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Abstract

On-orbit assembly is an enabling technology for many space applications. However,
current methods of human assisted assembly are high in cost and risk to the crew.
Thus, there is a desire to automate the on-orbit assembly process using robotic tech-
nology. Automation introduces additional challenges in the design of the assembly,
particularly within the control systems. During an assembly sequence, an assembler
robot can undergo multiple reconfigurations of its geometry and dynamics as it at-
taches to and releases from individual modules. The particular problem addressed
in this thesis is how to account for mass and stiffness property variations that oc-
cur with changes in configuration. Proper model generation for each configuration is
critical to maintain control system stability and efficiency. This thesis explores two
specific challenges associated with this problem: (1) the design of a model genera-
tion architecture to where module mass property information is known, but specific
configurations are unknown; and (2) the selection of a model generation architecture
that is appropriate for a given assembly architecture.

Literature review of the possible model generation architectures revealed a gap
in the literature, when models are aggregated online based on module mass property
information. The challenge is resolved through the design of an architecture, called
Online Model Calculation. Online Model Calculation uses module information ob-
tained at the time of attachment to generate the model for the current configuration
online. This is accomplished through the parameterization of the control algorithms
with respect to a property vector. The property vector contains mass property infor-
mation (ex. mass, inertia) that is used to generate the model. The design of Online
Model Calculation, both in terms of framework and algorithm parameterization, is
successfully implemented and validated on hardware. Results show a tracking error
performance improvement when the correct model of the system is used in the control
system over an unupdated model of the assembler along. Online Model Calculation
balances a priori knowledge about the possible configurations with identification of
the model online.

The challenge of selecting a model generation architecture is accomplished through
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the development of a process that downselects feasible architectures into a single op-
timal architecture. This process is based on a set of generalized, quantitative metrics
that are used to compare architectures from the perspectives of the control system,
spacecraft, and assembly operation levels. It is exercised on three case scenarios,
using a simulation tool that is developed to evaluate the model generation architec-
ture metrics for a given assembly architecture. Results clearly show that for different
assembly scenarios, different model generation architectures perform best. The quan-
tification of this performance difference and the process for selecting the appropriate
architecture constitute a key contribution of this work.
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Chapter 1

Introduction

On-orbit assembly is a key enabling technology for many space missions, such as space
telescopes. Current methods of on-orbit assembly are limited to human-assisted as-
sembly. Human-assisted assembly, though very flexible and capable, has the high
cost and risk associated with manned flight. This is epitomized in the assembly of
the International Space Station (ISS), a very complex structure successfully assembled
through human extra-vehicular activities (EVA) and tele-operation of robotic arms.
The assembly has taken over 41 launches of the Space Shuttle and spanned more than
a decade. The high cost, time, and risk associated with current on-orbit assembly
methods leads to a desire to automate the process using robotic technology. Introduc-
ing automation creates additional challenges in the design of the assembly mission.
Much of the work done to date in relation to on-orbit autonomous assembly is either
high level concept studies or low-level controller design. Few methodologies or design
practices are in place to help engineers design with autonomous assembly in mind.

This thesis develops tools to guide engineers to design specifically for autonomous
assembly. This chapter explains the benefits of on-orbit assembly and the motivation
to move toward autonomous assembly. Then, this chapter describes the exact prob-
lem under consideration, the relevant literature, and the specific contributions of this

work with a road map to the remaining chapters.
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1.1 Motivation

On-orbit assembly is a technique that enables space construction, the ability to build
large space structures. The size of a spacecraft is limited by launch vehicle specifica-
tions, such as launch mass and payload fairing size. Mass can be directly correlated
to capability, such as the mass of additional science instruments or fuel mass which
restricts mission duration. Payload fairing size can also restrict capability, such as the
diameter of a space telescope mirror. On-orbit assembly bypasses these limitations
by using multiple launches to send the spacecraft up in pieces.

The benefits of on-orbit assembly have been demonstrated in-flight through the
construction of the Russian MIR space station and ISS. The MIR space station was
built using on-orbit assembly from 1986 to 1996; similarly, the ISS began assembly in
1998 and is scheduled to be complete in 2010. The success of these structures demon-
strates the great benefit of on-orbit assembly. Due to their large size, space stations
are able to serve as orbital platforms, specializing in long duration microgravity sci-
ences [57]. The science discoveries made on MIR and ISS (e.g. [9], [75], [78], [71])
demonstrate that on-orbit assembly is a key tool for future space missions. There are
three types of missions that can significantly benefit from on-orbit assembly: human

exploration missions, space tourism, and scientific missions.

Human exploration missions

NASA’s long-term plans for human exploration focus on exploration of the Moon and
Mars [4]. To accomplish this, concept studies include in-space construction of large
structures, such as lunar outposts. Using human-assisted assembly to build a lunar
outpost can become prohibitively expensive if each construction trip requires sending

humans to the Moon. [84] [22]

Space tourism

As more people travel into space, the need for on-orbit destinations for them to visit

increases. Large space structures are prime space tourism destinations. Economics
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dictates that the total time for assembly of the large space structure should be as
short as possible to maximize utilization and profit. The historical data for on-
orbit assembly shows that the construction of a space station takes on the order of a
decade. Driving reasons for this long assembly time are the preparation time required
to train and launch humans and to build new tools for each particular mission. Thus,
current methods of on-orbit assembly do not satisfy the needs for the commercial
space industry, leading companies to consider alternative options. Although other
techniques such as deployable [54] or inflatable [1] structures have been considered,

even designed, only on-orbit assembly has been demonstrated in space.

Scientific missions

Many future science missions are dependent on on-orbit assembly to transition from
concept to reality. There are three issues that affect scientific missions: size, location,
and cost.

Three examples of scientific missions that need on-orbit assembly are space tele-
scopes, fuel depots, and solar power stations. The effectiveness of these missions is
determined by their size. For example, the larger the diameter of the primary mirror
of a space telescope, the greater the angular resolution, which increases the science
benefit. Current telescopes are limited by launch payload fairing diameters (ex. Hub-
ble Space Telescope), or by complex deployable mechanisms (ex. James Webb Space
Telescope).

Some missions, particularly for space telescopes, prefer to be in locations outside
of Low Earth Orbit (LEO), such as the Earth-Moon or Sun-Earth Lagrange points.
Current methods of on-orbit assembly do not allow for these locations because there
is no mode of transportation to allow humans to travel to these locations.

Most scientific missions are under strict budget restrictions, which makes it im-
possible to bear the burden of the additional cost of human spaceflight. For example,
total mission cost is greater for manned missions because launching on a man-rated
launch vehicle is more expensive than launching on an evolved expendable launch

vehicle (EELV). The cost of launching a payload on the Space Shuttle in 2000 was
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roughly $4.7K /kg. The cost of launching the payload on an similar heavy lift launch
vehicle, such as Russia’s Proton rocket, was as low as $1.9K/kg [3] (Costs are given
in FY2000 dollars).

Tele-operation, as a construction method, has also been used as a human-assisted
form of assembly. Though tele-operation provides benefits associated with the re-
sponse of a human who is capable of anticipating failures and/or obstacles, the real-
time execution of this method provides drawbacks as missions become more complex
and are farther away from Earth. If operating from the ground, communication delays
prevent real-time commanding, necessitating a rudimentary form of automation. If
operating from orbit, once again, the issues associated with human space flight arise.
The three main limitations of current on-orbit assembly methods are summarized

below:

1. The time frame associated with human assisted assembly (roughly a decade) is

too long for future space missions.

2. Locations for assembly are limited by where humans can travel, namely LEO

and possibly the Moon.

3. The cost of assembly is expensive due to the additional cost associated with

astronaut participation, such as the use of human-rated launch vehicles.

These limitations can all be addressed by implementing autonomous assembly us-
ing robots. Robotic assembly serves as a low-cost, low-risk option to human-assisted
assembly. A complete robotic assembly can occur at the onset of the mission, reduc-
ing the assembly time from years to weeks, even days. Using robotics also enables
assembly missions in significantly more locations than human-assisted assembly can
reach. The space industry has demonstrated the capability to reach unique and far
reaching locations robotically, such as a comets, asteroids, and almost every major
planetary body in the solar system. The robots and spacecraft can be launched on
an EELV, instead of a human rated launch vehicle, which leads to a significant cost

reduction for large space structures with multiple launches. Also, a structure that
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is assembled is inherently modular, which facilitates on-orbit servicing and upgrades
[40] [61] [7] [68].

There has been little research conducted to address these limitations other than
concept studies. Automation introduces several issues across multiple fields, such as
assembly sequencing, robotics, and control. The next section provides a description

of the challenge considered in this work.

1.2 Problem Definition

There are many key challenges associated with designing an autonomous assembly
mission, such as standardized interfaces, assembly sequencing, hardware design, and
control system design. Of the various challenging areas of assembly work, the control
system is of particular interest. The control system is responsible for execution of the
assembly sequence and therefore, the overall performance of the assembly. The design
of the control system impacts the maneuverability and resource efficiency. Failure to
properly design the control system can lead to overall failure of the mission. A key
aspect of control system design is the dynamics model that is used to represent the
system. This thesis considers the specific problem of generating the model used in
the control system.

In autonomous assembly architectures, a robot, called the assembler, is responsible
for maneuvering a set of modules. These modules are the components that combine
to form the assembled structure. There can be many types of assemblers, such as
self-assembly, tugs, or robotic arms. In self-assembly missions, the robots are both
the assembler and module, because they maneuver themselves into the desired final
position. In missions using tugs or robotic arms, the assembler is physically and
functionally separate from the module, and is responsible for maneuvering modules
into position. Assembly missions that use techniques other than self-assembly face
a challenging control problem associated with model changes due to the attachment
of assembler and modules. The dynamics change each time the assembler attaches

to and releases a modules. This changes requires an associated change in the control
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algorithms to maintain requisite precision.

A configuration is defined as a unique physical attachment of assemblers and/or
modules. When the assembler attaches to a module, the configuration of the assem-
bler changes. Many configurations may be present during the assembly process. The
change from one configuration to another through the act of attachment or detach-
ment is defined as a transition. The set of all transitions in their order of execution
specifies the assembly sequence. The transitions are important because they define
the changes in the model, and associated control, that can occur throughout the

assembly process.

The transition from one configuration to another can introduce large mass and
stiffness variations. For example, attaching to a rigid module results in the addition
of mass and inertia from the module, and attaching to a flexible module can also
introduce flexible dynamics into the system. Though there are many, possibly drasti-
cally different, configurations associated with a single assembly process, the assembler
usually consists of a single control system. In order to handle the multiple configu-
rations, the control system must be sufficiently reconfigurable to take in a model of
the configuration and generate the proper control commands. A key aspect in the
design of the control system is the generation of the model that is appropriate for the
current configuration and how the model is made available to the control system. The
model generation architecture is the algorithm framework used to calculate the
model of the configuration and propagate it into the control system. The choice of
model generation architecture impacts the overall performance of the control system,
such as transition time and resource utilization efficiency.

An example assembly scenario is depicted in Figure 1-1. Figure 1-1 shows a tele-
scope assembly using an Electro-magnetic Formation Flight Vehicle (EMFF) as the
propellant-less assembler [44]. The steps shown in Figure 1-1 are initial deployment
(Figure 1-1a), docking and retraction (Figure 1-1b), insertion into the assembly (Fig-
ure 1-1c), repetition for all modules (Figure 1-1d), completion of assembly (Figure
1-1e), and operations (Figure 1-1f). Each of the eighteen modules can have distinct

mass properties. Thus, the control system for the assembler shown must properly
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maneuver in at least eighteen different assembler-module configurations to complete

the assembly process successfully.

(a) Initial Deployment (b) Docking and Retraction

(d) Repetition for all modules  (e) Completion of the assembly (f) Operations

Figure 1-1: Example assembly scenario - Space telescope assembly via EMFF assem-
bler

Problem Under Consideration

How does one select and design a model generation architecture to main-
tain control system performance at each configuration change throughout
the assembly sequence, in spite of large mass and stiffness property vari-

ations?

The model generation architecture must be designed to handle all of the configura-
tions, while maintaining performance and versatility. Performance in this work is
defined as stability, resource efficiency (e.g. fuel and time), and trajectory accuracy.

Versatility is defined as the ability to adapt to changing mission needs or modules.
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An example of increasing versatility in the model generation architecture is the min-
imization of hardcoded transitions and properties used. Minimization of hardcoded
properties, for example, means the model generation architecture is capable of iden-
tifying the properties online. Online identification allows the assembler to attach to
any module, which increases its versatility because the same assembler can be used

for multiple assembly operations.

Scope

This thesis directly addresses the problem of generating control system models for the
myriad of assembler-module configurations that arise during the assembly sequence.
It does not consider the configuration changes associated with the build-up of the
assembled structure, although techniques similar to those developed in this work
can be applied. Thus, the configuration changes due to the model aggregation of
self-assembly modules are not considered, only the maneuvering of the modules is

considered.

1.3 Literature Review

Review of four main areas of research was conducted: sequence planning, robotics,
reconfigurable control systems, and assembly concept studies. Review of these areas
helped to identify the science need for autonomous assembly and the research issues
being explored for autonomous assembly in general. The review of literature on these
four topics is not included in this chapter because it does not directly relate to the
problem under consideration. It only sets a context for the state of the autonomous
assembly field. The literature review of these topics is available in Appendix A.

The area of literature most relevant to the research presented in this thesis is
reconfigurable control systems. Reconfigurable control systems are designed to handle
changing plant, actuator, or sensor dynamics. Part of the design of the reconfigurable
control system involves model generation. This thesis considers reconfigurable control

system designs in terms of the model generation architecture that they employ.
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1.3.1 Model Generation Architectures

Model generation architectures can be classified by the amount of a priori informa-
tion available to the designer. The architectures can be conceptualized on a spectrum
where they are distinguished by how they employ different techniques of model gener-
ation based on the a priori information available (Figure 1-2). The right end consists
of architectures that require all mass property information to be available a priori, a
control design approach such as gain scheduling can be used. The left end includes
architectures where no mass property information is necessary, a some form of online
system identification would be required. Research has been performed in many areas
of this spectrum. Three examples of literature are selected and placed on their corre-
sponding location on the spectrum, shown in Figure 1-2. These papers are described

in detail in this section to characterize their differences.

No Complete
Information Spectrum of Model Generation Architectures Information
[Wilson et al, 2002] [Parlos and Sunkel, 1992]
System Identification Control parameters stored

[Maybeck and Stevens, 1991]
Multiple models stored.

Figure 1-2: Spectrum of Model Generation Architectures

Starting with the system identification end, Wilson et al. use a recursive least
squares approach to determine the center of mass and inertia of a spacecraft [81]
by analyzing gyroscope measurements. Their approach imparts known torques onto
the spacecraft and observes the resulting gyroscope measurements. These measure-
ments are fit to an assumption of the model structure to identify parameter values
that minimize the mean squared error between the measurement values observed and
the measurement values generated based on the assumed dynamics structure. This
technique is a key example of the end of the spectrum where no a prior: informa-
tion is available. The mass property information is generated purely through system

identification, by exciting the system and analyzing its response to derive a model.
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Maybeck and Stevens’ [50] approach of multiple model adaptive control uses a
bank of pre-designed Kalman filters and Command Generator Tracker (feedforward)
/ Proportional-Integral (feedback) controllers for each of the different anticipated
failure states. The final model is a conditional probability-based combination of the
individual models using the residuals of the Kalman filter. This method also uses
a hierarchical setup of the Kalman filters in order to detect multiple failure states
without having to enumerate every combinatorial failure case. Some advantages of
this method are that it allows for the seamless transition between configurations,
especially in degraded states. Maybeck and Stevens provide a robust way for tran-
sitioning between configurations because the models for all possible transitions are
continuously processed in the form of a Kalman filter. The continuous processing
of the models is necessary when the transition time is unknown, as in Maybeck and
Stevens; however, it is excessive for assembly scenarios because it requires running
estimators for models that will not be needed until a specific known time in the fu-
ture. In an assembly mission, the time of transition can be pinpointed to the time of
attachment of a module. Thus, the multiple Kalman filters need not be run continu-
ously, but only during the transitions. Once the proper configuration is identified, the
filters running incorrect models can be terminated. The execution of several Kalman
filters simultaneously is computationally expensive, especially as the number of mod-
els stored increases. One additional limitation of this work is that their approach is
set-up only to handle configuration changes due to failures. In assembly missions,
actuators and sensors can not only be lost due to failure, they can be also be added

or change their geometry with respect to the center of mass, as a result of assembly.

Parlos and Sunkel present an approach for attitude control of the Space Station
Freedom (precursor to the ISS) under significant mass property variations from the
berthing of the Space Shuttle [58]. Their approach uses gain scheduling to update
the attitude control law during the berthing scenario. The system is linearized about
multiple torque equilibrium attitudes, and the inertias about that equilibrium are
used in the calculation of the gains for an LQR controller. They successfully demon-

strate attitude control of the spacecraft under inertia variations of approximately 30%.
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However, Parlos and Sunkel assume a look-up table exists with the necessary control
parameter values. The creation of the look-up table requires complete knowledge of
the system, including all possible configurations. This model generation architecture
has memory storage and ground development implications associated with creating
the look-up table.

The review of the three papers in this section characterizes the differences across
the spectrum. The differences in model generation architectures have performance
implications on the control system, such as memory storage, computation time, iden-
tification time, and fuel consumption. However, model generation architectures have

not been designed to exploit the properties of autonomous assembly.

1.3.2 Open Areas in the Literature

Two open areas, identified in the literature review, are addressed in this thesis. The
first area is an architecture design problem, while the second is an architecture selec-

tion problem.

Model Generation Architecture Design

The first area focuses on the design of a specific model generation architecture to
exploit the structure of an autonomous assembly mission. In assembly missions, a
potential scenario exists where the module properties are known, but how they attach
to the assembler is not known a priori in the control system. Three examples of when
this situation can arise are (1) due to complex maneuvering where automated obstacle
avoidance algorithms impact the state and attitude of the assembler as it attaches to
the module, (2) if the module is damaged or in an unknown state when the assembler
attaches to it, or (3) if a launch sequence changes and the assembly occurs in steps
not previously expected. The design of a model generation architecture to account for
these situations allows the control system to be decoupled from the assembly sequence.
The decoupling of the assembly sequence from the control system design could lead

to benefits such as decreased ground development time and increased versatility of
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the control system to handle multiple configurations.

An open area exists in model generation literature to account for scenarios where
the module properties are known a priori, but the configurations and transitions
are unknown. Aggregation of the model online based on module properties received
during attachment exploits the information available while maintaining a versatile
system. Though algorithms for calculating properties of aggregated systems exist, a
framework has not been developed to identify the information required to calculate
the aggregated model, how that information is transmitted between modules, and how
the control system incorporates the aggregated model. The design of this architecture
also requires the parameterization of a control system such that it can easily transition
between models. This parameterization has not been addressed in literature. Overall,
this is an important gap to fill because it serves as a middle ground between having
complete information about the system and using resources to identify the properties

online.

Model Generation Architecture Selection

The selection of a model generation architecture is important due to the control
system performance implications. To make a proper selection, one must address
the entire spectrum of architectures. Specifically, one must address how to compare
architectures across the spectrum and how to select a single appropriate architecture

for a given assembly mission. There are multiple aspects of this problem, such as

e How can one compare model generation architectures equally despite the large

implementation differences?

e How does one know if a model generation architecture is appropriate for the

assembly mission under consideration?

e What is the impact of the selection of a model generation architecture on the

overall assembly performance?

The selection of a model generation architecture requires a good knowledge of: the

available architectures in literature; the assumptions associated with each architec-
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ture; and the performance of each architecture based on a set of metrics. These
aspects have not been addressed in literature. A listing of possible model generation
architectures does not currently exist. For a given model generation architecture, an
analysis of implementation assumptions does not exist, nor does an analysis of how

the assumptions relate to the assembly mission.

Comparisons between model generation architectures are not currently possible
because a set of generalized, quantitative metrics does not exist. The current metrics
compare either the performance of the control system (e.g. stability, convergence
properties) or the assembly mission performance (e.g. assembly time). These metrics
do not directly capture the performance of the model generation architecture. Gen-
eralized metrics must be developed to capture the use of resources for each type of

model generation architecture.

A process for selection is also needed. It is currently difficult to make an informed
selection since it is not known what information about the assembly mission is im-
portant or how model generation architectures perform compared to each other. An
appropriate design is one that is selected using the available a prior: information
specific to that assembly mission and which maximizes system performance specific
to the assembly mission. System performance is defined as optimizing the value (ex.
versatility), while minimizing the costs (ex. fuel costs). System performance is deter-
mined by the optimizing objective functions, which are created based on the metrics
that can compare model generation architectures.

The objective of selecting an appropriate model generation architecture is to
improve the control system performance, thereby improving overall assembly per-
formance. Therefore, educated implementation of a model generation architecture
for a given assembly mission requires knowledge of how the model generation tech-
niques impact control and assembly performance. Literature studies show how an
autonomous assembly architecture selection drives mission performance, such as mass
and cost. Open areas that exist are how an autonomous assembly architecture drives
lower-level control system performance, and how a model generation architecture lim-

its or enables specific assembly architectures. It is important to determine how the
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model generation architecture affects the overall assembly performance in a quanti-

tative manner to enable proper selection and implementation.

1.4 Thesis Contributions Summary

The objectives of this work relate directly to the open areas specified in Section 1.3.2.
The following list gives a summary of the contributions of this thesis. The first three
contributions address the design a model generation architecture to balance a prior:
information and on-orbit resource consumption, while the latter contributions relate
to selecting a model generation architecture.

The specific thesis contributions are:

e Developed a process for the selection of a model generation architecture based on
quantitative metrics that capture computational differences and control system

performance implications

e Quantitatively determined the impact of the selection of a model generation

architecture on the assembly mission performance

e Developed a framework such that a model for a configuration can be computed
online based on assembler and module properties received at the time of attach-

ment

e Developed and implemented a method for parameterizing a control system de-

sign such that it can accommodate multiple configurations

e Validated the parameterized control system design on hardware, in a represen-

tative space environment

Detailed explanation of the contributions is available in Chapter 9. The major
contribution of this work is the development and validation of tools to address
the selection and design of model generation architectures for on-orbit

autonomous assembly.
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1.5 Thesis Overview

1.5.1 Definition of Reconfiguration

The main assembly architecture considered in this work is a single assembler that
maneuvers individual modules to complete the assembly. The following definitions

are used consistently throughout this thesis and have very specific meanings.

e Architecture: the structure of the algorithm or concept. Specifically, model
generation architecture refers to the structure of how the model information
is processed, such as inputs, outputs, and component calculation algorithms.
Assembly architecture refers to the structure of the assembly mission specified

through parameters such as the type of assembler used and number of modules.

e Assembler: a robotic vehicle that maneuvers modules into their desired lo-
cations. The module can be a separate object or the assembler itself (as in
self-assembly cases). The assembler is responsible for the control system, in

terms guidance, navigation, and control.

e Module: an individual, mostly passive, object that is a component of the

mission payload requiring assembly. The object is moved by the assembler.
e Configuration: a unique physical attachment of assemblers and/or modules

e Transition: the change from one configuration to another through the act of

attachment or detachment
e Sequence: a chronological set of transitions

e Scenario: a detailed description of an assembly mission, including assembly
architecture parameters, configurations, transitions, as well as mass property

information about the assemblers and modules,
e Case scenario: a specification of a single scenario used for analysis

e Metric: a standard of measurement used to compare different algorithms
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e Model: the mathematical representation of the dynamics for a configuration

used in the control system

1.5.2 Assumptions

The following assumptions are made in this thesis to manage the scope of the research:

e The thesis does not consider the configuration changes due to the aggregation

of the assembled structure.
e An assembler has knowledge of its own mass properties.

e Gravitational disturbances, such as J2 effects, are small enough to be neglected

during assembly.

1.5.3 Road map

This thesis addresses the implementation of model generation architectures from both
a design and a selection perspective. These two components are schematically shown
in the thesis road map, Figure 1-3. The spectrum of model generation architectures
is shown schematically in the center of the figure.

The design component of the thesis, as depicted by the up/down arrow, considers
one particular model generation architecture for an open area, namely where modules
are known a priori, but transitions and configurations are not known. The design
developed in this thesis, called Online Model Calculation, uses property informa-
tion obtained at the time of attachment to calculate the model for the configuration.
Chapters 2 through 5 detail the overall framework, control system parameterization,
design, software implementation, and performance on hardware. Chapter 2 provides
the theoretical framework for both rigid and flexible modules. The architecture design
is implemented on hardware to verify and validate the theoretical design developed.
Chapter 3 describes the hardware testbed used in this work. The chapter specifically
focuses on the physical hardware components of the Synchronized Position Hold En-

gage Reorient Experimental Satellites (SPHERES) testbed. Chapter 4 describes the
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Figure 1-3: A schematic road map of the thesis in perspective to the spectrum of
reconfigurable control system designs

parameterization of the control system based on the SPHERES testbed. Chapter 5
presents the results from hardware implementation on the SPHERES testbed.
Above the spectrum line, the horizontal line represents the selection component of
the thesis. The chapters associated with this area consider architectures from all areas
of the spectrum. Chapters 6, 7, and 8 compare, contrast, and evaluate architectures
across the spectrum to develop a methodology to select one for a given mission.
These architectures are considered from a high-level and are not implemented on a
hardware system. Chapter 6 provides the enumeration and classification of model
generation architectures, as well as the derivation of a set of metrics that can be used
to compare architectures. Chapter 7 presents an assembly simulation that executes
the full dynamics and control aspects of the autonomous assembly scenario. This
simulation can be used as a tool to calculate metrics for a given assembly scenario for
a range of model generation architectures, both at the control system and assembly
mission level. Chapter 8 presents a process for the selection of a model generation
architecture, along with the underlying assumptions and validated metrics. Chapter

8 also exercises the process on three case scenarios.

The results and contributions of this work are summarized in Chapter 9. This
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chapter also provides direction for future work in the area of model generation archi-
tectures, as well as ways that this work can be incorporated into general autonomous

assembly design research.
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Chapter 2

Online Model Calculation

Framework

The model generation architecture designed in this work is called Online Model
Calculation and seeks to fill a particular gap identified in literature. This design
provides a balance between calculating and storing all properties in advance and iden-
tifying the model online. Online Model Calculation calculates the new model at the
time of transition, based on the current model, attachment status, and mass property
information about the attached module. The attachment and mass property infor-
mation only needs to be obtained at the time of transition, thus does not need to be
stored or known a priori by the assembler. It is assumed that the functionality exists
to receive the properties by communication. The Online Model Calculation model
generation algorithm combines individual property structures of attached objects into
the property structure of the combined system.

Consider the an assembler is assigned a module to move. The module commu-
nicates its property structure, analogous to a business card. The property structure
contains all of the information about that module that is needed by the assembler to
develop a module of the aggregate assembler-module system. Properties can include
the module’s mass, center of mass, inertia tensor, docking port frame, vector from the
docking port to the center of mass, and sensor and actuator locations. The assembler

combines the module’s property structure with the assembler’s property structure to
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build a configuration model that is used to design the control system.

This chapter presents the framework for Online Model Calculation. The following
sections give an overview of a reference baseline system, description of the reconfig-
uration framework, and details on the model calculation algorithm. In particular,
the contributions of this chapter are the development of a property structure to cap-
ture and transmit the model of a vehicle, and the development of a framework that
monitors this structure and performs the necessary updates when the configuration
changes. Chapter 4 describes the parameterization of the control algorithms to make
them reconfigurable. Chapter 5 details the implementation on the SPHERES hard-

ware testbed and validates the design through the experimental results.

2.1 Approach

The overall approach to designing an Online Model Calculation algorithm is out-
lined in five major steps. These steps allow for the implementation of Online Model

Calculation on any physical system.

1. Identify model framework of the baseline physical system
2. Identify physical properties to be updated and develop a property structure p
3. Develop model calculation algorithm based on the baseline system

4. Parameterize the sections of control software to be a function of the changing

physical properties

5. Implement framework using model calculation algorithm and parameterized

functions

Figure 2-1 shows the five step approach as a block diagram. The approach con-
sists of two paths, developing the model generation architecture and developing the
corresponding control system. Developing the model generation architecture consists

of determining the model framework (step 1), defining the property structure for the
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Figure 2-1: Online Model Calculation Approach

baseline system (step 2), and developing the model aggregation algorithm (step 3).
The development of the corresponding control system is to parameterize it to handle
the changing model (step 4). The final step, implementing the framework online, is
shown in the black dashed box. Figure 2-1 clearly shows the steps that must be per-
formed on the ground prior to operations and the steps that are performed on-orbit.

The remainder of this chapter describes these steps.

2.2 Determining a Model Framework

The first step in the approach to designing a model calculation architecture is to
identify the model structure of the baseline physical system. A baseline physical
system is used to generalize the possible configurations of assembler and module
attachments. This baseline system is used to identify which properties should be
updated, as well as providing a standard against which to compare performance.

An example baseline system is described in this work to demonstrate the design
process. The generalized configuration assumed in this work is a rigid body assembler,
with a module that can be either flexible or rigid. This generalized configuration is
depicted in Figure 2-2. Though the example baseline system, represented in Figure 2-
2, may not be directly applicable to all systems, it is a good starting point to capture

the rigid body properties of any system. This baseline system can be augmented to
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Figure 2-3: Possible Configurations of Baseline System

represent multiple assembly methods by including objects that capture the additional
dynamics.

The generalized configuration has three objects: A, B and C. Object A represents
an assembler, while Object B and C represent flexible and rigid modules, respectively.
One constraint levied on the configurations is that Object A must always be present,
as it is the object providing the maneuvering capability. There are five possible
configurations: (1) Object A only; (2) Object A+B; (3) Object A+C; (4) Object
A+B+C; and (5) Object A+C+B. Figure 2-3 show a graphical representation of
each of the possible configurations.

Configuration 1 (Object A only) represents an assembler by itself. Configuration 2
(Object A+B) represents an assembler with a flexible appendage. An example of this
configuration is a tug docked to a solar panel. Configuration 3 (Object A+C) repre-

sents an assembler attached to a rigid payload. An example of this configuration is a

46



tug docked to a telescope mirror segment. Configuration 4 (Object A+B+C) can rep-
resent an assembler attached to an in-the-loop flexible module, with a rigid end mass
on the other end (Object C). Finally, configuration 5 (Object A+C+B) represents
an assembler attached to a module with a flexible appendage. The three main con-
figurations considered in this work are Object A, Object A+C, and Object A+B+C.
The tools used to design a model generation architecture for these configurations can

easily accommodate the remaining configurations.

Object A: Assembler

The assembler has the majority of the actuation and sensing capability. The global
coordinate frame is centered at the geometric center of Object A, and is maintained
throughout the different configuration changes. Online Model Calculation requires

the following information to be known about Object A:

Reference Point: Geometric Center A

Body Frame

Mass, Inertia, Center of Mass with respect to A

Actuator configuration: Location w.r.t A, Direction, Force, Health, Type

Sensor configuration: Location/Orientation w.r.t A, Direction, Field of View,

Type, Bias/Scale factor

Attachment locations/directions w.r.t A

Object B: Module - Flexible Component

Object B is the flexible component of the module, defined by its mass, inertia, and
stiffness properties. Online Model Calculation requires the following information to

be known about Object B:

e Reference Point: Geometric Center B w.r.t A

47



Body frame

Location of attachment w.r.t B and w.r.t A

Center of Mass w.r.t B

Mass, Stiffness (characterized by the Object without any attachments), Inertia

Object C: Module - Rigid Component

Object C is the rigid component of the module, defined by its mass, inertia, and
attachment location. Online Model Calculation requires the following information to

be known about Object C:
e Reference Point: Geometric center C w.r.t A
e Body frame
e Location of attachment w.r.t. B and w.r.t A

e Mass, Inertia, Center of Mass w.r.t C

2.3 Properties to be Updated

The second step in the approach is to identify how the change in mass properties in-
fluences the model generation architecture. Figure 2-4 shows a representative control
system block diagram, with the software elements that must be updated outlined in a
solid line. The physical elements that change due to a configuration change (i.e. plant,
measurement matrix (H), and actuator matrix (B)) are outlined in a dashed line in
Figure 2-4. Within the estimation loop, the plant model in the estimator and the
measurement model, which contain the sensor configuration, must be updated. The
actuator model is updated through the control allocation algorithm, which converts
the control input into actuator commands. The controllers must also be updated,

whether it is the control law itself that is updated or simply the gains.
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Figure 2-4: Control system block diagram with necessary elements to update high-
lighted

Each software element can be analyzed to identify the physical properties that are
used which require updating. The physical properties constitute three major model
components: plant model, actuator model, and measurement model. The plant model
contains the physical mass property information of the system: mass, inertia, stiffness,
and center of mass location. The actuator model contains the actuator configuration:
location, direction, and force of each actuator; actuator health; and the location of
the reference point from where the location of the actuator is measured. Similarly,
the measurement model contains the sensor configuration: type of sensor, location
and direction of sensor, sensor health to know which sensors should be used, and
reference point/axis for each sensor.

The property structure p captures the properties that are needed to generate the
model. The structure p is passed to each algorithm in order to calculate its respective
model. The combination of all of the models mentioned above (plant, actuator, and
measurement) constitutes the model of the system. In state space terminology, the
model specifies the A (state transition), B (input), C (output), D (feed forward),
H (measurement), and K (control gain) matrices. In additional to the models, the
property structure also captures the attachment dynamics and status. This allows the
system to identify when a configuration change occurs. Thus, p requires the following

information:
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Plant: mass, inertia, stiffness, and center of mass

Actuator: actuator configuration (location, direction, force), actuator health,

Measurement: sensor configuration (location, direction, type), sensor health,

sensor noise properties, reference point/axis

Attachment: attachment locations, type of attachment, attachment status

The property structure p is specified in Equation 2.1.

m Teg I

Fact ﬁ act ﬁ act }:ére f—act ( 9 1)

= —
TSSRSOT Fsenso'r DSC’I’LSOT Fref—sensor

L Ulocation Cleype Astatus

The components of the structure are
e mass (m),

e center of mass (7,) specified in the body frame of the object, from the reference

point to the center of mass,

e inertia (I) inertia as given about the reference point for Object A and about

the center of mass for Object B and C,

e actuator locations (7,.) specified in the body frame of the object, from the

reference point to the actuator,
e actuator force magnitude (ﬁact) specified in the body frame of the object,

e actuator directions (D,) specified in the body frame of the object,

—

e actuator reference point (R,ef_qt) specified from the reference point of the

object,

e sensor locations (Tsensor) specified in the body frame of the object, from the

reference point to the sensor,
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e sensor type (ﬁsensor) specified in the body frame of the object,
e sensor direction/axis (ﬁsemor) specified in the body frame of the object,

e sensor reference point (ﬁref_sensm) specified from the reference point of the

object

e attachment locations (Finter face) Specified on Object from the reference point to
the interface and on Object B and C from the interface point to the reference

point,

e attachment type (cuyp) which specifies the dynamics and orientation of the

attachment,

and attachment status (@ssaus) Which indicates if a module is attached

The property structure includes components that are vectors and matrices, denoted
with an arrow in Equation 2.1. The attachment status field can be binary, or can
have different values associated with different methods of attachment (ex. docked vs
grappled). Nominally, the size of p can be updated dynamically to account for new
properties that may arise due to module attachment. The particular elements of p
are based on the system under consideration. Equation 2.1 captures the necessary list
for the baseline system given in Figure 2-2. For other system, p could be updated to
include environment characteristics, stiffness properties, dimensions, and surface area
of components of the object. In general, p serves as a profile of the system that can
be manipulated in a similar fashion to how the physical system is being manipulated.
A detailed description of the components of p is given in Chapter 4, where the control

system is parameterized to accept these components to calculate control inputs.

2.4 Model Generation

The third step in the approach is to develop the algorithm to aggregate the model,
which allows for the maintenance and generation of the current model. The inputs

to this algorithm are the property structure of the assembler (pum), the property
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Figure 2-5: Model generation flow diagram example for a passive module

structure of the module (p,), and the interface where the module has been attached.
Upon attachment, two property structure inputs are combined to yield a new property
structure that is representative of the combined system. Figure 2-5 is a block diagram

that shows the flow of the calculation of the different elements of p.

The first step of model calculation in Figure 2-5 is the calculation of the new mass.

The new mass is the sum of the assembler and module masses.

= M, + My (22)

After the mass is calculated, the next step in Figure 2-5 is the center of mass computa-
tion. The center of mass is recomputed based on the module information, maintaining
the assembler’s reference frame. The center of mass of the module is determined in

the assembler’s reference frame by using the attachment information.

s 1 » ~ .
TCEI = m [mamrcg,a'm so mpl(,rinterface,am + (bri‘nterface,pl + q)rcg.pl)] (23)
f

Equation 2.3 gives the new center of mass with respect to the center of the assem-

bler. The interface location on the module with respect to the center of the module
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(Finter facept) and the interface location with respect to the center of the assembler
(Finter face,am) are used to convert the module center of mass to be with respect to
the center of the assembler. The variable ® is the rotation matrix that converts the
vectors specified in the module’s frame into the assembler’s frame. It is determined
using the module attachment orientation, which is specified as a quaternion rotation
from the module’s frame to the attachment port’s frame, and the assembler’s attach-
ment orientation, which specifies the rotation from the assembler’s attachment port
to the assembler’s frame.

Next, the inertia is similarly obtained by using the parallel axis theorem. First,
Equation 2.5 shows the equation to calculate the assembler’s inertia about the ref-
erence point, where d is the vector from the assembler center of mass to the desired
reference point O (Equation 2.4). The reference point can be chosen arbitrarily and

pre-specified in the model calculation algorithm.

-

d =70 — Teg (2.4)

I:m:,am,cg + Mam \/ d% + d% Izy,am,cg + mam(d1d2) Izz,am,cg + mam(dldS)

Iam,O = Iyy,am,cg + Mam V d% + dg Iyz,am,cg + Mam (d2d3)
Lz amycg + Mamy/d3 + d3
(2.5)

Equation 2.6 gives the general form for the parallel axis theorem where:

O is the reference point on the assembler, that is maintained throughout the

configuration changes,

P is the reference point on the module,

Iim+pi0 1s the final aggregated inertia about O,

I.m o is the inertia of the assembler about O,

I,; p is the inertia of the module about P,
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e b is the shift vector from O to the center of mass of the module,

e ¢, is the first moment of inertia, given by ¢, = MpiTP=scqg Where Tpg is the

vector from P to the module center of mass

e 1 is the 3x3 identity matrix.

Lamp0 = Tam,o + Ip +mpt (0T = 67 ) + (25 @ GuT — by — Eub") (2.6)
Equation 2.6 can be simplif
Lm0 = Lam,0 + Tpt.cq + mp (0T — 55" (2.7)

The last items in Figure 2-5 to be calculated are the actuator positions and sensor
positions. These are maintained with respect to the center of the assembler and only
need to be updated if the module includes actuator or sensors. If the module does
include actuators or sensors, their locations are converted to be with respect to the
center of the assembler by using the interface location on the module and on the

assembler.

2.5 Implementation Framework

The approach for integrating Online Model Calculation with a control system design
is accomplished through a framework that allows for generic implementation in a real-
time system. The difference between this framework and a nominal control system
framework is the incorporation of the property structure p as shown in Figure 2-6.
The framework has three main components, as shown in Figure 2-6: initialization,
control loop, and reconfiguration loop.

The purpose of the initialization component is to initialize p and the baseline
assembler model. The assembler starts out with its original model, without any

module attachments (Object A configuration). The center block represents the model,
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M. This model is maintained throughout the assembly. The model is an input to the
control loop to run the parameterized estimator, controller, and control allocation
algorithms. The control loop is responsible for providing the actuator commands,
and would nominally form the entirety of the control system if no reconfiguration is
included.

In the reconfiguration loop, the system is continually checking if p has changed.
Specifically, if the attachment status variable changes, then a configuration change has
occurred. The property structure of the module is obtained either by communication
with the module or from prior knowledge. The new model is calculated by using
the property structures from the assembler (p,,,) and the module (py). The central
model, M, is updated with this new model, as shown in Figure 2-6. The framework
is setup such that the control system always receives the latest model to be used
in the estimator, controller, and control allocator. The continuous monitoring of the

property structure and maintenance of the model constitutes the reconfiguration loop.

2.6 Conclusions

A five step approach is given in this chapter to develop an Online Model Calculation
design. The description of the steps is given via example on a sample assembly sce-
nario. The generalized configuration developed in this work is for the scenario of a
rigid body assembler that can attach to either flexible or rigid modules. This general
configuration is carried throughout the approach description, including Chapters 4
and 5. Though this work considers a single assembly architecture, the approach for
developing this algorithm, as well as the parameterization of the control system algo-
rithms can be extended to other assembly architectures. The assembly architecture
assumptions lie in the specification of the baseline system and in the definition of the
components of p.

Inherent assumptions of Online Model Calculation that limit its generality are as

follows:
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Figure 2-6: Block diagram of reconfiguration framework
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e All necessary mass property information is known and pre-coded to be avail-
able during the assembly mission. In practice, this requires significant ground
development work to properly identify all necessary properties. Also, signif-
icant design and implementation may be required to store and transmit the

properties.

o The aggregated dynamics can be calculated by relatively simple math manipu-
lation of the module properties. Though this is valid for simple systems, par-
ticularly rigid body systems, some assembly architectures may exist with such
complex assembler or module dynamics that an aggregated model to required

accuracy can not be generated using just the module properties.

e The control system can maintain desired performance in all configurations. If
the control system is not design to handle a particular configuration, successful

maneuvering will not occur even if the proper model is generated.

e The control system can be expressed as a function of the property structure
p. The framework shown in this chapter assumes that the control system can
take in the property structure and calculate the necessary parameters. Not all
control systems are designed such that parameters, such as control gains, can
be written as a function of mass properties. Extending this parameterization
to complex control systems which require extensive simulation modeling for

parameter selection is difficult.

Despite these limitations, Online Model Calculation provides a critical first step
in performing autonomous model generation. The novel contributions of this chapter
are the development of the framework for re-calculating the model online and the de-
velopment of a property structure p. The property structure p captures the necessary
mass properties of the system in a form that is easily transmitted between vehicles.
This enables the Online Model Calculation framework depicted in Figure 2-6. The
consolidation of all mass property information into a single structure p allows for a

simplified monitoring and maintenance framework. The control system framework is
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set-up such that the attachment status variable in the property structure is contin-
uously observed. If the variable changes value, the property structures are used to
generate the new model. The parameterization of all of the control system algorithms
allows for easy propagation of the model into the control loop. These elements of (1)
capturing relevant mass properties, (2) framework to monitor attachment status, and
(3) an algorithm to calculate the new model are needed for any autonomous model
generation algorithm. Online Model Calculation provides an initial design for au-
tonomous model generation, that can be augmented and integrated with other model

generation techniques as more research is performed in this area.
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Chapter 3

Hardware Overview

This chapter provides a description of the hardware facilities used for this research.
The key hardware and software components are briefly described so that the reader
is familiar with the terms and references present throughout the thesis. Hardware
testing is used to confirm the simulation results on a realistic system and properly
validate the algorithms developed in this work.

The main hardware testbed in this work is the Synchronized Position Hold, En-
gage, Reorient Experimental Satellites (SPHERES) testbed. SPHERES is a testbed
designed to provide a fault-tolerant environment for the development and maturation
of control and estimation algorithms for formation flight, docking, autonomy, and re-
configuration. The SPHERES testbed is utilized in three test environments. The first
environment is a flat table ground testbed. The second environment is a microgravity
flight testbed operated by astronauts on the ISS. Finally, the third environment is
a flat floor ground testbed called SWARM (Self-Assembling Wireless Reconfigurable
Modules), which includes the attachment of a flexible beam to explore control and

estimation issues associated with flexible motion.

3.1 SPHERES - Ground and ISS

The SPHERES testbed consists of self-contained, identical, free-flyer satellites (Figure

3-1). Three satellites are located on the ground, at MIT Space Systems Laboratory,
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Figure 3-1: SPHERES satellite

and three satellites are located on the ISS. The ground satellites are used to test
algorithms prior to uplink to the ISS. Each SPHERES satellite is a complete space-
craft, equipped with metrology, propulsion, computing, and communication capabil-
ity. Each satellite has a Velcro panel, which serves as a rudimentary docking system.
Additionally, each satellite has an expansion port, which is used on the ground satel-
lites to augment the functionality by attaching external payloads. The components
of the SPHERES testbed are the satellites, a laptop computer that serves as a ground
station, and five beacons that form the Position and Attitude Determination System
(PADS). The five beacons define the working area in which measurements can be
made and provide the global reference frame. The following sections describe the
aspects of the SPHERES testbed that were directly used in this work. Detailed infor-
mation about the SPHERES satellites can be found in References [29], [66], and [13].
Ounly elements specifically used in the work will be discussed. The elements for this
work are mass properties, communication, sensors, expansion port, and propulsion.
Table 3.1 gives the pertinent mass properties of the SPHERES satellite and Figure

3-2 shows the reference body frame of the satellite.

3.1.1 Communication

The SPHERES communication system was important for this work because some of
the algorithms developed in this work require inter-satellite communication. SPHERES

uses two communication channels. The SPHERES-to-SPHERES (STS) channel is
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Table 3.1: SPHERES satellite mass properties

Mass (kg) Center of Mass (mm)
X Y Z
4.3 0.48 -1.19 1.08
Body Frame Orientation Center w.r.t. Geometric Center(m)
2 4 ¥ Z X Y Z
Expansion Port Battery Door Regulator Knob | 0 0 0

Inertia (kg m?)

Ixx Iyy Izz Ixy Ixz Iyz
2.29E-2 2.42E-2 2.14E-2 9.65E-5 -2.93E-4 -3.11E-5
Velcro Location (m) Expansion Port Location (m)

X b Z X 4 Z

-0.1023 0 0 0.1023 0 0
Ultrasound Rx Gyroscopes

Range Resolution Noise Range  Resolution Noise

(m) (mm) (mm) (°/s) (°/s/count) (°/s/(Hz){1/2))

3 10 2 +83 0.0407 0.05
Accelerometers Thrusters

Range Resolution Noise Number Thrust Variability

(mg) (ug/count)  (ug rms) (kgms™2)  (kgms™2)

+25.6 12.5 7 12 0.11 0.01

Figure 3-2: SPHERES Body Frame Axes
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used for inter-satellite communication, enabling cooperative and coordinated maneu-
vering between satellites during tests. The SPHERES-to-Laptop (STL) channel is
used to transmit data and telemetry to the laptop station. Each channel is on an
independent radio frequency, either 868 MHz or 916 MHz. More detail can be found
in Reference [66]. The communication bandwidth is limited to a total of 70 packets
per second, where each packet is 32 bytes. This must be shared among all of the
satellites in operation. The communication delay between sending and receiving is
usually on the order of a few milliseconds, but can be up to 200 ms at worst case
due to Time Division Multiple Access (TDMA) protocol. The maximum frequency
of data transmission of the SPHERES communication system 5 Hz. The amount and
frequency of data transmission possible with the SPHERES hardware was a limiting
constraint in the implementation of the algorithms. Modifications in implementation
were necessary to specifically account for these constraints, which are described in

detail in Chapter 5.

3.1.2 Sensors

The sensor configuration of the SPHERES testbed was used heavily in the develop-
ment and implementation of estimation algorithms. The SPHERES PADS consists of
inertial sensors and ultrasound beacons and receivers. Inertial sensors include three
single-axis gyroscopes and three single-axis accelerometers, providing three-axis iner-
tial measurements. The ultrasound system consists of 24 ultrasound receivers and one
beacon on each satellite. There are five external wall-mountable beacons. Estimation
is based on sequenced time-of-flight measurements from the beacons to the receivers
to determine a range. A state estimator is then used to provide real-time position,
velocity, attitude, and angular rate information for each SPHERES satellite up to 5
Hz (Figure 3-3). More detail can be found in References [29] and [56].

The accelerometers are used in this work as a velocity truth measure. The test
volume, framed by the location of the beacons, is important because it constrains the
maneuvering space. Thus, the waypoints and target locations for the experiments

described in Chapter 5 were constrained to be within the test volume defined by the
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Figure 3-3: Geometry of PADS. Beacon locations define operational volume. Time
of flight ranging used from at least four beacons to get full state determination.

location of the five beacons.

The ultrasound sensor placement is specified here because this geometry was used
to develop a reconfigurable estimation scheme that combines ultrasound measure-
ments from multiple satellites (described in Chapter 4). The physical locations of
the ultrasound receivers are given by Table 3.2. Ultrasound receivers are grouped in
sets of four located on faces around the satellite. The faces are identified by their
location in the body frame. Due to the geometry of the placement of the face (along
one axis and centered in the other two axes), faces can be identified by a single body
axis specification (e.g. +X, -Y). RDO equals 0.1023 m, which is the distance from
the center of the SPHERES satellite to the face on which the receivers are located.
RD1 equals 0.0392 m, which is half the distance between receivers on a single face,
in the horizontal direction. RD2 equals 0.0394 m is the half of the distance between
receivers on a single face in the vertical direction. Finally, RD3 equals 0.1026 m which
is the distance from the center of the SPHERES satellite to the +Z face. Figure 3-4

shows the receiver distances schematically. Figure 3-2 shows the body frame of the
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Figure 3-4: Geometry of Receiver locations on a face

satellite, as a reference. The horizontal and vertical distances specified in Chapter
3-4 correspond to the body frame depending on the face the receivers are located on.
For example, if receivers are located on the +X face, the vertical direction is the Z

and the horizontal distance is the Y direction.

3.1.3 Expansion Port

The SPHERES expansion port provides the mechanical mounting, serial communi-
cation, and a power interface to augment the current functionality of the satellite.
Figure 3-5 shows the expansion port uncovered on the SPHERES satellite. The
expansion port connector enables the payload to interface with the satellite’s main
processor and metrology sensors. Thus, the payload is able to acquire and transmit
information back and forth through the interface. This interface is used extensively
on the ground with a number of payloads that have been designed, such as a tether
mechanism [15], optical pointing payload [48], and a universal docking port [62]. Two
particular payloads that are used heavily in this work are the Universal Docking Port
(UDP) (Figure 3-7) and the SWARM propulsion module. The SWARM propulsion
module is described in more detail in Section 3.2.

The UDP is a genderless docking port that enables a rigid attachment to another
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Table 3.2: Ultrasound Receiver Locations with respect to the geometric center of the
SPHERES satellite

Face | Rx Number | X | Y | Z
+X 1 RDO | -RD1 | RD2
+X 2 RDO | RD1 | RD2
+X 3 RDO | RD1 | -RD2
+X 4 RDO | -RD1 | -RD2
+Y 5 RD2 | RDO | -RD1
+Y 6 RD2 | RDO | RD1
+Y i -RD2 | RDO | RD1
+Y 8 -RD2 | RDO | -RD1
+7Z 9 -RD1 | RD2 | RD3
+7Z 10 RD1 | RD2 | RD3
+7 11 RD1 | -RD2 | RD3
+Z 12 -RD1 | -RD2 | RD3
-X 13 -RD0O | RD1 | -RD2
-X 14 -RD0O | RD1 | RD2
- 15 -RD0O | -RD1 | RD2
-X 16 -RD0O | -RD1 | -RD2
- 17 -RD2 | -RD0O | RD1
Y 18 RD2 | -RD0 | RD1
-Y 19 RD2 | -RD0 | -RD1
-Y 20 -RD2 | -RDO | -RD1
-Z 21 RD1 | -RD2 | -RD0O
=7 22 RD1 | RD2 | -RDO
-7 23 -RD1 | RD2 | -RDO
2 24 -RD1 | -RD2 | -RDO

Figure 3-5: Expansion port on the SPHERES satellite
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Figure 3-6: Results for UDP accuracy characterization

UDP. Each UDP has a metrology ring, with three beacons and three receivers. These
sensors are used in addition to the SPHERES satellite’s sensors in a estimator that
provides the state of the satellite relative to other UDPs. The mechanical design of
the UDP is a pin-hole mechanism. The pin enters the hole and trips a photo sensor,
which initiates the two counter-rotating cams that close to grip the pin. The UDP
also has an electromagnet to aid in smooth docking and undocking. Accuracy testing
performed on the UDP revealed a precision of approximately 2° about the X axis,
0.267° about the Y axis, and 0.1° about the Z axis, as shown in Figure 3-6 [59]. More

detail can be found in Reference [62].

The UDP is important because it provides a rigid, precise attachment mechanism
compared to the Velcro that is present on the SPHERES satellites. The UDP was
used extensively for the tests performed in the SWARM environment, described in
Chapter 5. The UDP is a critical component for assembly, particularly future ISS

tests, because unlike Velcro, it allows for both docking and undocking.
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US transmitter US receiver

IR transmitter IR receiver

Figure 3-7: Universal Docking Port. Left: Picture of hardware, with sensors labeled.
Right: CAD drawing of UDP

3.1.4 Propulsion

Each satellite has the ability to maneuver in six degrees of freedom (DOF') propelled
by a cold-gas thruster system fueled by C'O,. The satellite has a single propellant
tank with 170g of liquid C'Os. This fuel amount restricts the maneuvering time of the
tests performed in Chapter 5. In particular, the assembly demonstration tests used
nearly a full tank for a single run. As assembly testing expands, the fuel available
will become a limiting constraint on the hardware.

Twelve thrusters are symmetrically positioned around the satellite to provide con-
trol about all three axes, enabling simultaneous attitude and translation control. The
layout of the thrusters are shown in Figure 3-8. The numbered arrows in Figure 3-8
indicate the direction in which the gaseous CO, is expelled by that thruster. The
thruster geometry is specified by the direction of the force and torque produced by
that thruster. For a single satellite, the geometry is given by Table 3.3. For multiple
SPHERES satellites attached to each other, the geometry is determined depending
on how the satellites are attached. Table 3.4 gives the thruster geometry for two
satellites connected by their -X (velcro) face. In this configuration, one satellite is
designated the assembler. This satellite is responsible for determining the thruster

configurations for both satellites. Thus, the thruster configuration is specified in the
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Figure 3-8: Two-dimensional exploded view of thrusters one the SPHERES satellites
29]

assembler’s frame. The thruster configurations specified in Table 3.3 and 3.4 are used
as input to the control allocation algorithms described in Chapters 4 and 5. These
tables can be used to determine the proper thruster to fire to generate the desired
force or torque. For example, from Table 3.3, to generate a pure force in the +X
direction, one would fire thrusters 1 and 2. To generate a pure torque about the +7

axis, one would fire thrusters 3 and 10.

The thruster geometry has significant implications for the control system, par-
ticularly when multiple satellites are attached. The SPHERES thruster geometry is
the minimal set required for six DOF motion. When two satellites are connected, on
any primary face, two thrusters on that face become blocked by the other satellite.
The plume impingement effects cause the thrusters on the attachment face to become
ineffective. The result is that the axis of attachment is an uncontrollable and unsta-
ble direction, if only a single SPHERES satellite’s thrusters are used. Thus, in this
thesis, when two SPHERES satellites are connected, thrusters on both satellites are

used so that the system is still controllable.

63



Table 3.3: Mapping of the SPHERES thrusters to Forces/Torques on the satellite

Thruster Force Torque
Number | x y 1z X Yy zZ
1 +1 +1
2 +1 -1

3 +1 +1
4 +1 -1

) +1 ] +1

6 +1] -1

7 -1 -1

8 -1 +1

9 -1 -1
10 -1 +1
11 -1 -1

12 -1 | +1

3.1.5 Software

SPHERES software consists of an operating system (SPHERESCore) and additional
user-selectable library functions. SPHERESCore is responsible for handling inter-
rupts and interfacing with the hardware. The library functions provides guest sci-
entists with the ability to use pre-defined utility functions to expedite programming
testing [24]. The coding language used on the hardware is C, while code for the sim-
ulation can be programmed in C or MATLAB. It is through this operating system
framework that the reconfigurable algorithms developed in this work are implemented.
In addition to updating SPHERESCore functionality, this research also makes use of
some of the library functions to support testing. Examples of the library functions
used include math utilities, data compression algorithms, and basic controllers.

Two updates were made to SPHERESCore. The first update was to develop a
reconfigurable estimator that could handle multiple configurations. This estimator is
described in detail in Chapter 4. The second update was to update the satellite phys-
ical properties file. This file loads the satellite mass and thruster properties, such as
mass, inertia, center of mass, thruster strength, thruster direction, and thruster loca-
tion. The values stored in Flash memory (specific to each satellite) are automatically

loaded when a satellite is reset. The satellite-specific flash values are maintained in
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Table 3.4: Thruster directions of two SPHERES satellites attached via their -X faces,
as Forces/Torques matrix, in Assembler satellite’s frame. Thrusters on the Assembler
are denoted with an ’A’, while thrusters on the Payload are denoted with a "B’

Thruster Force Torque
Number | x y 2z | x y z
1/1A +1 +1
2/2A +1 -1
3/3A +1 +1
4/4A +1 +1
5/5A +1+1
6/6A +11] -1
T/TA -1 -1
8/8A -1 +1
9/9A -1 -1
10/10A -1 -1
11/11A -1 ] -1
12/12A -1 +1
13/1B +1 +1
14/2B +1 -1
15/3B +1 +1
16/4B +1 +1
17/5B +1 | +1
18/6B +1 | -1
19/7B -1 -1
20/8B -1 +1
21/9B -1 -1
22/10B -1 -1
23/11B -1 4 -1
24/12B -1 | +1
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the file spheres-physical-properties.c. The mass and thruster properties are assigned
as working variables, local to this file, and accessed by 'get’ and ’set’ functions. The
existing functionality only includes values for a single SPHERES satellite. Through
the research presented in this thesis, this file was updated to include multiple con-
figurations. The functions in this file were used as the primary interface to access
the mass properties of the satellites, which is a critical part in the reconfiguration

framework described in Chapter 2.

3.2 SWARM

The third testing environment is the SWARM environment. SWARM was developed
as a ground extension to the SPHERES testbed. The purpose was to enhance the
capability of the nominal SPHERES testbed to fully test algorithms related to au-
tonomous assembly, on the ground. The SWARM environment was important to this
work because of the flexible beam attachment. The presence of a flexible beam mod-
ule allowed the algorithms developed in this work to be validated not only for a rigid
module, but for a flexible module as well. This is important because it expands the
generality of this research, demonstrating that the algorithms developed can accom-
modate varying stiffness properties as well as mass properties. The SWARM testbed
consists of the SPHERES satellites, UDPs, a structural base, a propulsion module,
and a flexible beam. The SPHERES satellites and UDPs are mentioned in a previous

section of this chapter. The section describes the remaining three components.

3.2.1 Structural Base

The structural node is a necessary structural augmentation to the SPHERES satel-
lite to enable the satellite to attach to more than one module. It is a plate with
mounting posts attached. Figure 3-9 shows a structural base with a SPHERES satel-
lite attached. The SPHERES satellite sits in the center of the node, resting on a
square plate. On all four sides, there are connections where a mounting post can be

attached. Figure 3-9 shows two mounting posts attached, where the right post has
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Figure 3-9: SPHERES satellite on a SWARM structural base

a UDP attached to the top of the post. The structural base gives the SPHERES
satellite the ability to have multiple docking ports attached. This allows for more
seamless assembly, as the SPHERES satellite can now act as either the assembler or

module.

3.2.2 Propulsion Module

Attached to the bottom of the plate of the structural base is the SWARM propulsion
module. The propulsion module is connected to the satellite via the expansion port,
described previously in this chapter. The SPHERES thrusters were designed to pro-
vide enough force to maneuver in microgravity. However, the force of the SPHERES
thrusters are insufficient to maneuver on the ground when modules are attached.
Therefore, the SWARM propulsion module was designed to provide additional force
in the horizontal plane during ground testing. Figure 3-10 shows the placement of
the propulsion module with respect to the structural plate. The placement of the
thrusters below the SPHERES satellite ensures that no plume impingement effects

occur. The propulsion module contains sixteen thrusters, four in each direction, +X,
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Figure 3-10: SWARM propulsion module, attached to the structural node

+Y, -X, and -Y. Table 3.5 gives the thruster configuration for the propulsion module.
Four thrusters are generally fired simultaneously, with an effective thruster force on
the order of 1 N.

The SWARM propulsion module is important to the research in this thesis for two
reasons. First, it enables maneuverability in the ground environment. Without this
additional propulsion module, the SWARM tests described in Chapter 5 would not
have had enough thruster authority to maneuver successfully. Second, the method
of accessing and commanding the propulsion module thrusters, which are external to
the SPHERES satellite, demonstrate the parameterized control allocation developed
in Chapter 4. Similar to the SPHERES satellite thruster configuration, Table 3.5 is

also an input into the control allocation algorithm developed in this work.

3.2.3 Flexible Beam

One of the main objectives of the SWARM testbed is to enable control and assembly of
flexible structures. Thus, the flexible beam was designed with two main requirements.
The first requirement was that the deflection of the beam when excited by a nominal
SPHERES firing pattern be larger than 1 cm, which is the accuracy necessary for
docking using the UDPs. The second requirement was that the first mode frequency

should be less than 0.5 Hz. This requirement arose because the maximum control
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Table 3.5: SWARM Propulsion Module Thruster Force Directions

Thruster Force Torque
Number | x y z|x y 2
1 -1 -1
2 -1 +1
3 +1 -1
4 +1 +1
) +1 -1
6 +1 +1
7 -1 -1
8 -1 +1
9 -1 -1
10 -1 +1
11 +1 -1
12 +1 +1
13 +1 -1
14 +1 +1
15 -1 -1
16 -1 +1

rate of the SPHERES is roughly 1 Hz, thus, using the Nyquist criterion, the nominal
observable frequency of the beam is 0.5 Hz. The flexible beam in SWARM is a
four link beam, consisting of of four Aluminum links, with torsional springs made
from steel shims connecting the links. Figure 3-11 shows a schematic of the physical
beam with dimensions, while the hardware setup is shown in Figure 3-12. This beam
configuration was experimentally tested to have a first modal frequency of 0.235 Hz.
A LED is attached to the free end of the beam and is used to estimate the beam
deflection, using a camera that is mounted to the SPHERES satellite.

This thesis makes use of previous work performed using the SWARM environ-
ment. Katz [42] developed an estimator to track the deflection of the beam using
the LED/Camera system, which is used as developed in this work. The model of the
beam used in this thesis is a simplified representation which models the beam as a
single flexible link. The beam is then represented with a approximated length and
stiffness value. For more information on the derivation of the beam dynamics, please
refer to Katz [42].

Katz also developed 2D adaptive controllers to maneuver with the flexible beam.
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One of the main adaptive controllers used in this work was developed by Katz as a
2D controller and tested only in simulation. This work upgrades the controller to be

3D and conducts tests in simulation and hardware.

3.3 Summary

The SPHERES testbed was the hardware and software baseline for this study. Not
only were the algorithms developed implemented on SPHERES, but the model of the
SPHERES satellites is used throughout this work as a representative assembler. The
content of this chapter provided an overview of the main aspects of the SPHERES
testbed as they relate to this work. To get a detailed understanding of the aspects
mentioned or how they interact, please consult the references specified. Chapters
4 and 5 provide more detail on the software algorithms used on SPHERES, with

implicit reference to the hardware components described in this section.
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Chapter 4

Online Model Calculation: Control

System Parameterization

Chapter 2 provides the framework and implementation approach for Online Model
Calculation. Demonstration of Online Model Calculation requires implementation
of a control system to take in the model and calculate the corresponding control
inputs. To accomplish the seamless propagation of the model into the control system,
the control algorithms are parameterized to accept the property vector p. Using the
property vector as an input, the control algorithms can generate the necessary control
parameters specific to the model.

The control system considered in this work is a simple design geared toward
demonstrating the parameterization feasibility. The baseline control system used is
based on the SPHERES hardware testbed described in Chapter 3. Three main con-
trol system algorithms are discussed in the following sections: estimator, controller,

and control allocation algorithms.

4.1 Estimator

The research in this thesis considers an Extended Kalman Filter (EKF) as the base-
line estimation algorithm for the assembler. This type of estimator is routinely used

in industry due to its good performance and ease of implementation. Four aspects of
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the estimator are considered for parameterization: state propagation, actuator prop-
agation, sensor measurement incorporation, and initialization. This section begins
with a brief review of the EKF algorithm, then addresses each of the four aspects of

the estimator.

4.1.1 EKF Review

Consider a generic second order system given by Equation 4.1, where the dynamics
vector g represents the position and attitude of the assembler, J is the mass/inertia
matrix, D is the damping or friction matrix, and G is the stiffness matrix. A state
vector = can be written as z = | q q ]T. The state space representation of this
model is given by Equation 4.2. The state transition matrix is given by A and B is

the actuator matrix.

J(q,4)§ + D(q)q + G(q) = u (4.1)

Tepr = A(ze) + B(ze, ur) (4.2)

The EKF is a two step process of first predicting the estimate through propagation,
then updating the estimate based on measurements. The Predict step propagates
the estimated state forward from time ¢ — 1 to time ¢t. The Update step updates
the predicted state at time ¢ with measurements from time ¢. This is depicted in
Equations 4.3 and 4.4, with the covariance (P), process noise (@), Kalman gain
(K), measurement matrix (H and h), measurement (z), and sensor noise (R). The
measurement matrix A is used to convert the state into an estimated measurement,

while H is used to propagate the covariance.

Typ—1 = A(Too1je—1) + B(Z—1je—1, Ue)
Pyt = APt—1|t—1AT + Qs

Predict
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Ty = Tep—1 + Kiy

-1
K; = Py1HY' (HPyrHY + Re)

Update (4.4)

Yy = 2t — h(i'ths—l)
Pt[t = (I - Kth)Pt|t—l
A change in the model affects both Predict and Update steps in the estimator.
Four aspects of the estimator are parameterized with respect to the property vector
p. Parameterization to account for changes to the A matrix are considered in Section
4.1.2, while the parameterization to account for changes to the B matrix are consid-
ered in Section 4.1.3. Parameterization to account for changes to sensor configuration,
such as number or type of receivers, is addressed in Section 4.1.4. Finally, Section

4.1.5 addresses initialization issues when estimator switches between models.

4.1.2 State Propagation

State propagation is a critical part of the estimation framework. Therefore, to main-
tain the estimator performance, it is important to parameterize the state propagator
to seamlessly accept the model.

The structure of the A and B matrices from the state space representation in
Equation 4.2 stays the same for any second order system with respect to the dynamics
matrices given in Equation 4.1. A is the state transition matrix, which describes how
the state changes over time under no external forces. The state propagation must be
updated if there are changes to x or A. To account for a changing A matrix, the J,
D, and G matrices can be parameterized such that they are properly calculated for
any combination of the objects in the baseline physical system (Figure 2-2).

The steps of the derivation of the parameterized dynamics matrices are based on

the Euler-Lagrange method.

1. Determine complete state vector as a function of the presence of an Object
2. Determine the Lagrangian L, where L =T -V
(a) Calculate the kinetic energy (7'
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(b) Calculate the potential energy (V')

3. Extract J by J = Edﬁ%

4. Extract D using J

5. Extract G by G = %

6. Determine A matrix based on derived forms of J, D, and G

Determine state vector

Equation 4.5 gives the dynamics vector g, which includes the three element position
vector of Object A (74), the attitude of Object A (). The variable 8 is a three
element vector that captures the deflection of Object B in the x, y, and z directions.
The deflection is only included in the state vector if Object B is attached. The variable
©p is boolean variable that indicate whether Object B is attached (¢p = 1) or not
(pp = 0). The attitude of Object A (8) can be represented as a three element vector
with the x, y, and z Euler angles, or as a four element quaternions vector. In this
thesis, tests that are run in 2D use Euler angles for simplicity, while 3D operations,

such as on the ISS, use quaternions.

T
q=|7Ta 04 9035] (4.5)

These components included in g are selected based on what properties must be
monitored when the Objects are rigidly attached. The position and attitude of Object
A are necessary in all configurations. The inclusion of the deflection of Object B is
necessary because the deflection impacts the maneuvering of Object A, when Object
B is attached, and it cannot be computed based on Object A dynamics. The position
of Object C does not need to be included in the state vector because it’s state can be
completely defined by Object A’s state, and Object B’s deflection if in Object A+B+C
configuration. Even though Object C’s position is not included in the state vector, its

contribution to the dynamics are included in the calculation of the dynamics matrices.
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The corresponding state vector z = [ q q ], where q is given by Equation 4.6.

. . 1T
QZ[FA s oo T4 64 (,03(5] (4.6)

Calculate Lagrangian and dynamics matrices J, D, and G

To calculate the dynamics matrices (J, D, and G), one must (1) calculate Object
positions and velocities; (2) use the positions and velocities to calculate kinetic and
potential energy; (3) form the Lagrangian using the kinetic and potential energy; and
(4) calculate the dynamics matrices using the Lagrangian.

Equation 4.7 defines the global position of each object. The variables of Equation

4.7 are defined as follows:

e The variables 74, 75, and 7¢ are the three element position vectors for Object
A, B, and C respectively. The variables 75 and 7 are written in terms of 74

because they are rigidly attached and Object A is the central reference frame.

e The variables ¢ and ¢¢ are boolean variable that indicate whether Object B

or C is attached.

e The matrix 9 specifies the three dimensional rotation matrix based on the input

angle vector (e.g. 9(9)).

e The variable 7, 4 is the distance from the center of A to the attachment location

where Object B is attached.

e The variable 7,p is the distance from the attachment location on B to the

center of mass of B.

e The variable 7.yc is the distance from the attachment location on C to the

center of mass of C.

e The notation 6% indicates the derivative of the angle arranged to form the
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75 = Fa + 50(8) [Fas + 9(0)egs] (4.7)

7o = 7a+ eV (0) [Faa + Fege + 9593 L]
Equation 4.8 defines the global velocity of each object, by taking the derivative of
Equation 4.7. The variables r A, r B, and o are the three element velocity vectors for

Object A, B, and C respectively.

ae[e o]
7+ 0nd*9(0) [Fon + 9(O)egn] +059(0) [30(9)7n] (48)

-

47 Fa+ b 0(8) [Fas + Togo + 059(0) L] + 009 (6) [0509(3) L]

ﬁl'
II

The position and velocity are used to calculate the kinetic and potential energy.
The Lagrangian (L) is the difference between the kinetic energy (') and the potential
energy (V), L =T — V. The kinetic energy T can be determined by summing up the
translational and rotational kinetic energy for each Object, as shown in Equation 4.9.
The variables m4 and I4 are the mass and Inertia of Object A, mp and Ig are the

mass and Inertia of Object B, and m¢ and I are the mass and Inertia of Object C.

T = Tirans + Trot
Tirans = 3marhia + op3mprgie + poymeréic (4.9)
Tyor = 207140 + 05307 150 + 010710
By substituting the velocities from Equation 4.8 into Equation 4.9, the kinetic
energy is expressed with respect to the state vector specified in Equation 4.6.
The potential energy (V) is due to either gravitational or spring forces. For this
thesis, gravitational forces are neglected as assembly generally occurs in close proxim-

ity operations or deep space (e.g. Lagrange point). Also, autonomous assembly occurs
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fast enough that orbital drift, J2 effects, and similar perturbations can be neglected.
For the baseline system specified in Chapter 2, only Object B has potential energy
associated with deflections. Equation 4.10 gives the potential energy associated with

the deflections in Object B based on the spring constant matrix .
1 —_
V= thrav + Vspring =0+ QDB§STK/5 (410)

The J matrix is defined as J = diq%' J is obtained by differentiating the kinetic
energy expression given in Equation 4.9 with respect to the state vector (Equation
4.6) and expressing it in matrix form.

The D matrix can be computed using the fact that ¢7 (J — 2D) ¢ is a skew sym-
metric matrix. D, an n by n matrix, is defined in Equation 4.11, where n is the size

of g.

Dy; = %i %q + -;- i (% - dd!]qu> G (4.11)
The complete D matrix can be determined by individually calculating the elements

of D from Equation 4.11 using the expression obtained for J.
The G matrix is defined as G = % and can be obtained by arranging the potential

energy expression given in Equation 4.10 into a matrix form with respect to the state

vector and differentiating.

Determine parameterized A matrix

The A matrix is parameterized to be generated from the property vector p, as given
in Equation 4.12. The A matrix can be calculated for the specific configuration from

the dynamics matrices J, D, and G, which are a function of the property vector p.

A= f(p) = f(J(p), D(p), G(p)) (4.12)

The general differential equation can be rearranged into a state space representa-

T
tion, where the state vector x = [ q q ] .
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t = Az + Bu
T = k ! T+ 0 u (4.13)
-J'G -J7'D J!

The selection of the state vector in Equation 4.13 arranges the position elements
for all objects before the derivative elements. However, since Object A is always
present, it is beneficial to arrange the state vector, such that the elements for Object
A are at the top, followed by the elements for Object B and C. This makes the
addition and removal of states associated with configuration changes simpler since

the indices for Object A will not change. The state vector for this arrangement is

given in Equation 4.14, where v =7 and w = 6.

T=|xz y z vy v v, O Oy 0, wy wy w, Oz Oy 0.B OzB OyB 5273}

(4.14)

4.1.3 Actuator Propagation

In the Predict step of the estimator, the actuator model is incorporated into the
velocity estimate to improve accuracy when the actuators are firing. The actuator
propagation calculates the acceleration generated by the actuators using mass prop-
erty information. The actuator propagation must be parameterized to take in the
current mass and actuator configuration and output the new velocity estimate. It is
assumed that that the assembler is commanding all actuators, and thus has knowledge
and control of all actuators, even if they are are not located on the assembler. The
actuator propagation algorithm is parameterized to take in the actuator magnitude
(ﬁact), locations (7,¢), and directions (ﬁact), as well as the mass (m) and center of

mass (7,,) and output the velocity estimate ¥ (Equation 4.15).

— —

U= f(p) = U= f(Fact, Tact, Dact, M, Teq) (4.15)
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The first step in the actuator propagation algorithm is to determine the actuator
forces present at the current time. Equation 4.16 shows the equation to determine

the actuator forces present, where

. F:wt is the magnitude of the force produced by each actuator. It is a vector

whose length is equal to the number of actuators.

e Act,, is vector of boolean variables that indicate the on (currently firing) or off
(not firing) status for each actuator. It is a vector whose length is equal to the
number of actuators. Acty, is an input to the estimator and not an element of

the property vector p.

e f is the force imparted onto the system by each actuator. It is a vector whose

length is equal to the number of actuators.

e k is a subscript used to denote a specific actuator.

f;c = ﬁact,kAztm,k (416)

Next, if there are any actuators on, the body impulse generated for the current
time step is calculated using the actuator configuration. Equation 4.17 shows the
body impulse generated by the thrusters that are on, where Daet is a nx3 matrix (nis
the number of actuators) that has the x, y, and z force directions produced for each
actuator. The impulse is then converted from the body frame to the global frame

using the current attitude estimate.

iTﬁpBody = ﬁ(z;tfdt (417)

The actuator propagation must also account for changes in center of mass. A
change in center of mass (7,,) has an impact on velocity because actuator commands
can cause a torque as well as a force. Equation 4.18 gives the torque impulse gen-

erated by the actuators. The variable Dr is a nx3 matrix of the x, y, and z torque
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directions determined by 5T = Tt X 5act, where 7, is a nx3 matrix of position
vectors corresponding to the locations of the actuators with respect to the center of

the assembler.

~ T
impr = Teg X (D @) (4.18)

Finally, Equation 4.19 shows how the velocity is updated to account for the im-
pulse using the mass and inertia of the system, where v* is the velocity estimate after
actuator propagation and v~ is the velocity estimate before actuator propagation.

Zmpglobal + 2’rin

v=7+ —
m TegM

(4.19)

4.1.4 Measurement Incorporation

A change in sensor configuration can be due to the addition or removal of new sensors
or a change in sensor type. The measurement matrices H and h as well as the sensor
noise matrix R, as given in Equation 4.4, must be parameterized to account for
changing sensor characteristics. To account for the changing sensor configurations,
these matrices must be generated online based on the information in the property
vector p.

A key issue to consider when incorporating new sensors into the estimator is
whether the additional measurements will add value. The addition of multiple esti-
mates of the same position can help to reduce the error of the estimate, but also adds
noise associated with each sensor. Also, the placement of the sensors is important
because the farther the sensor is from the point one is trying to estimate, the more
errors arise when trying to convert from the location estimated to the located sensed.

The exact mapping of the H matrix is heavily dependent on the type of sensors

used. Two types are considered in this work, inertial and position sensors.

Inertial Sensors

Inertial sensors measure the angular rotation rate or acceleration of the object with

respect to a body fixed frame. Examples of inertial sensors are gyroscopes and ac-
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celerometers. Gyroscopes are used as the baseline inertial sensor in this work to
demonstrate parameterization. Gyroscopes provides a direct measurement of the an-
gular rates of the vehicle. Equation 4.20 shows the parameterization of the gyroscope
measurements, where p is the axis along which the gyroscope is measuring, 3 is the

gyroscope bias, and y is the gyroscope scale factor.

Zomega — f(P) = Zomega = f(pa XHB) (420)

The estimated angular rates can then be calculated as in Equation 4.21, where

Zraw 18 the three element raw measurement vector received from the gyroscope [56].

Zomega = P (eraw - ﬂ) (421)

Given the state vector in Equation 4.14, the h vector is given as

0323
0323

03x3

—
S
(o)

h(:vk) - Tk (422)

o O
S =
= O

0323

0323

The corresponding h vector for this sensor simply extracts the rotational rates
from the state vector. Thus, it does not change for different types of gyroscopes or

mass properties.

Position Sensors

Position sensors measure the position of the object with respect to an external refer-
ence frame. For position sensors, a beacon / ultrasound receiver scheme is considered

here. This sensor scheme can be extrapolated into many types of sensors, such as
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GPS and relative ranging sensors. Equation 4.23 shows the parameterization of h
and H to be generated from the beacon and receiver locations, where 7z, is an nx3
matrix of receiver positions with respect to the center of the assembler where n is
the number of receivers. The variable 7, is a mx3 matrix of beacon positions with

respect to an inertial reference frame where m is the number of beacons.

h = f(p) = h = f(Trz, TTz)
H = f(p) = H = f(Trs, "1z)

(4.23)

Equation 4.24 shows the derivation of the h as the distance between the receiver
on the vehicle and the beacon it is sensing with respect to a inertial frame, where 74
is the position of Object A in the inertial frame. The variable © is a transformation
matrix that converts the receiver location given in the body frame to the global frame
using the current attitude estimate. [56]

h(z) = |©7 Py + Fa — ra (4.24)

Equation 4.25 shows the generation of the H matrix from Equation 4.24 such that
the position and attitude estimates are calculated from the position measurement,
where j is the index of the state vector. The H in Equation 4.25 is a linearized
matrix used to propagate the covariance estimate.

[077rz] +[7al;~[re];

h

. _ . T T .
H — (eTTRz+7'pos —TTI) [E%?T(i-TR
h

,7 = 1: 3(position)

z] ,J = 7 : 10(attitude) (4.25)

0 , otherwise

Noise Characteristics

The modification to the noise matrix R depends on the nature of the sensor configura-
tion change. It can be parameterized with respect to the sensor configuration, namely
the number and type of sensors. If identical sensors are added, the size of R grows
but maintains the same element values. If a different type of sensor is used, the noise

characteristics need to be accounted for. Equation 4.26 gives a generic expression for
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R, where 7, is the matrix of receiver locations, Rg, is the noise for a single receiver,

and Ry, is the noise for a single gyroscope.

R= f(p) = R= f (FR:m RR;;, ngm) (4.26)

Equation 4.27 shows one way to generate the noise matrix R using the type of
sensor and number of sensors averaged in that measurement, where ng, is the number
of sensors used to measure that state, and j is the diagonal index of the matrix R.

The value for ng, depends on pre-filtering techniques as well as receiver placement.

Bz j=1:3  position
Rpa  j=7:10 attitude
R={ nre (4.27)

Ryyro .3 =11:13 rotationrate

0 , otherwise )
\

4.1.5 Initialization

When the model changes, the estimator must be re-initialized with the new model.
Nominally, EKFs are initialized based on an initial guess of the state vector. The
convergence properties of the estimator are dependent on the accuracy of this initial
guess. During a transition in an assembly mission, one has information about the
state of the assembler just prior to the configuration change, specifically the state
estimate and the corresponding covariance. Table 4.1 shows the four options of how
to use the information, to improve the accuracy of the initial guess used to initialize
the estimator for the next configuration. The values in the columns “State” and
“Covariance” indicate whether the state and covariance information should be kept
or reset to default values.

Case 2 should not be implemented on an actual system because one is discarding
the state information and keeping the converged covariance information. This makes
the estimator believe that it has a accurate initial state, which is not the case. In
most situations, the measurements received will indicate a significantly different state

than the initial state. Thus, the estimator could reject all new measurements because
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Case | State Covariance | Performance
1 Reset Reset Acceptable
2 Reset Keep Diverges
3 Keep Reset Acceptable
4 Keep Keep Acceptable

Table 4.1: Initialization Setup Truth Table

the covariance leads it to believe the state is correct and the measurements are faulty.
Case 1, resetting both sets of information, will work provided the reset state is
close enough such that the EKF converges. However this case could lead to additional
time and resources used, especially if there are multiple configuration changes during
the course of a mission and one is reconverging the state at each transition.
However, if one does keep the information, how is that information incorporated
into the new estimator? First, consider the impact of keeping the state information
as in Case 3 through the impact on the EKF predict equation (Equation 4.28), where
k denotes the current time step, xj is the estimate after including the measurement,
Z;, is the estimate prior to including the measurement, 2 is the measurement, Kj is
the Kalman gain calculated from the covariance, and hy is the matrix to convert the

state into an estimated measurement.

If one keeps the state information, the value of hy (25 ) will be closer to the measure-
ment, z;. Thus, overall, the state estimate will have less error during the convergence
period. Stability could also an issue, if initialized with a default state vector far from
the current state. The EKF is linearized about the current state estimate, therefore, a
better initial state estimate can improve the stability. Keeping the state information,
however, has little impact on the covariance or the convergence time. Considering the
covariance update equation, one can determine the impact of keeping the covariance
value. The value of the covariance at the end of the previous configuration has most
likely converged, thus it would be much smaller than any initial covariance that one

would initialize the EKF with. Since convergence is determined by the covariance

90



being less than a certain value, keeping the covariance should cause a decrease in
convergence time.

If minimal motion is expected during transition, Case 4 should be selected because
it maximizes the use of prior information to minimize transition estimation error
and convergence time. If large motions are expected during transition, Case 2 or 3
would be more robust because they assume uncertainty in the state by discarding the

covariance information.

4.2 Controller

Two types of controllers are considered in this work: Proportional-Integral-Derivative
(PID) controllers and Adaptive controllers. These two types are selected to present
the parameterization of distinctly different algorithms. For each type of controller,
a single design is presented and parameterized. The demonstration on these con-
trollers demonstrates the feasibility of the parameterization. Selection and design of
a controller for an assembly mission requires significant work to ensure stability and
performance for all possible configurations. The parameterization technique may not
be appropriate for all controllers, but is demonstrated in this work to be be a viable

option.

4.2.1 PD/PID Controllers

Proportional-Derivative (PD) and Proportional-Integrative-Derivative (PID) controllers
generate the control input from pre-set gains that are calculated based on the mass
properties of the system. These controllers can be used for both attitude and position
with similar form, and are well suited to parameterization for rigid body systems.
The control laws are a function of the state error and of a set of gains, K. The
gains hold the mass property information and dictate the tracking performance of the
controller. The gains must be re-calculated for the new model to parameterize these
controllers for multiple configurations. The gains are parameterized to be a function

of the inertia tensor, mass, and actuator force magnitude, as given in Equation 4.29.
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Though the bandwidth also may need to change for different configurations, it is
a function of the mass and actuator force magnitude. For a rigid body assembler,
the bandwidth can be kept the same if the necessary actuation force is available.
Once saturation of the actuators is reached, the bandwidth should be scaled down

proportional to the increase in mass.

u=f(p) =>u=f(K@®)=fI,m, Fau) (4.29)

The PD control law is given by Equation 4.30, where e, e,, and e, are state errors
(e.g., attitude, position) and é;, é,, and é, are the derivative errors (i.e., angular
rate, velocity). The control input is given by u. K, and Ky are the proportional
and derivative gains. These gains can be constant or in matrix form to account for

differences between axes.

U= Kp €y + Kyl e (4.30)

The PID control law is given by Equation 4.31, where K, K;, and K, represent
the proportional, integral, and derivative gains for each axis. The variable v is the
integration term, which is defined as ¥ = ¥ + er for each axis with 7 being the

integration time period.

€x €z Wy
u=Kp|le, | +Ki| & | 2K | 4, (4.31)
ez éz ¢z

The gains are calculated using Equation 4.32 for attitude and Equation 4.33 for
position, where w, is the control bandwidth, m is the mass, I is the inertia tensor, ¢
is the damping ratio, and A is the time constant associated with the integral term.
The gains calculation equations for these controllers are from Wie’s Spacecraft At-

titude Dynamics and Control [80]. The selection of w, and ¢ are nominally from
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picking desired performance characteristics (such as rise time and settling time) and
converting that into w, and ¢ based on the characteristic polynomial of the system
(eg. 8%+ 2Cw,s + w2 = 0). The parameters ¢ and A can be tuned to the assembler’s
dynamics and maintained through the configuration changes. The control bandwidth
w, can be originally set to a tuned value based on the assembler’s dynamics, then

scaled proportionally to mass or inertia as the configuration changes.

K, = (w2 + %) K= (%) Ki= (2w, +%)1 (4.32)
K, = (u1,21 + 2%"&) m K;= (“’T%) m Kg= (2§wn + —11{) m (4.33)

4.2.2 Adaptive Controller

The adaptive controller described in this section is based on a direct adaptive tracking
controller designed for nonlinear manipulator control by Niemeyer and Slotine [55].
This baseline adaptive controller is selected because it can easily incorporate both
flexible dynamics associated with Object B’s deflections as well as the rigid body
motion of Object A and C. The recursive structure for the calculation of the control
vector makes implementation computationally efficient. This controller was developed
in detail for the configuration of Object A+B+C in Katz [42] and is parameterized
here to work for the baseline system given in Chapter 2. The adaptive controller
is parameterized with respect to the property vector p as in Equation 4.34. For an
adaptive controller, the parameterization amounts to the proper initialization of the

parameter vector @ and the proper selection of gains.

u = f(p) = f(a(p), Kp(p), Ka(p)) (4.34)

The adaptive controller seeks to generate the control vector u given a desired
reference trajectory qq and a mass property vector a (for which some or all of the

parameters may be unknown). It uses an adaptation law for the unknown parameters
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such that the actual position ¢ tracks the desired position g4. The adaptive control
law is given by Equation 4.35, where s is a velocity tracking error defined as s = ¢—¢,,

where ¢, = §g — A(q — q4) with gain A.

u=Ya— de (435)

The variable a is a estimated parameter vector, which consists of the mass prop-
erties from Objects A, B, and C, as shown in Equation 4.36. The size of a is
10 + 13ppg + 10pc. The corresponding adaptation law to propagate a is given by
Equation 4.37.

ma I:c:z,A Iyy,A Izz,A Izy,A Iyz,A
Mma*Tema mMmA *Tem,y ma *Tem,z
@YBMpB ‘PBIxa:,B (PBIyy,B SOBIzz,B (PBI:ty,B (PBIyz,B

Q>
I

YBMB *Temz,B Y$BMB *Temy B $YBIMB *Tem 2B
pcme ocleec Iyc ocl.c oclyc ecly.c
weme * Temz, e PCMC * Temy,C  PCMC * Tem,z,C

vpks B vpky B vpk. B

(4.36)

a=—-K,Y"s (4.37)

The variables, K; and K, are tracking and adaptation gains that must also be
appropriately set for each configuration. Nominally, the selection of the configuration
gains should be done via simulation modeling. However, due to the adaptive nature of
the algorithm, a single set of gains may be applicable for all configurations, if selected
properly.

The variable Y in Equation 4.35 is a dynamic regressor that includes the model
dynamics. The dynamic regressor must be updated such that it can be generated for

each configuration based on the model properties. The dynamic regressor is defined
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as

J(@)é- + D(g,9)d + G(a) = Y (¢,4, ¢r, 4r)a (4.38)

where J = J — J, D = D- D, and G = G — G. Y is calculated by estimating the
dynamics matrices using the properties in @ to compute the mass and inertia contri-
butions from each object. The parameterized version includes three phases: upwards,
downwards, and adaptation. The first phase performs an upwards calculation to de-
termine the forces associated with each object based on the velocity and angular rate.
The desired translational velocities are initialized for Object A directly, since they do
not require any rotations. The angular rates for Objects A and C and deflections of
Object B are calculated by summing up the contribution at each attachment point.
The corresponding force at each attachment point is calculated. The second phase
performs a downwards calculation to sum up the forces at each attachment to compute
the total force required at Object A, which is the feedforward term Y(q, ¢, g,, G-)a.
The third phase constitutes the adaptation phase, which uses the error between the
desired velocities and actual velocities and the force contribution to determine the
necessary change in a. The details on the calculations for each phase can be found in

Niemeyer and Slotine [55].

4.3 Control Allocation

The control allocation algorithm considered is a pulse width modulation algorithm
that converts the control input vector into actuator commands. The control allocator
converts the control vector into actuator commands using a Mixing matrix (Z), control
period, duty cycle, and minimum and maximum pulse widths. The parameterization
of the control allocation algorithm, as given in Equation 4.39, generates the Mixing

matrix online.

Acton = f(p) = Acton = f(E(p)) (4.39)
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The mixing matrix generally is a hardcoded matrix since it is static for a single
configuration. Parameterization of the control allocation algorithm generates the
mixing matrix online based on the actuator model. The variables of the p vector used

are center of mass, location of actuator, direction of actuator, and force of actuator.

— —

f(‘-:-‘(p)) = f(cha Tacts Dact, Fact) (440)

The parameterized control allocation needs the following inputs to generate the

mixing matrix:

o 7, is the nx3 matrix of actuator positions with respect to the geometric center

of Object A, where n is the number of actuators
e 7, is the center of mass with respect to the geometric center of Object A

° ﬁact is the nx3 matrix of actuator force directions with respect to the body

frame of Object A
° ﬁact is the nx1 vector of actuator force magnitdues

Equation 4.41 shows the calculation of the mixing matrix using the actuator

force/torque configurations. The calculated quantities are
e 7 is the matrix of actuator positions with respect to the center of mass

e Dy is the nx3 matrix of actuator torque directions with respect to the body

frame of Object A

e = is the mixing matrix given as the combination of the force and torque direc-

tions.

Dy =7 X Daet (4.41)



The rows corresponding to non-active actuators can be removed by using an ac-
tuator health variable (Azthealth), which starts as an identity matrix of size equal to
the number of actuators. If an actuator fails, that index of A_éthea“h is set to zero.
Equation 4.42 shows the calculation for the corresponding mixing matrix to include
only healthy actuators.

Eheatth = ACthealtn= (4.42)

The use of the active actuator input allows for flexibility in the system. It can
be used to implement additional constraints, such as for fault detection or plume
impingement. The mixing matrix is then used to calculate the actuator commands,
with Equations 4.43 and 4.44. The control input u.,; is multiplied by the inverse of

the Mixing matrix to get the actuator forces (uget)-

=1
Uact = SHealthUetrl (443)

The actuator forces are converted into individual actuator on-off commands (Act,,)
in seconds (Equation 4.44), using the control period (), duty cycle (2), and ac-
tuator force magnitude (F,.). The actuator commands are first scaled such that the
maximum force is less than or equal to the maximum pulse width (max PulseWidth =

Netrt * §2). More information can be found in Hilstad [29].

e ctr Q ac
Acton = "_uj% (4.44)

4.4 Conclusions

This chapter describes the parameterization of a simple control system such that it
can seamlessly take in the model and properly estimate and control for the current
configuration. The parameterization of the algorithms for the estimator, controller,
and control allocation are described. The techniques described for the selected algo-
rithms presented in this chapter can be expanded to other control algorithms. This

parameterized control system is validated through implementation on the SPHERES
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hardware testbed; the results are shown in Chapter 5.

The parameterization process is specific to the control system design. Though
the algorithms that require parameterization remain the same, the nature of the
parameterization is very dependent on the design of the control system. Two main

conclusions are derived:

1. Selection of the control system algorithms is critical in enabling a successful
parameterization. Certain algorithms are more suited to being written as a

function of the mass properties.

2. It is helpful to start with a control system that has been tuned for the de-
sired performance for the assembler, then use the parameterization technique

to enable it to accommodate other configurations.

The parameterization of this baseline control system is geared toward validating the
Online Model Calculation design. The proper design of a parameterized control sys-

tem is a significant area of research.
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Chapter 5

Online Model Calculation:
Implementation on SPHERES

This chapter describes the implementation of the Online Model Calculation design.

This thesis accommodates the following two types of modules:

1. Rigid body: Rigid body modules can be modeled as a single lumped mass. Once
they are attached to the assembler, the location and orientation of the module
can be entirely specified by the state of the assembler. In some scenarios,
modules can also have sensing or actuation capability. Model generation for
a rigid body module involves accounting for changes in mass, inertia, actuator
configuration, and sensor configuration. Accounting for the additional actuation
and sensing capability of the module could lead to several key benefits, such as
fuel savings on the assembler; greater mobility for the assembler-module system;
and more accurate state estimates if sensors on the assembler are blocked when

the module is attached.

2. Flexible body: Flexible body modules are objects whose state cannot be entirely
determined from the state of the assembler. These objects include deflection
dynamics which are characterized by stiffness parameters. Flexible modules
present a unique challenge because not only do the mass properties change upon

attachment, but the stiffness properties change as well. In this work, flexible
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modules are assumed to be passive objects with no actuation capability, but do
have deflection sensing capability. The combined system is an underactuated,
but observable system. Reconfiguration to account for flexible module involves
accounting for the flexible dynamics in the control algorithms, as well as the

mass properties.

This chapter starts with a description of the hardware setup and prerequisite
software algorithms that were developed to aid in testing. The next three sections
focus on the parameterized control system results: estimator, controller, and control
allocation respectively. Each algorithm section describes the implementation of the
parameterized algorithms and presents results from simulation and hardware testing.
The following section describes the results for two integrated tests, which demon-
strate the entire Online Model Calculation design. The chapter is concluded with a

discussion of the validation of the Online Model Calculation design.

5.1 Testing Set-up

Many hardware and software components were used in obtaining the testing results
presented in this chapter. The hardware components used in testing are described in
detail in Chapter 3. This section describes the specific configurations used and the
correlation to the hardware, the development of a path planner to facilitate testing,
and upgrades to the SPHERES simulation made to account for multi-body dynamics.

Three configurations are used throughout this testing: Object A only, Object
A+C, and Object A+B+C. Object A in this work is a SPHERES satellite. Object
C, a rigid body module, is also a SPHERES satellite. To form the Object A+C
configuration, the Object A satellite and Object C satellite are attached through
their Velcro faces as shown in Figure 5-1. The Object C satellite is an active module;
it has both actuation and sensing ability. Object B, the flexible module, is a four-
link segmented beam. The beam is attached to Object A satellite via a mounting
plate, as described in Section 3.2. Figure 3-12, depicting the hardware set-up of the
SPHERES satellite attached to the beam is repeated below for clarity. The Object
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Figure 5-2: SWARM with Beam attached

B flexible module has no actuation capability, but it does have sensing capability
via an LED/Camera system that is used to measure the deflection of the beam.
Experimental testing was performed in three environments: in simulation, on ground
hardware, and on ISS hardware. The environments are denoted SIM, GND, and ISS
respectively.

An additional algorithm necessary for the implementation of the controllers is a
path planner. The adaptive controller in particular is designed as a trajectory tracking
controller and does not work with only waypoint targets. Thus, a bang-bang path
planner was developed and implemented on the SPHERES hardware. The planner
calculates the path from the initial state to the final desired state. Example position,

velocity, and acceleration profiles are shown in Figure 5-3. The resolution of the path
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Figure 5-3: Example planned trajectory using on-board path planner

calculated is 0.1s, and is output at the resolution of the control period.

Finally, a modified version of the SPHERES simulation was created to handle the
configuration of two satellites attached via Velcro. This simulation used an attached
flag, such that if the satellites were docked, it would use a model of the docked
configuration, including the additional thrusters. This simulation was compared to
ISS tests from Test Session 13 (September 2008). Figure 5-4 shows the performance
of the simulated position versus the actual position that occurred during the test.
Though the tracking performance is tolerable, some of the performance differences
may be due to the simplification of the model in the simulation. Unmodeled dynamic
effects include Velcro alignment issues, thruster force damping due to velcro spring
effect, communication delay in thruster firing, and deviations between the actual mass
and inertia and the average values modeled in the simulation. Updates have been
made to the simulation based on the ISS data received to date. The updates will be
compared to flight data for the next test session, scheduled for late spring 2010 in

Test Session 22.

5.2 Estimator

Four main areas of the estimator are parameterized: state propagation, actuator

propagation, measurement incorporation, and initialization.
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Figure 5-4: Verification of Multi-body simulation versus ISS data

5.2.1 State Propagation

The state propagator is only updated for flexible dynamics. For the rigid body mod-
ules, there are no additional states (e.g. deflection) because the state of the module is
completely defined by the state of the assembler. Thus, only the actuator propagation

needs to be parameterized for rigid body modules.

Experiment

The estimator needs significant updates to account for flexible dynamics. First, in
order to account for Object B, additional states must be added to account for the
deflection of the beam, as shown in Equation 4.6. For implementation ease, the
propagation of the dynamics of the beam deflection are performed separately. The
true beam is a four-link beam, while an approximation is used in this calculation that
assumes a single mode deflection. The velocity contribution from the beam deflection
is added to Object A’s state separately. The additional states added are the deflection
§ along the y axis and the deflection rate 9.

For the 2D set-up, the effects of the beam deflection on the assembler can be
determined by performing a torque balance on the system. The deflection of the beam

creates a torque in the perpendicular (Z) direction, which causes a corresponding
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force at Object A based on the ratio to the center of mass. Equation 5.1 gives the
y velocity including the beam propagation component: where v, is the velocity of
Object A in the y direction, L is the length of the beam, z., is the x component of
the center of mass, k is the beam stiffness, J, is the beam deflection, m is the mass of
Object A, and dt time duration of the beam deflection propagation in seconds. The
superscripts ~ and T indicate the velocity estimate before and after incorporating the

beam deflection dynamics.

L—z

vi=v, + Icéy;}]—dt (5.1)

y y Teg
The torque magnitude for the simulation tests was increased to 5 times the actu-
ation torque of the hardware set-up to fully excite the system. The simulation tests

are set up with the following sequence:
e t = 0 - 15 s: estimator initialization
e t = 16 - 30 s: torque excitation phase
e t = 31 - 45 s: free vibrartion, no thruster firings.

The magnitude of the SWARM propulsion module thrusters are not sufficient to
excite the beam to achieve the desired oscillations, given the friction dynamics of the
floor. The oscillations achievable with the SWARM propulsion module are not large
enough to impact the y velocity of the assembler. Thus, hardware results of this test

are not included.

Results

Figure 5-5 shows the simulation results for the beam deflection component of state
propagation. Figure 5-5a shows the estimator performance versus the true state when
using an estimator that only models Object A. The velocity is mostly constant and
does not track the true velocity. The slight increase of the velocity from t=15 s to
t=45 s in Figure 5-5a is due to the differential position measurements that have been

propagated.
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Figure 5-5: True State vs Estimated State for SWARM + Beam (Object A+B+C),
Simulation

Figure 5-5b uses an estimator based on the model for the Object A+B+C config-
uration. It shows much better tracking of the true state. Exact tracking performance

is dependent knowledge of the stiffness parameter k.

Analysis

The importance of updating the assembler state propagator to account for the flexible
dynamics depends on the total actuator capability to excite the beam, as well as the
ratio between the length and stiffness of the beam and the mass of the assembler.
Figure 5-6 shows the effect of the beam deflection on the y velocity estimate as a
function of Object A (assembler) mass and beam length, assuming constant stiffness.
For very large assembler masses, the beam deflection is not large enough to impact
the velocity of the assembler. For very small beam, the energy associated with the
beam deflections is small enough that it does not impact the velocity of the assembler.
Therefore, the effect of the beam deflection on the assembler is a critical consideration
only when the beam and assembler are of comparable size.

Knowledge of where the assembly system under consideration lies on Figure 5-6 is
important in determining if the parameterization to account for the beam deflection
is necessary. Other factors to consider are the stiffness of the beam and the ability
for the actuators to excite beam dynamics. Stiffer beams have smaller deflections,

which in turn produce smaller disturbances on the assembler. The actuator dynamics
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Figure 5-6: Increased Y Velocity error due to beam deflection as a function of Object
A mass and Beam Length

impact the excitation of the beam to cause deflections. Some factors to consider are
the maximum excitation force on the beam from the actuators and the frequency of

actuator with respect to the vibration frequencies of the beam.

5.2.2 Actuator Propagation

Equation 5.2 gives the actuation propagation relation, where: v* refers to the velocity
estimate after the propagation, v~ refers velocity estimate prior to propagation, f is
the force generated by the actuators, dt is the duration the actuators are on, and m

is the mass of the assembler.

f

vt =07 + =—dt (5.2)
m

The mass is obtained from the property vector p, while f is obtained through summing
the commanded thrusters on the SPHERES satellites. Figure 5-7 shows the algorithm
updates for the estimator thruster propagation.

In the baseline algorithm, the thruster commands for the assembler’s thrusters
are converted into the impulse imparted based on the commanded duration and the

thruster force. The impulses are converted into a velocity contribution based on
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Figure 5-7: Process Flow Diagram comparing baseline thruster propagation to recon-
figurable thruster propagation

the mass. In the reconfigurable algorithm, first the module thruster commands are
obtained and the corresponding thruster configuration. The total number of thrusters
is determined. Then, the impulse is calculated for all of the thrusters present, both
on the assembler and module. The impulse is converted into the velocity contribution
using the current mass of the configuration, accounting for any modules that could

be attached.

Experiment

The update of the thruster propagation has the biggest impact on the velocity es-
timate. To identify the impact on the velocity, a test was created for the Object
A+C configuration. Figure 5-8 shows a schematic of the test set up, with the desired
velocity profile based on the thruster firing pattern. The test is split into three phases:

e Phase 1 (t = 0 - 20 s): estimator initialization
e Phase 2 (t = 21 - 30 s): assembler fires in the -X direction, for 600 ms every 1 s

e Phase 3 (t = 31 - 40 s): module fires in the +X direction, for 600 ms every 1 s
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Figure 5-8: Test setup for Estimator Thruster Propagation tests

Results

Figures 5-9, 5-10, and 5-11 show the estimator results from the actuator propagation
tests. Figure 5-9 shows the velocity performance in simulation, while Figures 5-10
and 5-11 show the performance in hardware. In simulation, the solid line represents
the true velocity state, while the dashed line represents the estimated state. For
the hardware, the true state is the measured velocity obtained by integrating the
accelerometer measurements. When using the Object A model, the estimator does
not know the module is attached, so it does not account for its added mass or thruster
firings. From t=20 s to t=30 s, the assembler is firing thrusters. The estimator on
the assembler accounts for the assembler’s firing, but accounts only for assembler’s
mass, which is half of the total mass. Thus, the velocity estimate overshoots the
true velocity. From t= 30 s to t= 40 s, the module is firing thrusters. The velocity
estimate has a delay from following the true state in this phase because it does not
incorporate the module’s firings. It must rely on the ultrasound measurements to
update the velocity state. These two issues are removed when using the Object A+C
model. Therefore, the estimated velocity tracks significantly better when using the
Object A4+C model than the Object A model. The jump in the true Y velocity in
Figure 5-10 reflects a additional force which appears after stiction is overcome when

the satellites starts firing. The additional force could be due to a slope on the table or
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Figure 5-9: Estimator velocity performance with and without new mass and thruster
properties, Simulation
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Figure 5-10: Estimator velocity performance with and without new mass and thruster
properties, Ground Hardware

small component of the thruster firings that is in the y direction. In general, updating
the thruster propagation in the estimator improves the velocity estimate, which can
improve fuel usage. In Figure 5-11, the EKF is seen to rely more on the model
as opposed to the ultrasound measurements. This is reflected in the flat velocity
in Phase 3. If the estimator relies more on the model than the measurements, the

velocity would not change if there is no firing.
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Figure 5-11: Estimator velocity performance with and without new mass and thruster
properties, ISS hardware, Test Session 19 P274 T4 and T3

Analysis

The necessity of the parameterization of the actuator propagation is dependent on
the ratio of propagation to measurement incorporation and the ratio of assembler
mass to module mass. The following criteria should be considered when deciding if

parameterization of the actuator propagation is necessary.

e Measurement incorporation occurs fast enough and is clean enough such that

actuator propagation has little effect on the performance of the velocity estimate

e The module mass is significant fraction of the assembler-module system, up-
wards of 15%. Previous work has shown that small modules ( 5% of the assem-

bler mass) have little impact on the control system performance [53].

e Additional module actuators impact forces onto the system that are greater

than disturbance noise.

5.2.3 Measurement Incorporation

Measurement incorporation was performed for the Object A+C configuration to com-
bine measurements from the module’s ultrasound receivers. The initial attempt at
incorporating the measurements was to communicate the filtered measurements from

each beacon in real time from the module to the assembler, and then incorporate
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the received measurements into the assembler’s estimator. However, due to the re-
strictive communication structure on SPHERES and how the estimator processes
measurements as soon as they are received, this approach was determined to be im-

practical.

Experiment

In order to determine a realistic performance improvement due to combining sensor
measurements, without being limited by specific hardware constraints, the approach
used in this thesis is to post process raw measurement data obtained from the hard-
ware into a Kalman filter. This approach has the benefit of using actual hardware
data, so it provides a realistic level of sensor noise. Post processing can be performed
for a variety of configurations using the same measurement set, allowing for a direct
comparison between methods.

Accuracy of the estimator in determining the position of the center of the assem-
bler was tested by varying the number of beacons used (3, 4, and 5) and receiver
configurations (using receivers from either the assembler or both the assembler and
module). The positioning of the satellites was such that the module was directly
between the assembler and one of the beacons. Nominal operations use 5 beacons,
while 3 beacons is the minimum needed for the state estimator to converge. The
reason for testing convergence for 3, 4, and 5 beacons is to determine the blockage
effect. The module satellite blocks the assembler’s face that is directly pointing to
Beacon 1 (Figure 5-12). Thus, when the assembler processes the measurements from
Beacon 1, it must use measurements received from a side face. The performance in 3
beacon operations differs significantly based on which beacons are used compared to
the location of the assembler. This Object A4+C configuration is compared against
the baseline Object A configuration.

The following three configurations were tested:
1. Object A: Assembler receivers used, all 24 receivers used

2. Object A+C: Assembler receivers used
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Figure 5-12: Setup for joint sensing tests

e 20 assembler receivers used, 4 assembler receivers blocked by module
3. Object A+C: Assembler and module receivers used

e 20 assembler receivers used, 4 assembler receivers blocked by module

e 20 module receivers used, 4 module receivers blocked by assembler

For each configuration, approximately 15 tests were run to collect raw measure-
ment data. The raw measurements were post-processed for three cases: 3, 4 and 5
beacons. Then the average of the RMS error for each run was computed, then averged
to provide an overall performance mean and standard deviation of the estimator for

each case.

Results

Figures 5-13 and 5-14 show the performance of the position estimate when ultrasound
receivers are incorporated from both assembler and module satellites compared to
baseline performance. Figure 5-13 shows the simulation results, while Figure 5-14
shows the results of performance based on measurements taken on the hardware.
The simulation results (Figure 5-13) showed that for 4 and 5 beacons there is no
noticeable difference between using 40 receivers and using 20 receivers. The marginal
improvement in the 3 beacon case is still within one standard deviation, so no dis-
tinctive difference can be inferred between the two methods. Competing effects are
in play that result in a minimal net benefit. The benefit to using more receivers is to
obtain a better estimate by reducing the noise. However, after a threshold number

of receivers, the improvement is minimal. The threshold value is dependent on the
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Estimator accuracy vs Number of Beacons and Rx, Simulation
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Figure 5-13: Results for Joint Sensing tests, Simulation

specific scenario. In this set-up, all measurements are being pre-filtered, so the cu-
mulative effect of multiple receivers does not average in but results in a better single
estimate. A factor causing a decrease in performance is the method for calculation
of the estimated measurements. The EKF uses the estimated attitude to convert the
receiver locations from the body frame to the inertial frame. The noise of the attitude
estimate has a larger affect on the estimated measurement the farther the receivers
are from the center of the satellite. The receivers from the assembler were located
at a radius of 10 cm, while the modules’s receivers were between 20 cm and 30 cm
away from the center of the assembler. The combination of these two effects, among

others, causes a negligible net performance change in simulation.

The trends are more distinct in hardware. The performance using 4 and 5 beacons
is approximately the same. This trend reverses in 3 beacon operations, when using
both assembler and module receivers performs better in hardware than using assem-
bler receivers only. This performance is attributed to the body blockage issue that is

not modeled in the simulation. The presence of the module satellite causes blockage
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Estimator accuracy vs Number of Beacons and Rx, Hardware
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Figure 5-14: Results for Joint Sensing tests, Hardware

and slightly degraded measurements due to signals bouncing off of the module. The
body blockage of the assembler to Beacon 1 is a bigger source of error when there are
only 3 beacons instead of 4 or 5. When using the module’s measurements, it can use

the face directly facing the beacon, which leads to a better estimate.

However, the baseline performance is still better than the performance even when
using all 40 receivers. The main source of error which causes the Object A4C con-
figuration using Object A+C sensor model to not perform as well as the baseline
configuration is most likely due to the variability of the attachment. The satellites
are attached via Velcro, which can be a very imprecise mechanism. Discrepancies
between assumed receiver locations on the module and the actual locations leads to
an inaccurate model, and hence slightly worse estimator performance. This source of
error can be minimized by using a rigid mechanical interface with high accuracy and
repeatability of capture. A suitable replacement for the Velcro docking port is the

Universal Docking Port described in Chapter 3.
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Analysis

Given these results, the incorporation of additional sensors, particularly if they are

the same type as those that already present, provide benefits if
1. the additional sensors cause a significant reduction in uncertainty,
2. the additional sensors replace sensors that can no longer be used due to blockage.

3. obtaining measurements from the additional sensors does not introduce a sig-

nificant time delay

4. the attachment mechanism is sufficiently precise to allow for the incorporation

of the module measurements while maintaining the estimator accuracy

5.2.4 Initialization

Determination of the proper initialization of the estimator is important after changing
configurations. Using current information of state and covariance can help reduce
convergence time and improve the accuracy of the estimate during the convergence

period.

Experiment

The set up for the initialization tests used the Object A+C configuration with the
satellites stationary in the center of the test volume. For each test, the test sequence
started with a 10 s estimator initialization, followed by 10 s firing by Object A in the
-X direction, 10 s firing by Object C in the +X direction, configuration switch from
Object A estimator model to Object A+C estimator model, and repeat of the firing
sequence. Even though the satellites were physically constrained to be stationary, the
firing incorporates some uncertainty into the estimator that differentiates between the
two models.

Three tests were performed which vary how the switch from the Object A model

to the Object A4+C model was executed.
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Figure 5-15: Hardware vs Simulation results of RMS position error during transition
for estimator initialization strategies

1. Reset State, Reset Cov: The estimator was disabled, then re-initialized using

default initialization values for the state and the covariance.

2. Keep State, Reset Cov: The estimator was disabled, then re-initialized using

the last estimated state and a default covariance.

3. Keep State, Keep Cov: The estimator was disabled, then re-initialized using

the last estimated values for the state and covariance.

The RMS error in estimated position when re-initializing the estimator is the

metric of choice. Tests were performed in both simulation and hardware.

Results

Figure 5-15 shows the difference between the estimator initialization strategies for
both hardware and software for RMS position error. Both hardware and simulation
values match closely, indicating that the trend is valid.

Figure 5-15 confirms that resetting the state and covariance leads to a high RMS

error during convergence. Keeping the state leads to a marked improvement of a
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approximately a factor of 16. The benefits to having an improved accuracy during
convergence are related to safety. Though the assembler may not begin maneuvering
until the estimator has converged with the new configuration, it is important to have
accurate knowledge of where it is throughout the transition. The state estimate is
used to monitor for collisions and to perform obstacle avoidance. The improved RMS

accuracy allows the assembler to maintain obstacle avoidance during the transition.

Analysis

The selection of the appropriate initialization case depends on the motion of the
assembler during the transition. For the initialization tests performed in this thesis,
the satellites were mostly stationary during transition. Thus, the last estimated
state and covariance are nearly identical to the current state and covariance after
transition. For similar cases, where the motion during transition is small, Case 3
(Keep State, Keep Cov) should be used as it minimizes position error during transition
and convergence time.

However, for assembly scenarios where large motion is expected during transition,
Case 2 (Keep State, Reset Cov) is a safer choice. Case 2 still allows for the benefit
of initialization the estimator from the last known state, but provides more time for
convergence which might be needed if the large motion causes the assembler to be
farther from the initialized location than expected.

It is generally always preferable to keep last estimated state, rather than discarding
it to use a default value. Although Case 1 still works, it has significantly larger RMS
position error during transition than Case 2 or Case 3. The difference in RMS position
error depends on how far the default state used to initialize the estimator is from the

actual state.

5.3 Controllers

Two controllers were implemented in this work, PID/PD control and adaptive control.

Please note that some of the plots presented in this section are referenced in Section
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Table 5.1: Attitude controller PD/PID gains for different configurations,w, = 0.4

Configuration Mass (kg) Inertia (kg/m?) PD Gains PID Gains

Object A (ISS) 4.3 0.0225 0.0036 0.0135 0.00450 0.0001800 0.01434
Object A+C (ISS) 8.60 0.0450 0.00720 0.0270 0.009 0.00036 0.2869
Object A (GND) 12.43 0.067 0.01072  0.04020 | 0.01340 0.0005360  0.04271
Object A+C (GND) 24.86 0.134 0.02144 0.08040 | 0.02680 0.0010720 0.08543

Table 5.2: Position controller PD/PID gains for different configurations, w, = 0.2

Configuration Mass (kg) Inertia (kg/m?) PD Gains PID Gains

Object A (ISS) 4.3 0.0225 0.0036 0.0135 0.00450 0.0001800 0.01434
Object A+C (ISS) 8.60 0.0450 0.00720 0.0270 0.009 0.00036 0.2869
Object A (GND) 12.43 0.067 0.01072 0.04020 | 0.01340 0.0005360 0.04271
Object A+C (GND) 24.86 0.134 0.02144 0.08040 | 0.02680 0.0010720 0.08543

5.4 to demonstrate the implementation of the control allocation.

5.3.1 PD/PID Control

The PD/PID controller is tested under two types of target specifications: waypoint
and trajectory specification. Waypoint specification provides a single target location
and tests the step response of the system. The controller for waypoint targets is run
at 1 Hz. Trajectory specification provides a target state as a function of time and
tests the tracking performance of the system. The controller for trajectory targets is

run at 2.5 Hz.

Waypoint Experiments

Table 5.1 and 5.2 list the attitude and position gains for the different configurations
tested. The gains are calculated using Equations 4.32 and 4.33. The control band-
width used to calculate the gains is w, = 0.4 rad/s for attitude and w, = 0.2 rad/s
for position. The gains use unit damping (¢ = 1) and an integration time constant
of A = 20 s. The ground gains listed account for the SPHERES satellite as well
as a single-puck air carriage on which the satellite floats on the 2D test table. The
SPHERES satellite on its own, Object A only, is able to achieve £1° in attitude
and £2 c¢cm in waypoint position control. Details for results of the Object A only
configuration can be found in References [56] and [53].

The improvement due to the update in gains is determined by comparing two tests.
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Figure 5-16: Attitude Error using Object A actuator model

The physical configuration used for both tests was the Object A4+C configuration. In
both tests, the satellites execute a 90° rotation about the Z axis, shown in Figure 3-2,
while maintaining attitude about the other two axes. In the first test, the attitude
gains used are those calculated for the Object A configuration. In the second test,

the attitude gains used are those calculated for the Object A+C configuration.

Waypoint Results

Figure 5-16a shows the results of the attitude error versus time, when using the
Object A thruster configuration. At time ¢t = 5 s, the satellites begin the rotation,
after estimator initialization. The attitude in X and Y are nominally zero, and Figure
5-16a shows that the satellites are maintaining that angle. Results show a percent
overshoot of 52 % ( 47°) in Z and a fuel usage of 1.77% when using Object A gains.

The second test uses the gains calculated for the Object A+C configuration. Fig-
ure 5-16b shows the performance of the rotation with Object A+C gains, when only
using the thrusters on Object A. As can be seen in Figure 5-16b, the percent over-
shoot decreases to 45% (41°). Also, the settling time decreases by approximately 15 s
from Figure 5-16a. However, the overall performance is not desirable because it does
not achieve the desired attitude within the time specified. This poor performance can
be attributed to the location of the center of mass outside of the thruster envelope.

When two satellites are attached, the center of mass is located at the attachment
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Figure 5-17: Attitude Error using Object A4+C actuator model

point. If using only one satellite’s thruster, the center of mass is outside the thruster
envelope. Thus, the torque capability degrades depending on how the center of mass
shifts.

Figure 5-17 shows the results for Object A gains versus Object A+C gains when
using the Object A+C actuation model, which gives a better indication of the perfor-
mance improvement. The percent overshoot decreases from 33% (30°) in the Object
A gain case to 22% (20°) in the Object A+C gain case. Also, the settling time de-
creases from 40 s in the Object A gain case to 20 s in the Object A+C gain case.
Finally, the overall performance improvement is seen through the decrease in fuel
usage from 1.22% to 1.18% of a tank.

Position control was also demonstrated when two satellites were attached, and
both satellites actively firing thrusters. A test was performed in SPHERES Test
Session 8 that consisted of two single axis translations. Figure 5-18 shows the error
between the desired waypoint and state for the two single axis translations. The
performance showed the settling time of approximately 80 s, and an error performance
of £10 cm.

A multi-target test was performed (Test Session 13) in Object A+C configuration,
where the satellites performed joint position and attitude control. The satellites
were commanded to maneuver to three location targets, during the course of the

test. Figure 5-19 shows the error performance for a translation in all three axes
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simultaneously. Figure 5-19 shows the position and attitude error for the multi-

target test. The spikes in the position and attitude errors indicate when the location

target changed. The attitude performance is very good, since the quaternion error

stays close to one, indicating zero total attitude error below 5°. The rise and settling

times are also quite small, indicating good performance. The position performance is

acceptable, though not quite as good as the baseline performance.

Waypoint Analysis

The performance of Object A+C when using the proper model, both gains and actua-

tor model, is worse than Object A waypoint control performance achievable. Sources
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Table 5.3: Attitude controller PD/PID gains for different configurations,w, = 0.6

Configuration Mass (kg) Inertia (kg/m?) PD Gains PID Gains

Object A (ISS) 4.3 0.0225 0.0036 0.0135 0.00450 0.0001800 0.01434
Object A4C (ISS) 8.60 0.0450 0.00720 0.0270 0.009 0.00036 0.2869
Object A (GND) 12.43 0.067 0.01072 0.04020 | 0.01340 0.0005360  0.04271
Object A+C (GND) 24.86 0.134 0.02144 0.08040 | 0.02680 0.0010720  0.08543

Table 5.4: Position controller PD/PID gains for different configurations, w, = 0.8

Configuration Mass (kg) Inertia (kg/m?) PD Gains PID Gains

Object A (ISS) 4.3 0.0225 0.0036 0.0135 0.00450 0.0001800 0.01434
Object A+C (ISS) 8.60 0.0450 0.00720 0.0270 0.009 0.00036 0.2869
Object A (GND) 12.43 0.067 0.01072 0.04020 | 0.01340 0.0005360  0.04271
Object A+C (GND) 24.86 0.134 0.02144 0.08040 | 0.02680 0.0010720 0.08543

of error in this test include use of an estimator with a single satellite model, de-
lay in the thruster firings on the module satellite, unmodeled damping in the velcro
attachment, and inaccuracies in the mass properties modeled. The use of the Ob-
ject A model in the estimator has an important effect, particularly on the velocity
estimate which is not measured directly. Propagating the thruster firings with a Ob-
ject A model would cause the estimator to over estimate the velocity estimate. The
controller would cause repeated overshoot, as is present in Figure 5-18.

A second minor source of error is the delay in thruster firings caused by commu-
nication delay and commanding. Due to limited communication bandwidth, only the
thruster durations were communicated to the module satellite. A small error is caused
by not centering the thruster pulse in the firing window. Also, the velcro attachment
is assumed to be a rigid attachment in the controller design. The nonlinear effects
of the velcro attachment could cause a small amount of damping, which reduces the

overall force imparted onto the satellites.

Trajectory Experiments

The PD/PID controller was run at 2.5 Hz when using trajectory targets to improve
tracking performance on the ground flat table testing environment. Tables 5.3 and

5.4 give the attitude and position gains for the trajectory tests. The gains were

calculated using a control bandwidth of w, = 0.6 rad/s for attitude and w, = 0.8
rad/s for position.

The trajectory tests performed have the satellites move to a desired waypoint,
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Figure 5-20: Object A PID Trajectory Tracking Performance, Simulation

using a planned trajectory given in position, velocity, and acceleration. A feedfor-
ward term, the desired acceleration times the configuration mass, is included in the
controller to account for the acceleration profile. The attitude is maintained for all

tests.

Trajectory Results

Figure 5-20 shows the simulation tracking performance of the Object A configuration.
Figure 5-20a shows the position tracking performance, while Figure 5-20b shows the
velocity tracking performance. As seen in the plots, the controller tracks very well,
under 1 mm tracking error. Figure 5-21 shows the corresponding tracking performance
on the ground hardware testbed. Figure 5-22 shows the error performance on the
ground hardware, in the presence of disturbances such as friction and slopes on the
test table. The controller maintains error to 1 cm or less during the trajectory tracking
on the ground hardware. This test provides the baseline performance against which
to compare the other configurations.

The test was repeated for the Object A+C configuration. Figure 5-23 shows the
tracking performance in simulation, while Figures 5-24 and 5-25 show the performance
on the ground hardware. As seen in Figure 5-24a, the position tracks fairly well during
the maneuvering phase. However, once the satellites have reached the end of the

trajectory, the tracking error increases as the controller is not able to accommodate
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Figure 5-23: Object A+C PID Trajectory Tracking Performance, Simulation
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Figure 5-24: Object A+C PID Trajectory Tracking Performance, Ground Hardware

for the disturbances on the table, given the momentum of the attached satellites.

Trajectory Analysis

In general, the tracking performance is achievable in both configurations. The perfor-
mance can be tuned in three ways. First, the plan can be updated for this configura-
tion so the maximum velocity is slower, since the thruster force remains the same but
mass doubles. Second, the bandwidth can be updated so that the tracking phase and
position maintenance phase have different control bandwidths selected based on the
expected maneuvering in that phase. Third, the selection of duty cycle and control
period may be dependent on the configuration, based on the disturbances. The quan-

titative effect of the table disturbances can be confirmed by the successful completion
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Figure 5-25: Object A+C PID Trajectory Error Performance, Ground Hardware

of these tests on the ISS and the comparison of performance, since the ISS testing
environment has minimal disturbances. The tests are scheduled to be run in Test

Session 22, sometime in the spring of 2010.

5.3.2 Adaptive Control

The adaptive controller implemented is a direct adaptive control algorithm. As speci-
fied in Chapter 4, this controller is based on an adaptive tracking controller developed
by Niemeyer and Slotine [55]. A 2D baseline version of this algorithm was imple-
mented by Katz [42] for the specified flexible module set-up in simulation, but not
tested on hardware. This work updates the algorithm to 3D and parameterizes the

algorithm to be reconfigurable for multiple configurations.

Experiment

The first parameterization is in the specification of the state length. This parameter
sets the number of variables and indicates the types of objects present. The state
length is given by

Lstate = 6 + 3B + Opc (5.3)

Object C does not add in any additional parameters because its state can be fully

determined from the state of Object A and B.
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The next step is to list the force directions affected for each state variable. The
axis direction matrix is given by Equation 5.4, where the last three rows corresponding
to the axis direction of Object B. The bottom three rows are only used if the state
length is initialized to include Object B. The direction matrix is linked to the state

vector (position, attitude, and deflection), as specified in Chapter 4.

d= 1 (5.4)

¥B
¥B
¥YB

The third step parameterization occurs in specification of which of the parameter
vector indices to use in the force calculation. For states 1 through 6, the mass prop-
erties for Object A should be used. If the state is greater than 6, the mass properties
for Object B should be used.

The final step is the population of the estimated parameter vector a to include

the mass properties for the configuration.

Table 5.5 specifies the adaptive controller gains used for each of the different con-
figurations. The adaptive controller was tested for the SPHERES satellite only config-
uration (Object A only) in order to form a baseline tracking performance. The same
adaptive controller was tested in the Object A+C configuration, both in simulation
and hardware. Neither the controller form nor gains changed, only the initialization

of the parameter vector a.
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Table 5.5: Adaptive controller gains for different configurations

Configuration Mass (kg) Inertia (kg/m?) | Position Gains | Attitude Gains Adaptation Gain
Object A (ISS) 4.3 0.0225 6.5 2.0 0.4 0.25 1
Object A+C (ISS) 8.60 0.0450 6.5 2.0 0.4 0.25 1
Object A (LAB) 12.43 0.067 6.5 2.0 0.4 0.25 1
Object A+C (LAB) 24.86 0.134 6.5 2.0 0.4 0.25 1
Object A only: Desired Path vs Actual i Object A only: Desired Velocity Profile vs Actual Velocity, Stmulation
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Figure 5-26: Object A Adaptive Control Trajectory Tracking Performance, Simula-
tion

Results

Figure 5-26 shows the performance of Object A in simulation and Figure 5-27 shows
the performance in hardware. Simulation results show tracking to £1 mm, while

hardware results show tracking error less than +5 cm.

Figures 5-29 and 5-30 show the results for Object A+C configuration position
tracking. Figure 5-31 shows that the tracking error for Object A+C also is less than
45 cm. The adaptive control tracking performance for Object A+C is comparable
to the tracking performance seen for Object A. This demonstrates that the controller
maintains the same level of performance for both configurations.

This adaptive controller was run in simulation for a transverse translation ma-
neuver for Object A+B+C configuration. Figure 5-32 shows the position tracking
results of simulated position (solid) versus desired position (dashed). In Figure 5-
32a, the adaptive controller is set to Object A only configuration, while Figure 5-32b
has the Object A+B+C adaptive controller. Thus, one can see the distinct tracking

improvement when using the controller designed for that configuration.
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Adaptive Controller. Desired Position vs Actual Position, Obj A, Ground
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Object A+C: Desired Velocity Profile vs Actual Velocity, Ground
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Figure 5-30: Object A+C Adaptive Control Trajectory Tracking Performance,
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Analysis

Results presented in this section show good tracking performance when using the
adaptive controller for Object A, Object A+C, and Object A+B+C configurations.
The maintenance of the tracking error under all three configurations demonstrates
the successful parameterization of the adaptive controller. The adaptive controller
is naturally suited to online autonomous model generation with the specification of
@. Online Model Calculation specifies the layout of masses and initial guesses for
a. Adaptation improves a to achieve trajectory tracking. Online Model Calculation
enables adaptive controller to work with varying configurations. Because of the in-
herent adaptation, the same set of gains could be used for all configurations, which

simplifies the parameterization.

5.3.3 Comparison between PD/PID and Adaptive control

Table 5.6 shows the RMS tracking error for each configuration for PID versus Adaptive
control. For the Object A configuration, the adaptive controller performs slightly
worse than the PID controller, shown in Figures 5-20 to 5-22. For the Object A+C
configuration, the adaptive controller shows slightly better performance than the PID

controller shown in Figure 5-25.

This performance improvement in the Object A+C configuration can be attributed
to the adaptive controller’s ability to adjust the inherent model based on the tracking
performance. This has the effect of partially accounting for unmodeled mass proper-
ties or disturbances. This allows the adaptive controller to maintain the same level
of performance for both configurations. The overall performance can then be tuned
for the desired performance specifications. The Object A PID control gains have
been significantly tuned over the past 5 years. However, only minimal testing was
performed to select the adaptive controller gains. Thus, it is likely that the proper se-

lection of gains enables the adaptive controller to match the PID control performance.
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Table 5.6: RMS Position Tracking Error Performance in meters between PID and
Adaptive Controllers for Object A and A+C configurations

Configuration || PID | AC

Object A 0.0064 | 0.024
Object A+C || 0.0954 | 0.0337

5.4 Control Allocation

The control allocation algorithm on SPHERES is a pulse width modulation scheme
based on the thruster geometry. The control allocation algorithm is updated to use
the additional thrusters that are external to the assembler satellite. These additional

thrusters could be on a module satellite or a propulsion module.

Experiment

Figure 5-33 shows the differences between the implemented baseline and reconfig-
urable control allocation algorithms. The variables highlighted in red bold are prop-
erties that are obtained through the property vector. The reconfigurable version of the
control allocation for Object A+C accounts for the addition of 12 more thrusters and
the change of the center of mass of the system. Due to the addition of 12 thrusters,
the system now has redundant thrusters and blocked thrusters. A variable (Actheaitr)
is introduced to allow for the selection of particular thrusters out of the complete set.
For this work, the thrusters on the attachment face are disabled. Of the redundant
thrusters, the heuristic that is chosen to select the thrusters is the selection of the
thrusters furthest from the center of mass to allow for the most torque.

Two tests were performed to compare the control performance when a large mod-
ule is attached. Object A+C configuration was used for the first test. The assembler
satellite was actively maneuvering, while the module satellite was a proof mass and
did not actuate during the test. The satellites execute a 90° rotation about the 7 axis.
The attitude is maintained about the other two axes. The Object A+C configuration
was also used for the second test, but actuators were able to be used on both satellites.

Thruster commands were calculated on the assembler satellite, then communicated
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Baseline Reconfigurable
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Figure 5-33: Implementation of Baseline versus Reconfigurable Control Allocation

to the module satellite. The test maneuvering is identical to the previous test, where
the satellites execute a 90° rotation about the Z axis, while maintaining attitude in
the other two axes. This updated thruster geometry leads to a uniform distribution

of thrusters around the new center of mass.

Results

Figure 5-16b shows the results for the attitude error using only the assembler’s
thrusters. The overshoot for the single satellite configuration is roughly 41°. The
satellites did not settle to the desired attitude during the 45 s allotted for the ma-
neuver. This reflects that even though the gains are updated for the mass, the per-
formance degradation is caused by the fact that the center of mass is outside of the
thruster envelope. Use of the thrusters on the attachment face are not permitted so
the system is unstable and uncontrollable along the direction of attachment.

Figure 5-17b shows the attitude error plotted versus test time when using the
gains calculated for the Object A+C configuration for the ISS environment. The

overshoot in Figure 5-17b is about 20°, which is a factor of two improvement over
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Figure 5-34: Commanded thruster durations for Object A4+C configuration multi-
target test, ISS hardware

Figure 5-16b with the Object A actuator model. Also, in this case, the satellites were

able to converge to the desired attitude, with a settling time of 20 s.

The thruster commands for the translational joint maneuvering test shown in
Figure 5-19 are shown in Figure 5-34. It is seen that the control allocation algorithm
does not command the interior thrusters, located on the attachment face. This is
as expected for this configuration because the interior thrusters do not provide any
thrust due to plume impingement from the attached satellite. The exterior thrusters
are commanded with an initial large pulse, consistent with a high initial position
error (corresponding to a large control input), and decreasing as the position error
decreases. Thruster saturation is an important issue to track because it leads to
decreased performance due to loss of desired actuation. Saturation would appear as
a flat top to the thruster firings. The peaks of the thruster firings in Figure 5-34
are all rounded. Thus, the fact that the thrusters are not saturated in Figure 5-34

demonstrates proper selection of the duty cycle and control period.

This control allocation was also used for controller testing for the Object A+B+C
configuration in Katz thesis [42] to account for the SWARM propulsion module
thrusters. Figure 5-35 shows the performance of three different controllers using

the same control allocation algorithm. Figure 5-35 plots (top) the desired attitude
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Figure 5-35: Performance of three controllers for Object A+B+C configuration using
the parameterized control allocation algorithm

versus actual attitude for a rotation of 90°, and (bottom) the corresponding deflec-
tions for each link in the beam while performing the rotation. The successful rotation
tracking, while maintaining deflection under 0.1 rad, demonstrates proper control.
The successful control implies the successful implementation of the control allocation
and demonstrates its proper conversion of control input to thruster commands for a

variety of controllers.

Analysis

The successful parameterization of the control allocation algorithm was demonstrated
for Object A+C and Object A+B+C configurations. Object A+C configuration
testing accounted for Object C being both active and passive. Communication was
used to transmit thruster commands from the assembler to the module. The control
allocation algorithm does not quantitatively account for the communication delay
in sending the packets. It is assumed that the communication delay is small. In
microgravity conditions, this assumption is valid since there is minimal motion during
the few milliseconds of communication transmission. The impact is greater on ground

tests because friction and slopes on the table lead to larger disturbances during that
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communication transmission.

Communication delay is not an issue for the Object A+B+C configuration, be-
cause commands are transmitted through the expansion port connection. The pulse
width modulation scheme used could present issues when actuating flexible dynam-
ics. The successful damping of the deflection also shows that this control allocation
algorithm can also be used for flexible module, given the proper control frequency
selection. The control frequency should be selected to be faster than the vibrational

dynamics associated with the flexible module to be able to control it.

5.5 Integrated Tests

The demonstration of the Online Model Calculation design is contingent on the imple-
mentation of both the framework (proper transmission and model calculation based
on p) as well as the parameterized control algorithms. Two types of integrated tests
were conducted to demonstrate the model generation architecture end-to-end. The
first type of test is in support of autonomous assembly. These tests validate that
the Online Model Calculation design developed successfully works for the applica-
tion envisioned. The second type of tests is a remote control test. The successful
implementation of the Online Model Calculation design on the remote control tests
demonstrate that the framework and algorithms can be extended to non-assembly
applications. Thus, the Online Model Calculation design can be included in the spec-
trum as a valid model generation architecture because it is not just applicable for

autonomous assembly applications.

5.5.1 Docking and Assembly

Many iterations of docking and assembly tests were coded and implemented as part
of the testing process. Two key tests are discussed here. The first test is docking
when attached to the flexible beam. The second test is an assembly maneuvering for

a single rigid module.
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SWARM Docking Trajectory Tracking Performance
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Figure 5-36: Object A+B+C maneuvering and docking to a fixed structure, Ground
Hardware

Docking

Figure 5-36 shows the adaptive control tracking performance of Object A+B+C ma-
neuvering to dock to a fixed structure. The docking occurs along the Y axis. The goal
position that indicates docking is depicted by horizontal bar. The docking occurs as
a sequence of several component maneuvers. The changes between maneuvers are de-
picted by the vertical bars. The test had several maneuvers: estimator initialization,
attitude orientation, alignment in the transverse direction, approach, and docking.
The areas where the actual state ceased to follow the trajectory and remained sta-
tionary were periods when the satellite’s air carriage got stuck on the flat floor. This
problem was remedied at the start of the next maneuver due to the large thruster
pulse at the beginning of a maneuver as part of the bang-bang path planner. This
test resulted in a successful docking of the free end of the flexible beam, indicating
that the adaptive controller was successful in maintaining accuracy in position and
attitude, as well as the beam deflection. The adaptive controller used in this test was
2D sliding mode adaptive controller, developed by Katz [42], a precursor to the direct

adaptive controller.
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Figure 5-37: Schematic of Assembly Maneuver Sequence

Assembly Maneuver

A full assembly maneuver was performed with a rigid module. The assembly ma-
neuver test consisted of three main phases. Phase one involves an assembler satellite
docking to a module satellite. The sub-phases for the docking are the same as those
described in the previous section. In Phase two, both satellites are attached and ma-
neuvering jointly to the center of the test volume. This phase mimics the movement
of a module from its initial location to its final location in the assembled structure.
Finally, in Phase three, the assembler satellite detaches from the module satellite and
moves to another location, as if in preparation to dock to another module satellite.
Figure 5-37 shows a schematic representation of the maneuvering of the satellite.
Figures 5-38 through 5-42 show the performance of the assembly maneuver. Fig-
ure 5-38 successfully shows the general execution of the assembly sequence and the
framework of the Online Model Calculation design. Figure 5-38 shows the trajectory
tracking performance, where the solid line is the actual trajectory and the dashed

line is the desired trajectory. At each phase change, the property structure was
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Trajectory Tracking Performance
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Figure 5-38: Trajectory Tracking Performance for assembler and module, Assembly
Maneuver, Hardware

successfully transmitted and the new model calculated and set. Otherwise, the de-
sired motion of the next phase would not occur successfully. Trajectory tracking
performance is maintained in each configuration. Object A+C is an uncontrollable
configuration if using the Object A model. Thus, successful trajectory tracking after

docking demonstrates a successful model update.

Figure 5-39 shows the relative position between the assembler and the module in
simulation. During the docking phase, the relative position decreases according to
the desired trajectory profile until it reaches 0.20 m separation. At this distance, the
two satellites are docked. This relative position is maintained throughout the joint
maneuvering phase, since the two satellites remain attached. Once the assembler
undocks, the relative position increases again as the assembler performs an open
loop maneuver to push back. Figure 5-40 shows nearly identical, though noisier,
behavior for the ground testing. Figures 5-39 and 5-40 show that the relative attitude
is consistently maintained throughout the maneuvering, such that the satellites are

pointing their docking faces (-X Velcro faces) at each other.

Figure 5-41 shows the trajectory tracking error for the assembly maneuver, in all
three phases. A PD/PID controller was used during this test to follow the Bang-
Bang trajectory. The maintenance of the tracking error in simulation was below 2 cm
and approximately 5 cm in ground hardware. The maintenance of the same tracking
performance throughout the different configurations demonstrates the successful pa-

rameterization of the control algorithms. Though the error is greater in the hardware
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One Satellite Assembly: Relative state difference between Assembler and Payload, Simulation
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Figure 5-39: Relative Position Between assembler and module, Assembly Maneuver,
Simulation

One Satellite Assembly: Relative state difference between Assembler and Payload, Ground Hardware
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One Satellita Assembly Trajectory Position Eror versus Time, Simulation One Satelite Assembly: Trajectory Pasition Errar vs Time, Ground Hardware
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Figure 5-41: Position Tracking Error of assembler, Assembly Maneuver

tests, it is sufficient for docking to occur. The tracking performance can be improved
by tuning the baseline control system design, such as tuning the path to be within the
actuator constraints and tuning the control bandwidth. Also, these tests are designed
primarily for the ISS testing environment. Thus, they do not account for friction or
table disturbances in the selection of gains or duty cycles. Only the additional mass

of the air carriages is accounted for in the control system for ground testing.

The successful implementation of the control allocation algorithm is demonstrated
by plotting the thruster firing durations for the thrusters on the attachment face ver-
sus the exterior thrusters. When the assembler and module are attached, the interior
thrusters located on the attachment face are disabled to prevent plume impingement.
Figure 5-42 shows the thruster firing durations for these thrusters. When the as-
sembler is not attached to the module, these four thrusters are enabled and can be
actuated. When the assembler and module are attached, these thrusters cannot be
actuated, but the exterior thrusters are successfully actuated. Figure 5-42 demon-
strates the successful parameterization of the control allocation algorithm to align to

the thruster constraints.

Components of this test were performed on the ISS. However, issues with satellite
reset and improper beacon setup prevented a complete successful run. This test is
scheduled to be run in Test Session 22, in Spring 2010. When the test is completed

successfully, this test will constitute the first on-orbit autonomous assembly maneuver
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One Satellite Assembly: Assembler Thruster Durations versus Time, Simulation One Satellite Assembly: Assembler Thruster Durations vs Time, Ground Hardware
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Figure 5-42: Thruster Firings of assembler and module, Assembly Maneuver

demonstrated.

5.5.2 Remote Control

The Online Model Calculation design can also be applied to distributed systems.
The application considered is a remote control scenario where a module satellite can
estimate its state, but does not have the computation capability to run a path planner
or controller. An assembler satellite can obtain the state of the module satellite,
via communication, run the computation to determine the actuator commands and
communicate those back to the module satellite.

In order to properly execute the remote control scenario, the assembler must
generate a model of the module. The module properties are received, but instead
of aggregating it with the assembler properties, they are used to generate the model
of the module. The generated module model is then fed into a control system that
monitors the module state and calculates necessary actuator commands. It is similar
to the control allocation tests performed in the Object A+C configuration with joint
firing, except the satellites need not be physically connected.

Two simple tests were performed. The first 10 s in simulation and the first 15 s

in ground hardware tests are estimator initialization.

1. The assembler satellite communicates open-loop thruster commands to the mod-

ule satellite to perform a body translation in the X direction. The thruster
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Figure 5-43: Module satellite position state, remotely commanded open-loop

commands are not based on the module’s current state, only on the module’s
thruster configuration. The assembler issues commands to fire the -X thrusters

for 15 s, then to fire the +X thrusters for 15 s.

2. The module satellite sends its current state to the assembler satellite. The
assembler satellite uses the state and the module model to generate a control

input to maneuver the module to a specific location target.

Figure 5-43 shows the position of the module satellite for test one, both in sim-
ulation and hardware. The movement in the X direction denotes successful receipt
and actuation of the thruster commands from the assembler satellite.

While the first test demonstrates open-loop remote control, the second test demon-
strates closed-loop remote control. Figure 5-44 shows the position error of the module
satellite from the desired location. The decrease in the position error to approach
zero shows that the module satellite is able to reach its desired waypoint target. Is-
sues with overshoot or settling performance can be mitigated with the use of a path
planner. Also, selection of the gains can be tuned to account for the communication
delay between assembler and module.

The use of the Online Model Calculation framework was useful in this application
to generate the module model on the assembler and run it in a parameterized con-
trol system. By using the parameterized control system developed for Online Model

Calculation, the same algorithms are able to be used for both assembler and module,
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Figure 5-44: Module satellite position error, remotely commanded closed-loop

even though they might have different models. The usefulness of Online Model Cal-
culation for this application demonstrates its versatility and its ability to be extended

for non-autonomous assembly applications.

5.6 Conclusions

This chapter presents the experimental implementation of parameterized control al-
gorithms on the SPHERES testbed, both in simulation and on hardware. Two types
are modules are explored, rigid and flexible modules. Experimental results show defi-
nite performance improvement for the estimator, controllers (PID and adaptive), and
control allocation. The full framework was tested through two integrated tests, an
assembly test and a non-assembly test. The successful performance of the assembly
test in properly changing configurations is demonstrated by the successful maneu-
vering and estimation, which validates the Online Model Calculation framework and
design. The ability to use the Online Model Calculation framework and parameter-
ized algorithms in a distinctly different application, such as the remote control tests,
shows how the design can be extended to other non-assembly applications.
Implementation on hardware unearthed issues that revealed configuration con-
ditions that necessitate use of the new model. The necessity of incorporating the

flexible dynamics depends on the level of excitation from actuation and mass ratio
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between Object B and Object A. The mass ratio between the assembler and module
also impacts the necessity for parameterization of the estimator actuator propagation
and controllers. For changing sensor configurations, the utility of incorporating the
module sensors is based on the number of sensors, location of sensors, and delay in
incorporation of the measurements. Overall, the successful implementation of the pa-
rameterized control algorithms on the two distinctly different modules demonstrates

the validity of the parameterization of the control algorithms.
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Chapter 6

Metrics for Model Generation

Architecture Comparison

The design of a control system plays a large role in determining the success of a
space mission. The control system is responsible for achieving position and attitude
targets, under strict accuracy and resource consumption requirements. Current space
missions generally have a single configuration. Thus, their control systems use a single
model and are tuned to achieve the desired performance for all foreseeable operating
conditions of the single configuration. Missions that employ autonomous assembly,
however, are fundamentally different because the control system must incorporate
configurations that change throughout the mission. Therefore, the control system
must be reconfigurable.

A key aspect in making the control system reconfigurable is generating the model
of the configuration and determining how it is processed by the control system. There
are many types of model generation architectures. The selection of an appropriate
model generation architecture can increase control system accuracy, save fuel, de-
crease computational processing time, and/or decrease development time. The most
common practice for selecting a model generation architecture is experience, such
as comparing to similar past missions. However, there is no precedent for on-orbit
autonomous assembly. The closest example is on-orbit autonomous docking, such

as DARPA’s Orbital Express [43]. Docking is only the first step of assembly and
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does not cover the range of configuration changes that can occur during assembly.
Therefore, in order to effectively design a control system, engineers should quanti-
tatively compare model generation architectures and select an architecture based on
performance objectives.

A key innovation of this thesis is the comparison and evaluation of model gener-
ation architectures. The comparison of model generation architectures can be used
in the concept design phase to evaluate assembly scenarios. Comparisons of model
generation architectures allow engineers to account for trades very early in the design
process. The final selection of the architecture would therefore be more informed
and optimized. To enable comparisons between model generation architectures, the
first step is to determine the traits by which to compare architectures. The effective
choice of metrics, to characterize both computational load and resulting control sys-
tem performance, is important in making the comparison as helpful as possible. The
focus of this chapter is the development of metrics to quantitatively compare model
generation architectures.

This chapter starts with a review of the types of model generation architectures
used in reconfigurable control systems, with an emphasis on their differences. The
next section describes the metrics developed in this work that focus on three areas:
control, spacecraft, and assembly mission performance. The metrics are then com-
bined into a set of objective functions that can be used to evaluate model generation
architectures. The evaluation of assembly architectures using these metrics and ob-
jective functions is discussed in Chapter 7. Finally, the metrics and the evaluation
methodology are integrated into a process for the selection of a model generation

architecture, described in Chapter 8.

6.1 Types of model generation architectures

This section provides a detailed description of different types of model generation
architectures. The types of model generation architectures are determined through

an extensive literature search. They are arranged on a spectrum, based on the nature
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of the information available, such as the mass properties of the system. Section
6.1.1 describes the spectrum and defines three key variables for determining where
an architecture is placed on the spectrum. The different types of model generation
architectures present on this spectrum are divided into four major categories. These
categories are described in Section 6.1.2, including the advantages and disadvantages

of each category with relation to implementation for autonomous assembly missions.

6.1.1 Spectrum Definition

The range of model generation architectures can be classified by the amount of a
priori information known about the assembly, such as module mass and stiffness
properties. By knowledge of these properties, we mean the information is made
available to an assembler during the assembly execution. Though many, or all, of
these properties may be known on the ground, the properties may not be stored on-
board an assembler. Thus, the information content available to an assembler during
the assembly execution is important in designing the control system. For this work,
it is assumed that an assembler has full knowledge of its own properties, when no
module is attached.

There are three critical variables by which the model generation architectures can
be distinguished: transitions, configurations, and module properties. Knowledge of the
transitions indicates that an assembler knows the timing of the assembly sequence.
This specifically includes the time at which the transitions will occur, but not neces-
sarily the starting and ending configuration that occurs at that transition. Knowledge
of the configurations indicates that an assembler knows the dynamics model for each
configuration used during the assembly. Though an assembler knows all possible
configurations, it does not know when in the assembly a configuration will be used,
which configurations will be used, or the configuration sequence. Finally, knowledge
of the module properties indicates that an assembler knows the mass properties of
the module when it is unattached to an assembler. Knowledge of how the module
attaches to an assembler is not known throughout the assembly, but can be acquired

at the time of attachment. To enumerate all possible situations, each of the three
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Table 6.1: Types of model generation architectures based on available information in

a binary truth table

Type | Transitions | Configurations [Module Properties
1 Unknown Unknown Unknown
2 Unknown Unknown Known
3 Unknown Known Unknown
4 Unknown Known Known
5 Known Unknown Unknown
6 Known Unknown Known
7 Known Known Unknown
8 Known Known Known

critical variables is given a boolean designation. A value of true indicates that the
information is known, while a value of false indicates the information is unknown.
The full set of possible architecture types is given by Table 6.1, using a binary truth

table format.

As seen in Table 6.1, there are eight types of architectures. The spectrum defini-
tion can be identified by the progression of the types of architectures seen in Table
6.1. Architectures of Type 1 have no information about the system stored on an
assembler. Architectures of this type must identify the properties online, or employ a
controller with the capability of learning or adapting during maneuvering. Architec-
tures of Type 2 have knowledge of the module properties. This allows an assembler
to calculate the model at the time of attachment, even though the time and nature
of the attachment is not known ahead of time. Similarly, architectures of Type 3
and Type 4 have knowledge of the configurations. An assembler can set the proper
configuration, once the attachment occurs and specify which configuration is used.
Architectures of Type 5 have knowledge of the transitions, but not the configurations
or properties. Thus, these architectures, though they can include monitoring close to
the transition time, must employ identification or learning schemes similar to Type
1. Architectures of Type 6 are similar to architectures of Type 2, but with additional
monitoring during the known transition times. Finally, architectures of Type 7 and
8 have knowledge of the transitions, as well as the configurations. This is sufficient

information to pre-plan the entire assembly sequence in the control system. Based
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on these classifications, one end of the spectrum can be defined as types of architec-
tures that have little to no knowledge of the system. These types of architectures
necessitate learning or adapting to the properties online. On the other end of the
spectrum are architectures where all of the information is known. This allows for
the entire assembly sequence to be pre-planned and specifically coded in the control
system. The intermediate range includes designs that have partial knowledge. This
spectrum is graphically represented in Figure 6-1 and includes the location for the

types of architectures specified in Table 6.1.

No Complete
Information Spectrum of Model Generation Architectures Information
Type 1 Type 2 Type 3 Type 4 Type 7

Type 5 Type 6 Type 8

Figure 6-1: Spectrum of model generation architectures with arrangements of types
of architectures from Table 6.1

Figure 6-2 gives example missions for selected types of model generation archi-
tectures. These are meant to give the reader an example of what “real-life” missions
would fall under each type. For example, for Type 1, architectures in this type arise
when an assembler attaches to a module in an unknown state (i.e. unknown mass
and inertia due to failure or impact), as would occur in a rescue, contingency mission,
or docking to a hostile target. Type 4 includes architectures where the configurations
and module properties are known, but the time and order of assembly is not known.
Missions that fall in this camp are those similar to the ISS, which has unknown tran-
sition times associated with launch delays. Fabrication delays could cause changes to
the order of assembly, so although the properties and configurations are known, the
exact time of when the transitions occur are not known: Type 8 describes architec-
tures where all desired information is explicitly known. One example is the assembly
of a modular space telescope, which has a set of identical modules that are assembled
individually.

The availability (or lack thereof) of information to derive the model dynamics

drives how the model generation architecture is designed. In reconfigurable systems,
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Figure 6-2: Example missions for selected categories of architectures from Table 6.1

reconfiguration through model generation is dependent on what information is avail-
able. Based on Figure 6-1, four major categories of model generation architectures
are derived. The use of four categories allows for easy explanation of the advantages

and disadvantages across the spectrum.

6.1.2 Categories of model generation architectures

There are four main categories for model generation architectures, each of which
covers a section of Table 6.1 and Figure 6-1. The four model generation categories
are: system identification, online model calculation, multiple model storage, and gain
scheduled. Each model generation category is described in detail in the following sub-
sections, specifically including a (1) definition of the category, (2) discussion of the
advantages and disadvantages, (3) location of the category on the spectrum, (4) as-
sumptions necessary to implement the architecture, and (5) examples of architectures

from literature.

System Identification

The system identification category refers to all architectures that identify or learn
about the model properties during the assembly execution. Traditional system iden-
tification derives a mathematical model of the system through analysis of input and
output signals [49]. Practically, for a spacecraft system, this method amounts to
adding actuation inputs and analyzing the resulting motion. The time needed to ob-

tain the measurements is proportional to the level of fidelity needed in the model. The
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fidelity of the model identified increases with increasing amounts of measured data.
Some architectures in this category require a model structure and seek to identify
parameters to fit the observed data to the model.

The benefits of this category is the minimal amount of information necessary to
implement this method. Thus, these methods can be implemented on almost all sys-
tems. The disadvantages include resource consumption required to excite the system
to obtain the data (such as time and fuel), possibility of unsafe input excitation,
computational load, and that the fidelity of the model is proportional to the amount
of data obtained. Time and fuel are very precious resources on-orbit. Overall mission
constraints on these resources may limit how much can be expended to obtain data
for system identification. Also, the trajectory tracking performance during the iden-
tification or learning phase may not meet minimum performance requirements. This
is an important consideration, particularly for obstacle avoidance issues.

This category is located on the far left of the spectrum, where no information is
present. Since no information is required for implementation, the system identifica-
tion category places no assumptions on the information necessary to implement this
category.

Significant research has been performed in this field. One example is Jacques’
strategy for identifying large order multi variable models from transfer function data
[38]. This algorithm was implemented and demonstrated on the Middeck Active
Control Experiment {2], flown on the Space Shuttle and ISS. Wilson et al. demon-
strated online gyro-based system identification using a recursive least-squares method
[81]. Chandler et al. used a static system identification method for a reconfigurable
adaptive controller to handle changes in plant dynamics due to actuator failures [12].
These algorithms seek to maximize accuracy of the model determined, with minimal

computation and resource consumption.

Online Model Calculation

The online model calculation category refers to architectures that calculate the model

of an aggregated system by combining the initial model of an assembler with prop-
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erties of the module attachments. For example, these model generation architectures
start with the model of an assembler. At each configuration change, it uses property
information of the attached module and information on how the module is attached,

to generate the new model of the combined system.

The benefits of this category are minimal information storage on an assembler, ca-
pability to aggregate models, decoupled control system from the assembly sequencer,
and accommodation of multiple configurations from a minimal knowledge base. This
allows the same assembler to be used for multiple assembly missions with little to no
modification to the control system, as long as the inputs are maintained. The dis-
advantages of this category are that the mass property information must be known,
implementation may require some form of communication between an assembler and
a module, and the computational load of the model calculation algorithm. Also, a
key disadvantage of these architectures is the inherent assumption that all dynamics
of the aggregated system can be captured through knowledge of how an assembler
and module are attached. In complex systems, the aggregation algorithm may not

be able to capture all dynamics effect, leading to a lower fidelity model.

This category is located in the middle-left of the spectrum, where basic informa-
tion is available, but must be manipulated to a form that is usable in the control
system. Architectures in the online model calculation category assume knowledge of
the properties of an assembler, properties of the module, and knowledge of how the
module is attached to an assembler. However, the information is only needed at the
time of the configuration change.

Online model calculation has not been implemented much in literature, particu-
larly for spacecraft systems. Some of the reconfigurable control literature that can
fit into this category are self-assembly techniques, as the model aggregation as the
vehicles attach to each other is a classic example of how online model calculation can
be used to increment the model as each vehicle attaches itself. Examples of research
in self-assembly include LeMaster et al.’s demonstration of automated rendezvous,
docking, and self-assembly tasks between a group of three modular robotic spacecraft

emulators [46]. Ukegawa and Natori developed a concept of self-assembly using au-
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tonomous modules to construct future space structure, with a stochastic relaxation

process for deadlock avoidance [77].

Multiple Model Storage

The multiple model category includes architectures which store a model of each con-
figuration. The proper control and estimation parameters, such as control gains, are
determined as needed after the model is set. The control system is parameterized
based on model input. For example, the controllers would take in the mass and
inertia and generate the control gains needed.

The benefits of this category are full knowledge of the dynamics of the configura-
tion, control system parameterization to take in model input, and simplified transi-
tions between configurations. The simplified transitions between configurations is a
significant benefit, particularly when the order of configurations is not known. The
key disadvantage is that all of the information about the configurations must be
known at the start of the assembly execution and stored on the assemblers.

This category is located in the middle-right of the spectrum, where the majority
of information is present but the timing is not known. Architectures in the multiple
model category assume full knowledge of the configurations. The control system does
not need to know the individual module properties because it knows the configurations
of its possible module attachments and of the overall structure.

The majority of the reconfigurable control system designs that consider failed or
degraded states use model generation techniques from this category because failure
configurations are known, but not the time at which configurations will become ac-
tive. Maybeck and Stevens present a method of multiple model adaptive control
which uses a bank of pre-designed Kalman filters and Command Generator Tracker
(feedforward) / Proportional-Integral (feedback) controllers for each of the different
anticipated failure states (i.e. configurations) [50]. Boskovic et al. switch between a
bank of controllers to accommodate estimated damaged states on the Boeing’s Tail-
less Advanced Fighter Aircraft[11]. Examples of work performed on reconfigurable

control allocation, which accounts for failure of actuators, include References [17],
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[14], and [20].

Gain Scheduled

The gain scheduled category includes architectures where the control system param-
eters are pre-determined for the entire assembly. The pre-calculated control and
estimation parameters for each configuration are hardcoded into an assembler. All
necessary parameters are known, so no calculation is required. Some architectures in
this category also require knowledge of the transitions, which requires the assembly
sequence to be pre-defined in the control system.

The benefits of gain scheduled architectures are that the control performance for
each configuration can be tuned based on the mass properties, transitions between
configurations are seamless, and there is no downtime associated with model cal-
culation since the model generation is done on the ground. The disadvantages for
architectures in this category are the a priori computation requirements, knowledge
of all configurations must be available and fixed, storage of all properties on-board,
and the high level of coupling between the assembly sequence and control system.
Little flexibility exists for these architectures to account for changes, such as different
module, failure states, and changes to the assembly sequence. Thus, the entire control
system would likely need to be re-designed for the next assembly mission.

This category is located on the far right of the spectrum, where all information is
known. Architectures in this category assume full knowledge of the mass and stiffness
properties of the system, configurations, as well as the control and estimation gains.
The transitions are generally also known for these architectures.

A key example of the use of gain scheduling in a control system design is Parlos
and Sunkel’s method for gain scheduled attitude control of Space Station Freedom
under significant mass property variation from the berthing of the Space Shuttle [58].
Meressi and Paden use gain scheduling of H,, controllers to accommodate a two-link
flexible manipulator [51]. Theodoulis and Duc linearize a nonlinear system about a
range of small operating points, based on angle of attack and Mach number. A global

gain scheduled control law is obtained by interpolating between gains of the different
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Table 6.2: Categories of model generation architectures versus assumptions

No Assumptions Category
" | Transitions | Config Module System ID | Online Multiple Gain
properties | properties model calc | model scheduled
storage

1 | Unknown Unknown Unknown vV

2 | Unknown Unknown Known V N4

3 | Unknown | Known Unknown vV Vv Vv

4 | Unknown Known Known Vv Vv Vv Vv

5 | Known Unknown Unknown Vv

6 | Known Unknown | Known Vv Vv

7 | Known Known Unknown V Vv Vv

8 | Known Known Known V4 Vv V4 Vv

controllers for the linearized system to cover all operating regions [74].

Category Summary

Each category can only be implemented if the necessary information is available.
Table 6.2 expands Table 6.1 to show which category can be implemented based on the
knowledge of the three variables (transitions, configurations, and module properties).
The +/ indicates that necessary information is available to implement architectures

from that category.

For example, system identification can be implemented under all architectures
because it is not dependent on any knowledge of the system. Gain scheduling and
multiple model storage need the information about the mass and stiffness properties
of the configuration, so may only be implemented when configurations are known.
Likewise, online model calculation is dependent on knowledge of the module prop-
erties. Table 6.2 does not specify which is the appropriate category to implement,
just whether there is sufficient information to implement the architecture. To de-
termine which category is appropriate to implement, one must compare them using

performance metrics, described in Section 6.2.
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6.2 Performance Metrics

The purpose of the metrics is to provide a quantitative way of comparing different
model generation architectures. There are three main requirements for the determi-

nation of the metrics:

1. The metrics must sufficiently capture all impacts that the model generation

architecture has on the overall assembly process.
2. The metrics must be quantitative and calculable.

3. The metrics must be written as a function of assembly architecture parameters
(e.g. Nirans) so that they can be calculated for any assembly scenario. Metrics
that cannot be represented in such a way must be constant for a given design,

despite differences in implementation or architecture.

This section starts by providing a rationale of how the reader can generate ap-
propriate metrics for their system, then follows with a set of example metrics and

corresponding derivations.

Metrics Determination

The selection of the metrics specifies the traits of the assembly process and control
system design that are important to the designer. To determine these traits, one
should start at a low-level and work outwards to identify key areas. Larson and
Wertz’ Space Mission Analysis and Design [79] provides a good initial reference to
identify the different components of a space mission, such as orbit, launch vehicle,
ground operations, and the spacecraft bus.

The first step is to start within the control system to identify control performance
based on the model generation architecture. Metrics to evaluate control system per-
formance are found throughout control literature. Examples of control system perfor-
mance metrics used in the literature are trajectory tracking error, stability margins,

convergence properties, accuracy of model identified or estimated, robustness, and
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resource consumption. Computational performance of the model generation architec-

ture should also be accounted for, such as memory storage and processing time.

After identifying the metrics to evaluate the control system separate from hard-
ware or mission implementation, the next step is to determine the performance within
the context of the spacecraft system. One must determine what spacecraft compo-
nents the control system interacts with during design and operations. It is important
to clearly identify the inputs to the control system (e.g. sensors, power, path target
commands, disturbances), as well as outputs of the control system (e.g. actuator
commands, communication packets). The next step is to trace these values outward
to identify the subsystems affected (e.g. power, propulsion, communication) and the
nature of the information exchange. These interactions are used to identify the traits
that should be monitored at a subsystem level. Traits to track include general re-
source utilization of the control system, as well as tasks that are run b