision 0 15 11.50 172.50

1 15 19.50 292.50
Total 30

Incorrectlnterventions 0 15 18.57 278.50
1 15 12.43 186.50
Total 30

ResponseTimel 0 7 15.21 106.50
1 15 9.77 146.50
Total 22

Secondary TaskRatio 0 15 16.17 242.50
1 15 14.83 222.50
Total 30

Test Statisticsb

Correct Incorrect Response Secondary
Decision Interventions Timel TaskRatio

Mann-Whitney U 52.500 66.500 26.500 102.500
Wilcoxon W 172.500 186.500 146.500 222.500
Z -3.247 -2.095 -1.834 -.430
Asy mp. Sig. (2-tailed) .001 .036 .067 .667
Exact Sig. [2*(1-tailed .011a .056a .066a .683a

Sig.)]
a. Not corrected f or ties.
b. Grouping Variable: DST
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DST=O, non-DST user

DST=1, DST user

Table 1.24: Mann-Whitney U Tests - True Positive Multiple Alert Scenario (2)

Ranks

DST N Mean Rank Sum of Ranks
CorrectDecision 0 15 16.67 250.00

1 15 14.33 215.00
Total 30

Incorrectlnterventions 0 15 17.93 269.00
1 15 13.07 196.00
Total 30

ResponseTimel 0 15 10.67 160.00
1 15 20.33 305.00
Total 30

ResponseTime2 0 10 10.00 100.00
1 12 12.75 153.00
Total 22

Secondary TaskRatio 0 15 16.13 242.00
1 15 14.87 223.00
Total 30

Responselnterval 0 10 14.65 146.50
1 12 8.88 106.50
Total 22

Test Statisticsb

Correct Incorect Response Response Secondary Response
Decision Interventions Timel Time2 TaskRatio Interval

Mann-Whitney U 95.000 76.000 40.000 45.000 103.000 28.500
Wilcoxon W 215.000 196.000 160.000 100.000 223.000 106.500
Z -.846 -2.051 -3.018 -.990 -.401 -2.079
Asymp. Sig. (2-taled) .397 .040 .003 .322 .688 .038
Exact Sig. [2*(1-tailed .486a .137a .002a .346a .713a .036a

Sig.)] 4 1 . I 7 I0
a. Not corrected for ties.

b. Grouping Variable: DST_
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DST=O, non-DST user

DST=1, DST user

Table 1.25: Mann-Whitney U Tests - False Positive Multiple Alert Scenario (3)

Ranks

DST N Mean Rank Sum of Ranks
CorrectDecision 0 15 15.40 231.00

1 15 15.60 234.00
Total 30

Incorrectl nterventions 0 15 19.07 286.00
1 15 11.93 179.00
Total 30

ResponseTimel 0 12 13.17 158.00
1 15 14.67 220.00
Total 27

Secondary TaskRatio 0 15 14.03 210.50
1 15 16.97 254.50
Total 30

Test Statisticsb

Correct Incorrect Response Secondary
Decision Interv entions Timel TaskRatio

Mann.-Whitney U 111.000 59.000 80.000 90.500
WilcoxonW 231.000 179.000 158.000 210.500
Z -.073 -2.763 -.489 -.991
Asy mp. Sig. (2-tailed) .942 .006 .625 .322
Exact Sig. [2*(1-tailed .967a .026a .648a .367a

Sig.)]
a. Not corrected f or ties.
b. Grouping Variable: DST
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DST=O, non-DST user

DST=1, DST user

Table 1.26: Mann-Whitney U Tests - False Positive Single Alert Scenario (4)

Ranks

DST N Mean Rank Sum of Ranks
CorrectDecision 0 15 15.00 225.00

1 15 16.00 240.00
Total 30

IncorrectInterventions 0 15 17.00 255.00
1 15 14.00 210.00
Total 30

ResponseTimel 0 1 2.00 2.00
1 15 8.93 134.00
Total 16

Secondary TaskRatio 0 15 14.73 221.00
1 15 16.27 244.00
Total 30

Test Statisticsb

Correct Incorrect Response Secondary
Decision Interventions Timel TaskRatio

Mann-Whitney U 105.000 90.000 1.000 101.000
WilcoxonW 225.000 210.000 2.000 221.000
Z -1.000 -1.795 -1.411 -.508
Asy mp. Sig. (2-tailed) .317 .073 .158 .612
Exact Sig. [2*(1-tailed .775a .367a .250a .653a
Sig.)]

a. Not corrected for ties.
b. Grouping Variable: DST_
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DST=O, non-DST user

DST=1, DST user

Table 1.27: Mann-Whitney U Tests - Single Alert Scenarios (1 and 4)

Ranks

DST N Mean Rank Sum of Ranks
CorrectDecision 0 30 26.00 780.00

1 30 35.00 1050.00
Total 60

Incorrectlnterventions 0 30 34.93 1048.00
1 30 26.07 782.00
Total 60

ResponseTimel 0 8 25.06 200.50
1 30 18.02 540.50
Total 38

Secondary TaskRatio 0 30 30.77 923.00
1 30 30.23 907.00
Total 60

Test StatisticsP

Correct Incorrect Response Secondary
Decision Interv entions Timel TaskRatio

Mann-Whitney U 315.000 317.000 75.500 442.000
Wilcoxon W 780.000 782.000 540.500 907.000
Z -3.227 -2.486 -1.594 -.120
Asy mp. Sig. (2-tailed) .001 .013 .111 .905
Exact Sig. [2*(1-tailed 112a
Sig.)]

a. Not corrected for ties.
b. Grouping Variable: DST
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DST=O, non-DST user

DST=1, DST user

Table 1.28: Mann-Whitney U Tests - Multiple Alert Scenarios (2 and 3)

Ranks

DST N Mean Rank Sum of Ranks
CorrectDecision 0 30 31.55 946.50

1 30 29.45 883.50
Total 60

Incorrectl nterventions 0 30 36.48 1094.50
1 30 24.52 735.50
Total 60

ResponseTimel 0 27 22.94 619.50
1 30 34.45 1033.50
Total 57

Secondary TaskRatio 0 30 29.38 881.50
1 30 31.62 948.50
Total 60

Test Statisticsa

Correct Incorrect Response Secondary
Decision Interventions Timel TaskRatio

Mann-Whitney U 418.500 270.500 241.500 416.500
Wilcoxon W 883.500 735.500 619.500 881.500
Z -.546 -3.422 -2.616 -.502
Asy mp. Sig. (2-tailed) .585 .001 .009 .616

a. Grouping Variable: DST_

126



DST=O, non-DST user

DST=1, DST user

Table 1.29: Mann-Whitney U Tests - True Positive Scenarios (1 and 2)

Ranks

DST N Mean Rank Sum of Ranks
CorrectDecision 0 30 28.90 867.00

1 30 32.10 963.00
Total 60

IncorrectInterventions 0 30 36.02 1080.50
1 30 24.98 749.50
Total 60

ResponseTimel 0 22 20.73 456.00
1 30 30.73 922.00
Total 52

Secondary TaskRatio 0 30 32.00 960.00
1 30 29.00 870.00
Total 60

Test Statisticsa

Correct Incorrect Response Secondary
Decision Interventions Timel Task Ratio

Mann-Whitney U 402.000 284.500 203.000 405.000
Wilcoxon W 867.000 749.500 456.000 870.000
Z -.792 -2.886 -2.354 -.670
Asy mp. Sig. (2-tailed) .429 .004 .019 .503

a. Grouping Variabe: DST
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DST=O, non-DST user

DST=1, DST user

Table 1.30: Mann-Whitney U Tests - False Positive Scenarios (3 and 4)

Ranks

DST N Mean Rank Sum of Ranks
CorrectDecision 0 30 30.37 911.00

1 30 30.63 919.00
Total 60

Incorrectl nterventions 0 30 35.53 1066.00
1 30 25.47 764.00
Total 60

ResponseTimel 0 13 19.96 259.50
1 30 22.88 686.50
Total 43

Secondary TaskRatio 0 30 28.72 861.50
1 30 32.28 968.50
Total 60

Test Statisticsb

Correct Incorrect Response Secondary
Decision Interventions Timel TaskRatio

Mann-Whitney U 446.000 299.000 168.500 396.500
Wilcoxon W 911.000 764.000 259.500 861.500
Z -.070 -3.211 -.701 -.809
Asy mp. Sig. (2-tailed) .944 .001 .483 .418
Exact Sig. [2*(1-tailed .488a
Sig.)]

a. Not corrected for ties.
b. Grouping Variable: DST_
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Table 1.31: Mann-Whitney U Tests - All Scenarios

Ranks

DST N Mean Rank Sum of Ranks
CorrectDecision 0 60 58.88 3532.50

1 60 62.13 3727.50
Total 120

Incorrectlnterventions 0 60 70.93 4255.50
1 60 50.08 3004.50
Total 120

ResponseTimel 0 35 39.20 1372.00
1 60 53.13 3188.00
Total 95

ResponseTime2 0 11 12.50 137.50
1 27 22.35 603.50
Total 38

Secondary TaskRatio 0 60 60.35 3621.00
1 60 60.65 3639.00
Total 120

Test Statisticsb

Correct Incorrect Response Response Secondary
Decision Interventions Timel Time2 TaskRatio

Mann-Whitney U 1702.500 1174.500 742.000 71.500 1791.000
Wilcoxon W 3532.500 3004.500 1372.000 137.500 3621.000
Z -.586 -4.190 -2.377 -2.479 -.047
Asy mp. Sig. (2-tailed) .558 .000 .017 .013 .962
Exact Sig. [2*(1-tailed 012
Sig.)] .012

a. Not corrected for ties.
b. Grouping Variable: DST_
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DST=O, non-DST user

DST=1, DST user


