
Quantative Selection and Design of Model

Generation Architectures for On-Orbit MA ST E

OF TECHNOLOGY
Autonomous Assembly

by JUN 2 3 2010

Swati Mohan LIBRARIES
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

A u th or
Department of Aeronautics and Astronautics

March 15, 2010

C ertified by
David W. Miller

Professor of Aeronautics and Astronautics

Certified by..

Associate Professor

117 Thesis Committee Chair

Tlivier de Weck
of Aeronautics and Astronautics and Engineering Systems

Division
Certified by........................

(O Steven Dubowsky
Professor of Mechanical Engineering and Aeronautics and Astronautics

/A DA
C ertified by

Alvar Saenz-Otero
Research Assoc te MIT Sface 1 _stems Laboratory

Accepted byModiano

Eytan H. Modiano
Chairman, Department Committee on Graduate Students

ARCHIVES

2

Quantative Selection and Design of Model Generation

Architectures for On-Orbit Autonomous Assembly

by

Swati Mohan

Submitted to the Department of Aeronautics and Astronautics
on March 15, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

On-orbit assembly is an enabling technology for many space applications. However,
current methods of human assisted assembly are high in cost and risk to the crew.
Thus, there is a desire to automate the on-orbit assembly process using robotic tech-
nology. Automation introduces additional challenges in the design of the assembly,
particularly within the control systems. During an assembly sequence, an assembler
robot can undergo multiple reconfigurations of its geometry and dynamics as it at-
taches to and releases from individual modules. The particular problem addressed
in this thesis is how to account for mass and stiffness property variations that oc-
cur with changes in configuration. Proper model generation for each configuration is
critical to maintain control system stability and efficiency. This thesis explores two
specific challenges associated with this problem: (1) the design of a model genera-
tion architecture to where module mass property information is known, but specific
configurations are unknown; and (2) the selection of a model generation architecture
that is appropriate for a given assembly architecture.

Literature review of the possible model generation architectures revealed a gap
in the literature, when models are aggregated online based on module mass property
information. The challenge is resolved through the design of an architecture, called
Online Model Calculation. Online Model Calculation uses module information ob-
tained at the time of attachment to generate the model for the current configuration
online. This is accomplished through the parameterization of the control algorithms
with respect to a property vector. The property vector contains mass property infor-
mation (ex. mass, inertia) that is used to generate the model. The design of Online
Model Calculation, both in terms of framework and algorithm parameterization, is
successfully implemented and validated on hardware. Results show a tracking error
performance improvement when the correct model of the system is used in the control
system over an unupdated model of the assembler along. Online Model Calculation
balances a priori knowledge about the possible configurations with identification of
the model online.

The challenge of selecting a model generation architecture is accomplished through

the development of a process that downselects feasible architectures into a single op-
timal architecture. This process is based on a set of generalized, quantitative metrics
that are used to compare architectures from the perspectives of the control system,
spacecraft, and assembly operation levels. It is exercised on three case scenarios,
using a simulation tool that is developed to evaluate the model generation architec-
ture metrics for a given assembly architecture. Results clearly show that for different
assembly scenarios, different model generation architectures perform best. The quan-
tification of this performance difference and the process for selecting the appropriate
architecture constitute a key contribution of this work.

Thesis Committee Chair: David W. Miller
Title: Professor of Aeronautics and Astronautics

Thesis Committee Member: Olivier de Weck
Title: Associate Professor of Aeronautics and Astronautics and Engineering Systems
Division

Thesis Committee Member: Steven Dubowsky
Title: Professor of Mechanical Engineering and Aeronautics and Astronautics

Thesis Committee Member: Alvar Saenz-Otero
Title: Research Associate, MIT Space Systems Laboratory

Acknowledgments

This research was performed at the MIT Space Systems Laboratory and supervised

by Dr. David W. Miller. This research was supported by multiple sources: NASA

SBIR Contract No. NNM07AA22C Self-Assembling Wireless Autonomous Reconfig-

urable Modules; NASA's Harriet G Jenkins Pre-doctoral Fellowship Program; and

the Amelia Earhart Fellowship Program. I would like to thank my entire committee

for their guidance and support, as well as the thesis readers Dr. Daniel Kwon and

Dr. Daniel P. Scharf for their helpful comments.

I would like to thank the entire SPHERES team over the past five years. Working

with them has been a pleasure. In particular, SPHERES team members Dr. Simon

Nolet, Christophe Mandy, Dr. Enrico Stoll, Jacob Katz, and Andrew Wang have been

especially helpful in providing guidance on the SPHERES system and help running

tests when I could not be present at MIT. Also, thanks to my former officemates,

Sarah Shull, Lucy Cohan, Christophe Mandy, and Alessandra Babuscia. It was a

pleasure sharing an office with you.

Finally, I would like to thank my family for their bountiful love and support.

To Santhosh, thank you for putting up with the hectic travel schedule and being so

understanding and loving. I could not have asked for or imagined a better husband.

To my parents, thank you for your unwavering faith and support in me. Your pride

in me made me believe I could accomplish anything.

6

Contents

1 Introduction 25

1.1 M otivation . 26

1.2 Problem Definition . 29

1.3 Literature Review . 32

1.3.1 Model Generation Architectures 33

1.3.2 Open Areas in the Literature.. 35

1.4 Thesis Contributions Summary . 38

1.5 Thesis Overview . 39

1.5.1 Definition of Reconfiguration 39

1.5.2 Assum ptions . 40

1.5.3 Road m ap . 40

2 Online Model Calculation Framework 43

2.1 Approach 44

2.2 Determining a Model Framework.... 45

2.3 Properties to be Updated........ 48

2.4 Model Generation...... 51

2.5 Implementation Framework.. 54

2.6 Conclusions.. 55

3 Hardware Overview 59

3.1 SPHERES - Ground and ISS . 59

3.1.1 Com munication . 60

3.1.2 Sensors

3.1.3 Expansion Port

3.1.4 Propulsion.....

3.1.5 Software

3.2 SWARM

3.2.1 Structural Base . .

3.2.2 Propulsion Module

3.2.3 Flexible Beam . . .

3.3 Summary

4 Online Model Calculation: Control

4.1 Estimator

4.1.1 EKF Review

4.1.2 State Propagation

4.1.3 Actuator Propagation . . .

4.1.4 Measurement Incorporation

4.1.5 Initialization

4.2 Controller

4.2.1 PD/PID Controllers

4.2.2 Adaptive Controller

4.3 Control Allocation

4.4 Conclusions

System Parameterization

.

.

.

.

.

......

.

.

.

.

.

5 Online Model Calculation: Implementation

5.1 Testing Set-up

5.2 Estimator.....

5.2.1 State Propagation...

5.2.2 Actuator Propagation.

5.2.3 Measurement Incorporation. . ..

5.2.4 Initialization.

5.3 Controllers

on SPHERES 99

100

102

103

106

110

115

117

PD/PID Control

Adaptive Control

Comparison between PD/PID and Adaptive control

5.4 Control Allocation .

5.5 Integrated Tests .

5.5.1 Docking and Assembly

5.5.2 Remote Control .

5.6 Conclusions .

6 Metrics for Model Generation Architecture Comparison

6.1 Types of model generation architectures

6.1.1 Spectrum Definition

6.1.2 Categories of model generation architectures

6.2 Performance Metrics .

6.2.1 Control System metrics

6.2.2 Spacecraft metrics

6.2.3 Assembly Mission Performance metrics

6.2.4 Objective functions

6.3 Conclusions .

7 Metrics Evaluation for Assembly

7.1 Scenario Description.. . ..

7.1.1 ALMOST

7.1.2 ACRRES

7.2 Simulation Description. . ..

7.2.1 Initialization

7.2.2 Control Loop

7.2.3 Estimation Loop

7.2.4 M etrics

7.3 Results

7.3.1 ALMOST

Scenarios

. 132

. 136

. 136

. 142

. 144

147

148

149

152

158

160

167

172

175

176

177

177

178

179

179

181

183

185

186

187

187

5.3.1

5.3.2

5.3.3

118

126

131

7.3.2 ACRRES

7.4 Conclusions .

8 Process for Selection of Model Generation Architectures

8.1 Definition of "Feasible" and "Appropriate" Design .

8.2 Phase

8.2.1

One: Identification of feasible architectu

Determination of Phase One questions

8.2.2 Accuracy Knowledge of Properties

8.2.3 Generality of Phase One questions

8.3 Phase Two: Determination of the Appropriate

8.4 Table of Model Generation Architectures . . .

8.5 Metrics Validation

8.5.1 Exercising the Process

8.5.2 SPHERES Results

8.6 Case Scenarios

8.6.1 ALMOST

8.6.2 ACRRES

8.6.3 "ISS"

8.7 Conclusions

res

Architecture

9 Conclusions and Future Work

9.1 Thesis Sum m ary .

9.2 Contributions.. ..

9.3 Recommendations for future work........

9.4 Concluding Remarks .

A Additional Literature Review

A.1 Sequence Planning. ..

A.2 Robotics.......... ..

A.3 Assembly Architectures.. ..

. . . .

192

196

199

200

201

201

202

204

204

206

209

209

210

212

214

215

216

217

219

219

221

222

223

225

225

226

227

B Simulation User's Manual 231

B.1 Initialization 231

B.1.1 Init Scenario 231

B.1.2 Init Method 235

B.1.3 Init State Variables . 236

B.1.4 Calc Model... 236

B.2 Control Loop . 238

B.2.1 Get Targets . 238

B.2.2 Path Planner . 239

B .2.3 G et Error . 239

B .2.4 Controller . 239

B.2.5 Control Allocation . 240

B.3 Estimation Loop . 240

B .4 M etrics . 240

12

List of Figures

1-1 Example assembly scenario - Space telescope assembly via EMFF as-

sem bler . 31

1-2 Spectrum of Model Generation Architectures 33

1-3 A schematic road map of the thesis in perspective to the spectrum of

reconfigurable control system designs 41

2-1 Online Model Calculation Approach 45

2-2 Cartoon Representation of Generic System 46

2-3 Possible Configurations of Baseline System 46

2-4 Control system block diagram with necessary elements to update high-

lighted . 49

2-5 Model generation flow diagram example for a passive module 52

2-6 Block diagram of reconfiguration framework 56

3-1 SPHERES satellite . 60

3-2 SPHERES Body Frame Axes . 61

3-3 Geometry of PADS. Beacon locations define operational volume. Time

of flight ranging used from at least four beacons to get full state deter-

mination............. 63

3-4 Geometry of Receiver locations on a face 64

3-5 Expansion port on the SPHERES satellite 65

3-6 Results for UDP accuracy characterization 66

3-7 Universal Docking Port. Left: Picture of hardware, with sensors la-

beled. Right: CAD drawing of UDP 67

3-8 Two-dimensional exploded view of thrusters one the SPHERES satel-

lites [29] . 68

3-9 SPHERES satellite on a SWARM structural base 72

3-10 SWARM propulsion module, attached to the structural node 73

3-11 SWARM Beam Configuration . 75

3-12 SWARM with Beam attached . 75

5-1 Two SPHERES satellite attached via Velcro 101

5-2 SWARM with Beam attached . 101

5-3 Example planned trajectory using on-board path planner 102

5-4 Verification of Multi-body simulation versus ISS data 103

5-5 True State vs Estimated State for SWARM + Beam (Object A+B+C),

Sim ulation . 105

5-6 Increased Y Velocity error due to beam deflection as a function of

Object A mass and Beam Length . 106

5-7 Process Flow Diagram comparing baseline thruster propagation to re-

configurable thruster propagation . 107

5-8 Test setup for Estimator Thruster Propagation tests 108

5-9 Estimator velocity performance with and without new mass and thruster

properties, Simulation . 109

5-10 Estimator velocity performance with and without new mass and thruster

properties, Ground Hardware. 109

5-11 Estimator velocity performance with and without new mass and thruster

properties, ISS hardware, Test Session 19 P274 T4 and T3 110

5-12 Setup for joint sensing tests . 112

5-13 Results for Joint Sensing tests, Simulation 113

5-14 Results for Joint Sensing tests, Hardware 114

5-15 Hardware vs Simulation results of RMS position error during transition

for estimator initialization strategies...... 116

5-16 Attitude Error using Object A actuator model 119

5-17 Attitude Error using Object A+C actuator model 120

5-18 Single axis translation tests.. 121

5-19 Error for Object A+C configuration multi-target test, ISS hardware . 121

5-20 Object A PID Trajectory Tracking Performance, Simulation 123

5-21 Object A PID Trajectory Tracking Performance, Ground Hardware . 124

5-22 Object A PID Trajectory Error Performance, Ground Hardware . . . 124

5-23 Object A+C PID Trajectory Tracking Performance, Simulation . . . 125

5-24 Object A+C PID Trajectory Tracking Performance, Ground Hardware 125

5-25 Object A+C PID Trajectory Error Performance, Ground Hardware . 126

5-26 Object A Adaptive Control Trajectory Tracking Performance, Simulation128

5-27 Object A Adaptive Control Trajectory Tracking Performance, Ground

H ardw are . 129

5-28 Object A Adaptive Control Trajectory Error Performance, Ground

H ardw are . 129

5-29 Object A+C Adaptive Control Trajectory Tracking Performance, Sim-

ulation . 129

5-30 Object A+C Adaptive Control Trajectory Tracking Performance, Ground

H ardw are . 130

5-31 Object A+C Adaptive Control Trajectory Error Performance, Ground

H ardw are . 130

5-32 Estimated State vs Desired State for SWARM + Beam (Object A+B+C)

using an adaptive controller, Simulation..... 130

5-33 Implementation of Baseline versus Reconfigurable Control Allocation 133

5-34 Commanded thruster durations for Object A+C configuration multi-

target test, ISS hardware . 134

5-35 Performance of three controllers for Object A+B+C configuration us-

ing the parameterized control allocation algorithm. 135

5-36 Object A+B+C maneuvering and docking to a fixed structure, Ground

H ardw are . 137

5-37 Schematic of Assembly Maneuver Sequence. 138

5-38 Trajectory Tracking Performance for assembler and module, Assembly

M aneuver, Hardware . 139

5-39 Relative Position Between assembler and module, Assembly Maneuver,

Sim ulation . 140

5-40 Relative Position Between assembler and module, Assembly Maneuver,

Ground Hardware . 140

5-41 Position Tracking Error of assembler, Assembly Maneuver 141

5-42 Thruster Firings of assembler and module, Assembly Maneuver . . . 142

5-43 Module satellite position state, remotely commanded open-loop . . . 143

5-44 Module satellite position error, remotely commanded closed-loop . . . 144

6-1 Spectrum of model generation architectures with arrangements of types

of architectures from Table 6.1 . 151

6-2 Example missions for selected categories of architectures from Table 6.1152

6-3 Performance change due to error in the knowledge of the mass 167

6-4 System Identification firing maneuver sequence, SPHERES TS03 P103

by NASA Am es, [73] . 169

7-1 NASA GSFC's SPOT telescope architecture modified for ALMOST

robotic assem bly . 178

7-2 NASA GSFC's SPOT-lite mirrors . 178

7-3 ACRRES Initial and Final configurations 179

7-4 Simulation Block Diagram.. 180

7-5 Cumulative Fuel Used (kg) vs Model Generation Method, Number of

assemblers (dashed), ALMOST . 188

7-6 Assembly Time (s) vs Model Generation Method, Number of assem-

blers (dashed), ALMOST . 189

7-7 RMS Position error (in) and RMS velocity error (m/s) vs Model Gen-

eration Method, ALMOST . 190

7-8 Fuel Used (kg) vs Assembly Time (s) vs Model Generation Method,

A LM O ST . 191

7-9 Cumulative Fuel Used (kg) vs Model Generation Method, Mass of as-

sembler (dashed), ACRRES . 193

7-10 Assembly Time (s) vs Model Generation Method, Mass of assembler

(dashed), ACRRES . 194

7-11 RMS Position error (m) and RMS velocity error (m/s) vs Model Gen-

eration Method, ACRRES . 195

7-12 Fuel Used (kg) vs Assembly Time (s) vs Model Generation Method,

ACRRES 196

8-1 Process flow diagram to illustrate breadth 200

8-2 Phase One process flow diagram, identification of feasible model gen-

eration architectures . 201

8-3 Performance change due to error in the knowledge of the mass 203

8-4 Phase two process flow diagram, determination of the appropriate design205

18

List of Tables

3.1 SPHERES satellite mass properties 61

3.2 Ultrasound Receiver Locations with respect to the geometric center of

the SPHERES satellite . 65

3.3 Mapping of the SPHERES thrusters to Forces/Torques on the satellite 69

3.4 Thruster directions of two SPHERES satellites attached via their -X

faces, as Forces/Torques matrix, in Assembler satellite's frame. Thrusters

on the Assembler are denoted with an 'A', while thrusters on the Pay-

load are denoted with a 'B' . 70

3.5 SWARM Propulsion Module Thruster Force Directions 74

4.1 Initialization Setup Truth Table . 90

5.1 Attitude controller PD/PID gains for different configurations,w" = 0.4 118

5.2 Position controller PD/PID gains for different configurations, w = 0.2 118

5.3 Attitude controller PD/PID gains for different configurations,w, = 0.6 122

5.4 Position controller PD/PID gains for different configurations, w, = 0.8 122

5.5 Adaptive controller gains for different configurations 128

5.6 RMS Position Tracking Error Performance in meters between PID and

Adaptive Controllers for Object A and A+C configurations 132

6.1 Types of model generation architectures based on available information

in a binary truth table . 150

6.2 Categories of model generation architectures versus assumptions . . . 157

6.3 Objective functions with the corresponding values 175

7.1 Simulation Parameter Description . 181

7.2 Model generation architectures implemented in the simulation 183

8.1 Set of model generation architectures 207

8.2 Scenario Description: SPHERES . 209

8.3 Objective function rankings for SPHERES scenario 210

8.4 SPHERES hardware performance . 211

8.5 Results for Table 8.3 cases evaluated for SPHERES scenario 213

8.6 Scenario Description: ALMOST . 214

8.7 Scenario Description: ACRRES . 215

8.8 Scenario Description: ISS-like . 216

Nomenclature

alocation attachment point location

aZstatus status of attachment point, whether an object is attached to it

atype type of attachment point

rlctrI Control period

a estimated parameter vector used in adaptive control

rK stiffness matrix associated with spring forces

A Time constant associated with integral term

Q Duty cycle

integration term used in control to sum up error

T Integration time period

Dact actuator force directions

Dsensor sensor measurement directions

Fact actuator force magnitudes

Frej sensor sensor reference point

Fsensor sensor magnitude and range

Inertia tensor

act actuator locations with respect to assembler

er~ center of mass

Rref -act actuator reference point

isensor sensor locations with respect to assembler

Mixing Matrix

Damping ratio

e state error

f Actuator commands

imp actuator impulse

Kd Derivative Gain

Ki Integral Gain

Kp Proportional Gain

p property vector used in online model calculation

Pam property vector of the assembler

Ppl property vector of the module

u control input

control bandwidth

ACRRES Autonomous Control Reconfiguration for Robotic Exploration Systems

ALMOST Assembly of Large Modular Optical Space Telescopes

CM Center of Mass

CMG Control Moment Gyroscopes

DOF Degrees of Freedom

EELV Evolved Expendable Launch Vehicle

EKF Extended Kalman Filter

EMFF Electro-magnetic Formation Flight

EVA Extravehicular Activity

HST Hubble Space Telescope

ISS International Space Station

JWST James Webb Space Telescope

LEO Low Earth Orbit

M System Model

m mass

NASA National Aeronautics and Space Administration

PADS Position and Attitude Determination System

PD Proportional-Derivative

PID Proportional-Integral-Derivative

RMS Root-mean-square

SPHERES Synchronized Position Hold Engage Reorient Experimental Satellites

SWARM Self-Assembling Wireless Autonomous Reconfigurable Modules

TDMA Time Division Multiple Access

TRL Technology Readiness Level

UDP Universal Docking Port

24

Chapter 1

Introduction

On-orbit assembly is a key enabling technology for many space missions, such as space

telescopes. Current methods of on-orbit assembly are limited to human-assisted as-

sembly. Human-assisted assembly, though very flexible and capable, has the high

cost and risk associated with manned flight. This is epitomized in the assembly of

the International Space Station (ISS), a very complex structure successfully assembled

through human extra-vehicular activities (EVA) and tele-operation of robotic arms.

The assembly has taken over 41 launches of the Space Shuttle and spanned more than

a decade. The high cost, time, and risk associated with current on-orbit assembly

methods leads to a desire to automate the process using robotic technology. Introduc-

ing automation creates additional challenges in the design of the assembly mission.

Much of the work done to date in relation to on-orbit autonomous assembly is either

high level concept studies or low-level controller design. Few methodologies or design

practices are in place to help engineers design with autonomous assembly in mind.

This thesis develops tools to guide engineers to design specifically for autonomous

assembly. This chapter explains the benefits of on-orbit assembly and the motivation

to move toward autonomous assembly. Then, this chapter describes the exact prob-

lem under consideration, the relevant literature, and the specific contributions of this

work with a road map to the remaining chapters.

1.1 Motivation

On-orbit assembly is a technique that enables space construction, the ability to build

large space structures. The size of a spacecraft is limited by launch vehicle specifica-

tions, such as launch mass and payload fairing size. Mass can be directly correlated

to capability, such as the mass of additional science instruments or fuel mass which

restricts mission duration. Payload fairing size can also restrict capability, such as the

diameter of a space telescope mirror. On-orbit assembly bypasses these limitations

by using multiple launches to send the spacecraft up in pieces.

The benefits of on-orbit assembly have been demonstrated in-flight through the

construction of the Russian MIR space station and ISS. The MIR space station was

built using on-orbit assembly from 1986 to 1996; similarly, the ISS began assembly in

1998 and is scheduled to be complete in 2010. The success of these structures demon-

strates the great benefit of on-orbit assembly. Due to their large size, space stations

are able to serve as orbital platforms, specializing in long duration microgravity sci-

ences [57]. The science discoveries made on MIR and ISS (e.g. [91, [751, [78], [71])

demonstrate that on-orbit assembly is a key tool for future space missions. There are

three types of missions that can significantly benefit from on-orbit assembly: human

exploration missions, space tourism, and scientific missions.

Human exploration missions

NASA's long-term plans for human exploration focus on exploration of the Moon and

Mars [4]. To accomplish this, concept studies include in-space construction of large

structures, such as lunar outposts. Using human-assisted assembly to build a lunar

outpost can become prohibitively expensive if each construction trip requires sending

humans to the Moon. [84] [22]

Space tourism

As more people travel into space, the need for on-orbit destinations for them to visit

increases. Large space structures are prime space tourism destinations. Economics

dictates that the total time for assembly of the large space structure should be as

short as possible to maximize utilization and profit. The historical data for on-

orbit assembly shows that the construction of a space station takes on the order of a

decade. Driving reasons for this long assembly time are the preparation time required

to train and launch humans and to build new tools for each particular mission. Thus,

current methods of on-orbit assembly do not satisfy the needs for the commercial

space industry, leading companies to consider alternative options. Although other

techniques such as deployable [54] or inflatable [1] structures have been considered,

even designed, only on-orbit assembly has been demonstrated in space.

Scientific missions

Many future science missions are dependent on on-orbit assembly to transition from

concept to reality. There are three issues that affect scientific missions: size, location,

and cost.

Three examples of scientific missions that need on-orbit assembly are space tele-

scopes, fuel depots, and solar power stations. The effectiveness of these missions is

determined by their size. For example, the larger the diameter of the primary mirror

of a space telescope, the greater the angular resolution, which increases the science

benefit. Current telescopes are limited by launch payload fairing diameters (ex. Hub-

ble Space Telescope), or by complex deployable mechanisms (ex. James Webb Space

Telescope).

Some missions, particularly for space telescopes, prefer to be in locations outside

of Low Earth Orbit (LEO), such as the Earth-Moon or Sun-Earth Lagrange points.

Current methods of on-orbit assembly do not allow for these locations because there

is no mode of transportation to allow humans to travel to these locations.

Most scientific missions are under strict budget restrictions, which makes it im-

possible to bear the burden of the additional cost of human spaceflight. For example,

total mission cost is greater for manned missions because launching on a man-rated

launch vehicle is more expensive than launching on an evolved expendable launch

vehicle (EELV). The cost of launching a payload on the Space Shuttle in 2000 was

roughly $4.7K/kg. The cost of launching the payload on an similar heavy lift launch

vehicle, such as Russia's Proton rocket, was as low as $1.9K/kg [3] (Costs are given

in FY2000 dollars).

Tele-operation, as a construction method, has also been used as a human-assisted

form of assembly. Though tele-operation provides benefits associated with the re-

sponse of a human who is capable of anticipating failures and/or obstacles, the real-

time execution of this method provides drawbacks as missions become more complex

and are farther away from Earth. If operating from the ground, communication delays

prevent real-time commanding, necessitating a rudimentary form of automation. If

operating from orbit, once again, the issues associated with human space flight arise.

The three main limitations of current on-orbit assembly methods are summarized

below:

1. The time frame associated with human assisted assembly (roughly a decade) is

too long for future space missions.

2. Locations for assembly are limited by where humans can travel, namely LEO

and possibly the Moon.

3. The cost of assembly is expensive due to the additional cost associated with

astronaut participation, such as the use of human-rated launch vehicles.

These limitations can all be addressed by implementing autonomous assembly us-

ing robots. Robotic assembly serves as a low-cost, low-risk option to human-assisted

assembly. A complete robotic assembly can occur at the onset of the mission, reduc-

ing the assembly time from years to weeks, even days. Using robotics also enables

assembly missions in significantly more locations than human-assisted assembly can

reach. The space industry has demonstrated the capability to reach unique and far

reaching locations robotically, such as a comets, asteroids, and almost every major

planetary body in the solar system. The robots and spacecraft can be launched on

an EELV, instead of a human rated launch vehicle, which leads to a significant cost

reduction for large space structures with multiple launches. Also, a structure that

is assembled is inherently modular, which facilitates on-orbit servicing and upgrades

[40] [61] [7] [68].

There has been little research conducted to address these limitations other than

concept studies. Automation introduces several issues across multiple fields, such as

assembly sequencing, robotics, and control. The next section provides a description

of the challenge considered in this work.

1.2 Problem Definition

There are many key challenges associated with designing an autonomous assembly

mission, such as standardized interfaces, assembly sequencing, hardware design, and

control system design. Of the various challenging areas of assembly work, the control

system is of particular interest. The control system is responsible for execution of the

assembly sequence and therefore, the overall performance of the assembly. The design

of the control system impacts the maneuverability and resource efficiency. Failure to

properly design the control system can lead to overall failure of the mission. A key

aspect of control system design is the dynamics model that is used to represent the

system. This thesis considers the specific problem of generating the model used in

the control system.

In autonomous assembly architectures, a robot, called the assembler, is responsible

for maneuvering a set of modules. These modules are the components that combine

to form the assembled structure. There can be many types of assemblers, such as

self-assembly, tugs, or robotic arms. In self-assembly missions, the robots are both

the assembler and module, because they maneuver themselves into the desired final

position. In missions using tugs or robotic arms, the assembler is physically and

functionally separate from the module, and is responsible for maneuvering modules

into position. Assembly missions that use techniques other than self-assembly face

a challenging control problem associated with model changes due to the attachment

of assembler and modules. The dynamics change each time the assembler attaches

to and releases a modules. This changes requires an associated change in the control

algorithms to maintain requisite precision.

A configuration is defined as a unique physical attachment of assemblers and/or

modules. When the assembler attaches to a module, the configuration of the assem-

bler changes. Many configurations may be present during the assembly process. The

change from one configuration to another through the act of attachment or detach-

ment is defined as a transition. The set of all transitions in their order of execution

specifies the assembly sequence. The transitions are important because they define

the changes in the model, and associated control, that can occur throughout the

assembly process.

The transition from one configuration to another can introduce large mass and

stiffness variations. For example, attaching to a rigid module results in the addition

of mass and inertia from the module, and attaching to a flexible module can also

introduce flexible dynamics into the system. Though there are many, possibly drasti-

cally different, configurations associated with a single assembly process, the assembler

usually consists of a single control system. In order to handle the multiple configu-

rations, the control system must be sufficiently reconfigurable to take in a model of

the configuration and generate the proper control commands. A key aspect in the

design of the control system is the generation of the model that is appropriate for the

current configuration and how the model is made available to the control system. The

model generation architecture is the algorithm framework used to calculate the

model of the configuration and propagate it into the control system. The choice of

model generation architecture impacts the overall performance of the control system,

such as transition time and resource utilization efficiency.

An example assembly scenario is depicted in Figure 1-1. Figure 1-1 shows a tele-

scope assembly using an Electro-magnetic Formation Flight Vehicle (EMFF) as the

propellant-less assembler [44]. The steps shown in Figure 1-1 are initial deployment

(Figure 1-1a), docking and retraction (Figure 1-1b), insertion into the assembly (Fig-

ure 1-1c), repetition for all modules (Figure 1-1d), completion of assembly (Figure

1-le), and operations (Figure 1-1f). Each of the eighteen modules can have distinct

mass properties. Thus, the control system for the assembler shown must properly

maneuver in at least eighteen different assembler-module configurations to complete

the assembly process successfully.

(a) Initial Deployment (b) Docking and Retraction (c) Insertion into the assembly

(d) Repetition for all modules (e) Completion of the assembly (f) Operations

Figure 1-1: Example assembly scenario - Space telescope assembly via EMFF assem-
bler

Problem Under Consideration

How does one select and design a model generation architecture to main-

tain control system performance at each configuration change throughout

the assembly sequence, in spite of large mass and stiffness property vari-

ations?

The model generation architecture must be designed to handle all of the configura-

tions, while maintaining performance and versatility. Performance in this work is

defined as stability, resource efficiency (e.g. fuel and time), and trajectory accuracy.

Versatility is defined as the ability to adapt to changing mission needs or modules.

An example of increasing versatility in the model generation architecture is the min-

imization of hardcoded transitions and properties used. Minimization of hardcoded

properties, for example, means the model generation architecture is capable of iden-

tifying the properties online. Online identification allows the assembler to attach to

any module, which increases its versatility because the same assembler can be used

for multiple assembly operations.

Scope

This thesis directly addresses the problem of generating control system models for the

myriad of assembler-module configurations that arise during the assembly sequence.

It does not consider the configuration changes associated with the build-up of the

assembled structure, although techniques similar to those developed in this work

can be applied. Thus, the configuration changes due to the model aggregation of

self-assembly modules are not considered, only the maneuvering of the modules is

considered.

1.3 Literature Review

Review of four main areas of research was conducted: sequence planning, robotics,

reconfigurable control systems, and assembly concept studies. Review of these areas

helped to identify the science need for autonomous assembly and the research issues

being explored for autonomous assembly in general. The review of literature on these

four topics is not included in this chapter because it does not directly relate to the

problem under consideration. It only sets a context for the state of the autonomous

assembly field. The literature review of these topics is available in Appendix A.

The area of literature most relevant to the research presented in this thesis is

reconfigurable control systems. Reconfigurable control systems are designed to handle

changing plant, actuator, or sensor dynamics. Part of the design of the reconfigurable

control system involves model generation. This thesis considers reconfigurable control

system designs in terms of the model generation architecture that they employ.

1.3.1 Model Generation Architectures

Model generation architectures can be classified by the amount of a priori informa-

tion available to the designer. The architectures can be conceptualized on a spectrum

where they are distinguished by how they employ different techniques of model gener-

ation based on the a priori information available (Figure 1-2). The right end consists

of architectures that require all mass property information to be available a priori, a

control design approach such as gain scheduling can be used. The left end includes

architectures where no mass property information is necessary, a some form of online

system identification would be required. Research has been performed in many areas

of this spectrum. Three examples of literature are selected and placed on their corre-

sponding location on the spectrum, shown in Figure 1-2. These papers are described

in detail in this section to characterize their differences.

No Complete
Information Spectrum of Model Generation Architectures Information

[Wilson et al, 2002] [Parlos and Sunkel, 1992]
System Identification Control parameters stored

[Maybeck and Stevens, 1991]
Multiple models stored.

Figure 1-2: Spectrum of Model Generation Architectures

Starting with the system identification end, Wilson et al. use a recursive least

squares approach to determine the center of mass and inertia of a spacecraft [81]

by analyzing gyroscope measurements. Their approach imparts known torques onto

the spacecraft and observes the resulting gyroscope measurements. These measure-

ments are fit to an assumption of the model structure to identify parameter values

that minimize the mean squared error between the measurement values observed and

the measurement values generated based on the assumed dynamics structure. This

technique is a key example of the end of the spectrum where no a priori informa-

tion is available. The mass property information is generated purely through system

identification, by exciting the system and analyzing its response to derive a model.

Maybeck and Stevens' [50] approach of multiple model adaptive control uses a

bank of pre-designed Kalman filters and Command Generator Tracker (feedforward)

/ Proportional-Integral (feedback) controllers for each of the different anticipated

failure states. The final model is a conditional probability-based combination of the

individual models using the residuals of the Kalman filter. This method also uses

a hierarchical setup of the Kalman filters in order to detect multiple failure states

without having to enumerate every combinatorial failure case. Some advantages of

this method are that it allows for the seamless transition between configurations,

especially in degraded states. Maybeck and Stevens provide a robust way for tran-

sitioning between configurations because the models for all possible transitions are

continuously processed in the form of a Kalman filter. The continuous processing

of the models is necessary when the transition time is unknown, as in Maybeck and

Stevens; however, it is excessive for assembly scenarios because it requires running

estimators for models that will not be needed until a specific known time in the fu-

ture. In an assembly mission, the time of transition can be pinpointed to the time of

attachment of a module. Thus, the multiple Kalman filters need not be run continu-

ously, but only during the transitions. Once the proper configuration is identified, the

filters running incorrect models can be terminated. The execution of several Kalman

filters simultaneously is computationally expensive, especially as the number of mod-

els stored increases. One additional limitation of this work is that their approach is

set-up only to handle configuration changes due to failures. In assembly missions,

actuators and sensors can not only be lost due to failure, they can be also be added

or change their geometry with respect to the center of mass, as a result of assembly.

Parlos and Sunkel present an approach for attitude control of the Space Station

Freedom (precursor to the ISS) under significant mass property variations from the

berthing of the Space Shuttle [58]. Their approach uses gain scheduling to update

the attitude control law during the berthing scenario. The system is linearized about

multiple torque equilibrium attitudes, and the inertias about that equilibrium are

used in the calculation of the gains for an LQR controller. They successfully demon-

strate attitude control of the spacecraft under inertia variations of approximately 30%.

However, Parlos and Sunkel assume a look-up table exists with the necessary control

parameter values. The creation of the look-up table requires complete knowledge of

the system, including all possible configurations. This model generation architecture

has memory storage and ground development implications associated with creating

the look-up table.

The review of the three papers in this section characterizes the differences across

the spectrum. The differences in model generation architectures have performance

implications on the control system, such as memory storage, computation time, iden-

tification time, and fuel consumption. However, model generation architectures have

not been designed to exploit the properties of autonomous assembly.

1.3.2 Open Areas in the Literature

Two open areas, identified in the literature review, are addressed in this thesis. The

first area is an architecture design problem, while the second is an architecture selec-

tion problem.

Model Generation Architecture Design

The first area focuses on the design of a specific model generation architecture to

exploit the structure of an autonomous assembly mission. In assembly missions, a

potential scenario exists where the module properties are known, but how they attach

to the assembler is not known a priori in the control system. Three examples of when

this situation can arise are (1) due to complex maneuvering where automated obstacle

avoidance algorithms impact the state and attitude of the assembler as it attaches to

the module, (2) if the module is damaged or in an unknown state when the assembler

attaches to it, or (3) if a launch sequence changes and the assembly occurs in steps

not previously expected. The design of a model generation architecture to account for

these situations allows the control system to be decoupled from the assembly sequence.

The decoupling of the assembly sequence from the control system design could lead

to benefits such as decreased ground development time and increased versatility of

the control system to handle multiple configurations.

An open area exists in model generation literature to account for scenarios where

the module properties are known a priori, but the configurations and transitions

are unknown. Aggregation of the model online based on module properties received

during attachment exploits the information available while maintaining a versatile

system. Though algorithms for calculating properties of aggregated systems exist, a

framework has not been developed to identify the information required to calculate

the aggregated model, how that information is transmitted between modules, and how

the control system incorporates the aggregated model. The design of this architecture

also requires the parameterization of a control system such that it can easily transition

between models. This parameterization has not been addressed in literature. Overall,

this is an important gap to fill because it serves as a middle ground between having

complete information about the system and using resources to identify the properties

online.

Model Generation Architecture Selection

The selection of a model generation architecture is important due to the control

system performance implications. To make a proper selection, one must address

the entire spectrum of architectures. Specifically, one must address how to compare

architectures across the spectrum and how to select a single appropriate architecture

for a given assembly mission. There are multiple aspects of this problem, such as

e How can one compare model generation architectures equally despite the large

implementation differences?

e How does one know if a model generation architecture is appropriate for the

assembly mission under consideration?

* What is the impact of the selection of a model generation architecture on the

overall assembly performance?

The selection of a model generation architecture requires a good knowledge of: the

available architectures in literature; the assumptions associated with each architec-

ture; and the performance of each architecture based on a set of metrics. These

aspects have not been addressed in literature. A listing of possible model generation

architectures does not currently exist. For a given model generation architecture, an

analysis of implementation assumptions does not exist, nor does an analysis of how

the assumptions relate to the assembly mission.

Comparisons between model generation architectures are not currently possible

because a set of generalized, quantitative metrics does not exist. The current metrics

compare either the performance of the control system (e.g. stability, convergence

properties) or the assembly mission performance (e.g. assembly time). These metrics

do not directly capture the performance of the model generation architecture. Gen-

eralized metrics must be developed to capture the use of resources for each type of

model generation architecture.

A process for selection is also needed. It is currently difficult to make an informed

selection since it is not known what information about the assembly mission is im-

portant or how model generation architectures perform compared to each other. An

appropriate design is one that is selected using the available a priori information

specific to that assembly mission and which maximizes system performance specific

to the assembly mission. System performance is defined as optimizing the value (ex.

versatility), while minimizing the costs (ex. fuel costs). System performance is deter-

mined by the optimizing objective functions, which are created based on the metrics

that can compare model generation architectures.

The objective of selecting an appropriate model generation architecture is to

improve the control system performance, thereby improving overall assembly per-

formance. Therefore, educated implementation of a model generation architecture

for a given assembly mission requires knowledge of how the model generation tech-

niques impact control and assembly performance. Literature studies show how an

autonomous assembly architecture selection drives mission performance, such as mass

and cost. Open areas that exist are how an autonomous assembly architecture drives

lower-level control system performance, and how a model generation architecture lim-

its or enables specific assembly architectures. It is important to determine how the

model generation architecture affects the overall assembly performance in a quanti-

tative manner to enable proper selection and implementation.

1.4 Thesis Contributions Summary

The objectives of this work relate directly to the open areas specified in Section 1.3.2.

The following list gives a summary of the contributions of this thesis. The first three

contributions address the design a model generation architecture to balance a priori

information and on-orbit resource consumption, while the latter contributions relate

to selecting a model generation architecture.

The specific thesis contributions are:

" Developed a process for the selection of a model generation architecture based on

quantitative metrics that capture computational differences and control system

performance implications

* Quantitatively determined the impact of the selection of a model generation

architecture on the assembly mission performance

* Developed a framework such that a model for a configuration can be computed

online based on assembler and module properties received at the time of attach-

ment

" Developed and implemented a method for parameterizing a control system de-

sign such that it can accommodate multiple configurations

" Validated the parameterized control system design on hardware, in a represen-

tative space environment

Detailed explanation of the contributions is available in Chapter 9. The major

contribution of this work is the development and validation of tools to address

the selection and design of model generation architectures for on-orbit

autonomous assembly.

1.5 Thesis Overview

1.5.1 Definition of Reconfiguration

The main assembly architecture considered in this work is a single assembler that

maneuvers individual modules to complete the assembly. The following definitions

are used consistently throughout this thesis and have very specific meanings.

" Architecture: the structure of the algorithm or concept. Specifically, model

generation architecture refers to the structure of how the model information

is processed, such as inputs, outputs, and component calculation algorithms.

Assembly architecture refers to the structure of the assembly mission specified

through parameters such as the type of assembler used and number of modules.

" Assembler: a robotic vehicle that maneuvers modules into their desired lo-

cations. The module can be a separate object or the assembler itself (as in

self-assembly cases). The assembler is responsible for the control system, in

terms guidance, navigation, and control.

" Module: an individual, mostly passive, object that is a component of the

mission payload requiring assembly. The object is moved by the assembler.

" Configuration: a unique physical attachment of assemblers and/or modules

" Transition: the change from one configuration to another through the act of

attachment or detachment

" Sequence: a chronological set of transitions

" Scenario: a detailed description of an assembly mission, including assembly

architecture parameters, configurations, transitions, as well as mass property

information about the assemblers and modules,

" Case scenario: a specification of a single scenario used for analysis

* Metric: a standard of measurement used to compare different algorithms

* Model: the mathematical representation of the dynamics for a configuration

used in the control system

1.5.2 Assumptions

The following assumptions are made in this thesis to manage the scope of the research:

" The thesis does not consider the configuration changes due to the aggregation

of the assembled structure.

" An assembler has knowledge of its own mass properties.

" Gravitational disturbances, such as J2 effects, are small enough to be neglected

during assembly.

1.5.3 Road map

This thesis addresses the implementation of model generation architectures from both

a design and a selection perspective. These two components are schematically shown

in the thesis road map, Figure 1-3. The spectrum of model generation architectures

is shown schematically in the center of the figure.

The design component of the thesis, as depicted by the up/down arrow, considers

one particular model generation architecture for an open area, namely where modules

are known a priori, but transitions and configurations are not known. The design

developed in this thesis, called Online Model Calculation, uses property informa-

tion obtained at the time of attachment to calculate the model for the configuration.

Chapters 2 through 5 detail the overall framework, control system parameterization,

design, software implementation, and performance on hardware. Chapter 2 provides

the theoretical framework for both rigid and flexible modules. The architecture design

is implemented on hardware to verify and validate the theoretical design developed.

Chapter 3 describes the hardware testbed used in this work. The chapter specifically

focuses on the physical hardware components of the Synchronized Position Hold En-

gage Reorient Experimental Satellites (SPHERES) testbed. Chapter 4 describes the

Metrics Evaluation of Process of
Development Designs Selection

(Chap 6) (Chap 7) (Chap 8)

How to Select a model generat

No
Information Spectrum of Model Generatior

ion architecture?

C
InfArchitectures

omplete
ormation

Online model calculation architecture

Framework Specification

How to Design a
Algorithm Design model generation

architecture?

(Chap 5)

Figure 1-3: A schematic road map of the thesis in perspective to the spectrum of
reconfigurable control system designs

parameterization of the control system based on the SPHERES testbed. Chapter 5

presents the results from hardware implementation on the SPHERES testbed.

Above the spectrum line, the horizontal line represents the selection component of

the thesis. The chapters associated with this area consider architectures from all areas

of the spectrum. Chapters 6, 7, and 8 compare, contrast, and evaluate architectures

across the spectrum to develop a methodology to select one for a given mission.

These architectures are considered from a high-level and are not implemented on a

hardware system. Chapter 6 provides the enumeration and classification of model

generation architectures, as well as the derivation of a set of metrics that can be used

to compare architectures. Chapter 7 presents an assembly simulation that executes

the full dynamics and control aspects of the autonomous assembly scenario. This

simulation can be used as a tool to calculate metrics for a given assembly scenario for

a range of model generation architectures, both at the control system and assembly

mission level. Chapter 8 presents a process for the selection of a model generation

architecture, along with the underlying assumptions and validated metrics. Chapter

8 also exercises the process on three case scenarios.

The results and contributions of this work are summarized in Chapter 9. This

chapter also provides direction for future work in the area of model generation archi-

tectures, as well as ways that this work can be incorporated into general autonomous

assembly design research.

Chapter 2

Online Model Calculation

Framework

The model generation architecture designed in this work is called Online Model

Calculation and seeks to fill a particular gap identified in literature. This design

provides a balance between calculating and storing all properties in advance and iden-

tifying the model online. Online Model Calculation calculates the new model at the

time of transition, based on the current model, attachment status, and mass property

information about the attached module. The attachment and mass property infor-

mation only needs to be obtained at the time of transition, thus does not need to be

stored or known a priori by the assembler. It is assumed that the functionality exists

to receive the properties by communication. The Online Model Calculation model

generation algorithm combines individual property structures of attached objects into

the property structure of the combined system.

Consider the an assembler is assigned a module to move. The module commu-

nicates its property structure, analogous to a business card. The property structure

contains all of the information about that module that is needed by the assembler to

develop a module of the aggregate assembler-module system. Properties can include

the module's mass, center of mass, inertia tensor, docking port frame, vector from the

docking port to the center of mass, and sensor and actuator locations. The assembler

combines the module's property structure with the assembler's property structure to

build a configuration model that is used to design the control system.

This chapter presents the framework for Online Model Calculation. The following

sections give an overview of a reference baseline system, description of the reconfig-

uration framework, and details on the model calculation algorithm. In particular,

the contributions of this chapter are the development of a property structure to cap-

ture and transmit the model of a vehicle, and the development of a framework that

monitors this structure and performs the necessary updates when the configuration

changes. Chapter 4 describes the parameterization of the control algorithms to make

them reconfigurable. Chapter 5 details the implementation on the SPHERES hard-

ware testbed and validates the design through the experimental results.

2.1 Approach

The overall approach to designing an Online Model Calculation algorithm is out-

lined in five major steps. These steps allow for the implementation of Online Model

Calculation on any physical system.

1. Identify model framework of the baseline physical system

2. Identify physical properties to be updated and develop a property structure p

3. Develop model calculation algorithm based on the baseline system

4. Parameterize the sections of control software to be a function of the changing

physical properties

5. Implement framework using model calculation algorithm and parameterized

functions

Figure 2-1 shows the five step approach as a block diagram. The approach con-

sists of two paths, developing the model generation architecture and developing the

corresponding control system. Developing the model generation architecture consists

of determining the model framework (step 1), defining the property structure for the

O lIne Model Caculation Frameworkl

Perfomedropeiriy g Pe4frme Onori

Model Properiy Mcrdel
Framework Aggregation

the chngingmodel(step4). Te finatepmlmninohnrmwokolni

Monitor
MODEL 'Property

Structure

Control t C ontrol2rmi aMeFramework
Parameterization

Performed A Priori Performed On-orbit

Figure 2-1: Online Model Calculation Approach

baseline system (step 2), and developing the model aggregation algorithm (step 3).

The development of the corresponding control system is to parameterize it to handle

the changing model (step 4). The final step, implementing the framework online, is

shown in the black dashed box. Figure 2-1 clearly shows the steps that must be per-

formed on the ground prior to operations and the steps that are performed on-orbit.

The remainder of this chapter describs hebse steps.

2.2 Determining a Model Framework

Th a module at c be approach to designing a model calculation architecture is to

identify the model structure of the baseline physical system. A baseline physical

system is used to generalize the possible configurations of assembler and module

attachments. This baseline system is used to identify which properties should be

updated, as well as providing a standard against which to compare performance.

An example baseline system is described in this work to demonstrate the design

process. The generalized configuration assumed in this work is a rigid body assembler,

with a module that can be either flexible or rigid. This generalized configuration is

depicted in Figure 2-2. Though the example baseline system, represented in Figure 2-

2, may not be directly applicable to all systems, it is a good starting point to capture

the rigid body properties of any system. This baseline system can be augmented to

Generalized Configuration

Figure 2-2: Cartoon Representation of Generic System

AA (A.

(a) Object A only (b) Object A+B (c) Object A+C

A A C

(d) Object A+B+C (e) Object A+C+B

Figure 2-3: Possible Configurations of Baseline System

represent multiple assembly methods by including objects that capture the additional

dynamics.

The generalized configuration has three objects: A, B and C. Object A represents

an assembler, while Object B and C represent flexible and rigid modules, respectively.

One constraint levied on the configurations is that Object A must always be present,

as it is the object providing the maneuvering capability. There are five possible

configurations: (1) Object A only; (2) Object A+B; (3) Object A+C; (4) Object

A+B+C; and (5) Object A+C+B. Figure 2-3 show a graphical representation of

each of the possible configurations.

Configuration 1 (Object A only) represents an assembler by itself. Configuration 2

(Object A+B) represents an assembler with a flexible appendage. An example of this

configuration is a tug docked to a solar panel. Configuration 3 (Object A+C) repre-

sents an assembler attached to a rigid payload. An example of this configuration is a

tug docked to a telescope mirror segment. Configuration 4 (Object A+B+C) can rep-

resent an assembler attached to an in-the-loop flexible module, with a rigid end mass

on the other end (Object C). Finally, configuration 5 (Object A+C+B) represents

an assembler attached to a module with a flexible appendage. The three main con-

figurations considered in this work are Object A, Object A+C, and Object A+B+C.

The tools used to design a model generation architecture for these configurations can

easily accommodate the remaining configurations.

Object A: Assembler

The assembler has the majority of the actuation and sensing capability. The global

coordinate frame is centered at the geometric center of Object A, and is maintained

throughout the different configuration changes. Online Model Calculation requires

the following information to be known about Object A:

" Reference Point: Geometric Center A

" Body Frame

" Mass, Inertia, Center of Mass with respect to A

" Actuator configuration: Location w.r.t A, Direction, Force, Health, Type

" Sensor configuration: Location/Orientation w.r.t A, Direction, Field of View,

Type, Bias/Scale factor

" Attachment locations/directions w.r.t A

Object B: Module - Flexible Component

Object B is the flexible component of the module, defined by its mass, inertia, and

stiffness properties. Online Model Calculation requires the following information to

be known about Object B:

* Reference Point: Geometric Center B w.r.t A

o Body frame

" Location of attachment w.r.t B and w.r.t A

" Center of Mass w.r.t B

" Mass, Stiffness (characterized by the Object without any attachments), Inertia

Object C: Module - Rigid Component

Object C is the rigid component of the module, defined by its mass, inertia, and

attachment location. Online Model Calculation requires the following information to

be known about Object C:

" Reference Point: Geometric center C w.r.t A

" Body frame

" Location of attachment w.r.t. B and w.r.t A

" Mass, Inertia, Center of Mass w.r.t C

2.3 Properties to be Updated

The second step in the approach is to identify how the change in mass properties in-

fluences the model generation architecture. Figure 2-4 shows a representative control

system block diagram, with the software elements that must be updated outlined in a

solid line. The physical elements that change due to a configuration change (i.e. plant,

measurement matrix (H), and actuator matrix (B)) are outlined in a dashed line in

Figure 2-4. Within the estimation loop, the plant model in the estimator and the

measurement model, which contain the sensor configuration, must be updated. The

actuator model is updated through the control allocation algorithm, which converts

the control input into actuator commands. The controllers must also be updated,

whether it is the control law itself that is updated or simply the gains.

Actual System

U B Plant H
j 1 i i - -- --

Actual Measurements

Changes due to Attachment 1

SAN elements to update to
account for attachment

Kalman Gain
Estimation Loop

Figure 2-4: Control system block diagram with necessary elements to update high-
lighted

Each software element can be analyzed to identify the physical properties that are

used which require updating. The physical properties constitute three major model

components: plant model, actuator model, and measurement model. The plant model

contains the physical mass property information of the system: mass, inertia, stiffness,

and center of mass location. The actuator model contains the actuator configuration:

location, direction, and force of each actuator; actuator health; and the location of

the reference point from where the location of the actuator is measured. Similarly,

the measurement model contains the sensor configuration: type of sensor, location

and direction of sensor, sensor health to know which sensors should be used, and

reference point/axis for each sensor.

The property structure p captures the properties that are needed to generate the

model. The structure p is passed to each algorithm in order to calculate its respective

model. The combination of all of the models mentioned above (plant, actuator, and

measurement) constitutes the model of the system. In state space terminology, the

model specifies the A (state transition), B (input), C (output), D (feed forward),

H (measurement), and K (control gain) matrices. In additional to the models, the

property structure also captures the attachment dynamics and status. This allows the

system to identify when a configuration change occurs. Thus, p requires the following

information:

" Plant: mass, inertia, stiffness, and center of mass

" Actuator: actuator configuration (location, direction, force), actuator health,

* Measurement: sensor configuration (location, direction, type), sensor health,

sensor noise properties, reference point/axis

" Attachment: attachment locations, type of attachment, attachment status

The property structure p is specified in Equation 2.1.

m rcg 1

ract Fact Dact Rref -act (21)

Tsensor Fsensor Dsensor Fre5_sensor

alocation atype astatus

The components of the structure are

" mass (m),

* center of mass (cg) specified in the body frame of the object, from the reference

point to the center of mass,

" inertia (I) inertia as given about the reference point for Object A and about

the center of mass for Object B and C,

" actuator locations (Vact) specified in the body frame of the object, from the

reference point to the actuator,

" actuator force magnitude (Fact) specified in the body frame of the object,

" actuator directions (Dact) specified in the body frame of the object,

" actuator reference point (Rregjact) specified from the reference point of the

object,

" sensor locations (isensor) specified in the body frame of the object, from the

reference point to the sensor,

. sensor type (Fsensor) specified in the body frame of the object,

e sensor direction/axis (Densor) specified in the body frame of the object,

" sensor reference point (Rref -sensor) specified from the reference point of the

object

* attachment locations (?;ter face) specified on Object from the reference point to

the interface and on Object B and C from the interface point to the reference

point,

* attachment type (atype) which specifies the dynamics and orientation of the

attachment,

" and attachment status (astatus) which indicates if a module is attached

The property structure includes components that are vectors and matrices, denoted

with an arrow in Equation 2.1. The attachment status field can be binary, or can

have different values associated with different methods of attachment (ex. docked vs

grappled). Nominally, the size of p can be updated dynamically to account for new

properties that may arise due to module attachment. The particular elements of p

are based on the system under consideration. Equation 2.1 captures the necessary list

for the baseline system given in Figure 2-2. For other system, p could be updated to

include environment characteristics, stiffness properties, dimensions, and surface area

of components of the object. In general, p serves as a profile of the system that can

be manipulated in a similar fashion to how the physical system is being manipulated.

A detailed description of the components of p is given in Chapter 4, where the control

system is parameterized to accept these components to calculate control inputs.

2.4 Model Generation

The third step in the approach is to develop the algorithm to aggregate the model,

which allows for the maintenance and generation of the current model. The inputs

to this algorithm are the property structure of the assembler (Pam), the property

Legend

Inputs [j Evaluation ation: > IEvaluutin

Figure 2-5: Model generation flow diagram example for a passive module

structure of the module (pl,), and the interface where the module has been attached.

Upon attachment, two property structure inputs are combined to yield a new property

structure that is representative of the combined system. Figure 2-5 is a block diagram

that shows the flow of the calculation of the different elements of p.

The first step of model calculation in Figure 2-5 is the calculation of the new mass.

The new mass is the sum of the assembler and module masses.

mf = mam + m,1 (2.2)

After the mass is calculated, the next step in Figure 2-5 is the center of mass computa-

tion. The center of mass is recomputed based on the module information, maintaining

the assembler's reference frame. The center of mass of the module is determined in

the assembler's reference frame by using the attachment information.

1
fe, = [mamicg,am + mPI(interface,am + 4) ?'interface,pl + 4#fcg,p)] (2.3)

Equation 2.3 gives the new center of mass with respect to the center of the assem-

bler. The interface location on the module with respect to the center of the module

(Vinterface,pl) and the interface location with respect to the center of the assembler

(interface,am) are used to convert the module center of mass to be with respect to

the center of the assembler. The variable <D is the rotation matrix that converts the

vectors specified in the module's frame into the assembler's frame. It is determined

using the module attachment orientation, which is specified as a quaternion rotation

from the module's frame to the attachment port's frame, and the assembler's attach-

ment orientation, which specifies the rotation from the assembler's attachment port

to the assembler's frame.

Next, the inertia is similarly obtained by using the parallel axis theorem. First,

Equation 2.5 shows the equation to calculate the assembler's inertia about the ref-

erence point, where d is the vector from the assembler center of mass to the desired

reference point 0 (Equation 2.4). The reference point can be chosen arbitrarily and

pre-specified in the model calculation algorithm.

d =r<- cg (2.4)

Ixx,am,cg + mam d2 + d, Ixy,am,cg + mam(did2) Ixz,am,cg + mam(did3)

Iam,o = Imyy,am,cg + mn + d Iam,cd + mam(d2d3)

Izz,am,cg + mam d1 + d2

(2.5)

Equation 2.6 gives the general form for the parallel axis theorem where:

" 0 is the reference point on the assembler, that is maintained throughout the

configuration changes,

" P is the reference point on the module,

" lam+pI,0 is the final aggregated inertia about 0,

" Iam,o is the inertia of the assembler about 0,

* IpIP is the inertia of the module about P,

* b is the shift vector from 0 to the center of mass of the module,

* cpl is the first moment of inertia, given by cpl = mprpcg where repcg is the

vector from P to the module center of mass

* 1 is the 3x3 identity matrix.

Iam+pl,O = lam,O + Ipl,P + mpl (b2 I (1 - - (2.6)

Equation 2.6 can be simplif

Iam+pl,O = Iam,O + IpI,cg + mpl (b2 -b (2.7)

The last items in Figure 2-5 to be calculated are the actuator positions and sensor

positions. These are maintained with respect to the center of the assembler and only

need to be updated if the module includes actuator or sensors. If the module does

include actuators or sensors, their locations are converted to be with respect to the

center of the assembler by using the interface location on the module and on the

assembler.

2.5 Implementation Framework

The approach for integrating Online Model Calculation with a control system design

is accomplished through a framework that allows for generic implementation in a real-

time system. The difference between this framework and a nominal control system

framework is the incorporation of the property structure p as shown in Figure 2-6.

The framework has three main components, as shown in Figure 2-6: initialization,

control loop, and reconfiguration loop.

The purpose of the initialization component is to initialize p and the baseline

assembler model. The assembler starts out with its original model, without any

module attachments (Object A configuration). The center block represents the model,

M. This model is maintained throughout the assembly. The model is an input to the

control loop to run the parameterized estimator, controller, and control allocation

algorithms. The control loop is responsible for providing the actuator commands,

and would nominally form the entirety of the control system if no reconfiguration is

included.

In the reconfiguration loop, the system is continually checking if p has changed.

Specifically, if the attachment status variable changes, then a configuration change has

occurred. The property structure of the module is obtained either by communication

with the module or from prior knowledge. The new model is calculated by using

the property structures from the assembler (pam) and the module (ppg). The central

model, M, is updated with this new model, as shown in Figure 2-6. The framework

is setup such that the control system always receives the latest model to be used

in the estimator, controller, and control allocator. The continuous monitoring of the

property structure and maintenance of the model constitutes the reconfiguration loop.

2.6 Conclusions

A five step approach is given in this chapter to develop an Online Model Calculation

design. The description of the steps is given via example on a sample assembly sce-

nario. The generalized configuration developed in this work is for the scenario of a

rigid body assembler that can attach to either flexible or rigid modules. This general

configuration is carried throughout the approach description, including Chapters 4

and 5. Though this work considers a single assembly architecture, the approach for

developing this algorithm, as well as the parameterization of the control system algo-

rithms can be extended to other assembly architectures. The assembly architecture

assumptions lie in the specification of the baseline system and in the definition of the

components of p.

Inherent assumptions of Online Model Calculation that limit its generality are as

follows:

Model (M)

No

Re-Generate Model
Yes

(M) +--- Obtain p

Reconfiguration Loop

Figure 2-6: Block diagram of reconfiguration framework

" All necessary mass property information is known and pre-coded to be avail-

able during the assembly mission. In practice, this requires significant ground

development work to properly identify all necessary properties. Also, signif-

icant design and implementation may be required to store and transmit the

properties.

* The aggregated dynamics can be calculated by relatively simple math manipu-

lation of the module properties. Though this is valid for simple systems, par-

ticularly rigid body systems, some assembly architectures may exist with such

complex assembler or module dynamics that an aggregated model to required

accuracy can not be generated using just the module properties.

" The control system can maintain desired performance in all configurations. If

the control system is not design to handle a particular configuration, successful

maneuvering will not occur even if the proper model is generated.

" The control system can be expressed as a function of the property structure

p. The framework shown in this chapter assumes that the control system can

take in the property structure and calculate the necessary parameters. Not all

control systems are designed such that parameters, such as control gains, can

be written as a function of mass properties. Extending this parameterization

to complex control systems which require extensive simulation modeling for

parameter selection is difficult.

Despite these limitations, Online Model Calculation provides a critical first step

in performing autonomous model generation. The novel contributions of this chapter

are the development of the framework for re-calculating the model online and the de-

velopment of a property structure p. The property structure p captures the necessary

mass properties of the system in a form that is easily transmitted between vehicles.

This enables the Online Model Calculation framework depicted in Figure 2-6. The

consolidation of all mass property information into a single structure p allows for a

simplified monitoring and maintenance framework. The control system framework is

set-up such that the attachment status variable in the property structure is contin-

uously observed. If the variable changes value, the property structures are used to

generate the new model. The parameterization of all of the control system algorithms

allows for easy propagation of the model into the control loop. These elements of (1)

capturing relevant mass properties, (2) framework to monitor attachment status, and

(3) an algorithm to calculate the new model are needed for any autonomous model

generation algorithm. Online Model Calculation provides an initial design for au-

tonomous model generation, that can be augmented and integrated with other model

generation techniques as more research is performed in this area.

Chapter 3

Hardware Overview

This chapter provides a description of the hardware facilities used for this research.

The key hardware and software components are briefly described so that the reader

is familiar with the terms and references present throughout the thesis. Hardware

testing is used to confirm the simulation results on a realistic system and properly

validate the algorithms developed in this work.

The main hardware testbed in this work is the Synchronized Position Hold, En-

gage, Reorient Experimental Satellites (SPHERES) testbed. SPHERES is a testbed

designed to provide a fault-tolerant environment for the development and maturation

of control and estimation algorithms for formation flight, docking, autonomy, and re-

configuration. The SPHERES testbed is utilized in three test environments. The first

environment is a flat table ground testbed. The second environment is a microgravity

flight testbed operated by astronauts on the ISS. Finally, the third environment is

a flat floor ground testbed called SWARM (Self-Assembling Wireless Reconfigurable

Modules), which includes the attachment of a flexible beam to explore control and

estimation issues associated with flexible motion.

3.1 SPHERES - Ground and ISS

The SPHERES testbed consists of self-contained, identical, free-flyer satellites (Figure

3-1). Three satellites are located on the ground, at MIT Space Systems Laboratory,

Figure 3-1: SPHERES satellite

and three satellites are located on the ISS. The ground satellites are used to test

algorithms prior to uplink to the ISS. Each SPHERES satellite is a complete space-

craft, equipped with metrology, propulsion, computing, and communication capabil-

ity. Each satellite has a Velcro panel, which serves as a rudimentary docking system.

Additionally, each satellite has an expansion port, which is used on the ground satel-

lites to augment the functionality by attaching external payloads. The components

of the SPHERES testbed are the satellites, a laptop computer that serves as a ground

station, and five beacons that form the Position and Attitude Determination System

(PADS). The five beacons define the working area in which measurements can be

made and provide the global reference frame. The following sections describe the

aspects of the SPHERES testbed that were directly used in this work. Detailed infor-

mation about the SPHERES satellites can be found in References [29], [66], and [13].

Only elements specifically used in the work will be discussed. The elements for this

work are mass properties, communication, sensors, expansion port, and propulsion.

Table 3.1 gives the pertinent mass properties of the SPHERES satellite and Figure

3-2 shows the reference body frame of the satellite.

3.1.1 Communication

The SPHERES communication system was important for this work because some of

the algorithms developed in this work require inter-satellite communication. SPHERES

uses two communication channels. The SPHERES-to-SPHERES (STS) channel is

Table 3.1: SPHERES satellite mass properties

Center of Mass (mm)
X Y Z

4.3 0.48 -1.19 1.08

Body Frame Orientation Center w.r.t. Geometric Center(m)
X Y Z X Y Z
Expansion Port Battery Door Regulator Knob 0 0 0

Inertia (kg m2)

Ixx Iyy Izz Ixy Ixz Iyz

2.29E-2 2.42E-2 2.14E-2 9.65E-5 -2.93E-4 -3.11E-5

Velcro Location (m) Expansion Port Location (m)
X Y Z X Y Z

-0.1023 0 0 0.1023 0 0

Ultrasound Rx Gyroscopes
Range Resolution Noise Range Resolution Noise

(m) (mm) (mm) (0/s) (/s/count) (/s/(Hz)(1/2))
3 10 2 i83 0.0407 0.05

Accelerometers Thrusters
Range Resolution Noise Number Thrust Variability

(mg) (pg/count) (pg rms) (kgms-2) (kgms-2)
±25.6 12.5 7 12 0.11 0.01

Figure 3-2: SPHERES Body Frame Axes

Mass (kg)

used for inter-satellite communication, enabling cooperative and coordinated maneu-

vering between satellites during tests. The SPHERES-to-Laptop (STL) channel is

used to transmit data and telemetry to the laptop station. Each channel is on an

independent radio frequency, either 868 MHz or 916 MHz. More detail can be found

in Reference [66]. The communication bandwidth is limited to a total of 70 packets

per second, where each packet is 32 bytes. This must be shared among all of the

satellites in operation. The communication delay between sending and receiving is

usually on the order of a few milliseconds, but can be up to 200 ms at worst case

due to Time Division Multiple Access (TDMA) protocol. The maximum frequency

of data transmission of the SPHERES communication system 5 Hz. The amount and

frequency of data transmission possible with the SPHERES hardware was a limiting

constraint in the implementation of the algorithms. Modifications in implementation

were necessary to specifically account for these constraints, which are described in

detail in Chapter 5.

3.1.2 Sensors

The sensor configuration of the SPHERES testbed was used heavily in the develop-

ment and implementation of estimation algorithms. The SPHERES PADS consists of

inertial sensors and ultrasound beacons and receivers. Inertial sensors include three

single-axis gyroscopes and three single-axis accelerometers, providing three-axis iner-

tial measurements. The ultrasound system consists of 24 ultrasound receivers and one

beacon on each satellite. There are five external wall-mountable beacons. Estimation

is based on sequenced time-of-flight measurements from the beacons to the receivers

to determine a range. A state estimator is then used to provide real-time position,

velocity, attitude, and angular rate information for each SPHERES satellite up to 5

Hz (Figure 3-3). More detail can be found in References [29] and [56].

The accelerometers are used in this work as a velocity truth measure. The test

volume, framed by the location of the beacons, is important because it constrains the

maneuvering space. Thus, the waypoints and target locations for the experiments

described in Chapter 5 were constrained to be within the test volume defined by the

Time-of-flight range Wall-mounted
measurements ultrasound

beacons

200 /
150,

N
1 0 0 t

50

200

0
100 50

100
150

0 250 200
x [cm] y [cm]

Figure 3-3: Geometry of PADS. Beacon locations define operational volume. Time
of flight ranging used from at least four beacons to get full state determination.

location of the five beacons.

The ultrasound sensor placement is specified here because this geometry was used

to develop a reconfigurable estimation scheme that combines ultrasound measure-

ments from multiple satellites (described in Chapter 4). The physical locations of

the ultrasound receivers are given by Table 3.2. Ultrasound receivers are grouped in

sets of four located on faces around the satellite. The faces are identified by their

location in the body frame. Due to the geometry of the placement of the face (along

one axis and centered in the other two axes), faces can be identified by a single body

axis specification (e.g. +X, -Y). RDO equals 0.1023 m, which is the distance from

the center of the SPHEREs satellite to the face on which the receivers are located.

RD1 equals 0.0392 m, which is half the distance between receivers on a single face,

in the horizontal direction. RD2 equals 0.0394 m is the half of the distance between

receivers on a single face in the vertical direction. Finally, RD3 equals 0.1026 m which

is the distance from the center of the SPHERES satellite to the +Z face. Figure 3-4

shows the receiver distances schematically. Figure 3-2 shows the body frame of the

RD1

/D

/RD3

-I - -1--- - ~ - --- -

RD2 RDO

Schematic of Single Face with 4 receivers Schematid of SPHERE

Figure 3-4: Geometry of Receiver locations on a face

satellite, as a reference. The horizontal and vertical distances specified in Chapter

3-4 correspond to the body frame depending on the face the receivers are located on.

For example, if receivers are located on the +X face, the vertical direction is the Z

and the horizontal distance is the Y direction.

3.1.3 Expansion Port

The SPHERES expansion port provides the mechanical mounting, serial communi-

cation, and a power interface to augment the current functionality of the satellite.

Figure 3-5 shows the expansion port uncovered on the SPHERES satellite. The

expansion port connector enables the payload to interface with the satellite's main

processor and metrology sensors. Thus, the payload is able to acquire and transmit

information back and forth through the interface. This interface is used extensively

on the ground with a number of payloads that have been designed, such as a tether

mechanism [15], optical pointing payload [48], and a universal docking port [62]. Two

particular payloads that are used heavily in this work are the Universal Docking Port

(UDP) (Figure 3-7) and the SWARM propulsion module. The SWARM propulsion

module is described in more detail in Section 3.2.

The UDP is a genderless docking port that enables a rigid attachment to another

Table 3.2: Ultrasound Receiver Locations
SPHERES satellite

Face Rx Number

with respect to the geometric center of the

+X 1 RDO -RD1 RD2
+X 2 RDO RD1 RD2
+X 3 RDO RD1 -RD2
+X 4 RDO -RD1 -RD2

+Y 5 RD2 RDO -RD1
+Y 6 RD2 RDO RD1
+Y 7 -RD2 RDO RD1
+Y 8 -RD2 RDO -RD1

+Z 9 -RD1 RD2 RD3
+Z 10 RD1 RD2 RD3
+Z 11 RD1 -RD2 RD3
+Z 12 -RD1 -RD2 RD3

-X 13 -RDO RD1 -RD2
-X 14 -RDO RD1 RD2
-X 15 -RDO -RD1 RD2
-X 16 -RDO -RD1 -RD2
-Y 17 -RD2 -RDO RD1
-Y 18 RD2 -RDO RD1
-Y 19 RD2 -RDO -RD1
-Y 20 -RD2 -RDO -RD1
-Z
-Z
-Z
-Z

RD1
RD1
-RD1
-RD1

-RD2
RD2
RD2

-RD2

-RDO
-RDO
-RDO
-RDO

Figure 3-5: Expansion port on the SPHERES satellite

Repeatability of UDP Latching
Trial Number vs. Variability in Final Configuration

1.5 -

0

I-

0
U Bas #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

C-0.5
LL

CX

S -1

-1 .5 ~-

Tial WiNuierf hUP~Latching Tests

Figure 3-6: Results for UDP accuracy characterization

UDP. Each UDP has a metrology ring, with three beacons and three receivers. These

sensors are used in addition to the SPHERES satellite's sensors in a estimator that

provides the state of the satellite relative to other UDPs. The mechanical design of

the UDP is a pin-hole mechanism. The pin enters the hole and trips a photo sensor,

which initiates the two counter-rotating cams that close to grip the pin. The UDP

also has an electromagnet to aid in smooth docking and undocking. Accuracy testing

performed on the UDP revealed a precision of approximately 2' about the X axis,

0.267' about the Y axis, and 0.10 about the Z axis, as shown in Figure 3-6 [59]. More

detail can be found in Reference [62].

The UDP is important because it provides a rigid, precise attachment mechanism

compared to the Velcro that is present on the SPHERES satellites. The UDP was

used extensively for the tests performed in the SWARM environment, described in

Chapter 5. The UDP is a critical component for assembly, particularly future ISS

tests, because unlike Velcro, it allows for both docking and undocking.

US transmitter
AhMMW FNUB

Eubmae Hle~

IR transmitter IR receiver

Figure 3-7: Universal Docking Port. Left: Picture of hardware, with sensors labeled.
Right: CAD drawing of UDP

3.1.4 Propulsion

Each satellite has the ability to maneuver in six degrees of freedom (DOF) propelled

by a cold-gas thruster system fueled by C02. The satellite has a single propellant

tank with 170g of liquid C02. This fuel amount restricts the maneuvering time of the

tests performed in Chapter 5. In particular, the assembly demonstration tests used

nearly a full tank for a single run. As assembly testing expands, the fuel available

will become a limiting constraint on the hardware.

Twelve thrusters are symmetrically positioned around the satellite to provide con-

trol about all three axes, enabling simultaneous attitude and translation control. The

layout of the thrusters are shown in Figure 3-8. The numbered arrows in Figure 3-8

indicate the direction in which the gaseous C02 is expelled by that thruster. The

thruster geometry is specified by the direction of the force and torque produced by

that thruster. For a single satellite, the geometry is given by Table 3.3. For multiple

SPHERES satellites attached to each other, the geometry is determined depending

on how the satellites are attached. Table 3.4 gives the thruster geometry for two

satellites connected by their -X (velcro) face. In this configuration, one satellite is

designated the assembler. This satellite is responsible for determining the thruster

configurations for both satellites. Thus, the thruster configuration is specified in the

US re ceiver

Thruster, indicating 3 +X 9

exhaust directIOn1I

Figure 3-8: Two-dimensional exploded view of thrusters one the SPHERES satellites
[29]

assembler's frame. The thruster configurations specified in Table 3.3 and 3.4 are used

as input to the control allocation algorithms described in Chapters 4 and 5. These

tables can be used to determine the proper thruster to fire to generate the desired

force or torque. For example, from Table 3.3, to generate a pure force in the +X

direction, one would fire thrusters 1 and 2. To generate a pure torque about the +Z

axis, one would fire thrusters 3 and 10.

The thruster geometry has significant implications for the control system, par-

ticularly when multiple satellites are attached. The SPHERES thruster geometry is

the minimal set required for six DOF motion. When two satellites are connected, on

any primary face, two thrusters on that face become blocked by the other satellite.

The plume impingement effects cause the thrusters on the attachment face to become

ineffective. The result is that the axis of attachment is an uncontrollable and unsta-

ble direction, if only a single SPHERES satellite's thrusters are used. Thus, in this

thesis, when two SPHERES satellites are connected, thrusters on both satellites are

used so that the system is still controllable.

Table 3.3: Mapping of the SPHERES thrusters to Forces/Torques on the satellite

Thruster Force Torque
Number x y z x y z

1 +1 +1
2 +1 -1
3 +1 +1
4 +1 -1
5 +1 +1
6 +1 -1
7 -1 -1
8 -1 +1
9 -1 -1
10 -1 +1
11 -1 -1
12 -1 +1

3.1.5 Software

SPHERES software consists of an operating system (SPHERESCore) and additional

user-selectable library functions. SPHERESCore is responsible for handling inter-

rupts and interfacing with the hardware. The library functions provides guest sci-

entists with the ability to use pre-defined utility functions to expedite programming

testing [241. The coding language used on the hardware is C, while code for the sim-

ulation can be programmed in C or MATLAB. It is through this operating system

framework that the reconfigurable algorithms developed in this work are implemented.

In addition to updating SPHERESCore functionality, this research also makes use of

some of the library functions to support testing. Examples of the library functions

used include math utilities, data compression algorithms, and basic controllers.

Two updates were made to SPHERESCore. The first update was to develop a

reconfigurable estimator that could handle multiple configurations. This estimator is

described in detail in Chapter 4. The second update was to update the satellite phys-

ical properties file. This file loads the satellite mass and thruster properties, such as

mass, inertia, center of mass, thruster strength, thruster direction, and thruster loca-

tion. The values stored in Flash memory (specific to each satellite) are automatically

loaded when a satellite is reset. The satellite-specific flash values are maintained in

Table 3.4: Thruster directions of two SPHERES satellites attached via their -X faces,
as Forces/Torques matrix, in Assembler satellite's frame. Thrusters on the Assembler
are denoted with an 'A', while thrusters on the Payload are denoted with a 'B'

Thruster Force Torque
Number x y z x y z

1/lA +1 +1
2/2A +1 -1
3/3A +1 +1
4/4A +1 +1
5/5A +1 +1
6/6A +1 -1
7/7A -1 -1
8/8A -1 +1
9/9A -1 -1

10/10A -1 -1
11/11A -1 -1
12/12A -1 +1
13/1B +1 +1
14/2B +1 -1
15/3B +1 +1
16/4B +1 +1
17/5B +1 +1
18/6B +1 -1
19/7B -1 -1
20/8B -1 +1
21/9B -1 -1
22/10B -1 -1
23/11B -1 -1
24/12B -1 +1

the file spheres-physical-properties. c. The mass and thruster properties are assigned

as working variables, local to this file, and accessed by 'get' and 'set' functions. The

existing functionality only includes values for a single SPHERES satellite. Through

the research presented in this thesis, this file was updated to include multiple con-

figurations. The functions in this file were used as the primary interface to access

the mass properties of the satellites, which is a critical part in the reconfiguration

framework described in Chapter 2.

3.2 SWARM

The third testing environment is the SWARM environment. SWARM was developed

as a ground extension to the SPHERES testbed. The purpose was to enhance the

capability of the nominal SPHERES testbed to fully test algorithms related to au-

tonomous assembly, on the ground. The SWARM environment was important to this

work because of the flexible beam attachment. The presence of a flexible beam mod-

ule allowed the algorithms developed in this work to be validated not only for a rigid

module, but for a flexible module as well. This is important because it expands the

generality of this research, demonstrating that the algorithms developed can accom-

modate varying stiffness properties as well as mass properties. The SWARM testbed

consists of the SPHERES satellites, UDPs, a structural base, a propulsion module,

and a flexible beam. The SPHERES satellites and UDPs are mentioned in a previous

section of this chapter. The section describes the remaining three components.

3.2.1 Structural Base

The structural node is a necessary structural augmentation to the SPHERES satel-

lite to enable the satellite to attach to more than one module. It is a plate with

mounting posts attached. Figure 3-9 shows a structural base with a SPHERES satel-

lite attached. The SPHERES satellite sits in the center of the node, resting on a

square plate. On all four sides, there are connections where a mounting post can be

attached. Figure 3-9 shows two mounting posts attached, where the right post has

Figure 3-9: SPHERES satellite on a SWARM structural base

a UDP attached to the top of the post. The structural base gives the SPHERES

satellite the ability to have multiple docking ports attached. This allows for more

seamless assembly, as the SPHERES satellite can now act as either the assembler or

module.

3.2.2 Propulsion Module

Attached to the bottom of the plate of the structural base is the SWARM propulsion

module. The propulsion module is connected to the satellite via the expansion port,

described previously in this chapter. The SPHERES thrusters were designed to pro-

vide enough force to maneuver in microgravity. However, the force of the SPHERES

thrusters are insufficient to maneuver on the ground when modules are attached.

Therefore, the SWARM propulsion module was designed to provide additional force

in the horizontal plane during ground testing. Figure 3-10 shows the placement of

the propulsion module with respect to the structural plate. The placement of the

thrusters below the SPHERES satellite ensures that no plume impingement effects

occur. The propulsion module contains sixteen thrusters, four in each direction, +X,

Figure 3-10: SWARM propulsion module, attached to the structural node

+Y, -X, and -Y. Table 3.5 gives the thruster configuration for the propulsion module.

Four thrusters are generally fired simultaneously, with an effective thruster force on

the order of 1 N.

The SWARM propulsion module is important to the research in this thesis for two

reasons. First, it enables maneuverability in the ground environment. Without this

additional propulsion module, the SWARM tests described in Chapter 5 would not

have had enough thruster authority to maneuver successfully. Second, the method

of accessing and commanding the propulsion module thrusters, which are external to

the SPHERES satellite, demonstrate the parameterized control allocation developed

in Chapter 4. Similar to the SPHERES satellite thruster configuration, Table 3.5 is

also an input into the control allocation algorithm developed in this work.

3.2.3 Flexible Beam

One of the main objectives of the SWARM testbed is to enable control and assembly of

flexible structures. Thus, the flexible beam was designed with two main requirements.

The first requirement was that the deflection of the beam when excited by a nominal

SPHERES firing pattern be larger than 1 cm, which is the accuracy necessary for

docking using the UDPs. The second requirement was that the first mode frequency

should be less than 0.5 Hz. This requirement arose because the maximum control

Table 3.5: SWARM Propulsion Module Thruster Force Directions

Thruster Force Torque
Number x y z x y z

1 -1 -1
2 -1 +1
3 +1 -1
4 +1 +1
5 +1 -1
6 +1 +1
7 -1 -1
8 -1 +1
9 -1 -1
10 -1 +1
11 +1 -1
12 +1 +1
13 +1 -1
14 +1 +1
15 -1 -1
16 -1 +1

rate of the SPHERES is roughly 1 Hz, thus, using the Nyquist criterion, the nominal

observable frequency of the beam is 0.5 Hz. The flexible beam in SWARM is a

four link beam, consisting of of four Aluminum links, with torsional springs made

from steel shims connecting the links. Figure 3-11 shows a schematic of the physical

beam with dimensions, while the hardware setup is shown in Figure 3-12. This beam

configuration was experimentally tested to have a first modal frequency of 0.235 Hz.

A LED is attached to the free end of the beam and is used to estimate the beam

deflection, using a camera that is mounted to the SPHERES satellite.

This thesis makes use of previous work performed using the SWARM environ-

ment. Katz [42] developed an estimator to track the deflection of the beam using

the LED/Camera system, which is used as developed in this work. The model of the

beam used in this thesis is a simplified representation which models the beam as a

single flexible link. The beam is then represented with a approximated length and

stiffness value. For more information on the derivation of the beam dynamics, please

refer to Katz [42].

Katz also developed 2D adaptive controllers to maneuver with the flexible beam.

Camera 0.347m 0.375m 0.375m 0.347m
bI. bI

a I

aA

LED

K --

1.27m

Figure 3-11: SWARM Beam Configuration

Figure 3-12: SWARM with Beam attached

One of the main adaptive controllers used in this work was developed by Katz as a

2D controller and tested only in simulation. This work upgrades the controller to be

3D and conducts tests in simulation and hardware.

3.3 Summary

The SPHERES testbed was the hardware and software baseline for this study. Not

only were the algorithms developed implemented on SPHERES, but the model of the

SPHERES satellites is used throughout this work as a representative assembler. The

content of this chapter provided an overview of the main aspects of the SPHERES

testbed as they relate to this work. To get a detailed understanding of the aspects

mentioned or how they interact, please consult the references specified. Chapters

4 and 5 provide more detail on the software algorithms used on SPHERES, with

implicit reference to the hardware components described in this section.

Chapter 4

Online Model Calculation: Control

System Parameterization

Chapter 2 provides the framework and implementation approach for Online Model

Calculation. Demonstration of Online Model Calculation requires implementation

of a control system to take in the model and calculate the corresponding control

inputs. To accomplish the seamless propagation of the model into the control system,

the control algorithms are parameterized to accept the property vector p. Using the

property vector as an input, the control algorithms can generate the necessary control

parameters specific to the model.

The control system considered in this work is a simple design geared toward

demonstrating the parameterization feasibility. The baseline control system used is

based on the SPHERES hardware testbed described in Chapter 3. Three main con-

trol system algorithms are discussed in the following sections: estimator, controller,

and control allocation algorithms.

4.1 Estimator

The research in this thesis considers an Extended Kalman Filter (EKF) as the base-

line estimation algorithm for the assembler. This type of estimator is routinely used

in industry due to its good performance and ease of implementation. Four aspects of

the estimator are considered for parameterization: state propagation, actuator prop-

agation, sensor measurement incorporation, and initialization. This section begins

with a brief review of the EKF algorithm, then addresses each of the four aspects of

the estimator.

4.1.1 EKF Review

Consider a generic second order system given by Equation 4.1, where the dynamics

vector q represents the position and attitude of the assembler, J is the mass/inertia

matrix, D is the damping or friction matrix, and G is the stiffness matrix. A state

vector x can be written as x = [q q]T. The state space representation of this

model is given by Equation 4.2. The state transition matrix is given by A and B is

the actuator matrix.

J(q, q)4 + D(q)4 + G(q) = n (4.1)

Xt+i = A(xt) + B(xt, ut) (4.2)

The EKF is a two step process of first predicting the estimate through propagation,

then updating the estimate based on measurements. The Predict step propagates

the estimated state forward from time t - 1 to time t. The Update step updates

the predicted state at time t with measurements from time t. This is depicted in

Equations 4.3 and 4.4, with the covariance (P), process noise (Q), Kalman gain

(K), measurement matrix (H and h), measurement (z), and sensor noise (R). The

measurement matrix h is used to convert the state into an estimated measurement,

while H is used to propagate the covariance.

Predict = A(s- 1 |t_j1) + B(st_ijt_i, ut) (4.3)
Pt I_1 = APt_1 |t_1 A T + Qt

xtt = xeit-i + Ktyt

Update Kt = Pt1 1H' (HtPtIt 1HT + Rt) (4.4)
yt = zt - h(se l_1)

Pt t = (I - KtHt)Ptlt_1

A change in the model affects both Predict and Update steps in the estimator.

Four aspects of the estimator are parameterized with respect to the property vector

p. Parameterization to account for changes to the A matrix are considered in Section

4.1.2, while the parameterization to account for changes to the B matrix are consid-

ered in Section 4.1.3. Parameterization to account for changes to sensor configuration,

such as number or type of receivers, is addressed in Section 4.1.4. Finally, Section

4.1.5 addresses initialization issues when estimator switches between models.

4.1.2 State Propagation

State propagation is a critical part of the estimation framework. Therefore, to main-

tain the estimator performance, it is important to parameterize the state propagator

to seamlessly accept the model.

The structure of the A and B matrices from the state space representation in

Equation 4.2 stays the same for any second order system with respect to the dynamics

matrices given in Equation 4.1. A is the state transition matrix, which describes how

the state changes over time under no external forces. The state propagation must be

updated if there are changes to x or A. To account for a changing A matrix, the J,

D, and G matrices can be parameterized such that they are properly calculated for

any combination of the objects in the baseline physical system (Figure 2-2).

The steps of the derivation of the parameterized dynamics matrices are based on

the Euler-Lagrange method.

1. Determine complete state vector as a function of the presence of an Object

2. Determine the Lagrangian L, where L = T - V

(a) Calculate the kinetic energy (T)

(b) Calculate the potential energy (V)

3. Extract J by J = A dd4 d4

4. Extract D using J

5. Extract G by G = ddq

6. Determine A matrix based on derived forms of J, D, and G

Determine state vector

Equation 4.5 gives the dynamics vector q, which includes the three element position

vector of Object A (rA), the attitude of Object A (0). The variable 6 is a three

element vector that captures the deflection of Object B in the x, y, and z directions.

The deflection is only included in the state vector if Object B is attached. The variable

SOB is boolean variable that indicate whether Object B is attached (SOB= 1) or not

(SOB = 0). The attitude of Object A (0) can be represented as a three element vector

with the x, y, and z Euler angles, or as a four element quaternions vector. In this

thesis, tests that are run in 2D use Euler angles for simplicity, while 3D operations,

such as on the ISS, use quaternions.

T

q SO B 0 S] (4.5)

These components included in q are selected based on what properties must be

monitored when the Objects are rigidly attached. The position and attitude of Object

A are necessary in all configurations. The inclusion of the deflection of Object B is

necessary because the deflection impacts the maneuvering of Object A, when Object

B is attached, and it cannot be computed based on Object A dynamics. The position

of Object C does not need to be included in the state vector because it's state can be

completely defined by Object A's state, and Object B's deflection if in Object A+B+C

configuration. Even though Object C's position is not included in the state vector, its

contribution to the dynamics are included in the calculation of the dynamics matrices.

The corresponding state vector x = q q ,where q is given by Equation 4.6.

qA ~PB TA 0
A B (4-6)

Calculate Lagrangian and dynamics matrices J, D, and G

To calculate the dynamics matrices (J, D, and G), one must (1) calculate Object

positions and velocities; (2) use the positions and velocities to calculate kinetic and

potential energy; (3) form the Lagrangian using the kinetic and potential energy; and

(4) calculate the dynamics matrices using the Lagrangian.

Equation 4.7 defines the global position of each object. The variables of Equation

4.7 are defined as follows:

" The variables FA, #B, and ?c are the three element position vectors for Object

A, B, and C respectively. The variables rB and rfc are written in terms of TA

because they are rigidly attached and Object A is the central reference frame.

" The variables WB and oc are boolean variable that indicate whether Object B

or C is attached.

" The matrix d specifies the three dimensional rotation matrix based on the input

angle vector (e.g. t(G)).

* The variable raA is the distance from the center of A to the attachment location

where Object B is attached.

* The variable rcgB is the distance from the attachment location on B to the

center of mass of B.

" The variable icgc is the distance from the attachment location on C to the

center of mass of C.

. The notation Ox indicates the derivative of the angle arranged to form the

0 - 0 y
cross-product when multipled to another vector, O = 0z 0 -Ox

-Qy ox 0

]T

rB TA + PBV(O) [TaA + 9(gB

rC = TA ± C(O) [aiA + rcgC + PB'0 LB]

Equation 4.8 defines the global velocity of each object, by taking the derivative of

Equation 4.7. The variables TA, TB, and ic are the three element velocity vectors for

Object A, B, and C respectively.

rA= '

TB A+ BOB a+ () [c + gB] + WBZ gB] 8

= TA + c$xt([aA + cgC + BLB + WCP9() [Bb()LB

The position and velocity are used to calculate the kinetic and potential energy.

The Lagrangian (L) is the difference between the kinetic energy (T) and the potential

energy (V), L = T - V. The kinetic energy T can be determined by summing up the

translational and rotational kinetic energy for each Object, as shown in Equation 4.9.

The variables mA and 'A are the mass and Inertia of Object A, mB and IB are the

mass and Inertia of Object B, and mc and 1c are the mass and Inertia of Object C.

T = Ttrans + Trot

Trans = ImA'Tf A + WB mBZBZB + SC CmCZcC (4.9)

Trot = {$6IS + B B + C TIC

By substituting the velocities from Equation 4.8 into Equation 4.9, the kinetic

energy is expressed with respect to the state vector specified in Equation 4.6.

The potential energy (V) is due to either gravitational or spring forces. For this

thesis, gravitational forces are neglected as assembly generally occurs in close proxim-

ity operations or deep space (e.g. Lagrange point). Also, autonomous assembly occurs

fast enough that orbital drift, J2 effects, and similar perturbations can be neglected.

For the baseline system specified in Chapter 2, only Object B has potential energy

associated with deflections. Equation 4.10 gives the potential energy associated with

the deflections in Object B based on the spring constant matrix K.

1
V = Vgrav+Vspring = 0 +<p2o'Ko (4.10)

The J matrix is defined as J = 2-d. J is obtained by differentiating the kineticd4 d4q

energy expression given in Equation 4.9 with respect to the state vector (Equation

4.6) and expressing it in matrix form.

The D matrix can be computed using the fact that 4T (J - 2D) 4 is a skew sym-

metric matrix. D, an n by n matrix, is defined in Equation 4.11, where n is the size

of q.

1 n dJi 1 dJik _dJk(
Dij 4 + - 4kd (4.11)

2 k=1 dqk 2 dqj dqi

The complete D matrix can be determined by individually calculating the elements

of D from Equation 4.11 using the expression obtained for J.

The G matrix is defined as G = (and can be obtained by arranging the potential

energy expression given in Equation 4.10 into a matrix form with respect to the state

vector and differentiating.

Determine parameterized A matrix

The A matrix is parameterized to be generated from the property vector p, as given

in Equation 4.12. The A matrix can be calculated for the specific configuration from

the dynamics matrices J, D, and G, which are a function of the property vector p.

A = f (p) = f(J(p), D(p), G(p)) (4.12)

The general differential equation can be rearranged into a state space representa-

tion, where the state vector x = [q 4 .>

x=Ax + Bu

0 1 0 (4.13)

_J- 1 G -J-1D J l
The selection of the state vector in Equation 4.13 arranges the position elements

for all objects before the derivative elements. However, since Object A is always

present, it is beneficial to arrange the state vector, such that the elements for Object

A are at the top, followed by the elements for Object B and C. This makes the

addition and removal of states associated with configuration changes simpler since

the indices for Object A will not change. The state vector for this arrangement is

given in Equation 4.14, where v = i and w = 0.

X =x y z ve vx vz 6, 0x , O6 WX WY Wz 6 x,B Oy,B Ez,B 6 x,B 3 y,B 6z,B

(4.14)

4.1.3 Actuator Propagation

In the Predict step of the estimator, the actuator model is incorporated into the

velocity estimate to improve accuracy when the actuators are firing. The actuator

propagation calculates the acceleration generated by the actuators using mass prop-

erty information. The actuator propagation must be parameterized to take in the

current mass and actuator configuration and output the new velocity estimate. It is

assumed that that the assembler is commanding all actuators, and thus has knowledge

and control of all actuators, even if they are are not located on the assembler. The

actuator propagation algorithm is parameterized to take in the actuator magnitude

(Fact), locations (fact), and directions (Dact), as well as the mass (m) and center of

mass (fc) and output the velocity estimate V' (Equation 4.15).

-_ f (P) > = f (Fact, faCtct, 'n, fcg) (4.15)

The first step in the actuator propagation algorithm is to determine the actuator

forces present at the current time. Equation 4.16 shows the equation to determine

the actuator forces present, where

* Fact is the magnitude of the force produced by each actuator. It is a vector

whose length is equal to the number of actuators.

* Act, is vector of boolean variables that indicate the on (currently firing) or off

(not firing) status for each actuator. It is a vector whose length is equal to the

number of actuators. Act, is an input to the estimator and not an element of

the property vector p.

* f is the force imparted onto the system by each actuator. It is a vector whose

length is equal to the number of actuators.

* k is a subscript used to denote a specific actuator.

fA = Fact,kActon,k (4.16)

Next, if there are any actuators on, the body impulse generated for the current

time step is calculated using the actuator configuration. Equation 4.17 shows the

body impulse generated by the thrusters that are on, where Dact is a nx3 matrix (n is

the number of actuators) that has the x, y, and z force directions produced for each

actuator. The impulse is then converted from the body frame to the global frame

using the current attitude estimate.

imPBody =i5Lcfdt (4.17)

The actuator propagation must also account for changes in center of mass. A

change in center of mass (Itc) has an impact on velocity because actuator commands

can cause a torque as well as a force. Equation 4.18 gives the torque impulse gen-

erated by the actuators. The variable DT is a nx3 matrix of the x, y, and z torque

directions determined by DT Fact x Dact, where Fct is a nx3 matrix of position

vectors corresponding to the locations of the actuators with respect to the center of

the assembler.
-+1T

impT = x (D) (4.18)

Finally, Equation 4.19 shows how the velocity is updated to account for the im-

pulse using the mass and inertia of the system, where v+ is the velocity estimate after

actuator propagation and v- is the velocity estimate before actuator propagation.

S= mpobaI +mp (4.19)
m regm

4.1.4 Measurement Incorporation

A change in sensor configuration can be due to the addition or removal of new sensors

or a change in sensor type. The measurement matrices H and h as well as the sensor

noise matrix R, as given in Equation 4.4, must be parameterized to account for

changing sensor characteristics. To account for the changing sensor configurations,

these matrices must be generated online based on the information in the property

vector p.

A key issue to consider when incorporating new sensors into the estimator is

whether the additional measurements will add value. The addition of multiple esti-

mates of the same position can help to reduce the error of the estimate, but also adds

noise associated with each sensor. Also, the placement of the sensors is important

because the farther the sensor is from the point one is trying to estimate, the more

errors arise when trying to convert from the location estimated to the located sensed.

The exact mapping of the H matrix is heavily dependent on the type of sensors

used. Two types are considered in this work, inertial and position sensors.

Inertial Sensors

Inertial sensors measure the angular rotation rate or acceleration of the object with

respect to a body fixed frame. Examples of inertial sensors are gyroscopes and ac-

celerometers. Gyroscopes are used as the baseline inertial sensor in this work to

demonstrate parameterization. Gyroscopes provides a direct measurement of the an-

gular rates of the vehicle. Equation 4.20 shows the parameterization of the gyroscope

measurements, where p is the axis along which the gyroscope is measuring, # is the

gyroscope bias, and x is the gyroscope scale factor.

Zomega = f(p) * Zomega = f(P, X, i3) (4.20)

The estimated angular rates can then be calculated as in Equation 4.21, where

Zra, is the three element raw measurement vector received from the gyroscope [561.

Zomega ~ (Xzraw - 0) (4.21)

Given the state vector in Equation 4.14, the h vector is given as

hX k)=-

0 3x3

0 3x3

0 3x3

0 33

0 3x3

(4.22)

The corresponding

from the state vector.

mass properties.

h vector for this sensor simply extracts the rotational rates

Thus, it does not change for different types of gyroscopes or

Position Sensors

Position sensors measure the position of the object with respect to an external refer-

ence frame. For position sensors, a beacon / ultrasound receiver scheme is considered

here. This sensor scheme can be extrapolated into many types of sensors, such as

GPS and relative ranging sensors. Equation 4.23 shows the parameterization of h

and H to be generated from the beacon and receiver locations, where FRx is an nx3

matrix of receiver positions with respect to the center of the assembler where n is

the number of receivers. The variable rx is a mx3 matrix of beacon positions with

respect to an inertial reference frame where m is the number of beacons.

h f(p) = h f(FTx) (r4
rR Tx(4.23)

H = f(p)= H = (r' ,)

Equation 4.24 shows the derivation of the h as the distance between the receiver

on the vehicle and the beacon it is sensing with respect to a inertial frame, where TA

is the position of Object A in the inertial frame. The variable E is a transformation

matrix that converts the receiver location given in the body frame to the global frame

using the current attitude estimate. [56]

h(xk) = 18TrRx ~ FA - TTx (4.24)

Equation 4.25 shows the generation of the H matrix from Equation 4.24 such that

the position and attitude estimates are calculated from the position measurement,

where j is the index of the state vector. The H in Equation 4.25 is a linearized

matrix used to propagate the covariance estimate.

h ,j = 1: 3(positio)
H -F R x. p o s T [d d T F R x](. 5-- , ojh e 7 10(attitude) (4.25)

0 ,otherwise

Noise Characteristics

The modification to the noise matrix R depends on the nature of the sensor configura-

tion change. It can be parameterized with respect to the sensor configuration, namely

the number and type of sensors. If identical sensors are added, the size of R grows

but maintains the same element values. If a different type of sensor is used, the noise

characteristics need to be accounted for. Equation 4.26 gives a generic expression for

R, where iR is the matrix of receiver locations, Rx is the noise for a single receiver,

and Rgyro is the noise for a single gyroscope.

R = f(p) -=- R = f (rX, RR, fgyro) (4.26)

Equation 4.27 shows one way to generate the noise matrix R using the type of

sensor and number of sensors averaged in that measurement, where np is the number

of sensors used to measure that state, and j is the diagonal index of the matrix R.

The value for nx depends on pre-filtering techniques as well as receiver placement.

RR ,j = 1: 3 position

j =: 10 attitude
ft = N Rx (.7

RRgyo , j = 11 : 13 rotationrate

0 ,otherwise

4.1.5 Initialization

When the model changes, the estimator must be re-initialized with the new model.

Nominally, EKFs are initialized based on an initial guess of the state vector. The

convergence properties of the estimator are dependent on the accuracy of this initial

guess. During a transition in an assembly mission, one has information about the

state of the assembler just prior to the configuration change, specifically the state

estimate and the corresponding covariance. Table 4.1 shows the four options of how

to use the information, to improve the accuracy of the initial guess used to initialize

the estimator for the next configuration. The values in the columns "State" and

"Covariance" indicate whether the state and covariance information should be kept

or reset to default values.

Case 2 should not be implemented on an actual system because one is discarding

the state information and keeping the converged covariance information. This makes

the estimator believe that it has a accurate initial state, which is not the case. In

most situations, the measurements received will indicate a significantly different state

than the initial state. Thus, the estimator could reject all new measurements because

Case State Covariance Performance
1 Reset Reset Acceptable
2 Reset Keep Diverges
3 Keep Reset Acceptable
4 Keep Keep Acceptable

Table 4.1: Initialization Setup Truth Table

the covariance leads it to believe the state is correct and the measurements are faulty.

Case 1, resetting both sets of information, will work provided the reset state is

close enough such that the EKF converges. However this case could lead to additional

time and resources used, especially if there are multiple configuration changes during

the course of a mission and one is reconverging the state at each transition.

However, if one does keep the information, how is that information incorporated

into the new estimator? First, consider the impact of keeping the state information

as in Case 3 through the impact on the EKF predict equation (Equation 4.28), where

k denotes the current time step, Xk is the estimate after including the measurement,

ik is the estimate prior to including the measurement, Zk is the measurement, Kk is

the Kalman gain calculated from the covariance, and hk is the matrix to convert the

state into an estimated measurement.

Xk - +I + Kk(zk - hk(4)) (4.28)

If one keeps the state information, the value of hk (<) will be closer to the measure-

ment, Zk. Thus, overall, the state estimate will have less error during the convergence

period. Stability could also an issue, if initialized with a default state vector far from

the current state. The EKF is linearized about the current state estimate, therefore, a

better initial state estimate can improve the stability. Keeping the state information,

however, has little impact on the covariance or the convergence time. Considering the

covariance update equation, one can determine the impact of keeping the covariance

value. The value of the covariance at the end of the previous configuration has most

likely converged, thus it would be much smaller than any initial covariance that one

would initialize the EKF with. Since convergence is determined by the covariance

being less than a certain value, keeping the covariance should cause a decrease in

convergence time.

If minimal motion is expected during transition, Case 4 should be selected because

it maximizes the use of prior information to minimize transition estimation error

and convergence time. If large motions are expected during transition, Case 2 or 3

would be more robust because they assume uncertainty in the state by discarding the

covariance information.

4.2 Controller

Two types of controllers are considered in this work: Proportional-Integral-Derivative

(PID) controllers and Adaptive controllers. These two types are selected to present

the parameterization of distinctly different algorithms. For each type of controller,

a single design is presented and parameterized. The demonstration on these con-

trollers demonstrates the feasibility of the parameterization. Selection and design of

a controller for an assembly mission requires significant work to ensure stability and

performance for all possible configurations. The parameterization technique may not

be appropriate for all controllers, but is demonstrated in this work to be be a viable

option.

4.2.1 PD/PID Controllers

Proportional-Derivative (PD) and Proportional-Integrative-Derivative (PID) controllers

generate the control input from pre-set gains that are calculated based on the mass

properties of the system. These controllers can be used for both attitude and position

with similar form, and are well suited to parameterization for rigid body systems.

The control laws are a function of the state error and of a set of gains, K. The

gains hold the mass property information and dictate the tracking performance of the

controller. The gains must be re-calculated for the new model to parameterize these

controllers for multiple configurations. The gains are parameterized to be a function

of the inertia tensor, mass, and actuator force magnitude, as given in Equation 4.29.

Though the bandwidth also may need to change for different configurations, it is

a function of the mass and actuator force magnitude. For a rigid body assembler,

the bandwidth can be kept the same if the necessary actuation force is available.

Once saturation of the actuators is reached, the bandwidth should be scaled down

proportional to the increase in mass.

= f(p) =>. u = f(K(p)) = f (I m, Fac) (4.29)

The PD control law is given by Equation 4.30, where ex, ey, and ez are state errors

(e.g., attitude, position) and ex, e, and ez are the derivative errors (i.e., angular

rate, velocity). The control input is given by u. K, and Kd are the proportional

and derivative gains. These gains can be constant or in matrix form to account for

differences between axes.

ex eX

U = K, ey + Kd eY (4.30)

ez ez

The PID control law is given by Equation 4.31, where K,, Ki, and Kd represent

the proportional, integral, and derivative gains for each axis. The variable 4' is the

integration term, which is defined as V) =' + er for each axis with T being the

integration time period.

u=K, e + Kd e + 2K (4.31)

ez dz z

The gains are calculated using Equation 4.32 for attitude and Equation 4.33 for

position, where w,, is the control bandwidth, m is the mass, I is the inertia tensor, (

is the damping ratio, and A is the time constant associated with the integral term.

The gains calculation equations for these controllers are from Wie's Spacecraft At-

titude Dynamics and Control [80]. The selection of w, and (are nominally from

picking desired performance characteristics (such as rise time and settling time) and

converting that into w, and (based on the characteristic polynomial of the system

(eg. s2 + 2(was + w2 = 0). The parameters (and A can be tuned to the assembler's

dynamics and maintained through the configuration changes. The control bandwidth

wn can be originally set to a tuned value based on the assembler's dynamics, then

scaled proportionally to mass or inertia as the configuration changes.

K,=(w2+ 21W-)I K,=Q('2)I Kd=(2(Wn +-)1 (4.32)

K, = (w± 2---) m Ki =()m Kd= (2(wn +)m (4.33)

4.2.2 Adaptive Controller

The adaptive controller described in this section is based on a direct adaptive tracking

controller designed for nonlinear manipulator control by Niemeyer and Slotine [55].

This baseline adaptive controller is selected because it can easily incorporate both

flexible dynamics associated with Object B's deflections as well as the rigid body

motion of Object A and C. The recursive structure for the calculation of the control

vector makes implementation computationally efficient. This controller was developed

in detail for the configuration of Object A+B+C in Katz [42] and is parameterized

here to work for the baseline system given in Chapter 2. The adaptive controller

is parameterized with respect to the property vector p as in Equation 4.34. For an

adaptive controller, the parameterization amounts to the proper initialization of the

parameter vector & and the proper selection of gains.

a = f (p) = f (&(p), K,(p), Kd(p)) (4.34)

The adaptive controller seeks to generate the control vector u given a desired

reference trajectory qd and a mass property vector a (for which some or all of the

parameters may be unknown). It uses an adaptation law for the unknown parameters

such that the actual position q tracks the desired position qd. The adaptive control

law is given by Equation 4.35, where s is a velocity tracking error defined as s = q-qr,

where 4, =d - A(q - qd) with gain A.

u=Y&- Kds (4.35)

The variable & is a estimated parameter vector, which consists of the mass prop-

erties from Objects A, B, and C, as shown in Equation 4.36. The size of & is

10 + 13pB + 10 c. The corresponding adaptation law to propagate & is given by

Equation 4.37.

MA

MA * rcm,x

BMB

SOBMB * rcm,x,B

(pcmnc

Socmc * rcm,x,c

SOBkx,B

Ixx,A

MA * rcm,y

SOBIxx,B

(PBMB * Tcm,y,B

(PC'xx,C

y'cmc * rcm,y,c

(,Bky,B

Iyy,A

MA * Tcm,z

(PBlyy,B

PBMB * Tcm,z,B

'yy,C

SCMC * rcm,z,C

(PBkz,B

el -Ky yTs

Izz,A 'xy,A 'yz,A 'xz,A

WBIzz,B (PBIxy,B (PB yz,B (PB'xz,B

PCIzz,C "PCIxy,C (OCIyz,C SCIxz,C

(4.36)

(4.37)

The variables, Kd and K,, are tracking and adaptation gains that must also be

appropriately set for each configuration. Nominally, the selection of the configuration

gains should be done via simulation modeling. However, due to the adaptive nature of

the algorithm, a single set of gains may be applicable for all configurations, if selected

properly.

The variable Y in Equation 4.35 is a dynamic regressor that includes the model

dynamics. The dynamic regressor must be updated such that it can be generated for

each configuration based on the model properties. The dynamic regressor is defined

J(q)jr + D(q, 4)4r + G(q) = Y(q, 4, 1r, 4r)& (4.38)

where J = J - J, D = D - D, and G = G - G. Y is calculated by estimating the

dynamics matrices using the properties in & to compute the mass and inertia contri-

butions from each object. The parameterized version includes three phases: upwards,

downwards, and adaptation. The first phase performs an upwards calculation to de-

termine the forces associated with each object based on the velocity and angular rate.

The desired translational velocities are initialized for Object A directly, since they do

not require any rotations. The angular rates for Objects A and C and deflections of

Object B are calculated by summing up the contribution at each attachment point.

The corresponding force at each attachment point is calculated. The second phase

performs a downwards calculation to sum up the forces at each attachment to compute

the total force required at Object A, which is the feedforward term Y(q, 4, 4r, 4r)&.

The third phase constitutes the adaptation phase, which uses the error between the

desired velocities and actual velocities and the force contribution to determine the

necessary change in &. The details on the calculations for each phase can be found in

Niemeyer and Slotine [55).

4.3 Control Allocation

The control allocation algorithm considered is a pulse width modulation algorithm

that converts the control input vector into actuator commands. The control allocator

converts the control vector into actuator commands using a Mixing matrix (E), control

period, duty cycle, and minimum and maximum pulse widths. The parameterization

of the control allocation algorithm, as given in Equation 4.39, generates the Mixing

matrix online.

Act,, = f (p) -> Act,, = f(=(p)) (4.39)

The mixing matrix generally is a hardcoded matrix since it is static for a single

configuration. Parameterization of the control allocation algorithm generates the

mixing matrix online based on the actuator model. The variables of the p vector used

are center of mass, location of actuator, direction of actuator, and force of actuator.

(4.40)

The parameterized control allocation needs the following inputs to generate the

mixing matrix:

0 ?act is the nx3 matrix of actuator positions with respect to the geometric center

of Object A, where n is the number of actuators

' icg is the center of mass with respect to the geometric center of Object A

* Dact is the nx3 matrix of actuator force directions with respect to the body

frame of Object A

* Fact is the nx1 vector of actuator force magnitdues

Equation 4.41 shows the calculation of the mixing matrix using the actuator

force/torque configurations. The calculated quantities are

' F is the matrix of actuator positions with respect to the center of mass

o DT is the nx3 matrix of actuator torque directions with respect to the body

frame of Object A

e E is the mixing matrix given as the combination of the force and torque direc-

tions.

Tact - rcg

DT =_ x Dact

= [Dact; DT]

(4.41)

fEP)) = f (Me, 'act, bact, fact)

The rows corresponding to non-active actuators can be removed by using an ac-

tuator health variable (ACthealth), which starts as an identity matrix of size equal to

the number of actuators. If an actuator fails, that index of ACthealth is set to zero.

Equation 4.42 shows the calculation for the corresponding mixing matrix to include

only healthy actuators.

health = ACthealth (4.42)

The use of the active actuator input allows for flexibility in the system. It can

be used to implement additional constraints, such as for fault detection or plume

impingement. The mixing matrix is then used to calculate the actuator commands,

with Equations 4.43 and 4.44. The control input actrl is multiplied by the inverse of

the Mixing matrix to get the actuator forces (Uact).

uact =HealthUctrl (4.43)

The actuator forces are converted into individual actuator on-off commands (Act.)

in seconds (Equation 4.44), using the control period (77tri), duty cycle (Q), and ac-

tuator force magnitude (Fact). The actuator commands are first scaled such that the

maximum force is less than or equal to the maximum pulse width (maxPulseWidth

rlctrl * Q). More information can be found in Hilstad [29].

Act. =ictri * Q * Uact
Fact (4.44)

4.4 Conclusions

This chapter describes the parameterization of a simple control system such that it

can seamlessly take in the model and properly estimate and control for the current

configuration. The parameterization of the algorithms for the estimator, controller,

and control allocation are described. The techniques described for the selected algo-

rithms presented in this chapter can be expanded to other control algorithms. This

parameterized control system is validated through implementation on the SPHERES

hardware testbed; the results are shown in Chapter 5.

The parameterization process is specific to the control system design. Though

the algorithms that require parameterization remain the same, the nature of the

parameterization is very dependent on the design of the control system. Two main

conclusions are derived:

1. Selection of the control system algorithms is critical in enabling a successful

parameterization. Certain algorithms are more suited to being written as a

function of the mass properties.

2. It is helpful to start with a control system that has been tuned for the de-

sired performance for the assembler, then use the parameterization technique

to enable it to accommodate other configurations.

The parameterization of this baseline control system is geared toward validating the

Online Model Calculation design. The proper design of a parameterized control sys-

tem is a significant area of research.

Chapter 5

Online Model Calculation:

Implementation on SPHERES

This chapter describes the implementation of the Online Model Calculation design.

This thesis accommodates the following two types of modules:

1. Rigid body: Rigid body modules can be modeled as a single lumped mass. Once

they are attached to the assembler, the location and orientation of the module

can be entirely specified by the state of the assembler. In some scenarios,

modules can also have sensing or actuation capability. Model generation for

a rigid body module involves accounting for changes in mass, inertia, actuator

configuration, and sensor configuration. Accounting for the additional actuation

and sensing capability of the module could lead to several key benefits, such as

fuel savings on the assembler; greater mobility for the assembler-module system;

and more accurate state estimates if sensors on the assembler are blocked when

the module is attached.

2. Flexible body: Flexible body modules are objects whose state cannot be entirely

determined from the state of the assembler. These objects include deflection

dynamics which are characterized by stiffness parameters. Flexible modules

present a unique challenge because not only do the mass properties change upon

attachment, but the stiffness properties change as well. In this work, flexible

modules are assumed to be passive objects with no actuation capability, but do

have deflection sensing capability. The combined system is an underactuated,

but observable system. Reconfiguration to account for flexible module involves

accounting for the flexible dynamics in the control algorithms, as well as the

mass properties.

This chapter starts with a description of the hardware setup and prerequisite

software algorithms that were developed to aid in testing. The next three sections

focus on the parameterized control system results: estimator, controller, and control

allocation respectively. Each algorithm section describes the implementation of the

parameterized algorithms and presents results from simulation and hardware testing.

The following section describes the results for two integrated tests, which demon-

strate the entire Online Model Calculation design. The chapter is concluded with a

discussion of the validation of the Online Model Calculation design.

5.1 Testing Set-up

Many hardware and software components were used in obtaining the testing results

presented in this chapter. The hardware components used in testing are described in

detail in Chapter 3. This section describes the specific configurations used and the

correlation to the hardware, the development of a path planner to facilitate testing,

and upgrades to the SPHERES simulation made to account for multi-body dynamics.

Three configurations are used throughout this testing: Object A only, Object

A+C, and Object A+B+C. Object A in this work is a SPHERES satellite. Object

C, a rigid body module, is also a SPHERES satellite. To form the Object A+C

configuration, the Object A satellite and Object C satellite are attached through

their Velcro faces as shown in Figure 5-1. The Object C satellite is an active module;

it has both actuation and sensing ability. Object B, the flexible module, is a four-

link segmented beam. The beam is attached to Object A satellite via a mounting

plate, as described in Section 3.2. Figure 3-12, depicting the hardware set-up of the

SPHERES satellite attached to the beam is repeated below for clarity. The Object

100

Figure 5-1: Two SPHERES satellite attached via Velcro

Figure 5-2: SWARM with Beam attached

B flexible module has no actuation capability, but it does have sensing capability

via an LED/Camera system that is used to measure the deflection of the beam.

Experimental testing was performed in three environments: in simulation, on ground

hardware, and on ISS hardware. The environments are denoted SIM, GND, and ISS

respectively.

An additional algorithm necessary for the implementation of the controllers is a

path planner. The adaptive controller in particular is designed as a trajectory tracking

controller and does not work with only waypoint targets. Thus, a bang-bang path

planner was developed and implemented on the SPHERES hardware. The planner

calculates the path from the initial state to the final desired state. Example position,

velocity, and acceleration profiles are shown in Figure 5-3. The resolution of the path

101

M- II.,PWAcA ,-

00002.

()Position (b) Vlocit (c0Acleatj

Figure 5-3: Example planned trajectory using on-board path planner

calculated is 0.1s, and is output at the resolution of the control period.

Finally, a modified version of the SPHERES simulation was created to handle the

configuration of two satellites attached via Velcro. This simulation used an attached

flag, such that if the satellites were docked, it would use a model of the docked

configuration, including the additional thrusters. This simulation was compared to

ISS tests from Test Session 13 (September 2008). Figure 5-4 shows the performance

of the simulated position versus the actual position that occurred during the test.

Though the tracking performance is tolerable, some of the performance differences

may be due to the simplification of the model in the simulation. Unmodeled dynamic

effects include Velcro alignment issues, thruster force damping due to velcro spring

effect, communication delay in thruster firing, and deviations between the actual mass

and inertia and the average values modeled in the simulation. Updates have been

made to the simulation based on the ISS data received to date. The updates will be

compared to flight data for the next test session, scheduled for late spring 2010 in

Test Session 22.

5.2 Estimator

Four main areas of the estimator are parameterized: state propagation, actuator

propagation, measurement incorporation, and initialization.

102

Simulation vs Hardware Verification Test: TS013 P216 T9, Joint Maneuvering
1

0

-

1i 1 2 2t 400
-1

0

-10 1 1 2 2 3 3 400

0.5
- - -Sim
_HW

0- H

-0.5

-1 0 1 1 2 25 3 400
Test Time (s)

Figure 5-4: Verification of Multi-body simulation versus ISS data

5.2.1 State Propagation

The state propagator is only updated for flexible dynamics. For the rigid body mod-

ules, there are no additional states (e.g. deflection) because the state of the module is

completely defined by the state of the assembler. Thus, only the actuator propagation

needs to be parameterized for rigid body modules.

Experiment

The estimator needs significant updates to account for flexible dynamics. First, in

order to account for Object B, additional states must be added to account for the

deflection of the beam, as shown in Equation 4.6. For implementation ease, the

propagation of the dynamics of the beam deflection are performed separately. The

true beam is a four-link beam, while an approximation is used in this calculation that

assumes a single mode deflection. The velocity contribution from the beam deflection

is added to Object A's state separately. The additional states added are the deflection

6 along the y axis and the deflection rate 3.

For the 2D set-up, the effects of the beam deflection on the assembler can be

determined by performing a torque balance on the system. The deflection of the beam

creates a torque in the perpendicular (Z) direction, which causes a corresponding

103

force at Object A based on the ratio to the center of mass. Equation 5.1 gives the

y velocity including the beam propagation component: where v. is the velocity of

Object A in the y direction, L is the length of the beam, Xcg is the x component of

the center of mass, k is the beam stiffness, oy is the beam deflection, m is the mass of

Object A, and dt time duration of the beam deflection propagation in seconds. The

superscripts - and + indicate the velocity estimate before and after incorporating the

beam deflection dynamics.

L -x 1
V+ = V_- + L "x koy --dt (5.1)

" Y Xcg m

The torque magnitude for the simulation tests was increased to 5 times the actu-

ation torque of the hardware set-up to fully excite the system. The simulation tests

are set up with the following sequence:

" t = 0 - 15 s: estimator initialization

* t = 16 - 30 s: torque excitation phase

" t = 31 - 45 s: free vibrartion, no thruster firings.

The magnitude of the SWARM propulsion module thrusters are not sufficient to

excite the beam to achieve the desired oscillations, given the friction dynamics of the

floor. The oscillations achievable with the SWARM propulsion module are not large

enough to impact the y velocity of the assembler. Thus, hardware results of this test

are not included.

Results

Figure 5-5 shows the simulation results for the beam deflection component of state

propagation. Figure 5-5a shows the estimator performance versus the true state when

using an estimator that only models Object A. The velocity is mostly constant and

does not track the true velocity. The slight increase of the velocity from t=15 s to

t=45 s in Figure 5-5a is due to the differential position measurements that have been

propagated.

104

Object A + Object B + Object C with Object A + B + C estimator Y velocity

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40
Time (s) Time (s)

(a) Object A estimator (b) Object A+B+C estimator

Figure 5-5: True State vs Estimated State for SWARM + Beam (Object A+B+C),
Simulation

Figure 5-5b uses an estimator based on the model for the Object A+B+C config-

uration. It shows much better tracking of the true state. Exact tracking performance

is dependent knowledge of the stiffness parameter k.

Analysis

The importance of updating the assembler state propagator to account for the flexible

dynamics depends on the total actuator capability to excite the beam, as well as the

ratio between the length and stiffness of the beam and the mass of the assembler.

Figure 5-6 shows the effect of the beam deflection on the y velocity estimate as a

function of Object A (assembler) mass and beam length, assuming constant stiffness.

For very large assembler masses, the beam deflection is not large enough to impact

the velocity of the assembler. For very small beam, the energy associated with the

beam deflections is small enough that it does not impact the velocity of the assembler.

Therefore, the effect of the beam deflection on the assembler is a critical consideration

only when the beam and assembler are of comparable size.

Knowledge of where the assembly system under consideration lies on Figure 5-6 is

important in determining if the parameterization to account for the beam deflection

is necessary. Other factors to consider are the stiffness of the beam and the ability

for the actuators to excite beam dynamics. Stiffer beams have smaller deflections,

which in turn produce smaller disturbances on the assembler. The actuator dynamics

105

Object A + Object B + Object C with Object A estimator: Y velocity

001
001 01 1 10 100 1000

Tug Ma (kg

Figure 5-6: Increased Y Velocity error due to beam deflection as a function of Object
A mass and Beam Length

impact the excitation of the beam to cause deflections. Some factors to consider are

the maximum excitation force on the beam from the actuators and the frequency of

actuator with respect to the vibration frequencies of the beam.

5.2.2 Actuator Propagation

Equation 5.2 gives the actuation propagation relation, where: v+ refers to the velocity

estimate after the propagation, v- refers velocity estimate prior to propagation, f is

the force generated by the actuators, dit is the duration the actuators are on, and m

is the mass of the assembler.

v+ = v-- + -dt (5.2)
m

The mass is obtained from the property vector p, while f is obtained through summing

the commanded thrusters on the SPHERES satellites. Figure 5-7 shows the algorithm

updates for the estimator thruster propagation.

In the baseline algorithm, the thruster commands for the assembler's thrusters

are converted into the impulse imparted based on the commanded duration and the

thruster force. The impulses are converted into a velocity contribution based on

106

V* = v +FTsBgy / m I = v +FTBoy / m

Figure 5-7: Process Flow Diagram comparing baseline thruster propagation to recon-
figurable thruster propagation

the mass. In the reconfigurable algorithm, first the module thruster commands are

obtained and the corresponding thruster configuration. The total number of thrusters

is determined. Then, the impulse is calculated for all of the thrusters present, both

on the assembler and module. The impulse is converted into the velocity contribution

using the current mass of the configuration, accounting for any modules that could

be attached.

Experiment

The update of the thruster propagation has the biggest impact on the velocity es-

timate. To identify the impact on the velocity, a test was created for the Object

A+C configuration. Figure 5-8 shows a schematic of the test set up, with the desired

velocity profile based on the thruster firing pattern. The test is split into three phases:

* Phase 1 (t = 0 - 20 s): estimator initialization

" Phase 2 (t = 21 - 30 s): assembler fires in the -X direction, for 600 ms every 1 s

* Phase 3 (t = 31 - 40 s): module fires in the +X direction, for 600 ms every 1 s

107

Baseline
Input: assembler thruster firings (u),

thruster force (f), mass (m),

Calculate force of thrusters on,
i = 1:12

If(thr-on[i] == TRUE) u = thr-on[irf;
Else u = 0;

Average impulse produced by
thrusters, in body frame

FTBodyX =Z u(+X) - Z u(-X)

-Propagate using impulse and mass

Reconfigurable
Input: assembler thruster firings (u),

thruster force (f), mass (m),
thruster direction (F), module
thruster firings (u2),

Get payload thruster commands

Determine if thrusters should be on

If t > u2.on time[i] & t < u2.off-time[i]
thron[i] = TRUE;

Calculate force of thruster on,
i = 1:numThrusters

lf(thr-on[i] == TRUE) u[i] = thr-on[i]*f
Else u[i] = 0;

Average impulse produced by
thrusters, in body frame

FT90,yX Z u(+X) - X u(-X)

Propagate using impulse and mass

4'0

1 2 3

0-U

C)

Time (s)

Figure 5-8: Test setup for Estimator Thruster Propagation tests

Results

Figures 5-9, 5-10, and 5-11 show the estimator results from the actuator propagation

tests. Figure 5-9 shows the velocity performance in simulation, while Figures 5-10

and 5-11 show the performance in hardware. In simulation, the solid line represents

the true velocity state, while the dashed line represents the estimated state. For

the hardware, the true state is the measured velocity obtained by integrating the

accelerometer measurements. When using the Object A model, the estimator does

not know the module is attached, so it does not account for its added mass or thruster

firings. From t=20 s to t=30 s, the assembler is firing thrusters. The estimator on

the assembler accounts for the assembler's firing, but accounts only for assembler's

mass, which is half of the total mass. Thus, the velocity estimate overshoots the

true velocity. From t= 30 s to t= 40 s, the module is firing thrusters. The velocity

estimate has a delay from following the true state in this phase because it does not

incorporate the module's firings. It must rely on the ultrasound measurements to

update the velocity state. These two issues are removed when using the Object A+C

model. Therefore, the estimated velocity tracks significantly better when using the

Object A+C model than the Object A model. The jump in the true Y velocity in

Figure 5-10 reflects a additional force which appears after stiction is overcome when

the satellites starts firing. The additional force could be due to a slope on the table or

108

WITHOIT Thruster Prop Reconfig Simulated real and eslimated velocity. Sphere 1
0.05 ,

Phase 1 Phase 2 Phase 3

-0.15
~-0 2~

0 1 i0 15 20 25 30 35 40 45

001

-001

-002

-0.04 5 10 15 20 25 30 35 40 45
Time (s)

(a) Object A Mass Properties

Figure 5-9: Estimator velocity performance
properties, Simulation

Accel Estimate of Velocity v Estimator elocity estimate,wi/ Reconfig Thruster Prop

10

- Accel I
5 - - - Estimator - V -

0 5 10 15 20 25 30 35 40 45
Time (s)

(a) Object A Mass Properties

Figure 5-10: Estimator velocity performance
properties, Ground Hardware

WITH Thruster Prop Reconfig Simulated real and estimated velocity, Sphere 1
0.05

Phase 1 Phase 2 Phase 3

-- Estimsaled

0 5 10 15 20 25 30 35 40 45

001

0 1

z -Doi

-002

-0.03 -
1

-
1

stiated
-0.04

0 5 10 15 20 25 3 35 40
Time (s)

(b) Object A+C Mass Properties

45

with and without new mass and thruster

Accel Estimate ofVeIocity vs Estimator velocity estew/ Reconfg Thruster Prop
002

Phase 1 Phase 2 Phase 3

0 -I

~-0,02I
-Estimator

.00 5 10 15 20 25 3) 35 40 4

0 6 10 15 20 25 30 36 40 45
Time (a)

(b) Object A+C Mass Properties

with and without new mass and thruster

small component of the thruster firings that is in the y direction. In general, updating

the thruster propagation in the estimator improves the velocity estimate, which can

improve fuel usage. In Figure 5-11, the EKF is seen to rely more on the model

as opposed to the ultrasound measurements. This is reflected in the flat velocity

in Phase 3. If the estimator relies more on the model than the measurements, the

velocity would not change if there is no firing.

109

TS19 P274T4 Accel Estimate ofVelocky vs Estimator velocity estimate.w/o Reconfig Thruster Prop TS19 P274 T3 Accel Estimate ofVelocty vs Estimator elocity estmate.w/ Reconfig Thruster Prop
0.2 01 E

0.1 Phase I Phase 2 Phase 3 015 - Phase 1 Phase 2 Phase 3

0 . --. ... - -

-0 1 -005 I

-02 [tor -0.1 - -EstEstimator

-01 .015 I
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

x 10"
004 20

A-0
0 02 -Etimator -- Etiao 6 1

-- 002 - iJ 0 *'~

-0.041 1' L50 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Time (s) Time (s)

(a) Object A Mass Properties (b) Object A+C Mass Properties

Figure 5-11: Estimator velocity performance with and without new mass and thruster
properties, ISS hardware, Test Session 19 P274 T4 and T3

Analysis

The necessity of the parameterization of the actuator propagation is dependent on

the ratio of propagation to measurement incorporation and the ratio of assembler

mass to module mass. The following criteria should be considered when deciding if

parameterization of the actuator propagation is necessary.

" Measurement incorporation occurs fast enough and is clean enough such that

actuator propagation has little effect on the performance of the velocity estimate

" The module mass is significant fraction of the assembler-module system, up-

wards of 15%. Previous work has shown that small modules (5% of the assem-

bler mass) have little impact on the control system performance [53].

" Additional module actuators impact forces onto the system that are greater

than disturbance noise.

5.2.3 Measurement Incorporation

Measurement incorporation was performed for the Object A+C configuration to com-

bine measurements from the module's ultrasound receivers. The initial attempt at

incorporating the measurements was to communicate the filtered measurements from

each beacon in real time from the module to the assembler, and then incorporate

110

the received measurements into the assembler's estimator. However, due to the re-

strictive communication structure on SPHERES and how the estimator processes

measurements as soon as they are received, this approach was determined to be im-

practical.

Experiment

In order to determine a realistic performance improvement due to combining sensor

measurements, without being limited by specific hardware constraints, the approach

used in this thesis is to post process raw measurement data obtained from the hard-

ware into a Kalman filter. This approach has the benefit of using actual hardware

data, so it provides a realistic level of sensor noise. Post processing can be performed

for a variety of configurations using the same measurement set, allowing for a direct

comparison between methods.

Accuracy of the estimator in determining the position of the center of the assem-

bler was tested by varying the number of beacons used (3, 4, and 5) and receiver

configurations (using receivers from either the assembler or both the assembler and

module). The positioning of the satellites was such that the module was directly

between the assembler and one of the beacons. Nominal operations use 5 beacons,

while 3 beacons is the minimum needed for the state estimator to converge. The

reason for testing convergence for 3, 4, and 5 beacons is to determine the blockage

effect. The module satellite blocks the assembler's face that is directly pointing to

Beacon 1 (Figure 5-12). Thus, when the assembler processes the measurements from

Beacon 1, it must use measurements received from a side face. The performance in 3

beacon operations differs significantly based on which beacons are used compared to

the location of the assembler. This Object A+C configuration is compared against

the baseline Object A configuration.

The following three configurations were tested:

1. Object A: Assembler receivers used, all 24 receivers used

2. Object A+C: Assembler receivers used

111

econ eacon

Beacons 4-5 are ot ofplane

econ 2

Figure 5-12: Setup for joint sensing tests

* 20 assembler receivers used, 4 assembler receivers blocked by module

3. Object A+C: Assembler and module receivers used

* 20 assembler receivers used, 4 assembler receivers blocked by module

* 20 module receivers used, 4 module receivers blocked by assembler

For each configuration, approximately 15 tests were run to collect raw measure-

ment data. The raw measurements were post-processed for three cases: 3, 4 and 5

beacons. Then the average of the RMS error for each run was computed, then averged

to provide an overall performance mean and standard deviation of the estimator for

each case.

Results

Figures 5-13 and 5-14 show the performance of the position estimate when ultrasound

receivers are incorporated from both assembler and module satellites compared to

baseline performance. Figure 5-13 shows the simulation results, while Figure 5-14

shows the results of performance based on measurements taken on the hardware.

The simulation results (Figure 5-13) showed that for 4 and 5 beacons there is no

noticeable difference between using 40 receivers and using 20 receivers. The marginal

improvement in the 3 beacon case is still within one standard deviation, so no dis-

tinctive difference can be inferred between the two methods. Competing effects are

in play that result in a minimal net benefit. The benefit to using more receivers is to

obtain a better estimate by reducing the noise. However, after a threshold number

of receivers, the improvement is minimal. The threshold value is dependent on the

112

Estimator accuracy vs Number of Beacons and Rx. Simulation

12

10

:E

0
3 4 5

Number of Beacons

Figure 5-13: Results for Joint Sensing tests, Simulation

specific scenario. In this set-up, all measurements are being pre-filtered, so the cu-

mulative effect of multiple receivers does not average in but results in a better single

estimate. A factor causing a decrease in performance is the method for calculation

of the estimated measurements. The EKF uses the estimated attitude to convert the

receiver locations from the body frame to the inertial frame. The noise of the attitude

estimate has a larger affect on the estimated measurement the farther the receivers

are from the center of the satellite. The receivers from the assembler were located

at a radius of 10 cm, while the modules's receivers were between 20 cm and 30 cm

away from the center of the assembler. The combination of these two effects, among

others, causes a negligible net performance change in simulation.

The trends are more distinct in hardware. The performance using 4 and 5 beacons

is approximately the same. This trend reverses in 3 beacon operations, when using

both assembler and module receivers performs better in hardware than using assem-

bler receivers only. This performance is attributed to the body blockage issue that is

not modeled in the simulation. The presence of the module satellite causes blockage

113

Estimator accuracy vs Number of Beacons and Rx. Hardware

Dual
12- Satellite a. AR HW

(20 Rx)
-,-24RK HW

Dual

Satellite2

20

0

(40 Rx)

Single
Satellite
(24 Rx)

3 45

Hunber of Beacons

Figure 5-14: Results for Joint Sensing tests, Hardware

and slightly degraded measurements due to signals bouncing off of the module. The

body blockage of the assembler to Beacon 1 is a bigger source of error when there are

only 3 beacons instead of 4 or 5. When using the module's measurements, it can use

the face directly facing the beacon, which leads to a better estimate.

However, the baseline performance is still better than the performance even when

using all 40 receivers. The main source of error which causes the Object A+C con-

figuration using Object A+C sensor model to not perform as well as the baseline

configuration is most likely due to the variability of the attachment. The satellites

are attached via Velcro, which can be a very imprecise mechanism. Discrepancies

between assumed receiver locations on the module and the actual locations leads to

an inaccurate model, and hence slightly worse estimator performance. This source of

error can be minimized by using a rigid mechanical interface with high accuracy and

repeatability of capture. A suitable replacement for the Velcro docking port is the

Universal Docking Port described in Chapter 3.

114

Analysis

Given these results, the incorporation of additional sensors, particularly if they are

the same type as those that already present, provide benefits if

1. the additional sensors cause a significant reduction in uncertainty,

2. the additional sensors replace sensors that can no longer be used due to blockage.

3. obtaining measurements from the additional sensors does not introduce a sig-

nificant time delay

4. the attachment mechanism is sufficiently precise to allow for the incorporation

of the module measurements while maintaining the estimator accuracy

5.2.4 Initialization

Determination of the proper initialization of the estimator is important after changing

configurations. Using current information of state and covariance can help reduce

convergence time and improve the accuracy of the estimate during the convergence

period.

Experiment

The set up for the initialization tests used the Object A+C configuration with the

satellites stationary in the center of the test volume. For each test, the test sequence

started with a 10 s estimator initialization, followed by 10 s firing by Object A in the

-X direction, 10 s firing by Object C in the +X direction, configuration switch from

Object A estimator model to Object A+C estimator model, and repeat of the firing

sequence. Even though the satellites were physically constrained to be stationary, the

firing incorporates some uncertainty into the estimator that differentiates between the

two models.

Three tests were performed which vary how the switch from the Object A model

to the Object A+C model was executed.

115

RMS Position Error vs Initialization Strategy

Fa Hardware OSimulation

Reset State, Reset Coy

Figure 5-15: Hardware vs Simulation
for estimator initialization strategies

Keep State. Reset Cov Keep State, Keep Coy
Initalizaion Categay

results of RMS position error during transition

1. Reset State, Reset Cov: The estimator was disabled, then re-initialized using

default initialization values for the state and the covariance.

2. Keep State, Reset Cov: The estimator was disabled, then re-initialized using

the last estimated state and a default covariance.

3. Keep State, Keep Cov: The estimator was disabled, then re-initialized using

the last estimated values for the state and covariance.

The RMS error in estimated position when re-initializing the estimator is the

metric of choice. Tests were performed in both simulation and hardware.

Results

Figure 5-15 shows the difference between the estimator initialization strategies for

both hardware and software for RMS position error. Both hardware and simulation

values match closely, indicating that the trend is valid.

Figure 5-15 confirms that resetting the state and covariance leads to a high RMS

error during convergence. Keeping the state leads to a marked improvement of a

116

900.00

800.00

700.00 1

600.00 -
E

500.00-
W
0

400.00.
a.

300.00-

200.00

100.00

000

i

approximately a factor of 16. The benefits to having an improved accuracy during

convergence are related to safety. Though the assembler may not begin maneuvering

until the estimator has converged with the new configuration, it is important to have

accurate knowledge of where it is throughout the transition. The state estimate is

used to monitor for collisions and to perform obstacle avoidance. The improved RMS

accuracy allows the assembler to maintain obstacle avoidance during the transition.

Analysis

The selection of the appropriate initialization case depends on the motion of the

assembler during the transition. For the initialization tests performed in this thesis,

the satellites were mostly stationary during transition. Thus, the last estimated

state and covariance are nearly identical to the current state and covariance after

transition. For similar cases, where the motion during transition is small, Case 3

(Keep State, Keep Cov) should be used as it minimizes position error during transition

and convergence time.

However, for assembly scenarios where large motion is expected during transition,

Case 2 (Keep State, Reset Cov) is a safer choice. Case 2 still allows for the benefit

of initialization the estimator from the last known state, but provides more time for

convergence which might be needed if the large motion causes the assembler to be

farther from the initialized location than expected.

It is generally always preferable to keep last estimated state, rather than discarding

it to use a default value. Although Case 1 still works, it has significantly larger RMS

position error during transition than Case 2 or Case 3. The difference in RMS position

error depends on how far the default state used to initialize the estimator is from the

actual state.

5.3 Controllers

Two controllers were implemented in this work, PID/PD control and adaptive control.

Please note that some of the plots presented in this section are referenced in Section

117

Table 5.1: Attitude controller PD/PID gains for different configurations,w, = 0.4

Configuration Mass (kg) Inertia (kg/m2) PD Gains PID Gains

Object A (ISS) 4.3 0.0225 0.0036 0.0135 0.00450 0.0001800 0.01434

Object A+C (ISS) 8.60 0.0450 0.00720 0.0270 0.009 0.00036 0.2869

Object A (GND) 12.43 0.067 0.01072 0.04020 0.01340 0.0005360 0.04271

Object A+C (GND) 24.86 0.134 0.02144 0.08040 0.02680 0.0010720 0.08543

Table 5.2: Position controller PD/PID gains for different configurations, w" = 0.2

Configuration Mass (kg) Inertia (kg/m) PD Gains PID Gains

Object A (ISS) 4.3 0.0225 0.0036 0.0135 0.00450 0.0001800 0.01434

Object A+C (ISS) 8.60 0.0450 0.00720 0.0270 0.009 0.00036 0.2869

Object A (GND) 12.43 0.067 0.01072 0.04020 0.01340 0.0005360 0.04271

Object A+C (GND) 24.86 0.134 0.02144 0.08040 0.02680 0.0010720 0.08543

5.4 to demonstrate the implementation of the control allocation.

5.3.1 PD/PID Control

The PD/PID controller is tested under two types of target specifications: waypoint

and trajectory specification. Waypoint specification provides a single target location

and tests the step response of the system. The controller for waypoint targets is run

at 1 Hz. Trajectory specification provides a target state as a function of time and

tests the tracking performance of the system. The controller for trajectory targets is

run at 2.5 Hz.

Waypoint Experiments

Table 5.1 and 5.2 list the attitude and position gains for the different configurations

tested. The gains are calculated using Equations 4.32 and 4.33. The control band-

width used to calculate the gains is w, = 0.4 rad/s for attitude and w,, = 0.2 rad/s

for position. The gains use unit damping ((= 1) and an integration time constant

of A = 20 s. The ground gains listed account for the SPHERES satellite as well

as a single-puck air carriage on which the satellite floats on the 2D test table. The

SPHERES satellite on its own, Object A only, is able to achieve t1' in attitude

and t2 cm in waypoint position control. Details for results of the Object A only

configuration can be found in References [56] and [53).

The improvement due to the update in gains is determined by comparing two tests.

118

TSO08 T8: New Gains, Old Actuator Model

r, 0.4 80.

-0.4 0

0 - - --- --- -- - - - - - - -
-02. -02

0 5 10 5 20 3 34 15 40 45
Time (s) Time (s)

(a) Object A Gains (b) Object A+C Gains

Figure 5-16: Attitude Error using Object A actuator model

The physical configuration used for both tests was the Object A+C configuration. In

both tests, the satellites execute a 90' rotation about the Z axis, shown in Figure 3-2,

while maintaining attitude about the other two axes. In the first test, the attitude

gains used are those calculated for the Object A configuration. In the second test,

the attitude gains used are those calculated for the Object A+C configuration.

Waypoint Results

Figure 5-16a shows the results of the attitude error versus time, when using the

Object A thruster configuration. At time t = 5 s, the satellites begin the rotation,

after estimator initialization. The attitude in X and Y are nominally zero, and Figure

5-16a shows that the satellites are maintaining that angle. Results show a percent

overshoot of 52 % (470) in Z and a fuel usage of 1.77% when using Object A gains.

The second test uses the gains calculated for the Object A+C configuration. Fig-

ure 5-16b shows the performance of the rotation with Object A+C gains, when only

using the thrusters on Object A. As can be seen in Figure 5-16b, the percent over-

shoot decreases to 45% (41"). Also, the settling time decreases by approximately 15 s

from Figure 5-16a. However, the overall performance is not desirable because it does

not achieve the desired attitude within the time specified. This poor performance can

be attributed to the location of the center of mass outside of the thruster envelope.

When two satellites are attached, the center of mass is located at the attachment

119

TS006 TS: Old Gains, Old Actuator Model

TS008 T2: New Gains, New Actuator Model

fuel Used= 122% Fuel Used =1.10%

0 .2 0 .

0------- --

-0.2- - -0.2

-. 1' 0 4 60 a4 10 2so4 60
Time (s) Time (s)

(a) Object A Gains (b) Object A+C Gains

Figure 5-17: Attitude Error using Object A+C actuator model

point. If using only one satellite's thruster, the center of mass is outside the thruster

envelope. Thus, the torque capability degrades depending on how the center of mass

shifts.

Figure 5-17 shows the results for Object A gains versus Object A+C gains when

using the Object A+C actuation model, which gives a better indication of the perfor-

mance improvement. The percent overshoot decreases from 33% (30') in the Object

A gain case to 22% (200) in the Object A+C gain case. Also, the settling time de-

creases from 40 s in the Object A gain case to 20 s in the Object A+C gain case.

Finally, the overall performance improvement is seen through the decrease in fuel

usage from 1.22% to 1.18% of a tank.

Position control was also demonstrated when two satellites were attached, and

both satellites actively firing thrusters. A test was performed in SPHERES Test

Session 8 that consisted of two single axis translations. Figure 5-18 shows the error

between the desired waypoint and state for the two single axis translations. The

performance showed the settling time of approximately 80 s, and an error performance

of +10 cm.

A multi-target test was performed (Test Session 13) in Object A+C configuration,

where the satellites performed joint position and attitude control. The satellites

were commanded to maneuver to three location targets, during the course of the

test. Figure 5-19 shows the error performance for a translation in all three axes

120

TS008 T2: Old Gains, New Actuator Model

TS08 P171 T4:X Translation
TS8 P171 T4: Y Translation

G5"

f 023

LL-0.2

2U 40 so 40 100 120 140 100 18C 200 0 20 .40 40 40 100 120 140 10 180 20
Time s) ime (s)

(a) X Translation (b) Y Translation

Figure 5-18: Single axis translation tests

TS13 P216 T9: Position Error vs Time, ISS Hardware

0 50 100 150 2W 250 3) 350
Test Time (s)

(a) Position Error

Figure 5-19: Error for Object A+C

TS13 P216 T9: Quatemion Error vs Time, ISS Hardware

40 0 50 100 150 20 250 30 350 400
Test Time (s)

(b) Attitude Error

configuration multi-target test, ISS hardware

simultaneously. Figure 5-19 shows the position and attitude error for the multi-

target test. The spikes in the position and attitude errors indicate when the location

target changed. The attitude performance is very good, since the quaternion error

stays close to one, indicating zero total attitude error below 5'. The rise and settling

times are also quite small, indicating good performance. The position performance is

acceptable, though not quite as good as the baseline performance.

Waypoint Analysis

The performance of Object A+C when using the proper model, both gains and actua-

tor model, is worse than Object A waypoint control performance achievable. Sources

121

Table 5.3: Attitude controller PD/PID gains for different configurations,wn = 0.6

Configuration Mass (kg) Inertia (kg/m2) PD Gains PID Gains

Object A (ISS) 4.3 0.0225 0.0036 0.0135 0.00450 0.0001800 0.01434

Object A+C (ISS) 8.60 0.0450 0.00720 0.0270 0.009 0.00036 0.2869

Object A (GND) 12.43 0.067 0.01072 0.04020 0.01340 0.0005360 0.04271

Object A+C (GND) 24.86 0.134 0.02144 0.08040 0.02680 0.0010720 0.08543

Table 5.4: Position controller PD/PID gains for different configurations, wn = 0.8

Configuration Mass (kg) Inertia (kg/m) PD Gains PID Gains

Object A (ISS) 4.3 0.0225 0.0036 0.0135 0.00450 0.0001800 0.01434

Object A+C (ISS) 8.60 0.0450 0.00720 0.0270 0.009 0.00036 0.2869

Object A (GND) 12.43 0.067 0.01072 0.04020 0.01340 0.0005360 0.04271

Object A+C (GND) 24.86 0.134 0.02144 0.08040 0.02680 0.0010720 0.08543

of error in this test include use of an estimator with a single satellite model, de-

lay in the thruster firings on the module satellite, unmodeled damping in the velcro

attachment, and inaccuracies in the mass properties modeled. The use of the Ob-

ject A model in the estimator has an important effect, particularly on the velocity

estimate which is not measured directly. Propagating the thruster firings with a Ob-

ject A model would cause the estimator to over estimate the velocity estimate. The

controller would cause repeated overshoot, as is present in Figure 5-18.

A second minor source of error is the delay in thruster firings caused by commu-

nication delay and commanding. Due to limited communication bandwidth, only the

thruster durations were communicated to the module satellite. A small error is caused

by not centering the thruster pulse in the firing window. Also, the velcro attachment

is assumed to be a rigid attachment in the controller design. The nonlinear effects

of the velcro attachment could cause a small amount of damping, which reduces the

overall force imparted onto the satellites.

Trajectory Experiments

The PD/PID controller was run at 2.5 Hz when using trajectory targets to improve

tracking performance on the ground flat table testing environment. Tables 5.3 and

5.4 give the attitude and position gains for the trajectory tests. The gains were

calculated using a control bandwidth of wn = 0.6 rad/s for attitude and w" = 0.8

rad/s for position.

The trajectory tests performed have the satellites move to a desired waypoint,

122

0. -- Object A only: Desired Translation Path vs Actual Translation, Simulation
05

0

9C 5

o 10 20 30 40 0 0

K 0 - - --- -0

-0.5I
0 5D 60

Time (s)

(a) Position Tracking

Figure 5-20: Object A PID Trajectory

Object A only: Desied Velocity Profile vs Actual Velocity. Simulation
004

-z0- 002

0 -

-002

000

0 10 20 40 0
Time (s)

(b) Velocity Tracking

Tracking Performance, Simulation

using a planned trajectory given in position, velocity, and acceleration. A feedfor-

ward term, the desired acceleration times the configuration mass, is included in the

controller to account for the acceleration profile. The attitude is maintained for all

tests.

Trajectory Results

Figure 5-20 shows the simulation tracking performance of the Object A configuration.

Figure 5-20a shows the position tracking performance, while Figure 5-20b shows the

velocity tracking performance. As seen in the plots, the controller tracks very well,

under 1 mm tracking error. Figure 5-21 shows the corresponding tracking performance

on the ground hardware testbed. Figure 5-22 shows the error performance on the

ground hardware, in the presence of disturbances such as friction and slopes on the

test table. The controller maintains error to 1 cm or less during the trajectory tracking

on the ground hardware. This test provides the baseline performance against which

to compare the other configurations.

The test was repeated for the Object A+C configuration. Figure 5-23 shows the

tracking performance in simulation, while Figures 5-24 and 5-25 show the performance

on the ground hardware. As seen in Figure 5-24a, the position tracks fairly well during

the maneuvering phase. However, once the satellites have reached the end of the

trajectory, the tracking error increases as the controller is not able to accommodate

123

PID Controller Desired Posdion vs Actual Position, Obj A, Ground

05

0 10 20 0 0

-05 0 10 20 30 4n o 6

Desired
-- Actual

0 10 20 30 40 50 60
Time (s)

(a) Position Tracking

Object A only Desired Velocity Profile vs Actual Velocity, Ground

0 - - -

-0.02

0 10 20 30 40 so 60

0 -- - -- - -- - --0.02.

0

0 10 20 3 40 5 60
Time (s)

(b) Velocity Tracking

Figure 5-21: Object A PID Trajectory Tracking Performance, Ground Hardware

0.04

0.03

0.02

0.01

0

S-0.01

-0.02

-0.03

-0.04

PID Controller: Position Tracking Error vs Time, Obj A, Ground

-0.051 , I
20 25 30 35 40 45 50 55 60

Time (s)

Figure 5-22: Object A PID Trajectory Error Performance, Ground Hardware

124

Li~i

A ~
1

1A
- '/~-y '.-' -

I ~ n/~YV
,.iI ~l

* I.

1 0 2 10 ' 0 6

0 5

Object A+C Desired Translation Path vs Actual Translation, Simulation
05

0--

-0 1
0 lb 20) 40 0 60 70 00 0 1o

0.5

05

0 tO 20 20 40 00 60 70 0
Time (s)

(a) Position Tracking

Figure 5-23: Object A+C PID

90 10

Object A+C. Desired Translation Path vs Actual Translation, Ground

1I

E0.5

00
0 10 20 20 40 00 &C

006

0 10- 20 20 40 -0 -

0.

~0.5
00 1 .0 20 20 40 00

Time (s)

(a) Position Tracking

Object A+C: Desired Velocity Path vs Actual Velocity, Simulation
004

002

>e 0

0

0059 10 20 0 40 50 60 70 3) 90 10)

004

Time (s)

(b) Velocity Tracking

ectory Tracking Performance, Simulation

Object A+C: Desired Velocity Profile vs Actual Velocity, Ground
0.0

---- - ----

0 10 20 30 40 50 40

005

0 10 20 40 0 6

00

0 10 20 20 40 0 6

Time (s)

(b) Velocity Tracking

Figure 5-24: Object A+C PID Trajectory Tracking Performance, Ground Hardware

for the disturbances on the table, given the momentum of the attached satellites.

Trajectory Analysis

In general, the tracking performance is achievable in both configurations. The perfor-

mance can be tuned in three ways. First, the plan can be updated for this configura-

tion so the maximum velocity is slower, since the thruster force remains the same but

mass doubles. Second, the bandwidth can be updated so that the tracking phase and

position maintenance phase have different control bandwidths selected based on the

expected maneuvering in that phase. Third, the selection of duty cycle and control

period may be dependent on the configuration, based on the disturbances. The quan-

titative effect of the table disturbances can be confirmed by the successful completion

125

0

0

Object A+C: Position Error os Time, Ground
0.16

S0Z
-x-a

-0.05 - - -- -- -.-

-0.25
20 25 3) 35 40 46 50 56 60

Time (s)

Figure 5-25: Object A+C PID Trajectory Error Performance, Ground Hardware

of these tests on the ISS and the comparison of performance, since the ISS testing

environment has minimal disturbances. The tests are scheduled to be run in Test

Session 22, sometime in the spring of 2010.

5.3.2 Adaptive Control

The adaptive controller implemented is a direct adaptive control algorithm. As speci-

fied in Chapter 4, this controller is based on an adaptive tracking controller developed

by Niemeyer and Slotine [55]. A 2D baseline version of this algorithm was imple-

mented by Katz [42] for the specified flexible module set-up in simulation, but not

tested on hardware. This work updates the algorithm to 3D and parameterizes the

algorithm to be reconfigurable for multiple configurations.

Experiment

The first parameterization is in the specification of the state length. This parameter

sets the number of variables and indicates the types of objects present. The state

length is given by

1state= 6 + 3 '#B + OWC (5.3)

Object C does not add in any additional parameters because its state can be fully

determined from the state of Object A and B.

126

The next step is to list the force directions affected for each state variable. The

axis direction matrix is given by Equation 5.4, where the last three rows corresponding

to the axis direction of Object B. The bottom three rows are only used if the state

length is initialized to include Object B. The direction matrix is linked to the state

vector (position, attitude, and deflection), as specified in Chapter 4.

1

1

1

1

d 1 (5.4)

1

(PB

(PB

S0B

The third step parameterization occurs in specification of which of the parameter

vector indices to use in the force calculation. For states 1 through 6, the mass prop-

erties for Object A should be used. If the state is greater than 6, the mass properties

for Object B should be used.

The final step is the population of the estimated parameter vector & to include

the mass properties for the configuration.

Table 5.5 specifies the adaptive controller gains used for each of the different con-

figurations. The adaptive controller was tested for the SPHERES satellite only config-

uration (Object A only) in order to form a baseline tracking performance. The same

adaptive controller was tested in the Object A+C configuration, both in simulation

and hardware. Neither the controller form nor gains changed, only the initialization

of the parameter vector a.

127

Table 5.5: Adaptive controller gains for different configurations

Configuration Mass (kg) Inertia (kg/rn2) Position Gains Attitude Gains Adaptation Gain
Object A (ISS) 4.3 0.0225 6.5 2.0 0.4 0.25 1
Object A+C (ISS) 8.60 0.0450 6.5 2.0 0.4 0.25 1
Object A (LAB) 12.43 0.067 6.5 2.0 0.4 0.25 1
Object A+C (LAB) 24.86 0.134 6.5 2.0 0.4 0.25 1

Object A only: Desired Translation Path vs Actual Translation, Simulation

00

0 10 20 20 4 0

0 10 20 30 4 0 6

0 1
Time (s)

(a) Position Tracking

Figure 5-26: Object A Adaptive Control
tion

Object A only: Desired Velocity Profile vs Actual Velocity, Simulation
004

002 -

0 10 20 3 60

00-

-005 ' 60

0.04

-002 -

-0020 10 20 30 40 50 60
Time (s)

(b) Velocity Tracking

Trajectory Tracking Performance, Simula-

Results

Figure 5-26 shows the performance of Object A in simulation and Figure 5-27 shows

the performance in hardware. Simulation results show tracking to ±1 mm, while

hardware results show tracking error less than ±5 cm.

Figures 5-29 and 5-30 show the results for Object A+C configuration position

tracking. Figure 5-31 shows that the tracking error for Object A+C also is less than

±5 cm. The adaptive control tracking performance for Object A+C is comparable

to the tracking performance seen for Object A. This demonstrates that the controller

maintains the same level of performance for both configurations.

This adaptive controller was run in simulation for a transverse translation ma-

neuver for Object A+B+C configuration. Figure 5-32 shows the position tracking

results of simulated position (solid) versus desired position (dashed). In Figure 5-

32a, the adaptive controller is set to Object A only configuration, while Figure 5-32b

has the Object A+B+C adaptive controller. Thus, one can see the distinct tracking

improvement when using the controller designed for that configuration.

128

Adaptnve Controller Desired Position vs Actual Position, Obj A. Ground

o i0 20 32 40 50 0

0.5

-0
0 10 20 0 40 -0 -0

0 10 20 30 40 50 60

"0 10 20 30 40
Time (s)

(a) Position Tracking

Object A only: Desired Velocity Profile us Actual Velocity, Ground
002

- 0 -
0 10 20 30 40 50 600.02 1

-0 020
A 1 20 3 0 0 6

Desired 0
----Actual0

5 ,a _ 60 -0,020a 1 0 2 .0 3 .0 4.0 10 60
Time (s)

(b) Velocity Tracking

Figure 5-27: Object A Adaptive Control Trajectory Tracking Performance, Ground
Hardware

Adaptive Controller: Position Tracking Error vs Time, Obj A, Ground
ni-t

20 25 30 35 40 45 50 55 60
Time (s)

Figure 5-28: Object A Adaptive Control Trajectory Error Performance, Ground Hard-
ware

Object A-C Desired Translation Path Actual Translation, Simulation

0 -

-0 5 =L

0 10 20 40 50 0 70 90 100

05

0 10 20 42 0 50 60 70 0 90 103

a 10 20 30 40 50 60 70 80 90 100
Time (s)

(a) Position Tracking

Object A+C Desired Velocity Path os Actual Velocity. Simulation
004

002

-002 LL0 10 20 40 50 0 70 0 0 100

004

002

0 10 20 40 0 0 70 03 90 10

0 10 20 30 40 50 60 70 80 90 l0
Time (s)

(b) Velocity Tracking

Figure 5-29: Object A+C Adaptive Control Trajectory Tracking Performance, Sim-
ulation

129

0.04

0.03

0.02

0.01

0

-0.01

- - Z:

\ -\

0 0- - -

.. L-n 't

Object A+C Desired Translation Path s Actual Translation, Ground

a 10 20 30 40 5o 60

05

o0. in 1 o so .0 3 4 0 no . n6

0

a 10 20 30 40 50 60

/05

in 60 0 40 0
Time (s)

(a) Position Tracking

Figure 5-30: Object
Ground Hardware

Ocl.

Object A+C: Desired Velocity Profiles Actual Velocity, Ground0.0

0
4 n

0 -- -- - --

n n 20 3 4n 60

0.0

002

0 10 20 30 40 o 60
Time (s)

(b) Velocity Tracking

A+C Adaptive Control Trajectory Tracking Performance,

Object A+C: Adaptive Control. Position Error vs Time, Ground

35 40
Time (s)

Object A+C Adaptive Control Trajectory Error Performance, Ground

Position Tracking for Object A+B+C using Object A adaptive controller
01

0 -- =---__
X ---- Actual State

-01 -Desired Trajectory
0 500t 150

n 50 lo 1i0n

0A1

0

-0 1
0 o 100 i50

(a) Object A controller

Position Tracking for Object A+B+C using Object A+B+C adaptive controller
0.1

- Actual State

o0 - - -Desired Trajectiry

-0 1010 50 100 150

1

F:0 5 -

n 0

0 1

(b) Object A+B+C controller

Figure 5-32: Estimated State vs Desired State for SWARM + Beam (Object A+B+C)
using an adaptive controller, Simulation

130

Figure 5-31:
Hardware

0 5

Analysis

Results presented in this section show good tracking performance when using the

adaptive controller for Object A, Object A+C, and Object A+B+C configurations.

The maintenance of the tracking error under all three configurations demonstrates

the successful parameterization of the adaptive controller. The adaptive controller

is naturally suited to online autonomous model generation with the specification of

5. Online Model Calculation specifies the layout of masses and initial guesses for

5. Adaptation improves & to achieve trajectory tracking. Online Model Calculation

enables adaptive controller to work with varying configurations. Because of the in-

herent adaptation, the same set of gains could be used for all configurations, which

simplifies the parameterization.

5.3.3 Comparison between PD/PID and Adaptive control

Table 5.6 shows the RMS tracking error for each configuration for PID versus Adaptive

control. For the Object A configuration, the adaptive controller performs slightly

worse than the PID controller, shown in Figures 5-20 to 5-22. For the Object A+C

configuration, the adaptive controller shows slightly better performance than the PID

controller shown in Figure 5-25.

This performance improvement in the Object A+C configuration can be attributed

to the adaptive controller's ability to adjust the inherent model based on the tracking

performance. This has the effect of partially accounting for unmodeled mass proper-

ties or disturbances. This allows the adaptive controller to maintain the same level

of performance for both configurations. The overall performance can then be tuned

for the desired performance specifications. The Object A PID control gains have

been significantly tuned over the past 5 years. However, only minimal testing was

performed to select the adaptive controller gains. Thus, it is likely that the proper se-

lection of gains enables the adaptive controller to match the PID control performance.

131

Table 5.6: RMS Position Tracking Error Performance in meters between PID and
Adaptive Controllers for Object A and A+C configurations

Configuration PID AC
Object A 0.0064 0.024

Object A+C 0.0954 0.0337

5.4 Control Allocation

The control allocation algorithm on SPHERES is a pulse width modulation scheme

based on the thruster geometry. The control allocation algorithm is updated to use

the additional thrusters that are external to the assembler satellite. These additional

thrusters could be on a module satellite or a propulsion module.

Experiment

Figure 5-33 shows the differences between the implemented baseline and reconfig-

urable control allocation algorithms. The variables highlighted in red bold are prop-

erties that are obtained through the property vector. The reconfigurable version of the

control allocation for Object A+C accounts for the addition of 12 more thrusters and

the change of the center of mass of the system. Due to the addition of 12 thrusters,

the system now has redundant thrusters and blocked thrusters. A variable (Acthealth)

is introduced to allow for the selection of particular thrusters out of the complete set.

For this work, the thrusters on the attachment face are disabled. Of the redundant

thrusters, the heuristic that is chosen to select the thrusters is the selection of the

thrusters furthest from the center of mass to allow for the most torque.

Two tests were performed to compare the control performance when a large mod-

ule is attached. Object A+C configuration was used for the first test. The assembler

satellite was actively maneuvering, while the module satellite was a proof mass and

did not actuate during the test. The satellites execute a 900 rotation about the Z axis.

The attitude is maintained about the other two axes. The Object A+C configuration

was also used for the second test, but actuators were able to be used on both satellites.

Thruster commands were calculated on the assembler satellite, then communicated

132

On/off = fPwm(firing window, uthr) On/off = fpwm(firing window, uthr)

Figure 5-33: Implementation of Baseline versus Reconfigurable Control Allocation

to the module satellite. The test maneuvering is identical to the previous test, where

the satellites execute a 900 rotation about the Z axis, while maintaining attitude in

the other two axes. This updated thruster geometry leads to a uniform distribution

of thrusters around the new center of mass.

Results

Figure 5-16b shows the results for the attitude error using only the assembler's

thrusters. The overshoot for the single satellite configuration is roughly 41'. The

satellites did not settle to the desired attitude during the 45 s allotted for the ma-

neuver. This reflects that even though the gains are updated for the mass, the per-

formance degradation is caused by the fact that the center of mass is outside of the

thruster envelope. Use of the thrusters on the attachment face are not permitted so

the system is unstable and uncontrollable along the direction of attachment.

Figure 5-17b shows the attitude error plotted versus test time when using the

gains calculated for the Object A+C configuration for the ISS environment. The

overshoot in Figure 5-17b is about 200, which is a factor of two improvement over

133

Baseline
Input: Mixing matrix (M), average
thruster force (fag), and control input
(u)

Retrieve stored mixing matrix

Calculate required forces

uthr (M-1 * u) * favg

Determine thruster on/off times
based on pulse width modulation

scheme

Reconfigurable
Input: center of mass (reg), thruster

location (Rgc), thruster
direction (F), thruster force (f), and

control input (u)

Get thruster location from CG

R = RC - re,

Determine thruster torque matrix

T =RxF
Form mixing matrix

M = [F T]

Calculate required forces

Uthr = (M-1 * u) * f

Determine thruster on/off times
based on pulse width modulation +-

scheme

TS13 P216 T9: Commanded Thruster Durations vs Time, ISS Hardware

05
0.5 -

0

0 -
-. -1-

-10 50 100 150 200 250 300 350 400

Bo

600-

0

S400 --

00 50 100 150 200 250 300 350 400
Test Time (s)

Figure 5-34: Commanded thruster durations for Object A+C configuration multi-
target test, ISS hardware

Figure 5-16b with the Object A actuator model. Also, in this case, the satellites were

able to converge to the desired attitude, with a settling time of 20 s.

The thruster commands for the translational joint maneuvering test shown in

Figure 5-19 are shown in Figure 5-34. It is seen that the control allocation algorithm

does not command the interior thrusters, located on the attachment face. This is

as expected for this configuration because the interior thrusters do not provide any

thrust due to plume impingement from the attached satellite. The exterior thrusters

are commanded with an initial large pulse, consistent with a high initial position

error (corresponding to a large control input), and decreasing as the position error

decreases. Thruster saturation is an important issue to track because it leads to

decreased performance due to loss of desired actuation. Saturation would appear as

a flat top to the thruster firings. The peaks of the thruster firings in Figure 5-34

are all rounded. Thus, the fact that the thrusters are not saturated in Figure 5-34

demonstrates proper selection of the duty cycle and control period.

This control allocation was also used for controller testing for the Object A+B+C

configuration in Katz thesis [42] to account for the SWARM propulsion module

thrusters. Figure 5-35 shows the performance of three different controllers using

the same control allocation algorithm. Figure 5-35 plots (top) the desired attitude

134

PD

.5
o L
0 100 200

PD

0.1 F.
0.05 |
005

-01"

PFL

%

.5

0
0 100 200

t (s)
PFL

0 100 200 0 100 200 0
t (s)

Figure 5-35: Performance of three controllers for Object
the parameterized control allocation algorithm

Adaptive

Adaptive

100 200

A+B+C configuration using

versus actual attitude for a rotation of 90', and (bottom) the corresponding deflec-

tions for each link in the beam while performing the rotation. The successful rotation

tracking, while maintaining deflection under 0.1 rad, demonstrates proper control.

The successful control implies the successful implementation of the control allocation

and demonstrates its proper conversion of control input to thruster commands for a

variety of controllers.

Analysis

The successful parameterization of the control allocation algorithm was demonstrated

for Object A+C and Object A+B+C configurations. Object A+C configuration

testing accounted for Object C being both active and passive. Communication was

used to transmit thruster commands from the assembler to the module. The control

allocation algorithm does not quantitatively account for the communication delay

in sending the packets. It is assumed that the communication delay is small. In

microgravity conditions, this assumption is valid since there is minimal motion during

the few milliseconds of communication transmission. The impact is greater on ground

tests because friction and slopes on the table lead to larger disturbances during that

135

0

C
00

ao

:3

.20
a,-i

a,

communication transmission.

Communication delay is not an issue for the Object A+B+C configuration, be-

cause commands are transmitted through the expansion port connection. The pulse

width modulation scheme used could present issues when actuating flexible dynam-

ics. The successful damping of the deflection also shows that this control allocation

algorithm can also be used for flexible module, given the proper control frequency

selection. The control frequency should be selected to be faster than the vibrational

dynamics associated with the flexible module to be able to control it.

5.5 Integrated Tests

The demonstration of the Online Model Calculation design is contingent on the imple-

mentation of both the framework (proper transmission and model calculation based

on p) as well as the parameterized control algorithms. Two types of integrated tests

were conducted to demonstrate the model generation architecture end-to-end. The

first type of test is in support of autonomous assembly. These tests validate that

the Online Model Calculation design developed successfully works for the applica-

tion envisioned. The second type of tests is a remote control test. The successful

implementation of the Online Model Calculation design on the remote control tests

demonstrate that the framework and algorithms can be extended to non-assembly

applications. Thus, the Online Model Calculation design can be included in the spec-

trum as a valid model generation architecture because it is not just applicable for

autonomous assembly applications.

5.5.1 Docking and Assembly

Many iterations of docking and assembly tests were coded and implemented as part

of the testing process. Two key tests are discussed here. The first test is docking

when attached to the flexible beam. The second test is an assembly maneuvering for

a single rigid module.

136

SWARM Docking Trajectory Tracking Performance
0 -

-0.2-

x 04-
0 -

20 40 60 80 10 120 140 160 140 200 220

Align Transverse Position Approach Docking

0 Attitude Orientation 50 100 150 200

-12 1-12 -

S-1.4 0 4 0 0 10 12 4

-1. -
1.020 40 60 1 1 140 1 18 2W 2

Time (s)

Figure 5-36: Object A+B+C maneuvering and docking to a fixed structure, Ground
Hardware

Docking

Figure 5-36 shows the adaptive control tracking performance of Object A+B+C ma-

neuvering to dock to a fixed structure. The docking occurs along the Y axis. The goal

position that indicates docking is depicted by horizontal bar. The docking occurs as

a sequence of several component maneuvers. The changes between maneuvers are de-

picted by the vertical bars. The test had several maneuvers: estimator initialization,

attitude orientation, alignment in the transverse direction, approach, and docking.

The areas where the actual state ceased to follow the trajectory and remained sta-

tionary were periods when the satellite's air carriage got stuck on the flat floor. This

problem was remedied at the start of the next maneuver due to the large thruster

pulse at the beginning of a maneuver as part of the bang-bang path planner. This

test resulted in a successful docking of the free end of the flexible beam, indicating

that the adaptive controller was successful in maintaining accuracy in position and

attitude, as well as the beam deflection. The adaptive controller used in this test was

2D sliding mode adaptive controller, developed by Katz [42], a precursor to the direct

adaptive controller.

137

STBD STBD STBD

Assembler Module Assembler Module Assembler Module

+ tZ~

View OVHD 4 DECK PORTV OVHD 4 DECK PORT Viw OVHD + DECK PORT

(a) Initialization (b) Point to module (c) Docking

STBD STBD STBD

Assembler Module Assembler Module Module

Assembler

"Vi. OVHD DECK PORT -V-OVHD -4 DECK PORT WOVHD + DECK PORT

(d) Joint Maneuvering (e) Undock (f) Maneuver to Next module

Figure 5-37: Schematic of Assembly Maneuver Sequence

Assembly Maneuver

A full assembly maneuver was performed with a rigid module. The assembly ma-

neuver test consisted of three main phases. Phase one involves an assembler satellite

docking to a module satellite. The sub-phases for the docking are the same as those

described in the previous section. In Phase two, both satellites are attached and ma-

neuvering jointly to the center of the test volume. This phase mimics the movement

of a module from its initial location to its final location in the assembled structure.

Finally, in Phase three, the assembler satellite detaches from the module satellite and

moves to another location, as if in preparation to dock to another module satellite.

Figure 5-37 shows a schematic representation of the maneuvering of the satellite.

Figures 5-38 through 5-42 show the performance of the assembly maneuver. Fig-

ure 5-38 successfully shows the general execution of the assembly sequence and the

framework of the Online Model Calculation design. Figure 5-38 shows the trajectory

tracking performance, where the solid line is the actual trajectory and the dashed

line is the desired trajectory. At each phase change, the property structure was

138

Trajectory Tracking Performance

SObjectA+C
K

E ~Distance 9
X attachment

Object Obje C

-0.N
Objeet A

0 50 100 Time (s) 15 200 250

Figure 5-38: Trajectory Tracking Performance for assembler and module, Assembly
Maneuver, Hardware

successfully transmitted and the new model calculated and set. Otherwise, the de-

sired motion of the next phase would not occur successfully. Trajectory tracking

performance is maintained in each configuration. Object A+C is an uncontrollable

configuration if using the Object A model. Thus, successful trajectory tracking after

docking demonstrates a successful model update.

Figure 5-39 shows the relative position between the assembler and the module in

simulation. During the docking phase, the relative position decreases according to

the desired trajectory profile until it reaches 0.20 m separation. At this distance, the

two satellites are docked. This relative position is maintained throughout the joint

maneuvering phase, since the two satellites remain attached. Once the assembler

undocks, the relative position increases again as the assembler performs an open

loop maneuver to push back. Figure 5-40 shows nearly identical, though noisier,

behavior for the ground testing. Figures 5-39 and 5-40 show that the relative attitude

is consistently maintained throughout the maneuvering, such that the satellites are

pointing their docking faces (-X Velcro faces) at each other.

Figure 5-41 shows the trajectory tracking error for the assembly maneuver, in all

three phases. A PD/PID controller was used during this test to follow the Bang-

Bang trajectory. The maintenance of the tracking error in simulation was below 2 cm

and approximately 5 cm in ground hardware. The maintenance of the same tracking

performance throughout the different configurations demonstrates the successful pa-

rameterization of the control algorithms. Though the error is greater in the hardware

139

One Satellite Assembly Relative state difference between Assembler and Payload, Simulation
1

- Distance Apart
- - - Diameter of Attachment

0.6

a- 0.4 -

0.2 - -

0
0 50 100 150 200 250 300 350

1 II -

.......qI

0.5 - --- q2
q3

q4
0

-0.5 -

II
0 50 100 150 200 250 300 350 400

Figure 5-39: Relative Position Between assembler and module, Assembly Maneuver,
Simulation

One Satellite Assembly: Relative state difference between Assembler and Payload, Ground Hardware

1_ Distance Apart

E 0..- - Diameter of Attachment

Joint Maneuvering

i 0.4 . - - - - -- ----...................... -..

0 2 --- ---- ------------------ -OpernLBoyfire to

Attitude Alignment Docking Approach Manual Attachmen separate
n

100 150
Test Time (s)

Figure 5-40: Relative Position
Ground Hardware

Between assembler and module, Assembly Maneuver,

140

One Satelite Assembly Trajectory Position Error versus Time, Simulation

0.01 . 001

-002
-00 -030

-0.03 -0.034-004 -. 04 -
0 ; 10 2 2 03 35060 16 20

Test Time (s) Test Time (s)

(a) Simulation (b) Ground Hardware

Figure 5-41: Position Tracking Error of assembler, Assembly Maneuver

tests, it is sufficient for docking to occur. The tracking performance can be improved

by tuning the baseline control system design, such as tuning the path to be within the

actuator constraints and tuning the control bandwidth. Also, these tests are designed

primarily for the ISS testing environment. Thus, they do not account for friction or

table disturbances in the selection of gains or duty cycles. Only the additional mass

of the air carriages is accounted for in the control system for ground testing.

The successful implementation of the control allocation algorithm is demonstrated

by plotting the thruster firing durations for the thrusters on the attachment face ver-

sus the exterior thrusters. When the assembler and module are attached, the interior

thrusters located on the attachment face are disabled to prevent plume impingement.

Figure 5-42 shows the thruster firing durations for these thrusters. When the as-

sembler is not attached to the module, these four thrusters are enabled and can be

actuated. When the assembler and module are attached, these thrusters cannot be

actuated, but the exterior thrusters are successfully actuated. Figure 5-42 demon-

strates the successful parameterization of the control allocation algorithm to align to

the thruster constraints.

Components of this test were performed on the ISS. However, issues with satellite

reset and improper beacon setup prevented a complete successful run. This test is

scheduled to be run in Test Session 22, in Spring 2010. When the test is completed

successfully, this test will constitute the first on-orbit autonomous assembly maneuver

141

One Satellite Assembly: Assembler Thruster Durations versus Time, Simulation

150

150

a 50 10o 15O 200 250 300 350 400

O 250

200

oISO LU 100
05

Test Time (s)

(a) Simulation

Figure 5-42: Thruster Firings of assemb

One Satellite Assembly: Assembler Thruster Durations vs Time, Ground Hardware

10

5010 5

0 50 10 150 200 250

1oot Time (s)

(b) Ground Hardware

ler and module, Assembly Maneuver

demonstrated.

5.5.2 Remote Control

The Online Model Calculation design can also be applied to distributed systems.

The application considered is a remote control scenario where a module satellite can

estimate its state, but does not have the computation capability to run a path planner

or controller. An assembler satellite can obtain the state of the module satellite,

via communication, run the computation to determine the actuator commands and

communicate those back to the module satellite.

In order to properly execute the remote control scenario, the assembler must

generate a model of the module. The module properties are received, but instead

of aggregating it with the assembler properties, they are used to generate the model

of the module. The generated module model is then fed into a control system that

monitors the module state and calculates necessary actuator commands. It is similar

to the control allocation tests performed in the Object A+C configuration with joint

firing, except the satellites need not be physically connected.

Two simple tests were performed. The first 10 s in simulation and the first 15 s

in ground hardware tests are estimator initialization.

1. The assembler satellite communicates open-loop thruster commands to the mod-

ule satellite to perform a body translation in the X direction. The thruster

142

Remote Control Open Loop Commanding in X direction, Simulation
0.1

&05

-05
10 12 14 16 18 20 22

Remote Control Open Loop Commanding in X direction, Ground Hardware
0.2

0.18

010

Z0.14/

012

10 12 14 16 18 20 22

0.03

0.01.01)

-0.01 -0.011
10 12 14 16 18 20 22 10 12 14 16 18 20 22

Time (s) Time (s)

(a) Simulation (b) Ground Hardware

Figure 5-43: Module satellite position state, remotely commanded open-loop

commands are not based on the module's current state, only on the module's

thruster configuration. The assembler issues commands to fire the -X thrusters

for 15 s, then to fire the +X thrusters for 15 s.

2. The module satellite sends its current state to the assembler satellite. The

assembler satellite uses the state and the module model to generate a control

input to maneuver the module to a specific location target.

Figure 5-43 shows the position of the module satellite for test one, both in sim-

ulation and hardware. The movement in the X direction denotes successful receipt

and actuation of the thruster commands from the assembler satellite.

While the first test demonstrates open-loop remote control, the second test demon-

strates closed-loop remote control. Figure 5-44 shows the position error of the module

satellite from the desired location. The decrease in the position error to approach

zero shows that the module satellite is able to reach its desired waypoint target. Is-

sues with overshoot or settling performance can be mitigated with the use of a path

planner. Also, selection of the gains can be tuned to account for the communication

delay between assembler and module.

The use of the Online Model Calculation framework was useful in this application

to generate the module model on the assembler and run it in a parameterized con-

trol system. By using the parameterized control system developed for Online Model

Calculation, the same algorithms are able to be used for both assembler and module,

143

05

-Z0.
0.06

0.200.3
00d

0.2 -
003

a.

-0. - -00

0.062x

.0 w
0.01

n-at -001

-03 -0.01

-03-02 -

-ad -0.03

1 15 20 25 10 15 20 25 30 35 40
Time (s Time (s

(a) Simulation (b) Ground Hardware

Figure 5-44: Module satellite position error, remotely commanded closed-loop

even though they might have different models. The usefulness of Online Model Cal-

culation for this application demonstrates its versatility and its ability to be extended

for non-autonomous assembly applications.

5.6 Conclusions

This chapter presents the experimental implementation of parameterized control al-

gorithms on the SPHERES testbed, both in simulation and on hardware. Two types

are modules are explored, rigid and flexible modules. Experimental results show defi-

nite performance improvement for the estimator, controllers (PID and adaptive), and

control allocation. The full framework was tested through two integrated tests, an

assembly test and a non-assembly test. The successful performance of the assembly

test in properly changing configurations is demonstrated by the successful maneu-

vering and estimation, which validates the Online Model Calculation framework and

design. The ability to use the Online Model Calculation framework and parameter-

ized algorithms in a distinctly different application, such as the remote control tests,

shows how the design can be extended to other non-assembly applications.

Implementation on hardware unearthed issues that revealed configuration con-

ditions that necessitate use of the new model. The necessity of incorporating the

flexible dynamics depends on the level of excitation from actuation and mass ratio

144

Remote Control Closed Loop Commanding, Position Error, Ground HardwareRemote Control Closed Loop Commanding, Position Error, Simulation

-

-

-

-

between Object B and Object A. The mass ratio between the assembler and module

also impacts the necessity for parameterization of the estimator actuator propagation

and controllers. For changing sensor configurations, the utility of incorporating the

module sensors is based on the number of sensors, location of sensors, and delay in

incorporation of the measurements. Overall, the successful implementation of the pa-

rameterized control algorithms on the two distinctly different modules demonstrates

the validity of the parameterization of the control algorithms.

145

146

Chapter 6

Metrics for Model Generation

Architecture Comparison

The design of a control system plays a large role in determining the success of a

space mission. The control system is responsible for achieving position and attitude

targets, under strict accuracy and resource consumption requirements. Current space

missions generally have a single configuration. Thus, their control systems use a single

model and are tuned to achieve the desired performance for all foreseeable operating

conditions of the single configuration. Missions that employ autonomous assembly,

however, are fundamentally different because the control system must incorporate

configurations that change throughout the mission. Therefore, the control system

must be reconfigurable.

A key aspect in making the control system reconfigurable is generating the model

of the configuration and determining how it is processed by the control system. There

are many types of model generation architectures. The selection of an appropriate

model generation architecture can increase control system accuracy, save fuel, de-

crease computational processing time, and/or decrease development time. The most

common practice for selecting a model generation architecture is experience, such

as comparing to similar past missions. However, there is no precedent for on-orbit

autonomous assembly. The closest example is on-orbit autonomous docking, such

as DARPA's Orbital Express [43]. Docking is only the first step of assembly and

147

does not cover the range of configuration changes that can occur during assembly.

Therefore, in order to effectively design a control system, engineers should quanti-

tatively compare model generation architectures and select an architecture based on

performance objectives.

A key innovation of this thesis is the comparison and evaluation of model gener-

ation architectures. The comparison of model generation architectures can be used

in the concept design phase to evaluate assembly scenarios. Comparisons of model

generation architectures allow engineers to account for trades very early in the design

process. The final selection of the architecture would therefore be more informed

and optimized. To enable comparisons between model generation architectures, the

first step is to determine the traits by which to compare architectures. The effective

choice of metrics, to characterize both computational load and resulting control sys-

tem performance, is important in making the comparison as helpful as possible. The

focus of this chapter is the development of metrics to quantitatively compare model

generation architectures.

This chapter starts with a review of the types of model generation architectures

used in reconfigurable control systems, with an emphasis on their differences. The

next section describes the metrics developed in this work that focus on three areas:

control, spacecraft, and assembly mission performance. The metrics are then com-

bined into a set of objective functions that can be used to evaluate model generation

architectures. The evaluation of assembly architectures using these metrics and ob-

jective functions is discussed in Chapter 7. Finally, the metrics and the evaluation

methodology are integrated into a process for the selection of a model generation

architecture, described in Chapter 8.

6.1 Types of model generation architectures

This section provides a detailed description of different types of model generation

architectures. The types of model generation architectures are determined through

an extensive literature search. They are arranged on a spectrum, based on the nature

148

of the information available, such as the mass properties of the system. Section

6.1.1 describes the spectrum and defines three key variables for determining where

an architecture is placed on the spectrum. The different types of model generation

architectures present on this spectrum are divided into four major categories. These

categories are described in Section 6.1.2, including the advantages and disadvantages

of each category with relation to implementation for autonomous assembly missions.

6.1.1 Spectrum Definition

The range of model generation architectures can be classified by the amount of a

priori information known about the assembly, such as module mass and stiffness

properties. By knowledge of these properties, we mean the information is made

available to an assembler during the assembly execution. Though many, or all, of

these properties may be known on the ground, the properties may not be stored on-

board an assembler. Thus, the information content available to an assembler during

the assembly execution is important in designing the control system. For this work,

it is assumed that an assembler has full knowledge of its own properties, when no

module is attached.

There are three critical variables by which the model generation architectures can

be distinguished: transitions, configurations, and module properties. Knowledge of the

transitions indicates that an assembler knows the timing of the assembly sequence.

This specifically includes the time at which the transitions will occur, but not neces-

sarily the starting and ending configuration that occurs at that transition. Knowledge

of the configurations indicates that an assembler knows the dynamics model for each

configuration used during the assembly. Though an assembler knows all possible

configurations, it does not know when in the assembly a configuration will be used,

which configurations will be used, or the configuration sequence. Finally, knowledge

of the module properties indicates that an assembler knows the mass properties of

the module when it is unattached to an assembler. Knowledge of how the module

attaches to an assembler is not known throughout the assembly, but can be acquired

at the time of attachment. To enumerate all possible situations, each of the three

149

Table 6.1: Types of model generation architectures based on available information in
a binary truth table

Type ITransitions Configurations I Module Properties

1 Unknown Unknown Unknown
2 Unknown Unknown Known
3 Unknown Known Unknown
4 Unknown Known Known
5 Known Unknown Unknown
6 Known Unknown Known
7 Known Known Unknown
8 Known Known Known

critical variables is given a boolean designation. A value of true indicates that the

information is known, while a value of false indicates the information is unknown.

The full set of possible architecture types is given by Table 6.1, using a binary truth

table format.

As seen in Table 6.1, there are eight types of architectures. The spectrum defini-

tion can be identified by the progression of the types of architectures seen in Table

6.1. Architectures of Type 1 have no information about the system stored on an

assembler. Architectures of this type must identify the properties online, or employ a

controller with the capability of learning or adapting during maneuvering. Architec-

tures of Type 2 have knowledge of the module properties. This allows an assembler

to calculate the model at the time of attachment, even though the time and nature

of the attachment is not known ahead of time. Similarly, architectures of Type 3

and Type 4 have knowledge of the configurations. An assembler can set the proper

configuration, once the attachment occurs and specify which configuration is used.

Architectures of Type 5 have knowledge of the transitions, but not the configurations

or properties. Thus, these architectures, though they can include monitoring close to

the transition time, must employ identification or learning schemes similar to Type

1. Architectures of Type 6 are similar to architectures of Type 2, but with additional

monitoring during the known transition times. Finally, architectures of Type 7 and

8 have knowledge of the transitions, as well as the configurations. This is sufficient

information to pre-plan the entire assembly sequence in the control system. Based

150

on these classifications, one end of the spectrum can be defined as types of architec-

tures that have little to no knowledge of the system. These types of architectures

necessitate learning or adapting to the properties online. On the other end of the

spectrum are architectures where all of the information is known. This allows for

the entire assembly sequence to be pre-planned and specifically coded in the control

system. The intermediate range includes designs that have partial knowledge. This

spectrum is graphically represented in Figure 6-1 and includes the location for the

types of architectures specified in Table 6.1.

No Complete
Information Spectrum of Model Generation Architectures Information

Type 1 Type2 Type 3 Type 4 Type 7
Type 5 Type 6 Type 8

Figure 6-1: Spectrum of model generation architectures with arrangements of types
of architectures from Table 6.1

Figure 6-2 gives example missions for selected types of model generation archi-

tectures. These are meant to give the reader an example of what "real-life" missions

would fall under each type. For example, for Type 1, architectures in this type arise

when an assembler attaches to a module in an unknown state (i.e. unknown mass

and inertia due to failure or impact), as would occur in a rescue, contingency mission,

or docking to a hostile target. Type 4 includes architectures where the configurations

and module properties are known, but the time and order of assembly is not known.

Missions that fall in this camp are those similar to the ISS, which has unknown tran-

sition times associated with launch delays. Fabrication delays could cause changes to

the order of assembly, so although the properties and configurations are known, the

exact time of when the transitions occur are not known. Type 8 describes architec-

tures where all desired information is explicitly known. One example is the assembly

of a modular space telescope, which has a set of identical modules that are assembled

individually.

The availability (or lack thereof) of information to derive the model dynamics

drives how the model generation architecture is designed. In reconfigurable systems,

151

Assembler Assembler

Unknown
Payload 6 Identical Mirrors

Category 1 Category 4 Category 8

Figure 6-2: Example missions for selected categories of architectures from Table 6.1

reconfiguration through model generation is dependent on what information is avail-

able. Based on Figure 6-1, four major categories of model generation architectures

are derived. The use of four categories allows for easy explanation of the advantages

and disadvantages across the spectrum.

6.1.2 Categories of model generation architectures

There are four main categories for model generation architectures, each of which

covers a section of Table 6.1 and Figure 6-1. The four model generation categories

are: system identification, online model calculation, multiple model storage, and gain

scheduled. Each model generation category is described in detail in the following sub-

sections, specifically including a (1) definition of the category, (2) discussion of the

advantages and disadvantages, (3) location of the category on the spectrum, (4) as-

sumptions necessary to implement the architecture, and (5) examples of architectures

from literature.

System Identification

The system identification category refers to all architectures that identify or learn

about the model properties during the assembly execution. Traditional system iden-

tification derives a mathematical model of the system through analysis of input and

output signals [49]. Practically, for a spacecraft system, this method amounts to

adding actuation inputs and analyzing the resulting motion. The time needed to ob-

tain the measurements is proportional to the level of fidelity needed in the model. The

152

fidelity of the model identified increases with increasing amounts of measured data.

Some architectures in this category require a model structure and seek to identify

parameters to fit the observed data to the model.

The benefits of this category is the minimal amount of information necessary to

implement this method. Thus, these methods can be implemented on almost all sys-

tems. The disadvantages include resource consumption required to excite the system

to obtain the data (such as time and fuel), possibility of unsafe input excitation,

computational load, and that the fidelity of the model is proportional to the amount

of data obtained. Time and fuel are very precious resources on-orbit. Overall mission

constraints on these resources may limit how much can be expended to obtain data

for system identification. Also, the trajectory tracking performance during the iden-

tification or learning phase may not meet minimum performance requirements. This

is an important consideration, particularly for obstacle avoidance issues.

This category is located on the far left of the spectrum, where no information is

present. Since no information is required for implementation, the system identifica-

tion category places no assumptions on the information necessary to implement this

category.

Significant research has been performed in this field. One example is Jacques'

strategy for identifying large order multi variable models from transfer function data

[38]. This algorithm was implemented and demonstrated on the Middeck Active

Control Experiment [21, flown on the Space Shuttle and ISS. Wilson et al. demon-

strated online gyro-based system identification using a recursive least-squares method

[81]. Chandler et al. used a static system identification method for a reconfigurable

adaptive controller to handle changes in plant dynamics due to actuator failures [12].

These algorithms seek to maximize accuracy of the model determined, with minimal

computation and resource consumption.

Online Model Calculation

The online model calculation category refers to architectures that calculate the model

of an aggregated system by combining the initial model of an assembler with prop-

153

erties of the module attachments. For example, these model generation architectures

start with the model of an assembler. At each configuration change, it uses property

information of the attached module and information on how the module is attached,

to generate the new model of the combined system.

The benefits of this category are minimal information storage on an assembler, ca-

pability to aggregate models, decoupled control system from the assembly sequencer,

and accommodation of multiple configurations from a minimal knowledge base. This

allows the same assembler to be used for multiple assembly missions with little to no

modification to the control system, as long as the inputs are maintained. The dis-

advantages of this category are that the mass property information must be known,

implementation may require some form of communication between an assembler and

a module, and the computational load of the model calculation algorithm. Also, a

key disadvantage of these architectures is the inherent assumption that all dynamics

of the aggregated system can be captured through knowledge of how an assembler

and module are attached. In complex systems, the aggregation algorithm may not

be able to capture all dynamics effect, leading to a lower fidelity model.

This category is located in the middle-left of the spectrum, where basic informa-

tion is available, but must be manipulated to a form that is usable in the control

system. Architectures in the online model calculation category assume knowledge of

the properties of an assembler, properties of the module, and knowledge of how the

module is attached to an assembler. However, the information is only needed at the

time of the configuration change.

Online model calculation has not been implemented much in literature, particu-

larly for spacecraft systems. Some of the reconfigurable control literature that can

fit into this category are self-assembly techniques, as the model aggregation as the

vehicles attach to each other is a classic example of how online model calculation can

be used to increment the model as each vehicle attaches itself. Examples of research

in self-assembly include LeMaster et al.'s demonstration of automated rendezvous,

docking, and self-assembly tasks between a group of three modular robotic spacecraft

emulators [46]. Ukegawa and Natori developed a concept of self-assembly using au-

154

tonomous modules to construct future space structure, with a stochastic relaxation

process for deadlock avoidance [77].

Multiple Model Storage

The multiple model category includes architectures which store a model of each con-

figuration. The proper control and estimation parameters, such as control gains, are

determined as needed after the model is set. The control system is parameterized

based on model input. For example, the controllers would take in the mass and

inertia and generate the control gains needed.

The benefits of this category are full knowledge of the dynamics of the configura-

tion, control system parameterization to take in model input, and simplified transi-

tions between configurations. The simplified transitions between configurations is a

significant benefit, particularly when the order of configurations is not known. The

key disadvantage is that all of the information about the configurations must be

known at the start of the assembly execution and stored on the assemblers.

This category is located in the middle-right of the spectrum, where the majority

of information is present but the timing is not known. Architectures in the multiple

model category assume full knowledge of the configurations. The control system does

not need to know the individual module properties because it knows the configurations

of its possible module attachments and of the overall structure.

The majority of the reconfigurable control system designs that consider failed or

degraded states use model generation techniques from this category because failure

configurations are known, but not the time at which configurations will become ac-

tive. Maybeck and Stevens present a method of multiple model adaptive control

which uses a bank of pre-designed Kalman filters and Command Generator Tracker

(feedforward) / Proportional-Integral (feedback) controllers for each of the different

anticipated failure states (i.e. configurations) [50]. Boskovic et al. switch between a

bank of controllers to accommodate estimated damaged states on the Boeing's Tail-

less Advanced Fighter Aircraft[11]. Examples of work performed on reconfigurable

control allocation, which accounts for failure of actuators, include References [17],

155

[14], and [20].

Gain Scheduled

The gain scheduled category includes architectures where the control system param-

eters are pre-determined for the entire assembly. The pre-calculated control and

estimation parameters for each configuration are hardcoded into an assembler. All

necessary parameters are known, so no calculation is required. Some architectures in

this category also require knowledge of the transitions, which requires the assembly

sequence to be pre-defined in the control system.

The benefits of gain scheduled architectures are that the control performance for

each configuration can be tuned based on the mass properties, transitions between

configurations are seamless, and there is no downtime associated with model cal-

culation since the model generation is done on the ground. The disadvantages for

architectures in this category are the a priori computation requirements, knowledge

of all configurations must be available and fixed, storage of all properties on-board,

and the high level of coupling between the assembly sequence and control system.

Little flexibility exists for these architectures to account for changes, such as different

module, failure states, and changes to the assembly sequence. Thus, the entire control

system would likely need to be re-designed for the next assembly mission.

This category is located on the far right of the spectrum, where all information is

known. Architectures in this category assume full knowledge of the mass and stiffness

properties of the system, configurations, as well as the control and estimation gains.

The transitions are generally also known for these architectures.

A key example of the use of gain scheduling in a control system design is Parlos

and Sunkel's method for gain scheduled attitude control of Space Station Freedom

under significant mass property variation from the berthing of the Space Shuttle [58].

Meressi and Paden use gain scheduling of H, controllers to accommodate a two-link

flexible manipulator [51]. Theodoulis and Duc linearize a nonlinear system about a

range of small operating points, based on angle of attack and Mach number. A global

gain scheduled control law is obtained by interpolating between gains of the different

156

Table 6.2: Categories of model generation architectures versus assumptions

No. Assumptions Category
Transitions Config Module System ID Online Multiple Gain

properties properties model calc model scheduled

storage

1 Unknown Unknown Unknown V
2 Unknown Unknown Known V V
3 Unknown Known Unknown V VV
4 Unknown Known Known V V
5 Known Unknown Unknown

6 Known Unknown Known
7 Known Known Unknown V VV
8 Known Known Known V V V

controllers for the linearized system to cover all operating regions [74].

Category Summary

Each category can only be implemented if the necessary information is available.

Table 6.2 expands Table 6.1 to show which category can be implemented based on the

knowledge of the three variables (transitions, configurations, and module properties).

The V indicates that necessary information is available to implement architectures

from that category.

For example, system identification can be implemented under all architectures

because it is not dependent on any knowledge of the system. Gain scheduling and

multiple model storage need the information about the mass and stiffness properties

of the configuration, so may only be implemented when configurations are known.

Likewise, online model calculation is dependent on knowledge of the module prop-

erties. Table 6.2 does not specify which is the appropriate category to implement,

just whether there is sufficient information to implement the architecture. To de-

termine which category is appropriate to implement, one must compare them using

performance metrics, described in Section 6.2.

157

6.2 Performance Metrics

The purpose of the metrics is to provide a quantitative way of comparing different

model generation architectures. There are three main requirements for the determi-

nation of the metrics:

1. The metrics must sufficiently capture all impacts that the model generation

architecture has on the overall assembly process.

2. The metrics must be quantitative and calculable.

3. The metrics must be written as a function of assembly architecture parameters

(e.g. Ntrans) so that they can be calculated for any assembly scenario. Metrics

that cannot be represented in such a way must be constant for a given design,

despite differences in implementation or architecture.

This section starts by providing a rationale of how the reader can generate ap-

propriate metrics for their system, then follows with a set of example metrics and

corresponding derivations.

Metrics Determination

The selection of the metrics specifies the traits of the assembly process and control

system design that are important to the designer. To determine these traits, one

should start at a low-level and work outwards to identify key areas. Larson and

Wertz' Space Mission Analysis and Design [79] provides a good initial reference to

identify the different components of a space mission, such as orbit, launch vehicle,

ground operations, and the spacecraft bus.

The first step is to start within the control system to identify control performance

based on the model generation architecture. Metrics to evaluate control system per-

formance are found throughout control literature. Examples of control system perfor-

mance metrics used in the literature are trajectory tracking error, stability margins,

convergence properties, accuracy of model identified or estimated, robustness, and

158

resource consumption. Computational performance of the model generation architec-

ture should also be accounted for, such as memory storage and processing time.

After identifying the metrics to evaluate the control system separate from hard-

ware or mission implementation, the next step is to determine the performance within

the context of the spacecraft system. One must determine what spacecraft compo-

nents the control system interacts with during design and operations. It is important

to clearly identify the inputs to the control system (e.g. sensors, power, path target

commands, disturbances), as well as outputs of the control system (e.g. actuator

commands, communication packets). The next step is to trace these values outward

to identify the subsystems affected (e.g. power, propulsion, communication) and the

nature of the information exchange. These interactions are used to identify the traits

that should be monitored at a subsystem level. Traits to track include general re-

source utilization of the control system, as well as tasks that are run based on control

system inputs. This process can be repeated at the spacecraft system level, depending

on the complexity of the system.

Finally, after identification of the spacecraft level traits, one performs a similar

analysis on the control systems interaction at the assembly mission level. The metrics

used in this category are commonly found in literature on concept studies or trade

analysis. Examples of papers that identify mission level metrics for assembly applica-

tions are Stephens and Willenberg's metrics for in-space telescope assembly [70] and

Basu et al.'s proposed autonomous assembly of a space telescope [8].

Three areas levels of interactions are considered in this work: control system,

spacecraft, and assembly mission performance. The following sections describe each

area, specify the metrics in those areas, and describe the rationale for the selection

of the set of pertinent metrics. Also, heuristic expressions are determined for each

metric based on assembly architecture parameters. The metrics provided here are not

comprehensive, but rather are meant to be a guide for an engineer to start with.

159

6.2.1 Control System metrics

The performance of the control system is dependent on the design and implementation

of a model generation architecture. A key assumption in this work is that all control

system designs must satisfy a required level of trajectory tracking performance in

steady state to successfully assemble the system. This allows the comparison to be

more focused on the method of model generation rather than the selection and tuning

of controllers. The metrics in this section are:

" Total control downtime (Ttr-dsown)

" Performance drop while transitioning (Pdrop)

" Fidelity of model needed (F)

Control downtime

Each transition in the assembly process requires time to generate and update the

model. During this time, an assembler should not maneuver because the control

system is not fully initialized. The control downtime metric is a summation of the time

that an assembler is not maneuvering due to reconfiguration during these transitions.

Lower values of control downtime are desirable because it means more time is spent

maneuvering, which completes the assembly faster. The total control downtime can

be expressed as

Tctrl-down Ntrans * Tctrldiown-per-trans (6.1)

where Ntrans is the number of transitions and Tctrl-down-per-trans is the downtime

associated with each transition. The downtime associated with each transition is

made up of several components, as shown in Equation 6.2.

Tctrl-down-per -trans =Tcomm + Tflag + Tcaic + Td (6.2)

The four components of the downtime for each transition are:

* Tcomm: the time associated with receiving the model via communication,

160

" Tf lag: the time associated with switching a flag to indicate the new configura-

tion,

" Tcaic: the time associated with calculating the new model, and

" Tid: time spent exciting the system to obtain data to identify the new model.

Some of these variables, such as Tflag, are a function of the hardware specifications

(e.g. processor speed), while others, such as Tid are more dependent algorithm im-

plementation. Equation 6.2 weights these values equally as they are all in the same

units (seconds), thus have equal weight on the overall assembly time. However, an

alternate version would be to include a weighting term to each value, such that the

user can specify which terms are more important for their particular mission.

Tcomm is a function of the type of communication, communication bandwidth, and

packet size. Equation 6.3 gives the time it takes to communicate a set of data, where

the communication bandwidth is given by wcomm expressed in packets/sec, sdata is

the amount of data to be transferred in kilbytes, and spacket is the size of a packet

expressed in kilobytes per packet.

Tcmm - Sdata (6.3)
WcommSpacket

In many cases Tflag is small enough to be neglected. However, in cases where an

assembler is very processor restricted or if the confirmation to switch configurations

must be received from outside an assembler, Tjig may become significant. For proces-

sor restricted assemblers, Tflag can be expressed as a function of the cache size on the

processor and processor memory latency. The time to retrieve a variable from main

memory is longer than retrieving the variable from cache memory, thus the amount

of space available in the cache memory determines the overall time it takes to switch

the flag.

Tcalc is a function of both the algorithm and the hardware. The computational

profile of the algorithm, such as total number of floating point operations and nature

of instructions, determines the computational load. For example, the load changes

161

depending on the number of for-loops, memory accesses, and matrix manipulations.

The total execution time of the algorithm is based on the hardware processing ca-

pability of the computer, such as multi-threading, parallel processing, instructions

per second, floating point operations per second, built in library functions, and clock

speed. Some level of optimization is present as algorithms can be coded to make

full use of the capabilities of the processor. Thus, Ti must be determined through

partial implementation on hardware or comparing to similar algorithms to determine

a reasonable value.

For system identification, Td controls the accuracy of the model generated. There-

fore, if a minimum accuracy for the generated model is set, the minimum number of

measurements needed can be calculated. Using the number of measurements and the

time to actuate and obtain a measurement, there is minimum Tid. NrdTest equals the

number of tests and Tength equals the length of each test in seconds. This particular

scheme is based on Wilson et al. [81].

Td - NidTest * Tength (6.4)

A minimum value for NidTet can be obtained by setting a requirement on the error

covariance of the generated model, omax. Equation 6.5 gives the minimum value

for NidTest based on a desired error covariance of the generated model (-max), the

noise characteristics of the observed data (zero mean with variance A), and the input

spectrum (R).

A_-
NidTest R (6.5)

Omax

Equation 6.6 gives the input spectrum R, where y is the output measurements

and u are the input values [49].

T = i mN oof t=1 num o n swh

-y (t - 1) . .. -y(t - n) u(t - 1) ... u(t - n)

The control down time is a function of the number of transitions, Ntrans,, which is

162

a property of the assembly architecture. For example, if an assembler is maneuvering

one module at a time, the number of transitions is equal to twice the number of module

(N,), to account for an attachment and detachment of each module (N/trans = 2*Npl).

However, the downtime associated with attachment is different than the downtime

associated with detachment. For cases when an assembler stores its own model when

no module is attached, the downtime associated with the detachment transition only

includes the time associated with switching the flag to indicate the return to the

original assembler model. There also might be situations when some transitions have

models stored, while other transitions have configurations that require identification.

Equation 6.1 can be generalized to remove the assumption that each transition has

equal downtime, by summing the control downtime time for each specific transition,

as given in Equation 6.7. The subscript i denotes the value of that parameter for

transition i specifically.

Ntrans

Tetri-down = ((Tcomm,i + Tflag,i + Tcaic,i + Tid,i) (6.7)
i=1

The sensitivity of the control downtime can be seen by differentiating Equation

6.2 with respect to the hardware parameters and assembly architecture parameters.

Equation 6.8 gives the equations for the sensitivity with respect to number of tran-

sitions (a scenario parameter) and time associated with switching a flag to indicate

the new configuration (a hardware parameter). The sensitivity to the other hardware

parameters that the control downtime is dependent on, such as Tcomm and Teae, are

identical to that for Tflag.

dTctr down = Tcomm + Tcalc + Tid + Tf lag
Ttrdown(6.8)

dTo ag Ntrans

Tctrldown's sensitivity to scenario is based on hardware parameters. This indi-

cates that a slower processor capability of the hardware leads to more variation of the

control downtime. In other words, the slower the processor, the more the model gener-

ation architectures are distinguished. As the computer becomes faster, the sensitivity

163

of the control downtime to scenario decreases. Also, the sensitivity of the control

downtime to hardware parameters is equal to the number of transitions, which is a

measure of the size of the assembly. The larger the assembly, the larger the variation

of the control downtime.

Performance drop while transitioning

The "performance drop while transitioning" metric is a measure of how the controlled

state differs from the desired state during the transition period. Lower values of

performance drop are desirable as this means the controlled state closely matches the

desired state. The transition period is defined as the time from the instant the flag is

set to the new configuration until the model of the configuration is obtained and the

control based upon that new model is initiated. If no model is specifically calculated,

the transition period lasts until steady state performance is reached. To ascertain the

performance during transition, one must first identify when the system has converged

to the proper model. Consider a linear time-invariant second-order system based on

F = ma (Eqn. 6.9).

J =u = Ax + Bu (6.9)

The variable u is the control input. Using a proportional-derivative control law, u is

given by Equation 6.10, where K, and Kd are the (strictly positive) control gains, x

is the actual state, and d is the desired state.

u = Kp(d - x)+ Kd(d - d)+ Jd (6.10)

Equation 6.11 gives an expression for the closed loop dynamics is obtained by

substituting equation 6.10 into Equation 6.9.

J; _ = Kp(d - x) + Kd(d - X-) + Jd
(6.11)

J(d - ,) + Kp(d - x)+ Kd(d - -) = 0

Equation 6.12 can be rearranged into state space representation, where the state

164

vector is function of the error (y [e e]), where e = d - x.

y =(6.12)
-J-'1K -J-Kd][e

Equation 6.13 gives a candidate Lyapunov function (VL) for the system in Equa-

tion 6.12, where A is the state transition matrix. It can be proven that this system

is exponentially stable, when P is positive definite.

VL = yTPY (6.13)

Equation 6.14 gives the derivative of the Lyapunov function in Equation 6.13.

VL = -yTQy (6.14)

To determine Q and P such that the system is stable, Q is set as the identity

matrix and used to solve for P, using Equation 6.15.

ATP + PA = -Q (6.15)

By solving for P, the convergence rate is bounded by -y = mn , where A rep-

resents the eigenvalues of Q and P. Since Q is chosen to be I, Amin(Q) is 1. P is

a function of the control gains (K, and Kd) and the mass (m), as are its eigenval-

ues. By assuming that the Lyapunov function is converged when VL,f = 106, the

convergence time can be obtained by Equation 6.16

TconvIdeal 2n(VLf(616)
7 VL,0

Equation 6.16 assumes that the control gains are selected to achieve the desired

performance for the given mass. If the properties are slightly off from the baseline,

the convergence time will increase. In practice, this value should be calculated by

simulation through implementation of the control system. The convergence time

165

determined through implementation in simulation is denoted as Tcmimp, while the

theoretical convergence time is Tconvldal. The performance during convergence can be

expressed as RMS =vee, equivalent to the root mean square of the error, evaluated

over the convergence time. Thus, Pdro, is the difference of the performance of the

implemented design (calculated from t = 0 to t = TconvImpi) and the theoretical design

(calculated from t = 0 to t = Tconvldeal). Equation 6.17 details this relationship, where

the integral is the total RMS error over the specified time period. The units of the

performance drop are based on the quantity being evaluated. The performance drop

for position could be in meters, while the performance drop for attitude could be in

radians.

f lTcnvImp
lT

Tcon vIdeal

Pdrop = (,ren,:p(empeImpidt) -j efdealeIdealdt) (6-17)

Fidelity of model needed

The fidelity of the model, F, needed in the control system puts restrictions on the

ground development of the model generation architectures. This unit less metric is

used as a measure of ground development work needed to identify the model on the

ground. Lower values of the fidelity of the model are desirable because less resources

are required on the ground to explicitly calculate the models. There are four values:

High, Medium, Low, and None. Each of these qualitative values is given a quantitative

value to allow it to be used in objective function calculation. The four fidelity values

are specified in terms of the percentage error between the generated model and the

true model. The percentage values are selected based on simulation analysis. For

example, Figure 6-3 shows the degradation in tracking performance caused by an

percent error in the knowledge of the mass of an assembler. Figure 6-3 shows an

example of how the percent error of the model correlates to a tracking error. Though

knowledge of the system increases over the project life cycle, this metric is meant to

capture the ground resources necessary in determining the model that will be stored

on board the satellite.

9 High: (Value = 4) High fidelity models require knowledge of the system to within

166

RMS trajectory tracking error versus percent error in knowledge of mass of assembler
0.01

0.009 -Error

E - performance
0.006 -at 8.9mm

0.007 -

0.006 - Error
performance at

0105
5.4mm

0.004 Y:. O 003435

0.003 - Baseline

I0.002 - mm
0.002 - Performance at 365
0.001 -

0 02 004 006 008 0.1 0.12 0.14 0.16 0.18 0.2
Error in Knowledge of Mass of Assembler (x10 = %)

Figure 6-3: Performance change due to error in the knowledge of the mass

5% of the true hardware system. Model determination usually entails perform-

ing rigourous system identification of the as-built system.

" Medium: (Value = 3) Medium fidelity models can be generated by a finite

element model of the system. These models require knowledge to within 10%

of the true hardware system.

" Low: (Value = 2) Low fidelity models are satisfied with simple models, such as

CAD models, and are highly tolerant to variations in the model. These models

require knowledge to within 30% of the true hardware system.

" None: (Value = 1) This value classifies control systems that do not require a

model to implement. Examples are types of system identification methods that

generate the model online.

6.2.2 Spacecraft metrics

The design of the model generation architecture also has implications on the rest of

the spacecraft design. Consider the common subsystems of a spacecraft: Guidance

Navigation and Control (GNC), Command and Data Handling (CDH), Communi-

cations (Comm), Structures, Power, and Thermal. GNC is essentially the control

system, so the implications for the subsystem are already accounted for in the pre-

vious section. This thesis focuses on propellant-based assemblers, so the Power and

167

Thermal subsystems are not greatly affected by the model change in the control sys-

tem. If other forms of propulsion are considered, such as electric propulsion, the

implications on the Power and Thermal subsystems could be significant. Metrics

similar to those discussed for additional fuel used should then be included. The main

metrics considered for the spacecraft are:

" Total additional mass (mtet)

" Sensing equipment needed (S)

* Communication bandwidth needed (C)

" Total memory used (M)

Total additional mass

The main impact to the Structures subsystem is any additional mass that would be

incurred by implementing the model generation architecture. The gain scheduled

architecture is used as the baseline because it is the architecture that has the highest

technology readiness level and has been implemented in flight. Additional mass is the

difference between the mass of the current architecture and the baseline architecture.

There are two components: dry mass and fuel mass. Dry mass consists of any

additional hardware required to implement the model generation architecture. This

includes the addition of sensors (ex. RFID reader), antennas, or structural mass.

One example is the selection of online model calculation that uses communication to

transmit properties. The selection of this architecture may necessitate the addition

of communications hardware. For this metric, lower values are more desirable, since

mass drives cost.

The additional fuel mass consists of fuel expended when trying to generate the

model. It is not meant to capture differences between controller performance, thus

does not include all fuel used during assembly. Therefore, additional fuel used is

only present in architectures using system identification and/or adaptive control. For

upfront identification, the additional fuel used is expended in the maneuver to excite

168

the system and take measurements. There are NidTt sets of tests that each last

Tength seconds long. During a single test of Tength seconds, the actuators will not be

firing constantly. A firing patten will be employed to excite all of the axes, such as

shown in Figure 6-4. From a selected firing pattern, a percent firing is calculated,

Pe, which gives the percentage of Tength where the thrusters are firing. Therefore,

Thruster firings

E 101

0 5 10 15 20

time [seconds]

Figure 6-4: System Identification firing maneuver sequence, SPHERES TS03 P103
by NASA Ames, [73]

the total fuel used to identify the model can be calculated from Equation 6.18, where

rnyfel is the mass flow rate out of the thrusters and Po, is the percentage of time when

the thrusters are firing. Determination of the additional fuel used for architectures

that employ learning or adaptation is generally accomplished through implementation

in simulation.

mfuel = NidTest * TengthPonhfuel (6.18)

For Figure 6-4, thrusters were on for 9.6 s in pairs of two, meaning 19.2s of firing

time. The total test time was about 25s, where all 12 thrusters could have been on.

Thus, the P,, is 19.2s divided by 12*20s, which is 8%.

The total additional mass is the sum of the dry mass and the fuel mass.

Sensing and Communication

The Communication subsystem is affected if the method of obtaining the module

properties is through communication. If communication is required, it entails addi-

tional mass, depending on the type of communication method. If a passive method

is chosen on the module, such as RFID, then the additional mass required on an

assembler is the mass of the RFID reader. The mass of the RFID tag is negligible in

169

comparison to the mass of an assembler. Therefore, the values for sensing equipment

needed is Yes or No. If Yes, then the additional mass is included as dry mass in the

total mass metric, and is chosen to be a standard RFID reader mass.

If the module is an active module, with communication ability, then mass proper-

ties can be transferred through communication. Thus, the values for Communication

bandwidth need is also a binary Yes or No. If the answer is Yes, then the bandwidth,

which is a property of an assembler, is used to calculate Tomm.

Values of 'No' are more desirable because it leads to less mass for sensing and less

bandwidth used for communication.

Total memory required

The main impact on the CDH system is the requirements on processor specifications

and data storage. These relate to how much information the different architectures

need to store at a time. Different model generation architectures use different amounts

of processor memory, particularly those that employ a large calculation or identifica-

tion algorithms. Lower values of memory required are desirable as the memory saved

can be used for other algorithms or data collected. In current design climate, flight

qualified processors are somewhat restrictive on processor memory, particularly for

nanosatellites. The importance of memory as a driving metric may change in the

future based on the trends in flight qualified computation and autonomy tasks. How-

ever, it is still a useful quantity to track as it is required to size the processor. When

designing a new mission, it is fairly easy to obtain the required amount of memory,

even for large autonomous tasks. However, for certain cases, when an engineer may

be designing for a system that has already been built, memory might once again be

a concern.

Memory properties are processor specific and must be calculated through partial

implementation on hardware. For each method, there are two types of memory:

overhead and dynamic memory. The definitions of these terms are specific to this

thesis. Overhead memory is defined as the minimum memory necessary to implement

the model generation architecture. Dynamic memory is defined as the amount of

170

memory to implement each configuration. The total amount of memory needed is the

sum of the overhead and dynamic memory, where the total dynamic memory is the

product of the memory per configuration and the number of configurations.

Gain scheduling uses only dynamic memory. The memory to store a single con-

figuration (Mcfg), includes the necessary gains. Therefore, the total memory is the

product of the memory for a single configuration and the number of configurations

(Eqn. 6.19). Assuming a single assembler architecture, and that an assembler moves

only one module at a time, the number of distinct configurations is the number of

different types of modules (Ntypes) plus one to include the configuration of an assem-

bler. Nominally, the memory associated with a configuration is fairly constant for

a hardware system because there is a basic set of information that is necessary for

all configurations. However, some variations in Mcfg may occur due to differences in

number of sensors, actuators, etc. Equation 6.19 can be generalized to account for

varying Mefg, as is given in Equation 6.20.

M t = Mcfg(Ntypes + 1) (6.19)

Ntypes

Mtot = Massem + (Mcg,i (6.20)

Multiple model storage includes both overhead and dynamic memory. The dy-

namic memory for multiple model storage is the memory to store a single model

(Mmdl), which includes mass, inertia, center of mass, etc. It also includes a small

amount of overhead memory (Mcaic) in order to calculate the gains from the model.

The total memory is the sum of the overhead memory and the total dynamic memory,

which is the memory per model times the total number of models (Eqn. 6.21).

M It = Mcaic + MmI(dl Nypes + 1) (6.21)

Similarly, online model calculation has both overhead and dynamic memory. The

memory that calculates the integrated model given two models is specified as Mcale.

The overhead memory contribution is from the storage of an assembler's model

171

(Massem). The amount of dynamic memory stored is based on the type of online model

calculation. If the properties are stored on board, the memory associated with each

module's properties is Mseg. If the properties are communicated, the dynamic mem-

ory associated with the module's properties are not stored in an assembler's memory

throughout the entire assembly. The module properties are only stored temporarily

while the model of configuration is being calculated. Equation 6.22.a shows the to-

tal memory for online model calculation with properties stored, where the number

of module configurations is equal to the number of distinct types of module (Ntypes),

since the memory for an assembler is specified separately. Equation 6.22.b shows that

the total memory for online model calculation with properties communicated is just

the overhead memory.

Mtt = Mcalc + Massem + MsegNtypes (a) (6.22)

MAtt - Mcaic + Massem (b)

For system identification, the memory storage is all overhead memory. The over-

head memory consists of memory associated with the system identification algorithm

(MySid) and memory to store the current model (Massem).

Mtot = MAsysid + Massem (6.23)

6.2.3 Assembly Mission Performance metrics

Assembly mission performance relates to the incorporation of the control system

design into assembly planning. It is important to note that these metrics are meant

to differentiate model generation architectures, not to evaluate the performance of the

assembly or mission in general. Thus, the metrics "assembly time" or "overall fuel

used" employed here are used to compare the difference between model generation

architectures at the highest mission level. The metrics for this section should identify

which architecture is better at being implemented and integrated into the overall

assembly planning, and the different requirements each design has on pre-flight ground

172

development work. These metrics are:

" Integration with assembly sequencing (I)

" Technology readiness level (TRL)

" Total assembly time (Tassem)

" Total fuel used (mfuej)

Integration with assembly sequencing

This metric captures the codependency between the assembly sequence and the con-

trol system design. Lower values for integration are desirable as higher levels of

integration require more ground development. If there is a high level of integration,

such as the control system parameters specified entirely by the assembly sequencer,

more time is required during development to coordinate, design, and test that in-

terface. If there is little integration between the sequencer and control system, a

previously designed control system can be used with minimal integration effort. The

decoupling between the sequencer and control system allows the control system to be

reused. This metric has four values:

" High: (Value = 4) Control system is fully integrated with the sequence. Any

changes to the mass properties of the module or order sequence of assembly

requires redesign of control system.

" Medium: (Value = 3) Control system has knowledge of all configurations, but

not necessarily their order. Can handle changes to the sequence easily, but not

changes to the module properties.

" Low: (Value = 2) Control system has knowledge of each configuration at the

given instance. Easily adaptable to changing sequences and module properties.

" None: (Value = 1) Control system has no information about the modules or

sequence. Can be used for various missions with no modification to the control

173

system design. Primarily only applicable to designs such as system identifica-

tion.

Technology readiness level

Technology readiness level (TRL) is a metric commonly used in the aerospace indus-

try to measure the status of a technology during its development. Higher values of

TRL are desirable because architectures with higher TRL have lower risk and more

available experience for implementation. The scale used in this thesis is NASA's

TRL scale, which from 1 to 9. A TRL of 1 indicates that it is a concept only and

has not yet been proven feasible. A TRL of 5 entails implementation and technology

demonstration in a controlled laboratory environment. Finally, a TRL of 9 indicates

demonstration of the technology in a flight environment. The higher the TRL of an

algorithm, the less risky the implementation will be. Also, when used in concept

planning, a higher TRL generally requires less cost to be included to the budget to

mature the technology to flight. This scale is non-linear, so each step becomes more

challenging than the previous, particularly after TRL 5.

Total assembly time and Total fuel used

These two metrics capture the effect of the model generation architecture on high level

assembly performance. Total assembly time captures the duration of assembly from

just after launch to the completion of the assembled structure. The total fuel used

provides an efficiency measure of the assembly and is calculated over the course of the

assembly. The total fuel used metric can also be used for propellant-free methods, by

capturing the main resource used, such as energy. Lower values of assembly time and

fuel used are desirable. The comparison of assembly architectures with these metrics

allows for the determination of the effect of the selection of the model generation

architecture on high level assembly performance metrics.

174

Table 6.3: Objective functions with the corresponding values

Objective | Value

Minimize Mass mtot
Minimize Processing time T,,oc
Minimize Time Terldown

Minimize ground development time 1 ± I + F
Maximize adaptability _ _ _

6.2.4 Objective functions

The metrics listed above can be used individually, or combined to form multi-objective

functions. These objectives functions are given in Table 6.3. In this thesis, five main

objective functions are explored, four single cost objective functions and one multi-

cost objective function. The first three single objectives are minimization of mass,

processing time, and control downtime respectively. It is important to note that these

quantities are not the assembly launch mass or assembly time, but are the additional

amounts imposed by the implementation of the reconfiguration. The fourth objective

function is the maximization of adaptability. Maximization of adaptability requires

minimization of the integration between the assembly sequence and the control sys-

tem, so this is inversely proportional to the integration, I.

The multi-cost objective function is the minimization of ground development time.

Minimization of the ground development is comprised of three metrics. It is inversely

proportional to the TRL level, since a higher TRL means less ground development

needed, and it is proportional to integration of the assembly sequence and fidelity

of the model. The higher the integration and fidelity of the model, more time is

required during development to complete it. All of these objectives are normalized to

the baseline design so that they are compared on their relative differences, as opposed

to the actual numerical values.

175

6.3 Conclusions

Existing literature indicates that current missions compare and select model genera-

tion architectures based on experience, without a rigorous definition of the metrics or

process used for selection. This chapter provides the first step in formalizing a process

for selection by (1) categorizing the range of model generation architectures, and (2)

developing a set of quantitative metrics to compare model generation architectures.

These metrics encompass control system, spacecraft, and assembly mission perfor-

mance. The metrics are used to create objective functions, such as minimization of

processing time. These metrics serve as a foundation to the process of selection in

Chapter 8.

The metrics provided in this chapter are meant as a guide to readers of how to gen-

erate relevant metrics. The comparison and subsequent analysis of model generation

architectures can be very sensitive to the metrics and objective function definition.

In particular, the metrics that attempt to capture the qualitative aspects of mission

design, such as integration and ground development work must be analysed to make

sure that the weighting is appropriate for the particular assembly mission. Similar

issues exist with the definition of the objective functions. The weighting of the dif-

ferent terms in the objective function can greatly influence the resulting design. As

autonomous assembly research progresses, key metrics will emerge based on driving

issues. Until then, rigorous analysis must be made comparing multiple aspects of the

model generation architectures with respect to the assembly mission.

176

Chapter 7

Metrics Evaluation for Assembly

Scenarios

This chapter evaluates the metrics defined in Chapter 6 for two assembly architec-

tures, a space telescope assembly and a self-assembly of autonomous vehicles. The

evaluation of the metrics serves to map the model generation architectures to the

overall assembly scenario. The impact of the model generation architecture selec-

tion on the overall mission performance provides important information that can be

used in trade studies to improve the design of the mission. The mapping between

model generation architectures and control system/mission performance is accom-

plished through the development and execution of an assembly simulation tool.

7.1 Scenario Description

Two scenarios, ALMOST and ACRRES (described below), are chosen for the evalu-

ation of the metrics, and are later also used in Chapter 8 to exercise the process of

selection. The first scenario is chosen to maximize the configuration changes, while

the second scenario is chosen with few configuration changes. The comparison be-

tween these scenarios demonstrates the effect of the configuration changes on the

overall performance. Thus, it cements the necessity for proper selection of model

generation architectures for on-orbit autonomous assembly.

177

7.1.1 ALMOST

Assembly of Large Modular Optical Space Telescope (ALMOST) [52] is a concept

architecture for the on-orbit autonomous assembly of six hexagonal segments into a

primary mirror (Figure 7-1) to be assembled using the SPHERES satellites inside the

ISS. Each hexagonal segment is 7 inches in diameter and weighs approximately 1.5

kg. Figure 7-2 shows the prototype mirror as part of the SPOT-lite testbed at NASA

Goddard Space Flight Center. In this scenario, there is only one assembler, modeled

on the SPHERES satellite. Each of the mirror segments is a passive payload that has

no actuation or sensing capability. The mirrors start in a stack configuration and are

assembled into a ring, as in Figure 7-2.

Figure 7-1: NASA GSFC's SPOT telescope architecture modified for ALMOST
robotic assembly

Figure 7-2: NASA GSFC's SPOT-lite mirrors

178

7.1.2 ACRRES

Autonomous Control Reconfiguration for Robotic Exploration Systems (ACRRES)

[35] consists of three assemblers that autonomously self-assemble to form a single

spacecraft. Each satellite has full actuation and sensing capability, and is modeled

after a SPHERES satellite. Figure 7-3 shows the initial and final configurations for the

ACRRES scenario. Only configuration changes during maneuvering are considered

in this thesis, not during the aggregation of the assembled structure. Thus, there are

little to no configuration changes during maneuvering for ACRRES. The necessary

aggregation occurs during build up of the assembled structure.

Initial Configuration Final Configuration

Figure 7-3: ACRRES Initial and Final configurations

7.2 Simulation Description

The simulation executes a full time elapsed modeling of the assembly, with a full

embedded control system. The simulation includes actuator and sensor noise to

provide a measure of realism. The inputs into the simulation are the scenario to

run (1 = ALMOST, 2 = ACRRES) and the model generation architecture to use.

Categories of model generation architectures are discussed in detail in Chapter 6.

Figure 7-4 shows the overall block diagram of the simulation, with the control and

estimation loops highlighted. Each block in Figure 7-4 represents a function call

in the simulation, and the black arrows and dots represent the flow of variables

between function calls. The following sections describe the initialization, control

loop, estimation loop, and metrics sections of the simulation.

179

Figure 7-4: Simulation Block Diagram

180

Table 7.1: Simulation Parameter Description

Type

Design

Design

Design

Variable

Variable

Variable

Design Variable

Design Variable

Design Variable

Design Variable

Name
Number of Modules

Number of Assemblers
Assembler mass properties

Module mass properties

Type of assembler

Location of assembly

Propulsion type used

Description

Specified by the scenario

Specified by the scenario

Includes mass, inertia, dimensions etc. Based on the
SPHERES testbed

Includes mass, inertia, dimensions etc. Based on the
SPHERES testbed

Tug vs Self assembly

Currently set to ISS. Can be upgraded in future to
set environment disturbances.

Propellant. Can be upgraded in future to include
electric, etc.

Parameter Module target state Specified by the scenario

Parameter Assembler target state Derived based on number of assemblers and Module
targets

Parameter Assembler thruster properties Based on the SPHERES testbed

Parameter Assembler sensor properties Based on the SPHERES testbed

Parameter Specific impulse Based on the SPHERES testbed

Objective

Objective

Objective

Objective

Objective

Objective

Module State

Assembler State
Assembly time

Fuel consumption

Trajectory tracking error

Memory storage

Calculated through execution of assembly

Calculated through execution of assembly

Time from start of assembly to when all modules in
target locations

Cumulative fuel used throughout assembly for all as-
semblers

Difference between actual state and planned path
throughout assembler

Memory required to store on assembler based on
model generation architecture

7.2.1 Initialization

The initialization section of the simulation sets up the simulation based on the inputs

of the scenario and the model generation architecture. Based on the scenario, the

following parameters are initialized: number of modules, number of assemblers, initial

states of assembler and modules, final target states for modules, and mass property

information for assembler and module (mass, inertia, thruster configuration, and

sensor configuration). The model generation architecture sets the controller to be

used and is used to calculate the metrics. The simulation uses the mass property

information to calculate the dynamics model. Table 7.1 gives a detailed overview of

the variables used in the simulation.

181

InitScenario initializes the simulation to the specified assembly scenario under

analysis. The simulation currently accommodates two different assembly scenarios, as

described in Section 7.1. For each scenario, there are nine cases which span a range of

assembly architectures, varying the number of assemblers, the mass of the assemblers,

and the number of modules. The inputs to the InitScenario function are the scenario

number and the case number. The main outputs of the InitScenario function are the

type of assembly (tug, robotic arm, self, etc), propulsion type used, and the location of

the assembly. These variables are incorporated throughout the simulation and allow

for a platform for upgrading the simulation for a wide variety of assembly scenarios.

The InitScenario also outputs the assembler and module properties, based on the

selected scenario. Current properties that are included are mass, inertia, thruster

locations, specific impulse, thruster force, and receiver locations. Finally, the initial

and final positioning is specified. This includes a list of target locations and attitudes,

as well as the attachment status for each target maneuvering. The InitScenario

function is modular to allow for the incorporation of additional properties based on

the scenario.

After initialization of the scenario properties, the model generation architecture

is initialized. The architectures used in this chapter are listed in Table 7.2. Specific

detail on each model generation architecture specified in Table 7.2 is available in

Chapter 8 (Table 8.1). The InitMethod function initializes the metrics associated with

the model generation architecture selected, specifically those that can be calculated

prior to the full assembly execution. Thirteen model generation architectures have

been implemented, as specified in Table 7.2.

For each model generation architecture, the following metrics are set in this func-

tion: total memory required; memory per model; memory per module; processing

time required; sensing equipment needed; communication bandwidth needed; addi-

tional dry mass; ground system required; ease of changing between models; ease of

model incorporation; integration with assembly sequencing; total control downtime;

control downtime per maneuver; method of model calculation; and fidelity of mea-

sured model needed. The metrics of fuel used to calculate model and performance

182

Table 7.2: Model generation architectures implemented in the simulation

Architecture Assumptions
Transitions Config Properties Module Properties

Gain scheduling (w/transitions) Known Known Known

Gain scheduling (w/o transitions) Unknown Known Known

Gain scheduling (w/transitions) AC control Known Known Known

Gain scheduling (w/o transitions) AC control Unknown Known Known

Multiple model storage Unknown Known Known

Multiple model storage (estimator config only) Unknown Known Known

Multiple model storage AC control Unknown Known Known

Online model calc (prop stored, PID ctrl) Unknown Unknown Known

Online model calc (prop comm, PID ctrl) Unknown Unknown Known

Online model calc (prop stored, AC control) Unknown Unknown Known

Online model calc (prop comm, AC control) Unknown Unknown Known

Model Identification Adaptive control (MIAC) Unknown Unknown Unknown

System identification Unknown Unknown Unknown

drop while transitioning are extracted from the overall control performance from the

assembly execution. The metrics that are a function of hardware properties are eval-

uated based on the SPHERES hardware properties as specified in Chapter 3.

The CalcModel function determines the models necessary for the assembler, by

taking in the mass property information of the assembler and the modules to create

a state space model assuming double integrator dynamics. This simulation assumes

that an assembler moves at most one module at a time. Thus, only two models are

necessary for each assembler. The first model is for the unattached configuration,

while the second model is for the attached configuration. The mass property and

thruster property information are used in the determination of the B matrix, which

is continually updated to account for the fuel used. The function calculates the model

first in the initialization phase. However, the CalcModel function is also the basis of

the PropagateModel function, so is run at each time step.

7.2.2 Control Loop

The control loop section is the largest and most important section of the simulation

since the objective is to quantify the impact of model generation architectures used

183

in the control system. It is important to note that the controllers implemented have

all been tuned to meet a minimum tracking performance requirement. This allows

the control systems to be compared solely on the model generation technique used

since tracking performance is highly dependent on the proper selection of gains. The

control loop obtains a module target, generates a trajectory to reach that target

and maneuvers to the target. When the assembler is within 2 cm of its final target

position, the next module target is obtained. The cycle is repeated for each module

until the assembly is complete.

Get Targets

For the ALMOST scenario, the set of final module positions output from InitScenario

are expanded to consist of four major maneuvers for an assembler based assembly.

For each module, the maneuvers consists of an approach the stacked module, retrieval

of the module from the stack, and maneuvering upwards with the module, then a final

maneuver to push the module into its final position. The GetTargets function takes

in the list of total targets and the current progress of the assembly. The function

outputs the current target state for the module being assembled.

For the ACRRES scenarios, there is only one maneuver per assembler/module,

which is specified by the final target location. Thus, the GetTargets function simply

passes through the final module positions received from InitScenario.

Path Planner

The control system is given a path to follow to maneuver from the current state to

the specified target state obtained from GetTarget. The trajectory is based on the

current configuration of the assembler and the specification of the propulsion type.

In this work, a Bang-Bang trajectory profile was used. The maximum acceleration

is calculated so that the thrusters are not saturated, where amax = fth. The10 mass

switching time is calculated as

t = ||d - x| (7.1)
amax

184

After the path is planned, it is sent to the controller as a time sequence of target

states.

Get Error

The assembler attempts to follow the trajectory by calculating the error, which is

the difference between desired state given by the trajectory and estimated state. The

error is fed into the controller.

Controller

The model generation architecture specified by InitMethod determines the type of

controller used. The majority of architectures use a proportional-integral-derivative

(PID) controller, which requires all mass property information to be available prior

to control system execution. For architectures that employ learning or identification,

an adaptive controller (AC) is used. The gains for both PID and AC controllers are

calculated based on the configuration of the assembler. The gain calculation laws

used in the script are discussed in detail in Chapter 4. The controller outputs a six

element control vector of forces and torques.

Control Allocation

The forces and torques control vector gets fed into the control allocation algorithm,

which converts the control vector from forces and torques into thruster on/off com-

mands. The control allocation algorithm uses a pulse-width modulation scheme; the

control input is converted into firing times, using knowledge of the thruster configu-

ration, thruster force, control period, and duty cycle.

7.2.3 Estimation Loop

The estimation loop includes two major functions: PropagateState and EstimateS-

tate. The PropagateState uses the simulation time increment to propagate the state

using the model of the current configuration. The EstimateState function implements

185

an Extended Kalman filter (EKF) and simulates measurements in order to provide a

realistic state estimate that includes noise. The EstimateState function is modular

and can be easily incorporate a wide range of sensors. For this work, the SPHERES

hardware testbed is used as a baseline system to model the sensors since information

about the type of sensors and noise characteristics are easily available.

The estimation in the simulation models the SPHERES ultrasound receivers and

gyroscopes as the sensors on the assemblers. Each assembler has 24 receivers and 3

gyroscopes. Receiver measurements are simulated to include noise based on beacon

angle, receiver angle, distance to beacon, and ±1 mm wavelength noise. Gyroscope

modeling includes incorporating the bias for each gyroscope, as well as a ±3 mrad/s

noise. These sensors are processed using an EKF at 5 Hz. Gyroscope measurements

are taken at 1 kHz and incorporated at a rate of 50 Hz. Ultrasound measurements

are incorporated as they are received. The 5 beacons ping in sequence, roughly every

30 ins. The EKF then maintains the estimated state vector and covariance.

7.2.4 Metrics

Though the simulation is capable of calculating many objective functions, as shown in

Table 7.1, three key metrics are explored in this section to demonstrate the difference

in scenario performance due to model generation architectures.

The first metric is the total fuel used for the assembly. This metric is calculated

throughout the simulation using the SPHERES thruster mass flow rate and thruster

commands. A lower fuel usage per module is desirable as it reflects the efficiency of

the assembly.

The second metric is the total assembly time. It is preferable to minimize the

assembly time since a longer assembly time reduces the total operational mission

duration. The assembly time is comprised of the time to execute all of the paths, but

also includes the computation time required. This is particularly significant for the

system identification methods.

Finally, the third metric is the time averaged root mean square of the tracking

error, for position and velocity specifically. This metric captures how far the assembler

186

strayed from its planned trajectory, which captures the accuracy of the assembly and

the performance drop during transitions.

7.3 Results

7.3.1 ALMOST

For the ALMOST scenario, the assembly of the six modules was explored using 13

different model generation architectures (as per Table 7.2) and up to three assemblers.

Figure 7-5 shows the total fuel used (cumulative across all assemblers) versus the

model generation architecture method. The methods with the high fuel usage are

those that employ adaptive control or system identification. This is an expected

result. When the control system does not have sufficient knowledge of the system,

it must expend resources to identify those properties in order to maintain equivalent

control. The remaining methods, those that do not use adaptive control or system

identification, perform very similarly because the mass property information used to

set the control system parameters is the same though they set the parameters in

different ways. This trend is consistent across the number of assemblers used for

assembly.

Figure 7-6 shows the overall assembly time versus model generation method used,

with the number of assemblers indicated by dashed backgrounds. A clear trend is

that as the number of assemblers increases, the total assembly time decreases. This

is expected since multiple assemblers can work simultaneously to move modules. For

the groups mentioned in Figure 7-5, the increase from one to two assemblers seems the

most significant, while the increase to the third assembler is a comparatively smaller

improvement, except for methods using adaptive control. While certain methods

seem to have a significantly higher assembly time, the total difference between method

assembly times is on the order of 5 to 12 minutes. In a mission context, this variation is

likely small enough to be insignificant; particularly if the mission is located far enough

away that the communication delay is greater than this difference. For example,

187

ALMOST: Cumulative Fuel Used versus Method

Method

Figure 7-5: Cumulative Fuel Used (kg) vs Model Generation Method, Number of
assemblers (dashed), ALMOST

188

ALMOST: Assembly Time versus Method
2500 -- -------

Eli Tug
12Tugs

2000 03Tugs

T

E 1500

E
1000

500

0 i

0"~ 4b.

ae j& C1;

Method

Figure 7-6: Assembly Time (s) vs Model Generation Method, Number of assemblers

(dashed), ALMOST

locations in the Earth-Moon system are close enough where this difference is well

above the communication time between Earth and the spacecraft. Locations at Mars

and beyond introduce a one-way light time delay comparable to the differences in

assembly times. Thus, as the communication delay increases, the impact of model

generation architecture selection on assembly time decreases.

Figure 7-7 plots the average root-mean-squared (RMS) position error in meters

and velocity error in meters per second versus the model generation method. It is

expected that the points with lower RMS position error will also have lower RMS

velocity error. Similar to Figures 7-5 and 7-6, the methods using adaptive control

and system identification have a higher RMS error. This is expected since these

methods have less knowledge of the system, and therefore take more time to achieve

the desired tracking. A higher averaged error is the result of a high initial error due

to unknown properties.

Results from Figures 7-5, 7-6, and 7-7 show that methods that utilize knowledge of

189

ALMOST: RMS Tracking Error vs Method, Single Tug Assembly
0.09

ERMS Pos error
S0.08 C RMSVel error

0.07

0.06

0.05 -
0.05

0 00

L- 0.04

0.03
0

wMethod

atio Metod ALOS

CP dN.C
C, p

offe usd ssml tie\n ro.Fgr 7- sow tht hi trnhlso

Method

Figure 7-7: RMS Position error (in) and RMS velocity error (m/s) vs Model Gener-
ation Method, ALMOST

the mass properties to setup the control system perform better individually in terms

of fuel used, assembly time, and error. Figure 7-5 shows that this trend holds for

combined fuel and assembly time performance as well. Figure 7-8 plots the assembly

time in seconds versus fuel used (kg) for each method. The objective is to have low

fuel used and low assembly time. Therefore, the optimal methods are those that

do not use adaptive control, as indicated on Figure 7-8. Of these methods, gain

scheduling uses the least amount of memory space for this scenario.

These results show that for the particular scenario of a small telescope assembly,

the choice of a gain scheduled method leads to better overall mission performance in

terms of memory stored, fuel used, assembly time, and RMS error. These results are

also useful in quantifying the additional cost in terms of fuel, time, and error if another

method is selected for implementation. From Figure 7-8, one can extract the cost of

obtaining the necessary mass property information online for this scenario. Compared

to a baseline of the method with the best performance (i.e. gain scheduling), system

190

ALMOST: Assembly Time vs Fuel Used, Single Tug Assembly
Aftl ads using Adaptive Coantroi(le assumes lbkowuwhge of mis prpefms) or

System ldentification

40-

35 System
Identification

Gain Scheduled (uitransitions)
25 - Model Identification +Adaptive Control

Adaptive Control

20 Gain Scheduled (Ido transitions)
E + Adoptive Control \ Mukiple Model

w/Adaptive Control

15 -

10 Online Model Calc
10Ihd aumigw/Adaptive Control

tihodir asrsuming high

5 - uowldege of mass propeties

0 -
0.00 0.50 1.00 Fulu e k) 1.50 2.00 2.500 ~Fuel used (kg)20

Figure 7-8: Fuel Used (kg) vs Assembly Time (s) vs Model Generation Method,
ALMOST

identification methods have fuel costs four times larger than the baseline and time

costs 2.5 times larger than the baseline. Understanding what this additional cost is

for given assembly scenario allows for informed choices in the selection of a control

system design.

Another aspect to consider is the sensitivity of the results presented in Figure

7-8. A brief analysis is conducted to determine how these results change if the six

modules are not identical. If the six modules are similar, but assumed identical, the

difference between the actual properties and assumed properties would cause slight

variations in the fuel, time, and error. The exact nature of the variations are based

on how the actual properties differ from the assumed properties. For example, if

the actual mass is larger than the assumed mass, this would equate to controlling

the system at a lower bandwidth. Fuel used should decrease, but assembly time

and tracking error may increase. If the tracking error increases beyond the required

performance specified by the assembly architecture, the modules can no longer be

considered identical. If the module are not identical and are modeled separately, the

performance difference occurs in the memory and computation time, as opposed to

191

the assembly mission metrics of fuel, time, and tracking error. When the module are

modeled separately, the tracking performance should be similar for all of the module

because the gains are calculated separately for each module. Future work should

include upgrading the simulation to include variations between modeled properties

and assumed properties to quantitatively determine the sensitivity of the results.

7.3.2 ACRRES

Contrary to ALMOST, ACRRES is a self-assembly scenario, such that each assem-

bler maneuvers itself into position. Thus, there are no configuration changes during

assembly for each assembler. This scenario assumes all pieces attach together after all

pieces have reached their target locations. Thus, the aggregation occurs for the final

stationary assembled structure, which is not considered in the scope of this thesis.

This assembly scenario is chosen to clearly show the effect of configuration changes,

through comparison with the ALMOST scenario.

Three different cases are considered. Case 1 assigns the mass of a assembler to 4.3

kg, equivalent to a single SPHERES satellite. Case 2 and 3 use a mass of assembler

twice and three times the mass of the assembler used in Case 1, respectively. Figure

7-9 shows the performance of fuel used versus method. Compared to Figure 7-5, the

fuel used versus method is a more varied for the ACRRES scenario than the ALMOST

scenario. The adaptive control methods still use slightly more fuel, through not as

significantly as in the ALMOST scenario. The driving contribution of the differences

is now the stochastic nature of the maneuvering, rather than a deterministic quantity,

like differences in models used.

Figure 7-10 shows the performance of assembly time versus method. For a given

assembler mass, the assembly time is fairly constant across methods. This is seen

more clearly with Mg = 12.9 kg, which show constant levels almost across the

board, with only slightly higher assembly times for methods 12 and 13. Once again,

these are the adaptive control and system identification methods. It is expected that

these methods have slightly higher assembly times as it takes time to identify the

systems.

192

ACRRES: Cumulative Fuel used Versus Method
0.35 - - - - -

0.3 *Mtug = 4.3kg
0 Mtug = 8.6kg

0.25 Mtug = 12.9kg

0.2

U_ 0.15

0.05

0

~41 XN

bler (dshd) AC RSVV

4040

Method

Figure 7-9: Cumulative Fuel Used (kg) vs Model Generation Method, Mass of assem-
bler (dashed), ACRRES

193

ACRRES: Assembly Time versus Method
250-

U Mtug =4.3k g
E3M~g= 8.6kg

0 Mtug =12.9kg

1 150

E#
100 o

00

& Q9 10
xv) -7 I. CIO x~ 0' le

6e O\
N~f mcf 4p ~

411~
O 00

Muotho d

Figure 7-10: Assembly Time (s) vs Model Generation Method, Mass of assembler
(dashed), ACRRES

194

RMS Tracking Error vs Method,

O RMS Ve error
0.25

E 0.15

L

0.1
j 02

E

E 0 05
7

W

S 0.05

00

atio M h ACRRES

Fiur 7-1sostepromneo h M oiin ero n eoiyvru

0e \F \0 4101o
\0 \0 \0e

lap 140 0 1

A. Meha

Figure 7-11: RMS Position error (in) and RMS velocity error (m/s) vs Model Gener-
ation Method, ACRRES

Figure 7-11 shows the performance of the RMS position error and velocity versus

method. Similar to Figure 7-7, the points that have minimum RMS position error

also have minimum RMS velocity error. The methods that use adaptive control have

slightly higher tracking error, though not as high as in the ALMOST scenario.

Results from figures 7-9, 7-10, and 7-11 show that there are minimal differences

in the individual performance of fuel used, assembly time, and RMS position error as

a function of the method. Figure 7-12 shows the combined performance of fuel used

and assembly time. Similar to the individual performance, the combined performance

indicates that many methods provide the minimum fuel used and assembly time. The

range of variation of fuel used and assembly time is small, particularly compared to

Figure 7-8.

For this scenario, where each assembler maneuvers itself to self-assemble into a

formation, there are minimal differences in performance as a function of model gener-

ation architecture. System identification architectures have slightly higher fuel used

195

ACRRES: Assembly Time versus Fuel Used, Mtug = 4
- - - - - --..I.. _ -..... .. -.- - - --.. .. -. - -... - ------ --......... _

Online Model Calc
(prop communicated)

.3kg

Multiple Model
* Storage

System
Identification

4-

3.5 -

3-

E

2.5-
1-

E

1.5 -

1 -

Model Identification
*Adaptive Control

No Noticeable Correlation

0 |
0

Figure 7-12:
ACRRES

0.05 0.1 0.15 0.2 0.25 0.3

Fuel Used (kg)

Fuel Used (kg) vs Assembly Time (s) vs Model Generation Method,

and assembly times, indicative of the extra time needed to identify the properties of

the assembler. Therefore, an engineer can select any architecture with equivalent per-

formance. The differences between the architectures exist in the reconfigurable nature

of the model generation architecture, its ability to adapt to changing properties. In

this scenario, the assemblers do not undergo configuration changes while maneuvering

to the desired location. Thus, it is expected that most methods should perform simi-

larly. System identification and adaptive control methods perform slightly differently

because the overhead associated with those methods are in fuel and time.

7.4 Conclusions

The assembly simulation is an important tool that enables the evaluation of the

metrics performance for the different model generation methods based on an assembly

scenario. The simulation was tested on two different scenarios: a six segment telescope

tug assembly (ALMOST) and a three assembler self assembly (ACRRES). Results

196

4.5 -r

Onine Model Calc
(properties stored)

show that methods using knowledge of mass properties, such as gain scheduling, are

preferred for the ALMOST scenario. The results also helped to quantify the additional

cost on obtaining information if one were to select a method that identifies properties

online. Contrary to ALMOST, the results for ACRRES showed that there is little

performance difference between the different methods. This is expected as there are

minimal mass property changes during maneuvering in the ACRRES scenario, as

transitions only occur at the end of assembly.

By demonstrating that the trends are different for different scenarios, the assem-

bly simulation tool shows its benefit in being able to quantify the impact of model

generation architectures. This allows for more informed design, leading to more effec-

tive and efficient assembly designs. The modular design of the simulation tool allows

it to be easily upgraded to account for more assembly scenarios. Future work involves

upgrading the simulation to account for obstacle avoidance maneuvers, environmental

disturbances, and detailed system identification maneuvering. These upgrades will

generate a better fuel consumption estimate. Upgrades to expand the applicability

of this simulation tool include modeling assembly via robotic arm, including electric

propulsion based assembler, as well providing a user-definable mission concept (initial

and final positions, module properties, and assembler type).

197

198

Chapter 8

Process for Selection of Model

Generation Architectures

The proper selection of a model generation architecture is a critical open area in the

current literature. By developing a process that can quantitatively compare and select

model generation architectures, implementing autonomous assembly will become eas-

ier. This process is helpful not only in during critical design, but also during concept

design to perform educated trades and further refine the overall assembly design.

The process of the selection of a model generation architecture developed in this

thesis occurs in two phases. Phase one is to identify feasible architectures based on

the amount of information available. Phase two is to determine which of the feasible

architectures is the appropriate architecture based on a ranking of objective func-

tions. However, enumeration of all possible selections of an appropriate architecture

from the feasible set can become combinatorially large, based on how many objective

functions and specific architectures are considered. Figure 8-1 enumerates different

model generation architecture options to illustrate the breadth of the decision tree,

determined by different types of architectures and the objective functions used to

compare them. The large scope shown in Figure 8-1 shows that there is a need for a

process to navigate this tree.

199

Feasible Designs

<> Appropriate Design

Objective Function O

C17D

) O)

Figure 8-1: Process flow diagram to illustrate breadth

8.1 Definition of "Feasible" and "Appropriate" De-

sign

The terms feasible and appropriate are used to describe the selected model generation

architectures at the end of the phase one and phase two respectively. Each model

generation architecture has a certain amount of required a priori knowledge about

the mass properties.

" Feasible model generation architectures are architectures where the scenario

satisfies the a priori knowledge requirements.

" Appropriate model generation architectures are the "perceived best choice based

on the available information".

It would be incorrect to say that an appropriate architecture is optimal because many

of the characteristics are hardware specific. The choice of the assembler could change

the outcome of the model generation architecture selection. Thus, the appropriate

model generation architecture is the "optimal" architecture, given a specific assembler

hardware specification and assembly architecture specification.

200

8.2 Phase One: Identification of feasible architec-

tures

Phase one of the process performs an elimination based on the knowledge of the

assembly scenario. The elimination is based on a set of questions that are used to

identify which model generation architectures can be implemented. In Figure 8-2,

the boxes with the solid lines are architecture questions, which have a binary yes/no

answer. Based on the response, the user follows the branch associated with that

response, down to the next question. This process is repeated until they arrive at

the set of feasible architectures, indicated by the boxes with dotted lines. These high

level questions discern what the a priori information is known to the user.

Are the mass properties of
I Feasible Designs the module known well?

YES. NO

Are the attachment Have a Initial

configurations known gues at mnass

.- YES A: NO

Parameter ID I System ID

YESZ NO

Is the assembly sequence Does module have communication
known and fixed? ability? (comm, RFID, etc)

YES NO
r- - - - NO

YES NO Online Model Calc I1 Online Model Cac
--- - - (e c n (properties stored),Gain Scheduled MultipleModel, System ID . . S D

Multiple Model, i Online Model Calc ""-"-"-"-"- " " ~ Sys- - m- - D - -a
Online Model Calc, i (propertias stored),

System ID 11 System ID

Figure 8-2: Phase One process flow diagram, identification of feasible model genera-
tion architectures

8.2.1 Determination of Phase One questions

The questions used in Phase One are derived from the three critical variables de-

scribed in Section 6.1.1, transitions, configurations, and module properties. The set

201

of questions used in Phase One can expand based on the differentiation between model

generation architectures and range of assembly scenarios considered. Each question

in Figure 8-2 is described in detail below.

" Are the mass properties of the module known well?: This question is used to

determine which regions of the spectrum to consider. Knowing the properties

well indicates that all aspects of the spectrum can be considered, while not

knowing the properties well necessitates some form of learning or identification.

This question determines if the module properties is known.

" Have an initial guess at the mass properties?: This question is used to distin-

guish between architectures that perform complete upfront identification versus

architectures that adapt during maneuvering.

" Are the attachment configurations known?: This question determines if the con-

figurations variable is known. No knowing the configurations further restricts

the feasible regions of the spectrum to those that must calculate or identify the

model online.

" Is the assembly sequence known and fixed?: This question determines if the

transitions variable is known. Not knowing the transitions eliminates archi-

tectures that integrate the assembly sequence with the control system.

" Does the module have communication ability?: This question serves to identify

model generation architectures that place assumptions of available resources.

8.2.2 Accuracy Knowledge of Properties

An important aspect to consider is how well are properties known. What should be

the cutoff accuracy of the mass property knowledge? For control reconfiguration ap-

plications, knowing the mass properties well means that one can implement a selected

control system and always achieve desired performance. To determine a knowledge

accuracy requirement, the baseline design, gain scheduling, is used, since it is the most

202

restrictive method in terms of adapting to uncertainty in plant dynamics. Assume

a simple second order system as before (Jz = u, Equation 6.9). Figure 8-3 shows

the simulation performance of an assembler following a spiral trajectory, using a PID

controller with unit thruster saturation limits. Different values of percent error of

the knowledge of the mass of the assembler were tested. Given the percent error, a

random mass is initialized based on the true mass and the bounds determined by the

percent error. For example, if the mass of the assembler is 10 kg and the percent error

is 50%, then the mass used in the control system is randomly initialized between 5 kg

and 15 kg. 500 iterations were run for each percentage error level. A simple noiseless

dynamics propagation model is used, so the variation seen in this plot is solely due to

the varying mass in the controller. The RMS position error is the difference between

the desired trajectory and the actual position, which captures the effect of the error

in the knowledge of the mass on the control system performance.

The RMS position error is seen to increase as the percentage of error in the knowl-

edge of the mass property increases. If a required minimum tracking performance is

specified, for example maintaining the tracking error to within 30% of the ideal, one

can determine a cutoff of roughly 6% error in the knowledge of the mass. Similar

analysis can be performed for the architecture under consideration to determine the

cutoffs based on the baseline tracking performance and the required performance.

RMS trajectory tracking error versus percent error in knowledge of mass of assembler
0.01

0.009 - Error
008 -performance

at 8.9mm

0.007 -

0.006 - Error
performance at

t0.005 54mm

0.004 Y:N1 0.003435

.03- Baseline

.02- Performance at 3.5
EE mm

0.001 -

0 02 0.04 O6 008 01 012 0.14 0.16 018 0.2
Error in Knowledge of Mass of Assembler (00 = %)

Figure 8-3: Performance change due to error in the knowledge of the mass

203

8.2.3 Generality of Phase One questions

The Phase One questions provide an initial set of questions to downselect based

on the categorization of model generation architectures with respect to the three

variables transitions, configurations, and module properties. The contribution of these

questions is to show how to downselect regions on the spectrum of model generation

architectures using succinct questions organized in a logical flow. These questions can

be updated or augmented to tailor them to a specific assembly analysis. Assembly

mission information can be used to further refine the feasible set of model generation

architectures if factors such as risk, safety, or location eliminate certain architectures.

Additional research in model generation architectures may warrant a new variable to

distinguish designs, which should then be capture in the Phase One questions.

8.3 Phase Two: Determination of the Appropriate

Architecture

After a set of feasible architectures have been identified, the next step is to select

a single model generation architecture. The goal of phase two is to use objective

functions to pare down the set of feasible architectures into a single architectures.

Objective functions evaluate the performance of the model generation architecture,

based on metrics such as those specified in Chapter 6. Selection and creation of the

objective functions are discussed in detail in Section 6.2.4. The model generation

architecture with the best value is the appropriate architecture that is output at the

end of phase two. If a selected objective function results in multiple appropriate

architectures, two techniques can be used to downselect to a single appropriate ar-

chitecture, either a hierarchy of objective functions or a multi-objective function. A

hierarchy of objective functions can be used to filter the feasible architectures, such

that the architectures output of the first objective function are the input to the second

objective function. If the desired objective functions have equal ranking but different

weighting, a multi-objective function can be created to specify the desired weighting

204

and used to select a single appropriate architecture in one step.

To illustrate phase two, the following objective functions are chosen from Table

6.3: Minimize Control Downtime, Minimize Mass, Minimize Ground Development,

and Maximize Adaptability. Based on the first objective, Control Downtime, the

selected methods in Figure 8-4 can be filtered to only include Gain Scheduling and

Multiple model. Evaluating these architectures on the second objective does not result

in reducing the number of feasible architectures since both techniques are perform

equally in terms of Mass. The next step is to evaluate based on the third objective

function of Ground Development time. Though gain scheduling has a higher TRL, the

integration with the assembly sequence is higher for gain scheduled than for multiple

model architectures. Multiple model architectures minimize ground development time

more than gain scheduled architectures. Thus, the final appropriate architecture is

multiple model architectures. The use of the fourth objective function is not needed

because a single appropriate architecture is obtained after the third objective function

evaluation.

Objective Function MItin eol Single Branch ExampleIOnline Model Caic,
Appropriate Design I system Ial

1 Feasible Designs

Adaptability Mass Time emory Development

Figure 8-4: Phase two process flow diagram, determination of the appropriate design

Phase two essentially performance a single step optimization, based on the ob-

jective function. Thus, the weighting and ranking of objective functions significantly

impact which model generation architecture is appropriate. This allows the same

process to fulfill many assembly mission needs. However, the choice of the objective

205

function should clearly reflect the mission priorities, otherwise the resulting appro-

priate architecture may not achieve desired mission performance.

8.4 Table of Model Generation Architectures

An enumerated set of model generation architectures is given in Table 8.1. This set is

not all-inclusive, but is meant to be representative of the spectrum of model generation

architectures. Table 8.1 gives a description of each architecture and the corresponding

assumptions for implementation. The goal is to provide an example set of model

generation architectures to demonstrate the metrics and to compare the performance

of the architectures for a set of case scenarios. The model generation architectures

are part of a control system, using an EKF and PID controller. Architectures that

employ learning or adaptation are specifically labeled in Table 8.1. The architectures

specified in Table 8.1 are implemented in the simulation described in Chapter 7.

206

Table 8.1: Set of model generation architectures

Method

No. Name Transitions

Assumptions

Config Module
Properties Properties

Description

1 Gain scheduled Known Known Known All information known a priori. The times for model transi-
(w/transitions)) tions are hard coded. Control parameters for each configura-

tion are pre-set based on quantities calculated on the ground.

2 Gain scheduled Unknown Known Known Transition times are not known ahead of time. The gains for
(w/o transitions) each model (based on state/mass properties) are coded in. It

requires a flag to be set real-time during assembly execution
in order to switch between models

3 Gain scheduled Known Known Known Gains are coded into the model based on a low-fidelity model
(w/transitions) calculated on the ground prior to launch. Adaptive control is
AC control used to refine the model based on motion. Transitions known.

4 Gain scheduled Unknown Known Known Gains are coded into the model based on a low-fidelity model
(w/o transitions) calculated on the ground prior to launch. Adaptive control
AC control is used to refine the model based on motion. Transitions

unknown.

5 Multiple model Unknown Known Known Full models are stored for each distinct configuration. Each
storage (total, configuration has a separate estimator and controller. Transi-
separate) tions between the models are probabilistic, based on measure-

ments of the motion, or flag received indicating next model.

6 Multiple model Unknown Known Known Multiple estimators are stored, based on configuration. Con-
storage (estimator troller is implemented through gain scheduling, based on con-
only) figuration properties.

7 Multiple model Unknown Known Known Low fidelity models are stored on board the assembler (both
storage AC control estimator and control). Adaptive control is used to refine the

model to achieve maximum control performance.

8 Online model calc Unknown Unknown Known Mass properties of the modules are stored on board the as-
(prop stored) sembler. These properties are used to calculate the actual

model online, based on a flag that indicates which module
has been docked to.

9 Online model calc Unknown Unknown Known Properties are obtained at the time of attachment from the
(prop comm) module (ex RFID tags on docking ports). These properties

are used to calculate the new model based on the module
properties and the location of attachment.

10 Online model calc Unknown Unknown Known A low fidelity model is calculated online and implemented.
(prop stored, AC Adaptive control is used to improve control performance.
control) Module properties are stored in the assembler's memory.

11 Online model calc Unknown Unknown Known A low fidelity model is calculated online and implemented.
(prop comm, AC Adaptive control is used to improve control performance.
control) Module properties are communicated over at the time of at-

tachment.

12 Adaptive control Unknown Unknown Unknown A Model Identification Adaptive Controller is used to identify
(MIAC) the system parameters online during the maneuvering. No

information is known prior to identification. Identification is
performed while maneuvering.

13 System
tion

identifica- I Unknown Unknown Unknown System identification (using fuel) is performed to identify the
parameters in the system prior to maneuvering to the desired
target. Identification is performed upfront prior to maneu-
vering.

Table 8.2: Scenario Description: SPHERES

Type of Assembly Tug

Propulsion type Thrusters
Location ISS
Ntug 1

Nseg 1

Ntypes 1

Dseg 0.20 m

Mseg 4.3 kg
Mtug 4.3 kg
Final Pos stack
Initial Pos sparse

8.5 Metrics Validation

In order to have confidence in the ability of metrics to compare performance of model

generation architectures, the metrics generated in Chapter 6 are validated on hard-

ware for the architectures described in Table 8.1. Many of the heuristic expressions

given in Section 6.2 depend on both assembly and hardware properties. Validation

on SPHERES offers two benefits. First, it confirms that the heuristic expressions

adhere to common sense and that they can be used to select the appropriate method.

Second, by implementing the architectures on SPHERES, it provides a baseline set of

values to compare architectures. Though the absolute values may increase or decrease

on different hardware, SPHERES can be used as baseline hardware to select an initial

appropriate architecture for a wide variety of scenarios.

8.5.1 Exercising the Process

The SPHERES hardware set-up was translated into a scenario to fully exercise the

process of selecting a model generation architecture (Table 8.2). The hardware set-up

consists of two SPHERES satellites, one acting as the assembler and one acting as

the module. The expected outcome is that gain scheduling will be the appropriate

architecture under most objectives since all mass properties are known and there

are only two configurations. First, process phase one is exercised. The architecture

questions are:

209

Table 8.3: Objective function rankings for SPHERES scenario

Case I Ranking
1 Time Mass Memory Ground Dev Adaptability
2 Mass Memory Time Ground Dev Adaptability
3 Memory Mass Ground Dev Time Adaptability
4 Ground Dev Mass Memory Adaptability Time
5 Adaptability Mass Time Ground Dev Memory

" Are the mass properties of the module known well? -+ YES

" Are the attachment configurations known? -+ YES

" Is the assembly sequence known and fixed? -+ YES

Based on Figure 8-2, all designs are feasible for this scenario. To fully exercise process

phase two, multiple rankings of the objective functions were selected. Table 8.3 shows

the rankings selected, where each case specifies a ranked list of objective functions.

Objective functions are listed in order of their ranking from left to right in the table.

The results for these rankings are presented in the next section.

8.5.2 SPHERES Results

Four model generation architectures from Table 8.1 were implemented in the SPHERES

testbed: gain scheduling, multiple model calculation, online model calculation with

property storage, and online model calculation with properties communicated. Table

8.4 presents the hardware values of the variables described in Section 6.2. Since the

architectures listed in Table 8.1 also include two different types of controllers, the

memory specifications for the controllers are listed. The variable 6 indicates a small

value, that can be neglected.

Table 8.5 shows the results of exercising the Phase 2 process for the SPHERES

scenario. The five objective rankings cases are shown. For each case, the objectives

are listed in order of their rank. All of model generation architectures are evaluated

for the first objective. The architectures with the best performance are selected and

filtered down to the second objective. The mark indicates that the architecture

has been eliminated from the previous step. This process is continued until only one

210

Table 8.4: SPHERES hardware performance

Variable Value I Comments
Gain scheduling

Mmdl 416 bytes
Mcaic 1280 bytes
Tcaic 6 s

Tflag E s

mtot 0 kg

Online model calculation

Mcaic 5056 bytes
Mseg 416 bytes
Tcalc E s

Tf lag E s

Tcomm 1.8 s
mnot 0.11 kg dry mass for RFID reader, if passive communication on tug

System identification

Tcalc 1 s uses one control period to update

Tf lag 6 s

Tid 12 s
mtot 6.7 g fuel used to identify model

Controllers

MCAC
mfuelAC

Pdrop-AC

additional fuel used with adaptive control
performance drop during adaptive control transition

211

architecture remains. Note, not all objectives in the ranked list may be used. Also,

because this particular scenario only involves one module, the additional fuel mass

due to adaptive control is not a big driver.

For the five cases, gain scheduling wins for case 1, 2, and 3. For this particular sce-

nario, since all aspects are known and Ntype, is small, gain scheduling techniques min-

imize time and memory, so become the appropriate choice when those objectives are

ranked high. System identification techniques become the appropriate choice when

minimization of ground development and maximization of adaptability are ranked

high, as in case 4 and 5. The weighting of the components in ground development ob-

jective greatly skews the preferred choice. For the form of the objective function used

in this calculation (as specified in Chapter 6), the TRL contribution is not weighted

as much as the integration or model fidelity. Therefore, system identification wins

because it minimizes the fidelity of the model needed and integration with the se-

quence. However, if TRL is the driving concern, architectures such as multiple model

methods become preferred since they have fairly high TRL but lower integration than

gain scheduling.

8.6 Case Scenarios

As defined in Section 1.5.1, a scenario is a description of an assembly architecture that

specifies the characteristics of the assembler, modules, initial and final positioning,

and location and type of assembly. A case scenario is similar to a case study; it

is a scenario invented to test the process of selection, as described in this chapter.

Three case scenarios are selected to cover a range of assembly conditions, so that the

selection process may be exercised in many different regimes. The following sections

describe each case scenario, exercise the process on the scenario using the same set

of objectives, and detail the appropriate architecture found. Note that it is not

always necessary to apply all objectives to obtain an appropriate architecture. Some

objectives, such as memory, can reduce the feasible set to one architecture in a single

step, while others, such as time, may have many architectures of equal value. Thus,

the ranking of the objective functions is critical since it has a large influence on the

212

Table 8.5: Results for Table 8.3 cases evaluated for SPHERES scenario

Objective
Model Generation Architecture

1 2 3 4 5 6 7 8 9 10 11 12

Time(s) e e 6 6 6 e e 6 1.8 6 1.8 24 24

Mass(kg) 0 0 0 0 0 0 0 0 - 0

1 Memory (kB) 2.0 2.0 4.7 4.7 2.2 2.2 4.9 5.6 8.2 -

Ground Dev 8.1 7.1
Adaptability - V - - -

Mass(kg) 0 0 0 0 0 0 0 0 0 0 0 0 0

Memory (kB) 2.0 2.0 4.7 4.7 2.2 2.2 4.9 5.6 5.6 8.2 8.2 5.6 10.3

2 Time (s) E E - -

Ground Dev 8.1 7.1
Adaptability - V
Memory(kB) 2.0 2.0 4.7 4.7 2.2 2.2 4.9 5.6 5.6 8.2 8.2 5.6 10.3

Mass (kg) 0 0
3 Ground Dev 8.1 7.1

Time (s) -
Adaptability V
Ground Dev 8.1 7.1 7.1 6.1 7.1 7.6 6.1 6.1 6.3 5.3 5.3 3.2 2.2

Mass (kg) - -V
4 Memory (kB) V

Adaptability -V-
Time (s) V

Adaptability
Mass (kg)
Time (s)

Ground Dev
Memory (kB)

0.25 0.33 0.25 0.33 0.33 0.33 0.33 0.5 0.5 0.5 0.5 1
- - -1 .

1
2 6.7

213

Case

Table 8.6: Scenario Description: ALMOST

Type of Assembly Tug

Propulsion type Thrusters
Location ISS
Ntug 1

Nseg 6

Ntypes 1

Dseg 0.30 m

Mseg 6 kg

Mtug 4.3 kg
Final Pos ring
Initial Pos stack

final model generation architecture selected.

8.6.1 ALMOST

ALMOST is an assembly scenario where a single tug assembles a set of identical

mirror segments through docking (Section 7.1.1). The defining characteristics of this

scenario are that all the modules are identical and that the tug assembles them one

at a time. This minimizes the total number of configurations. Table 8.6 specifies the

details of the ALMOST scenario.

The first step in executing the selection process is to answer the architecture

questions in phase one. The questions are:

* Are the mass properties of the module known well? -+ YES

* Are the attachment configurations known? - YES

" Is the assembly sequence known and fixed? -+ YES

Following the path of questions on Figure 8-2, it shows that all model generation

architectures are feasible for this scenario. Since all of the information about the

modules, how they dock, and the order is known, any of the architectures can be

implemented.

The next step is to pare down the list of feasible model generation architectures

into a single architectures by using process phase two. Applying the first objective,

214

Table 8.7: Scenario Description: ACRRES

Type of Assembly Self

Propulsion type Thrusters
Location ISS
Ntug 3

Nseg 0

Ntypes 1

Dseg 0.20 m

Mseg N/A

Mtug 4.3 kg
Final Pos triangle
Initial Pos sparse

control down time, to the feasible architectures reduces the feasible set to gain sched-

uled, multiple model architectures, and online model calculation (properties stored).

The second objective is to minimize memory, which further reduces the feasible ar-

chitectures to gain scheduling. Out of the various gain scheduling architectures, the

third objective to minimize ground development time leads to the selection of Gain

scheduling with transitions known (Method 1) as the appropriate method.

8.6.2 ACRRES

In ACRRES, individual vehicles self-assemble into an aggregated structure (Section

7.1.2. All vehicles have actuation and sensing capability, and use distributed con-

trol techniques to self-assemble. It is assumed, for this study, that the vehicles are

SPHERES satellites. Table 8.7 specifies the details of the ACRRES scenario. ACR-

RES is chosen as a scenario because it has very few configuration changes.

The first step in executing the selection process is to answer the architecture

questions in phase one. The questions are

" Are the mass properties of the module known well? -+ YES

" Are the attachment configurations known? -- YES

" Does the module have communication ability? -- YES

215

Table 8.8: Scenario Description: ISS-like

Type of Assembly Tug
Propulsion type Thrusters
Location LEO
Ntug 1
Nseg 15
Ntypes 15
Dseg 2.95 - 4.91 m
Lseg 1.5 - 13.1 m
Mseg 1,880 - 19,300 kg
Mtug 4000 kg
Dtug 2 m
Final Pos pre-designated (ISS)
Initial Pos single item

Following the path of questions on Figure 8-2, it shows that all model generation

architectures are feasible for this scenario.

The next step is to pare down the list of feasible model generation architectures

into a single architecture by using process phase two. Applying the first objective,

control down time, to the feasible architectures reduces the feasible set to gain sched-

uled, multiple model architectures, and online model calculation (properties stored).

The second objective is to minimize memory, which further reduces the feasible archi-

tectures to multiple model storage (Method 5). This is a single architecture, thus

we have achieved the goal of selecting an appropriate model generation architecture,

even before completing all objectives.

8.6.3 "ISS"

This scenario models the autonomous assembly of the ISS via a tug assembler. The

number, diameter, and length of the modules are representative of the large modules

of the ISS, however, this scenario does not include the solar panels. The tug is sized

to be significantly smaller than the average module to stress the necessity for control

reconfiguration. Table 8.8 specifies the details of the ISS-like scenario.

The first step in executing the selection process is to answer the architecture

questions in phase one. The questions are

216

e Are the mass properties of the module known well? -> YES

" Are the attachment configurations known? - YES

" Is the assembly sequence known and fixed? - NO

Following the path of questions on Figure 8-2, it shows that the feasible designs for

this scenario are multiple model method, online model calculation, adaptive control,

and system identification. Gain scheduling is not an option because the assembly

sequence is not known.

Applying the first objective, control downtime, to the feasible designs reduces the

feasible set to multiple model and online model calculation (properties stored). The

second objective is to minimize memory, which further reduces the feasible designs

to multiple model storage (Method 5). Note that if the order of the objectives

is reversed, to minimize memory first, the appropriate choice becomes Online Model

Calculation (properties communicated) (Method 9).

8.7 Conclusions

This chapter provides a two step process for selecting an appropriate model genera-

tion architecture, given the assembly scenario and objective functions. Phase one of

the process uses architecture questions to help the user to downselect to the feasible

architectures. Process phase two uses a ranking of the objective functions to downse-

lect the feasible architectures to a single appropriate design. The hardware values for

the SPHERES are used to exercise the process on three case scenarios: a telescope

assembly, a vehicle aggregation, and an autonomous assembly of the ISS.

Results from the different case scenarios show that different designs are appropri-

ate for the different scenario. Sensitivity analysis shows trends between the design and

the number of modules and number of types. The selection of the objective function

rankings is also seen to have a significant effect on the selection of the appropriate

model generation architecture. Further integration of the process into the assembly

simulation could help to identify the sensitivity of the appropriate design to objective

function specification, such as changes in ranking or weighting.

217

The three case scenarios validate the process and provide an example of how this

process can be implemented for a real scenario. The fact that the three case scenarios

produced different appropriate control system designs demonstrates that the selection

of the model generation architecture has a measureable impact on performance of the

control system.

218

Chapter 9

Conclusions and Future Work

9.1 Thesis Summary

On-orbit assembly is critically enabling technology for future space missions. It pro-

vides the ability to bypass launch vehicle mass and payload fairing size restrictions.

However, current methods of on-orbit assembly employ humans to serve as the key

decision makers in the assembly process. This leads to several disadvantages, such as

long-lead time to complete an assembly, risk to the crew during EVAs, limitations in

assembly locations, and higher cost associated with manned flight. These limitations

can potentially be overcome by employing on-orbit autonomous assembly via robotic

technology.

There are still many challenges associated with designing autonomous robotic sys-

tems, particularly for on-orbit assembly applications. These challenges range from

standardized interfaces to autonomous sequence planning to reconfigurable control

system design. This work focuses on the particular challenge of designing a model

generation architecture to accommodate large mass and stiffness property variations

associated with configuration changes during assembly. Background literature review

shows that though some work has been done in model generation architectures, much

of the work focuses on models that change due to failures. Model generation archi-

tectures that focus on mass property changes either assume complete knowledge of

the system such that it can schedule out the models, or assume no knowledge at all

and use system identification techniques to identify the model. Two gaps in literature

219

are considered in this work: (1) the design of a type of model generation architecture

called Online Model Calculation which serves to fill a gap where module properties

are known but configurations are not known; and (2) how to compare and select a

model generation architecture from a range of possible architectures.

The first gap addressed in this work is the lack of a design that balances the

use of a priori mass property information with identification of the model online.

Specifically, a gap exists when module properties are known, but configurations are

unknown until attachment occurs. The model generation architecture developed in

this thesis to fulfill this gap is called Online Model Calculation. The approach uses

a parameterized control system based on a property vector p that is used to calcu-

late the model online at the time of attachment. Thus, the properties do not need

to be stored ahead of time, only need to be obtained at the time of attachment.

The framework for this design was presented in Chapter 2 including the development

approach, generalized configuration assumed in this work, and model calculation al-

gorithm. Chapter 4 details the parameterization of the control system algorithms

based on the property vector p, while Chapter 5 demonstrates this technique through

experimental validation on the SPHERES hardware testbed.

The second gap addressed in this work is the selection of an appropriate model

generation architecture for a particular assembly mission. The selection of an appro-

priate architecture can increase control system accuracy, save fuel, decrease computa-

tional processing time, and/or decrease development time. Chapter 6 provides a set

of quantitative metrics that can be used to compare model generation architectures

on multiple levels, as well as a description of the four main categories of model gen-

eration architectures. Chapter 7 documents a simulation tool developed to allow a

user to evlaluate the metrics described in Chapter 6 for a given assembly architecture

scenario. The simulation tool is demonstrated on two case scenarios: a telescope

assembly and a self-assembly of three modules. Finally, Chapter 8 combined these

elements into a two-phase process that steps a user through the selection of an ap-

propriate architecture. The first phase downselects to feasible architectures based on

assembly mission information, while the second phase downselects to a single appro-

220

priate architecture based on user-defined objective functions derived from the metrics

specified in Chapter 6.

9.2 Contributions

The completion of this work has led to the main contribution of development and

validation of tools to address the selection and design of model generation

architectures for on-orbit autonomous assembly. Several smaller component

contributions have been accomplished as well, as listed below.

Contributions from development of Online Model Calculation architecture:

" Developed a model generation architecture called 'Online Model Calculation',

which calculates the new configuration at attachment and uses it to re-initialize

the variables in the control system, such as control gains, mass property infor-

mation in the estimator, and thruster configuration information.

" Developed a methodology for parameterizing a control system to support Online

Model Calculation implementation

" Identified situations when one should account for the added mass or flexibility

of a module based analysis of the performance degradation of maneuvering with

and without accounting for the added module.

" Experimental validation of Online Model Calculation on hardware, specifically

the parameterized control system algorithms.

* Upgrade of a adaptive controller implemented in [42] from 2D to 3D, and im-

plemented in simulation and hardware.

Contributions from selecting a model generation architecture:

o Developed a two-phase process to select an appropriate model generation archi-

tecture

221

" Development and validation of a set of metrics that can be used to compare

different architectures on multiple levels

" Developed an assembly simulation with a high fidelity control system that quan-

titatively maps the model generation architecture selection on the assembly

performance.

9.3 Recommendations for future work

This thesis provides a foundation that allows engineers to compare and assess model

generation architectures for autonomous on-orbit assembly mission applications. This

is useful because it allows for trades to be made early on in the design process based

on quantitative analysis, which can leads to a more efficient design with cost, mass,

and time savings. This work can be extended in multiple beneficial directions.

" Validation on different types of assemblers: Much of the implementation and

validation performed in this work was done using an assembler with docking

as the primary form of attachment. One area of future work is to compare

the performances differences between different types of assemblers. Adding in

the functionality to compare between tugs, robotic arms, hybrid systems, and

potentially also against human-assisted assembly. The decision of human versus

robotic assembly may be a driving trade in the future.

" Servicing: Many of the control system challenges associated with assembly can

also occur with on-orbit servicing. Online Model Calculation can be modified

to the area of on-orbit servicing to provide similar contributions.

" Distributed control systems: This work assumes that the assembler is a cen-

tralized control system that has command and actuation ability over all other

modules. An interesting future work would be to account for distributed as-

sembler systems. If instead of a single assembler moving a module, there were

two or more assemblers, how should the control system set-up be approached?

222

Exploring the different centralized and decentralized control architectures could

show unique performance differences.

" Remote control operations: The implementation techniques developed to enable

joint actuator control also present an opportunity for remote control operations,

such that a primary module can control a secondary module, for both estimation

and control, in cases where the secondary vehicle's processor is damaged. Initial

work has been completed in this area to demonstrate feasibility.

* Batch filtered Kalman filter: The use of a batch filtered Kalman filter would

allow for more versatility if trying to combine measurements from multiple

satellites because it allows for more leeway as to when the measurements are

received.

" Control system design for use with Online Model Calculation: The parameter-

ized control system has many factors that drive performance. The design of the

control system is a key research area to maintain stability and performance for

all possible configurations, and still maintain the parameterized form.

" Model generation and control design for the assembled structure: This thesis

considers the model changes due to the maneuvering of the assembler. How-

ever, the aggregation of the payload being assembled also incurs model changes.

Techniques similar to those used in this work can be used to develop model gen-

eration architectures geared toward controlling the structure as it is assembled.

9.4 Concluding Remarks

The two main objectives of this thesis, which were to (1) develop a process for the

selection of a model generation architecture and (2) develop a new architecture to

balance a-priori information with online model determination, were accomplished.

These methods were successfully verified and validated on multiple representative

assembly scenarios. This work provides a solid foundation upon which to compare

and design autonomous assembly missions.

223

224

Appendix A

Additional Literature Review

On-orbit assembly is a rich field drawing from many different areas. The literature

related to this work was categorized into four main subfields: Sequence Planning,

Robotics, Control and Estimation, and Systems Analysis. A full end-to-end on-

orbit autonomous assembly must successfully combine aspects from all of these areas.

Sequence Planning refers to the autonomous development of a set of trajectories

that results in full assembly of the spacecraft. Robotics covers a broad range of the

hardware technology that has mobility, docking, or assembly capabilities. Control and

Estimation refers to the guidance, navigation, and control issues, primarily focusing

on reconfigurable control. Systems Analysis refers to assembly architecture analysis

and trade studies. The research for Control and Estimation was presented in Section

1.3.1. The remaining sections are presented here for supplemental information.

A.1 Sequence Planning

The assembly sequence is an important parameter in terms of the control system

because it defines the operational state transitions. Thus, literature on sequence

planning gives insight into the types of sequences prevalent and on assumptions made

of the control system. One important distinction in sequence planning literature is

self-assembly versus assembly via a robotic assembler. In the self-assembly of mod-

ules, work has been done with potential field methods [361, transition set rules [39],
stochastic relaxation [77], as well as case studies for different applications (satellite

[72], nanostructures [60]). Self-assembly methods assume that each segment has its

225

own propulsion stage and control system. This results in a highly decentralized con-

trol system. The reconfiguration challenges for self-assembly are quite different as

they primarily exist in the final stages as segments are attaching to each other. Thus,

detailed analysis of self-assembly lies outside the scope of this work, since it does not

employ a centralized controller to account for mass and stiffness property changes.

Assembly via robotic assembler will be the primary sequencing method considered.

Work on sequence planning via robotic assembly has been done in a primar-

ily mathematical formulation. Precedence knowledge [33], subassembly extraction

through liaison graphs [45], cut set methods [63] [5] [25], and Contact State Network

[83] are some examples of different approaches that have been considered. Traditional

optimization methods of genetic algorithms [10] and simulated annealing [30] have

also been done. Though much work has been done on sequence planning, to date the

only application that has executed its plan on-orbit is the International Space Station

[41] [16].

It is important to understand the assumptions of the sequence planning on the

control system. Some methods require a physical model of the object [18] [45][63],

while others only require knowledge of the constraints [5] [83]. Another issue to

consider is if these methods can be implemented on-line or if they necessitate a pre-

computed sequence, as this has memory and computation issues, as well as specifies

all transitions ahead of time. These issues will be considered by including sequence

planning and the assembly sequence itself as an architecture parameter, with potential

impact in the design of reconfigurable control systems.

A.2 Robotics

Robotics for assembly can be loosely classified into tugs, arms, and rovers. Examples

of tugs include the SPHERES and AMPHIS projects. SPHERES is a formation

flight testbed on the ISS used to further autonomous docking and reconfiguration

tests [67] [65] [29]. AMPHIS is an autonomous ground docking testbed developed by

the US Naval Postgraduate School [64]. Examples of robotic arms are the Ranger

vehicle of the University of Maryland's Space Systems Laboratory [6] and the tug-arm

226

hybrid vehicles of the Field and Space Robotics Laboratory at MIT [23]. Custom end

effectors for assembly have also been designed [34]. A prime example of a rover is the

legged ATHLETE rover [32], which is envisioned to help with assembly of planetary

outposts.

In addition to these general classifications, hardware demonstrations of docking

and assembly have been done with both manipulators and tugs. MRHE, developed

by Marshall Space Flight Center, demonstrated assembly of three tugs, with deploy-

able boom payloads. The MRHE work included mass reconfiguration for assembly,

though no sensor reconfiguration [46]. KAMRO is a camera-based rover that demon-

strates pick and place operations for a manipulator arm doing product assembly [31].

Minimal reconfiguration work was done since the assembler was much larger than the

payload. Similar manipulator arm work was done for automotive assembly on a work

bench [82]. Other hardware demonstrations of assembly include the NASA Langley

truss assembly using a large external manipulator on a movable platform [21] and

human EVA assembly experiments EASE/ACCESS on STS-61B.

Review of the robotics literature reveals that some demonstration of autonomous

assembly have occurred. However, all of the demonstrations described have been very

application specific. There does not exist a generic framework to enable autonomous

assembly for any application. Similarly, reconfiguration has been implemented for

some parameters, such as mass and inertia, but not all (ex. thruster configuration,

sensor configuration). The different types of assemblers impact the control system

framework, especially the model set-up for the assembler, the physical properties

that need to be updated, and the capabilities of the assembler. The type of robotic

assembler is considered in this work as an assembly architecture design parameter,

with potential impact on the design of the reconfigurable control system.

A.3 Assembly Architectures

The design of the assembly architecture has a significant impact on the design of

the control system of the tug. However, this impact has not been quantified in

literature. In this work, assembly architecture is defined as the specification of the

227

high level mission objectives for an assembly: what is being assembly, where is it

being assembled, how is being assembled, why is it being assembled, and who is

assembling it. Answers to the what, where, how, why and who questions specify

the architecture. For the scenario in Figure 1-1, a set of segments of known mass

(what) is being assembled at Earth-Moon Lagrange Point 1 (where) to form a space

telescope (why) through docking/undocking maneuvers (how) by a propellant (who).

Architecture parameters are the variables used to answer these questions. Examples

are orbit, type of assembler, and number of assemblers.

Literature in assembly architecture has focused on high level comparison of as-

sembly strategies or developing concept architectures for specific applications. Pa-

pers that focus on assembly strategies either compare methods of assembly [26], de-

fine metrics and requirements [701, or provide software tools to analyze assembly

scenarios[19] [27]. Space telescopes are a big application driver, with multiple archi-

tectures proposed [8] [47] [37]. Solar power stations are another application driver,

using manipulators [76], human EVAs [69], or legged vehicles [28]. Finally, work

for future manned habitats has a small section, with assembly requirements for the

Constellation program [84] as well as assembling parts of a planetary stack [22].

Basu et al gives an architecture for a proposed autonomously assembled space

telescope [8]. This paper provides a comprehensive set of architecture parameters such

as telescope resolution, requirements for sensors and actuators, number of assemblers,

and accuracy requirements at various stages of assembly. The objective in this concept

is to minimize the number of segments and to optimize segment size, to achieve a

final telescope diameter of 10m. The paper also provides a table of potential robotic

assemblers, with specifications for their capability. While Basu et al indicate key

drivers, they do not do a quantitative calculation of any of those parameters, nor

does it specify the mapping between architecture parameters and the selection of an

assembler.

Gralla and de Weck [26] provides a partial quantitative analysis on how assembly

strategies can affect overall assembly objectives for human-lunar mission applications.

The paper analyzes five methods of assembly: self-assembly, single tug assembly,

228

multiple tug assembly, in-space refueling, and propellant storage on modules. The

advantages this paper presents are that it provides a quantitative analysis of how these

five architectures map into overall metrics. For example, the paper shows a trend for

how number of modules affects the overhead mass. The assembly method is modeled

through launch and orbit analysis. AV is calculated based on the amount necessary

to move the segment to the appropriate orbit. However, for large scale assembly,

much maneuvering is done in close proximity operations. Rodgers [62] does consider

close proximity operations in his investigation of the assembly of a segmented primary

mirror for a space telescope. The main comparison made is between using propellant-

based versus electromagnetic-based propulsion systems for the tug. Quantitative

trends for subsystem mass and time to assemble are given. However, both Gralla

and de Weck and Rodgers require a more detailed analysis to map the interaction

into the control system specifically. Only high level objectives, such as total assembly

time, are considered. Parameters not considered in these works include the method of

sequencing or the type of robotics used (ex. manipulator [21], hybrid manipulator-tug

[23], and tug [67] systems).

229

230

Appendix B

Simulation User's Manual

B.1 Initialization

The initialization section of the simulation sets up the simulation based on the inputs

of the scenario and method. Based on the scenario, the following parameters are

initialized: number of payload, number of tugs, initial states of tug and payloads, final

target states for payload, and mass property information for tug and payload (mass,

inertia, thruster configuration, and sensor configuration). The controller to be used

is set by the method; additionally, the metrics specified in Chapter 6 are calculated

for the method. The property information is used to calculate the dynamics model

used in the simulation.

B.1.1 Init Scenario

InitScenario initializes the simulation to the specified assembly scenario under anal-

ysis. The simulation currently accomodates two different assembly scenarios, as de-

scribed in Section 7.1. For each scenario, there are 9 cases which span a range of

assembly models, varying the number of tugs, the mass of the tugs, and the number

of segments. The inputs to the InitScenario function are the scenario number and the

case number. The outputs of the InitScenario function are:

* Assembly type (AssemType): The type of assembly specifies the mechanism by

which payloads are connected together. Possible options are tug based, robotic

arm, self assembly, as well as hybrid systems. For this thesis, only tug based

231

and self assembling systems are considered, though the functionality exists to

augment the simulation to broaden its scope to other types of assembly.

" Propulsion Type (PropType): The type of propulsion type used for assembly

impacts the control architecture, path planning, and tug sizing. For this thesis,

only chemical propulsion systems are considered, though the functionality exists

to augment the simulation to include other forms in the future. Possible types

of propulsion can include electric propulsion, robotic arms using joint motors,

or even human powered.

* Location: The location of the mission can be used to specify the environmental

disturbances, such as J2 effects, drag, gravity, etc. Currently, the location

assumed is inside the environment inside the ISS. Thus, no gravitational or

atmospheric effects are included.

" Tug Properties: If the assembly type is specified as a tug-based assembly, the

InitScenario function also initializes the tug properties. These properties are

based primarily of the SPHERES satellite. For self-assembling systems, the

tugs are both the assembler vehicle and the payload.

- Number of tugs (Ntug): Indicates the total number of tugs used in the

assembly scenario. Tugs can simultaneously move pieces.

Diameter of tug (Dtug): The diameter of tug is used for path planning

purposes to indicate where to specify the target locations with respect to

the tug's geometric center.

- Mass of tug (Mtug): The value is the dry mass of the tug. It is used in

the control system to specify position gains and control performance.

- Inertia of the tug (InertiaTug): The inertia of the tug is used to specify

attitude gains and control performance.

- Specific Impulse (Isp): The specific impulse is set if chemical propulsion

is chosen as the propulsion type. It is a measure of the efficiency of the

232

propellant and is used to size the fuel mass based on the estimated change

in velocity needed.

- Thruster mass flow rate (rn): The thruster mass flow rate is a hardware

characteristic of the thrusters. It is used to calculate the fuel used during

assembly, using the commanded thruster on times.

- Center of Mass (rcg): The center of mass is specified with respect to the

geometric center of the tug. This information is used to calculate the model

after docking to a payload.

- Thruster locations (rgcSPH): The thruster locations are given with respect

to the center of the tug. The information is used to calculate the thruster

commands.

- Thruster force directions (FSPH): The thruster force directions are given

with respect to the body frame of the tug and is used to calcuate the

thruster commands.

- Thruster output force (thrforce): The force from a single thruster is used

for path planning calculations to know how steep to design the trajectory.

- Receiver locations (RXpos): The receiver locations are given with respect

to the geometric center of the tug. This information is used in the estimator

to convert the sensor measurements into an estimated state.

- Receiver directions (RXDIR): The receiver directions are given with re-

spect to body frame of the tug. This information is used in the estimator

to convert the sensor measurements into an estimated state.

- Control bandwidths (w,,s ,wna): The nominal control bandwidths for the

tug are output to the controller to calculate the nominal gains for the tug

only system.

* Payload Properties: If the assembly type specified is tug-based assembly, the

payload properties are initialized. These payloads are passive objects with no

actuation capability. Some of the properties listed below are for the docked

233

system, when a payload is attached to a tug. It is assumed that only one

payload is attached to a tug at any given time.

- Number of payloads (Nseg): The total number of payloads to be assembled

gives a magnitude dimension to the assembly. More payloads means a

larger final structure. The value is a function of the case number. It is

varied for each case to give a spectrum of assembly scenarios, small to

large.

- Number of distinct types of payloads (Ntypes): The number of types of

payloads distinguishes how many unique payloads are present. This is a

critical piece of information for the reconfigurable control system methods

to size the memory and computation required.

- Diameter of payload (Dseg): The outer diameter of payloads is used for

path planning purposes to determine where to specify the targets for the

center of the tug and payload system.

- Height of payload (Hseg): The height of the payload is used when calculate

how to position the payloads in their initial stowed configuration.

- Mass of payload (Mseg): The dry mass of a payload is used to calculate

the control gains.

- Inertia of docked structure (Inertiaocked): The docked inertia is used to

calculate the attitude control gains.

- Center of mass in docked configuration (rcgDocked): The center of mass in

the docked configuration is used to calculate thruster commands.

- Thruster locations in docked configuration (rgcDocked): The thruster lo-

cations, in docked configuration, are required to calculate the thruster

commands.

- Thruster force directions after docking (Ddocked): The thruster force direc-

tions, in the docked configuration, are required to calculate the thruster

234

commands. The docking could have invalidated some thrusters due to

blockage or plume impingement.

e Target properties: Based on the scenario, a initial and final positioning is spec-

ified.

- Tug and Payload initial state (tug - initial - cfg, payload - initial - cfg):

Possible initial positioning geometry are stack or sparse. For stack initial

positioning geometry, the initial state of each tug and payload is calcu-

lated by placing them all in a vertical row. The tugs are placed at the

top, with the payloads below them. A minimum separation distance of

approximately 20cm is given between objects. For sparse positioning ge-

ometries, the initial location is randomly generated within a given spherical

radius. The object can be anywhere within the outer radius of the place-

ment sphere. This positioning geometry is used for self-assembling systems,

while the stack positioning geometry is used for tug-based systems.

- List of target locations and attitudes (ctrlTargets, quatTarget): The tar-

get location and attitudes are based on a final positioning geometry, such

as hexagonal ring or triangle. Based on the information about the final

positioning geometry, number of payloads, and dimensions of the tugs and

payloads, the InitScenario function calculates the final target locations and

attitudes for each tug, after assigning an equal number of payloads to each

tug. This set of targets is expanded out into maneuver targets for the tug

to reach the desired final payload location.

- Docked status at each target (dockedStatus): The docked status value

specifies whether the tug is docked during the specific target maneuver.

This values is used to select control gains, models, etc.

B.1.2 Init Method

The InitMethod function initializes the metrics associated with the method chosen,

specifically those that are not calculated by the assembly execution in the simulation.

235

Sixteen methods have been implemented, that correspond to those given in Table 8.1.

The metrics values are based on the SPHERES properties as specified in Chapter

6. For each method, the following metrics are set in this function: Total memory

required; Memory per model; Memory per payload; Processing time required; Sensing

equipment needed; Communication bandwidth needed; Additional dry mass; Ground

system required; Ease of changing between models; Ease of model incorporation;

Integration with assembly sequencing; Total control downtime; Control downtime

per maneuver; Method of model calculation; and Fidelity of measured model needed.

The metrics of fuel used to calculate model and performance drop while transition-

ing are extracted from the overall control performance from the assembly execution.

B.1.3 Init State Variables

The simulation uses a 13 element state vector to track of tug. The elements of this

state vector are position (3), velocity (3), attitude in quaternion format (4), and

angular rates (3), as given in Equation B.1. The state for each tug is initialized in

the tug's initial position as determined by the function InitScenario.

x = x y z vx vy vz q1 q2 q3 q4 wx WY wz (B.1)

Other variables that are initialized for the tug are: the state error, a 13 element vector

initialized to zero; the thruster durations, a 12 element vector modeling 12 thrusters

initialized to zero; estimator covariance, initialized to a 12 by 12 matrix with the

following diagonal entries (0.001, 0.001, 0.001, 0.0002, 0.0002, 0.0002, 0.1, 0.1, 0.1,

0, 0, 0); and the innovation, which is initialized to zero. The 3 element position is

tracked for each payloads. InitStatVariables initializes the position of the payload to

the payload's initial position as determined by InitScenario.

B.1.4 Calc Model

The CalcModel function takes in the mass properties information about the tug and

the payloads and creates two state space models. The first model is for the undocked

configuration. The continuous time A matrix is based on a double integrator system,

236

with a submatrix that accounts for the quaternion propagation (Eqn. B.2).

03 13 04 03

03 03 04 03

0 w, -Wy WX

A = -wz 0 wX -wy (B.2)
03 03 2 03

wy -w, 0 wz

L- W Wy Wz 0

03 03 04 03

The mass property information is accounted for in the determination of the B matrix.

The B matrix is calculated by first determining the linear and angular acceleration

from each thruster by multiplying the thruster force by the thruster direction and

dividing by the mass or inertia respectively. Equation B.3 shows the formula for the

calculation of the linear and angular acceleration, where fth, is the force per thruster,

m is the mass, I is the 3x3 inertia tensor, r,0 , is the position of the thrusters in the

body frame of the tug, and D is the force direction of each thruster in the x, y, and z

directions. The mass of the satellite is determined based on the dry mass of the tug,

the tug's current fuel mass, and whether the payload is attached or not.

aun = fth,*D aang To(rS X (fthr * D)) (B.3)

The overall continuous time B matrix, a 13 by 12 matrix, in the tug body frame, is

compiled from these accelerations, as given in Equation B.4.

03

B as" (B.4)
04

aang

The B matrix given in Equation B.4 is converted from body frame to inertial frame

using the current attitude state of the tug via Equation B.5, where 14 and 13 are the

237

identity matrcies of size 4 and 3 respectively and

q4 ± q1 - - q3 2(qlq 2 - q3q4) 2(qlq3 + q2q4)

)B2G = 2(qq 2 + q3q4) q4 - q1 + q2 - q3 2(q2q3 - qlq4)

2(q1q3 - q2q4) 2(q 2 q3 + q1q4) q - q - g2 + q2

EB2G

Binertia eB2G Bbody (B.5)
14

13

Both A and B matrices are converted from continuous frame to discrete frame using

Matlab's c2d function with a time step of 0.2 seconds. This process is repeated for the

docked case. For the docked case, the mass used is the sum of the mass of the tug and

the mass of the payload. The inertia is calculated based on the parallel axis theorem

and assumes that the payload docks to a pre-defined docking port located along the

X body axis of the tug. The function calculates the model first in the initialization

phase. However, the CalcModel function is also the basis of the PropagateModel

function, so is run at each time step.

B.2 Control Loop

The control loop section is the largest and most important section of the simulation

since the objective is to quantify the impact of control system designs on assembly.

B.2.1 Get Targets

The set of final payload positions output from InitScenario are expanded to consist of

three major maneuvers for a tug based assembly. Each payload consists of a maneuver

to approach the docked payload, pull out the payload from the stack, move upwards

with the payload, then a final maneuver to push the payload into its final position.

The GetTargets function is a very simple function; it takes in the list of total targets

and the current progress of the assembly. The function outputs the current target

238

state for the payload being assembled. For self-assembly scenarios, there is only one

maneuver per tug/payload, which is to move to the final target location.

B.2.2 Path Planner

A path is planned from the current state to the specified target state obtained from

GetTarget. The trajectory planned is based on the current mass of the tug (specifi-

cally whether it is docked or free-flying) and the specification of the propulsion type.

In this work, a Bang-Bang profile was used to achieve minimum time. The maximum

acceleration is calculated so that the thrusters are not saturated, where amax 1 mas-

The switching time is calculated as

Il |d - x||(B6
amax

After the path is planned, it is sent to the controller as a time sequence of target states.

For tug-based assembly, each payload has three maneuvers. The first maneuver is for

the tug to approach the payload in the stack and attach to it. The second maneuver

is to pull it out of the stack. Finally, the third maneuver is to move it to its final

position.

B.2.3 Get Error

The tug attempts to follow the trajectory by calculating the error, which is the

difference between desired state given by the trajectory and estimated state. The

error is fed into the controller.

B.2.4 Controller

The controller used is set by the method. The two options are proportional-integral-

derivative (PID) control and model reference adaptive control (MRAC). The gains

for both controllers are calculated based on the mass and inertia of the tug. The gain

calculation laws used in the script are discussed in detail in Chapter 4. The controller

outputs a six element control vector of forces and torques.

239

B.2.5 Control Allocation

This control vector gets fed into the mixer, which converts the control vector from

forces and torques, into thruster on/off commands. The mixer uses a pulse-width

modulation scheme; the control input is converted into firing times, using knowledge

of the thruster configuration, thruster force, control period, and duty cycle. The cycle

is repeated for a single path for the length of the path, until the tug is within 2 cm of

its final target position. Afterwards, the next payload target state is obtained. The

whole cycle is repeated for each payload until the assembly is complete.

B.3 Estimation Loop

The estimation in the simulation models the ultrasound receivers and gyroscopes

as the sensors on the tugs. Each tug has 24 receivers and 3 gyroscopes. Receiver

measurements are simulated to include noise based on beacon angle, receiver angle,

distance to beacon, and ±1 mm wavelength noise. Gyroscope modeling includes

incorporating the bias for each gyroscope, as well as a ±3 mrad/s 2 noise. These

sensors are processed using an Extended Kalman filter (EKF), which runs at 5 Hz.

Gyroscope measurements are taken at 1 kHz and incorporated at a rate of 50 Hz.

Ultrasound measurements are incorporated as they are received. The 5 beacons ping

in sequence, roughly every 30 ms. The EKF then maintains the estimated state vector

and covariance.

B.4 Metrics

Three main assembly metrics are used to compare the different control systems and

scenarios from the metrics detailed in Chapter 6. The first metric is the total fuel

used for the assembly. This metric is calculated throughout the simulation using the

SPHERES thruster mass flow rate and thruster commands. A lower fuel usage per

payload is desirable as it reflects the efficiency of the assembly. The second metric is

the total assembly time. It is preferable to minimize the assembly time since a longer

assembly time reduces the total operational mission duration. The assembly time is

240

comprised of the time to execute all of the paths, but also includes the computation

time required. This is particularly significant for the system identification methods.

Finally, the third metric is the time averaged root mean square of the error. This

metric captures how far the tug strayed from its planned trajectory, which captures

the accuracy of the assembly and the performance drop during transitioning

241

242

Bibliography

[1] Bigelow aerospace.

[2] Middeck active control experiment. http://ssl.mit.edu/flight/mace.html, 1994.

[3] Space transportation costs: Trends in price per pound to orbit 1990-2000. memo,

Futron Corporation, 2002.

[4] The vision for space exploration. Technical report, Nation Aeronautics and Space

Administration, 2004.

[5] Maria Joao Abrantesl, C. White, and Ann Nicholson. Minimal infeasible sets of

connections: A representation for efficient assembly sequence planning. IEEE,

pages 275-280, 1995.

[6] David L Akin, Brian Roberts, Kristin Pilotte, and Meghan Baker. Robotic

augmentation of eva for hubble space telescope servicing. In Space 2003. AIAA,

September 2003.

[7] Mark Baldeserra. A decision-making framework to determine the value of on-

orbit servicing compared to replacement of space telescopes. Master's thesis,

MIT, 2005.

[8] Santanu Basu, Terry S Mast, and Gary T Miyata. A proposed autonomously

assembled space telescope (aast). In Space 2003. AIAA, September 2003.

[9] R Berisio, L Vitagliano, A Vergara, G Sorrentino, L Mazzarella, and A Zagari.

Crystallization of the collagen-like polypeptide (ppg)10 aboard the international

space station. Acta Crystallographica, 58:1695-1699, 2002.

243

[10] F. Boizneville, C. Perrard, and J. M. Henrioud. A genetic algorithm to generate

and evaluate assembly plans. IEEE, pages 231-239, 1995.

[11] Jovan Boskovic, Sai-Ming Li, and Raman Mehra. Reconfigurable flight control

design using multiple switiching controllers and on-line estimation of damage

related paramters. In IEEE International Convference on Control Applications,

2000.

[12] P Chandler, M Pachter, and M Mears. System identification for adaptive and

reconfigurable control. JOURNAL OF GUIDANCE, CONTROL, AND DY-

NAMICS, 18, 1995.

[13] Allen Chen. Propulsion system characterization for the spheres formation flight

and docking testbed. Master's thesis, MIT, 2002.

[14] Yoonhyuk Choi, Hyochoong Bang, and Hyunjae Lee. Dynamic control allocation

for shaping spacecraft attitude control command. In AIAA Guidance, Naviga-

tion, and Control Conference and Exhibit, number AIAA 2006-6040, 2006.

[15] Soon-Jo Chung. Nonlinear Control and Synchronization of Multiple Lagrangian

Systems with Application to Tethered Formation Flight Spacecraft. PhD thesis,

Massachusetts Institute of Technology, 2007.

[16] Steven Y Chung, John D Wanagas, and Stephen Wright. Impact of restructuring

on space station freedom assembly sequence. In AIAA Space Programs and

Technologies Conference. AIAA, March 1992.

[17] John B. Davidson, Frederick J. Lallmant, and W. Thomas Bundick. Integrated

reconfigurable control allocation. In AIAA Guidance, Navigation, and Control

Conference and Exhibit, number AIAA 2001 4083, 2001.

[18] Luis S. Homem de Mello. Sequence planning for a robotic assembly of a tetrahe-

dral truss structure. Technical report, NASA Jet Propulsion Laboratory, 1994.

244

[19] Donald DeLaquil and Robert Mah. Advanced engineering software for in-space

assembly and manned planetary spacecraft. In AIAA Space Programs and Tech-

nologies Conference, 1990.

[20] Nitin Dhayagude and Zhiqiang Gao. A novel approach to reconfigurable control

systems design. Journal of Guidance, Control, and Dynamics, 19:963-966, 1996.

[21] William Doggett. Robotic assembly of truss structures for space systems and

future research plans. IEEE, 2002.

[22] John T Dorsey, Judith J Watson, and Robin Tutterow. Structural conceptst for

a lunar transfer vehicle aerobrake which can be assembled on orbit. In AIAA.

[23] Steven Dubowsky and Peggy Boning. The coordinated control of space robot

team for the on-orbit construction of large flexible space structures. In ISSS

International Conference Robotics and Automation, 2007.

[24] John Enright, Mark Hilstad, Alvar Saenz-Otero, and David W Miller. The

spheres guest scientist program: Collaborative science on the iss. In IEEE

Aerospace Conference. IEEE, March 2004.

[25] Jing Fan, Yang Ye, and Jia-Mei Cai. Multi-level intelligent assembly sequence

planning algorithm supporting virtual assembly. In 2004 IEEE International

Conference on Systems, Man and Cybernetics, 2004.

[26] Erica Gralla and Oliver deWeck. On-orbit assembly strategies for human space

exploration. In International Astronautical Congress, 2005.

[27] Stephen Boyd Hall. Large space structures assembly simulation.

[28] Gregory Scott Hickey, Brett Kennedy, and Tony Ganino. Intelligent mobile sys-

tems for assembly, maintenance and operations for space solar power. Technical

report, NASA Jet Propulsion Laboratory, 1999.

245

[29] Mark Hilstad. A multi-vehicle testbed and interface framework for the develop-

ment and verication of separated spacecraft control algorithms. Master's thesis,

MIT, 2002.

[30] D. S . Hong and H. S. Cho. Generation of robotic assembly sequences using

a simulated aneealing. In IEEE International Conference on Intelligent Robots

and Systems, 1999.

[31] Andreas Hormann and Ulrich Rembold. Development of an advanced robot

for autonomous assembly. In IEEE International conference on robotics and

automation, 1991.

[32] http://www robotics.jpl.nasa.gov/systems/system.cfm?System=11. Jpl

robotics: The athlete rover.

[33] Y.F. Huang and C.S.G Lee. An automatic assembly planning system. IEEE,

pages 1594-1599, 1990.

[34] Shin ichiro Nishida and Tsuneo Yoshikawa. A new end-effector for on-orbit

assembly of a large reflector. In IEEE, 2006.

[35] Michel Ingham, Simon Nolet, David W. Miller, and Swati Mohan. Autonomous

control reconfiguration for robotic exploration systems (acrres),. Proposal to

NASA Jet Propulsion Laboratory, December 2008.

[36] Dario Izzo and Lorenzo Pettazi. Equilibrium shaping: Distributed motion plan-

ning for satellite swarm. In iSA RIS 2005, 2005.

[37] Dario Izzo, Lorenzo Pettazzi, and Mark Ayre. Mission concept for autonomous

on orbit assembly of a large reflector in space. In 56th International Astronautical

Congress, 2005.

[38] Robert Jacques. Online System Identification and Control system design for

flexible structures. PhD thesis, Massachusetts Institute of Technology, 1994.

246

[39] Chris Jones and Maja J. Mataric. From local to global behavior in intelligent

self-assembly. In IEEE International Conference on Robotics & Automation,

2003.

[40] Carole Joppin and Daniel Hastings. On-orbit upgrade and repair: The hubble

space telescope example. Journal of Spacecraft and Rockets, 43(3), May-June

2006.

[41] James T Kaidy and William G Bastedo. Space station assembly sequence plan-

ning: an engineering and operational challenge. 1988.

[42] Jacob Katz. Estimation and control of flexible space structures for autonomous

on-orbit assembly. Master's thesis, Massachusetts Institute of Technology, 2009.

[43] Lt Col Fred Kennedy. Orbital express space operations architecture.

http://www.darpa.mil/tto/programs/oe.htm.

[44] E.M.C Kong, D.W. Kong, S.A. Schweighart, L.M. Elias, R.J. Sedwick, and D.W.

Miller. Electromagnetic formation flight for multi-satellite arrays. Journal of

Spacecraft and Rockets, 41:659-666, 2004.

[45] Sukhan Lee and Yeong Gil Shen. Assembly planning based on subassembly

extraction. IEEE, pages 1606-1611, 1990.

[46] Edward A LeMaster, David Schaechter, and Connie K Carrington. Experimental

demonstration of technologies for autonomous on-orbit robotic assembly. In

Space 2006, 2006.

[47] Charles F Lillie. On-orbit assembly and servicing for future space observatories.

In Space 2006, 2006.

[48] Ryan Lim. Staged attitude metrology pointing control and parameteric inte-

grated modeling for space based optical systems. Master's thesis, Massachusetts

Institute of Technology, 2006.

[49] Lennart LJung. System Identification: Theory for the user. prentice hall, 2005.

247

[50] Peter Maybeck and Richard Stevens. Reconfigurable flight control via multi-

ple model adaptive control methods. In IEEE Transactions on Aerospace and

Electronic Systems, volume 27, 1991.

[51] Tesfay Meressi and Brad Paden. Gain scheduled hinf controllers for a two link

flexible manipulator. Journal of Guidance Control and Dynamics, 17:537, 1994.

[52] David W. Miller Swati Mohan and Jason Budinoff. Assembly of a large modular

optical telescope (almost). In SPIE Telescopes, 2007.

[53] Swati Mohan. Reconfiguration methods for on-orbit servicing, assembly, and

operations with application to space telescopes. Master's thesis, Massachusetts

Institute of Technology, 2007.

[54] NASA. The james webb space telescope. www.jwst.nasa.gov, 2010.

[55] Gunter Niemeyer and Jean-Jacques E Slotine. Performance in adaptive manip-

ulator control. In Proceedings of the 27th Conference on Decision and Control,

1988.

[56] Simon Nolet. Development of a guidance, navigation and control architecture

and validation process enabling autonomous docking to a tumbling satellite. PhD

thesis, MIT, 2007.

[57] ISS Program Scientist's Office. International space station exper-

iment and facility results publications. website, February 2010.

http://www.nasa.gov/missionpages/station/science/experiments/Publications.html.

[58] Alexander G Parlos and John W Sunkel. Adaptive attitude stability and control

for space station / orbiter berthing operations. 1992.

[59] Kevin Readman. Universal docking port repeatability metrology. Technical

report, NASA Goddard Space Flight Center, 2009.

[60] Aristides A. G. Requicha. Building shapes by self-assembly. In Proceedings of

the Shape Modeling International 2004, 2004.

248

[61] Dr. Charles M. Reynerson. Spacecraft servicing - first order model for feasibility

and cost effectiveness. In AIAA Space 2001 Conference, 2001.

[62] Lennon Rodgers. Concepts and technology development for the autonomous

assembly and reconfiguration of modular space systems. Master's thesis, MIT,

2005.

[63] E Rohrdanz, H. Mosemann, and F. M. Wahl. Highlap : A high level system

for generating, representing, and evaluating assembly sequences. IEEE, pages

134-141, 1995.

[64] Marcello Romano and Jason Hall. Atest bed for proximity navigation and control

of spacecraft for on-orbit assembly and reconfiguration. In Space 2006, 2006.

[65] Alvar Saenz-Otero. The spheres satellite formation flight testbed: Design and

initial control. Master's thesis, MIT, 2000.

[66] Alvar Saenz-Otero. Design Principles for the Development of Space Technology

Maturation Laboratories Aboard the International Space Station. PhD thesis,

MIT, 2005.

[67] Alvar Saenz-Otero and David W. Miller. Spheres:a platform for formation flight

research. In UV/Optical/IR Space Telescopes: Innovative Technologies and Con-

cepts II conference. SPIE, August 2005.

[68] Joseph H. Saleh, Elisabeth Lamassoure, and Daniel E. Hastings. Space systms

flexibility provided by on-orbit servicing: Part 1. In AIAA Space 2001 Confer-

ence, 2001.

[69] T. Sours, R. Lovely, and D. Clark. Photovoltaic module on-orbit assembly for

space station freedom. IEEE, pages 251-254, 1989.

[70] Stuart K Stephens and Harvey J Willenberg. Metrics for in-space telescope

assembly techniques. In IEEE Aerospace Conference, 2003.

249

[71] RP Stowe, DL Pierson, DL Feedback, and AD Barrett. Stress-induced reacti-

vation of epstein-barr virus in astronauts. Neuroimmunomodulation, 8(2):51-58,

2000.

[72] Hideyuki Tanaka, Noritaka Yamamoto, Takehisa Yairi, and Kazuo Machida.

Autonomous assembly of cellular satellite by robot for sustainable space system.

IAC-05-D1.2.04, AIAA IAC 2005, 2005.

[73] SPHERES Team. Spheres third iss test session report. Technical report, Mas-

sachusetts Institute of Technology, 2005.

[74] Spilios Theodoulis and Gilles Duc. Gain scheduled autopilolt synthesis for an

atmosphere re-entry vehicle. In AIAA Guidance, Navigation, and Control Con-

ference and Exhibit, August 2008.

[75] S Trappe, D Costill, PM Gallagher, A Creer, JR Peters, H Evans, DA Riley, and

RH Fitts. Exercise in space: Human skeletal muscle after 6 months aboard the

international space station. Journal of Applied Physiology, 106:1159-1168, 2009.

[76] Hiroshi Ueno, Vickram Mangalgiri, Steven Dubowsky, Takeshi Sekiguchi, Mit-

sushige Oda, and Yoshiaki Ohkami. Simulation, analysis, and experimenta of

on-orbit assembly behavior of flexible structure by cooperative robots. In ISTS,

2004.

[77] Katsuyuki Ukegawa and M. C. Natori. Concept of self-assembly of space struc-

tures systems using autonomous modules. In 54th International Astronautical

Congress of the International Astronautical Federation,, 2003.

[78] MM Weislogel, R Jenson, Y Chen, SH Collicott, J Klatte, and M Dreyer. The

capillary flow experiment aboard the international space station: Status. Acta

Astronautica, 65:861 -869, 2009.

[79] James R Wertz and Wiley Larson. Space Mission Analysis and Design. Space

Technology Library, 1999.

250

[80] Bong Wie. Spacecraft Vehicle Dynamics and Control.

[81] Edward Wilson, Chris Lages, and Robert Mah. On-line, gyro-based, mass-

property identification for thruster-controlled spacecraft using recursive least

squares. In The 2002 45th Midwest Symposium on Circuits and Systems, vol-

ume 2, pages 334-337. IEEE, August 2002.

[82] Dun Xiangming, Sun Bin, Zhang Weijun, and Yang Ruqing. Design of a flexible

robot assembly demo system. IEEE 4th World Congress on Intelligent Control

and Automation, 2002.

[83] Tsuneo Yoshikawa, Yasuyoshi Yokokohji, and Yong Yu. Assembly planning op-

eration stategies based on the degree of constraint. IEEE/RSJ International

Workship on Intelligent Robots and Systems IROS, pages TH0375-6, 1991.

[84] Douglas Zimpfer, Peter Kachmar, and Seamus Tuohy. Autonomous rendezvous,

capture, and in-space assembly: Past, present, and future. In 1st Space Explo-

ration Conference: Continuing the Voyage of Discovery. AIAA, Jan 2005.

251

