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Abstract

The thesis develops a new class of adaptive controllers that guarantee global stability
in presence of actuation uncertainties. Actuation uncertainties culminate to linear
plants with a partially known input matrix B. Currently available multivariable
adaptive controllers yield global stability only when the input matrix B is completely
known. It is shown in this work that when additional information regarding the
structure of B is available, this difficulty can be overcome using the proposed class
of controllers. In addition, a nonlinear damping term is added to the adaptive law to
further improve the stability characteristics.

It is shown here that the adaptive controllers developed above are well suited for
command tracking in hypersonic vehicles (HSV) in the presence of aerodynamic and
center of gravity (CG) uncertainties. A model that accurately captures the effect of
CG shifts on the longitudinal dynamics of the HSV is derived from first principles.
Linearization of these nonlinear equations about an operating point indicate that a
constant gain controller does not guarantee vehicle stability, thereby motivating the
use of an adaptive controller. Performance improvements are shown using simulation
studies carried out on a full scale nonlinear model of the HSV. It is shown that the
tolerable CG shifts can be almost doubled by using an adaptive controller as compared
to a linear controller while tracking reference commands in velocity and altitude.
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Chapter 1

Introduction

1.1 Hypersonic Vehicles

The Hypersonic Vehicle (HSV) program is mainly being pursued as it promises to

provide a reliable and cost effective access to space. The hypersonic vehicles are

air-breathing as compared to their rocket fuel based counterparts, thereby signifi-

Figure 1-1: Artistic impression of the HSV [1]



cantly reducing operating costs and increasing payload carrying capabilities. Air-

breathing vehicles not only increase propulsion efficiency but also make the vehicle

highly reusable, further reducing cost [2, 3]. The concept of using hypersonic vehicles

for commercialized transport is a topic of active research (Figure 1-2). As hyper-

sonic vehicles operate at speeds of Mach 5-7, it is estimated that if such a technology

becomes viable, flight time from New York to Tokyo can be reduced to merely 2

hours!

The goals of the HSV program are two-fold : (i) to generate a first principle

dynamical model of the vehicle and (ii) to design a controller for the cruise phase.

Modeling and control design of such vehicles has been a challenge as the dynamics

involve strong coupling of aerodynamic, structural and propulsion effects. The long

and slender geometry of the HSV is primarily designed to generate a weak shock at

the inlet of the scramjet engine in order to increase the propulsion efficiency. However,

the vehicle can no longer be assumed rigid and flexible effects must be explicitly taken

into account in the vehicle dynamics. To ensure that the hypersonic vehicle operates

at a high aerodynamic efficiency for a large range of operating conditions, aircraft

designers are forced to design such vehicles open loop unstable. This leads to an

additional challenge that the HSV would not be operable without a flight stability

augmentation system or what is commonly referred to as an autopilot.

Figure 1-2: Artistic impression of hypersonic transport [1]



Active research in hypersonic vehicles began in 1996, with the development of first

scramjet engine powered hypersonic vehicle, the X-43A by NASA (Figures 1-1 and

1-3). The concept demonstrator experimental vehicle was 12 ft long, 5 ft wide and

weighed about 3000 pounds. This scaled down version of the hypersonic vehicle was

mainly intended to flight-validate scramjet propulsion, high speed aerodynamics and

design methods. There have been three experimental flights till date, the first one of

which was a failure, where as the other two have flown successfully; with the scramjet

operating for 10 seconds, followed by a 10 min glide and intentional crash into the

pacific ocean [3].

The most notable flight of the X-43A took place on November 16, 2004, when the

vehicle clocked a flight speed of Mach 9.8, successfully demonstrating the hypersonic

concept. Figure 1-4 describes a typical mission profile of the X-43A in detail. As the

scramjet engine cannot self start at low speeds, the HSV needs to be air launched.

The hypersonic vehicle (X-43A) starts its journey at the nose of a Pegasus booster

which is under-wing a B-52 aircraft. The B-52 carries the booster and the hypersonic

vehicle to an altitude of 45 000 ft. At this stage, the booster detaches from the mother

Figure 1-3: 3-view of X-43 A [1]



(a) (b)

(c) (d)

(e) (f)

Figure 1-4: Typical Mission profile of X-43 [1] (a) X-43 (black) attached to Pegasus
booster (white) underwing B-52 (b) B-52 takes off with the booster (c) Pegasus
Booster separates from B-52 (d) Booster fires HSV to its cruise altitude (e) HSV
detaches from booster (f) HSV in cruise phase



aircraft and carries X-43A to its cruise altitude of 95 000 ft. When the booster burns

out, the scramjet engine is initiated and the X-43 separates from the booster cruising

at a speed of Mach 8.

1.2 Actuation Uncertainties and Adaptive Control

Consider the linear dynamical system,

x = Ax + Bu (1.1)

Actuation uncertainties can be defined as all those uncertainties that lead to changes

in the control matrix B. Actuation uncertainties arise due to anomalies that occur

either in the plant dynamics or in actuators. Variations in plant parameters can

change the way the control inputs effect the plant dynamics. Actuator failures can

lead to loss of actuator effectiveness. Under such conditions, precise information about

the control matrix B is not available. Control laws that do not explicitly account for

actuation uncertainties can result in poor system performance and in some cases, lead

to system instability.

The strength of multivariable adaptive control lies in the fact that global stability

of (1.1) can be guaranteed for any unknown A as long as control matrix B is fully

known and the pair (A, B) remains controllable. The time varying gain "adapts"

to the changes in A based on the error between the current value of state x(t) and

the desired value of state xm (t). Intuitively, this is the essence of Model Reference

Adaptive Control (MRAC) (see [4] for details).

However, it is well known that currently available adaptive control techniques only

yield local stability results for a general unknown B. This work tries to bridge this

gap in the literature by deriving a globally stable adaptive controller when additional

information regarding the structure of matrix B is known. As it would be shown, the

assumptions made regarding the structure of B, are in fact quite general and can be

used to address a large class of problems that arise due to actuation uncertainties.



1.3 Plant Uncertainties in Hypersonic Vehicles

Apart from being open loop unstable and geometrically flexible, the HSV is also

subjected to various uncertainties. Due to harsh, uncertain and varying operating

conditions and limited wind-tunnel data, aerodynamic parameters such as lift and

moment co-efficients of the vehicle are not well known. Mass flow spillage and changes

in the diffuser area ratio can result in variations in the thrust produced by the scramjet

engine. The vehicle actuators, namely the elevator and the canard are subject to

various anomalies including loss of effectiveness, actuator lock and saturation. As the

uncertainties cannot be predicted before hand, an adaptive controller that can cope

with many of these uncertainties is highly desirable [5, 6, 7, 8].

Various uncertainties have been addressed in the context of the HSV, which include

geometric and inertial [7, 9, 10], aerodynamic [5, 6], inertial elastic [8] and thrust

uncertainties [11]. In this work, we consider an additional class of uncertainties which

occur due to center of gravity (CG) movements. CG movements directly impact

the irregular short-period mode of the HSV. Even small shifts in CG can introduce

further instabilities, causing large changes in the dynamics of the HSV, as well as

excite the flexible dynamics. Since the conservation equations of the HSV are derived

by evaluating forces and moments about the CG, even the linearized equations of

motion get altered when the CG moves.

A comprehensive study of the CG movement has been carried out in [12] where

a set of generalized equations of motion for a rigid aircraft is derived from first prin-

ciples, referenced about an arbitrary fixed point on the body. Using this model, in

this work we derive the effects of the CG shift on the longitudinal dynamics of the

aircraft. We further show that using a correct stability axis transformation, the effect

of the CG movement on the dynamics can be accurately modeled, which occurs in a

transparent manner in the corresponding linearized model.

The starting point for the controller proposed in this work is the representation

of the aerodynamic and center of gravity uncertainties mentioned above as a class

of parametric uncertainties in the underlying linear plant-model. As it would be



shown, despite the accessibility of all states of this model for control, existing results

in multivariable adaptive control are inapplicable. As a result, a new controller is

derived and is shown to globally stabilize the linear plant for this class of parametric

uncertainties. The adaptive controller proposed is validated using simulation studies

on a high fidelity nonlinear model of the HSV identified from literature. The results

show the advantage of adaptation compared to a baseline, non-adaptive controller,

for a range of CG movements.

1.4 Outline

Chapter 2 : A new class of adaptive controllers that guarantee global stability

in presence of actuation uncertainties are developed in this chapter. When a plant is

subjected to actuation uncertainties, only partial information is available about the

control matrix B. Global stability results are available when B is completely known,

but existing multivariable adaptive controllers yield only local stability results for a

general unknown B. The study fills the gap in literature by deriving a controller

that is globally stable if the control matrix B is unknown, but satisfies a broad set of

assumptions.

Chapter 3 : This chapter discusses the current state of art in vehicle modeling

and describes in detail various vehicles models of the HSV available in the literature.

Out of these, a high fidelity model has been identified to validate the control designs

developed in this work.

Chapter 4 : A nonlinear model for Center of Gravity (CG) uncertainty is derived

from first principles. This model is then linearized and insights are developed for

control design. It is shown that a linear controller is in general, unable to guarantee

stability for HSV under CG movements, thus calling for an adaptive controller.

Chapter 5 : The control design developed in Chapter 2 is validated on the HSV

in presence of CG movements (developed in Chapter 3 and 4). The HSV satisfies the

general assumptions required by the proposed adaptive controllers, thereby making

them applicable for a large range of CG movements. Simulation studies performed



on the HSV show that the adaptive controller yields superior performance over linear

control designs for a large range of CG movements, while tracking reference commands

in velocity and altitude.

Chapter 6 : The main contributions of this work are enlisted in this chapter.



Chapter 2

Adaptive Control in presence of

actuation uncertainties

The new adaptive controllers proposed in this chapter consist of two novel extensions

to the standard multivariable adaptive controllers that are well known in the literature

[4]. The first is the consideration of uncertainties in the input-matrix B. It is well

known that when B is completely known or when B includes only scaled-uncertainties

[13, 14] , a globally stabilizing adaptive controller can be constructed, and that for

a general unknown B, only local stability results are available [4]. In this chapter,

the former class is expanded further if the class of uncertainties in B satisfy a broad

set of assumptions. These assumptions are in fact quite general and can be used to

address a large class of problems.

The second innovation introduced in the proposed adaptive controller is the use

of nonlinear damping. Employed in the past for addressing difficulties introduced due

to relative degree [4], the introduction of nonlinear damping here is shown to result

in a stable controller and in a better performance in the simulation studies. These

two extensions are the main contributions of this thesis.



2.1 Problem Statement

Consider the MIMO plant with dynamics,

±=Ax + Bu (2.1)

where the state x E R"'l is accessible and u E Jmx1 is the control input. The

problem is to determine u when A and B are unknown so that the closed-loop system

is stabilized and the state x is brought to zero. This problem has been studied

extensively [4] and several global and local results are available. Since these results

are pertinent to the contribution of this thesis, we briefly review the relevant results

in this area.

2.1.1 Known B

The simplest adaptive controller that can be derived when states are accessible cor-

responds to the case when A is unknown in (2.1) but B is completely known. Under

the assumption that there exists a 0* such that,

A + BO* = Am (2.2)

where Am is a known Hurwitz matrix, it can easily be shown that the following

adaptive controller leads to global stability.

U = Ox (2.3)

O = -1,BTPeXT (2.4)

e = x - xm, xm = Axm (2.5)

where P satisfies the Lyapunov equation

AT P +PAm -Q < 0. (2.6)



The corresponding Lyapunov function in this case is of the form

V = eT Pe + Trace(NT p- 1 9)

which has a derivative

V =e'(ATP + PAm)e + 2eTPe~x + 2 Trace(oT r-1 9)

= - eTQe + 2eT PeBmNx - 2 Trace(x eTPBm5)

(2.7)

(2.8)

- - eT Qe < 0

where 0 = 6-0*. In proving (2.8), we have used the matrix identity Trace(abT ) - bTa

for column vectors a and b.

Remark I : A small perturbation of the assumption in (2.2) has been used

extensively in the design of adaptive flight control systems [13]. This corresponds to

an assumption.that B is unknown but is such that

BA* = Bm (2.9)

where Bm is known and A* is a diagonal matrix with the signs of its diagonal elements

known. Such an assumption is quite reasonable in problems where uncertainties occur

due to anomalies in actuators [13],[14].

Stability Proof : The corresponding Lyapunov function for this case is

V = eTPe + Trace(A*O F-1 #T) (2.10)

It can be shown that (2.10) has a derivative

V = -eTQe < 0



if the control law is chosen as

U = O

= -sgn(A*)B PexT 1

where P satisfies (2.6), sgn denotes the sign function and

sgn(A*) = diag(sgn(Aj), sgn(A2 ), ... , sgn(A,)) (2.13)

2.1.2 Unknown B

The problem is particularly more complex when B is unknown. The stability result

that can be obtained differs drastically from that in the above section [4]. Since B is

unknown, it is no longer possible to choose Bm of the reference model as Bm= B.

The design of the controller requires an additional assumption that a non-singular

matrix K* exists such that

BK* = Bm, (2.14)

where Bm is known. The controller in this case is of the form

u = KOx (2.15)

This yields an overall system described by,

= (A + BKO)x (2.16)

Due to the structure of the control input in (2.15), assumption (2.2) is modified as

A + BK** = Am (2.17)

(2.11)

(2.12)



The error dynamics in this case can be written as

Ame + [A + B(K* + K - K*)O - Am]x

Ame + Bm(O - 0*)x + Bm[K*-lK - I]Ox (2.18)

= Ame + BmO(t)x + Bm9(t)u

where,

O(t) = O(t) - 0* (2.19)

T(t) = K*-1 - K- 1 (t) (2.20)

It can be easily shown that

V = eTPe + Trace(UT F-15 + GjT (2.21)

is a Lyapunov function of the system with a time derivative

V = -eTQe < 0

if the control parameters are adjusted as,

6 = -l'oBPexT  (2.22)

K = -I\,KB PeUT K (2.23)

where e and xm are defined as in (2.5) and P satisfies (2.6). The main point to

note here is that in this case, the stability result is local. This occurs because the

Lyapunov function assures global stability in the {e, 0, 'i} space. Though the adaptive

law ensures the boundedness of

T(t) = K*~1 - K~ 1 (t)



the parameter of interest is

K(t) = K(t) - K*(t).

As the Lyapunov function in {e, 0, K} space is not radially unbounded, the stability

result is only local and not global.

2.2 Adaptive controller for systems with partially

known input matrix B

The question that is raised by the discussions above is that can the local stability

result be avoided, if additional information regarding B is known. We note that (2.14)

can be equivalently expressed as

B = BmI*. (2.24)

Equation (2.24) implies that Bm lies in the subspace spanned by the columns of B.

We assume that further information is available about I* as follows.

Assumption : Let xF* be such that there exists a sign-definite matrix M and a

known symmetric positive-definite matrix Fo such that

Fok* + =*TFo = M (2.25)

Equation (2.25) essentially implies that partial information is available regarding

B such that a known Bm and a J* that satisfies a sign-definite condition exist.

It should be noted that the class of such Bs satisfying (2.25) is quite larger than

those satisfying (2.9). The assumption in (2.25) mainly allows us to find a globally

stabilizing adaptive controller by not introducing the time-varying parameter K in

(2.15). In the following, we show that if B is unknown but satisfies (2.24) and (2.25),

a globally stabilizing adaptive controller can be derived.



We choose an adaptive controller of the form,

u = 0(t)x

=-FB T PexT r = mY o, y > 0

The main stability result is stated and proved in Theorem below.

Theorem : Under assumption (2.2), (2.24) and (2.25), the controller in (2.26)

ensures that the plant in (2.1) can be globally stabilized and that

lim x(t) = 0 (2.2
t-+oo

where P satisfies (2.6).

Proof: Using (2.2) and (2.24), we write the closed loop system equations as,

= (A + BO*)x + BmT*Ox (2.2

leading to the error equation,

e = Ame + BmT*Ox (2.2

A Lyapunov function candidate,

V = eTPe + Trace(NT(I*TF)#) (2.3

results in

V =eT(AmP +PAm)e+eTPBmI*Ox+xTNTB Pe

- Tr(#T qj*Tp 0) - Tr(# F1 *T 0)

= - eTQe < 0

7)

3)

(2.26)

(2.31)

9 )

0)



if the adaptive law is chosen as

0 = - FBT PexT (2.32)

and F satisfies assumption (2.25). This implies that the closed loop system is globally

stable and e is bounded. A straight forward application of Barbalat's lemma results

in,

lim e(t) = lim x(t) = 0
t-+oo t-+oo

(2.33)

2.2.1 B = AB, : Uncertainties in plant dynamics

In this section we address the case of multiplicative uncertainties in B that occur due

to changes in the plant dynamics. Let the control matrix B be of the form

B - AB (2.34)

where Bp E gnxm, n > m is known and is full rank and A is unknown. It is easy

to show that assumption (2.25) is satisfied if A and Bp satisfy either of the following

conditions,

(i) symmetric part of A is sign-definite

(ii) symmetric part of BTAB, is sign-definite

In both cases, it can be shown that an M exists that satisfies (2.25) if Bm = B,

and ro = BTB,. If condition (i) is true, then M exists for any full rank matrix Bp.

However if A is not sign-definite, then Bp and A together should satisfy condition (ii).



Proof : For Bm = Bp, (2.24) can be written as,

ABp = BpI* (2.35)

=BTABp = B'B * (2.36)

-B * BB = BP (A + X (2.37)

Fo Fo M

2.2.2 B = BpA Anomalies in actuators

Loss of actuator effectiveness can be modeled by a post-multiplicative uncertainty

matrix A. The control matrix B is still unknown but is of the of the form

B = BA (2.38)

where B, E nxm is known and A is unknown. It is easy to show that assumption

(2.25) is satisfied if

(i) symmetric part of A is sign-definite

In this case it can be easily shown that that an M exists that satisfies (2.25) if

Bm = Bp and FO = I.

Proof: For Bm = Bp, (2.24) can be written as,

BpX = Bp* (2.39)

=>A = T* (2.40)

-> I T* + *T I -(A+AT) (2.41)
Fo Fo M

It should be noted that the requirement of symmetric part of A to be sign-definite is

much more general than that used in [13, 14], where A has to be diagonal and the

sign of diagonal elements have to be known. Also the adaptive controller developed

in this section allows for actuator anomalies which lead to coupling between different

actuators (i.e. actuator responses are not independent of each other). Mathematically,

the requirement that A is diagonal, tolerates uncertainties which only stretch the



control subspace. However, assumption (2.25) allows the control subspace to both

stretch and rotate as long as the rotation angle is acute (due to sign definiteness

condition), thus allowing us to address a much larger class of problems.

Remark 2 : All the above discussions can be extended to the tracking problem

where xm is realized using a reference command r as

X m Amxm + Bmr (2.42)

by modifying u as

n = (t)x + N(t)r (2.43)

and suitably adapting N.

2.3 Adaptive Control with nonlinear damping

Control strategy using adaptive methods is to change the adaptive parameter 0 based

on the error between the plant and the reference model, e. If the plant is unstable, the

error between the two is high initially and reduces with time,ultimately becoming zero.

This high initial error can lead to a poor transient response. Though the transient

response can be improved by using a large adaptive gain F, such a methodology

usually leads to large control effort. The oscillatory nature in the transient response

cannot be eliminated by just choosing a large gain.

Situations such as these are avoided by using a linear baseline controller (usually an

LQR based controller) which stabilizes the nominal system. The adaptive controller

yields good performance even though there is uncertainty in the plant parameters as

the perturbed plant is usually stable. However, in certain scenarios, small parametric

uncertainties can lead to large changes in the plant dynamics, making the perturbed

plant unstable. The adaptive controller, which is trying to now stabilize an unstable

plant, usually becomes ineffective.



2.3.1 Illustrative scalar example

To motivate the problem, let us consider a scalar system with unstable dynamics,

z = ax + u, a = 3 (2.44)

Let the objective of the controller be to track the reference model,

im = amxm + r, am = -1 (2.45)

If the adaptive controller is of form u = Ox + r, the adaptive law can be easily derived

to be,

(2.46)

Figure 2-1 shows the state, control and adaptive parameter response of the system

to a unit step reference command for adaptive gains -y = 1, 10. As it can be easily

seen, the transient response of the system is unsatisfactory. The initial control effort

is also very large.
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Figure 2-1: System response for
-= 1 and (b) y = 10

40 50

time

nominal adaptive control with adaptive gains (a)

The above problem can be solved in an effective manner by introducing the rate

- -1

0 1'0
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6 = -7ex



feedback of the adaptive parameter. The control input is now modified as

u = Ox + KDOx + r (2.47)

As the adaptive parameter 6 is a nonlinear function of the error and the state, aug-

menting the extra term adds nonlinear damping as,

U = Ox - -yKDex 2 (2.48)

Figure 2-2 shows the system response with derivative feedback. It should be noted

that even for a small derivative gain KD = 1, the transient response shows tremendous

improvement.
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Figure 2-2: System response for adaptive control with nonlinear damping with adap-
tive gains (a) y = 1 and (b) 'y = 10

2.3.2 Stability proof

Consider the MIMO plant with dynamics,

x = Ax + Bu

0 1

(2.49)



where B is known. Let the objective of the adaptive controller of the form

u = Ox + KDOx + r (2.50)

where KD > 0, be to track the reference model given by,

im =AmXm + Bmr (2.51)

Let there exist a known Am and a 0* such that

A+ BO* = Am (2.52)

The error dynamics with derivative control with Bm = B is,

Ame + B0x + BmO (2.53)

It can be easily shown that

V = eTPe + Trace(6Tr-15) (2.54)

is a Lyapunov function of the system with a time derivative,

= -eQe - ( (PBm)TKDeT PBm) ; 0 (2.55)

The nonlinear damping term makes V more negative and hence is able to improve

transient performance as compared to the nominal adaptive controller.
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Chapter 3

Modeling the HSV

A schematic of the HSV is shown in Figure 3-1. There are three control inputs for

this vehicle, the elevator deflection Je, the canard deflection Jc, and the equivalence

ratio for the fuel in the scramjet #. The canard has been added in recent studies in

order to increase the available bandwidth for the control designs [15, 16]. However,

due to harsh operating conditions experienced by the fore-body of the HSV, it might

not be physically possible to realize the canard as a control input. For this reason,

we assume that only elevator deflection and equivalence ratio are available as control

inputs.

ElevatorCanard

Bow shock

Figure 3-1: HSV side view I [17]

The research in vehicle modeling is mainly intended at developing a high fidelity

model of the hypersonic vehicle which captures the effects of high speed aerodynam-

ics, flexible dynamics and scramjet propulsion. Various models have been proposed



in this regard. It should be noted that the current literature focuses on the longitu-

dinal model of the HSV and assumes infinite lateral stiffness. This is a reasonable

assumption for slender bodies for whom longitudinal dynamics govern stability and

performance as compared to the lateral dynamics.

Hypersonic Aerodynamics : Earliest aerodynamic models used Newton im-

pact theory to calculate the pressure distribution around the vehicle [18. However,

Newtonian theory was found to be inaccurate in predicting aerodynamic forces and

moments. Piston theory was proposed by Oppenheimer [19] to model unsteady aero-

dynamics, but resulted in a complicated description, unsuitable for control design.

Aerodynamic models which consider aerothermal [20] and viscous [21, 22} effects have

been considered in the past. Lately, researchers have been increasingly using Oblique

shock and Prandtl-Meyer expansion theory [17, 23, 24] as it provides an accurate yet

simple model of the underlying aerodynamics.

Elastic Effects : Two main approaches have been used thus far to model elastic

effects of the HSV. The first approach proposed by Bolender and Doman [17] models

the HSV as double cantilever beam fixed at the center of gravity. A Lagrangian

approach was used to develop the dynamical model of the HSV from first principles.

The vehicle model thus developed predicted direct coupling between the elastic modes

and the pitching moment, which was later deemed unrealistic as it failed to match

experimental results. Bilimoria and Schmidt [25, 26] modeled the HSV as a free-free

beam and used assumed modes method to model flexible effects. The model used to

validate control design uses this well known classical approach.

Propulsion Model : A simplified scramjet engine model was described by

Chavez and Schmidt [27]and has remained the central approach to model scram-

jet engines in the context of HSV till date. The engine was modeled as a 1-D duct

and an isentropic flow was assumed. The main contribution of their work was the de-

velopment of an analytical relationship that predicted pressure distribution at the aft

of the nozzle, enabling one to calculate the thrust generated by the scramjet engine.

An engine model that includes effects of pre-combustion shocks and dissociation has

been proposed by [28, 29]. Though this model explicitly accounts for chemical reac-



tions inside the combustion chamber, it fails to provide an input output relationship

needed for control design.

if 'dis 'a

Forward Under-side Aft

Figure 3-2: HSV side view II [17]

3.1 Rigid Body Model

When a supersonic flow is turned onto itself, an oblique shock is generated [30] (Fig

3-3). The flow after passing through the shock is turned parallel to inclined surface.

The shock angle O, is a function of the wedge angle 6,

sin Os + bsin 40, + csin 2 Os + d = 0 (3.1)

where

b - M22 Ysin 2 6b=-

2M2 + 1+
M +

cos 2 6
d=M-

(y + 1)2 + _ 1] sin 2j
4 M12

(3.2)

(3.3)

(3.4)

Here M denotes the Mach number and -y is the ratio of specific heats (7 = C,/CV).
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Figure 3-3: Oblique shock and Prandtl-Meyer expansion theory[30]

Subscripts 1 and 2 denote the flow properties before and after the shock. The post

shock flow properties, namely the pressure p, temperature T, and Mach number M,

can then be obtained using the following relations [30] ,

P2 7M sin 2 0, _ 1

Pi 6
T2 (7M? sin 2 06 - 1) (M? sin 2 0, + 5)

T1 36M2 sin 0,

M22sin 2 (0' - 6) M .sin 2 0 .5
7M sin 2 , _ I

(3.5)

(3.6)

(3.7)

However, if the flow is turned around a corner, a Prandtl-Meyer expansion fan is

created. The flow expands isentropically until it becomes parallel to the inclined

edge. The flow properties after the expansion are a function of the turn angle 6 and

the incoming flow Mach number M1,

6 = v(M 2 ) - v(M1) (3.8)

where

(3.9)v(M) =arctan( (M 1)) arctan(-VM2- 1)



is the Prandtl-Meyer expansion function. Post expansion flow properties can be

calculated as [30],

P2 [1 + [(- - 1)/2]M2 1 (3.10)
Pi .1+ [(-y - 1)/2]M2J
T2 _ 1+ [-1)/2]M2 (3.11)
T1 1 + [(-7 - 1)/2]M

Given the geometry of the HSV and the upstream Mach number Moo, pressure

distribution over the vehicle can be directly calculated. Forces and moments can be

obtained by integrating the pressure over the vehicle area. The same approach is

used for evaluating forces and moments generated due to elevator deflection and at

the inlet of the scramjet engine.

3.2 Propulsion Model

The propulsion model described here is based on the work done by Chavez and

Schmidt [27]. The scramjet engine is modeled as 1-D duct in isentropic flow. A

schematic of the scramjet is shown in Figure 3-4. The scramjet engine has three

parts; the diffuser (or compressor), the combustion chamber and the nozzle. The

model assumes isentropic compression of the flow in the diffuser, constant area heat

addition in the combustion chamber and an isentropic expansion in the nozzle. The

flow properties at the inlet of the diffuser can be calculated using oblique shock the-

ory, given the free stream Mach number. The Mach number of the flow at the exit of

Reflecting
Shock Wave

Diffuser

hi h

MM-------

Cowl Door

Combustor Nozzle
Ci hce he

0 00
Ad = he/hi An = he/h

Figure 3-4: Schematic of Scramjet Engine [17, 27]

ce



the diffuser is given by,

[1 + [(y - 1)/2]M/ [1 + [( - 1)/2]M (yi )(3.12

L M 2. - AM(3.12)
i 

M2

where subscripts (-) and (.)ci denote the flow properties at the inlet to the diffuser

and that to the combustor respectively. Ad is the diffuser area ratio. Pressure and

temperature of the flow at the inlet of the combustor can be calculated using equations

(3.10) and (3.11).

The Mach number at the combustor exit Mce is a function of the total temperature

change across the combustor ATc due to heat addition,

Mc [I -1)/2]M] M i +[( - 1)/2]M] M2 AT (
+ "' (3.13)

(7yMc2e+ 1)2 (7M6 + 1)2 (M + 1)2 T

The temperature and pressure at the combustor exit can then be calculated using,

1 + yM
Pce = Pci 1 + yMc2  (3.14)

1 + 7Mi M2
T[e = Tc ) Mc] 2  (3.15)

1 + 7yMc3 My

The total temperature change across the combustor is a function of the equivalence

ratio 4,

Tce _ 1 + Hf ricfst4/(cTt) (3.16)
T r- 1 + fLTO

A T = - T (3.17)

where r, is the efficiency of the scramjet (0.9), ft is the stoichiometric air-fuel ratio

(0.0291), Hc is the heat of combustion for the fuel (LH2 at 51,500 BTU/lbm) and c,

is the specific heat of the fuel at constant pressure (0.24 BTU/(lbmR) [17, 31, 32].

It should be noted that the total temperature and the static temperature have the



following relationship,
= 1 + - - IM2. (3.18)

T 2

The flow is isentropically expanded in the nozzle and the flow properties at the

exit of the nozzle are given by,

(+1)/(y-1) [ [-y - )/ M e]( y+1)/(7-1)

[1 + [7 - 1)/21M] 11 + (319)1)/2]Mce

M2 n Mc2

where An is the area of the nozzle.

The flow coming out of the nozzle interacts with that turned by the upper body

of the HSV, resulting in a shear layer. Chavez and Schmidt found an analytical

expression for the pressure distribution at the aft of the scramjet engine as a function

of free stream air pressure Pa,

Pa = Pe (3.20)1 + Sa/la(Pe/Po - 1)

where la is the length of the aft of the aircraft in the x-body direction and Sa is the

length coordinate in the x-body direction.

The total thrust generated by the scramjet engine can be calculated using conser-

vation of momentum,

T = rha(Ve - V) + (pe - poo)he - (pi - po)hi. (3.21)

The forces and moments generated due to scramjet engine can be calculated once

the pressure distribution around the engine is known. Similar analysis can be done

for the forces and moments generated due to the elevator deflection. Depending on

the angle of attack and the elevator deflection, one face of the elevator generates an

oblique shock and other an expansion fan. The difference in the pressures gives the

lift force. The pitching moment can be calculated given the location of the elevator

with respect to the center of gravity.

The total force and moment on the HSV in the longitudinal plane can thus be



calculated by summing up individual contributions from the upper-body (u), lower

fore-body (f), scramjet engine (s) and the elevator (e)

Fx = Fx,u + Fx,f + Fx,s + Fx,e (3.22)

F2 = F2,u + F2J + Fz,s + F,e (3.23)

My = My,u + MyJ + My,s + My,e + ZTT. (3.24)

where T denotes the thrust and zr denotes the vertical location of the scramjet engine

with respect to the center of gravity of the HSV.

3.3 Elastic Model

The elastic effects are obtained by modeling the HSV as a free-free Euler-Bernouli

Beam as shown in Figure 3-5. Let the beam be subjected to a time varying distributed

y = y(Xt)

f (x, t)

Figure 3-5: Assumed Modes Method

load f(x, t). The displacement y(x,t) of the HSV can be approximated by a finite

series,

n

y(x, t) = # (x)qi t) (3.25)
i=1

where di(x) are known trial functions and q (t) are unknown generalized co-ordinates

[33]. If we assume that there are no lumped mass at the boundaries, then the kinetic



energy can be discretized as,

T (t) = m(x)pi2(x,t) dt

in n

2 mi 4(t)(t)
i=1 j=1

where,

m ij = JOm(x)4 O(x)4Oj(j)dx,

are symmetric mass co-efficients. The potential energy of the system can be similarly

discretized as,

V(t) L EI(x)[,2y(x, t) ]2dz

2 E j kij q (t)qj (t)
i=1 j=1

(3.29)

(3.30)

where,

i L d24 (x) d2 Oj(x)d
kg =)dx 2 dx2 i, j = 1, 2,..., n

are the symmetric stiffness co-efficients.

Finally, letting f(x, t) to be a distributed non-conservative force, the virtual work

can be discretized as follows,

where,

iW = F(t)qi(t)
i!=1

L
F(t) = JOf (x, t)4O2(x) dx, i =

(3.32)

(3.33)

(3.26)

(3.27)

(3.28)

(3.31)

i, j = 1, 2, ... , n



The Lagrange's equation have the form,

+(OT) OT+ &V= F, k = 1, 2, ..,n (3.34)
dt 0qk Oqk Oqk 3.4

Equating the forces we get,

Zmi jj (t) + E kijqj (t) = F (t), i = 1, 2, ...,n (3.35)
j=1 j=1

which is nothing but the equations of motion of an -degree of freedom undamped

system.

The trial functions #i(x) can be chosen from the admissible class of functions

which satisfy the boundary conditions of a free-free beam. For the HSV, f(x, t) is

the pressure distribution per unit area. In the literature, usually three admissible

bending modes have been used to model the flexible modes of the HSV [5].

3.4 Equations of Motion

Though the models developed above accurately predict forces and moments on the

HSV, using them for validating control designs is computationally intensive. To

facilitate ease and rapid evaluation of control designs, Parker et al. [16} suggested a

control oriented model of the HSV. The main idea behind their work was to curve

fit the forces and moments of the HSV into the well known rigid body aircraft model

for the entire flight envelope. Flexible dynamics were augmented to this model to

account for elastic effects. The work by Parker used the double cantilever beam

model of Bolender and Doman[17]. This model was later found to be unrealistic

as the predictions of the model did not match with that observed in flight tests.

Fiorentini et al [5, 23, 24] used a free-free elastic beam model similar to that used by

Bilimoria and Schmidt [25] to obtain the curve fit relationship. Three bending modes

of the fuselage were considered to represent the flexible effects. The control designs

developed in this thesis have been evaluated on the nonlinear model described in [5].



The details of the model are described below.

The equations of motion of the HSV consist of 5 rigid states and 6 elastic states,

x = [V, a, Q, h, ]T and 7 = [71, li, 72, 2, 73, 3]T , where the rigid states are the

velocity, angle of attack, pitch rate, altitude and pitch angle respectively, and the

flexible states correspond to the three bending modes of the aircraft. The control

inputs are elevator deflection (6e) and the equivalence ratio (#) of the scramjet engine.

The combined equations of motion are ([5]),

V = (T cos a - D)/m - g sin(O - a) (3.36)

= -(T sin a + L)/mV + Q + (g/mV) cos(O - a) (3.37)

Q = M/IYY (3.38)

h=Vsin(O - a) (3.39)

O=Q (3.40)

i = -2(own - w27i + Ni, i = 1, 2,3 (3.41)

L = L(x,,q, &e), D =- D(x, q, &e), M = M(x, q, Je)

N = N(x,'q), T = T(x, 2, #)

where, L, D and T denote the lift, drag and thrust forces respectively. M denotes

the pitching moment and Ni represents the generalized forces generated due to the

three bending modes of the fuselage. Although there is no coupling of rigid and

elastic states through the equations of motion, the elastic states are directly coupled

with rigid states through forces and moments. The lift, drag, thrust and moment are

explicit functions of both rigid and elastic states. The functional relationship between



the states and the lift, drag and moment co-efficients are described below,

CL = Ca + CNe + CO +Cir)

CM C a2e + a0+C

CD 2 C2 + C c + CO ± C+ gi (3.42)

CT = C as +C7"2a2 +C"a +C+ + C$ + C?$2 +C?&+ CD + C D

CN3 6 =C.+~+ C7j, i,j =1, 2,CNj=Cja+Q e N

It should be noted that it is impractical to measure the flexible states and use them

for control design. Thus the controller design is carried out on the rigid-body model

of the HSV obtained by neglecting flexible states in (3.42). However, the designed

controller is evaluated on the full scale non-linear model of the HSV taking flexible

effects into account.



Chapter 4

Nonlinear model for Center of

Gravity Uncertainty

The equations of motion of a rigid body are usually written about the center of gravity

(CG). However, if the center of gravity moves, the equations of motion get fundamen-

tally altered. For aircrafts, the position of the center of gravity with respect to the

aerodynamic center determines the trimming moment, the frequency of the short pe-

riod mode and the vehicle stability. Subsonic aircrafts usually have their CG located

ahead of the aerodynamic center for static stability. A forward movement of center

of gravity usually makes the aircraft more stable but requires the tail to generate a

larger moment to trim. Large trimming moments require greater elevator deflections,

which leads to increased drag. A backward CG shift on the other hand tends to make

the aircraft less stable but more maneuverable and controllable. However, high per-

formance aircrafts like the hypersonic vehicle, have unstable short period modes due

to constraints imposed by high speed aerodynamics and the operation requirements

of the scramjet engine.

Scramjet powered hypersonic vehicles require sharp leading edges and long, shal-

low fore-bodies (typically small angle wedges, cones, or scoops) because they are part

of the inlet system and must generate relatively weak shock waves to enhance engine

efficiency. Vehicle aft-bodies are also long and shallow because they are part of the

scramjet nozzle and must be so for the nozzle to operate efficiently and create balanc-



ing pitching moments for reasonable vehicle trim. Note that the under-slung location

of the scramjet engine generates a nose up pitching moment. This type of geometric

configuration naturally results in the CG lying aft of both the low-speed aerodynamic

center and the high-speed center of pressure, the latter occurring roughly at the center

of vehicle planform area. Unless massive ballast is used to shift the CG forward, the

CG lying aft of the high-speed center of pressure results in an unstable configuration

at hypersonic speeds. With effort (by adjusting the internal arrangement of propel-

lant and systems, etc.) a designer might be able to get the CG to lie at or slightly

forward of the hypersonic center of pressure, resulting in neutral to slightly positive

stability at hypersonic speeds. Regardless, stability will almost always be a challenge

at low speeds when the aerodynamic center migrates forward to approximately the

quarter-chord of the overall vehicle mean aerodynamic chord.

It cannot be assumed in general that for a flexible aircraft, a forward movement

of CG is stabilizing. The flexible geometry leads to direct coupling of the pitching

moment and flexible states. In such a scenario, a movement of CG in any direction

changes the pitching moment, which in turn can excite the flexible states and lead

to undesirable effects. For rigid aircrafts, CG shifts are usually modeled by scaling

the stability derivatives. However, for high speed flexible vehicles such linear approx-

imations inaccurately model CG shifts. It is also impractical to measure structural

deformations of the HSV and use them for control design. The controller designs

should be thus robust to excitations in the flexible dynamics which occur due to CG

movements or otherwise. Modifying stability derivatives to model CG shifts does not

give insights into how the vehicle model gets changed when the CG moves and how

can we accommodate for it through controller design.

For all the reasons discussed above, we develop a nonlinear model of the center

of gravity movements from first principles. The equations of motion of the aircraft

are written about a body fixed point. The rational behind such a choice is that even

if the CG moves, the equations of motion remain the same. As it will be shown in

subsequent sections, by linearizing such a model, the CG shifts can be represented as

parametric uncertainties thus providing insights into control design. The nonlinear



model is first derived assuming the aircraft is rigid. Flexible dynamics are then

augmented to this nonlinear model to account for vehicle flexibilities. This approach

is similar to that being followed in the current literature [5].

4.1 Nonlinear model for Center of Gravity shifts

In this section we derive the nonlinear center of gravity model from first principles.

Let the reference frame be located at an arbitrary body fixed point. Let U,V and

W denote the velocities of the body fixed point in x, y, z axes. Let Ax, Ay and Az

denote the location of center of gravity (CG) with respect to the body fixed point.

Also let P, Q and R denote the angular rates about roll(x), pitch(y) and yaw(z) axes

respectively. Further let Ii denote the moment of inertia about i - j axis. It can be

shown that the generalized equations of motion written about a body fixed point is

[12],

EF,=m[ +QW - RV -(Q 2 + R2 ),X (4.1)

+ (QP - N)Ay + (RP + Q)Az + g sin(O)] (4.2)

EFy = m[ + RU - PW +(PQ + R)Ax (4.3)

- (P 2 + R2 )Ay + (QR - P)Az - g cos(9) sin()] (4.4)

Fz= m[W + PV - QU + (PQ - O)Ax (4.5)

+ (QR + P)Ay - (P 2 + Q2)Azz - g cos(O) cos(#)] (4.6)

E Mx = Ix# - IyQ - Ixzz + IxyPR - IxzPQ + (Izz - Ivy)QR + (R2 _ Q2)ITz (4-7)

+ m[(PV - QU + W - g cos(O) cos(#))Ay + (PW - RU - V + g cos(9) sin(#))Az]

BM, = -Ixy# + IvyQ - Iyz + IyzPQ - IxyQR + (Ixx - Izz)PR + (P 2 - R 2 )IZz (4.8)

+ m [(QU - PV -W + g cos(O) cos(#)),Ax + (QW - RV + U + g sin(O))ZAz]

EMz=- IPz - IyzQ + Izz + IxzQR - IyzPR + (Iy - Izz)PQ + (Q2 _ p2)IX (4.9)

+ m[(RU - PW + V - g cos(O) sin(#))zAx + (RV - QW - U - g sin(O))zAy]
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Figure 4-1: Axes of the HSV (from [8])

where Fx, Fy and Fz are the forces and M,, My and Mz are the moments in the x, y

and z axes respectively. To develop a longitudinal model, we assume that the motion

of the HSV is limited to the x-z plane. The velocities and angular rates in the lateral

direction are neglected.

V=0, V =0, P=R=0, P=R=O 0<=0 (4.10)

To be consistent with the longitudinal axis assumption, we should also assume that

there is no lateral shift of CG, i.e Ay = 0. As the hypersonic vehicle is symmetric

about the x - z plane, the moment of inertias Ixy and Iy are identically zero. Under

these assumptions the equations of motion get simplified to,

EF= m[ + QW - Q2 Ax + QAz + gsin(O)] (4.11)

EF= 0 (4.12)

EF m[ - QU + OAx - Q2Az - g cos(O)] (4.13)

EM = IYQ + m[(QU - W +g cos()) Ax

+ (QW + U + g sin(0))Az] (4.14)

where, Ax, Ay and Az denote the location of CG with respect to an arbitrary body

fixed point. Fig 4-1 shows the body fixed axis system of the HSV. To develop a control

oriented model and to simplify the equations of motion, we carry out a stability axis

transformation. It should be noted that a more standard transformation of the co-



ordinates by the angle of attack (a) defined by tan a = 1 is inappropriate, since by

definition, the angle of attack is defined to be the angle that the velocity vector of

the CG makes with the fuselage reference line.

The velocity at the center of gravity can be shown to be,

Vcg = VBF + W X , (4.15)

= (U + QAz - RAy)i + (V - PAz + RAx)j

+ (W + PAy - QAx)k (4.16)

where Vc, and VBF denote the velocity vectors at the CG and body fixed point re-

spectively. w is the angular velocity vector and P is the position vector of the CG

with respect to body fixed point.

Under the longitudinal dynamics assumption, the velocity at the center of mass

simplifies to,

Vcg = (U + QAz)i + (W - QAx)k (4.17)

and the angle of attack, by definition is

tan a = -QAx
U + QAz

(4.18)

If we define the total velocity at the center of mass as V, it can be shown that the

following relations hold true,

Vcosa = U + QAz

Vsina = W - QAx

V = (U + QAz) cos a + (W - QAx) sin a

V6 = (W - QAx) cos a - (U + QAz) sin a

(4.19)

(4.20)

(4.21)

(4.22)

A stability axis transformation consists of rotating the body fixed axis by the angle of



attack in the counter-clockwise direction. The force equations get suitably modified,

Fxs = FBCOSa + FzBina (4.23)

Fzs = -FxBsina+ FzBCOSa (4.24)

where subscript S denotes stability axes and B denotes body fixed axes respectively.

Substituting the forces in the body-fixed axes from (4.11) and (4.13) and using (4.19)

through (4.22), we get,

Fxs = m(V + g sin(O - a)) (4.25)

Fzs = m(V6 - QV - g cos(9 - a)) (4.26)

Also the forces in the stability axes are given by,

Fxs = Tcosa - D (4.27)

Fzs = -(T sin a + L) (4.28)

By balancing the forces we get,

V = (Tcos a - D)/m - gsin(9 - a) (4.29)

d = -(T sin a + L)/mV + Q + (g/mV) cos(O - a) (4.30)

It should be noted that (4.29) and (4.30) are exactly same as (3.36) and (3.37), as

though there has been no CG shift. However, the velocity predicted by these equations

of motion is not that of body fixed point, but that of the new center of mass. If the

moment equation is expressed in terms of the stability axes variables, then (3.38) gets



modified to,

(IVY- m(Ax 2 + Az 2))Q = M

-m [9(Az cos a - Ax sin a) - Vd(Ax cos a + Az sin a)]

(4.31)

- mg(Ax cos a + Az sin a)

The above result is reasonable as a shift in the center of gravity does not change the

lift produced but only brings about a change in the pitching moment. It should also

be noted that a shift in CG changes the moment at trim.

4.2 Linearization

4.2.1 Linearized Model of the HSV

The design model described in (3.36)-(3.40) can be expressed compactly as a non-

linear model,

X = f (X, U) (4.32)

where X = [V, a, Q, h, 9]T is the state vector and U = [#, 6e]T is the control input.

To facilitate control design, we linearize these equations about the trim state X0 and

trim input Uo satisfying f(Xo, Uo) = 0 to obtain the following,

= Apx + Bpu, (4.33)

where,

(4.34)A = an (Xo Uo), B = U (XOi UO)

and x and u are perturbations about the trim point,

x = X - X(5 (4.35)



Table 4.1: Variation of trim points as a function of CG movement

Ax (ft) 0 -0.5 0.5 -1 1
V (ft/s) 7850 7850 7850 7850 7850
a (rad) 0.0132 0.0129 0.0135 0.0126 0.0138
Q (rad/s) 0 0 0 0 0
h (ft) 85 000 85 000 85 000 85 000 85 000
0 (rad) 0.0132 0.0129 0.0135 0.0126 0.0138
6e (rad) 0.184 0.186 0.181 0.188 0.179

< (-) 0.366 0.371 0.362 0.375 0.358

4.2.2 Effect of CG shift on dynamics

CG perturbations change the the nonlinear equations to

E(X)X = f (X, U) + w(X)

where

w(X) = -mg(Ax cos a + Az sin a)

(4.36)

(4.37)

The CG shift changes the equilibrium point from (Xo, Uo) to (X6, Us) due to presence

of the additional term w(X). Linearization about the new equilibrium point yields

the following state and control matrices,

E-(X6)&(X6,)UX )

of
5p = E(XI) U (X6, U6)

a&uX~,

(4.38)

(4.39)

Table 4.1 shows the effect of CG shift, Ax on the trim condition. As it can be easily

seen, small changes in CG do not bring about a drastic change in the trim condition.

Thus, we make a reasonable assumption that trim conditions remain the same for

small CG shifts. We further assume that the change in moment of inertia is small,

I = IVY - m(Ax 2 + Az 2 ) ~ Iyy. It can be shown that CG uncertainty manifests itself



in the linear system (4.33) as,

=AAx + AB u + D (4.40)

where,

1 0 0 0 0

0 1 0 0 0

A = -P R 1 0 0 (4.41)

0 0 0 1 0

0 0 0 0 1

D = [00 -d00]T (4.42)

and,

P = (Az cos a - Ax sin a) (4.43)

R = (Ax cos a + Az sin a) (4.44)

mg
d = (-Ax sin a + Az cos a) (4.45)

An order of magnitude analysis for the uncertainties, P, R and d shows that R

is the most prominent term. As the trim angle of attack a is usually close to zero,

the uncertainty d can be neglected. It should be noted that as the magnitude of

uncertainties depend on the mass, inertia and velocity of the vehicle, one uncertainty

might be more prominent than others depending on the vehicle in question.

It should also be noted that a linear controller of the form u = -Kx does not

stabilize the perturbed plant dynamics (4.40), even though the gain K stabilizes

(4.33). The next chapter will discuss how to design stabilizing adaptive controllers in

presence of CG movements.



56



Chapter 5

Application to Hypersonic Vehicles

The tools developed thus far will be applied to the hypersonic vehicle in this chapter.

The plant dynamics of the HSV consist of 5 rigid and 6 flexible states. The control

inputs of the HSV are the elevator deflection and the equivalence ratio. As discussed

earlier, the open loop dynamics of the HSV are unstable. Table 5 shows equilibrium

points of the HSV, with the vehicle trimmed at 85 000 ft and Mach 8. The eigenvalues

150
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Figure 5-1: Eigenvalues of the HSV
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Figure 5-2: Altitude and Phugoid modes

of the plant at this trim condition are shown in Fig 5-1. It should be noted that one

irregular short period mode of the HSV is in the right half plane, making the vehicle

unstable. The phugoid and the altitude modes are very close to the origin and have

been shown in Fig 5-2. The first three elastic modes of the fuselage of the HSV

occur at high frequencies compared to the rigid body modes. Due to harsh operating

conditions, uncertainties in the lift co-efficients can cause A, to change as Ap(A). As

discussed in earlier chapters, CG movements cause uncertainties both in A, and Bp.

Therefore the linear model in (4.40) takes the form (2.1) with

AA,(A) = A, AB, = B. (5.1)

The D term has been neglected as we consider CG movements only along the x axis

(Ax) and the angle of attack a is small. The nominal value control matrix Bp of the

HSV is

43.184 -69.415

0 -0.019428

Bp= 0.70776 -9.445 (5.2)

0 0

0 0



States Trim Value Units
V 7850 ft/s
a 0.0268 rad
q 0 rad/s
h 85000 ft
0 0.0268 rad

r/1 1.08 -

0 -

72 -0-079
12 0

73 0

73 0

Table 5.1: Trim values for HSV

where as the uncertainty matrix A for a CG shift of A, = If t is,

1 0 0 0 0

0 1 0 0 0

A 0 -15 1 0 0 (5.3)

0 0 0 1 0

0 0 0 0 1

It can be easily shown that eigenvalues of B,~1AB, are positive. By choosing Bm = Bp,

it was found that a choice of I* = B,1'AB, satisfied assumption (2.25) for a large

range of CG perturbations in P and R in (4.43) and (4.44), thereby making the

adaptive control design develop in Chapter 2 applicable.

5.1 Control Architecture

The goal of the control design is that the states Xg = [V, h]T follow a commanded

trajectory Xg, = [V, hc]T that correspond to a desired flight envelope. The control

task is therefore to ensure that X,(t) tracks Xg,(t) while the remaining states X, =

[a, 0, , Q]T remain bounded. This command tracking task is converted into successive

regulation around a family of trim points in the following manner.

A family of trim points X,,i, Xp,i, Uj, i = 1, 2, ..., N is obtained in the V - h space



UO(t) XO(t)

u X
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Ubase Baseline Controller
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Figure 5-3: Adaptive Control Architecture

(see figure 5-4) such that they solve the nonlinear equation (4.32)

f (X,, X,,2, Ui) = 0, i =1, 2, ...,I N (5.4)

Xp,, Xp,i(X,i), = Ui = U(X 9,). (5.5)

Using these trim points, a scheduled trim trajectory is obtained by interpolation as,

Uo(t) = Ui + M(X,, Xg(t)) (5.6)

XPO(t) = Xp,, + M Xg,(t)) (5.7)

X90(t) = X,c() (5.8)

where M is an interpolation function. It can be shown that,

|f(Xpo(t), Xo(t), Uo(t))II < e,

where c is arbitrary small [34]. Thus between two time intervals close to each other,

the tracking problem becomes a regulation problem about a given trim point, making

the controller designs developed in previous chapters applicable. Though the tracking
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Figure 5-4: Trim trajectory

task has been solved by regulating the plant about the trim trajectories, it was found

that gain-scheduling was not needed as the system matrices did not vary significantly

with velocity and altitude. The adaptive control architecture is shown in fig 5-3. The

control input u(t) is a combination of a linear controller augmented with an adaptive

component and can be represented as,

u(t) = Ubase + UadP (5.9)

The proceeding sections show how each component is designed.

5.2 Linear Controller Design

The baseline controller is designed using the Linear Quadratic Regulator approach,

so as to minimize the cost functional,

J (xT Rxx + uT Ruuu + JTS)dt, (5.10)

where R , , Ruu and S are suitably chosen diagonal positive definite matrices, leading

to a linear state feedback u = -Kx. It should be noted that the derivative of states



have also been penalized in the cost function to gain control over the vehicle load

factor. The structural requirements put a limit on the maximum permissible vehicle

load factor. As the load factor is a function of vehicle acceleration, the weighting S

gives direct control over the structural requirements.

As actuator saturation is important for controllers for high performance vehicles,

we develop a strategy to maximize the initial condition set inside which control law

does not saturate. Consider a linear SISO plant with dynamics,

x = Ax + bu (5.11)

Given that the initial conditions lie inside a certain ellipsoid, x(O) c xTMx < a

(M, a > 0), the objective is to find the maximum value attained by the control input

u. The problem can be represented as a Lagrange multiplier based optimization

problem,

max n = |Kx|, (5.12)

s.t XTMX <a (5.13)

It can be easily shown that the maximum value of the control input u* is attained at

the boundary of the ellipsoid and is given by,

lu*| = fKM-KTca (5.14)

Let the saturation value of the control input be umax. If the maximum value of control

input is to remain less than the saturation value, U* < umax, then the bound on the

radius of the ellipsoid should be,

n2
a < max (5.15)

K M-1KT

Thus, in order to maximize the initial condition set, KM-1KT has to be minimized.

Note that if M = I, then the condition requires minimization of the L 2 norm of K.



The design methodology can be easily extended to MIMO systems noting that

the plant dynamics can be written as,

m

= Ax + Zbiui (5.16)
i=1

where ui, i = 1, 2, ..., m are the individual control inputs. Depending on the saturation

limits on each control input, the individual norms of the control gains, I IKi 12 should

be minimized. It should be noted that the procedure does not yield a stabilizing

controller on it own, but gives a method to choose the control gain that maximizes

the stability domain under saturation.

5.3 Adaptive Controller Design

The second component is the adaptive controller and is chosen as,

Uadp = Ox (5.17)

0 = -FeT PBm T, F = YFO, Y > 0 (5.18)

where 1o satisfies (2.25). Since the uncertainties in the HSV can be such that the

plant is open loop unstable, another feature is added to the adaptive controller in the

form of nonlinear damping. Traditionally employed for the control of higher relative

degree plants [4), this addition introduces a term 6x into the adaptive control input.

As a result, the controller in (5.17) is modified as,

adp = Ox + KDOx, (5.19)

where the derivative gain, KD is a diagonal positive definite matrix. The stability of

the resulting system with the derivative term can be easily shown using (2.30) as the

Lyapunov function whose time derivative is,

V = -eQe - (xTX)(eTPB,)TKDM(eTPBm) < 0 (5.20)



The control input with linear component and the adaptive augmentation is,

u(t) = -Kx + Ox + KDOx (5.21)

5.4 Simulation Studies

Simulations have been performed on the HSV by trimming the vehicle at h = 85 000

ft and Mach 8. The HSV is commanded to track a reference trajectory which results

in a step change of 1000 ft in altitude and 100 ft in velocity. At the start of the

simulation, the CG is statically shifted by Ax and the HSV is commanded a desired

trajectory in velocity and altitude. This experiment is more demanding that a slow

time varying shift of the center of gravity. The hypersonic vehicle has a reference chord

(mean aerodynamic chord) of 17 ft. The aim of the control design is to accommodate

forward and backward CG shits close to 10% of the reference chord. It should be

noted that the standard notion that forward CG movements are stabilizing is not

true in general for the hypersonic vehicles. This is mainly due to the fact that the

pitching moment and the flexible states are coupled. Thus CG movement in backward

or forward direction might excite the flexible dynamics and cause the HSV to become

unstable.

Figures 5-5 through 5-8 show that this indeed is the case and compares the per-

formance of linear and adaptive controllers for a forward CG shift of Ax = 1 ft while

tracking a commanded trajectory in the V - h space. It was found that without

adaptive augmentation, the linear controller was unable to stabilize the HSV even for

small CG shifts, Ax = +0.5 ft. The adaptive controller on the other hand could track

the reference trajectory for CG shifts of -1 < Ax < 1.5 ft. As a negative CG -shift

(CG moving backwards), makes the closed loop plant with linear feedback unstable,

adding non-linear damping to the system was observed to be very helpful.
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Chapter 6

Conclusion

The main contributions of this thesis are described below

(i) Adaptive controllers for actuation uncertainties : The thesis develops

adaptive controllers which guarantee global stability for linear plants in presence

of actuation uncertainties. For linear plants with dynamics,

:t= Ax + Bu

actuation uncertainties can be defined as those uncertainties that lead to vari-

ations in the control matrix B. It is well known that currently available mul-

tivariable adaptive controllers give local stability results for a general unknown

B. This work derives globally stable controllers for the cases when uncertainties

in B can be represented as (i) B = BpA (ii) B = AB, , where Bp is known and A

is unknown. The first case models uncertainties that can occur due to actuator

failures resulting in loss of actuator effectiveness. The second case can be used

to model uncertainties that occur due to anomalies in the plant dynamics.

(ii) Adaptive control with nonlinear damping The control input for con-

ventional adaptive controllers is of the form u = 0(t)x, where 0(t) is a time

varying gain. This work introduces a novel idea of using adaptive parameter



rate feedback of the form,

U = 0(t)x + KDO(t)x

where KD is a positive definite matrix. As O(t) is a nonlinear function of state

x and error e, addition of the term leads to nonlinear damping and results in a

significant increase in performance.

(iii) Application to Hypersonic Vehicles : Using the above tools, this work

designs stable controllers for hypersonic vehicles in presence of aerodynamic

and center of gravity uncertainties. A model that accurately captures the effect

of CG shifts on the longitudinal dynamics of the HSV is derived from first

principles. Simulation studies performed on a full scale nonlinear model of the

HSV show that CG shifts that can be tolerated by hypersonic vehicle can almost

be doubled by using an adaptive controller as compared to a fixed gain controller

while tracking reference commands in velocity and altitude.



Appendix A

Hypersonic Vehicle Data

Co-efficient Value Units

m 170 slugs ft-1
1 100 ft
if 47 ft
lu 20 ft
la 33 ft
hi 3.5 ft
Ad 2 -

Geometry 6.35 -

G mri, 3 deg

ri,1 6.2 deg
T2 14.4 deg
Ae 3.5 ft2 X ft

IYU 8.6722 x 10 4 slugs ft 2 /rad
ZT 8.6722 ft
E 17 ft
S 17 ft 2 x ft-1

ho 8.5 x 10 4  ft
Atmosphere Po 6.743 x 10 -5 slugs/ft-3

h, 2.136 x 10 4 ft

Table A.1: Geometric and Atmospheric Data



Lift

Drag, Thrust and Moment co-efficients

Co-efficient

0eLC'
C22

C2
CL2

0I3

02)2

C
C

CS

C2
CD

CD-

cz1

C0
CMO

CT

CD 

CT"2
CT"

Cf T

CT

CTO

CT71

CIT1

CIT1

Drag

Moment

Thrust

Value

5.96 x 10 0
-2.4377 x 10 -2

9.2176 x 10 -1
-3.4102 x 10 -2

-3.1737 x 10 -2

-6.7580 x 10 -2

7.9641 x 10 0
-7.4020 x 10 -2

1.988 x 10 -2

9.1021 x 10 -1
1.0840 x 10 -6

1.2934 x 10 -3

2.5523 x 10 ~4
2.7066 x 10 --

6.8888 x 10 0
5.139 x 10 0

1.627 x 10 -1
2.7326 x 10 0

-7.1776 x 10 -3

-3.0220 x 10 -2

-1.0666 x 10 -2

-1.4038 x 10 1

-1.5839 x 10 0
6.9341 x 10 -1
1.9904 x 10 -1
1.0929 x 10 0

9.7141 x 10 -1
3.7275 x 10 -2

-2.1635 x 10 -2

-2.7609 x 10 -3
-3.4979 x 10 -3

-5.3310 x 10 -3

Table A.2: Lift,

Units
rad-1

rad- 1

ft-1

ft -1
ft- 1

rad-2
rad-1

rad-2
rad-1

ft-1
ft -1
ft-1

rad-2
rad-1

rad- 1

ft-i
ft -1
ft-1

rad-3
rad--2
rad-1

rad~3

rad-2
rad-1

ft-1
ft -1
ft-1



Co-efficient Value Units

Nf2 -8.9274 x 10 -2 lb x ft- x slug 0  x rad 2

Nf 3.4971 x 10-1 lb x ft 1 X Slug 0 5 x rad 1

N10 2.7562 x 10 -3 lb x ft 1 x slug"
Mode 1 Ne 3.9029 x 10 -2 lb x ft 1 X slug 0 5 x rad 1

N,"i -9.3415 x 10 -4

N'2 -6.7015 x 10 -4

Nj"3 -1.8813 x 10 -3

N8.8374 x 1 lb x ft- x slug 0 5 x rad- 2

9.5685 x 10 2 lb x ft- 1 x slug- 0 .5 x rad- 1

1.3834 x 10 - lb x ft- 1 x slug-0-5

Mode 2 N'e -2.4875 x 10 2 lb x ft- 1 x slug-0. 5 x rad'1
Ng -4.112 x 10 ~3

N22  1.0924 x 10 -2

N273 8.5621 x 10 -2

Mod 2 -7.4826 x 10 -2 lb x ft 1 X Slug 0 5 x rad 2

N1.0299 x 10-1 lb x ft- 1 x slug-0-5 x rad-1

-1.9277 x 10 - lb x ft- 1 x slug-0 5

Mode 3 N' -4.2624 x 10 -3 lb x ft- 1 x slug- 0 -5 x rad-1

N77 3.2963 x 10 -4

N372  3.022 x 10 4

N'3
n 6.5423 x 10 -4

Table A.3: Elastic co-efficients
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