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Abstract

When considering the formation control problem for large number of spacecraft, the advantages of
implementing control approaches with a centralized coordination mechanism can be outpaced by
the risks associated with having a primary vital control unit. Additionally, in formations with a
large number of spacecraft, a centralized approach implies an inherent difficulty in gathering and
broadcasting information from/to the overall system. Therefore, there is a need to explore efficient
decentralized control approaches. In this thesis a new approach to spacecraft formation control is
formulated by exploring and enhancing the recent results on the theory of convergence to geometric
patterns and exploring the analysis of this approach using the tools of contracting theory.

First, an extensive analysis of the cyclic pursuit dynamics leads to developing control laws useful
for spacecraft formation flight which, as opposed to the most common approaches in the literature,
do not track fixed relative trajectories and therefore, reduce the global coordination requirements.
The proposed approach leads to local control laws that verify global emergent behaviors specified as
convergence to a particular manifold. A generalized analysis of such control approach by using tools
of partial contraction theory is performed, producing important convergence results. By applying
and extending results from the theory of partially contracting systems, an approach to deriving
sufficient conditions for convergence is formulated. Its use is demonstrated by analyzing several
examples and obtaining global convergence results for nonlinear, time varying and more complex
interconnected distributed controllers.

Experimental results of the implementation of these algorithms were obtained using the SPHERES
testbed on board the International Space Station, validating many of the important properties of
this decentralized control approach. They are believed to be the first implementation of decen-
tralized formation flight in space. To complement the results we also consider a short analysis of
the advantages of decentralized versus centralized approach by comparing the optimal performance

and the effects of complexity and robustness for different architectures and address the issues of

implementing decentralized algorithms in a inherently coupled system like the Electromagnetic
Formation Flight.
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Chapter 1

Introduction

1.1 Spacecraft Formation Flight

Conceptual architectures using multiple satellites to achieve a cooperative objective have

been extensively researched in recent years. The main motivation behind these concepts

is the general opinion that a multi-vehicle system could surpass the performance and have

enhanced characteristics compared to those of a single unit.

Among the characteristics of multi-vehicle systems, the intrinsic parallelism of a multi-

agent system provides robustness to failures of single agents, and in many cases can guarantee

better time efficiency. Moreover, it is possible to reduce the total implementation and oper-

ation cost, increase reactivity and system reliability, and add flexibility and modularity as

compared to monolithic approaches.

Numerous applications of multi-agent cooperative systems have been foreseen in surveil-

lance missions, demining, planetary exploration, coordinated attack, and some of them have

been successfully implemented in ground robots [49], unmanned air vehicles [8], autonomous

underwater vehicles [98] and satellites [105]. In particular several applications have been

foreseen for multi-agent technology in space (see Fig. 1-1).

In interferometric missions, the idea that multiple formation flying spacecraft can obtain



better performance than a structurally connected spacecraft by achieving larger baselines

and improved flexibility is exploited. Several missions using multi-spacecraft systems with

the science objective of detecting life components in extra-solar planets have been proposed.

Formations of up to 30 spacecraft have been studied for the Stellar Imager concept [9,27].

Multi-aperture telescopes are another possible application. In this approach, a set of

vehicles achieve improved optical performance and better coverage of multiple targets by

providing a flexible reconfigurable system. Additionally, enhanced upgradeability is con-

sidered as a projected advantage as modules could be changed or added.and an assembly

mission could be performed in space achieving total apertures otherwise impossible to launch

as a monolithic unit [81].

Another example is synthetic aperture radar (SAR) missions for earth imaging and remote

sensing. SAR is an implementation of radar technology that uses many small antennas

distributed among two or several spacecraft instead of using a single rotating antenna, are

used to sense the reflection of electromagnetic wavefronts off the earth. An improvement

of the overall performance achieved by implementing large and variable baselines between

antennas [13,89).

Scientific missions for improved measurements of the earth's magnetosphere have also

been proposed which would take advantage of acquiring simultaneous measurements of the

magnetic field at locations separated by a few kilometers [57].

More recent multi-satellite missions consider clusters of satellites performing as a frac-

tionated spacecraft architecture. In that case, the spacecraft would interchange information

while maintaining neighboring positions in a way such that different components that are

traditionally located in a single satellite could be physically situated on different satellites

distributing functions among the different vehicles. This fractionated architecture has im-

proved reliability and upgradeability, since replacement of individual components would be

reduced to deorbiting the module to be replaced and launching a new component into the

configuration [12,46].



Figure 1-1: As research on multi-vehicle missions evolve, several concepts with increasing
number of vehicles have been proposed, left: TPF-I, center: System F6, right: SI. (source:
NASA, DoD)

Scharf and Hadaegh defined spacecraft formation flying in [83] as "a set of more than one

spacecraft whose dynamic states are coupled through a common control law. In particular,

at least one member of the set must 1) track a desired state relative to another member,

and 2) the tracking control law must at the minimum depend upon the state of this other

member."

This definition could be relaxed in the sense that tracking a desired relative state is a

restrictive condition. For example, in the case where the mission objective can be achieved

by maintaining the vehicles confined to a given region or holding some structural behavior

without tracking specific trajectories.

Multi-agent systems are not linked just through their control. Systems with multiple

actuation that have some level of coordination can be considered multi-agent systems. The

level of interconnection or coupling of the elements in a multi-agent system may vary be-

tween different architectures. One can think for example of the case of multiple actuators

and sensors in an actively controlled structure [50]. The dynamic coupling in this case is

structural, that is, without applying control, the state evolution of one node depends on the

state of some other. A tethered system [18], is a structurally coupled system with a more

relaxed interconnection. In this type of system the formation is linked through tethers which

imply kinematic constraints. This makes the state evolution of one vehicle dependent on the

state of some others. On the other hand, the coupling can be caused by the actuation. Elec-



tromagnetic formation flight technology uses electromagnetic forces to control the relative

motion between spacecraft. The spacecraft are not actually structurally connected, and thus,

if no electromagnetic actuation is performed, the evolution of the state of one vehicle does

not depend on any other. However, when the electromagnets are activated in more that one

vehicle the evolution of the state of one of the vehicles depends on the state of some of the

others. Additionally, the system could be coupled through measurements. If the information

that an agent requires to be able to perform its task is obtained through different agents,

any control law based on that information couples the system. Finally, the interconnection

between vehicles can be given by the mission objective pursued by the control system. If

the objective is determined with respect to relative states, like the case of formation flight,

even if the system is decoupled in every other manner, the system is coupled through its

performance.

Control strategies have been classically categorized into centralized approaches, and de-

centralized approaches. A centralized approach is an implementation where a "central"

computation unit (not necessarily on one of the spacecraft) has access to all the states of

the system and has the capability to communicate the optimal control commands to each

actuator in the overall system [103. This can be considered in terms of design, the simplest

architecture to achieve optimal performance.

In a decentralized scheme, each vehicle has available only partial information of the

formation and decides its own actuation command at each period. The information available

to each vehicle can be implemented in the form of measurements or communication. The

problem of synthesizing decentralized controllers for an arbitrary interconnection topology

is an open problem, and several approaches to deriving control laws have been studied in the

last 30 or 40 years. The sub optimality arises given the knowledge of only partial information.

Different instantiations of a coordination state can coexist in different vehicles and thus, what

is optimal for one instantiation is not necessarily optimal for a different vehicle.

However, decentralization has several important features that could largely impact the



realization of a mission. Some of the most important features of decentralized control and

estimation which are especially applicable to space systems are:

" Launch and deployment independence,

" Robustness to failures and delays of a central unit,

* Module repeatability,

* Simplified addition and rejection of modules.

Moreover, for decentralized implementations that only require local information, decentral-

ization has additional advantages in the sense of:

" Linear dependence of the communication complexity with the number of vehicles,

" Simplicity of implementation, especially, a reduced order of the controller states

As examples, consider a centralized mission for which the payload of the central controller

fails, then the whole mission fails, or even before launch, if its development process is delayed,

the whole system is delayed. Additionally, there is an important inverse relationship between

simplicity and reliability. Decentralized systems can be simpler to implement and validate

because in principle, the operation of each satellite does not depend on the others.

Considering the interest in decentralized approaches, the proposed thesis looks also at the

decentralization problem from a control perspective exploring a special type of decentralized

controller.

Scharf et al. [83] identified the three main areas that have not been thoroughly addressed

in the spacecraft formation flight control literature: 1) rigorous stability conditions for cyclic

and behavioral architectures, 2) reduced algorithmic information requirements, and 3) in-

creased robustness/autonomy. A control method that exploits cyclic topologies is studied in

this thesis. The general approach considers a generalization of the cyclic pursuit approaches

and extends its analysis as a manifold convergence problem, which uses local information to



converge to global equilibrium states that are in a manifold. This approach can efficiently

address some of these mentioned areas.

This thesis explores the cyclic-pursuit based algorithms recently presented in the lit-

erature because of its fitness for space applications and extend for application in space.

Additionally, the problem is studied under a different theoretical approach which leads to

defining other, more general control algorithms and describe the problem as convergence

to manifolds with desired properties instead of convergence to (time varying) fixed-point

trajectories. Common approaches to formation control have focused on the convergence to

fixed points of the relative states. The research in this thesis presents control algorithms that

achieve convergence to manifolds and have valuable characteristics including not requiring

coordination on specific relative positions, simplicity of implementation, reduced number of

communication links (n links for n agents), reduced number of computations to achieve a

formation, global convergence, synchronization, a better fuel performance than other decen-

tralized algorithms and improved robustness.

Another aspect considered in this thesis, strongly motivated by the decentralization ob-

jective, considers the extension and drawbacks of applying decentralized control techniques

to an inherently coupled system such as Electromagnetic Formation Flight.

Electromagnetic Formation Flight technology (EMFF) is a concept developed by the

Space Systems Lab at MIT, also independently envisioned by Boeing (Formerly Hughes

Aerospace) and a Japanese research group at the university of Tokyo [34). Its principle

of operation is the force created by the interaction of magnetic fields generated by current

running through High Temperature Superconducting (HTS) coils. These electromagnetic

coils generate fields equivalent at long distance to magnetic dipoles, which can be steered

in any three dimensional direction by the combination of currents running through three

orthogonal coils.

Theoretical studies have demonstrated the superiority of electromagnetic formation flight

versus other propulsion methods for several applications, and a testbed has been built and



used to demonstrate the operational principles for control. Open loop control, position hold

and trajectory tracking have been successfully demonstrated in a two-vehicle configuration.

EMFF is a maturing technology and due to the complexity of the challenge, the control

approaches have considered only centralized techniques. An EMFF system will benefit from

decentralization and this work presents techniques to address the issue.

The main portion of this work addresses the development and validation of new control

techniques based on the cyclic pursuit approaches and its extensions based on contraction

theory and concluding sections perform a preliminary study the implications of the proposed

decentralized control approach and the mechanisms to implement it in EMFF systems.

1.2 Problem Statement

Satellite formation flight is an enabling technology in the early stages of its realization and

as new applications are envisioned, some of them consider increasingly larger number of

spacecraft achieving geometric patterns.

As the number of spacecraft increases in a cooperative multiagent system, the implemen-

tation of centralized control approaches becomes less viable, and it is important to identify

effective methods for decentralized spacecraft formation control. Most common decentralized

approaches require global coordination mechanisms, by tracking relative states they constrain

unnecessary degrees of freedom and/or imply information transfer requirements that scale

poorly with the number of agents in the formation.

Mission objectives in several kinds of space applications, may not require tracking specific

fixed point trajectories of the relative states but can be achieved by maintaining the overall

state of the system within a given manifold. Among several approaches to cooperative con-

trol, the cyclic-pursuit algorithm, presents promising features; specifically, it has properties

of reduced information flow and global convergence to manifolds. The analysis of this type

of controller can efficiently address areas in the formation flight control field that have not



been thoroughly explored. This approach could bring benefits to spacecraft formation con-

trol missions in terms of reduced information requirements, reduced fuel consumption and

increased robustness and autonomy. However, the theoretical results for this algorithm are

restricted so far to the single integrator case, with convergence only to circles or logarithmic

spirals and precarious robustness properties.

Additionally, promising technologies like EMFF systems are highly coupled through their

actuation. Such coupling does not allow for a direct extrapolation of decentralized techniques

that do not account for this coupling. Specifically, the actuation in one vehicle requires at

least one other vehicle to be actuated, and the fact that the input command of one vehicle

affects all the other active vehicles.

1.3 Thesis Objective

The main objective of this thesis can be summarized as:

To contribute to the field of multi-satellite systems formation control enhancing the cur-

rent state of research in the area of distributed controllers. The work in this thesis will address

the development of formation control algorithms where a global geometric behavior emerges

from local control rules, not based on trajectory tracking, leading to improved properties in

terms of complexity scaling, global convergence and control effort.

Under the overall objective of studying a new approach to decentralized spacecraft for-

mation control, the specific objective is to develop control laws based on the idea of manifold

convergence, especially cyclic algorithms for satellite formation flight.

The following subobjectives are considered:

1. Analysis of the dynamics of cyclic pursuit algorithms for three dimensional cases and

second order dynamics.

2. Development of controllers for the application of the cyclic pursuit approach in space-

craft applications, namely:



(a) Approaches considering low earth orbit dynamics that converge to near natural

relative orbital trajectories.

(b) Control approaches for deep space missions that achieve the formation objective

merely based on relative information.

3. Extension to more complex interconnection topologies and nonlinear controllers to

improve the properties of the cyclic pursuit algorithms and achieve more complex

objectives, specifically by developing a theoretical approach to analyze the convergence

properties of more general dynamical systems.

4. Experimental validation of the control approaches in the SPHERES testbed and anal-

ysis of their properties.

Additionally, secondary objectives also addressed in this work include

1. A framework to compare between the interconnection topology of low-level control

architectures, considering the system performance. Specifically, focusing on comparing

the manifold convergence methods to other architectures.

2. Developing techniques to decentralize electromagnetic formation flight considering meth-

ods for implementation of EMFF that do not require the use of centralized computa-

tion,

1.4 Approach

1.4.1 Approach overview

The general approach to address the objectives of this thesis consists of exploring formation

controllers inspired by the cyclic pursuit algorithm, extending and analyzing the applicability

of this approach for spacecraft formation flight problem, and presenting a framework that

achieves a deeper approach to more general dynamic systems.



At first, the analysis of the control laws is based on a linear eigendecomposition analysis.

For the basic cases, analytical expressions for the eigenvectors can be derived given the special

structure of the circulant matrices describing the underlying topology. Then, a framework

considering results from contraction theory is presented. By introducing the analysis of this

control algorithms using the framework of partial contraction theory, the control laws can

be extended to more general cases and obtain results for more complex situations.

The basic elements of the control approach developed in the thesis is framed by consider-

ing the performance on a benchmark problem as compared to other architectures. Different

topologies are analyzed by defining a performance quadratic metric and cost metrics that

convey the cost of the complexity of the implementation and the robustness to failures.

Additionally, the analysis of some proposed techniques for the decentralized implemen-

tation of Electromagnetic Formation Flight are studied. The approach to understanding

the performance of the techniques is through simulation, comparing them to a centralized

implementation and preliminary analytical results describing their characteristics.

1.4.2 A new approach to formation flight: generalized pursuit

Following the results in the literature by Pavone and Frazzoli [67] and by Ren [76 this thesis

starts by considering the cyclic pursuit approaches for achieving convergence to formation

while not tracking a specific trajectory.

In the most common approach to formation flight, the distributed control methods are

based on tracking relative states with respect to other vehicles. For a set of n agents with

state described by the variable xi, i E {1, ... , n}. The most basic description of such approach

considers the system [60]:

x =u (1.1)

ui = kij (xj - xi - hi (t)) (1.2)
jeMi



The underlying idea in this case is the fact that each vehicle tracks a position with respect

to a set of neighbors. This problem is actually an instantiation of the more general consensus

problem [62], which has been widely studied in many other context, leading to a wide array

of theoretical results extensible to the formation control problem. This approach has been

later generalized to more complex dynamic cases [24], double integrators [72].

On a different approach to formation control, Pavone and Frazzoli [67] studied the cyclic

pursuit control algorithm, by analyzing the dynamic behavior of the system:

cosa sina
i = kR(a)(xil - xi), R(a) =. (1.3)

-sina cosa )

where a E [-7, 7r) is constant and the overall dynamics of the n agents are described as:

k=kAx, (1.4)

A being a block circulant matrix.

The eigenvalues and eigenvectors of the dynamic matrix A can be analytically determined

based on the special characteristic of the circulant matrix which defines the underlying

topology.

The specific case when a = r/n, leads to two eigenvalues on the imaginary axis, which

determine the circular steady state behavior. If a < r/n, all the eigenvalues are in the

left hand plane which determines the global convergence to a point. On the other hand, if

the angle a > ir/n, two eigenvalues will be in the right hand plane determining a unstable

expanding spiral behavior.

In a more recent work, Ren [74] extended these results for more general topologies, by

considering the case:

= ai C(x - xi) (1.5)
i EN(i)



under the same general idea, selecting C to be a rotation matrix of angle 0, the author

determines that for a critical angle 6c, two eigenvalues can be located on the imaginary axis,

leading to rotating circular formations and correspondingly if the angle 6 > 6c, the right

hand eigenvalues will imply an spiraling behavior and presents a first approach to double

integrators.

Building upon such ideas, the work on this thesis explores theoretical approaches that

verify convergence characteristics of the more general case:

xi = f (x) + ui (1.6)

ui = k(x, t)Aij (x, t)(xj - xi) (1.7)
jeNr(i)

by defining invariant manifolds to which convergence is shown using the results from partial

contraction theory.

The approach using contraction theory is used for several reasons: First, an analytic

derivation of eigenvalues and eigenvectors for more complex topologies might not be straight-

forward, second, it allows extensions to the case of time varying and nonlinear controllers.

This way, the analysis of the controllers for more useful applications using more complex for-

mations, and showing global convergence properties for nonlinear controllers can be achieved.

The general focus of the theoretical part of this thesis is the derivation of sufficient

conditions for global convergence using the control approaches to achieve different type of

geometric patterns and behaviors without tracking relative trajectories. Global convergence

properties are an important feature since they guarantee that a stable formation is achieved

from any initial state. The possibly large dimensionality of the state, in the case of multi-

agent systems, makes global convergence an important feature of the control approach. The

main focus of the thesis is to consider cyclic topology and controllers derived from it, having

in mind that this topology minimizes the number of links. However, the idea of convergence

to manifolds is general enough and could be extended to more general interconnections.
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Figure 1-2: Thesis approach diagram

Figure 1-2 illustrate the general flow of the thesis. The theoretical analysis of the pro-

posed control approach is achieved by considering two directions. In a first approach, an

eigendecomposition of the cyclic pursuit dynamics is developed and the required extensions

and results for application in the spacecraft formation flight problem are derived. In a second

part the analysis to more complex dynamical systems is extended by considering the results

of contraction theory. These results define a new path to the analysis of the formation control

problem and open new avenues of research which is not specific to the spacecraft formation

flight problem. The validation of the approach in a testbed on the ISS and an analysis of the

advantages of such approach in a specific benchmark problem validate the applicability and

the characteristics of the results of the theoretical work. Finally, further extensions consider



the implementation of decentralized techniques in EMFF systems.

1.4.2.1 Cyclic pursuit for spacecraft formation applications

In the first part of the thesis, the cyclic pursuit algorithm is analyzed and exploited for appli-

cations in spacecraft formation flight. The same general idea of identifying the eigenvectors

and eigenvalues by considering the properties of circulant matrices is used to determine the

convergence properties of controllers for double integrators. Second order dynamics are more

relevant to the spacecraft formation flight problem.

For the most basic case, the eigendecomposition of the dynamics for a second order system

with a control law is presented, which similarly to the approach presented by Ren [74], require

an agreement on an inertial frame. In this thesis, the generalization to achieve control of the

center of the formation is also addressed. Additionally, this controller includes a feedforward

term that makes the dynamics a straightforward extrapolation of the first order system and

allows for a simpler description of the overall time evolution.

Another control algorithm for the case of double integrator dynamics which uses only

relative measurements to its neighbors is proposed and analyzed under the same idea of

dynamic eigendecomposition. In this case it is also shown that by varying a set of parameters

the system can be setup to converge to Archimedean spirals, logarithmic spirals and circles.

The idea is extended to achieve more interesting configurations by considering a similarity

transformation. The control law on each vehicle uses a transformation of the cyclic pursuit

that in the transformed space achieves circular formations, but in the actual physical space

the trajectories are not necessarily so. A simple application of this approach is shown to be

a similarity transformation of the trajectories which converges to elliptical trajectories. The

importance of converging to elliptical trajectories is the fact that for near circular low earth

orbits, ellipses are near-natural relative trajectories. This situation is exploited to consider

controllers that can be used to achieve global formation acquisition and maintenance in

the same lines of the cyclic pursuit algorithm which do not track relative trajectories but



converge to the manifold of trajectories that are near-natural and require a reduced control

effort to be maintained.

A last improvement in exploring the cyclic pursuit algorithm via a linear analysis, aimed

to enhance the implementation of cyclic pursuit approaches for spacecraft formation flight is

related to its robustness. In the cyclic-pursuit approach, cyclic trajectories occur only when

two non-zero eigenvalues are on the imaginary axis and all other non-zero eigenvalues have

negative real parts. This makes the behavior not robust from a practical point of view. An

approach to address the problem is using a nonlinear version of the controller.

Intuitively, for a controller in which if the agents are "close to each other" they will spiral

out by setting ai > 7r/n; and conversely, if they are "far from each other", the spacecraft will

spiral in by setting ai < r/n. The approach to the proof of the local stability of the systems

uses a sequence of coordinate transformations such that a formation is an equilibrium point

of the coordinate system.

1.4.2.2 Contraction theory approach to generalized pursuit

The eigendecomposition approach to analyze the properties of a system is limited in its

nature to linear or linearized systems with a very specific structure. With the purpose of

expanding the results to nonlinear, more complex interconnections and time varying cases

the tools of contraction theory are explored. In doing this, the underlying idea of the cyclic

pursuit algorithm is generalized as a method to achieve convergence of the formation to a

specified manifold and not necessarily to tracking a trajectory.

Contraction theory is presented as a powerful method to approach the convergence anal-

ysis of distributed control problems for which methods like Lyapunov functions might not

be suitable. In the contraction theory approach, the general idea consists of showing the

negative definiteness of a projected Jacobian matrix which encompasses the dynamics of

an agreement subspace. Showing the negative definiteness of a matrix in the case of a dis-

tributed system can turn more attainable than demonstrating the negativeness of a lyapunov



rate, function of multiple states that depend on each other.

The results from partial contraction theory developed by Pham and Slotine [68] describe

the problem of convergence to an invariant manifold of the dynamics system as the problem

of showing convergence of an auxiliary system that describes the dynamics of a component

perpendicular to the desired manifold.

In a first result, applying the contraction approach to a generalized version of the cyclic

pursuit approach leads to a generalization to time varying and state dependent cyclic con-

trollers, namely with the structure:

zj k (x, t)R(x, t)(xi - xj)
jEAK

Convergence results extend straightforward to achieving polygons, circular and spiral

rotating formations, address time varying and state dependent gains and coupling matrices.

Then, a series of results and corollaries of extending the contraction theory approach to

time varying subspaces and linear combinations of basic primitives are derived. Specifically,

a result on the linear combination of basic control functions shown to converge to basic

manifolds Mi, which are dubbed 'primitives', of the form:

x =ZEfi(x)
i X

such that:

Vi : R" n a RA, Vfj(: ) = 0, Vijt = 0, V R E Mi

showing conditions for the overall system to achieve convergence to the intersection of

the individual manifolds, namely x -+ R E M= Mi. Several applications of using these

results are shown to illustrate the proposed idea.



1.4.2.3 Applications and experiments

Another important component of developing the algorithms presented in this thesis considers

the implementation of the controllers in actual hardware. The SPHERES testbed is used as a

platform to obtain experimental results for different control laws derived from the algorithms

presented in this part of the thesis.

First, the basic algorithms were tested to verify their performance and a comparison

to simulations is presented. In this part the implementation of decentralized methods for

spacecraft formation flight subject to the constraints of real flight hardware in microgravity

environment was validated.

Additionally, several hardware tests demonstrated the use of these decentralized control

algorithms for diverse space scenarios foreseeable in an actual spacecraft formation flight

mission.

1.4.2.4 A benchmark problem framing the results

As a concluding remark of the approach, in a small section a comparison of different control

architectures for formation flight is performed, highlighting the improved performance of

control algorithms derived from the generalized pursuit approach in a trade analysis based

on a benchmark control problem. Some metrics were defined that can be applied for ana-

lyzing the different cases of interest. The metrics considers the performance and competing

dimensions that take s into account the complexity of implementation and the cost of making

it robust to failures. Architectures that can address the problem and for which an optimal

performance can be calculated are studied and a trade analysis based on the defined metrics

is done.

1.4.2.5 Decentralization of EMFF

As a complement to the decentralization results in this thesis, the idea of decentralization

applied to a unique actuation system intended for formation flight applications is considered.



Most of the decentralization techniques fail in their implementation for electromagnetic for-

mation flight due to the fact that a different type of coupling is present in this type of

system. With the purpose of achieving the benefit of decentralization in these systems, an

analysis of some ideas for decentralization of electromagnetic formation is proposed. The

general approach in this section is rather heuristic given the difficulty of the problem, and

some different proposed ideas are presented.

A natural approach for the application of forces in a decentralized way in a EMFF

system consists of decoupling the dynamics of the system. Some possibilities are inspired on

the resource allocation schemes used in communication systems. In a time divided resource

allocation, the system is decoupled by allocating time slots of operation for subsets of vehicles.

During a time slot the active subset of vehicles can actuate, and the rest of vehicles remain

'inactive'. By alternating the set of vehicles that are active, the desired forces can be achieved

under the advantage that applying the closed loop control to achieve desired trajectories,

the vehicles would need to solve a set of dipole equations of reduced dimensionality.

In a frequency divided resource allocation strategy, subsets of vehicles can act simultane-

ously applying orthogonal currents for each different subset decoupling the actuation. The

time average interaction with vehicles with an orthogonal frequency will be nulled, allowing

for decoupling the interaction with vehicles other than the ones in its own subset. Different

type of orthogonal functions can be more effective in different situations. Sine functions and

square sine functions are studied.

Another approach to addressing the problem investigates options of a protocol for setting

up the dipoles in a distributed manner and eliminating the dependence in a central unit.

An approach using a distributed protocol for the solution to the dipole equation is proposed

which consists of defining a synchronized protocol that by calculating the local solution to a

local optimization problem and sharing this solution value through a communication network

achieve convergence to the global solution.



Chapter 2

Literature Review

In this section, a short review of some mathematical background and an assessment of the

literature covering the topics concerning this thesis is presented. First, we present some

specific mathematical concepts that are of major importance in this thesis and the notation

that we use throughout the document.

The literature review starts with a section that presents the results regarding the theory

and developments of decentralized control. In a second section, a short description of different

approaches that have been presented in the context of cooperative control and especially

those approaches that have been specifically presented for the case of satellite cooperative

flight will be shortly described. A third section highlights papers that have considered in

some extent the selection of different interconnection architectures. A fourth section presents

the literature describing the special case of decentralized controllers describing coordination

by cyclic pursuit algorithms and as a last section the developments and state of the art of

research on electromagnetic formation flight technology will be discussed.

2.1 Background

In this section, we provide some definitions and results from matrix and graph theory.



2.1.1 Notation

This is the notation that will be used throughout the document. Let R> and R>o denote

the positive and nonnegative real numbers, respectively, and denote as R(x) the real part(s)

of the complex element x. Let In denote the identity matrix of size n; we let AT and A*

denote, respectively, the transpose and the conjugate transpose of a matrix A. A block

diagonal matrix with block diagonal entries Ai is denoted diag[Ai]. For an n x n matrix A,

we let eig(A) denote the set of eigenvalues of A, and we refer to its kth eigenvalue as AA,k,

k E {1, ... , n} (or simply as Ak when there is no possibility of confusion). Also denote as

Amax the largest eigenvalue such that R(Amax) > R(Ak) for all k.

The state of a single agent i is denoted by xi which in general xi E R2 and the overall

state of the system will be denoted as x = [x4, X2, ... , x]f. Additionally, let j -~-vT-

In general we consider a matrix A to be positive definite if A(A+AT),k > 0 for all k and

denote it as A > 0. Similarly, a matrix A is said to be positive semi-definite if A(A+AT),k

and is denoted as A > 0

Definition 2.1.1 Flow-invariant manifolds

A flow invariant manifold M of a system x = f(x) is a manifold such that if x(to) E M then

x(t > to) E M. In this work flow invariant manifolds that can described as the nullspace of

a smooth operator x E M = V(R, t) = 0, 1 (V(, t)) = 0 are considered.

2.1.2 Kronecker product

Let A and B be m x n and p x q matrices, respectively. Then, the Kronecker product A 0 B

of A and B is the mp x nq matrix

anB ... a1nB

A®B=K .
am1B ... amnB



If AA is an eigenvalue of A with

associated eigenvector vB, then

vA 0 VB. Moreover: (A 0 B)(C

appropriate dimensions.

associated eigenvector vA and AB is an eigenvector of B with

AA-AB is an eigenvalue of A 0 B with associated eigenvector

0 D) = AC ® BD, where A, B, C and D are matrices with

2.1.3 Determinant of block matrices

If A, B, C and D are matrices of size n x n and AC = CA, then:

det = det(AD - CB). (2.1)

2.1.4 Rotation matrices

A rotation matrix is a real square matrix whose transpose is equal to its inverse and whose

determinant is +1. The eigenvalues of a rotation matrix in two dimensions are e±ja, where a

is the magnitude of the rotation. The eigenvalues of a rotation matrix in three dimensions are

1 and e±j, where a is the magnitude of the rotation about the rotation axis; for a rotation

about the axis (0, 0, 1)T, the corresponding eigenvectors are (0, 0, I)T, (1, +j, O)T(1, j, O)T.

Denote R(a) or R a rotation matrix of angle a.

2.1.5 Circulant matrices

A circulant matrix C is an n x n matrix having the form

C0  C1 C2  ... Cn_1

cn_1 Co Ci ...

Cl

C1 C2

(2.2)C =



The elements of each row of C are identical to those of the previous row, but are shifted one

position to the right and wrapped around. The following theorem summarizes some of the

properties of circulant matrices.

Theorem 2.1.2 (Adapted from Theorem 7 in [28]) Every n x n circulant matrix C

has eigenvectors

k I (i, e 27rik/n e21rjk(n-1)/nT, k E {O, 1, . . . , n - 1}, (2.3)

and corresponding eigenvalues
n-1

Ak = Cpe2,rjkp/n (2.4)
p=o

and can be expressed in the form C UAU*, where U is a unitary matrix whose k-th

column is the eigenvector Pk, and A is the diagonal matrix whose diagonal elements are

the corresponding eigenvalues. Moreover, let C and B be n x n circulant matrices with

eigenvalues {AB,k}k=1 and {AC,k}k= 1, respectively; then,

1. C and B commute, that is, CB = BC, and CB is also a circulant matrix with eigen-

values eig(CB) = {AC,k AB,kk=1;

2. C + B is a circulant matrix with eigenvalues eig(C + B) = {Ac,k + AB,k k=1

From Theorem 2.1.2 all circulant matrices share the same eigenvectors, and the same matrix

U diagonalizes all circulant matrices.

2.1.6 Block rotational-circulant matrices

The set of matrices that can be written as L 0 R where L E RN is a circulant matrix and

R C R3 is a rotation matrix about a fixed axis all belong to a group of matrices denoted in

this thesis as C'R.



Lemma 2.1.3 The set CR forms a commutative matrix algebra. That is, for any two ma-

trices A, B E CR

1. A and B commute, that is, AB = BA, and AB E CR with eigenvalues eig(AB) =

{AA,k AB,k k=,=

2. (A + B) c CR with eigenvalues eig(A + B) {AA,k + AB,k k=1-

The proof is based on the fact that all CR matrices are diagonizable by the same matrix T

of linearly independent eigenvectors and is shown in appendix A.1.

2.1.7 Graph representation of multi-agent systems

This section presents a short review of the approach to the description of the interaction

topology using graphs commonly used in the literature of cooperative control (adapted from

[77]).

A weighted graph can be mathematically described of a node set V = {1, 2,..., n}, an

edge set E C V x V and an adjacency matrix A = [aij] E R" .

The interaction topology of a network of agents is commonly considered to be represented

by a graph g = (V, E), where the set of nodes are the vehicles and the edges denote the

interconnection between vehicles. An edge (i, J) denotes the fact that vehicle j can obtain

information regarding the state of vehicle i. For the case of an undirected graph (i, j) E E

implies (j, i) E S. The weighted adjacency matrix A is defined such that aij is a positive

quantity if (j, i) E 8 and 0 otherwise.

A tree is a graph such that every node has exactly one incoming edge except for one

node. A spanning tree is a tree that reaches every node of the graph. The neighbors of agent

i are denoted by i = {j E V :(i, j) E E}. Several similar definitions are presented in the

literature for the Laplacian matrix. Commonly the Laplacian is defined as the normalized



matrix L [lij] such that:

L { _ _ (2.5)

L has always a 0 eigenvalue with eigenvector 1, where 1, = {1, 1, .., 1} E R' and it has

multiplicity 1 if and only if the graph contains a spanning tree.

2.1.8 Contraction theory

The work of Lohmiller & Slotine [47], Pham & Slotine [68] and Chung & Slotine [19] have

laid the groundwork for the development of control approaches based on contraction theory.

The main result of contraction theory can be summarized in the following theorem:

Theorem 2.1.4 Contraction [68] Consider in R", the deterministic system

x = f(xt) (2.6)

where f is a smooth nonlinear function. Denote the Jacobian matrix of f with respect to x as

a. If there exists a square invertible matrix e(x, t) such that e(x, t)T E(x, t) is uniformly

positive defnite and the matrix:

F = e +E Of ) (x, t)-1 (2.7)Ox

is uniformly negative definite, then all the system trajectories converge exponentially to a

single trajectory. The system is said to be contracting.

Based on the contraction results, Pham and Slotine extended the theory to convergence

to flow invariant subspaces. A main result that defines the partial contraction theory is

presented [68] in the following:



Theorem 2.1.5 Partial contraction [68] Consider a flow-invariant subspace M and associ-

ated orthonormal projection matrix V. A particular solution xp(t) of the system 2.6 converges

exponentially to M if the system

y = Vf(VTy, t) (2.8)

is contracting with respect to y. If the above condition is fulfilled for all x, then starting from

initial conditions, all trajectories of the system will exponentially converge to M.

This last theorem is shown to have important implications in defining a framework for con-

vergence to manifolds, where the positive definiteness of a projected Laplacian is a sufficient

condition to show convergence to specific manifold, with results that can be extended to

nonlinear systems.

2.1.9 Decentralized systems theory

Fueled by research in economics, the decentralized control problem was initially formulated

by the end of the 1950's and later reexamined in the 1970's in the context of linear systems.

The work by Aoki [5] is one of the first references to discuss the stabilization of decentralized

linear time invariant dynamical systems. He defines decentralized systems as "dynamical

systems with several controllers, each operating on the system with partial information on

the states of the system".

Additionally its work mentions a key characteristic of this type of systems: "In decentral-

ized systems, a realistic assumption must therefore be made that no control agent possesses

the complete descriptions of the systems to be controlled and of the environments in which

the systems are to operate. Since each agent possesses a different set of information on

the true system state, it is possible for the system to become unstable in the absence of

communication among control agents".

The decentralized control theory deals essentially with the problem of defining controllers



Ki that stabilize the system

i = Ax + E Bu . (2.9)

yt = Cx (2.10)

where the information available to ui is assumed to be:

i(t) = {yi(n), Uj() : 9 E [0, t], ( E [0, t)} (2.11)

Given the classic motivation of the problem as the interaction of a coupled system through

individual control stations, the general problem considers coupling through the A, B or C

matrices and is generally described as the problem of multiple control stations.

In general the theory of decentralized control has focused on the problem where the system

is interconnected through their non-actuated dynamics instead of through the control.

It has been long known that the synthesis of controller for a linear system under a

decentralized scheme is in general a non-convex problem. Constraining the structure of

the controller results in nonlinear constraints that make the problem non-convex. Recent

development studying the optimality of decentralized controllers have derived conditions on

the structure of the problem that hold optimality. Work by Rotkowitz and Lall [80] has

proposed a property dubbed "Quadratic Invariance", namely that KGK E S for all K E S,

where K and G are the controller and plant transfer functions respectively. This property

is shown to be a sufficient condition for convexity of the problem. A more recent work by

Motee et al. [56] describes structures for which the problem holds convexity properties.



2.2 Decentralized Approach to Multivehicle Coopera-

tive Control

Several approaches have been described in the literature to design control laws for achieving

decentralized cooperative control of multivehicle systems, among them navigation or po-

tential functions, leader follower strategies, behavior based, flocking, graph description and

consensus mechanisms.

2.2.1 Potential functions and behavioral approaches

The research on potential functions approach is based on the basic idea of setting up a control

law that is the gradient of some potential (or navigation) function that has minimum(a) at

the desired target(s), then, the equilibrium is found when a specific configuration is achieved

and the gradients of the navigation functions are zero.

One of the seminal papers on navigation functions was presented by Koditschek in the

early 1990's [37] and one of the first publications considering this methods in the case of

a formation of satellites was presented by McInnes [53]. He presents a cooperative control

strategy for stationkeeping a constellation of satellites in a circular orbit around earth. By

using a scalar artificial potential function he shows the convergence to the desired configu-

ration.

In the context of cooperative control, Ogren et al. [59] presented artificial potential func-

tions as a method for coordination of multiple vehicles. Olfati-Saber and Murray [64] intro-

duced a more complete mechanism to define a potential function approach that guarantees

collision-free stabilization of a system of multiple vehicles to an unambiguous formation based

on only distance measurements. More recent research by Dimarogonas et al. [21-23] presents

a similar approach by defining navigation functions with sufficient properties to guarantee

convergence of multiple agents while capturing multi-agent proximity situations. Other re-

cent work [111], approaches the problem of maintaining formation while avoiding obstacles,



including cases when the environment is time varying [48], by using potential functions. Izzo

and Petazzi [30] also presented a related work to achieve several types of formations based

on a behavioral approach.

An approach similar in objective to the initial part of this thesis has been recently pre-

sented by Sepulchre et al. and Paley et al. [66,88] using a potential function methodology to

stabilize parallel formations or circular formations. Their work considers general intercon-

nection topologies, however, the analysis is restricted to dynamics of unicycle agents with

constant speed and the convergence results for their work are only local.

2.2.2 Multiple instantiations of the state

Another relevant topic presented in the literature refers to addressing the cooperative control

problem by implementing individual controllers on each vehicle based on estimation of the

full state of the formation, thus the control is reduced to defining a MIMO controller for the

full state knowledge on each agent. In this case the decentralization effects are not present

in the controller but in the state estimation.

Several authors have addressed this problem under different assumptions. Carpenter

[14] implements Speyer's work for the case of formation flight. In Speyer's work [97} the

problem of defining optimal LQG decentralized controllers is presented where the agents

share measurement and control information with each other and each one produces its own

control based on its local Kalman best estimate. An elaborate communication network where

a link is drawn to every other node forming a total of n(n - 1)/2 links is considered with

the objective that the controllers can be computed using the best estimate of the state of

the system given the information from all the sensors.

The work by Smith and Hadaegh [93,95], addresses the issue of having on each vehicle,

parallel estimators that calculate a best estimate of the full state of the system, but also the

option of implementing equivalent copies of a centralized controller on each spacecraft which

has enough measurements to reconstruct the state of the formation [94].



2.2.3 Consensus problem and approach to formation control

A more recent approach to the cooperative control problem has arisen from the perspective of

consensus. The consensus problem in networks of agents describes the problem of achieving

agreement with respect to a quantity of interest by exchanging information within other

agents.

Olfati-Saber et al. [62, 63] present a very comprehensive review of the literature in the

topic. Here, we briefly discuss contributions that build up the consensus approach and the

connection to the cooperative control problem.

In the most common approach to formation flight, the distributed control methods are

based on tracking relative states with respect to other vehicles. For a set of n agents with

state described by the variable xi, i E {1, ..., n}. The most basic description of such approach

considers the system [60]:

xi = ui (2.12)

ui = E kij (xj - xi - hij (t) (2.13)
jeMi

The underlying idea in this case is the fact that each vehicle tracks a position with respect

to a set of neighbors. This is actually an instantiation of the consensus problem [62].

The consensus problem appears initially in the context of distributed computing but has

become increasingly popular and has been translated to many other areas of research. This

framework is used to address multiple related problems like collective behavior of flocks and

swarms, sensor fusion, random networks, synchronization of coupled oscillators, algebraic

connectivity of complex networks, asynchronous distributed algorithms, formation control

for multi-robot systems, optimization-based cooperative control, dynamic graphs, complex-

ity of coordinated tasks, and consensus-based belief propagation in Bayesian networks (for

references of publications on those topics refer to [62]).

Among the most commonly studied consensus protocols is the linear protocol for the



network of n first order systems z2 = nj:

ui = E kij (x (t) - Xi(t)) (2.14)
jEAi

then, the dynamics of the overall system can be written as:

i = -kLx (2.15)

where L is the graph Laplacian in eq. 2.5. Since, 1, is an eigenvector of the system, if all

eigenvalues except the zero eigenvalue are in the Right Hand Plane (RHP) and the graph is

connected, it is straightforward to show that x = (a, a,... , a) is a solution to the system,

moreover it can be shown that for balanced graphs a = 1/N _' zxi(O). An offset bi can

be added to the coordinates such that the equilibrium reaches some desired relative states

xi - xj = bj - bj = hi.

This control approach generalizes to any type of interconnection topologies and has been

widely studied. However, the coordination to formation is done through the vector differences

hij = bj - bi which need to be coordinated via some mechanism throughout the whole

formation, and constrains the formation to an specific instantiation of its structure.

Consensus protocols for double integrators have also been presented in the literature,

(modified from [771):

zi = ni (2.16)

Ui = - kij [(xj(t) - xi(t)) + 'y (i±(t) - zi(t))] (2.17)
jel'A

The work of Fax and Murray [24] was one of the first introductions of the problem of consen-

sus in the context of cooperative control. The problem of consensus as an alignment problem

was studied by Jadbabaie [31] in a paper presenting a formal analysis to the flocking model

used by Vicsek et al. [106] where simulations of a simplified model were used to study the



self-ordered motion in systems of particles with biologically motivated interaction. Extend-

ing Jadbabaie's work, Olfati-Saber [60] presented results that connect results of flocking

behavior to the consensus problem.

Moreau [55] presented an analysis for the specific case of consensus for convex mappings.

His idea generalizes consensus results to the most general types of protocols that satisfy con-

vexity assumptions. These protocols are shown to embrace a great variety of cases including

consensus over stochastic matrix protocols, nonlinear synchronization protocols, time vary-

ing graphs, swarming and flocking models. An extension to Moreau's work was recently

presented by Angeli and Blimman [4] which includes the possibility of arbitrary bounded

time-delays and relaxes the convexity assumption to simply mappings that strictly decrease

the diameter of a set-valued Lyapunov function.

Ren and Beard [71,78] considered the problem of information consensus in the presence

of limited and unreliable information exchange with dynamically changing topologies with

an important result, showing that, consensus can be asymptotically achieved under time

switching graphs if the union of the directed interaction graphs have a spanning tree fre-

quently enough as the time topology changes in time. This result defines in a more direct

way similar ones presented in the results by Moreau [55] and Olfati-Saber [61].

In the extension of consensus to the case of second order systems is presented by Ren and

Atkins [74, 77), the authors introduced consensus protocols when knowledge of derivatives

of the disagreement are available and assume double integrator dynamics. They show that

in that case, unlike the first-order dynamics case, having a spanning tree is a necessary

rather than a sufficient condition for consensus and the cases of bounded control input, lack

of knowledge of relative velocities and partial knowledge of the reference state is known

are considered. An important result concerning this last case is that consensus is reached

asymptotically if and only if the reference state flows to all of the vehicles in the team.

Lafarriere's [40] approach to stabilization of vehicle formations using the consensus ap-

proach for second order systems presents some parallel results considering a more general



structure, showing a direct relationship between the rate of convergence to the desired for-

mation and the eigenvalues of the Laplacian matrix.

2.2.4 Contraction analysis and synchronization

In an interesting more recent approach Chung and Slotine [17, 19] present tools of contrac-

tion analysis to synthesize control laws that achieve synchronized motion by introducing a

unified synchronization framework for cooperative control problems. This work considers an

approach similar to consensus while following a desired trajectory but generalizes the results

from [74] to a much more extensive type of dynamical systems. In their approach, a matrix

dubbed the influence matrix is related to a laplacian, but it does not have zero eigenvalues.

The convergence properties are presented in terms of necessary conditions for contracting

mappings. These results are shown to be useful for satellite attitude coordination as well.

2.2.5 Cyclic pursuit

An approach that has received recent attention in the context geometric pattern formation

is the cyclic pursuit algorithm. Such an approach is attractive since it is distributed and

requires the minimum number of communication links (n links for n agents) to achieve a

formation.

Justh et al. [33] presented two strategies to achieve, respectively, rectilinear and circle

formation; their approach, however, requires all-to-all communication among agents.

Lin et al. [45] exploited cyclic pursuit (where each agent i pursues the next i+1, modulo n)

to achieve alignment among agents, while Marshall et al. in [51,52] extended the classic cyclic

pursuit to a system of wheeled vehicles, each subject to a single non-holonomic constraint,

and studied the possible equilibrium formations and their stability.

Pavone and Frazzoli [67] developed distributed control policies for convergence to sym-

metric formations for ground non-holonomic robots. The key characteristics of that approach



are the proof of global stability and exponential convergence formations, namely rendez-vous

to a single point, circles, and logarithmic spirals.

Their work consider n ordered mobile agents in the plane, with positions at time t > 0

denoted xi(t) = [xj,1(t), xi,2 (t)]T E R2, i E {1, 2, ... , n}, where agent i pursues the next i + 1

modulo n.

The dynamics of each agent are considered a simple integrator:

xi = ui,
(2.18)

ui = R(a)(xi+1 - xi),

where R(a), a E [-7r, 7r), is a rotation matrix. They describe as x = [xT, xT,... , xT]T; the

dynamics of the overall system which can be written in compact form as x = A x, and prove

that:

Theorem 2.2.1 A(a) has exactly two zero eigenvalues, and

1. if 0 < ja| < T/n, all non-zero eigenvalues lie in the open left-half complex plane;

2. if |a| = wr/n, two non-zero eigenvalues lie on the imaginary axis, while all other non-

zero eigenvalues lie in the open left-half complex plane;

3. if ir/n < ja| < 27r/n, two non-zero eigenvalues lie in the open right-half complex plane,

while all other non-zero eigenvalues lie in the open left-half complex plane;

After proving that the matrix A is diagonalizable it is straightforward to show that agents

starting at any initial condition (except for a set of measure zero) in R2' and evolving under

(2.18) exponentially converge:

1. if 0 < jal < 7r/n, to a single limit point, namely their initial center of mass;

2. if |a| = r/n, to an evenly spaced circle formation;



3. if 7r/n < |a| < 27r/n, to an evenly spaced logarithmic spiral formation.

These results are derived for agents operating in R2 and with a single-integrator dynamics,

(ii) the center of mass is determined by the initial positions of the agents, and (iii) the radius

of a circular formation is also determined by the initial positions of the agents.

Ren [73,75] has recently presented and approach that generalizes this work by consider-

ing the problem as coordinate coupling, and representing the dynamics by using kronecker

product properties. In particular, the fact mentioned in 2.1.2 is used and the case of general

type of interconnections is studied by analyzing the location of the eigenvalues of the system

L 0 R, where L is the interconnection Laplacian and R is the rotation matrix.

2.2.6 Spacecraft formation control

A review of the literature for the different proposed implementations of cooperative control

presented in the context of spacecraft cooperative flight includes the work detailed in this

section.

Wang and Hadaegh's [108] work present one of the first approaches to the application

of cooperative control in the context of the satellite formations. In this seminal work they

studied different schemes to generate a desired formation and derived control laws based on

nearest neighbor tracking, borrowing concepts of cooperative control that had been matu-

rating on other fields, especially from ground robotics.

The work of Kapila et al. [36] studies leader-follower configurations in the context of

Clohessy-Wiltshire dynamics. The authors define control strategies based on linear pulsed

control where LQ or pole placement strategies are setup based on the discrete state trans-

formation matrix of the dynamics. Their results are mainly illustrative simulations showing

the control performance.

Kang et al. [35], proposed a different approach to formation control derived from previous

approaches in the context of ground robots. In their work, an error function is defined as a



function of a parameter s. This parameter itself depends on some function of the state, for

example the state of a leader or more general cases where the dependence is on relationships

of the state of the formation. The stability analysis is based on Lyapunov methods.

The work by Folta and Quinn [26] addresses the formation problem in a more straight-

forward implementation for a leader/follower architecture defining intermediate transition

states and using state transition matrices to solve for open loop JV impulses to reach the

next step until eventually reduce the error to the desired state. In [104], Ulybishev consid-

ers an LQR design based on the description of a formation of satellites using two planar

parameters AV and AT that describe the state on a circular orbit.

In the work by Carpenter [14,15], one of the first approaches to decentralized formation

control is presented. In his paper, Speyer's framework [97] is applied to the specific case of

formation of satellites. It is however a very complete study and presents a framework for

decentralized spacecraft formation control to be further studied.

The work by Beard et al. [6, 7} presents an important framework that generalizes other

architectures by considering 3 levels of control in formation flight coordination. Their con-

sideration is that at the highest level of abstraction, the agents must coordinate the subtask.

At the next level there should be a mechanism to coordinate the motion of the vehicles to

achieve the desired objective of the task, and at the lower level, a controller that makes each

spacecraft be consistent with the desired coordination mechanism is to be implemented. In

particular, Lyapunov analysis is performed to define a controller that would converge to

achieve the objective.

An interesting point is presented in the work of Beard et al. [7] on differences between

three approaches in the literature: "In leader-following, coordination is achieved through

shared knowledge of the leaders states. In the behavioral approach, coordination is achieved

through shared knowledge of the relative configuration states. In the virtual structure ap-

proach, coordination is achieved through shared knowledge of the states of the virtual struc-

ture"



In the work by Lawton, [42,43], proportional derivative controller approaches are derived

to achieve convergence are based on Lyapunov analysis. The target locations are specified by

linear transformations which allow for a clear presentation of their convergence properties.

In the work by Queiroz [69], an adaptive control scheme is proposed for coordination of

multiple satellites in a Leader/Follower(s) architecture.

The work by Fax [24,25] presents a valuable analysis of necessary conditions for stability.

This work is one of the first publications where a direct connection between the information

topology and the stability conditions of the system are presented. It presents results which

define stability conditions in terms of the eigenvalues of the Laplacian matrix when assuming

an identical copy of the control used on each vehicle. At the same time, Fax's work discusses

the importance of coordination as flow of information in the improvement of performance.

The work by Mebashi and Hadaegh [54] established important guidelines for Leader/Follower

assignments by expressing the information structure as a directed graph. Their work re-

stricts to a type of "proper leader/follower configurations" where each follower has at most

one leader. The design of a decentralized controller design is expressed as a LMI where the

particular structure of the matrix K is considered and the gains are obtained by solving a

Lyapunov inequality.

The work by Schaub and Alfriend [84] considered impulsive maneuvers to control orbital

parameters in order to maintain the formation. Related to this approach, the work by

Tillerson [102, 103] considers the control of a formation by solving a linear programming

problem to calculate the set of impulses that minimizes a linear cost function while achieving

the final boundary conditions.

In the work by Smith and Hadaegh [91], control using relative positions as states was

studied and a family of equivalent controllers is defined such that a topology switch strategy

can be presented. This approach assumes that each vehicle can have enough knowledge of

the other vehicles to reconstruct the full state of the formation.

Tanner at al. [99,100] studied the problem from the perspective of input-output stability



from a leader input to internal state of the formation and characterizes the way this input

affects stability performance. In a more generalized version based on this approach Agikmese

et al. [1] formulate the problem of I/O stability via control interactions between the space-

craft. This formulation is shown to be useful in characterizing disturbance propagation as a

function of the partition interconnection topology. In their work, the authors present a very

inclusive analysis of stability of formation with important conclusions regarding the perfor-

mance of different architectures. Necessary conditions for stability are presented, extending

some of the concepts of Input-Output stability initially studied by Sontag and Wang [96]

and applying stability analysis by defining conditions for bounded performance in terms of

bounded strictly increasing gain functions of the state and the disturbances. Additionally,

they present a frequency domain criteria for stability in terms of Linear Matrix Inequali-

ties that is proven helpful to identify stability and disturbance attenuation in terms of the

interconnection.

Ren [71, 78] presented the idea of using a decentralized version of the virtual structure

originally presented by [6] but proposed an implementation that would not require a cen-

tralized unit, instead, the reference frame of the formation would be defined by agreement

through consensus protocols using inter-vehicle communication.

In the work of Chung [17] contraction theory and synchronization approach is proposed for

achieving regularly spaced spacecraft formations in the context of a multi-satellite formation

with arbitrary number of spacecraft converging into a common time-varying trajectory.

2.2.7 Electromagnetic formation flight

The research on electromagnetic formation flight is relatively new and is in an early stage

of its development. It has been proposed as a propellantless technology able to control the

relative motion in a formation of spacecraft [38]. Kaneda et al. [34] also proposed and tested

the use of electromagnets to generate forces between vehicles.

The main equations that describe Electromagnetic Formation Flight (EMFF)'s principle



of operation is:

n

FE > E (2.19)
isi

where:

f- (pW pA) = 47 |ijdij d is| d y5 p + 5 (A|-di)(|7 dj dij

(2.20)

represents the electromagnetic force caused by dipole j to dipole i, where pi is the dipole

vector generated by currents running in the coils of vehicle i, ,, is the permeability constant,

dij is the relative position vector between vehicles and FM is the electromagnetic force

acting vehicle i. The force on each vehicle is coupled to the force on each one of the others

by its dependence on the dipoles of the other vehicles in the formation.

Kwon presented an analysis of its feasibility [39], which demonstrated favorable capabili-

ties in several mission scenarios as compared to propulsion systems that require expendables

for their operation.

The Space Systems Laboratory at MIT has built a 2D testbed for this technology and

tested control algorithms that have demonstrated controllability to achieve different maneu-

vers [44].

An analysis of the dynamics of EMFF and the initial approaches to control strategies were

presented by Schweighart and Ahsun & Miller [2,87]. Ahsun and Miller [3] presented an adap-

tive control method to deal with uncertainties in the model and proposed a dipole switching

strategy to deal with the effects of Earth magnetic field causing angular momentum-build

up in low Earth orbiting systems.

The control strategies so far proposed require a centralized unit to solve for the dipole

setup that achieves the desired forces by simultaneously solving the set of n nonlinear equa-



tions. [3). In such a control scheme, these equations are to be solved at every control period

and the results are to be communicated to each other vehicle in real time.

2.3 Summary and Gap Analysis

The decentralized control problem has been widely studied for several decades. There is not

however, a straightforward answer to the synthesis of decentralized controllers. Research in

the last decade has considered the correlation between the decentralized control problem and

the consensus problem, a widely studied problem in the literature in different fields. One

of the most commonly accepted approaches to decentralized formation flight control is the

control of relative state with respect to some neighbors. The basics of such approach can be

analyzed with tools of consensus theory.

However, a control approach where there is not a need in coordination of the relative

offsets for each neighbor can be desired and useful in many situations. Control approaches

that are not based on tracking relative trajectories while still achieving the desired geometry

have been studied. Some authors have considered potential functions, and more recently a

cyclic pursuit approach in the context of ground robots. Such approaches can be useful for

the specific case of formation flying space missions.

The most essential gap identified in the literature, for which this thesis presents a contri-

bution, is the approach to design spacecraft formation flight controllers not based on relative

trajectory tracking but on convergence to a manifold.

It is also identified that as a first step in such direction, an extension of the cyclic pursuit

to the dynamics of spacecraft formation flight can be used. All previous work on cyclic

pursuit consider planar and the analysis has been restricted to single integrator dynamics.

As part of extending the approach to more useful applications, the extension to generalized

trajectories and types of formations are also identified as missing elements.

Another identified gap is the lack of results for global convergence approached to 'splay-



state' formations, e.g. regular formations with equally spaced separations of a given size and

the development of a theoretical approach that can use those results as building block to

generalize the cyclic pursuit approaches.

And finally, the lack of approaches that can be used to decentralize Electromagnetic

Formation Flight or reduce its dependence on a central computing unit.



Chapter 3

Cyclic Pursuit Controllers for

Spacecraft Formation Applications

3.1 Introduction

In the context of formation flight, the problem of formation of geometric patterns is of par-

ticular interest. Engineering applications of this problem include distributed sensing using

mobile sensor networks, and space missions with multiple spacecraft flying in formation, the

major focus of this thesis. Within the robotics community, many distributed control strate-

gies have been recently proposed for convergence to geometric patterns as was mentioned

in the literature review in chapter 2. Several authors have addressed the idea of using dis-

tributed controllers to converge to patterns, exploiting cyclic pursuit approaches (where each

agent i pursues the next i + 1, modulo n) with extension to non-holonomic planar vehicles,

and studied the possible equilibrium formations and convergence to patterns as equilibrium

of artificial potential functions.

The problem of formation of geometric patterns has been the subject of intensive re-

search efforts also within the aerospace community. In an authoritative survey paper on

formation flying [83], Scharf et al. propose a division of formation flying architectures into



three main classes, namely: (i) Multiple-Input Multiple-Output (MIMO), in which the for-

mation is treated as a single multiple-input, multiple-output plant, (ii) Leader/Follower, in

which individual spacecraft controllers are connected hierarchically, and (iii) cyclic, in which

individual spacecraft controllers are connected non-hierarchically. According to Scharf et al.,

by allowing non-hierarchical connections between individual spacecraft controllers, cyclic al-

gorithms can perform better than Leader/Follower algorithms, and can distribute control

effort more evenly. Moreover, cyclic algorithms are generally more robust than MIMO al-

gorithms, for which a local failure can have a global effect [83]. Finally, cyclic algorithms

can also be completely decentralized in the sense that there is neither a coordinating agent

nor instability resulting from single point failures [83]. The two primary drawbacks of cyclic

algorithms are that the stability of these algorithms and their information requirements are

poorly understood [83]; in particular, the stability analysis of cyclic algorithms is difficult

since the cyclic structure introduces feedback paths.

Motivated by the previous discussion, the objective of the work presented on this chapter

is to consider a class of cyclic algorithms for formation flight, for which a rigorous stability

analysis is possible and for which the information requirements are minimal. The starting

point is the previous work by Pavone and Frazzoli [67], where distributed control policies

for ground mobile agents that draw inspiration from the simple idea of cyclic pursuit were

developed which guarantee convergence to symmetric formations. The key features of such

control laws [67] include global stability and the capability to achieve a variety of formations,

namely rendez-vous to a single point, circles, and logarithmic spirals; moreover, those control

laws are distributed and require the minimum number of communication links (n links for

n agents) that a cyclic structure can have.

The organization of this chapter is as follows. In Section 3.2.1 we introduce basic concepts

of the cyclic-pursuit control laws for single-integrator models in two dimensions. In Section

3.2 we extend our previous results along two directions: (i) in Section 3.2.1 we address the

case in which agents move in R3 and it is desired to control the center of the formation, and



(ii) in Section 3.2.4 we study "robust" convergence to evenly-spaced circular formations with

a prescribed radius. Then, in Section 3.3, we extend our control laws to double-integrator

models in three dimensions. In particular, we develop control laws that only require relative

measurements of position and velocity with respect to the two leading neighbors in the ring

topology of cyclic pursuit, and allow the agents to converge from any initial condition (except

for a set of measure zero) to a single point, an evenly-spaced circular formation, an evenly-

spaced logarithmic spiral formation, or an evenly-spaced Archimedes' spiral formation (an

Archimedes' spiral is a spiral with the property that successive turnings have a constant

separation distance), depending on some tunable control parameters. Control laws that only

rely on relative measurements are indeed of critical importance in deep-space missions, where

global measurements may not be available. In Section 3.5 we discuss potential applications,

including spacecraft formation for interferometric imaging and convergence to zero-effort

orbits, and we argue that Archimedes' spiral formations are very useful symmetric formations

for applications. Finally, in Section 3.6 a summary of the chapter and conclusions are drawn.

3.2 Cyclic-Pursuit Control Laws for Single-Integrator

Models

In this section, we extend the results in [67] in three directions: (i) we address the case in

which agents move in R3, (ii) we consider control of the center of the formation, and (iii)

we study convergence to evenly-spaced circular formations with a prescribed radius. First

issues (i) and (ii) are addressed.



3.2.1 Cyclic pursuit in three dimensions with control on the center

of the formation

Let there be n ordered mobile agents in the space, their positions at time t > 0 denoted by

xi(t) = [Xi, 1 (t), xi,2 (t), Xz,3 (t)]T E R3 , i E {1, 2, ... ,

and let x = [xf, x,..., xT]T. The dynamics of each agent are described by a simple vector

integrator

i = kg Ui, kg E R>o; (3.1)

henceforth, without loss of generality, kg can be assumed to be 1, since it is just a time

scaling factor. Consider the following three-dimensional generalization of the cyclic-pursuit

control law in equation (2.18):

u = R(a) (xi+1 - xi) - ke xi, kc E R>o, (3.2)

where R(a), a E [-7r, 7r), is the rotation matrix (with rotation axis (0, 0, 1)T without loss of

generality):

cos a
R(a) = -sin a

0

sin a 0

cos a 0

0 1

The overall system can be written in compact form as

:k= -(L + kc I3,) x,

(3.3)

(3.4)



where L = Li 9 R(a) and L1 is a laplacian for 1-circulant topology:

-1

1

0

0 ...

-1 0

. . 0

(3.5)

The analysis starts with the following theorem, that characterizes the spectrum of -L.

Theorem 3.2.1 -L has exactly three zero eigenvalues, and

1. if 0 < |a| < r/n, all non-zero eigenvalues lie in the open left-half complex plane;

2. if |a| =r/n, two non-zero eigenvalues lie on the imaginary axis, while all other non-

zero eigenvalues lie in the open left-half complex plane;

3. if r/n < la| < 2r/n, two non-zero eigenvalues lie in the open right-half complex plane,

while all other non-zero eigenvalues lie in the open left-half complex plane.

Moreover, L 0 R(a) is diagonalizable for all a E [-7r, 7r) as described in appendix A.1.

Proof: By the properties of the Kronecker product, the 3n eigenvalues of -L are:

Ak = e 21rjk/n _ 1,

(e 2lrik/n - a, (3.6)

Ak = (e 21rjk/n _ e-ja

where k E {1, ... , n}. Note that for k E {1, ... , n - 1} the eigenvalues Ak lie in the open left-

half complex plane, while for k = n we have An = 0; moreover, the 2n eigenvalues {A:}:I

are the same as those in Theorem 2.2.1. Then, the claim follows from Theorem 2.2.1. 0

Corollary 3.2.2 When a = wr/n, the two eigenvalues that lie on the imaginary axis are

A = -j 2 sin(wr/n) and A- = j 2 sin(r/n), with corresponding eigenvectors pt_ 1 and p-.



When wr/n < a < 2,r/n, the two eigenvalues with positive real part are A4_ and A, with

corresponding eigenvectors pt1 and p-; moreover, the real parts of A_ 1 and A7 are both

equal to 2 sin(7r/n) sin(a - 7/n).

Proof: The proof reduces to a straightforward verification in equation (3.6). U

Now the formations that can be achieved with control law (3.2) can be studied. The case

with kc = 0 and the case with kc > 0 are separately studied.

3.2.2 Case ke = 0, i.e., no control on the center of the formation.

Combining Theorem 3.2.1 and Corollary 3.2.2 (where, in particular, the eigenvectors corre-

sponding to the dominant eigenvalues are explicitly given), it is easy to show (the arguments

are virtually identical to those in Section 3.5 of [67] and are omitted in the interest of brevity)

that agents starting at any initial condition (except for a set of measure zero) in R3' and

evolving under (3.4) exponentially converge:

1. if 0 < |a| < r/n, to a single limit point, namely their initial center of mass;

2. if ol = r/n, to an evenly spaced circle formation, whose radius is determined by the

initial positions of the agents;

3. if wr/n < |al < 27r/n, to an evenly spaced logarithmic spiral formation.

The center of the formation is determined by the initial positions of the agents. Similar

results have recently appeared in [76].

Remark 3.2.3 When ke = 0, the control law in equation (3.2) only requires the measure-

ment of the relative position (xi+1 -xi); however, it uses a rotation matrix that is common to

all agents. Hence, control law (3.2) requires that all agents agree upon a common orientation,

but it does not require a consensus on a common origin.



3.2.3 Case kc > 0, i.e., control on the center of the formation.

The case ke > 0 is studied now; in this case the center of the formation is no longer determined

by the initial positions of the spacecraft, instead it always converges, exponentially fast, to

the origin. In fact, when ke > 0 the eigenvalues of -LR(a) are shifted toward the left-hand

complex plane by an amount precisely equal to kc, while the eigenvectors are left unchanged.

Then, the following corollary is a simple consequence of Corollary 3.2.2.

Corollary 3.2.4 Assume ke > 0; then, if 0 ; |a| < wr/n, all of the eigenvalues are in the

left-hand complex plane. If, instead, r/n < |a| < 27r/n we have

1. if ke > 2 sin(wr/n) sin(a -ir/n), all of the eigenvalues are in the open left-hand complex

plane;

2. if ke = 2 sin(wr/n) sin(a - ir/n), two non-zero eigenvalues lie on the imaginary axis,

while all other eigenvalues lie in the open left-hand complex plane;

3. if ke < 2 sin(wr/n) sin(a - r/n), two non-zero eigenvalues lie in the open right-hand

complex plane, while all other eigenvalues lie in the open left-hand complex plane;

Accordingly, by appropriately selecting a and kc, the agents, starting at any initial condition

(except for a set of measure zero) in R3' and evolving under (3.4), exponentially converge

to the origin, or to an evenly spaced circle formation centered at the origin, or to an evenly

spaced logarithmic spiral formation centered at the origin. Simulation results are presented

in Figure 3-1, where 7 agents reach a circular formation centered at the origin.

Remark 3.2.5 When ke > 0, the control law in equation (3.2) requires that the agents agree

on a common reference frame (i.e., both a common origin and a common orientation); in

particular, each agent needs to measure its relative position (xil - xi) and know its absolute

position xi.
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Figure 3-1: Convergence to circular trajectories centered at the origin. Left Figure: First
coordinate as a function of time for each agent. Right Figure: rajectories in 3D.

Remark 3.2.6 Note that the center of the formation can be chosen to be any point in R.

Assume, in fact, that we desire a formation centered at c E R3. Then, if we modify the

control law (3.2) according to

u, = R(a) (x.i- x..) - kc (x, - xc,), he E Ryo, (3.7)

it is immediate to see that the center of the formation will converge exponentially to xc.

3.2.4 Convergence to circular formations with a prescribed radius

Circular trajectories occur only when two non-zero eigenvalues are on the imaginary axis and

all other non-zero eigenvalues have negative real part, which makes this behavior not robust

from a practical point of view. In this section we address the problem of robust convergence

to a circular motion on a circle of prescribed radius around the (fixed) center of mass of the

group, with all agents being evenly spaced on the circle. Here, by robust we mean that the

circular formation is now a locally stable equilibrium of a non-linear system. The key idea

is to make the rotation angle a function of the state of the system.

Specifically, let there be n ordered mobile agents in the plane, their positions at time

t '> 0 denoted by xi (t) = [Xi,1(t), iXi,2 (t)]T E R 2, i E {l, 2, ... , n}, where agent i pursues the



next i + 1 modulo n. The kinematics of each agent is described by

x k9Ui, 
(3.8)

ui = R(a2 )(xi+1 - xi),

where the rotation angle ai is now a function of the state of the system:

7r
ai= - + k (r - ||xj+1 - xi||), ka, r E Ryo. (3.9)

n

Without loss of generality, we assume kg = 1. In equation (3.9) the constant k, is a gain,

while r is the desired inter-agent distance. Intuitively, if the agents are "close to each other"

with respect to r, they will spiral out since ai > ir/n; conversely, if they are "far from each

other" with respect to r, they will spiral in since a < r/n. It is easy to see that a splay state

formation whereby all agents move on a circle of radius r/(2 sin(7r/n)) around the (fixed)

center of mass of the group, with all agents being evenly spaced on the circle, is a relative

equilibrium for the system. The next theorem shows that such equilibrium is locally stable.

Theorem 3.2.7 A splay-state formation is a locally stable relative equilibrium for system

(3.8) - (3.9).

Proof: A sequence of coordinate transformations is first considered such that a splay-

state formation is indeed an equilibrium point (and not a relative equilibrium). Consider the

change of coordinates pi - x+1 - xi, i E {1, 2, ... , n}. In the new coordinates, the system

becomes (the index i is, as usual, modulo n)

7rp2 = R(ai+1 ) pj+1 - R(aj) pi, where ai = + ka (r - ||pill). (3.10)
n

By introducing polar coordinates, i.e., by letting the first coordinate pi,1 = gi cos 7i and the

second coordinate Pi,2 = pi sin iO, with oi E R>O and ai E R, the system becomes, after some
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algebraic manipulations (see Appendix A.2 for the details),

ai = Pj+1 cos((idi+1 - 'di) - ai+1(gi+1)) - pi cos(ai(gi)),

i = i1 sin((9±i+1 - 'di) - ai+1(pj+1)) + sin(ai (pi)),

ai (gi)

(3.11)

(3.12)

(3.13)

where we have made explicit the dependence of a on gi. Finally, by letting pj = di+1 - 1i,

we obtain

be = Qi+1 cos((pj - ai+1(gi+1)) - gi cos(ai (g )), (3.14)

= -2 sin(pi+1 - ai+2 (Qi+2 )) + sin(ai+1(gi+1)) - Pi+1 sin(po - ai+1(gi+1)) - sin(ai(pi)),
(i+13gi
(3.15)

72= + k,,(,r - goi).
n

(3.16)

Define Lo (g1, ... , g)T and o I ... , On )T; in the new system of coordinates p-

W, a splay state formation corresponds to an equilibrium point g* = (r,...

(g, . 2. r 2 r(fn- ))T. In compact form we write

= f(, u).

The linearization of system (3.17) around the equilibrium point (go*, W*) is

r)T and o* =

(3.17)

& = cos(7r/n)(gi+1 - gi) - kar sin(7/n)(gi+1 + gj) - r sin(7r/n) oj,

1
Si=(ke cos(rn) + - sin(7r/n))(i+2 - 2 gi+1 + gj) + cos(wr/n)(p~i - 'pi).r

Without loss of generality we set r = 1; the linearized system can be written in compact

aY (L)

(3.18)

(3.19)

=F + k. (,r - goi),
n



form as [1 = [anL- 2asnIn sn In] [ _._s[ (3.20)
bn L 2 c. L1,

where s a sin(r/n), cn cos(7r/n), an (ka sn -cn), bn kocn+sn, and L1 is a 1-circulant

laplacian described in eq. 3.5. The spectrum of P is characterized by the following Lemma.

Lemma 3.2.8 The matrix P has 2n-3 eigenvalues with negative real part, and 3 eigenvalues

with zero real part. The eigenvalues with zero real part are A1 = 0, and A2,3 = ± 2jsn; the

corresponding eigenvectors v1, v2 and v3 are:

Vi = (1, - 2 ka 1n)T , (3.21)

V2 = (V)1, -2bne"/n/)i , (3.22)

V3 = V2 (3.23)

where 1n = (1, 1, .1.. , 1)" E , 1 is the eigenvector for k = 1 in equation (2.3) and V

indicates the complex conjugate of v.

Proof: The proof of this lemma is presented in Appendix A.3.

System (3.17) is constrained to evolve on a subset of R2n. To see why this is the case,

recall that from the definition of pi we have Et pi = 0, or equivalently Ei= R(9 1)p% = 0.

In polar coordinates these constraints become Ei1 Pi cos(dO - 191) = 0 and E=1 pi sin(di -

,1) = 0. Thus, in the system of coordinates p-p, the following two constraints must hold at

all time

ni-

91(, P) = Pi cos (Pk = 0, (3.24)
i=1 (k=1
n i-1

g2 (p, (p) = goi sin Y,(P = 0. (3.25)
i=1k=1



Moreover, by definition of p, the following constraint must hold at all time

n

g3(g, p) = Z i = 0. (3.26)
i=1

Let g(g, p) = (gi(, p), g2(9, s), g3(p, o)) T and define

M {(g, ) E Rn 2n.) =0} R (3.27)

Note that (*, W*) E M. The Jacobian of g(p, W) evaluated at the equilibrium point is

1 cos(27r/n) ... cos(27r(n - 1)/n) -E 2 rsin(27r(i-1)/n) ... -rsin(2ir(n-1)/n) 0

G= 0 sin(2ir/n) ... sin(27r(n -1)/n) ES 2 r cos(2ir(i - 1)/n) ... r cos(27r(n - 1)/n) o (3.28)

0 0 ... 0 1 ... 1 I

Let B,(g*, W*) be the open ball of radius 6 > 0 centered at point (g*, W*) in R2,. The

rank of G is clearly 3; then, there exists 6 > 0 such that M M n B6(p*, W*) C R2n is

a submanifold of R 2n. The tangent space of M at (g*, s*), that we call T(-,,.)M, is an

invariant subspace of P (since M, by construction, is invariant under (3.17), i.e., f(g, W) E

T(,w)M for all (L, p) E M) and has dimension 2n - 3. Pick a basis {wi, .. . , w2n- 3} of

T(*,,*)M and complete it to a basis W of R 2,4. Then, with respect to this basis, P takes the

upper-triangular form

[ P1,1  P1,2P, 71 P1, 2(3.29)

[ 03x(2n-3) P2,2

where 03x(2n-3) is the zero matrix with 3 rows and 2n - 3 columns. Since our system is

constrained to evolve, at (g*, w*), along the tangent space T(*,w)M, the local stability of

the equilibrium point is solely determined by the eigenvalues of P1,1 .

Now it is shown that the three eigenvalues of P2,2 are exactly the three eigenvalues of P



that have real part equal to zero. It is possible to show (see Appendix A.4) that

G -vi 2 0, for each i E {1, 2,3},

where vi, i E {1, 2, 3}, are the three eigenvectors associated to the three eigenvalues with

zero real part. Therefore, we have vi ( T(*,w*)M, i E {1, 2, 3}. Let yj be the components

of vi with respect to the basis W; define yi,1 as the vector of components with respect to

{w 1 ,... , W2n-3}, and Yi,2 as the vector of components with respect to the remaining basis

vectors in W. Since vi ( T(,,*)-M, vector Yi,2 is non-zero. Since vi is an eigenvector of P

with eigenvalue Aj, we can write

Pi i P1 2=i Ai ,i (3.30)
03x(2n-3) P2,2  Yi,2 Yi,2

and therefore P2,2 Yi,2 AYi,2, i.e., Ai is an eigenvalue of P2,2 , i E {1, 2, 3}. Since, we have

eig(P, 1 ) = eig(P) \ eig(P 2,2 ), we conclude, by using Lemma 3.2.8, that all eigenvalues of P1,1

have negative real part. Therefore, the equilibrium point (g* <p*) is locally stable. 0

3.3 Cyclic-Pursuit Control Laws for Double-Integrator

Models

In this section, we extend the previous cyclic-pursuit control laws to double integrators. A

control law is presented first, which requires each agent to be able to measure its absolute

position and velocity; then, the of design a control law that only requires relative measure-

ments of position and velocity is detailed. The approach to the problem is done through

through spectral analysis to completely characterize the dynamics of the second order sys-

tem. Particularly, this approach shows how the position behavior is characterized by exactly

the same eigenvectors and eigenvalues as in the first order system.



As before, let xi(t) = [xi, 1(t), X, 2 (t), ze, 3 (t)]T E R3 be the position at time t > 0 of the ith

agent, i E {1, 2, ... , n}, and let x = [xT , x ,. .. , xT]T. Moreover, let R(a) be the rotation

matrix in three dimensions with rotation angle a c [-7r, 7r) and rotation axis (0, 0, I)T (see

equation (3.3)).

Now the case where the the dynamics of each agent are described by a double-integrator

model is analyzed:

Ri = ui. (3.31)

3.3.1 Dynamic cyclic pursuit with reference coordinate frame

Consider the following feedback control law

ui = kdR(a)(xi+l - xi) + R(a)(k+1 - k%)

- kekdxi - (ke + kd) 5C,

(3.32)
kd E R>0, k e JR.

Note that each agent needs to measure both its absolute position (if ke # 0) and its absolute

velocity (if ke # -kd). The overall dynamics of the n agents are described by:

I 3n

A(a) - kdlan

x C 0(a) x,

where A(a) I -L 1 0 R(a) - kcI 3 n and L1 is the matrix defined in equation (3.5). The

following theorem characterizes eigenvalues and eigenvectors of C(a).

Theorem 3.3.1 Assume that -kd is not an eigenvalue of A(a). The eigenvalues of the state

matrix C(a) in equation (3.33) are the union of:

* the 3n eigenvalues of A(a),

" -kd, with multiplicity 3n.

:1 0

kd A (a)

(3.33)



In other words, eig(C(a)) = eig(A(a)) U {-kd}. Moreover, the eigenvector of C(a) corre-

sponding to the kth eigenvalue Ak E eig(A(a)), k E {1, ... ,3n}, is:

Vk,1 ]k
Vk - - , k E{1,...,3n}, (3.34)

L k,2 LAk/-k

where Pk is the eigenvector of A(a) corresponding to Ak. The 3n (independent) eigenvectors

corresponding to the eigenvalue -kd (that has multiplicity 3n) are

k Vk, 1 ,-kdjek3f 7 k E {3n + 1, ... , 6n}, (3.35)
L Vk,2 J L ek-3n

where ej is the jth vector of the canonical basis in Ran.

Proof: First, we compute the eigenvalues of C(a). The eigenvalues of C(a) are, by

definition, solutions to the characteristic equation:

0 = det A3n - 3 (3.36)
-kA A(a) AI3n - (A(a) - kdlan)

By using the result in equation (2.1), we obtain

0 = det (A2 i3n- A (A(a) - kdI3) - kd A(a))

= det((A + kd)a13n) det(AI3 - A(a)).

Thus, the eigenvalues of C(a) must satisfy 0 = det((A + kd)I3n) and 0 = det(AI 3n - A(a));

hence, the first part of the claim is proved.



By definition, the eigenvector IVi TV 2]T corresponding to the eigenvalue Ak, k = 1, ... , 6n,

satisfies the eigenvalue equation:

Ak [ k,2 0 13n Vk,1

kdA(a) A(a) - kI 3n Vk,2

vk ,2 -. ,

Lka A(a)vk,1 +A(a)vk,2- -kdk,2

Thus, we obtain

AkVk,1

Akuk,2

Vk,2,

kdA(ca)Vk,l + A(a)vk,2 - kd vk,2,

(3-39)

(3.40)

and therefore

Ak(kd+ Ak)Vk,1 =(kd+ Ak) A(a) vk,1. (3.41)

If Ak = -kd, then we have 3n eigenvectors given by [-k lej, ej]T, j = {1,..., 3n}. If,

instead, Ak C eig(A(a)) (note that by assumption -kd V eig(A(a))), we obtain from equation

(3.41)

AkVk,1 = A(a)vk,1,

and we obtain the claim. U

The study of the formations that can be achieved with control law (3.32) can be addressed

now.

Theorem 3.3.2 Assume that -kd is not an eigenvalue of A(a). Then, agents' positions

starting at any initial condition (except for a set of measure zero) in R " and evolving under

(3.33) exponentially converge:

(3.37)

(3.38)



1. if ke = 0, to formations centered at the initial center of mass, in particular:

(a) if 0 < |aj < ws/n, to a single limit point;

(b) if |a| = wF/n, to an evenly spaced circle formation;

(c) if 7r/n < |a| < 2r/n, to an evenly spaced logarithmic spiral formation;

2. if ke > 0, to formations centered at the origin, in particular:

(a) if 0 < |a < 7r/n, to a single limit point;

(b) if r/n < |a| < 2wr/n

i. if ke > 2 sin(r/n) sin(a - r/n), to a single limit point;

ii. if ke = 2 sin(7r/n) sin(a - wr/n), to an evenly spaced circle formation;

M. if ke < 2 sin(/r/n) sin(a - r/n), to an evenly spaced logarithmic spiral forma-

tion.

Proof: As a consequence of Theorem 3.3.1, the eigenvectors of C(a) are linearly inde-

pendent. Indeed, the eigenvectors vk for k E {1, .. , 3n} are linearly independent since the

vectors pk are (see Theorem 3.2.1); moreover, the eigenvectors vk for k E {3n+1 . ... , 6n}

are clearly linearly independent. Since, by assumption, -kd ( eig(A(a)), the independence

of the eigenvectors of C(a) follows.

Then, the proof is a simple consequence of Theorem 3.2.1, Corollary 3.2.2, Theorem 3.3.1,

and the arguments in Section 3.5 of [67].

U

3.3.2 Control law with relative information only

Consider the following feedback control law:

ui = kiR2 (a)((Xi+2 - Xi+ 1) - (Xi+ 1 - Xi)) + k2R(a)(Ci+1 - 5i), (3.42)



where k1 and k2 are two real constants (not necessarily positive). In this case, each agent

only needs to measure its relative position with respect to the positions of agents i + 1 and

i + 2 (note that (Xi+ 2 - Xi+ 1 ) = ((Xi+ 2 - Xi) - (xi+1 - xi))), and its relative velocity with

respect to the velocity of agent i+ 1. Note that control law (3.42) uses a rotation matrix that

is common to all agents; hence, it requires that all agents agree upon a common orientation,

but it does not require a consensus on a common origin. Indeed, in the case of spacecraft,

agreement on the orientation can be easily achieved by using star trackers.

It is possible to verify that

1 -2 1 0 ... 0

L 0 1 -2 1 0(3.43)

-2 1 0 ... ... 1

Then, the overall dynamics of the n agents can be written in compact form as

[i[ 0 1an 1
0 13X * F (a) x. (3.44)

[KJ [ kiL, OR2 (a) -k 2(Li 0 R(a))

Let A(a) = -L 1 0 R(a), and define

k+ =2i + k1. (3.45)
2 L2

The following theorem characterizes eigenvalues and eigenvectors of F(a).

Theorem 3.3.3 Assume that 0± p 0. The eigenvalues of the state matrix F(a) in equation

(3.44) are the union of:

" the 3n eigenvalues of A(a), each one multiplied by 0+,

* the 3n eigenvalues of A(a), each one multiplied by /_.



In other words, eig(F(a)) = 0+ eig(A(a)) U 0_ eig(A(a)). Moreover, the eigenvector of F(a)

corresponding to the kth eigenvalue Ak C 3+eig(A(a)), k c {1, ... , 3n}, is:

v [
Vk,2

- I'k

L Akik
(3.46)

where Mk is the eigenvector of A(a) corresponding to the eigenvalue Ak/1+. Similarly, the

eigenvector corresponding to the kth eigenvalue A3n+k E 0- eig(A(a)), k c {1,..

V3n+k,1 ]k
V3n+k -- =) k E {1, . .. ,3n},

L 3n+k,2 LAk/-k

,3n}, is:

(3.47)

where Mk is the eigenvector of A(a) corresponding to the eigenvalue Ak/IL.

Proof: First, we compute the eigenvalues of F(a). Note that, by the properties of the

Kronecker product, L2 0 R 2(a) = (L 0 R(a))2 = A 2 (a). The eigenvalues of F(a) are, by

definition, solutions to the characteristic equation:

0 = det ( Aan -sI3s
(3.48)

-k 1 A2 (a) AI3n - k2A(a)

Using the result in equation (2.1) we have that

0 = det (A2 1 3n- k2AA(a) - kiA 2 (a))

= det ((AI 3n - 3+A(a))(AIs3 - IA(a))).
(3.49)

Then, the first part of the claim is proven.

By definition, the eigenvector [Vk,1 vk, 2 ]T corresponding to the eigenvalue Ak, k E {1, ... , Sn}

satisfies the eigenvalue equation:



Ak Vk 1
L Vk,2 J

0 13n Vk,1
L klA 2 (a) k2A(a) vk,2J

k,2 A.k

Lk1A2(a)vnk,1 +k2A(a)vk,2

Thus, we obtain

AkVk,1 Vk,2,
(3.52)

AkVk,2= klA12 (a)vk,l + k2 A(a)vk, 2 ,

and therefore,

AVk,1 k1A 2 (a)vk,1 + k2 A(a)Akvk,l, (3.53)

which can be rewritten as

(Ak I3n - /+A(a))(AkI 3n - #_A(a))vk, = 0. (3.54)

Therefore, if Ake E +eigA(a) (analogous arguments hold if Ak E #_eigA(a)), the above

equation is satisfied by letting Vk,1 be equal to Mk, in fact in this case (notice that Mk is the

eigenvector of A(a) corresponding to the eigenvalue Ak/#+ and that #+/ # 0):

AkVk,1 = Ak 3+1k = /+A(a)Pk = #+A(a)lk, (3.55)

and the claim easily follows.

By appropriately choosing k1 , k2 and a, it is possible to obtain a variety of formations.

Here we focus only on circular formations and Archimedes' spiral formations (an Archimedes'

(3.50)

(3.51)



spiral is a spiral with the property that successive turnings have a constant separation dis-

tance), which are arguably among the most important symmetric formations for applications.

In particular, Archimedes' spiral formations are useful for the solution of the coverage path-

planning problem, where the objective is to ensure that at least one agent eventually moves

to within a given distance from any point in the target environment. More applications will

be discussed in Section 3.5. Circular formations are initially considered.

3.3.2.1 Circular formations with only relative information

To start, consider the following lemma.

Lemma 3.3.4 The vector Wk [ Osax , where 03nxl is the zero
L k

and 1 column, is a generalized eigenvector for the zero eigenvalues Ak,

Proof: The claim can be easily obtained by direct verification into

Ak I6n) Wk Vk

matrix with 3n rows

where k = n, 2n, 3n.

the equation (F(a) -

0

Theorem 3.3.5 Let k2 = 2 cos(ir/2n) and ki = -(k 2/2) 2 - sin 2 (ir/2n). Moreover, assume

that a = ir/2n; then, the system converges to an evenly spaced circular formation whose

geometric center has constant velocity.

Proof: With the above choices for ki and k2 , it is straightforward to verify that

#3 = e.8,/(2n). From Theorem 3.3.3, F(a) has exactly two eigenvalues on the imaginary axis,

a zero eigenvalue with algebraic multiplicity 6 and geometric multiplicity 3, and all other

eigenvalues 3±Ak in the open left-half complex plane with linearly independent eigenvectors.

Then, by using Theorem 3.3.3 and Lemma 3.3.4, it is possible to show that, as t -+ +oo, the

time evolution of the system satisfies

x(t) xG G wm
= +t G + c + C2

x J) LxG J 3nx1 -W L om J

w21
dom

I,
WW1oWdom J

(3.56)



where xG and XG are the initial position and velocity of the center of the formation, ci and c2

are constants that depend on the initial conditions, w is a constant equal to 2 sin (!), and,

finally, the eigenfunctions WOM, p E {1, 2}, are given by:

w = [cos(t+61), sin(Wt+6 1 ), 0,. . . , cos(wt+ n), sin(wt+6n), 0],

wom = [sin(wt+Ji), - cos(wt+61), 0,... , sin(wt+n), - cos(wt+n), 0], (3.57)

where 6 = 27r(i - 1)/n, i E {1,... , n}. (Note that *1m= -WW2o, *2. ww .)

Next we show how to choose k1 , k2 and a to achieve Archimedes' spiral formations; note

that an Archimedes' spiral is described in polar coordinates by the equation g( o) = ay, with

a E Ry>o.

3.3.2.2 Archimedes' spiral formations with only relative information

Consider first the following lemma.

Lemma 3.3.6 Let k1 = -(k 2/2) 2 and assume a = ir/n. Then, Wk = 03nx is a

generalized eigenvector for the eigenvalue Ak/,3.

Proof: The claim can be easily obtained by direct verification into the equation (F(a) -

AkI6n)Wk = Vk.

Theorem 3.3.7 Let k1 = -(k 2/2) 2, and assume k2 > 0 and a = rn. Then, the system

converges to an Archimedes' spiral formation whose geometric center has constant velocity.

Proof: In this case we have 0+ = - E R>o, and thus Ak - Ak+3n for all k {1, .... , 3n};

as a consequence, the eigenvalues of F(a) are # eig(A(a)). Hence, F(a) has exactly two

eigenvalues on the imaginary axis, each one with algebraic multiplicity 2 and geometric

multiplicity 1, a zero eigenvalue with algebraic multiplicity 6 and geometric multiplicity 3,

and all other eigenvalues #±Ak in the open left-half complex plane. Then, by using Theorem



3.3.3 and Lemma 3.3.6, it is possible to show that, as t -+ +oo, the time evolution of the

system satisfies

x(t) xG +t [xG +dl 03nX1 +d2  3nX1
1 +d2

mG 03n1 om wom
- - - - . - - .. - . -(3.58)

w 2

+ (c1+dlt ) dm + (C2+ d2t ) d"" ,
_WW 2 WW I

-L wdom L wdom

where xG and cG are the initial position and velocity of the center of the formation, ci,

c2, di and d2 are constants that depend on the initial conditions, W is a constant equal to

2 sin (2), and, finally, the eigenfunctions wpom, p E {1, 2}, are defined in equation (3.57).

Then, agents will perform spiraling trajectories; the radial growth rate is a constant equal

to Vd 1 ±d 2, and the center of the formation moves with constant velocity XG defined by the

initial conditions. U

3.4 General Trajectories: Conformal Mapping

In this section, the extension to achieving more general and useful behaviors is presented

based on the idea of similarity transformation of the control space. In this approach, invert-

ible transformations are applied to the controller to achieve more general trajectories while

maintaining the desirable properties of global convergence and synchronization of the cyclic

pursuit algorithms.

The approach is described for the case of the basic cyclic pursuit controllers in single

integrators which can be extended to second order following the results in the previous

sections.

Proposition 3.4.1 Consider the system x = f(x), x E RN that converges to the invariant



set M, C RN

And consider an arbitrary differentiable homeomorphic mapping x' = h(x), h: RN _

RN

Then, a control strategy for which the dynamics of the system are such that 5' = Vhf (h- 1 (x'))

converges to an invariant set in M,, where: 5i' E M.i = h(Y), 5 c M.

Proof: Consider the variable x = h-1 (x'). Its dynamics are given by

d(hh(x-))' = V2,h-V7hf(h- 1 (x'))
dt

Since h is homeomorphic then x = h-1 (x'), h-1 : RN + RN, / = (Vh)k and locally

V2,h 1 Vzh = I. Then the dynamics of x are:

5 = f(x)

which converge to M = h-1 (M-), then x' = h(x) -+ h(M).

(3.60)

0

A similarity transformation is a particular case of the above approach. Consider for

example a simple case, a linear invertible transformation x = (I 0 T)x' = Tx, where

T E R3 x 3 is an invertible matrix. Consider the system in 3.4 with:

x = -Ex - kcx (3.61)

which was shown to converge to a circular formation. By applying the above proposition

Vxh = T the control law becomes:

ui = TRT-1 (xi+ - xi) - kcxi (3.62)

(3.59)



the dynamics of the transformed system become:

x = t(-L - kc)i-'x (3.63)

which is of course a similarity transformation of the system in eq. 3.4. For this new system

the eigenvalues are the same as those of the non-transformed system, but the eigenvectors

are p' = T p.

Of course, each vehicle could have different invertible mappings, yj = Vxhif(hj-yk), then

x = diag[hi1 (yi)], Vxh = diag[Vehi].

Fig. 3-2 illustrate an example where for a set of 4 single-integrator agents the control

function:

i= VehiR(h-+T(xi+1) - hi7(xi)) - kcVxhihT(xi) (3.64)

where the functions h are:

- hi(r, 0, z)

- h2 (r,0, z)

(0.1 + cos(0))

z

(0.4 + cos(9))

0
z

0'

z I

O-
0'

L' J

(3.65)

(3.66)



X 1.5 0.45 0.45 x

y =h3(x,y,z) 0.45 3 0.45 y
z 0 0.45 1.5 z

(3.67)

and

x x

Y =h3(x,y,z) 13 y (3.68)
z z

where r, 0, z are cylindrical coordinates in the respective coordinate set.

This section presented an approach that substantially extends the results in the literature

by defining transformations of the basic cyclic pursuit control laws such that the formation

converges to more general types of trajectories and can be useful in many contexts. In the

next section we describe a situation where this similarity transformation approach is used

to converge to natural trajectories of a system with more specific dynamics.

3.5 Applications of Cyclic-Pursuit Algorithms

In the past few years, cyclic pursuit has received considerable attention in the control commu-

nity (see Section 3.1); however to date, to the best of the authors' knowledge, no application

has been proposed for which cyclic pursuit is a particularly effective control strategy. In this

section, we discuss application domains in which cyclic pursuit is indeed an ideal candidate

control law.
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Figure 3-2: A formation achieves a formation with some arbitrary trajectories by selecting
specific linear and nonlinear transformations

3.5.1 Interferometric imaging in deep space

Interferometric imaging, i.e., image reconstruction from interferometric patterns, is an ap-

plication of formation flight that has been devised and studied for space missions such as

NASA's Terrestrial Planet Finder - Interferometer (TPF-I) and Stellar Imager (SI) and

ESA's Darwin.

The general problem of interferometric imaging consists of performing measurements in

a way that enough information about the frequency content of the image is obtained. Such

coverage problem is independent of the global positions of the spacecraft [16]; additionally,

missions like TPF-i and Darwin consider locations far out of the reach of GPS signals and are

expected to only rely on relative measurements to perform reconfigurations and observation

maneuvers.

The general problem of interferometric imaging consists of performing measurements in

a region of the observation plane in such a way that enough information about the spatial

frequency content of the image is obtained. A heuristic solution to this coverage problem has

been proposed to be the set of Archimedes' spiral trajectories [16], where the baselines for
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Figure 3-3: u-v plane coverage by a system of multiple spacecraft. (Source [16])

each pair of sensors describe "coverage discs" as shown in Fig.3-3. The coverage requirement

is a nonlinear function that conveys the fact that the trajectories of the "coverage discs"

should allow for a minimum amount of time to be spent at each region of the u-v plane to

be covered. Such coverage constraint can be written as [16]:

NR
bak (3.69)

vr(aklxi+i(t) - Xi(t)l) -
3.9

k

Where Vr(p) is the radial component of the velocity as a function of the intersatellite distance,

NR is the number of rings formed by an specific configuration, and C is a parameter of the

image that defines the total amount of light collection time for each spatial frequency. b has

the value 1 for odd total number of vehicles and 2 for even and ai is a geometric parameter

that defines the ratio between the radius of the formation and the distant between neighbors

i and i + k.

Figure 3-4 shows simulated trajectories resulting from the application of control law

(3.42); the initial positions are random inside a volume of (10km) 3 . In the first case spacecraft

converge to circular trajectories, while in the second case spacecraft converge to Archimedes'

spirals. The inertial frame for the plots is the geometric center of the configuration.
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Figure 3-4: Convergence from random initial conditions to symmetric formations. Left
Figure: Circular trajectories. Right Figure: Archimedes' spiral trajectories.

3.5.2 On reaching natural trajectories

In this section we modify the previous control laws to achieve convergence to elliptical trajec-

tories. Consider the application of a similarity transformation to the rotation matrix R(a),

as shown in Section 3.4

It is straightforward to see that the trajectories arising with the previous control laws

are then transformed according to

= Txi(t), i E {1,. ... , n}; (3.70)

in particular, circular trajectories can be transformed into elliptical trajectories.

Indeed, the above approach is useful to allow the system to globally converge to low-effort

trajectories. Consider the dynamic system

Sf(xi, ki) - (f(Xj, k) - Unom), (3.71)

which has a zero-effort (ui=0) invariant set x*, for which f(x*, :k) = us... IIf we use a



controller for which the state reaches x*(t) as t -+ oc, then the control effort will tend to

U2 = 0 as t -+ oc.

In the case of the dynamics of relative orbits slightly perturbed from a circular orbit,

elliptical relative trajectories are closed near-natural trajectories (i.e. theoretically they

require no control effort); in the following section, cyclic-pursuit controllers are proposed as

promising algorithms for formation acquisition, maintenance and reconfiguration.

3.5.2.1 Clohessy-Wiltshire model

The Clohessy-Wiltshire model approximates the motion of a spacecraft with respect to a

frame that follows a circular orbit with angular velocity WR and radius Ref =1/)

where ye is the gravitational constant of Earth. The equations of motion Ki = f(xi, ui) are:

ze = 2Wayi + 3wxz + u2,

gi = - 2 WRzi + Uiy, (3.72)

= W2
-WRZi +Uiz,

where the x, y and z coordinates are expressed in a right-handed orthogonal reference frame

such that the x-axis is aligned with the radial vector of the reference orbit, the z-axis is

aligned with the angular momentum vector of the reference orbit, and the y-axis completes

the right-handed orthogonal frame.

Consider a formation of spacecraft that use the cyclic-pursuit controller

u = -f(xi) + kg(kdTR(a)T 1 (xi+1 - xi) + TR(a)T 1 (5i+ 1 - (3.73)

- kekdxi - (ke + kd/kg)5i),



with kg = WR/(2sin(7r/n)), and

2 0 0

T 0 1 0 (3.74)
zo Cos (#) zo sin(#z) 1

where zo and #, are tunable parameters (their roles will become clear later). Then, from the

results in Section 3.3, we obtain, as t + 00,

r sin(wRt + 6J)

xi(t) = x (t) =T(Wat -l- og) , i E {1, . .. , n}, (3.75)

0

where o= 27r(i - 1)/n, and r is a constant that depends on the initial conditions. Thus, we

obtain

x!(t) = r sin(wRt + Ji),

y*(t) = r cos(wRt + 6J), (3.76)

z,(t) = zor sin(wRt + o + #z);

hence, the formation will converge to an evenly-spaced elliptical formation with an x : y

ratio equal to 1 : 2, a y : z ratio equal to 1 : zo, and a phasing between the x and z motion

equal to #,. By replacing these equations into equation (3.72), it is easily shown that as

x(t) -+ x*(t), we have u -+ 0.

3.5.3 Including Earth's oblateness effect

A more accurate model for the motion of a spacecraft formation considers the effects of the

oblateness of the Earth, specifically the higher order spherical harmonics of the gravitational



force model, denoted as Jk. In [86], Schweighart and Sedwick show that the equations of

motion relative to a circular non-Keplerian reference orbit and including the J2 term are well

approximated by the linear system:

3
= 2WcyR + (5c 2 - 2)w4xe + K + KJ 2 cos(2kt), (3.77)

1
Qi - 2 WRC i- +yi -± - KJ2sin(2It), (3.78)

i= -q2zi + 2lq cos(qt + D) + uzi, (3.79)

where, again, the x, y and z coordinates are expressed in a right-handed orthogonal reference

frame such that the x-axis is aligned with the radial vector of the reference orbit, the z-axis

is aligned with the angular momentum vector of the reference orbit, and the y-axis completes

the right-handed orthogonal frame; moreover, c = 1 + s, s = 3 (1 +3 cos(2iref)), KJ2 =
rf

3 si J2R 2 iref), is the nominal radius of the earth, I = c + 32 e cos2 iref, rref andiref
rref 2ref

are parameters of the reference orbit, q is approximately equal to CWR, and <D, 1 are time

varying functions of the difference in orbit inclination (see ref. [86] for the details). Zero-

effort trajectories (i.e, trajectories with ui = 0) for the above dynamic model are shown to

be:

x*(t) Xocos(wat 1 - s) + 2 s yo sin(wRt 1 ~- s) + xcc(t),
21(s

y*(t) = - 1 sin(wRt 1 - s) + Yo cos(wRt 1 - s) + ycc(t), (3.80)

z* (t) = (lt + m) sin(qt + <b),

with

2 1/ T+ s
xc(t)=[c'(cos(2t)-cos(wRt/1 - s)), # sin(2t)- 2 1 + C(cos(wRt/1 - s)), 0 1', (3.81)

1 -s



where a, 0, and m are constants that depend on the reference orbit parameters and for

brevity are not discussed here. (For details we refer the reader to the work of Schweighart

and Sedwick [86].) As in the previous section, by defining the control coordinates in a

reference frame centered in xcc(t), and using the decentralized cyclic-pursuit controller in

equation (3.73) with a transformation matrix

T= 0

zo cos(#z) zo si

0 0

1 0

n(#z) 1

(3.82)

and kg = y1 - s/(2 sin(7r/n)), it is straightforward to show that the

converge to elliptical trajectories centered at the point xcc(t). Then, as t

r sin(wRt + 6i)

T r cos(wRt + 6) + xc, and thus, as t - oo, the trajectories for x(t)

0
described in equation (3.80), and we have that:

formation will

+ 00, x(t) -+

y(t) are those

U2 -4 0,

-Y 0, (3.83)

uz --+ (w%-q 2 ) + 2lqcos(qt+<) 2lqcos(qt + b).

The last term corresponds to the cohesive force required to maintain the formation when

the orbits are not coplanar (i.e. the spacecraft have different inclination and thus different

J2 secular drift rates). For z0 - 0, then q = WR, 1 - 0 and the theoretical required thrust

converges to zero.

Figure 3-5 shows simulation results for the control laws described in this section. The

system is simulated using dynamics including the J2 terms. The results show convergence

from random initial positions to the desired orbits, i.e., an evenly-spaced elliptical formation
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Figure 3-5: Convergence to elliptical trajectories with dynamics including J2 terms.

in the desired plane. It is also shown (Fig. 3-5b) how the control effort reduces as the

spacecraft reach the desired low-effort trajectories. In this case the orbits are coplanar and

the differential J2 effects in the z direction converge to 0. The dots indicate the positions

after 3 orbits. 3-5a) is a 3D view of the trajectories with respect to reference point x, Fig.

3-5b) is a 3D view of the trajectories with respect to non-keplerian circular orbit. 3-5c) is a

plot of the control effort versus time, showing that as t -+ oc, u - 0

Although the achieved trajectories are not natural trajectories for a free orbiting body,

the proposed decentralized control law allows convergence to elliptical formations that are

near-natural and would require low fuel consumption for their maintenance.

3.6 Summary and Conclusions of the Chapter

Linear cyclic pursuit dynamics were analyzed using an eigendecomposition approach. The

special structure of the underlying structure, specifically block rotational-circulant matrices

allows for the derivation of analytical expressions of the decomposition. This analytical

description of the dynamics allowed for developing controllers suited for spacecraft control

problems of interest.

.................. ......... "ONMEW



The main contributions of this chapter are threefold. First, building upon previous

work on cyclic-pursuit algorithms, we rigorously study cyclic, distributed control laws for

formation flying, for both single-integrator and double-integrator models in three dimensions.

Second, we described a method to achieve decentralized controllers based on the cyclic

pursuit structure that achieve convergence to linear and nonlinear transformations of circular

trajectories.

And lastly, we discuss potential applications and describe the application of the control

approach including spacecraft formation for interferometric imaging and LEO formation

acquisition and maintenance. The control laws are based on those theoretical results and

are shown to be fit to deal with the (linearized) relative dynamics of spacecraft, e.g., in

the Earth's gravitational field. A key feature of the control approach is that, unlike other

approaches, they do not require any agreement on a set of predetermined trajectories.
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Chapter 4

Contraction Theory Approach to

Formation Control

In this chapter, an alternative direction in the analysis of control laws inspired as a gen-

eralization of the cyclic pursuit control laws from Chapter 3 is presented. This alternative

approach is introduced as a tool to embrace more general dynamical systems, placing the

previous results in the more general context of convergence to manifolds. Understanding

the problem as such could be more intuitive, opens an alternative road to verifying global

convergence for more complex distributed controllers and can be applied in the case of non-

autonomous and nonlinear dynamics.

The proposed approach is based in the theory of partial contraction, shortly mentioned in

Section 2.1. It yields global convergence results and direct extensions for nonlinear systems

and more general dynamic cases. It also allows the introduction of convergence primitives,

where control laws consist of combinations of simpler control laws, converge to a subspace

defined where the constraints in the desired configuration are convergence subspaces of the

primitives and the combination of them achieves more complex formations.. Particularly, the

contraction theory results lead to identifying sufficient conditions for the convergence to a

given manifold. Then, distributed control laws that satisfy these conditions can be proposed



and their convergence properties verified.

Contraction theory proves itself as a valuable method to analyze the convergence of

distributed systems for which methods like Lyapunov functions might not be suitable. In the

contraction theory approach, the general idea consists of showing the negative definiteness

of a projected Jacobian matrix which characterizes the dynamics of an agreement subspace.

Showing the negative definiteness of a matrix in the case of a distributed system can turn

more attainable than demonstrating the negativeness of a Lyapunov rate which is a function

of multiple states that depend on each other.

In a first result, applying the contraction approach to a generalized version of the cyclic

pursuit approach leads to a generalization to time varying and state dependent cyclic con-

trollers. Convergence results extend in a straightforward way to achieving polygons, circular

and spiral rotating formations, addressing time varying and state dependent gains and cou-

pling matrices. Then, a series of results and corollaries of extending the contraction theory

approach to time varying subspaces and linear combinations of basic primitives are derived.

Specifically, a result on the linear combination of basic control functions shown to converge

to basic manifolds Mi, which are dubbed 'primitives'. Several applications of applying these

results are shown to illustrate the proposed idea.

Since our main objective is the introduction of the dynamic analysis approach, we focus

on examples using simple integrator dynamics but illustrate in a later section the proposed

approach to implementing the control algorithms in more general contexts.

The distribution of this chapter is as follows: Section 4.1 introduces the approach to

convergence analysis based on contraction theory, it is extended by studying a comparison

to the approaches in the previous literature and specifically describing the contraction theory

approach to the control laws as related to an example previously presented in the literature.

Then, Section 4.2 derives control laws for global convergence to regular polygonal formations

and presents a result for global convergence to a regular formation of specific size. Section 4.3

describes the convergence results of the approach based on control primitives which are
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illustrated through applications in a later Section 4.4. Brief concluding remarks are presented

in Section 4.5.

4.1 Introduction

In this section we introduce the basic idea of contraction theory, and describe the relationship

to an example in a recent work by Pham and Slotine [68]. Then, we extend the results by

addressing the case of convergence to time varying manifolds.

Consider the system with closed loop dynamics:

'= f(x, t) (4.1)

where x E R", and consider a flow invariant manifold of f(x, t), defined as the subset M c R"

such that f(k) E M for all x E M.

Consider a smooth, continuous transformation V(x) : R" -+ RP, such that the invariant

manifold M can be described as the null space of V(x), i.e. M : { | V(5) = 0}.

The dynamics of the perpendicular projection y = Vx can be written as:

y = V'f(x,t)

= Vzf(y, , t) (4.2)

The general idea of the partial contraction theory consists of showing the contractive behavior

of the above system. If this perpendicular system is shown to be contracting, all trajectories

of this system will converge to the same one, y = 0 is a specific trajectory of the system,

therefore all trajectories of 4.1 will converge to trajectories in y = V(x) = 0.

As mentioned in the introduction to the contraction theory in Section 2.1, the system 4.1

is said to be contracting if there exists a square invertible transformation e(x, t) such that



E(x, t)TE(x, t) is uniformly positive definite and the matrix:

F = (O+ f6-1 (4.3)

is uniformly negative definite, where L is the Jacobian matrix of f with respect to x.

E can be an identity transformation, and in many cases it is a sufficient definition to

show convergence. In other cases, as will be shown in an example, the problem consists of

finding a transformation .

Now, consider a linear case where V(x) is a linear transformation, V E RP".

Consider an orthogonal partition of the state space VVT = I, and VTV + UTU = In

such that V = TV. Then, the Jacobian of the perpendicular projection, also referred in this

thesis as the projected Jacobian is:

_ d(Vf(x, t)) (44)
dy

-d(V~+ UT Ux, t)
= V y ) (4.5)

dy

= V df(x))VT (4.6)
V dx

If V is row independent, T is an invertible transformation. It is clear that for an invertible

T, V df(x)VfT = TVdf(x)VTTT < 0 <-> Vdf(x)VT < 0. Therefore, we can define a sufficientdx dx dx

condition for global convergence to the manifold V(x) = 0 to be:

V 'T~~)) VT <0 (4.7)
dx

4.1.0.1 Example

As an introductory example of the application of the approach, we present results for a

three-vehicle cyclic pursuit control algorithm as related to an example presented by Pham

and Slotine [68].



In their example, Pham and Slotine consider the set of Androno-Hopf oscillators related

to locomotive behavior of salamanders:

[]
f

y Y

x - -Y

= ki +

X3 _ 2

y 3 _ YX2

(4.8)

(4.9)

while adding a cyclic coupling:

51 = f(x1 ) + k(R27r/ 3 x 2 - X1)

12 = f(x 1 ) + k(R 27/3x 3 - x2)

13 = f(xi) + k(R 27/3 xi - x 3 )

(4.10)

(4.11)

(4.12)

where R(a) is a rotation matrix for an angle a, and the overall system can then defined as:

5 = f(x) - kLx (4.13)

The manifold Ma, which defines circular formations about the origin:

Ma = {R(2-r/3)(x), R(r/3) (x),

can be shown to be an invariant manifold of f(x) and also an invariant manifold of L, =

L + LT.

For k > 2/3, the eigenvalues of the projected Laplacian VLVT are guaranteed to be

less than the eigenvalues of the projected Jacobian of f, V (Lx) VT, and thus the negative

definiteness of the projected Jacobian of f(x) - kL is verified. If f(x) = 0, the convergence

to Ma is also verified.

(4.14)



Now if instead a cyclic pursuit approach is applied, such that

1 = f(x1 ) + kR,/ 3 (x 2 - x 1 )

52 =f(xi) + kR,/ 3(x 3 - x 2)

:s3= f(xi) + kR/ 3 (x1 - x 3 )

(4.15)

in this case the overall dynamics can be described as:

x = f(x) - Ex (4.16)

where L = L 0 R(7r/3), with L being the laplacian of the ring topology described in eq.

3.5. Then, when considering the same invariant manifold, Ma, it is found that VLVT < 0,

Vf(x)VT < 0 and the convergence to the manifold is verified for this dynamical system too.

However, in the case when f = 0, the convergence to V is not verified because the projected

Laplacian is only positive semidefinite.

On the other hand, consider looking at the convergence to the larger subset:

(4.17)

that describes states where the vehicles are in a regular polygon formation as shown in figure

4-1. Notice that Ma C M. Mn can be shown to be a flow-invariant manifold for the cyclic

pursuit law:

- =R(a)(xi+2 - xi+1) - R (xi+1 - xi)

= R2R(a)(xi+3 - Xi+ 2 ) - R R(a)(xi+2 - xi+1)n n

= R2 (i+ 2) - R2 (5C+1)

-= R (5i+2 - xi+1) (4.18)

Mn =J{ : (xi+1 - xi) = R2M (xi+2 - Xi+1)}, Vz < n - 1I



0

Figure 4-1: Constraint description of M 5

Then, the matrix Vr, such that VnxC = 0 +# x E M. is:

-R27

-I I+R2 -

In the case of 3 vehicles, with a = r/3, Vr corresponds to:

3/2 V'5/2

-1 -V//2 3/2

-1/2 -\/5/

//2 -1/2

And the transformed Jacobian is:

Vr3EsV> [-6 -3V/5

3v/5 -6
(4.21)

which is negative definite, with A(V 3 LsV,.) = {-6, -6}, which verifies the global conver-

gence to manifold MA if eig(V 3 diag[ df(x) +f ]Vr9 ) < 6. In Section 4.2, a generalized result

that addresses analytical results for any number of vehicles and under combinations of dif-

ferent cyclic topologies is shown.

I+R27

Vrn
0 ... 0

R2r 0 ... (4.19)

-1 0
(4.20)

R(2;r/n)(x,,, -x,,),

VK3 =



4.1.1 Time varying and nonlinear manifolds

After having introduced the general concept, the case of a more complex type of systems,

namely nonlinear systems with possibly time varying convergence manifolds are introduced

in this section. The framework presented by Pham and Slotine in their previous work [68

discusses the convergence for linear time invariant manifolds. It is possible however, to

extend their results to a more general version considering nonlinear, time varying manifolds

by proceeding in a similar manner. Such results are shown useful in the developments and

applications presented in the later sections.

A very helpful extension of the contraction theory approach consists of showing the

contracting properties of an auxiliary system that has solutions of the actual system as

particular solutions. Consider a nonlinear system that can be written in the form:

5 = F(x, t)x (4.22)

with an invariant manifold R E M : {: Vx = 0}, such that VF(k)= 0.

Consider the auxiliary system:

: = F(z, t)x (4.23)

which has specific solutions z(t) = x(t) and z = 0.

The dynamics of the perpendicular projection are given by:

y = VF(z, t)(V T y + UT Ux) (4.24)

then, the projected Jacobian is:

JY = VF(z, t)V T (4.25)
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Therefore, the auxiliary system is contracting if:

(8 + 8(VF(z, t)VT))E- < 0 uniformly (4.26)

in which case all trajectories converge to the same one, and x(t) = 0 is one of them. Again,

since V = TV, then:

VF(x, t)V T < 0 uniformly

is a sufficient condition for convergence to M.

The following theorem, extends the partial contraction theory for convergence to nonlin-

ear and time varying manifolds:

Theorem 4.1.1 Consider a nonlinear system that can be written in the form:

x = F(x, t)x (4.28)

with a (possibly time varying) invariant manifold k E M(t) : : V(t)x 0}, such that

d{V(t)R) = 0. Then, the system converges to x E M(t) if 38:

(E + a(VVT + VF(x, t)VT)e-1 < 0 uniformly

(VVT + VF(x, t)VT) < 0 uniformly

Proof:

The dynamics of the perpendicular projection are given by:

V(V T y + UT Ux) + VF(z, t)(V T y + UT Ux)
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or,

(4.29)

(4.30)

(4.31)



then, the projected Jacobian is:

JVv + VF(z, t)VT (4.32)

Therefore, the auxiliary system is contracting if:

(E + 8(VV + VF(z, t)VT))E8 < 0 uniformly (4.33)

in which case all trajectories converge to the same one, and x(t) = 0 is one of them. Again,

since V = TV, V = TV then:

VVT + VF(x, t)VT < 0 uniformly (4.34)

is a sufficient condition for convergence to M.

4.2 Cyclic Controllers for Convergence to Formation

The most common approach to formation control studied in the literature defines laws based

on tracking relative positions to a set of neighbors. This approach is not always the most

desirable, and the control effort can often be significantly reduced by eliminating the 'un-

necessary' constraints in the formation degrees of freedom. Then the convergence is given

as converging to desired manifolds defined by linear or nonlinear constraints. Additionally,

if the emergent behavior is an overall formation state with some unconstrained degrees of

freedom, a leader or a pair of leaders can control those states for the whole formation without

the need of a global coordination mechanism reassigning relative position targets.

Some authors have studied the convergence to relevant symmetric formations by using

potential functions, e.g. [64, 88]. A main pitfall is convergence to local equilibria, lead-

ing to a lack of global convergence guarantees and unpredictability of the behavior under
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disturbances. These difficulties exacerbate in the time-varying case. Guaranteed global con-

vergence to formation, in itself a highly desirable property, also has important implications

in the robustness of the formation architecture.

The results of applying the above described contraction theory approach to the problem

are presented by consider the generalization of the cyclic pursuit to time varying, state

varying control functions. This also leads to addressing the proof of global convergence for

a type of distributed controllers based on cyclic topologies.

4.2.1 Generalized cyclic approach to formation control

Based on the presented approach and the time varying extension on the previous section, we

present theoretical results for the convergence to symmetric formations based on control laws

that generalize the cyclic pursuit algorithm to more general interconnections and nonlinear

cases. First we show the global convergence of a basic control law to regular polygons under

a generalized nonlinear cyclic topology with any number of vehicles and then we show how

this result directly verifies the global convergence to rotating circular formations in the case

of the basic cyclic pursuit algorithm.

These control law generalizes the results and allow the design of distributed algorithms

that converge to formations with geometric characteristics that depend on a common coordi-

nation state, and can be time varying. One can think for example a satellite formation that

expands, contracts (by varying a) or speeds up (by varying k) as a function of its location

in orbit.

Consider the first order system x = f (x) + u and the generalized symmetric cyclic control

law:

ui(x, t) = km(x, t) (Rm(x, t)(x[i+m] - xi) + R'(x, t)(x[i-mJ - xi)) (4.35)
mEfr

where , is a set of relative neighbors in the ordered set {1, .. , N}, and [p] E {1, .. , N}

103



21 2

Li L2

Figure 4-2: Different cyclic topologies

indicates p modulo N. The expression in eq. (4.35) indicated that for each link {i, [i + m]}

there is a symmetric link {i, [i - m]}. km(x, t) E R>o is a gain and R(x, t) is a coupling

matrix that can be selected to achieve different behaviors. A general description of the

overall dynamics of a system can then be written as:

x f() -Z km(x,

f() - km(x,

m

t)((Lm 0 Rm(x, t) + L' 0 R'(x, t)))x

t)(1m(X, t) + L (x, t))x

£SM(Xjt) 4:(4n(Xt)+1CT(X,t)) (4.37)

where x is the vector describing the overall state of the system and Lm are m-circulant

Laplacian matrices describing cyclic underlying topologies with interconnections to each m-

other agent as show in fig. 4-2.
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Now, consider the manifold M, presented in section 4.1:

M = {- : (Xi+1 - xi) = R, (Xi+2 - Xi+1) = { : VrnY = 0}, (4.38)

which can be shown (straightforward from eq. (4.18)) to be a flow-invariant manifold of the

dynamic system X = k(X, t)(Esm(X, t))X.

Note that Vrn can be written for the general case of n vehicles in 3D as:

Vrn =(K 0 13)(In 0 R7)((L1 0 Rr/N) + (LI 0 Ru/N - KR?7Z (N) (4.39)

with K = [In-3103n-31, L1 is a cyclic Laplacian for a 1-circulant topology and R. is a rotation

matrix for any value 77.

Since Vn is full row rank, there exists an invertible transformation V = TKn such that

if V,4A(Vn )T > 0 then VrnAV > 0, where the columns of Vrn are a set of orthonormal basis

such that vT,,(fi/, )T = I. Then, following the results of partial contraction theory described

in sec 4.1, we have that if:

KnRL(N) dx km(X t)Lsm(X, t) (L(N) T TKT < 0 uniformly (4.40)

then, the system converges to Mn.

Since R,,, L(N) Ism (x, t) E CZ, the calculation of the eigenvalues of their product and

correspondingly verifying that KnR Lr(N)(Em km(X, t)Lsm(X))(L(N))TT TKZ < 0 uniformly

is straightforward and is shown in appendix A.5. The results are applied in the following

theorem:

Theorem 4.2.1 Distributed nonlinear approach for global convergence to sym-

metric formations

Consider the distributed system with a generalized cyclic topology, using control law in eq.
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i = f(x) + u (x, t)

= E km(x, t)(Rm(X, t)(x[i+m - xi) + R(-am(x, t))(x[i-m] - xi))
mefi,

(4.41)

(4.42)

for which a description of the overall dynamics is written as:

x = f(x) - E km (x, t)Lm(X, t)x (4.43)
m

x is the vector describing the overall state, iR is a particular regular polygonal state, and

Vrnf() = 0. Then, if:

(izr(N) ( (N) TRT

- min 4
1<i<N

qE{-1,O,1}

-cos 2i))5km(p, t) qam(p, t)- 2im7r

for some rI, the system globally converges to a regular polygon.

Specifically, if f(x) = 0 the system globally converges to a regular polygon formation if:

sup E km(p, t)(cos(qam(p, t)) - cos(qam(p, t) - 2im7r/N)) > 0 (4.45)

Vq C {-1,0,1}, i E {2,N- 1}.

Proof: For a regular formation Vn = 0, VnLm(k, t)k = 0, then Vrn(f(>)-E kmLsm(k, t)k)

0, therefore MA is an invariant manifold of the system.

From the results in Section A.5.1 it is also true that A{RL Em km(x, t)Lsm(x, t)L TRT} >

min 1<i<N Aik defined in eq. A.5.1, and that if R2XLR < 0, then KnR LXLR,K < 0
qE{-1,O,1}

for a particular matrix X.
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u (x, t)

su Amax

< 0

(4.44)

(cos (gam (p, t)) -cos



Thus, if condition in eq. (4.44) is satisfied, then Ve,( - Em km(x, t)12sm(X, t)m)Vzii <

0 and therefore x exponentially converges to i C M.

If f(x) = 0, the above conditions in f(X) are satisfied and the global convergence to

Vrnx = 0 is verified for specific combinations of km(x, t), am(x, t). For the case of a 1-

circulant topology L 1, if k(x, t) > 0 and |a(x, t) < 2w/N, convergence to a symmetric

formation is guaranteed.

Remark 4.2.2 The Laplacian Lsm(x, t) is the symmetric part of the Laplacian Lm(x, t)

Lm 0 R.From the properties of positive negative matrices VAVT < 0 iff V(A + AT)VT < 0.

It was shown that the manifold Mn is an invariant manifold of the cyclic pursuit control

law R(a)(x[i+m|-xi), then, verifying the conditions for convergence for the symmetric control

law u = E km(x, t)( m(X, t)+Lm(X, t)T)x is a direct proof of convergence to circular rotating

formations for the directed topology u = E km(x, t)Lm(x, t)x, with asymmetric control law

ui = km(x, t)R(a)(x[i+m - xi) generalizing the results for cyclic pursuit.

This last result verifies the convergence to rotating regular formations resulting for k, a

constants, agreeing with the results obtained through linear analysis presented in [67,70,73].

Proposition 4.2.3 For a ring topology (L1), if |a| = r/N, the formation converges to a

regular polygon with a constant size

Proof: When a symmetric configuration is achieved:

Xi+m - xi = R(-2wm/N)(xi - xim) (4.46)

Then

u = R(w/N)(xi+1 - xi) + R(-w/N)(xi - xi)

= R(/N)(R(-2w/N)(xi - xi 1)) + R(-w/N)(xi - xi)

= R(-7r/N)(xi - xi_ 1) + R(-r/N)(xi_1 - xi) = 0 (4.47)
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similarly, for a more general cyclic topology, the condition for km (k, t), am (5, t) to achieve a

regular polygon with fixed size is given by:

Ui = km(k, t)(R(am(2, t))(R(-27rm/N)(2, ti - 2, t[imi))

+R(-am(R, t))(R, t[i-m] - R, ti)) = 0

= km(, t)(R(am(R, t) - 27rm/N) - R(-am(R, t))) 0 (4.48)

4.2.2 Distributed global convergence to a desired formation size

The previous section addresses the problem of converging to a formation under a general

cyclic interconnection. However, the subspace to which convergence is defined allows for

the size of the formation to be an uncontrolled state of the system. In general the problem

of global convergence to a splay-state formation using only neighbor information has been

sought after in the literature. As mentioned in the introduction we consider the approach to

a formation without constraining the relative states to be an specified vector.

One approach that converges to formations without specifying fixed relative vectors in a

global frame consists of using structural potential functions of the magnitude of the distance

to the neighbors [64]. When using only relative magnitude information, if the interconnection

is not a rigid graph, the global convergence to the desired formation is impossible due to the

ambiguity of the possible equilibrium configurations. An extra piece of information, allows

our approach to achieve global convergence results, namely, the agreement on an orientation

which in the case of spacecraft flight can be achieved by individual star trackers. In the case

of the cyclic pursuit, an approach similar to the one presented in previous work [701, where

the angle of the formation is defined as a dynamic variable that depends on the relative

distance to the neighbor seems a reasonable approach however, the stability results are only

local.
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In this section, using an extension to the approach in the previous section we present a

distributed control law for which global convergence to the desired size can be guaranteed.

Specifically, we determine a sufficient condition in the magnitude of an arbitrary function

that guarantees convergence to the desired formation from any initial conditions.

The overall structure of the proof consists of first showing that a sufficient condition

on the bounds of an arbitrary odd function f(x) guarantees convergence to a symmetric

formation, i.e. convergence to the invariant manifold M. And then, to show that the

trajectories within that manifold lead to a formation of the desired size.

Theorem 4.2.4 Global convergence to a regular formation of a desired size

Consider a set of agents with first order dynamics k5 = ui, interconnected under an undi-

rected cyclic topology with control law:

ni = R7/N(Xi+1 - xi) + R' + fX Xi1 X - - Xi) (4.49)

where f(z) is an arbitrary bounded odd function of z, such that zf(z) > 0 for z # 0 and

f (0) = 0. The overall dynamics can be written as:

X = (-L, + G(x))x (4.50)

Global convergence to AP, the manifold of regular formations with intervehicle distance p,

(E -AP {R: VnX = 0, lXi - Xgj = p Vi,j} is guaranteed if:

Amin(Vrn4s(Vrn)T) > NfmaxAmax(fVrnA1(Vrn)T) (4.51)

where Vrn is the matrix of orthonormal bases for Vn, L is the symmetric circulant rotational

-I I 0 ...

Laplacian defined in Section 4. 1, A1 is the matrix A1, 0 0 0 ... and f (x) < fmax.
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Proof: To start, consider the following two lemmas:

Lemma 4.2.5 The manifold M is a flow-invariant manifold of the dynamics in eq. (4.50)

Proof: It has been shown above that MA is an invariant manifold of L, namely

VrnLsR = 0 for R such that Vrn = 0. For a regular formation |Xk+1 - xk| = |xi+1 - xil

then f (|xk+1 - Xk| - P) = f (xi+1 - xil - p), and thus without any loss of generality F(x) =

(f(x2 - xi|)LI 0 13)x.

Then, Vrn(-Es + G(x))k = f(Jx 2 - x1 |)Vn(L 1 0 13)k = 0.

Lemma 4.2.6 eig(VrnAs4,T) = eig(Vn AkVTj) for all i, k E {1, ... , N}, where Aj, = (Ai +

AT). Ai = a(0 9 I3, a(' = {a0 } £ RNxN is a matrix of zeros except the elements a -1,

a$+1= 1. A1 was explicitly described above.

Proof: eig(VnAiVT) = eig(VnAkVT) if and only if there exists a similarity transfor-

mation such that:

TVnAiV = Vn AksVTn (4.52)

Notice that TkAj = AkTki where Tik = TT - (In - Lki) 0 12, for example, in the case of

i = 1, k = 2:

= 2T12 (4.53)

1 0 ... 0

-I I 0

0 0 0

0 0 0

0 0 0

0-I

0 0 0

0 0 0 ... I

1 0 0 ...

0 1 0 ...

and correspondingly TkAj, = AkTi. Then we have that VnVT = I, therefore by defining

T =VnTVT :

TVrnAisV =VrnTV, 4rnA jsVZ = V nTAissi,/ (4.55)
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and

VrnAks,4T =VnAksiVnVrnTVn = Vn AksTVrn (4.56)

shows the desired equivalence.

Based on the above lemmas, we can then show that condition (4.51) guarantees convergence

to the invariant manifold M. Specifically, invoking the results in [110] and [68] introduced

in Section 4.1 the convergence to the manifold M : {: Vnx} is guaranteed if the projected

Laplacian of the auxiliary system y = (-E4 + G(x))y is negative definite, i.e.

Vrn(-Es + G(x))Vn < 0 (4.57)

This can be guaranteed if

Amin(VmnLs ,) > Amax (VnG(x)IV,:) (4.58)

Since

N

Amax(VrnG(x)(Vn) T ) Amax(Vn E f(xi+1 - Xi)Ai(X)(Vrn)T)

< NfmaxAmax(VrnAi(x)(Vrn) T )

(4.59)

(4.60)

eq. (4.51) guarantees eq. (4.57) and thus, convergence to Mn.

Now, it is shown that convergence to Mn implies convergence to Mn,. Having that
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LX = 0 then, the dynamics of the distance between any two vehicles in M, are given by:

d
-|~Xi+1 - Xil

(X,+1 - X,)

ixi+1 - xiI

(Xi+1 - xi)
- 1x+1 -xil f (|Xi+2 - Xi+1| - P)(Xi+2 - Xi+1) ~ f (lXi+1 ~ Xil - P)(Xi+1 - Xi)

(X,+1 - Xi)
- 1i1-l_(f (1Xi+1 - xil - p)R 27r/N(Xi+1 - Xi) - f (Xi+1 - XiI - P)(Xi+1 - Xi)

Xi+1 - Xi

- i+1 - X(f(1  -x - p)(R27r/N - 3) (Xi+ -- xi)
Xi+1 - xi

= - os(r/Nf(|X+1 Xi - P|Xi1 -Xil(4.61)

defining z = |xi+1 - xil - p:

i = -cos(7/N)f(z)(z+p). (4.62)

A Lyapunov function candidate for this system is V = jz 2 , yielding

V = -cos(r/N)zf(z)(z+p) (4.63)

Since f (z) is an odd function, zf(z) > 0 for z = 0. Furthermore, z + p = |Xi+1 - xi| > 0, so

that V < 0. Using Lasalle's Invariant Set Theorem [90], the system (4.50) globally converges

to the largest invariant set where V = 0, namely M4,. 0

Note that the global guarantee in this control approach is defined by an upper bound on the

arbitrary function f(z). This bound is easily implementable by a saturation function or an

arctangent function.

The two results presented in this section generalize results of cyclic control approach

to nonlinear systems. Specifically, we introduce an analysis approach that achieves global

guarantees for a generalized version of cyclic pursuit, which includes time-varying and state-

dependent gains and coupling matrices as well as more general cyclic interconnections. Ad-

ditionally, we introduce a decentralized control approach with global convergence guarantees
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to a regular formation by defining upper bounds on a function that controls the separation

between vehicles.

4.2.3 Extension to second order systems

In the derivation of the results we define the systems as first order systems. In general,

for space applications we consider control approaches for second order systems. This section

presents an approach based on a sliding mode control that shows a straightforward extension

of the first order integrators to more complex dynamics when there is knowledge of a reference

velocity for the whole formation.

Let again, xi(t) = [xi,1(t), xi,2 (t), Xi,3 (t)]T E R 3 be the position at time t > 0 of the ith

agent, i E {1, 2, . . . , n}, and let x = [x, x,. . . , xT].

Consider a linear first order system:

i= Aij (xj - xi) (4.64)

shown to converge to manifold .M 1.

If the dynamics of each agent are now described by a second order model:

xi = vi

ti = f(xi,vi) + ui (4.65)

consider the feedback control law:

u= -f(xi, vi) + kd Aij (xj - xi) + Aij (vj - vi) - kdvi, kd E R>o. (4.66)

A useful form to describe the second order system is by using the sliding variables defined
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si = kdxi + vi (4.67)

Then, the dynamics of the overall system (4.65) with control law (4.66) can be written as:

i Aj (k(xj - xi) + (vj - vi)) - kdvi (4.68)

Aij ((kxj + vj) - (kdxi + vi)) - kdvi (4.69)

Then, the system dynamics are described by the equations:

i Aij (sj - si) (4.70)

i = -kdxi + si (4.71)

The first equation describes a first order system for which global convergence to a manifold

M C R3 can be analyzed following the approach in the previous sections, the second equation

is an stable first order filter with input si and output xi. Then, the trajectories of the agents

under control law (4.66) are the filtered response of trajectories of the first order system.

Under the control law in eq. (4.66), the physical trajectories converge to trajectories which

are just the response of the filter Gkd W() = 1+jkdW to the trajectories of the first order system

with initial conditions s(0) = kdx(0) + k(0). This last subsection provides an approach for

the implementation of the control laws described in this chapter for the case of spacecraft

formations, where f(x, v) can be a local description of the gravitational dynamics with

respect to some reference frame.

114



4.3 Convergence Primitives Approach

In this section we present an approach to formation control based on the combination of

primitives. This approach is an extension of theorem 4.1. Using the idea of primitives,

controllers that converge to more complex subspaces can be designed and their global con-

vergence properties verified.

Theorem 4.3.1 Consider the system:

x = fi(x) (4.72)

where each dynamic primitive fQ(x) has an invariant manifold Mj:

Vi :R" Rifi(:R) =0, Vkc = 0, V EMi (4.73)

with rank(Vi) = pi.

Then, if either:

i.) V fi (x)VT < 0 (4.74)

or,

V1dV T  V1 2 - - - -V

dx V 1 V2 dx
zz.) <xd . 2d 0 (4.75)

Vn 'LlVT Vn@V - - -. n Vn

where span{VT} = span{[VT V2T -...-VT] }. Then:

x-+nMi as t - oo (4.76)
i
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Proof: For the first condition consider 2, a particular solution such that 0 = Vix =

Vx = ... = Vax. Since V is full row rank, there exists a linear transformation V = TV where

V is an orthonormal partition of R' and TVAVTTT < 0 m VAVT < 0. Then, if condition

(A.29) holds, the system y = Vx is contracting with respect to y and any trajectory of the

system y converges to the same solution, namely x -+ k E niN(Vi) = ni Mi.

For the second sufficient condition, consider the auxiliary system:

Y1 V

y2 =V 2
1

y Y 9x, (4.77)

yf VJ

then:

pi= Z Vif(VMT Yk + UTUkx) (4.78)
k

Vi = TV, where Vi are orthonormal projections of the state such that IiviT = ,, and

ViT + U7U, = In. Since rank(V4) = pi, T is an invertible matrix. The Jacobian of the

system y with respect to y is:

ffdhV f/ hVTdfn~V

V~dx 1 1dx 21dx f

V71fVT V 72T 
... 2 df Vn

dx 
(4.79)

fn VJTV V f2 f7T  
.. Vdf . f7dx dx 2 dx f
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which can be written as:

V1 LlVT V1 hVT2 - - v-fV1x dx 2 . 1dx

V2l VT V2 V - - - Vj
diag[T V2 dx 1  V2 dx V2  ... V2 ndx diag[T] (4.80)

VdhVT V VT --- Vn
L dx 1 dx 2, dx f

and diag[Ti] is an invertible transformation, such that TVAVTTT < 0 if and only if

VT AVT < 0. Then, the negative definiteness in eq. (4.75), proves the global convergence to

y = 0, i-e x --+ x E ni m(i) = ni Mi .
Notice that additionally, if Vaf 2 (x)VT <0 then V Er (fi(x)VT is at least semidefinite

negative. If one of the summation terms is positive definite or if the summation is full rank,

it is positive definite.

Corollary 4.3.2 Consider a set of N agents with dynamics ki = ui grouped in sets S, s E

{m, n, nm}, and a set of control laws un = fm(X), un = fn(x), Umn = fmn(X) corresponding

to each group where f,(x) depends only on elements of set S, and has corresponding invariant

manifolds Ms with respective set of transformations V, for which Vf, = 0.

Control law fm interconnects agents in set Sm C S, control law fn interconnect agents in

the set Sn C S, Sm n Sn = 0, and control law fn, interconnect agents in set Sn and Sm.

If f,, individually converge to their invariant subspaces M8 , i.e. V fV T < 0 for all

i, then, a sufficient condition for the global convergence of the system 5 =C f8 (x) to the

subspace M =fl2 Mi is:

IV& VT V( fkl + f ) Tidx k 1dx +1< 0 (4.81)
V d + dfkl T) VT V dfIVT J

for all k, 1 E s. This result can be extended to more than two sets of disjoint groups n,m with

interconnecting links nm.
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Proof: Since gmn f gn= 0, Vnfm = 0, the Jacobian has a block tridiagonal structure:

V f- VT
m, dx m

Vm VT

0

0

V df,,VTm dx I

Vmidf VT

V i' Vdx

0

0 0 -.-.

yM yx T 0 ...

V "I V VnTnpdx n nd n

(4.82)

given the block tridiagonal structure the positive definiteness result can be verified by

verifying the positive definiteness of the lower dimensional matrices following the next propo-

sition.

Proposition 4.3.3 A block tridiagonal matrix with positive block entries Aii:

Anl

A21

0

0

A12  0

A22 A23

A32 A33

0

0

0

A 34

0

0

0

0

An,n_1 An,n

(4.83)

and Anl > 0, Ann > 0, is positive definite if the submatrices

Aii 2Ai,i+ 1

2Ai+1,i Ai+1,i+1
(4.84)

are positive definite.
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Proof: By partitioning the space as x = [x1 x 2 ... xn], the quadratic form is:

Ax = xTAnx1 + xT (A12 + A T )x 2 + xT A22x 2 + xT(A23 + AT )x 2 + xT A33 x3 + ...

1 T 1 1 1
S xi Anx1 + x Ax1 + xT(A12 + A2 1)x 2 + x A22 x 2 + x 2 22 n

. T T

1 x 1 [xi A 2A12  1x 2  A22  2A23  1
= xAx1 + x1X+ x Xs .. +XAx
2 [ x2  L2A21 A22  1 X 2 _X3J [2A32  A3

(4.85)

which is positive if the condition in eq. (4.84) is met. 0

In the next section, we illustrate the application of the results in this section with a series

of examples where application of the theorem and the discussed corollaries give insight into

the construction of different convergence mechanisms.

4.4 Applications

In a first example we present a useful application of the analysis approach to define a decen-

tralized control algorithm based on a set of primitives whose global convergence properties

can be verified from the results of theorems 4.3.1 and 4.1.1.

Example 4.4.1 Global convergence to time varying formation with only relative

information

Consider a formation flight mission where we are interested in achieving a cubic for-

mation with each one of the vehicles in a vertex of the cube and allow the cube to rotate

perpendicular to one of the faces with time varying angular velocity w(t). This is the case

for example of a formation continuously tracking a point on the ground while following an

orbit around the planet.

The following control approach is proposed: Consider the group of 8 agents xi, i E {1, ..8},

with agent groups defined as S, = {1, s2...,sm}, S1 {1, 2,3,4}, S12 = {3, 4,6,5}, S2

{ 5, 6, 7, 8}, and a control law based on sets of vehicles S1 and S3 , following the cyclic pursuit
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dynamics:

usi= kw(t)Ri(t)(xs,± - x8s) for si E S1, S 2  (4.86)

with k, = w(t)/(2 sin(wr/4)), and for S12 a time varying coupling control law that converges

to a planar square formation:

usi= ki (Rl(t)(xs,± - x8S) + R7 (t)(x.,- - x)) f or Si E S12 (4-87)

where Ri(t) E 1R3, 3 is a rotation that can vary its principal axis with time. Namely, the

rotation matrices can be defined as R, = T(t)R, 14TT (t), where T1 is a constant arbitrary

direction matrix (we can assume T1 = I without loss of generality), T2 = T1, and

0 - sin(#(t)) cos(#(t))

T1 2 (t) 0 cos(#(t)) - sin(#(t)) T (4.88)

1 0 0

where we assume p(t) = w(t) > 0.

The dynamics of the overall system are defined as x = A(t)x, and the constraints defining

the convergence subspace M = {i V(t)x = 0}, V(t)T [VyT V2 V3 (t)TI where, in as

similar manner to eq. 4.19:

V = K61(4) 06X6 (4.89)

V2 = F06x6 K'ri2(4)J (4.90)

V12(t) = [06X3 KL(4)t 12 (t) 06X3 (4.91)

where we use the notation T = I, x T and M can be shown to be a flow invariant manifold

since (7(t) + VA(t))i = 0.
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From theorem 4.3.1 and theorem 4.1.1 we have a way to numerically verify sufficient

conditions for the global convergence and stability to the desired subspace, namely it defines

constraints in the minimum value of ki as a function of the upper bound in the magnitude

of w(t), namely >max ; Iw(t)| such that:

sup (9(t)V(t)T + V(t)A(t)V(t)T) < 0 (4.92)

To see how this is true, notice that V1 = 0, V2 = 0, and

V12 (t) = [06X3 KIL2(4) [W(t)X ] t 12 (t) 06x3 (4.93)

= w(t) [06X3 KqL(4) [ X] t 12 (#) 06X3 := w(t)D(#) (4.94)

0 0 -1

where [2x] is the skew-symmetric matrix I 0 0 00

1 0 0

Since V(t) = V(#(t)) then V(#)A(#)V(#) T  VAVT is obviously a constant because the

reference frame is arbitrary.

D (#)V(#)T can be verified to be positive semidefinite, the above condition can be guar-

anteed if:

Wmax max (D(#)V(#)T) < VAV T  (4.95)
10<<0<27rI

The term in brackets can be numerically calculated for a given gain k1, thus defining an

upper bound in wmax for which global convergence is guaranteed. Figure 4-3 shows the time

history of the control approach converging to formation and achieving the desired rotating

configuration.

As a second example that illustrates the application to derive convergence properties for

general control a formation of vehicles surrounding a target is studied:

121



x, m

- 0U.2 U- 0.2 0.1 0.2

-0. - 02 -0 200. -0. -0.

0.2 0.2

0.1 0.1

0 0

0. -0'2-.2 -0.2112 -.

-0.1 -0.1

-0.2. -0. 2

0.2 0.2
0.1 0.2 0.1 0.2

0 0
-0.1 0 -0.1 0

-0.2 -0.2 m -0.2 -0.2

Figure 4-3: Agents converge to a cube in 3D. (Snapshots every 30 seconds).
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Example 4.4.2 A regular formation surrounding an (un)cooperative target Con-

sider a system of n + 1 agents, n of them with dynamics as in eq. 4.35, and a leader agent

with state x1 that uses information from all others and/or all other agents use information

from it:

= f,(x 1, x) (4.96)

xi = R(xi - xi) + RT(xi- 1 - xi) + fc(xi - xi) (4.97)

{2, .. , n}, and some general functions fc, fp with fc (0) 0. Denote xT = [x2, x, - - - ,x ]T.

The overall dynamics can then be written as:

21 f (x1, Ix)
-- F() (4.98)

x Lx + fc(x, x1)

The interest here is to determine convergence to the subspace defined by V = 0, where:

V = 0 Krn (.9
nI -1 @I

where in C- R" is a vector of ones, [n12 - 10 0 I] is a projection matrix into a subspace

where the target is in the center of the formation and Vn is the projection to the subspace of

regular polygons in eq. 4.19. Considering the following results:

L(1n 0 I) = 0, (4.100)

Vrn df [In @ 1] = 0 (4.101)
dx
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It is then found that:

VVZ+V dEVT 0
VdF-VT = d"'x"' (4.102)

n [Vd r n E (df - df/) + n2(f d (1
dx rn i dxi dxi dx1 dx1

Then, if 'd < 0, a sufficient condition to surround the target is:

dfc df, df_ dfc
( ) + n( ) < 0 (4.103)
dxi dx i  dx1  dx 1

Note that fe, f, are arbitrary functions and the result gives a sufficient condition to achieve

the mission objective in terms only of the gradients of f, and fc.

In the next example we consider a fragmented aperture application, where individual

telescopes are deployed in an arbitrary configuration and the objective consists on achieving

convergence to a formation where in its final configuration the vehicles are as close as possible

to each while maintaining a minimum separation between them to achieve the recreation

of a full aperture composed by many small segments. The problem is related to the two-

dimensional sphere packing problem and a solution can be described by a series of concentric

hexagonal formations. In this example, a distributed control law based on theorem 4.3.1 is

proposed and sufficient conditions for global converge to such configuration with any number

of spacecraft are derived.

Example 4.4.3 Convergence to a packed formation. Consider a set of agents with

first order dynamics xi = ui, grouped in M sets S of 6 vehicles, and consider the input:

u = Rx/6(xi+1-- xi) + RT/6 (xi_1 - Xi)fm for i E Sm (4.104)

Sm being a group of size 6, m - {1, ..., M}. This input was shown to make the system of

agents xi, i E Si converge to manifold M 6 : V6 x = 0} of regular hexagonal formations.
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Now, consider interconnection control laws between the different sets Si:

Uk =R 7r/ 3 (Xk+1 - Xk)+ = fi for k E Smi; (4.105)

Sm being a group with 3 agents, some agents in Sm and some in S1, which has been shown

to converge to triangular formations such that .M3 -{V3X = 0}.

The constraints of the desired convergence subspace are Vm = [V 6 04x6], V = [04X6 Vr6],

and the corresponding link constraints Vmi = Iv1, ... , i1, vn c R 3x3, Vm1 = -1,, vm2

I + R 27/3, vi1 = -R2,/ 3 for some ml, m2 C Sm, 11 E S1.

The Jacobians will be denoted as . = Ao.

Then, from theorem 4.3.1 and corollary 4.3.2 showing global convergence to a grid de-

fined by a pair of concentric, aligned hexagonal patterns Sm and S, with three-agent link

interconnections between them Sin, requires showing that:

VmAmVT Vm(Ami + AT')V,1T [ Vr6 I 2 6 )V Vm(Ami + A )V1m M m> 0

Vmi (Am + ATi)VT VmAmiVT Vmi(Am + A)V. V (3)V

and,

VmiAmVTi V,(IAi j V Ar3 (3)V VJ (A, + AT 1V0

0, (Am, + AT 1VT V AjVT V ( Am, + AT VmT V6 L(6)V

(4.106)

where L(*) = L & R + LT 0 RT , with L c Rnxn.

The remarkable value of this result is that it directly verifies global convergence for any

number of rings with corresponding interconnecting links and the overall global convergence

of the system is verifed by the result in eq. 4.106.

Figure 4-4 shows an example of the convergence for such a controller in a scheme with

three hexagonal rings. Agents in Si = {1, . .. , 6}, S 2 = {7, ... , 12} S3 = 13.. ... , 18} con-

verge to hexagonal formations. Formations 812 = {1, 7, 2},812 = {5, 4, 10}, S 13 = {6, 17, 12}, S13 =

125



{3, 4, 9}, establish links that define a manifold M =( Mi corresponding to a regular sphere

packing grid.

To close this section, an example is presented where the result guarantees global conver-

gence to a desired size of formation when the size is commanded by one of the spacecraft

using only relative information to its neighbor(s).

Example 4.4.4 Leader based convergence to desired size. Consider a system of n

agents with a control law 4.35 and a leader that controls its separation to other agents by a

control law f (d) such that:

ui = R(7r/N)(xi+1 - xi) + R(7r/N)T(xi_1 - xi) i = 2, 3..N (4.107)

U1 = R(a)(x2 - x1) + R(a)T (xN - X1 ) + fr (X 2 - Xi 12 ~ )(x 2 - x1) (4.108)

where f,(p) is a positive function of p with equilibrium point 0 such that f,(0) = 0. Then,

the system exponentially converges to a symmetric formation with interagent separation p.

Proof: The principle of the proof is to show that the dynamics of an auxiliary system

y = V(x) are contracting, and y = 0 is a particular solution of the system.

Consider, the overall dynamics of the system of single integrators with control law 4.107:

x = -Lx + f,(x)Aix (4.109)

where L. is the Laplacian defined in previous section which converges to regular formations

-I I 0 ...

andA = 0 0 0 . Consider the auxiliary variables

[] = Xj (4.110)
Y2 Lfr (X
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Figure 4-4: Agents converge to a packed grid by imposing some convergence constrains shown
by the arrows, two different cases can be designed following the same argument.
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where VTV + UTU = I, 4UTUx = 0, which define an nonlinear invariant manifold Mn,,:

{x I Vx = 0, f,(X) 0}, since x = 0 for x E Mr. Their dynamics are given by:

y1V5 V(-Lsx + y2Aix)[Y2 = L(Vxfr)i L(xfr)(- x+y2Al x)

#1 -VLVT VAix y1 YK] = [ VAx ] ~1= f(x, y) (4.111)
9 2 J L -(Vxfr)LsVT (Vxfr)Aix Y2

The auxiliary system (4.111) is contracting and all trajectories will converge to the same

trajectory if:

F = Of -1 0 (4.112)
ay

Specifically y = 0 is a solution, then, any trajectory of system (4.111) converges to y = 0,

which means that any solution of (4.109) converges to x E AP.

V and Vn are related through an invertible transformation V = TVrn, and consider an

I 0
invertible transformation that commutes with T, i.e 0 = , where 0 > 0 E R.

0 0

Then, TO O-TT = ET TTE-1 < 0 + F < 0.

Then, a sufficient condition for convergence of system (4.109) to a regular formation with

characteristic size p is:

0VAix < 0 (4.113)

-60(Vxfr)LsVTl (Vxf,)Ai
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It has been shown that V,tV < 0, and we also have that:

VnAix =

Vxfr = 2(X2 - Xi)T df p)

-I

0

0

[I I0 ... 0

(x 2 - xI) = D1(x2 - xI)

= 2dp (x 2 - xi)T D 2

Then, the projected Jacobian J, is negative definite iff:

(Vxfr)Aix = -2(x 2 - X)2f (P)
dp

df( p)

d p

<0

(4.116)

(Vxfr)Aix + 2(-VnAx - 0((Vxfr)EsV4))(VrnV!)41
2 (0-VAix - 6((Vxf)EsV))T

- x 1)T D1 - 202 D (Vrn4sV)- (D1 - 202 D)

- 202 d D) (D1 - 202 dp < -20df I
dp

(4.117)

D = D2 L sVn-

which verifes that the negative definiteness of J, does not depend on the value of x. If

for a particular value of x, a constant transformation E is found which verifies the negative

definiteness it holds uniformly.

Then, the satisfaction of the two above conditions is sufficient to guarantee convergence
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(4.115)

and (from a Schur factorization):

4 L(x2
< 0

(x2 - x1)]

< -26 (X2 - X)2

*I[(D1



in terms of f. For example, for d = 1, N = 5, [ verifies global convergence
0 0.5

to any desired size of formation.

4.5 Summary and Conclusions of the Chapter

This section presented an approach to the cyclic pursuit laws in the context of contraction

theory. By doing so, a wider perspective to analyzing the convergence properties of decen-

tralized control approaches that lead the formation to subspaces or submanifolds of the state

space instead of converging to fixed points was devised.

Some of the results are in the form of sufficient conditions that are to be verified nu-

merically, but several important results are obtained as a direct derivation of the approach,

namely, nonlinear control laws that verify global convergence to a regular formation of spe-

cific size as a function of upper bounds of a scalar function, convergence results to time

varying formations as a function of the variation rate, laws that can extend the convergence

properties to an infinite number of interconnected basic blocks by showing convergence to a

basis formation block, or by allowing a straightforward derivation of non-intuitive necessary

conditions to achieve a specific mission that can be defined as convergence to a manifold as

in the case of deriving conditions to surround a non-cooperative vehicle as illustrated in an

example.

The approach to analyzing dynamical systems via contraction theory departs from the

most common Lyapunov analysis and appears to be more fit for the case of nonlinear dis-

tributed systems, and more specifically systems with circulant interconnections.
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Chapter 5

Comparison of the Generalized Cyclic

Approach to Relevant Architectures

5.1 Introduction

As mentioned in the introductory chapter, the synthesis of a controller with arbitrary in-

formation structure has been widely studied and remains still an open problem. Solving

for an optimal controller is a convex problem only for very specific information structures.

An important part of the work on this thesis presented in previous chapters aims to define

controllers that achieve better performance with reduced complexity in some specific mission

scenarios.

The basis of the approach proposed in this thesis considers controllers that maintain

a formation by converging to a manifold instead of tracking relative trajectories to other

vehicles. One expects that by allowing some extra degrees of freedom the control effort will

be reduced as compared to approaches that track relative trajectories and constraint more

degrees of the system. Evidence of this effect has been noticed in the experimental results

in Chapter 6, showing an improvement as compared to other architectures.

The objective of this section, therefore, is to justify and highlight the importance of
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the control approach based on cyclic approach in a more theoretical manner. This is done

by considering a benchmark formation control problem and comparing the advantages and

disadvantages of different control architectures in a more analytical trade space framework.

As metric of performance, a common quadratic norm that weights the performance error

and the control effort is traded with the cost of implementing the control architecture in

terms of complexity in as well as the cost of being robust enough to a failure.

5.2 Benchmark Problem

A simple benchmark problem is considered. This problem encompasses the concept of for-

mation maintenance focusing on simple integrator dynamics, but the approach could be

extended to more general cases under some specific assumptions. The problem is simpli-

fied for the purpose of the analysis, by considering the agents with individual homogeneous

dynamics:

xi = Axi + Bnu + Bow (5.1)

and for simplicity for our purpose we assume B = I, B =1, C, = I and A = -cI. For

the objective of comparing the performance of controllers maintaining a certain shape of the

formation, we assume a regular polygon. In that case, the performance can be described by:[-I I 2 / + R 2 R/n 0 ...
z= 0 -I 1 + R27r/n -R27r/n -.-. =Cx (5.2)

Depending on the control architecture, the different vehicles in the formation will be

required to perform calculations to issue their control commands. In the first place each

vehicle has to obtain the state information from itself and from other vehicles which it requires
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to calculate the control commands. The trade analysis model in this chapter considers a unit

operation per state to be received and a single unit operation per state to be transmitted.

Whether the state information from other vehicles is obtained through communications or

through measurements is irrelevant to the model, but further research could analyze different

situations including differences between such scenarios.

Using the input information each vehicle calculates the control commands. Such cal-

culation is assumed in our model as a matrix multiplication operation and is modeled as

the size of the gain matrix for each respective vehicle. Then, if the commands need to be

communicated to others vehicles the same scheme is considered, assuming a unit per each

command to be transmitted.

5.3 Synthesis of Decentralized Controllers

In general, the control synthesis problem can be described as, given a plant G, find a con-

troller K while minimizing a desired metric of the system J = ||f(P, K) 1. This metric

defines the control objective. As mentioned in the introduction, for our case we are going

to analyze the performance of the system in terms of a quadratic metric that considers the

control effort and the error in the desired configuration. The results in this section consider

a continuous system with state feedback.

The trade is based on studying the controllers that minimize a quadratic cost function

of the error and the control effort:

J = z Qz + UTRudt (5.3)

for a system with dynamics:

x = Ax-+ Bau + Bmw (5.4)
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and error defined as z = Cix.

Consider the dynamics of the closed loop system:

x(t) = (A + B.K)x + Biw (5.5)

with output:

z(t) = (C + DK)x

with C = CQ 11 2 , R = DTD, then the metric of interest is ('J)",,, the square of the

2-norm from input w to output z.

Given a system G with state space description A, B, C, 0, the 2-norm from input to output

is given by:

|IG|I2 (5.6)= Tr {P*(jw)P(jw)}dw

which by Plancherel's Theorem is:

||G ||2 = Tr {B*eA*tC*CeAB}dt

= Tr{B*YoB}

(5.7)

(5.8)

where E = fh eA*tC*CeAdt is the observability gramian, which can be shown to be the

solution to the lyapunov equation:

A*Y+YoA +C*C = 0 (5.9)

hence, the optimal solution to an unstructured controller, can be obtained by solving the

above equation.

For some very specific cases, the structure of the controller can be derived directly from

properties of the system. In a centralized scheme, there are no restrictions on the structure
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of K, and a solution of the above equation is calculable though a variety of methods. On

other cases, if A, B, C, Q and R belong to a matrix algebra, it is straightforward to show

that Y and the optimal controller K = -BR- 1 Y, belong to the same algebra [56]. Thus,

for example, if A and C are rotational circulant matrices (see sec. 2.1) and Q,R,B are a

constant time the identity, all of them belong to the algebra CR and thus the controller is

rotational circulant.

However, for a general structure of K accounting for the underlying information trans-

fer structure, the problem is not convex, and even solving for a feasible solution can be

a challenging problem. Some structures, like cyclic or leader follower structures can be

implemented as convex constraints, however, for many cases the degree of freedoms in the

structure of the controller, the best we can do is solve for a constant that multiplies a unitary

Laplacian such that K = kL.

Since the purpose of this chapter is to compare optimal performances for different ap-

proaches, we only consider topologies for which we can solve for an optimal solution under

the same Q, R weights. Thus we restrict to solving for the optimal control problem under

a fix structure times a constant K = kL, where L defines the structure of the decentralized

controller.

In that case the jIG""| = Tr{Y}|, Y is given by:

(A+kL)*Y+Yo(A+kL)+(C+kDL)*(C+kDL) = 0 (5.10)

which is a convex function of k, and a minimum can be found. Figure 5-1 shows the J as a

function of k highlighting the minimum for different architectures.

The structures considered in the analysis are:

1. Centralized control In this case the computation of the control commands is per-

formed in one of the vehicles. It requires knowledge of the states of all the other vehicles

in the formation which can be either measured or communicated. It also needs to com-
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Figure 5-1: Optimal Cost as the number of vehicle increases

municate the commands to each one of them as well. In this case the only essential

vehicle is the central controlling unit.

2. Parallel implementation of the controller This is a common approach presented

in the literature [29, 92], which is decentralized in the sense that it does not require

a unique vehicle to issue the control commands, each vehicle, individually calculates

its own commands based on knowledge of the overall formation state. It requires

measuring the state of all the other vehicles in the formation but no vehicle is essential

to the operation of the control architecture. We assume that the state estimate of the

formation among all the vehicles is equivalent and the performance can be equivalent

to the centralized approach.

3. Synchronized individual regulation with a global reference frame In this

case, the formation requires an external coordination mechanism, e.g. GPS informa-

tion, which allows them to track individual points and have accurate synchronized

timers to achieve the desired formation. In this case the vehicles do not require any

communication between them, but require individual measurement to a global refer-

ence frame and a time coordination mechanism.
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4. Relative fixed trajectory regulation This is the approach described in the intro-

ductory chapter, related to the consensus problem which has been widely studied and

is very common approach to decentralized formation control. In this case, each vehicle

requires information of only its neighbors as dictated by the specific interconnection

topology in order to calculate its own control commands. Consider the consensus-like

approach where an individual controller is given by:

ni = kij (xj - xi - hji), (5.11)
jiEA

and hij are the agreement biases as described in section 2.2.3. Then the overall closed

loop system is:

c = (A - kL)x + w (5.12)

where x describes the overall description of the formation and w is a vector of uncorre-

lated disturbances. The interconnection between vehicles defined by a matrix L, then,

finding an optimal controller with a given topology reduces to an optimization on the

parameter k.

We consider the following interconnection topologies, for which an optimal controller

can be derived via solving an LMI:

5. Generalized pursuit 1-circulant cyclic topology In a parallel approach, consider

the manifold approach described in eq. 4.35. In that case the controller can be written

as:

u = R(xj - xi), (5.13)

where R is a rotation matrix such that V(A + kL)R = 0 for VR = 0 and the overall
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cyclic> 0 0 2I -1
Undirected -1 0 0 -I 21

I 0 0 01
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L = 0 0 I -I 0

Chain 0 0 0 I -1

L4 0 0 0 1

I1 0 0 0 0~

0 -I1 0 0

L = 0 0 -I1 0

0 0 0 -I 0

Individual Synchronized - 0 0 0 -1

Table 5.1: Different topologies considered for comparison of decentralized controller
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Figure 5-2: Optimal Cost as the number of vehicle increases

structure of the closed loop system is:

x (A - k4,)x + w (5.14)

where x describes the overall state of the formation, and w is a vector of uncorrelated

disturbances. The interconnection between vehicles defined by a matrix L, = L 0 R +

LT RT.

Figure 5-2 shows the solution to the optimization problem for different considered archi-

tectures as the number of vehicles increases. It can be noticed that as the number of vehicles

increases the centralized control is always the most favorable in terms of performance opti-

mality.

5.4 Cost Metrics

In the previous section, we consider only a quadratic performance metric, and the obvious

result is that a centralized controller is the best approach if we are only concerned about the

performance in terms of error and fuel. However, one of the major drivers of the research in
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decentralized control is that the effective realization of centralized approaches becomes more

difficult or impossible as the number of vehicles increases.

The incurred cost in the realization of a centralized architecture, is mainly due to the cost

of communicating all the team information to and from one single unit and processing all

that information in the same unit for every control period. This justifies a first cost metric

in the trade analysis. This Cost of implementation (Costi) metric considers the maximum

number of operations in any single unit at every control period. The metric is defined as:

Cost1 = max C(i)

Ci(i) = Nops +Ncom + Nensi

where No,,,, Ncomi, Nens, are the estimated number of algebraic operations, number of

communication operations and number of estimation operations on the ith vehicle.

Another disadvantage of the centralized approach, mentioned in the introductory chapter,

is the risk of failure of the overall formation if any one of the vehicles fails, specifically, if

the central control unit or the communication to or from it fail, the whole control scheme is

doomed. A way to circumvent such situation is by allowing more than one of the spacecraft

the same capabilities. This is the justification of a second metric considered in this study

which accounts for the the expected cost of an extra unit to achieve robustness to a failure.

This Cost of robustness metric is defined as:

Cr = ZriPfail(i)CI(i)

Where Pfail is the failure probability of a specific unit i and ri is a parameters that define

how 'critical' role in achieving control i is and for our analysis we set it to be ri E {0, 11
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5.5 Results

Figure 5-4 presents a trade space of the performance of different architecture versus the cost

of complexity as the number of vehicles in the formation is increased.

The following conclusions can be drawn:

o A centralized approach is optimal and the optimal performance per vehicle does not

depends on the number of vehicles

o For every case, the cyclic controller is a non-dominated solution

o Among all non centralized solutions, the cyclic approach has the best performance,

however if the only metric of concern is the cost of implementation, there are topologies

cheaper to implement, for example a chain topology, or each vehicle tracking individual

coordinated trajectories. This last one however, assumes that the cost of having a

common global reference frame is negligible (as might be the case of GPS for LEO

formations)

o Under the defined metric, the centralized solution is dominated, particularly, having

multiple instantiations of the controller has better robustness (in the sense of surviving

a failure).

o If the performance and robustness to failures are metrics of importance, the cyclic

approach that converges to a manifold of regular formations is the predominant archi-

tecture

o For formations with large number of vehicles, the performance difference between a

generalized cyclic controller with convergence to regular formations and a cyclic topol-

ogy tracking relative trajectories tends to vanish
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Chapter 6

Experimental Results: Decentralized

Formation Flight in Microgravity

Environment

6.1 Introduction

The SPHERES testbed provided a hardware platform for validating the formation flight al-

gorithms in a relevant space environment. The experimental demonstration of the formation

control algorithms and the validation of their expected properties were achieved by imple-

menting cyclic pursuit control laws and testing them in a relevant hardware platform in the

microgravity environment aboard the International Space Station. The experiments present

the first known implementation of decentralized formation flight in space.

The performance of the algorithms as a formation control strategy was verified while

demonstrating their capabilities to accomplish several simulated mission scenarios relevant

for a fractionated spacecraft mission. Such scenarios are specifically inspired by DARPA's

system F6 mission objectives.

The F6 (Future, Fast, Flexible, Fractionated, Free-Flying Spacecraft United by Informa-
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tion Exchange) mission (http://www.darpa.mil/tto/programs/systemf6/index.html) mission

is currently in development. Its objectives include demonstrating the advantages and feasi-

bility of fractionated spacecraft on a near-Earth environment. Among the milestones to be

achieved in order to validate formation flight feasibility are array initialization, satellite ad-

dition maneuvers, collision avoidance and rejection maneuvers. The experiments performed

on SPHERES addressed some of the issues for such mission scenarios using decentralized

cyclic pursuit algorithms, testing the reliability and verifying the important properties of

this approach to formation control.

This chapter is structured as follows: the first section describes the SPHERES testbed

and the implementation of the algorithms, a second section describes the performed tests

and their results, a third section uses experimental data from the different tests to verify

and quantify the performance of the implementations of the algorithm and compare their

performance to other control approaches.

6.1.1 The SPHERES testbed

SPHERES (Synchronized Position Hold Engage Reorient Experimental Satellites) are an

experimental testbed consisting of a set of small vehicles with the basic functions of a satellite.

Three of them are aboard the International Space Station and are operated by the astronauts

in a test volume that allows 6DOF microgravity maneuvering. The operational volume is

approximately a cube of about im x im x 1m.

There are also three identical vehicles on the ground that can perform 2D maneuvers by

means of frictionless sliding air bearings. This vehicles operate on a flat table and are used

for a first level validation of the algorithms before sending them to the ISS.

The propulsion system of a SPHERES vehicle consists of 12 microthrusters that use

compressed CO 2 gas. The microthrusters are controlled by solenoid valves that can achieve

pulses between 10 to 180ms at each control period. Each thrusters delivers 0.11N. The wet

mass of each SPHERE on the ISS is approximately 4.3kg.

144



Figure 6-1: Picture of three SPHERES satellites performing a test on board the ISS. (Foto-
credit: NASA - SPHERES)

The metrology system of the SPHERES emulates a global positioning system by calcu-

lating its position and velocity with respect to a fixed frame by measuring the travel time

of synchronized ultrasound signals. Each vehicle has a local estimator that calculates its

global position based on ultrasound and IMU measurements with an accuracy of approxi-

mately 2mm. This metrology system can also be used to calculate the relative range and

bearing, and corresponding rates to a beacon in another vehicle. Such mode of operation

in intended to allow experimentation using pure relative information. In the tests presented

on this thesis however, relative measurements were synthesized from communicated states

as the vector difference of each vehicles global estimate. This simplification is irrelevant to

the verification of the control performance.

A single RF channel is used to communicate the state between/among spacecraft and

the ground. The communication is TDMA based, and allows for a small bandwidth for

transmission within each control period.

Figure 6-1 shows a picture of three SPHERES spacecraft aboard the ISS.

The dynamics of each spacecraft are well approximated by a double integrator. The
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control commands calculated by the control law are the desired forces which are converted

into open loop pulse times of a set of thrusters to achieve the desired force by a control

allocation (mixing) algorithm.

6.2 Algorithm Implementation

The algorithms were implemented in C, the standard programming language of the testbed

and packed as a library for the SPHERES science utility module.

Three different versions of the control algorithm were implemented and tested on different

experiments performed at different stages of its development.

On a first implementation, a velocity tracking inner loop was used as an approximated

implementation of the single integrator dynamics, in this case the control algorithm was

setup as:

fi = -mfny(kdR(a)(ii+1 - :i) - fi) (6.1)

where - is the mass of the vehicle, is and isrj are position and velocity variables from the local

estimator, kj+1 is a communicated estimated position variable from the estimator in vehicle

i + 1 and -y and kd are control gains. kd is a time scaling which defines the angular speed of

the formation rotational motion and y is a regulation gain that dictates the behavior of the

velocity tracking. This controller is basically, the simplistic approach to double integrator

dynamics described by Ren [75].

This implementation requires the agreement on an inertial frame to which v is measured

with respect to, an agreement on a global orientation and does not consider feedforward

terms. It does not require an agreement on an origin of coordinates since it only requires

relative position measurements.

An important consideration for implementation is the discrete nature of the actual system
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in the selection of the gain -y. In a theoretical sense, for the continuous, unperturbed case,

large values of -y, improve the tracking performance of the velocity regulation, however, in

a discrete, saturation constrained implementation, large gains can easily turn the system

unstable. For the experiments, the gain was selected considering the limitations of the

testbed by selecting it such that the settling time of the velocity tracker is about 1 period.

A second implementation considers a more correct approach to second order systems

by adding a feedforward term which improves the performance. This is specifically, the

approach presented in section 3.32, by setting up the force to:

fi = -i-n(ykgR(a)(ki+1 - ki) + kgR({zi+i - y) - - (6.2)

In this case, the gain - was tuned by considering the rejection of a 2 cm disturbance

over a control period and the value of kg was setup to achieve the desired angular speed for

each specific scenario. Notice that for this implementation too, an agreement on a reference

velocity to which v is measured with respect to and an agreement on a global orientation

are required but not an agreement on the origin of coordinates.

The third version used in the experiments considers the approach in Section 3.42, which

was implemented as:

fi = -f-(k 1 R(a)(dk 1 + dik2 ) + k2R(2a)di1 ) (6.3)

where dii = i+2-,i, dii = :i+2-ki, diri = -9 are synthesized relative measurements

where i and zis are from the local estimator, ^,, ^ are communicated estimated state

variables from the estimator in vehicle j. k1, and k2 were selected to achieve circular or

spiral motion with the desired angular velocity.

As described in the theoretical results, in this implementation, the vehicles do not require

any global positioning information, only an agreement on a global orientation. It is to note
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that, for real missions, this agreement on the orientation can be achieved through star

trackers, and therefore this approach seems useful for deep space missions.

The tests were designed as a sequence of maneuvers using one of the above described

implementations and will be described in the next section. Every test starts with standard

estimator convergence and initial positioning maneuvers. Each vehicle is programmed with

a role defining a unique identifier and in the description below. The vehicle loaded with role

i will be referred as spacecraft i or SPHi.

Videos of experimental results can be accessed online1 .

6.3 Description and Results of the Tests

The experiments present the first known implementation of decentralized formation flight in

space. The main objective of these experiments was to demonstrate the use of the decentral-

ized algorithms as a formation control tool for several mission scenarios. In a first test, the

decentralized properties of the algorithm to achieve a formation and achieve easy addition

of modules were verified. The vehicles performed circular maneuvers, elliptical maneuvers,

and a joining maneuver. In a second set of test we verified the practical implementation of a

controller that uses only relative information to maintain a formation achieving circular and

Archimedean spiral formations. In later tests we use the cyclic pursuit algorithm to achieve

reconfiguration of the maneuver when a failure is detected. In other tests the algorithm was

implemented with a heuristic collision avoidance mechanism that addresses some of the risks

associated with collision while converging to a formation from an arbitrary initial position.

In a last set of experiments presented in this chapter, a simulation of a deployment scenario

is presented where each vehicle joins a circular formation in the order and timing manually

selected by the crew member.

1http://ssl.mit.edu/spheres/video/CyclicPursuit
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6.3.1 Test 1: Joining maneuver 2-sat to 3-sat formation

The test described in this section was performed during test session 14C, in November 2008.

It was designed as a sequence of maneuvers intended to incrementally build on complexity

following the general guideline protocol for testing on SPHERES. The main idea was to test

the algorithm achieving a circular formation with two vehicles, then add a third one and

then achieve elliptical trajectories. For this test the cyclic pursuit algorithm was implemented

following control law in eq. 6.1.

After initial estimator convergence and positioning the test was designed to achieve the

following maneuver sequence:

1. Two spacecraft perform a rotation maneuver in the x-z plane with a radius r = 0.3m;

2. A change in the desired radius is commanded and the spacecraft spiral out to achieve

a circular formation with r = 0.4m;

3. A third spacecraft joins the formation and the system reconfigures into a three-spacecraft

evenly-spaced circular formation with r = 0.35m;

4. A similarity transformation T is applied to the rotation matrix in a way that the

spacecraft achieve an elliptical formation with eccentricity 0.8.

The initial positioning was x 1 = [0, -0.1, -0. 2 ]T, x2 = [0, 0.1, 0 .2]T, x 3 = [0, 4, O]T with

zero initial velocity (with respect to the ISS).

6.3.1.1 Test 1 (P237 -T2) results

Data from telemetry shows the formation achieving the defined sequence of maneuvers. In

figure 6-2 the global position and velocity time history is shown. The time history of the

states is depicted for each spacecraft (with respect to the ISS). In fig. 6-3 the trajectories

performed by the spacecraft during the maneuvers 1), 2), 3) and 4) are shown.
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After a successful initial positioning of the three satellites at 75 seconds, SPH1 and

SPH2 start moving to eventually achieve a circular rotating formation (Fig. 6-3a). In

the next maneuver (Fig. 6-3b), after spiraling out to achieve a larger formation size, the

vehicles asymptotically converge to a constant radius until the next maneuver (Fig. 6-3c) is

initiated. In that next maneuver, satellite 3 joins and a new radius is achieved. A profile

plot is also presented which shows the satellites converge from different x - z planes. In this

maneuver the topology is reconfigured. SPH2 changes its target from SPH1 to SPH3, SPH3

starts following SPH1 and a natural reconfiguration occurs. In a last maneuver (Fig. 6-3d),

a transformation is applied to the control law as described in sec, 3.5.2 and the vehicles

achieve a slightly elliptical formation with eccentricity 0.8.

The experimental results (see in particular Fig. 6-3) present the first demonstration

of the effectiveness of the proposed cyclic-pursuit controllers. It verified the modularity

properties of the algorithm in the sense that each vehicle was running the exact same code,

and the coordination was achieved by defining the interconnection topology. It additionally

experimentally verified the extension to achieving elliptical formations.

6.3.2 Test 2: Convergence to 3-sat formation from arbitrary initial

conditions

This second test, like to the previous one, was performed during test session 14C in November

2008. Again, for this test, the cyclic pursuit algorithm was implemented following control

law in eq. 6.1. The sequence of maneuvers, after initial estimator convergence was defined

as:

1. Three spacecraft achieving a evenly-spaced rotation maneuver in the x-z plane with

radius r = 0.35m;

2. After 75 seconds, a similarity transformation T is applied to the rotation matrix for

the spacecraft to achieve an elliptical formation with eccentricity equal to 0.8.
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6.3.2.1 Test 2 (P237 -T6) results

Figure 6-4 shows the time history of the global position and velocity of each spacecraft (with

respect to the ISS) from telemetry data; while fig. 6-5 shows the trajectories achieved by the

spacecraft during the maneuvers 1) and 2). The results demonstrate the controller achieving

its objective of converging from an arbitrary initial position into a 3-sat rotating formation.

It is important to notice that, the formation converged to a larger size than the designed

0.35m. A similar behavior was observed in test 1. This effect is explained as a consequence

of the discretization and delays effects and the lack of a feedforward term. Specifically, the

value of a (from Section 3.2.4), at the equilibrium state has to be less than ir/N in order to

maintain a non expanding formation. This means that the nonlinear term ||zi+1 - Xi - P

is greater than zero, and thus ||xi+1 - xill > p when a stable size is achieved. In the later

tests we show how this situation is improved when adding a feedforward term and in the

conclusions section we address how other improvements could achieve even more precise

results.
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6.3.3 Test 3: Pure relative formation maintenance

This test validated the decentralized algorithm based on the cyclic pursuit approach that

uses only relative measurements to maintain a formation. This test was performed during

test session 20, in December 2009. In this test, the control approach in eq. 6.3 was used. In

the previous implementations of cyclic pursuit algorithm, the distributed controller relies on

measurements of relative positions but required an agreement on the velocity of the inertial

frame. In this version of the controller, the commands are issued based exclusively on relative

measurements to the neighbors. This characteristic is of important value for deep space

formation flight applications. The algorithm to be used in this test is an implementation of

the cyclic pursuit algorithm for double integrator dynamics with only relative information.

The constants k1, k2 were defined to achieve an angular speed of w = 27r/120rad/sec. After

the first 45 seconds are for estimator convergence and initial positioning, the sequence of

maneuvers was defined as following:

1. In the first active maneuver the satellites position themselves 60 centimeters from each

other in opposite directions from the center of the test volume and an initial formation

acquisition maneuver using the cyclic pursuit algorithm from previous test sessions
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achieve a circular formation.

2. After 40 seconds into this maneuver the controller in both satellites switches to the

control law described in eq.6.3 with parameters k1, k2 to achieve an spiraling maneuver

under free drift mode.

3. When reaching a radius of 50cm, the controller switches to maintain a circular forma-

tion including a mode controlling the center of the formation,

4. After 40 seconds the controller mode switches to free drift mode with parameters k1,

k2, a to achieve circular formation (using only relative measurements) and allows the

center of the formation to drift free.

5. Lastly, a stopping maneuver finalizes the test.

6.3.3.1 Test 3 (P282-T3) results

The satellites performed the specified maneuvers, achieving the desired relative motion in

the x-y plane, i.e. relative circular and spiral trajectories. This test successfully validates

a new type of controller inspired by the cyclic pursuit algorithm, which uses only relative

position and velocity information of neighbors to converge to a desired relative motion.

The distributed control laws, shows the desired performance and convergence properties

to achieve an overall desired formation behavior in the x-y plane. A discernible result from

hardware implementation is however, that the relative motion in the z direction showed very

slow convergence to the desired state due to a suspected constant disturbance in the +Z

direction.

The implemented control law shows a slow convergence because of too low gains assigned

for the z-motion control which is the direction perpendicular to the formation maneuvers and

is completely decoupled from the cyclic pursuit control. From eq. 3.42 it can be noticed that

the dynamics in the z-direction are decoupled of the other coordinates. The relative dynamics
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in such direction reduce to a dynamic consensus which should converge to an agreement in

the z-positions, if the gain is large enough [77]. Therefore, the gains for z-motion, could have

been independently assigned from the gains for x-y motion.

For the purposes of this thesis, the important result is the validation of the performance

in the x-y plane. As mentioned, the x-y motion is decoupled from the z motion, which

is described by consensus dynamics under disturbances, which have been studied in other

contexts and are out of the scope of this thesis.

In Figure 6-6, the relative motion in the x-y directions is shown performing the different

maneuvers. The figure shows the relative state of the satellites as a function of time as well

as the control commands on each vehicle. The underperformance of the controller in the

z-direction is evident when the free drift mode is active. In the maneuvers 1 and 3 in figure

6-7, the center of mass is free and it is noticeable how both vehicles drift in the positive Z

direction.

This experiment was the first experimental validation of the cyclic pursuit approach that

relies only on relative information to control a circular and spiral formation.
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6.3.4 Test 4: Implementation with a fault detection and recovery

algorithm

The purpose of this test was to verify a cyclic pursuit algorithm as a responsive control

method to achieve reconfiguration maneuvers in a satellite formation in the event of a failure.

This test used a communication failure detection, isolation and recovery (FDIR) algorithm

demonstrated in tests run in previous test sessions developed as part of parallel research on

formation flight at MIT space systems lab.

A feature of the implemented algorithm, is the setup of a logic algorithm that reconfigures

the topology of the formation. Based on this logic, each vehicle decides the vehicle that it

uses as a partner to control its state. In this case it uses knowledge of a global variable which

is updated through communication by the fault detection and identification mechanisms, but

current research aims to identify the formation overall state through local knowledge.

When a vehicle is rejected because a failure was detected, a set of the parameter that

defines the formation and the formation changes automatically reconfigures into a new con-

figuration. In this test, for the purposes of algorithm demonstration, the reconfiguration

consists only on a change to a parallel formation plane. In a more realistic implementation

the idea can be applied to a more general set of parameters that define a reconfiguration to a

formation that optimizes some specific metric, for example, minimizing collision probabilities

with the unresponsive vehicle.

In all the following tests the implemented controller is an improved implementation of

the cyclic pursuit algorithm that includes a feedforward term, specifically 6.2.

The sequence of maneuvers after estimator initialization and initial positioning in this

test was defined as follows:

1. At 55 seconds, a 3-satellite rotating formation in the x-y plane, with center on the

z = 0.2m plane is commanded.

2. At 120 seconds, a failure is simulated in SPH1, by blocking the transmission of data.
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In response to this, SPH2 and SPH3 should change the formation plane, specifically

to the z = Om plane.

6.3.4.1 Test 4 (P273-4) results

The results from this test demonstrated a complete fault detection isolation and recovery

mechanism for multi-vehicle formations under a simulated failure and even under an actual

failure. The awareness of the state of the communication link with the other satellites in

each vehicle is monitored by the fault detection module. The plots on the left in Figure 6-8

, show the perception of the transmitters for each one of the satellites. 0 means nominal

operation, 1 means a failure was detected. The black line describes the number of satellites

in the formation for each satellite. The simulated failure in the transmitter of SPH1 (SPH1)

is indicated by the thin line at 120 seconds. 5 seconds later, the detection algorithm on

each vehicle detects that there is a failure seen in the change of the variable defining the

perception of the state of the transmitter (TX1) from 0 to 1.

The detected failure triggers a reconfiguration maneuver in the controller module, which

commands a change in the configuration of the interconnection links and moves the center

of the formation in a way that avoids the failed vehicle. The number of vehicles in the

formation is used by the decentralized algorithm to define the formation parameters. At

about 125 seconds satellite 1 reconfigures.

An actual failure was detected and addressed by the algorithm. At about 160 seconds,

SPH2 reset. SPH1 and SPH3 detected the failure. SPH3 then reconfigures its formation

parameters and changes planes again.
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Figure 6-8: Experimental results from Test 4. Top: perception of the formation by each
satellite.
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6.3.5 Test 5: Implementation with a collision avoidance mecha-

nism

This test was designed to evaluate the performance of a combination of algorithms to achieve

formation initialization avoiding any possible collision. A high level algorithm commands

the formation acquisition and maintenance using the cyclic pursuit decentralized algorithm.

In case of a potential collision, a low level collision avoidance algorithm overrides the high

level controller to prevent trajectory overlaps. The algorithm assumes that a vehicle has

a detection system capable of detecting position and velocity of nearby objects. For the

experimental setup, each vehicle was given the information of the other satellites via com-

munication.

The test sequence was the following after estimator convergence and initial positioning:

1. SPH1 and SPH2 start a circular formation maneuver. SPH3 holds position at a point

that interferes with the path of the formation of SPH1 and SPH2.

2. After a few seconds into this maneuver, SPH1 and SPH3 detect a possible collision

with each other and the collision avoidance algorithm on each one executes a path

correction.

3. Ten seconds after the execution of the collision avoidance maneuver in SPH3 has oc-

curred, the satellite signals the others that it is joining the formation and the vehicles

reconfigure in a 3-satellites formation.

4. The cyclic controller continues issuing control commands in each satellite, while the

collision avoidance runs in the background executing path corrections in case of any

possible collision with another vehicle is detected.
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6.3.5.1 Test 5 (P273-3) results

This test was successfully completed and the vehicles performed the expected behavior. An

error in the instructions to the crew in the test procedure files cause an initial misplacement

in the desired position of satellite 1, however, this misplacement did not affect the overall

development of the test.

The plots in Figures 6-9 show the trajectories of the satellites. During the initialization

maneuver, satellite 3 had to move from the negative x position to a positive 0.4m position.

An initial small correction was actually executed by the collision avoidance mechanism during

this positioning stage as noticed in figure. The trajectory initially described by satellite 3 in

the x direction is due to the above mentioned misplacement.

Figure 6-10 show the time history of the states for each vehicle. It can be noticed

how primary (SPH1) and secondary (SPH2) satellites start a circular formation until SPH1

detects the possible collision with the tertiary and activate the collision avoidance path

correction. The trajectory of SPH1 deviates from the circle; SPH3 also tried to move out of

the path. Additionally, the SPH2 was also affected by the path correction since its commands

are coupled to the motion of the other satellites in the formation. Eventually when no more

collision threats are detected the 3-satellite formation continues its path to finally achieve

the formation.

6.3.6 Test 6: Implementation as a random initialization algorithm

This test demonstrates the performance of an algorithm for random formation initialization.

This test builds up on the results of P273 Test 3, by using the same algorithm with an

addition of a module for astronaut input. In this test, the astronaut was able to manually

command, when and which satellite joins the formation.

After the initialization maneuver, the satellites reach initial positions in the boundaries of

the test volume. After the 30 seconds allowed for this positioning, the astronaut was in charge
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Figure 6-9: Experimental results from Test 5: Trajectories.

of indicating each satellite to join the formation by pressing a key in the laptop. Pressing

the "A" key commands the SPH1 to join the formation, pressing the "S" key commands the

SPH2 to join the formation, and pressing the "D" key commands the third satellite to join

the formation. The astronaut was free to select in which order and when to press the key.

After the three satellites had been commanded to join the formation and the formation is

achieved, the test ends.

6.3.6.1 Test 6 (P273-6) results

This test was partially successful. In general the tests achieved the objective and the perfor-

mance of the control was as expected. However, one of the satellites showed poor performance

on the initial estimator convergence, due to this, its initial positioning was flawed.

The satellites joined the formation as commanded, and achieved the desired configuration

in their estimated states, with the SPH2 having a biased estimation of its state.

Figures 6-12through 6-15 show the corresponding trajectories and the position and atti-

tude states for each satellite. Each one joined the formation from an arbitrary location when
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163



Background telemetry state differences (standard) for Sphere logical ID 1 and 3

E Magnitude

~ 0.5Diameterx-0.5.,

50 130 150 200 250
1

0

50 100 150 200 250
0.2

0
-0.2

50 100 150 200 250

-q

- q3
-1

50 100

Vx

50 100 150 200 250

0250

Cr- - q2. -

50 10 15 200250

Test time, s

Figure 6-11: Experimental results from Test 5: Relative states SPH1 to SPH3 vs. time.

randomly commanded by the astronaut. The time when each satellite joined is indicated by

the black arrow. Even though the test is not considered completely successful due to the

divergence of the estimator in the SPH2, the actual performance of the algorithm was as

expected.

This test verified the modularity and interchangeability properties of the control ap-

proach, while maintaining reduced complexity as the number of vehicles is increased.

6.4 Performance Analysis

In this section we consider an analysis of the 'steady state' performance of the formation

control mechanism by considering some metrics that describe the efficiency of the algorithms

in achieving a synchronized rotating formation. The analysis is based on steady state data

extracted from the tests described above and predated tests, performed in early test sessions.

As metrics to analyze the performance of the system we consider the ratio between the

theoretical fuel usage and the actual fuel usage for a given maneuver while also comparing
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Figure 6-14: Experimental results from Test 6: SPH2 States vs. time.
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Figure 6-15: Experimental results from Test 6: SPH3 States vs. time.

the error metric to symmetric formation e = V,,x where, V = Li 0 Rr/N + LT 0 RT/N is a

projection into the subspace of regular polygons as presented in Chapter 4. This metric of

error however is only valid for 3 or more satellites. Two satellites will always be in a 'perfect

formation' under this metric.

The theoretical AV is calculated as an integral of the theoretical acceleration magnitude

AV = ft la|l 2dt.

Table 6.1 compares the fuel performance achieved in different maneuvers in different ISS

test sessions and under different architectures. Figure 6-16 shows the maneuver and the

error performance.

It is important to note that under the error performance as defined by the 'polygon

symmetry' metric mentioned above is valid only for more than two vehicles. Under this

metric the cyclic pursuit approach shows for all cases error performance better than the

other architectures as shown in fig. 6-16.
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Test Control Architecture Maneuver Description ratio

P272.T4 Relative States Central LQR Circle 2-sat, w = r = 0.4m 6.0
P162.T2 Individual PID tracker Circle 3-sat, w = IM r = 0.m 1.49
P265.T2 Individual PID tracker Spiral 2-sat, W = d, r 0.1 - 0.7m 1.47
P264.T2 Cyclic pursuit w/ ref. vel. Spiral 2-sat w = ,ri = 0.35-0.5m 1.30
P264.T2 Cyclic pursuit w/ ref. vel. Circle 3-sat W , r =.4m 1.40
P273.T6 Cyclic pursuit w/ ref. vel. Circle 3-sat w r = 0.4m 1.40
P273.T4 Cyclic pursuit w/ ref. vel. Circle 3-sat, w r = 0.4 1.39
P282.T2 Cyclic pursuit Relative Navi- Circle 2-sat, w =-, r = 0.5 1.361g0

gation

Table 6.1: Comparative fuel use for several control architectures
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The fuel performance presented in table 6.1 shows experimental results agreeing with the

expected improvement on reducing the control effort by using the cyclic pursuit architecture

while maintaining the symmetry of the formation. These results however, should not be

taken as direct verification of this improvement effect since the data used in the comparison

was not specifically designed for achieving the same objective and the variability in the

experiment conditions have not been considered in the analysis. Nevertheless, the results do

show that for the formation flight experiments flown in microgravity environment, the cyclic

pursuit approach has lower fuel use while maintaining similar performance in maintaining a

symmetric formation.

6.5 Summary and Conclusions of the Chapter

This chapter presented experimental results for the first ever implementation of decentralized

formation flight in space. Several experiments were performed on the SPHERES testbed

aboard the International Space Station. Such experiments demonstrate the validity of the

algorithms in achieving geometric pattern formation control in relevant hardware. The

applicability in multiple scenarios demonstrates the versatility and inherent simplicity of

the proposed decentralized approach. Additionally, the analysis of the fuel performance and

error as compared to previously implemented approaches agreed with the expected reduced

control effort in achieving the pattern without specifically tracking trajectory fixed points.

The performance of the algorithms as a formation control strategy was verified while

demonstrating their capabilities to accomplish several simulated mission scenarios relevant

for a fractionated spacecraft mission.

In the joining maneuver test (Test 2), the center of the formation an uncontrolled state.

The invariance of the geometric center of the formation is noticeable in the experimental

results: when the third vehicle joins the two-vehicle formation the center of the formation

moves to include the effect of the initial position of the third vehicle. This effect is of course
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controllable by using kg > 0 as described in remark at the expense of control effort and

knowledge of the global positioning.

The importance of a nonlinear extension was evident from initial experimental results.

When using only a linear approach, the discretization effects and the time delays caused a

divergent behavior. The effect was compensated by adjusting the pursuit angle applying the

extension as mentioned in Section 3.2.4.

The addition of a feedforward term by upgrading the control approach to eq. 3.32, im-

proved the performance of the controller by achieving a more precise radial control. In the

initial implementation, the equilibrium value of the dynamic angle a was achieved at a radial

distance different from the one specified. In later tests when the feedforward term was imple-

mented, the radius of the formation was much more precise as can be appreciate in figs. 6-3

as compared to 6-8, 6-9. The precision can be further improved by implementing and integral

control approach by including a term: a = r/N- k(i|xi+1-ill - - k f(||xi+1 - xii|-p)dt,

dependent on the accumulated error. The theoretical development of this approach is how-

ever, out of the scope of this thesis. Preliminary simulations demonstrate it as a valid

approach but it was not implemented on the tests and is left as a possible venue for future

work.

In the implementation of the only relative measurements controller, based only on theo-

retical results the z-motion gains were setup to 1. Simulations without accounting for noise,

disturbances and constrained actuation showed good convergence performance. However,

under the actual testing conditions on hardware, the underperformance of the control in

the z-direction became evident as seen in the data plots shown below, especially, due to a

constant disturbance in the +Z direction discernible from the debug data.
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Chapter 7

Decentralized Control in

Electromagnetic Formation Flight

7.1 Introduction

In this chapter, the idea of decentralized control is extended to the case of Electromag-

netic Formation Flight (EMFF) systems. EMFF is a very innovative concept envisioned for

propellantless spacecraft formation. However, these systems have very particular coupled dy-

namics and a straightforward implementation of decentralized control techniques designed

for decoupled systems fails to address their strong actuation coupling.

To achieve the benefits of decentralization in this type of system, an analysis of some

ideas for decentralization of electromagnetic formations is formally presented in this chapter.

A first section introduces the concept of electromagnetic formation flight technology, with

some emphasis on the coupled nature of the actuation commands. Then, the approaches to

decentralization are presented. In summary, several techniques that can achieve control of

a system of EMFF satellites in a decentralized manner are studied by considering two main

different directions. The first one consists on decoupling the dynamics. The second one

addresses the problem by distributing the computation and the need for a central computer.
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The general approach to the methods presented in this chapter is rather heuristic given

the difficulty of the problem but some specific theoretical results are discussed. The different

proposed ideas are implemented in simulation to compare their performance to a centralized

approach. A more extensive theoretical analysis of each one of them is left out of the scope

of the present work and is suggested as a direction in future work.

7.1.1 Electromagnetic Formation Flight

The Electromagnetic Formation Flight (EMFF) technology has been recently studied and is

currently being developed by the Space Systems Laboratory at MIT in collaboration with

Aurora Flight Science (formerly Payload Systems). Similar approaches have been indepen-

dently proposed by groups at the University of Tokyo and the Boeing company. The principal

advantage of EMFF systems is the independence from expendable propellants. This can be

an extremely important factor for long duration missions, missions that require extensive

reconfiguration maneuvering or missions where the impingement of propellant particles can

affect the system performance.

The principle of operation behind EMFF is the used the coupled electromagnetic forces

and torques to control the relative position of a group of vehicles in space. The mechanism

used to create the electromagnetic forces between vehicles consists of a set of orthogonal

coils that generate magnetic fields when current is run through them.

As opposed to other systems proposed for propellantless formation flight, like flux pinned

[58] or coloumb force formation flight [85], electromagnetic formation flight achieves control of

3N translational degrees of freedom, including shear forces which are not achievable through

other proposed non propellant methods. In EMFF any force and torque command can be

readily achieved by controlling currents running through individual coils on each vehicle.

Different architectures for the coils have been envisioned and studied. In one, the coils

are made out of conventional conductive material. Aluminum has been identified as the most

competitive non-superconductive material for this purpose [82]. In this case pulsed currents
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used as a mechanism to prevent overheating due to the heating effects of the finite resistance

in this type of materials. Theoretical analysis and experimental results have validated the

principle of operation and the capabilities to achieve net forces which can be large enough

to counteract the effects of J2 differential terms in low Earth multi-satellite systems.

In a second type of architecture, High-Temperature Superconducting (HTS) material can

be used to build the coils. In this case, YBCO or BSSCO composites can be cooled down

below a critical temperature, achieving superconducting behavior. In this case, constant

currents of higher intensity can be run through the coils, generating much larger effective

forces between vehicles.

7.1.1.1 Dynamics of EMFF systems

In this section, we discuss the relevant dynamics of an EMFF system, developed in previous

literature. [3,87]

In a vehicle i, a current Ii. is generated and controlled though an internal computer to

run through the coils. In a circular coil aligned with the body x-axis in vehicle i generates

a magnetic field which can be approximated, as the field generated by a magnetic dipole

pix = nIixA.

When running independent currents through each one of the orthogonal coils in one

satellite, a composed dipole pi = pjx2 + pij9 + pizz corresponding to the vectorial sum of

the orthogonal dipoles in satellite i is generated and can be steered in any direction in the i

body-frame. This allows each satellite to independently command its dipole in any direction

and under an agreement on a global coordinate frame, the overall formation can be seen as a

group of interacting dipoles that can be pointed on any direction. Then, the magnetic field

generated by agent i is:

Bi(rij) = po 3 rj - (7.1)4,r rir
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The interaction between the fields of the dipoles generate forces between them. The

resultant force of the interaction of two dipoles pi, pj is given by:

n

FF = 2  = F(7.2)
isii

whre Fi -is t forc o di i, FI + fr o vi (7i due t vij, is te3)47 1d1 + jd.j 5  I -1 IdiV J7

and, the overall force of a formation of vehicles i C- {1, ..N}, is given by:

n

Fj ZFij (7.4)

where F is the force on vehicle i, Fij is the force on vehicle Z' due to vehicle j, [10 is the

magnetic permeability constant of vacuum and rij is the vector position between vehicle i

and vehicle j.

These set of equation are called the dipole equations. The control commands are the

currents run through each one of the coils on each vehicle which directly translate into

dipole magnetic fields affecting the forces of the overall formation.

The special coupling in a system of EMFF vehicles is evident from this equation: Indi-

vidual control command alters the forces on each other vehicle in the formation, therefore a

straightforward extrapolation of distributed control mechanisms proposed for other type of

propulsion, specifically non-coupled actuation, is not feasible.

Achieving a commanded force requires coordination with at least one other vehicle, since

the force directly depends on the vectorial value of another dipole. Additionally, the dipole

enters into the force equation as a multiplicative parameter, which means that local con-

straints in its magnitude do not guarantee global constraints in its disturbance effect on the

other vehicles in the formation. These coupling effects pose an important challenge to the

decentralization of EMFF.
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For the closed loop control approaches in the existing literature, the overall formation

state information is gathered in a central computer, the set of dipole equations are solved

every control period and the current commands issued to each one of the vehicles in the

formation.

In this chapter of the thesis we discuss and compare different approaches to achieve the

objective of achieving control of an electromagnetic formation without the need of using a

central computer that solves the set of equations every control period.

7.2 Token Based Decoupled Maneuvering

In this section we study a solution to the EMFF decentralization problem by decoupling the

actuation through time allocation.

A token based mechanisms is used as the time allocation mechanism. The approach

considers the solution to a constrained optimization problem such that only one subset of

the vehicles actuate at a time. It is a token based approach, because only vehicles owning a

'token' can actuate at a given time. The token sequence is calculated as part of an overall

optimization problem.

In the general trajectory optimization problem, a centralized solution can be obtained,

without restricting the number of vehicles that can actuate at a time. Open loop tracking of

the input time history should achieve the final configuration. It is however known that any

small disturbance, and especially in a nonlinear system like EMFF, will cause divergence from

the desired final state. Therefore, the best approach is a close loop tracking of the optimal

state time history. If however, the solution of the optimization problem is obtained under

the constraint that only a subset of vehicles can actuate at a time, a natural decentralization

of the trajectory tracking problem occurs. Tracking the trajectories would not require an

agreement of the overall set of vehicles but only a subset of them, reducing the complexity

of the tracking problem.
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Such trajectory optimization problem is special in the sense that it has specific constraints

on the number of vehicles that can be used at a given time and needs to be approached in a

special manner. This problem can be solved considering a two-level structured optimization

problem.

In a lower level problem a set-wise subproblem is to be solved, considering the optimal

dipole selection for achieving an optimal reconfiguration maneuver using only a subset of

vehicles. In the higher level problem, the sequence of vehicles participating at each allocated

time slot is considered.

The approach to solve the lower level trajectory optimization problem was implemented

by using a pseudo-spectral method approach, where the states and controls are mapped

into a parameter discretization based on Legendre polynomials. Optimal reconfiguration

maneuvers using this approach, have been studied in the past for formations with several

vehicles [3] for deep space dynamics. In this thesis, these results are extended by solv-

ing for optimal reconfiguration maneuvers considering more complex dynamic situations, in

particular, Clohessy-Wiltshire dynamics.

A solution algorithm for the higher level problem was implemented using a Dynamic

Programming (DP) approach, solving for the sequence that achieves minimum cost.

The overall reconfiguration problem, considers a set of N vehicles on initial positions x =

x(to) = [x1 (to), x2(to), ... , xN(to)] which we are interested in reconfiguring to final positions

Xf = X(tf) while minimizing some cost (time, angular momentum, current intensity or a

combination of them). A general case with dynamics i = f(x) + ui is assumed.

In a token based time divided decentralized approach like the one proposed in this section,

the vehicles reach the final positions by moving in a sequence Sot = {S 1, S2, ... SN-a}

where Si is the set of active vehicles during time interval [ti, ti+1).

The total time is assumed to be tf - to = EVi ti, and at each interval only a vehicles can

be active, (card(Si) = a), and at least a - 1 vehicles reach zi(ti+1), such that xi(t 1 ) = Xif.

The description of the two subproblems is specified in the sections below.
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7.2.1 Lower level problem solution

The lower level problem consist of finding the optimal reconfiguration maneuver for vehicles

i E S[k], where S[k] is the set of vehicles active at interval k.

The approach presented in the solutions in this sections uses the Legendre pseudospectral

decomposition approach developed in [3]. In this method the control and the state variables

are discretized and an optimization problem tries to find the values at the specific dis-

cretization points such that the solution minimizes the desired cost function. Extending this

approach we consider a method to achieve solutions for maneuvers under Clohessy-Wiltshire

dynamics.

The reconfiguration maneuver, bringing a set of vehicles with initial conditions x0 , to a

formation with final condition xf can be written as the continuous optimization problem [3]:

g(x) = min J(t, x, p) (7.5)

subject to:

xk f(x, p) (Dynamics)

x= x(to) (Initial state)

x= X(tf) (Final State)

Ip <i max (Actuation saturation)

inf dij (t) > Dmin (Collision avoidance)

|hRwi(t) < Hmax (angular momentum constraint)

where x = [pv], p being the position and v being the velocity defining the state of

the overall formation, P(t) is the control variable and J(t, x, p) is a cost function to be

minimized.

When using the pseudospectral method, the unknown state and control trajectories are
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parametrized by coefficient of Legendre polynomials:

Nd

= p(ti)#i(t) (7.6)
i=0
Nd

= u(ti)#i(t) (7.7)
i=O

where #i(t) are degree interpolating basis for the Legendre polynomials. The optimization

problem is then, mapped into a Nonlinear Programming Problem as a function of the coef-

ficients P E RNxNd+1, U E RMxNd+1 and tf:

g = min J(t,p,vp) (7.8)
P,U,tf

subject to:

D 2p ( - TO F = 0 (Dynamics)

' (po, vo, rO) = 0 (Initial state)

' (pNad'VNdTf) = 0 (Final state)

cO(po, Vo, u tk) 0 Vk E {0, 1, ... , Nd} (Linear constraints

(e.g. collision avoid., saturation))( - TO )WQ - Z < 0 (Integral constraints (e.g. angular momentum))
2

where D E RNdxNd is a differentiation matrix, P E (Nd + 1) x n is a matrix with columns

pi, that is, each column of P represents the position coefficients at each discretization point.

F C RNd+1xn approximates the dynamic vector field in the space of Ndth order polynomials,

W E RNdx(Nd+1) is an integration matrix, Q C R(Nd+1)xi approximates the constraint inte-

grands, and Z E RNdxl is a given matrix of the constraint value at each discretization point.

A more detailed description of this definitions is found in [3].
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7.2.1.1 Results of the low level optimization problem

The results presented in here use this approach to solve for the optimal reconfiguration

maneuvers for relevant dynamic cases. The solution of the problem was implemented using

a Sequential Quadratic Algorithm (SQP) in MATLAB® using the SNOPT 6.0 package

routines.

Figure 7-1 shows a surface plot of the the optimal cost for a 2-sat reconfiguration ma-

neuver under Clohessy-Wiltshire dynamics and some examples of the solutions obtained.

In this example the initial relative location of the second satellite is (1,0)km and the

maneuver time is fixed to half an orbital period. The surface plot is a function of the desired

final position. The boundary conditions are such that the initial and final state of both

vehicles are closed natural orbits (ellipses with the appropriate angular period).

7.2.2 Higher level problem solution

The higher level subproblem consists on defining an ordered sequence {S}k = {S[1], S[2], ... , S[N]}

of agent subsets such that the overall cost function J is minimized.

The overall cost of achieving the reconfiguration maneuver is the addition of the cost

for each individual reconfiguration maneuver. Then, the overall problem can be written as

finding Js. such that:

Js. = min Js(x[0])
SEs

n-1Js(x[01) =E {9n(Xn) +E k = O}]Sk]w

k=0

where n = N - p is the number of reconfiguration maneuver to achieve the final desired

state, S[k] = {s, s} is the set used at interval [k], s is one of the agents and 9 is the rest of

the agents in a subset S, and gA is cost of achieving a subset-wise reconfiguration maneuver,

with initial state x such that agent s, achieves its desired final state at the final time.
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A Dynamic Programming (DP) approach to the problem can be used by defining the

optimization problem with the variables as described in table 7.1:

State variable x[k] = [xi [k], x 2 [k], ... XN[k]] x[k] is the state of the vehicles
at time interval [k]

Control variable uk] = Sk E Uk, Uk (xk) ={S, 9, Sk is the ordered pair active, al-
lowed to maneuver during inter-
val [k], s E {1, 2, .., N}

Dynamics x[k + 1] f (x[k], u[k], w[k]) x evolves given u[k] and a ran-
dom disturbance w[k]

Cost function J[k] = g(Sk, x[k]) , s.t.
xs[T] = xf

Table 7.1: Variable descriptions for the higher level DP optimization problem

Then, the DP approach consists on solving the problem:

J[k]

JN(XN)

S min E{gk(x[k], u[k], w[k]) + Jk+1(f(x[k], u[k], w[k]))}
u[k]GUk

9N (XN)

(7.9)

(7-10)

Fig.7-2 shows the a reconfiguration maneuver where only 2 vehicles are allowed to move

at a given time. The reconfiguration sequence can be compared to a centralized approach

where all vehicles can actuate at the same time in Fig.

interconnection at a given time.

7-3. The dashed lines show the

N,, card(S) Optimal Sequence CostAmps/ly Cost Increase

5 2 (4, 5) (2, 3) (3, 5) (5, 1) } 2.984 x 107 18%
5 3 (4, 5, 1) (2, 3, 1) } 2.958 x 107 17%
5 4 (2, 4, 5, 1) (1, 3, 0, 0) } 2.658 x 107 5%
5 5 (1, 2, 3, 4, 5) (2, 3, 1) } 2.524 x 107  -

Table 7.2: Increase in RMS current in coils as the number of vehicles that can be moved at
a time changes
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Figure 7-2: Optimal reconfiguration maneuver - Clohessy-Wiltshire dynamics only two
vehicles actuate at the same time.

N,, card(S) Optimal Sequence Maneuver times Total Time
5 3 1, 3, 2) (4, 5, 2) }41.8, 61.8 103.6
5 4 2, 3, 5, 1) (1, 4, 0, 0) } 34.1, 41.2 75.3
5 5 1(1, 2, , 3, 4, 5) } 37 37

Table 7.3: Minimum maneuver time as the number of vehicles that can be moved at a time
changes
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7.3 Decoupled Regulation by Resource Allocation

In this section we consider a method for decentralizing EMFF, based on the 'allocation'

of the magnetic interaction. This allocation is performed in an analogous manner to a

communication channel allocation. By allocating the interaction, the approach guarantees

that the dynamics are coupled only among the set of vehicles that can coordinate their

dipoles through local information sharing. Two possibilities are considered, a time based

division and a frequency based division.

7.3.1 Schedule based regulator

A method to achieve time division consists in using a synchronization mechanism, based on

synchronized clocks on each vehicle or by an external signal. Additionally, the spacecraft

will require an external agreement or an intervehicle consensus mechanism to define the

time schedule for each set of vehicles. The definition of this higher level time agreement

mechanisms is not in the scope of this work. If the vehicles have access to a global signal
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like the GPS signal, they will have a synchronization resource available.

The scheduling mechanism has to take into account the interconnection topology. A set of

neighbors that are active have to be able to communicate during the actuation period. Once

each vehicle has knowledge of the time schedule when it can actuate and the neighbors it is

actuating with, the solution of the dipole equation needs to be found for those active vehicles.

A reduced order set of dipole equations is to be solved for the members of the subset, in a

distributed manner as discussed in a later section or by one of them and communicated to

the rest of group.

Several results in the literature have addressed the effects of time varying topologies and

can be used to address the stability of the mechanisms presented in this section [72,79] for

simple dynamic cases which could be extended to more complex dynamics. Specifically, the

result for theory of consensus regarding convergence under switching information exchange

topologies. Necessary conditions for convergence for consensus based control laws are pre-

sented in [79). A main result is that the interconnection topology has to be connected over

some time interval. Its extrapolation to more general dynamics is still a topic of research

and some results for connected topologies have been described in more recent work [72].

In general, for fast enough switching rates, the results can be shown to approximate the

constant interconnection case with a disturbance that depends on the length of the time

intervals. It is important however, to consider in the design of the control protocol the

fact that EMFF forces only produce internal forces, and thus, when applying the desired

forces to only a subset of the full formation it is not guaranteed that the sum of the desired

forces of the subset is zero. This situation is addressed in the protocol presented in the next

section and a further theoretical analysis of the effects of the switching period is discussed

in a section below.
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7.3.1.1 Results

In this section we introduce a switching protocol to decouple the dynamics of the electro-

magnetic formation through time division. Simulations show the protocol implementability

and performance. As mentioned in the introduction to the approach, the idea is based on

periodic switching topologies, in a way that over a full cycle, every vehicle has been ac-

tive at least for one period. Without loss of generality, in examples below, we explore the

performance of an approach based on cyclic sequencing.

The cyclic sequencing can be described as follows: For a formation with vehicles i E

N = {1, 2, ... , N}, the active set of vehicles at time interval tk, S(tk) = {ss2, ... , sN},

s,, E N, s, = mod(sn, N) is such that S(tk+1) = S(tk) + no, where no < card(S) = N, is an

offset such that at each switching time S(tk) n S(tk + 1) # 0.

A control period is the time interval te for which the force command is constant. A

switching period tk = ndte is the time interval between subset switching. A switching cycle,

is a time interval over which the topology switching repeats itself, specifically, if the switching

cycle is a uniform cyclic protocol T, = Ntk.

Since at each switching period, the sum of the commanded forces for the subset of vehicles

is not necessarily zero, at least one of the vehicles in the set will not be able to actuate the

commanded force. The key development on the protocol presented in this section consists

of considering one of the vehicles in the subset as a leader. The dipole configuration of the

subset will be setup such that each vehicle in the group other than the leader will set up its

commanded forces as per control law and the leader will have a known residual force which

will be taken into account as the subset changes and the leader changes. If sum of forces over

the whole formation maintains the constraint that the sum of all forces is zero, the residual

force over a cycle through the graph should approximately cancel out.

The following synchronous control protocol with homogeneous switching intervals is pro-

posed and implemented in simulation for different control laws:
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Sequential Subsetwise Control Algorithm

1. Vehicles in set S(tk) = {si, s2 , ... , SNs} share measurement informa-
tion and calculate best estimate of current relative states.

2. Desired force for each vehicle in the set is calculated as per control
law adding any residual force F, from previous control periods.

3. The set solves for the dipole configuration, either in a locally central-
ized way or in a distributed way as described in Section 7.4. Leader
of the set, vehicle si, sets its force to:

Fr = - F

iES(tk)/si

such that
SF = 0

iGS(tk)

and stores Fr as its residual force. All other vehicles in the set have
zero residual force.

4. If t > tk+1 a new set of vehicles S(tk+1) is activated.
5. goto 1.

7.3.2 Frequency division

In a frequency divided resource allocation strategy, subsets of vehicles can act simultaneously

applying currents shaped by orthogonal functions on each different subset. The forces due

to magnetic fields from different subsets average to zero over a control period, thus effec-

tively decoupling the actuation between different subsets. This approach is inspired by the

approach presented by the work of Kaneda et al. [34], where the electromagnetic formation

was decoupled from constant perturbations.

Consider for example the case of sinusoidal functions. The imparted Av on each vehicle

over a period of time is:

Av2, = (1/m)j | pp1|1(t)dt

where q(t) is a vector that depends on the position of the vehicles and the direction of the
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dipoles.

If the dipole magnitudes on the vehicles are setup to be sinusoidal functions p

pio sin(wit), with high enough frequency wi so that q can be considered constant, consider

vehicle i, interacting at the same time with vehicles j and k, w = wi, Wk = noi, n > 1, n E Z

= (1/m)|pjo||pj0 q7r sin(wit)sin(wjt)dt + jpio||p~koq 2 sin(wit)sin(wkt) dt
AV,0 0i J

= pollygolqig/2m + 0, for n # 1

Then, vehicle i and j actuate independently of the actuation of vehicle k with any other

vehicles in the formation.

In general, consider the formation of vehicles i E N = {1, 2, ... , N}, consisting of subsets

of vehicles Si, shaping their control inputs over a period tk by multiplication by a function

#i(t) such that pi(t) = pi40i(t - tk - T), for t E [tk, tk + 2T).

Make each #j, a function of a set of shaping functions {# i (t), 4j (t), . . . , #Nf (t) } orthogonal

over the interval [-T, T], such that:

JT # #jdt = 6ij (7.11)

Then, the impulse during a control period between a pair of vehicles with dipole pui = [iLoqj,

and pj = pjo0 j, under the assumption that the control period is small enough such that q

can be consideted constant, will be given by:

AVtk =(1/rn) jt0k+2T

=(1/m)|pi'1POllygii

Then, vehicles sharing the same shaping frequency #i will interact between them, but

not vehicles with shaping functions #j. Then, the size of the dipole equation reduces to the

size of the subset Si with dipole shaping #j, and the interactions with other vehicles can be
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disregarded.

Interconnections between different subsets is achieved by 'shared' members, which coor-

dinate their dipole configuration with different subsets and apply a superposition of dipoles,

i.e the vectorial sum of its dipole corresponding for each subset. Corresponding orthogonal

sets will cancel out and the 'shared' vehicle will create forces between different subsets.

As mentioned before, any set of orthogonal functions over a bounded set can be used as

shaping functions. For example, Legendre polynomials are orthogonal over the set [-1, 1]

and any set of polynomials can be used to shape the currents over a period. An advantage

of using a polynomial function is the lower frequency content of the first nth base functions,

however, the lack of periodicity implies that the final value of the current at one period does

not match the initial value of the current (and slope) at the end of that period. There are

however, orthogonal sets of functions that could be more fitted for an specific situation.

If the limitation of the system is given by the maximum current that can be achieved on

a coil (equivalently a maximum dipole magnitude), other type of orthogonal functions can

improve the performance. Consider the Walsh functions:

pi(t) = j|pj(t)|disgn(sin(wit))

pj (t) = |pj (t)|dyjsgn(sin(wjt))

Av = (1/m)|pjo||pjolqij sgn(sin(wjt))sgn(sin(wt))dt

(1/mn)|pjojlttyojlgl if Wj = wi

0 if wj = 2"wn, n E Z

The plots in 7-4 show the basic principle behind the proposed approach.
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7.3.3 Resource allocation: Simulation results

Two benchmark case scenarios are considered to illustrate the performance using this ap-

proach. In one, a formation of vehicles achieving a rotating circular formation, where we

study the performance as the a steady state response for a nonzero required output force,

and two, a transient scenario where we study the convergence to formation from the same

arbitrary initial perturbed state.

The simulations in a preliminary way the viability of this methods. In the case in fig.

7-5, the formation achieves a regular polygon from a random disturbed position and the

control currents are shown for each case. The input magnitudes are shown as d2 /r 2 I, which

indicate the required currents to achieve the equivalent (far-field) forces normalized for a 1

meter formation with coils 1 meter in radius. Therefore, the currents in the results scale

with the term r2/d 2 where d is the radius of the coil and r is the distance between vehicles.

As it is to expect, as the number of active vehicles decreases the coil currents required to

achieve the forces are larger. The coils are thus, saturated for a longer time. An appropriate

selection of the control gains can assure in any case preventing saturation while making the

most of the maximum currents of the system. The simulations are meant to show how the

approach is valid despite the reduction in control authority.

In a second case we compare the currents, required to maintain a rotating formation

under double integrator dynamics using the cyclic pursuit approach, as a way to integrate

the results in previous chapter to the current approach. The results are shown in fig 7-6

On the other hand we illustrate the approach using the frequency division based approach

in the results presented in figures 7-7, 7-8. The results illustrate how, the control objective

can be achieved, at the expense of larger required currents. Since larger currents are required

to achieve the same forces, the control authority of the actuation system is reduced.
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7.4 Distributed Computation of the Solution to the

Dipole Equation

In this section we explore a different method to achieve decentralization of EMFF systems

which addresses the objective by solving the dipole equation (eq. 7.2) in a distributed

manner. In this sense, the method achieves the objective of defining the control commands

yt, i.e. the dipoles on each vehicle, without recurring to a centralized computing unit and

subsequent communication load to issue the commands to each vehicle in the formation as

proposed in previous approaches [31.

In the proposed technique, the solution is obtained by sharing relative position knowledge

and the solution of a local optimization problem. A first approach to applying this technique

does not necessarily imply the desired characteristics of decentralization at its best, since it

would still require an interconnected network to share states and local optimization solution

results. However, other important characteristics of a decentralized system are achieved like

deployment independence, robustness to individual failures, homogeneity and repeatability,

and more importantly it does not require a powerful central unit solving the nonlinear dipole

equation at each control step.

7.4.1 Theoretical description

The approach to a distributed solution, considers a distributed protocol for solving a global

optimization objective that minimizes the overall formation error while locally solving an

optimization problem. Consider the dipole equation 7.2 that defines the control commands

to achieve the commanded forces:
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The electromagnetic force for a pair of vehicles i, j is a bilinear equation on the inputs

pi, p which can be written as:
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=Id 6
dig- + p - (7.12)

and then, the overall system of equations can be written as:

Fn Vn (Pi)

where:

1
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where i = {1,.., N}/i is the set of vehicles in the formation except i, and p;, the set of

corresponding dipoles.
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For a given set p;, the dipole equation can be written as:

F = M(p;, x)pi + V(pt, x) (7.13)

where the term M(p;, x)pi describe the forces caused on each vehicle by dipole i, and V(p;, x)

the forces caused on each vehicle by vehicles other that i.

The proposed protocol makes use of this structure and considers solving the problem

through a sequence of steps in which each vehicle minimizes a cost function by sharing the

result of solving the local problem:

p4 = arg min ||F(x) - F|| (7.14)

s.t. M(p;, x)pi = (F - V(p;, x)) (7.15)

h (pj) < 0 (7.16)

where F(x) is the control command known by each vehicle. Notice that to solve this problem,

agent i requires x, the state information of the formation (more specifically, only the relative

states) and p;, the value of the dipole solution for the other vehicles in the formation. By

an iterative process, where p4 is shared through a connected network, the convergence to a

stationary solution is guaranteed if h(pi) define a convex subspace. The analysis is presented

in the next section.

7.4.2 Convergence analysis

Consider the following synchronous protocol following a periodic sequence {1, 2, .. , N, 1, 2, .. :

The analysis of the convergence properties of this protocol are based on the fact that the

overall algorithm can be casted as a gradient method with gradient related descent direction.

Notice that the agent do not update their dipole values until the error in the actuated force
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Distributed Control of EMFF via distributed solution of dipoles

0. Vehicle i receives information from the network: current state esti-
mate x and dipole values p.

1. Solves optimization problem 7.14,
2. If ||Fd(x) - F|| < cminI|FdH| or dt > Tmax set own dipole to p = p*.
3. Communicate state knowledge and updated dipole value to the net-

work.
4. Wait until next cycle.

Table 7.4: Sequential Distributed Dipole Solution

is less than a minimum value em IFd[, or the maximum allocated time Tmax to converge to

a solution has been reached.

Consider a following general optimization problem:

min f(x)

s.t.x E X

A descent method is defined such that xk+1 - Xk + akdk, where dk and a are selected to

eventually reach a minimum of the function f(x)

Consider the following definition in [11]

Definition 7.4.1 A direction sequence {dk} is gradient related if for any subsequence {xk}kEK

that converges to a non-stationary point, the correspondiny subsequence {dk}keK is bounded

and satisfies:

lim sup Vxf (x)'dk < 0
k-+oo keC

and

Definition 7.4.2 A gradient method with minimization rule updates ak is such that xk +

akdk < xk + dk, 0 E R.
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Proposition 7.4.3 Consider the global optimization problem:

min||Fd - F(p) (7.17)

For Fd constant, in the overall algorithm in protocol 7.4, , is updated as a gradient

method with minimization rule updates and with gradient related descent. When including

constraints h(x) < 0, the algorithm is a gradient feasible direction method with minimization

rule and gradient related direction sequence.

Proof: The algorithm in protocol 7.4 can be shown to be an implementation of a

gradient method with gradient related direction and ak selected by minimization rule. The

proof that a gradient descent method with feasible gradient related direction converges to a

stationary point is presented in proposition 2.2.1 in [11].

The gradient of f(x) in given by:

Vxf(x) = 2 ((M(pi1 )pi + V(p) - F)'M(pI) (M(p)p 2 + V(pi) - F)'M(p2) .. (718)

di E R3N is zero for {i}, then:

Vf (x)'di = (M(pi))pi + V(pl) - F)'M(pi)p4 (7.19)

At every iteration step, if a minimum to the local problem is found, such that pi* < j,

the global variable p is updated such that pk+1 = I + akdk, with dk is a vector with zeros

in the components not corresponding to agent i. Otherwise, if a minimum p4 < pi is not

found, p is not updated and the iteration corresponds to another vehicle in S. Thus, not

necessarily at each iteration of the protocol, there is an update.

If a minimum to the local problem the control variable p is found, y is updated as [i = p

otherwise it is not updated. Then, the update sequence is updated at least once every cycle.

As the protocol progresses over S, p is updated as y = p. N
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Proposition 7.4.4 If a stationary value has not been reached, at least 1update occurs over

a cycle over S.

Proof: Assume that a stationary value has not been reached, and no update occurred

over a cycle, in the next cycle, all the values of pui are the same, which means there will not

be further updates, and a stationary point has been reached.

A straightforward observation from the above proposition is a lower bound in the con-

vergence of the algorithm.

Corollary 7.4.5 The convergence rate over iterations for the distributed protocol 7.4 is

lower bounded by kr, where r is the convergence rate of a gradient based with minimiza-

tion rule and gradient related direction sequence for the global problem.

Consider for example, that the set h(pi) is given by the constraints in the maximum

current that can be run through the coils, then the set C is a convex set.

7.4.3 Closed loop convergence

The relationship between state update, dipole update and distributed optimization step rate

in protocol 7.4, are parameters that affect the behavior of the system.

When the information sharing rate is fast enough compared to the dynamics of the overall

system, the convergence problem can be approximated to the static case where the desired

force Fd(x) is basically constant while the algorithm converges. However, as the data sharing

rate is reduced to the point that it is comparable to the dynamics time constant, a more

complex dynamic situation has to be addressed. In this case the overall objective to be

addressed is the stability of the formation error under the dynamics:

x+ = f(x,Fd+ d)

d = min(F(p, x) - Fd(R))

s.t. h(p) <0
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Initial simulations show that including this algorithm in a control loop can work to

achieve stable control to a fixed point or to follow trajectories, but the theory has to be

further researched to understand under which conditions this approach would work and its

usefulness compared to a centralized approach. Figure 7-9 shows the results of a simulation

where the forces are calculated to follow circular trajectories using a PD controller and the

forces are setup by the distributed calculation of the dipoles as suggested in this section.

The vehicles follow a circular trajectory setting up the dipoles in a distributed manner. The

bottom plot shows the dipole for one of the vehicles
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Figure 7-9: Figure showing a group of vehicles following a circular trajectory setting up the
dipoles in a distributed manner.

201

.................



7.5 Summary and Conclusion of the Chapter

Control algorithms that require a centralized solution of the dipole equation could be unfeasi-

ble due to limitations in the computation power or communication capabilities. The methods

discussed in this section present an alternative, which can be of major importance in the

implementation of formations with large number of electromagnetic propelled vehicles by

allowing the implementation of control algorithms that do not require a central coordinating

unit calculating, allocating and communicating the formation control commands.

It is important however, to consider the limitations and practical considerations when

implementing the proposed mechanisms. In the case of time divided control, one of the

assumptions is that the control cycles have to be fast enough to reduce the effects of the

time divided actuation. This could imply requirements for the control frequency to be

higher than what it would be for a centralized calculation and thus increasing the number of

computations per second and reducing one of the advantages of decentralization. However, it

is to be noticed that the solution of the dipole equation is a nonlinear optimization problem

with exponentially increasing complexity as the number of dipoles increases. The increase

in the number of cycles per second to achieve the time divided control approach increase

required to achieve similar performance is sublinear. Additionally, there is a limit in the

number of operations per cycle that can be achieved by a computing unit, and the power

requirements and cost of computation translated also escalates exponentially.

The advantage of the token time divided maneuvering as presented in this chapter is

that it derives feasible optimal reconfiguration maneuvers for a problem with a constraint in

the number of active vehicles, however the implementation may require another propulsion

system that maintains control of the unactuated vehicles, a sequential maneuvering that

achieves the final objective in stages and reduce the inactivity period for the vehicles

For the frequency division, the maximum number of different orthogonal sets is driven by

the properties of the mechanism to generate the shaping functions, specifically, the frequency

202



content of the shaping function and the accuracy within which the clocks on each vehicle

can be synchronized.

The frequency division control approach could be combined with the time division ap-

proach in a hybrid mechanism mentioned in the previous section to achieve even better

performance. In such a case, up to Nf sets of vehicles could be active at the same time

without interfering with each other, where Nf is the number of available shaping orthogonal

functions.

The distributed solution to the dipole equation presents also a valid alternative that

can reduce the computational burden and scale down the computational requirements of

EMFF formations with a large number of vehicles. This solution however requires continuous

communication to distribute the information regarding the dipole configuration of all the

vehicles in the formation.
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Chapter 8

Conclusions and Final Remarks

8.1 Thesis Summary and Conclusions

A new approach to formation flight control has been proposed in this thesis. In this approach

the formation globally converges to patterns defined by constraints of the desired state

and not to (time varying) trajectory fixed points. Additionally, the innovative methods

introduced to analyze distributed control laws opened up a new avenue for research to address

more efficient and stable controllers.

In a first part, the cyclic pursuit approach that had previously been studied in the lit-

erature as an algorithm to achieve circles and log-spiral patterns was extended by deriving

a full linear eigendecomposition analysis of the three-dimensional case. The eigendecompo-

sition analysis lead to the derivation of control approaches more relevant to the dynamics

of spacecraft formations. Extensions addressing robustness and convergence to other type

of trajectories were developed to address controllers useful for near-earth and deep space

formation flight missions.

The initially introduced formation acquisition approach was then extended by considering

it as a manifold convergence problem and using the tools of contraction theory to perform

an analysis of its performance. The analysis in the context of the partial contraction the-
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ory leads to a more general understanding of the problem and allows the generalization

to achieve results for nonlinear and time varying systems otherwise unachievable by the

eigendecomposition method.

The contraction theory approach to the analysis of distributed controllers opened new

avenues for research. First, it demonstrates an approach that determines global stability in

terms of the negative definiteness of a matrix, which for the case of distributed controllers

might seem a more convenient approach than Lyapunov methods where the stability is

defined by demonstrating the negativeness of a function. The general notion of convergence

is reshaped to the more general notion of manifolds (or subspaces) which defines a new

dimension to the widely studied consensus problem.

The experimental results in a relevant testbed under microgravity conditions demon-

strated that the implementation is feasible in the context of spacecraft formation control.

Specifically, the successful results are partially attributed to the decentralized nature of the

approach since the achievement of the desired global behavior emerges from appropriately

verifying the local behavior of the vehicles.

8.2 Contributions

The main contributions of this thesis are:

1. Developed a new approach to decentralized spacecraft formation control inspired by

the cyclic pursuit algorithm. It can be more efficient in terms of control effort by not

tracking trajectories but by converging to a specified manifold. The approach achieves

improved properties with respect to the most common approaches, namely:

" Reduced control effort by not tracking irrelevant degrees of freedom.

" Reduced need for coordination, i.e does not need to agree on relative trajectories.

" Leader(s) can control free degrees freedom of the overall formation.
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2. Addressed the robustness issues of classic cyclic pursuit by introducing a nonlinear

extension to the control law that achieves equilibrium at a splay-state formation of

determined radius and a corresponding theoretical stability result.

3. Devised a transformation scheme that allows for the design of distributed controllers

that converge to very general types of synchronized trajectories.

4. Developed decentralized control laws based on the cyclic pursuit approach for LEO

formation flight that globally converge to near natural relative trajectories. Theo-

retical results include a full eigendecomposition of the dynamics showing the global

convergence as well as simulation results showing its implementation accounting for J2

effects.

5. Formulated decentralized control laws for second order systems that require only rel-

ative information to converge to different geometric patterns and can be of impor-

tance for formation flight in deep space missions without an accurate global reference

frame. The patterns of convergence include circular formations, ellipse, logarithmic,

archimedean spirals and polygons.

6. Introduced an analytic approach based on contraction theory that allows for a wide

range of global convergence results for nonlinear controllers and complex configura-

tions based on combinations of cyclic algorithms. The wide extent of the approach is

exemplified by obtaining several important results:

(a) Proofs of global convergence to regular formations based general on cyclic inter-

connections.

(b) Global convergence results for distributed controllers that converge to regular

formations of specified size.

(c) Extensions of the contraction theory theorems to allow for proofs of convergence

to time varying manifolds.
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(d) Corollaries that allow for proofs of global convergence to formations based on any

number of interconnected subformations.

(e) Proof of convergence to formations of specified size through a leader.

(f) Derivation of sufficient conditions for global convergence to surrounding a target

using a cyclic control approach under general tracking functions.

7. Implemented hardware tests and obtained experimental results that validate the char-

acteristics of the approach, namely: no need of central coordination, extensible to any

number of vehicles, reduced control effort and simplicity of implementation for several

formation flight scenarios.

8.2.1 Secondary contributions

Additionally, the thesis added to the field along with other contributions that include:

1. An investigation that compares different formation control architectures to a decentral-

ized control approach where the control is not based on tracking relative trajectories.

2. A preliminary study of the solution to EMFF reconfiguration maneuvers with a reduced

interconnection complexity by solving for the optimal maneuvers that only use a subset

of vehicles at a time.

3. The development and a preliminary comparison of several methods to achieve decen-

tralized control of EMFF by decoupling the dynamics.

4. A protocol to decentralizing EMFF by distributing the solution of the dipole equation.

8.3 Future Work

There are several points that can be addressed as a continuation of this work and new avenues

for future research that were opened by the developmentsof this thesis.
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As a first direction, having demonstrated that the convergence to geometric patterns is

achievable under more general cyclic interconnections, a new direction should consider the

design of more robust control approaches that can use informations of neighbors interchange-

ably, reducing the constraint of a cyclic interconnection. At first glance this seems like a

straightforward extension but it may require developing some machinery to achieve formal

proofs that verify the convergence properties.

In this work, the attitude control was left out of the scope other than a basic development

for the experimental setup. It can be convenient however to define controllers that combine

measurements in the local body reference frame of the spacecraft which could achieve a

more precise control performance in cases where measurements are dependent on the relative

orientation of sensor and target.

In Section 3.4, it was shown how a 'similarity' mapping scheme can be used to achieve

convergence to complex trajectories. Converging to elliptical trajectories was shown to be

useful for a specific application, namely closed natural relative trajectories for near circular

orbits. However, closed natural relative trajectories for orbits with increasing eccentricity

are different from ellipses. A parallel approach, using nonlinear similarity transformations

can be useful for converging to such relative trajectories. Additionally, applications in other

fields can deem useful applications for convergence to formations with very specific geometric

patterns.

A whole new avenue of research has been opened by demonstrating the use of the con-

traction theory approach to the analysis of distributed controllers. Several considerations

that could be addressed are including the effects of saturation, the convergence properties

when collision avoidance mechanisms are added, the effects of delays and random varying

graphs, etc. Further research would consider linear or affine transformation for convergence

to not only regular formations, and the use of the convergence primitive tools to define more

complex convergence states.

Reshaping the general notion of convergence to the more general sense of manifolds (or
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subspaces) defines a new dimension to the widely studied consensus problem. There might

exist applications in many other fields where the distributed system objective can be achieved

without convergence to the 'common agreement' subspace ( namely .M is spanned by 1) but

by converging to some more general 'coordination subspace' defined as h(x) = 0.

A dual of the control problem is of course, the estimation problem. The application

of the cyclic approach for convergence to a subspace, can be defined in the context of dis-

tributed sensors that are required to converge to a coordinated estimate, defined by a linear

transformation of the overall state.

Chapter 7 presented a preliminary study of options that can be applied to decentralize

the control of electromagnetic formation flight systems. Simulations show the feasibility of

the approaches. A deeper and more complete approach to theoretical convergence results

and control design are possibilities for future work.

In the case of time divided resource allocation, the design of the controller is a next

step to be addressed which should take into account the intrinsic disturbance due to the

non-complete nature of the approach ( i.e. the desired force cannot be applied instantly but

only as an 'average' over a cycle) . The effects in performance defines a clear direction for

future developments.

Experimentation of the time based and frequency based allocation could be feasible on

the HTS EMFF testbed. Resonant frequencies that take advantage of the design of the coils

could also be considered as future developments.

Finally, hybrid methods that use time based, frequency based and distributed solution of

the dipole equation can have important advantages. A higher level analysis that can identify

the most advantageous architectures for decentralized EMFF could also be addressed, as

well as identifying missions that would truly benefit from this developments.
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Appendix A

Mathematical derivation of proofs

A.1 CR Matrices

All matrices in the CR have the same set of linearly independent eigenvectors, and are

diagonalizable by the matrix T of eigenvectors VLOR,ij-

Proof: The eigenvectors of L 0 R are such that

VLOR,ij - VLj 0 VR 3  (A.1)

The eigenvectors of L are the same for all circulant matrices L which following Section 2.1.5

are shown to be independent. Equivalently, the eigenvectors of R are the same for all rotation

matrix R that share an axis of rotation and following Section 2.1.4 are shown to be linearly

independent. Then, the set of eigenvectors for all matrices CR which are described as L 0 R

is linearly independent. The Kronecker composition of this two sets of linearly independent

vectors:

Pk )k (, ,1)(0, 0, 1, 0 0, Xk, , X 0 0,X

p -k 0 (1,j,0 )= (1,j, ,Xk,j k, ,.. . , X~1, jX-, O)T, (A.2)
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/T
where k E {1,... ,n} and Vk , X, X 1  , where Xk = e 2 1rjk/n, k {,.. . , n-1}

are the eigenvectors of L (omitting the constant 1/fi). The composed set of eigenvectors,

can then be verified to be a set of linearly independent eigenvectors and since L is diag-

onalizable, R is diagonalizable, then all CR matrices are diagonalizable by a matrix T of

eigenvectors VLOR, (See Thm. 13.12 in [41]) namely, the diagonal matrix:

(P- 1 LP) 0 (Q-'RQ) = (P-1

= (P @

& Q- 1)(L @ R)(P & Q)

Q)- 1 (L & R)(P 0 Q)

where P is a matrix of eigenvectors of L and Q is a matrix of eigenvectors of R.

Therefore, if A, B c CR

eig(A+B) = eig(TAAT 1 + TABT- 1)

= eig(T(AA + AB)T- 1 )

where AA is a diagonal matrix the eigenvalues of A AA,i in the diagonal (and correspondingly

the same holds for B). Therefore AA+B,i ~ AA,i + AB,i-

We also have then that:

AB = eig(TAAT-TABT 1 )

= eig(T(AAAB)T 1 )

= eig(T(ABAA)T')

= BA (A.6)
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A.2 System (3.10) in Polar Coordinates

Assume that ||pi|| = gi > 0. Note that pi = giR(-di) ei, where ei is the first vector of the

canonical basis, i.e., ei - (1, O)T. Then, we can write pi+1 as

PTi = +iR(-±di+1) =

Moreover, it also holds

i+1 R(-zi+1)R(i)R(-zi) e1 = i+1 R(Vf - z9i+1) pi.
LQi Lpi

p7'R(7y)pi = ||pj| 2 cos(-y) = glcos(y), for any 7 E R.

(A.7)

(A.8)

First, we find the differential evolution for the magnitude of pi, i.e., for gi. We have

d | ill = - p7(R(ai+i)pi+i - R(ai)pi)

By using Eqs. (A.7) and (A.8) we then obtain

pi - R(ai)pi) = gi cos((,9i+1 - 19) - cai+1) - gi cos(af)i = p. (R(ai+1) Li+1 R(ti - i+1)
Loi , i

(A.10)

We now find the differential evolution for the phase of pi, i.e., for Vi. Taking time

derivative in both hands of the identity pi,1 sin o - Pi,2 cos oi = 0, we easily obtain

d Pi= AP,2 Pi,2 '

=p R - =i p ) R (R(a+i)pi+1
T2

- R(ai)pi).

Then, by using Eqs. (A.7) and (A.8) we obtain

(R(ai+1) +1 R( - 1) i-R(ai) = )-ai)+sin(a).

A.1i

(A. 12)
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A.3 Proof of Lemma 3.2.8

Proof: The eigenvalues of P are solutions to the characteristic equation

0 = det AIn a, Li + 2k, sn In sn In .(A. 13)
\ bn L 2 AIn - cn L1,

Note that both matrix (AIn - an L + 2ka sn In) and matrix -bn L 2 are circulant; then, since

circulant matrices form a commutative algebra (see Section 2.1), we can apply the result in

equation (2.1) and obtain

0 = det((AIn - an L + 2kQ SnIn)(AIn - c, L) + SnbnL2 (A.14)

= det (A2In + A 2ka snI -(an + cn)L -2kscnL + (anc + snbn)L2) (A.15)

=B =C

= det (A2In + AB + C) (A.16)

= det (A2In +AB + B2/4-S), (A.17)

where S B 2 /4 - C. Note that B and C are circulant, therefore S is also circulant. Since S

is circulant, it can be diagonalized according to S = U Ds U*, where Ds is a diagonal matrix

with the eigenvalues of S on the diagonal; accordingly, we have S112 =U D1/ 2 U*. Note

that B and S 112 commute. In fact, since B is circulant, it can be diagonalized via the same

orthogonal matrix U: B = U DBU*, where DB is a diagonal matrix with the eigenvalues of

B on the diagonal; hence

S 112 B= UD 1/2 U* UDBU* = UD 1/2DBU* = UDBD 1/2U* UDBU* UD1/2U* - B S1/2

Therefore, we have

0 = det (A2Inxn+AB+B2/4-S) = det (Ai - (-B/2 + vK5)) det (AInxn - (-B/2 - v/5)
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Hence, the eigenvalues of P are the union of the eigenvalues of (-B/2 + V'5) and (-B/2 -

5/S). Since B and S 1/ 2 are diagonalized by the same similarity transformation U, we have

-± S 112 BU U*
2 UDi/2U* (A.18)

Let AB,k be the kth eigenvalue of B, and As,k be the kth eigenvalue of S, k E {1, . .. , n}.

Then, from equation (A.18), we have that

eig(P) = {AB,k/2 t A (A.19)

Hence, we are left with the task of computing the eigenvalues of B and S. Such eigenvalues

can be easily found by using equation (2.4):

{2ka Sn + (an + cn)(1 - e21rjk/n

{(A2,k -AC,k k

(A.20)

{(2ka s, + (an +- cn)(1 - e2rjk/n 2

- ((2ka sc + ancn + snbn) - (2kasncn + 2 ancn + 2snbn)e 2,rjk/n

+ (ancn + bnsn)e47. k/n }
We first consider the eigenvalues of B. By using the following identities

(1 - eakj) = 2sin(ak/2)ejk 2 ,(1 - (1 - eJlk)) = cos(ak/2)ejak/2

and after some algebraic manipulations omitted for brevity, the eigenvalues of B can be

written as

AB,k =(2kasn) + 2(2cn - kasn) sin(k7r/n)ej(kr/n-2) (A.23)
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Hence, we have, for kE {1, .... , n},

Re(ABk)

Im(AB,k)

- 2kasn + 2(2c, - kasnl) sin2 (kr/n),

- -2(2cn - ka sn) sin(k7r/n) cos(k7r/n).

(A.24)

(A.25)

Next, we consider the eigenvalues of S. By using, again, the identities in equation (A.22),

and with simple algebraic manipulations, we can write, for k E {1, ... , n},

AS,k = k~sa (cos(k7r/n)ejk/n)2 + (kasnc + sn)(2 sin(k7r/n)ej(kr/n-)) 2

[k s + 4 sin2 (k7r/n) + (4ksncn - k s - 4c2) sin2 (kr/n)]ei2ktr/n.

Notice that k0, cn and sn are positive real numbers; then the term inside the square brackets

is a positive real number. Therefore we have, for k E {1, ... , n},

(k s + 4sin2(kir/n) + (4kQSnCn - kis! - 4c 2 ) (sin 2 (k7r/n))) 1/2 cos(k7r/n),

which can be rearranged as

Re(v ,S ,k) ((kasn + (2cn - kcsn) sin2(k7r/n))2 + 4 sin2 (kr/n)(s2 - sin2(k7r/n)))1/ 2

(A.26)= ((AB,1/2) 2 + 4 sin2 (kr/n)(s2 - sin2(kr/n))) ./2

From equations (A.24) and (A.26) it is straightforward to show that

. For k = n: we have

AP,n =-AB,n/ 2 + As = - kasn = 0-
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. For k= 1, k = n- 1:

Re( ,) = Re(AB,1/2) = (kasncn2+ 2s cn),

Re(/AS,n-1) = Re(AB,n-1/2) = (ksnc + scn),

Therefore, we obtain

Im(VAs,1) - kas'cf + 2s',

Im(V AS,n-i) = -kascn - 2s-

Re(Ap,1 ) = -Re(AB,1/2) + Re(AB,1/2) 0,

Im(Ap,1) = (2cn-ksn)snc + kas2c + 2s3=2s,

Re(Ap,n_1) = -Re(AB,n-1/2) + Re(AB,n_1/2) =0,

Im(Apn_1) = -(2cn-ksn)sncn - kas2c + 2s3=-2sn.

. For 1 < k < n - 1, since sin(k7r/n)2 > sin(7/n)2 , we have:

Re( Ask) < Re(AB,k/2),

and thus Re(Apk) < 0 for k ( {0, 1, n - 1}.

Now, we proceed to show that v1 , v2, v3 in lemma 3.2.8 are the eigenvectors corresponding

to the eigenvalues 0, 2snj and -2snj respectively. First, consider the zero eigenvalue. Since

L - 1, = O (where On = (0,0,... ,0)T E. Rn), it is easy to verify that:

an L - 2ka sn In -sn In
P vi =

L bn L2 cn L J

= 0 2n. (A.27)
1

-2kaln

Now, consider the imaginary eigenvalue A2 = 2 snj. By replacing v2 into the eigenvalue
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equation we obtain

an L - 2k, Sn In

bn L 2

-sn In

cn L I fn,2(ka)@1

Note that L and L 2 (which are both circulant matrices) satisfy, respectively, L@1 = (e 2j/n_

1)01 = (-2snj(c + jsn))1, and L 24, = (e2-'/n _ 1)2V, = -4'e. 2 7j/n@,1 ; hence, v2 is an

eigenvector for P if and only if:

(an(e 2 ij/n 1) 2kasn)Oi + 2bnejr/n@SnV1

-4bnSn(cn + jsn)2 @1 - c.(-2snj(cn + jsn))2bne

= 2snj@1

= -4bnej"/"snj i

By using the identities in equation (A.22), the first condition can be verified according to

2Sn(-Cn + kasn) jej"/" - 2snka + 2snbner/"n

2((cn - ksf)j - (kc, + j) (Cn -js))e' "

-2(sn + kcl )e',/"

= 2
snj,

Similarly, the condition in equation (A.30) can be verified according to

-2bnsn,(cn + jSn)2 + 2cn(js(c + sn))bne

Sn (Cn + js) + Cn (j(Cn + jsn))

j(s2+ c2)

= -2bne' "srnjni

=3j,

= j.

Similar arguments hold for A3 and v3 (which are complex conjugates of A2 and v2 ).

concludes the proof.
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E
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A.4 Proof that v, ( T(Q*,,4M

Proof: It is enough to prove that at least one of the components of G -vi is nonzero.

The proof that G -vi f 0 is trivial. We proceed to show that Vg1 -v 2 7 0, i.e.:

Cos 27r(n - 1)
n

-rsin 27r(n - 1)
n

= (VOgi) -0i + (Vwg 1 ) - (-2bne j,,/ni) -$ 0.

Both terms in the above sum can be shown to be real and positive. For the first term we

have that:

(Vegi) -#1
n-1

= cos(27k/n)(cos(27rk/n) + j sin(27rk/n))

n-1 n-1 n-1

= cos 2(2k7r/n) + j E 2 sin(k7r/n) = cos2(2kir/n) E Ry0.
k=O k=O k=O

For the second term we have:

(Vwgi) - (-2bnej,/nV1)l
n-1 n

= S ~ sin(27rk/n)2bne"/"e2 xk/n
k=O i=k+1

n-1

= 2 bn 5 ake(2k+1)sj/n,

k=O

where ak - Enk+1 sin(27ri/n) = - 21 sin(27ri/n). Now we show that En- ake (2k+1)rj/n >

0. First, consider the following facts:

ak < 0 Vk,

= ak - sin(27r(k + 1)/n) < ak

< ak Vk # |(n - 1)/2],
n-k

= --5 sin(27ri/n)=
i=1

for 0<k<n/2-1,

n

7 sin(27rm/n) = ak,

m=k+1
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a L(n-1)/2j

ank

-2b, ejsr/n@i

n

- 1:
i=2

cos
CO n)

r sin 27r(i - 1)
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[(n-1)/2J

S(akekrj/n + an-k k7rj/n ) + qa(n-1)/2
k=0

(n-1)/2J

E ak(erkj/n + -krj/n) + qa(n-1)/2
k=0

n-1

Z e(2k+1)7rj/n
k=0

[(n-1)/2]
rkj/n + eir-kj/n) + q = 0

k=0

where q = 0 if n is even. Then,

k=O0

Since bn =(sn + kacn) > 0, we have that V,gi -(-2bnej,/") E R>0.

The proof for G-v 3 # 0 is analogous; in particular, it requires to show that jVg 29 41 E R>0

and jV.g 2 - (-2bne i/no1) E R>0.

A.5 Eigenvalues of the projected Laplacian

The derivation of the eigenvalues of RL(N)LC(a)(C(N))TRT uses the properties of block-

circulant matrices, specifically, the fact that they all belong to a commutative algebra. We

have that:

= eig[7ZT ]eig[L(N) eig[(L (N) )T]eigL(a) + L T (

= eig[(In 0 R(wr/N))(In 0 RT (7r/N))]

xeig[(Li D 13 )(L T 0 13)]eig[L(a) + L(a)T]

eig[(L1 0 13 )(L T 9 13)]eig[1(oa) + L(a)T]
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n-1 ake(2k+1)7rj/n
k=0

n-1

ake(2k-1)7rj/n a (n-1)/2Je (2k-1)7rj/n 0.
k=O

eig[RL (N) Lsmn(a)( (N) TRT]



Then,

eig[RLLsmL TT] = Aik iE{1,..,N},kE{-1,0,1}

= (1 - ej 2 im7r/N)(j _ j 2 imr/N)((jka - jka-j2im~r/N) + (ejka _ -jka+j
2 ir/N

= (2 - ej 2i7r/N - e j 2ir/N)2(cos(ka) - cos(ka - 2im7r/N))

= 4(1 - cos(2ir/N))(cos(ka) - cos(ka - 2im7r/N)) (A.31)

Then, for i = 1:

for i = N:

(1 - cos(2ir/N))

=* Alk

(cos(ka) - cos(ka - 2mir/N)) = 0 => ANk

otherwise for 1 < i < N, |al < 27r/N :

(cos(ka) - cos(ka - 2im7r/N)) > 0

(1 - cos(2i7r/N)) > 0

Proposition A.5.1

VrnLsm VrV = KnR L(a)LsmL(a)TRTK > 0

Proof: R L(a)Lsmf(a) T RT is a symmetric matrix, then, its nullity is the algebraic

multiplicity of the 0 eigenvalue. Thus, dim{N(RZL(a)LsmL(a)TR4T)} = 6. On the other
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hand, the dimension of K,(R L(a)L,,m12(a)T R')KT = 3N - 6, and thus it is full rank.

Since (RCL(a)LsmL(a)TZT) is positive semidefinite, then VI,,LmV is at least positive

semidefinite, but since it is full rank, the proposition is proven.
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