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Abstract

Micro-propulsion has been studied for many years due to its applications in small-to-
medium sized spacecraft for precise satellite attitude control. Electrospray thrusters
are promising thrusters built upon the state of the art in micro-technology and with
flexible performance in terms of their high efficiency and high specific impulse. One
challenge is to investigate in detail the mechanism for ion emission to complement
experimental results and understand better how emission occurs in the micro to nano
scale. Thus, atomistic modeling is used to understand properties of emitted charged
particles which determine how the thrusters perform.

As a preliminary study of ion emission from Taylor cones, ion evaporation from 3
- 5 nm droplets was observed in molecular dynamics (MD) simulations to validate the
atomistic modeling and to investigate activation energies. Ion emission was examined
in terms of internal and external electric fields and the activation energies of each case
were obtained using Schottky's model and direct energy calculation to compare with
experimental values. Ion emission was mainly observed with electric field strengths
between 1.2 -2.0 V/nm and the emitted species include both solvated and non-solvated
ions. Propulsive properties from Taylor cones are examined using results from the
analysis of electric current from ion emission.

In addition to an observation of ion emission from liquid droplets, numerical simu-
lations for interactions between a solid plate and liquid droplets were conducted with
MD simulation. It was concluded that another selection of force field needs to be
considered to pursue further details, such as electrochemical effects.

Thesis Supervisor: Prof. Paulo C. Lozano
Title: H. N. Slater Assistant Professor
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Chapter 1

Introduction

1.1 Electrosprays

Electrospray is a technology to produce ions/droplets from conductive liquids using

a relatively simple setup as shown in Figure 1-1. Ion/droplet emission occurs at the

apex of a liquid cone which is generated when a high electric potential between an

extractor and conductive liquid is applied. There are several types of emitters with

the most common being the capillary-type often used in mass spectrometry. The

other types are externally wetted emitters (Figure 1-2) and porous emitters. For any

kind of emitter, there are two underlining requirements: to locally enhance electric

fields at the tip so that a liquid cone appears and to transport the liquid from a

resevoir to the emission site. The cone is called a Tayor cone in honor of G.I. Taylor

who first derived a mathematical model for ideal conditions in 1964 [1]. Details of

the emission mechanism and Taylor cones will be discussed in section 3.1 and 3.2.

As for the applications of elecrosprays, they can be used in a broad field of studies

from biology to space technologies. Mass spectrometry for biological molecules is

the most well know application of electrosprays and was subject of the Nobel prize

winning work by J.Fenn in 2002 [2], Some other technologies are: thin-film deposition

and painting [3], electrospining which is used to create uniform strands of nano-scale

fibers [4], micro scale atomizers for fuel injection [5],[6], molecular imaging applica-

tions [7], and focused ion beams (FIB) [8],[9],[10].



1 kV ~

Extractor

Emitter

Ion Beam

Figure 1-1: Schematic of electrospray setup'

Figure 1-2:
(MIT)

Tip of externally wetted electrospray thruster. Courtesy of A. Zorzos



An application for space propulsion is explained in chapter 2.

1.2 Electrospray History

The use of electric fields for controlling fluids can be traced to the eighteenth and

nineteenth century. [11],[12] The breakup of a charged liquid drop, Coulomb fission,

was predicted by Rayleigh in his analytical work in 1882. [13] He presented that the

instability occurs when the forces of electrostatic repulsion of surface charges exceed

the forces of surface tension for a droplet. Zeleny first conducted an experiment of the

observation of the Rayleigh instability and visual formation of cone-jet structures with

a diluted solution of hydrochloric acid in 1914. [14],[15] However, the research was

hidden from space propulsion applications for a half century until Krohn's electrospray

research in 1961. [16],[17]

Unfortunately electrosprays were not pursued further as a thruster in the 1960's

because the value of mass to charge ratio (m/q) was too large which requires high

accelerating voltages (10 to 100kV) from V = 2 , even though higher particle mass2q

is an attractive feature because it can effectively increase the thrust density. [18] In

the same period, the theoretical model of cone formation was developed by Taylor

(see detail in section 3.2). [19] Since then, electrospray research did not see significant

progress until the breakthrough achieved by Fenn in the late 1980's, escalating an

interest in nanotechnology. Fenn's contribution made it possible to utilize electrospray

technology in mass spectrometry, while at the same time enabling a reduction of the

mass to charge ratio. Fenn was awarded the Nobel Prize in Chemistry in 2002. [20]

With this achievement and growing interest in ionic liquids, electrospray propulsion

research embarked on a new era. Ionic liquids are molten salts at room temperature

containing anion and cations exclusively, which allow a purely ionic regime of emission

during electrospray use for extraction voltages under 2kV. [21],[22],[23]

As for studies of ion evaporation from a droplet, Thomson and Iribarne derived

the threshold electric field at which ion field evaporation occurs before Coulomb

fission. Emission is triggered by adding the energy to overcome the barrier associated



with both the solvation energy of the evaporated ion and the electrostatic interaction

between the ion and the droplet with the assumption that the barrier is approximately

4-5 A from the droplet surface [24]. In addition, they showed that the critical electric

field is approximately 1 V/nm for droplets less than 10 nm in diameter using a kinetic

model and charge mobility experiments in the late 1970's. [25] The Loscertales and

Fernindez de la Mora group and the Fenn group concluded the critical value for the

evaporation of singly charged ions was between 0.7 and 1.9 V/nm. [26]

The detailed mechanisms of field evaporation are still not well understood because

the complex particle-particle interactions of the thermalized droplets.



Chapter 2

Electrosprays in Space Propulsion

2.1 Electric Propulsion

Space propulsion systems, and rockets in general, provide force to accelerate space-

craft consuming propellant. [27] The propulsion systems are used both for launch

of spaceship from the Earth and for moving spacecraft in space. For instance, space

thrusters are used for orbital maneuvers, north-south station keeping (NSSK), orbital

altitute and attitude maintenance and interplanetary travel for deep space explo-

ration. There are mainly two types of the systems: chemical and electric (Figure.2-1).

Chemical propulsion thrusters work by the conversion of an enthalpy increase

from the energy of chemical reactions into jet kinetic energy of reaction producs

(combustion), while electric propulsion makes use of electric energy to produce thrust.

7' Augmented
Chemical A Electrospray

Electrostatic |1 Hall Thruster
Electrical L> Ion Thruster

-Electromagnetic

Radio
Frequency

Figure 2-1: In-space propulsion technology

... .................................. . ....... ..... .. .........



Electric propulsion also needs propellant to accelerate and since thrust depends on

the electric power available, the thrust of electric propulsion is typically smaller than

chemical propulsion. Electric propulsion is used in space, a vacuum environment, due

to the low densities required by most electric discharges. [28]

There are several ways to transfer electric power to the propellant: electrothermal,

electrostatic, and electromagnetic devices.

Electrothermal thrusters include the Resisto-jet and arc-jet which are augmen-

tated devices which are primarily chemical thrusters but use electrical power to

improve their performance. The propellant gas is heated electrically and expanted

through a nozzle to convert its thermal energy to a jet of directed kinetic energy. Elec-

trospray thrusters are electrostatic devices as well as ion thrusters in which the electro-

static forces accelerate ions/droplets. [29] Working details of electrospray thrusters

are explained in section 2.1.1. For electromagnetic thrusters, the acceleration of a

body of ionized gas is obtained by the interaction of currents driven through the gas

with magnetic fields established either by the currents or by external means.

2.1.1 Electrostatic Thrusters

Typical electrostatic thrusters are ion thrusters and electrospray thrusters. In

these devices, the electrostatic forces that accelerate the ions/droplets are also directly

applied to electrodes, and this is how the structure receives thrust. Ion thrusters

extract ions from ionized propellant by a potential drop through grids while electrons

are emitted from a cathode which is placed at the exit of the thruster. These electrons

neutralize the ion beams, avoiding spacecraft charging. Ion thrusters typically have

specific impulses in the 3000 to 4000 range with power efficiencies as high as 75

percent. One of restrictions in ion thrusters is space charge limitation which is a

phenomena in which the amount of extracted ions are limited due to their shield effect

to the applied fields. On the other hand, electrosprays are not largely affected by space

charge limitation because the emitter to extractor spacings are significantly smaller in

electrospray devices. In addition, electrospray thrusters do not suffer from problems



associated to gaseous propellants. One of the main issues in electrospray thrusters

is the transportation of liquid propellant from a reservoir to the emitter needle tips.

In recent work, micro-fabricated porous emitters have been studied as they provide

sufficient hydraulic impedance to sustain emission even at low currents. [30],[31]

2.2 Electrospray Thruster Application

In a broad sense, field emission electric propulsion (FEEP) and colloidal engines have

identical principle of operation with our electrospray thrusters. The main differences

are: (a) FEEP uses a liquid metal which requires high operation voltages (>5kV)

due to its high surface tension and produce only positive beams. [32] Colloidal engines

can be used with organic liquids with relatively high conductivity and lower surface

tension which allows lower voltages (1kV). (b) Electrospray and FEEP thruster focus

on ion emission to obtain high efficiency although colloidal engines could be nearly

as efficient operating with droplets. In short, electrospray thruster families in general

can adapt to missions through several regimes and types of liquids. Droplet regime

gives low Isp/current due to its large specific charge, on the other hand, ion regime

gives high Isp/current though the mixed regime decrease thrust performance. [33]

These flexibility of characteristics within electrospray thrusters give options to many

kind of space missions.

The following is a list of potential applications for electrospray thrusters:

1. Precise attitude control of spacecraft

The small thrust allows accurate positioning of spacecraft. One example is

the LISA Pathfinder mission which features both FEEP and colloidal thrusters

and plans to be launch in 2013. [34] The colloidal thruster was developed by

Busek Company in the U.S.. One of advantages of electrospray thrusters is that

they do not need conditioning time which is usually required for other electric

propulsion and FEEP thrusters. Liquid metal used for FEEP propellant needs

to be heated up to liquefy.



2. Main propulsion for Nano/Micro satellites

With growing demand of miniaturization of spacecraft components and satellites

themselves, electrospray thrusters have the potential of providing main propul-

sion to small satellites. CubeSats are one example of small satellites, which

are widely considered in universities and companies because of their advantages

in small satellite space science and exploration at lower costs. CubeSats and

other nano satellites have typically a volume of 1 liter and weight no more than

1 kg. Most thruster technologies are larger than the satellite itself. Also, the

fuel is fed by capillarity action in electrospray thrusters therefore avoiding a

complex fuel feed system which takes space in satellites. Another option might

be micro-scale cold gas thrusters [351, however it has a problem to miniaturize

the thruster without downgrade the performance and the Isp is limited. FEEP

and colloid thrusters have a possibility to contaminate a spacecraft and specific

impulse of colloid thrusters is generally lower than electrospray thruster.



Chapter 3

Electrospray Physics

3.1 Surface charge

The basic physics of electrospray can be expressed by balance between surface traction

by external electric field and surface tension of liquids. The external electric field can

be related with the electric field in the liquid using Gauss' Law [29], and for dielectric

liquid,

En,liquid = En,gas

En, liquid

(3.1)

E0, =

gas

E
liquid

Figure 3-1: Schematic of surface charge for dielectric liquid

Here, c is dielectric constant of liquid. This can take large values and for perfect

................................ ..... .............................



conductors, the field inside liquid becomes zero which is caused by high mobility free

electrons with fast relaxation times.

Thus, the relaxation time can be considered as another important aspect of elec-

trosprays. The liquid takes time to respond to external electric fields and this depends

on the mobility of charged particles.

Conductivity is expressed using mobility of positive and negative particle:

K = ne(p+ + P-) (3.2)

The rate of free surface charge density (of) accumulation is,

do-f
-oL = hEn,iquid (3.3)

where the surface charge density can be obtained by Gauss' law:

9f = CoEn,gas - EcoEn,liquid (3.4)

From equation 3.3 and 3.4,

dof
dt

+ of-E 9
CEO 6

(3.5)

Solving the differential equation,

of = En,gas
C0

(3.6)- e6

where r - is the relaxation time, or the time to reach equilibrium in the charge

distribution.

3.2 Taylor cone

Taylor cones are produced when conductive liquids are placed under an external

electric field. [29],[19] Taylor estimated the shape assuming that the cone formed by

a balance between electric pressure and surface tension. This is expressed by:



Figure 3-2: Taylor Cone Schematic

eoE,2 (3.7)2 60Ln,liquid - R 37

Here, -y and 1/Rc represent surface tension and curvature which is shown in fig-

ure 3-2. Using geometric relations, the right hand side of equation 3.7 is

- - = cosa = -cota (3.8)
Re R r

From both equations 3.7 and 3.8, the electric field along the surface of the liquid

cone is obtained:

En,liquid = 2-cota (3.9)
Eor

The schematic of electric field along liquid cone surface is shown in figure 3-3.

From equation 3.9, it is obvious that electric field is proportional to r-1/2 therefore it

is smaller upstream and at the tip of cone the electric field becomes infinite. Large

electric fields induce ion emission. However, it is challenging to numerically analyze

the tip region due to its small dimension and dramatic potential gradients, thus

alternate models are used, such as the sphere on cone (SOC) model. The detailed

calculation is shown in section 7.3.

Following his calculation, Taylor mathematically derived that the inner half-angle

is independent of liquid properties and has a universal value of 49.3'. Real experi-

. ................. ........ .. .....



Liquid cone Extractor

Figure 3-3: Schematic of liquid cone and electric of liquid surface

mental cones show a remarkable resemblance to Taylor cones, even though the apex

singularity in real cones is removed by the emission of a charged liquid jet in most

solvents [36] or the emission of ions in ionic liquids and metals.

3.3 Activation energy

Ion emission can be explained using arguments from statistical mechanics and defining

the energy needed for ion evaporation, or activation energy. Iribarne and Thomson

first presented a model to describe ion evaporation from charged droplets. [24]

Here we derive the fundamental equation, Schottky's equation, using the equilib-

rium between ions in the liquid and gas phases. [37] In equilibrium, ions evaporate

from the liquid surface into the gas phase and also the opposite happens. Equilibrium

can be expressed as:

(pt)ls = (pl)g,, (3.10)

where p, i, 1, s, g, v correspond to chemical potential, ion, liquid, surface, gas and

volume.

Assuming Maxwell-Boltzmann gas, the above equation would be,

........................................................................................... ........... ................................. _ .



kTln =: - kTln n '
( Q91V~

where k is Boltzmann constant and T is temperature, which in equilibrium, Tg =

T1. Q and N represent the partition function and number of molecules, respectively.

Considering dimensional aspects which Q and N have (e.g. 2D for liquid surface

and 3D for gas phase), the equation 3.11 is,

1 1

A _ - V (3.12)

-Ng,v

ql,s qg,v
ni,, nyg,

(3.13)

Here, A is area of the liquid surface and V is volume of the gas. Thus, q and n are

the partition function and number of molecules per unit area and volume, respectively.

If we assume that the distribution function in gas is isotropic, the ion flux every-

where in gas can be derived as,

p flg,VC (3.14)

Here, a is the thermal velocity for a Maxwell distribution,

A[=8kT
V 7rmi

where mi is mass of ion.

Therefore the ion flux of equation 3.14 is,

kT
I' =ng,v 2m

A 27m

At the same time, from equation 3.13,

(3.11)

(3.15)

(3.16)



q,,
ng,V= n,,l- (3.17)

qi's
o-q,,9

(3.18)
eqi,

where u is surface charge of the liquid surface and e is unit charge.

The partition function of the liquid surface is,

q8,s = (3.19)A

A (3.20)

1 1 snt 1 transA

- e-kT e T-E (3.22)
A

SQint tras (3.23)

(21rmkT\
= Qint )2 (3.24)

where Qint is the internal partition function of ions in the liquid phase which

may include rotational, vibrational and excitational degrees of freedom and qan is

translational partition function of the surface per unit area. h is Planck's constant.

The partition function of gas can be obtained in the same way, but note that the

energy reference is assumed at the liquid surface,



e T (Ei+Eref)
qgvA (3.25)

= Q"'qne-v L (3.26)

3/2

zt27rmikT _, Go

Qi h2 e T (3.27)

where we define the energy reference difference between liquid and gas as AGo

which is called the free enthalpy or the activation energy, at the same time, this is

the energy barrier to cross over the border between liquid and gas state. [38] Here

the system is under equilibrium with constant pressure, temperature and number of

molecules overall and this indicates that the free energies do not change.

Therefore together with equation 3.16, 3.18, 3.24 and 3.27, the current density

becomes,

kT _
= kT (3.28)
h

This current density can also be considered as the flow from the liquid surface.

We can apply this argument to the liquid surface under electric field assuming that

the liquid surface is not affected much by gas phase especially with the field. [24] In

this case, the image charge model 3-4 which is similar theory to Schottky model of

electron emission is applied.

Taking the x axis as in figure 3-4 and applying an electric field along it, the work

required (potential energy) to move an extracted ion of charge e from x to infinity is,

assuming that the binding force arises from its image charge,

W = j Fdx (3.29)

Assuming the dielectric constant of material is low enough, the force on the charge

by its image is,



liquid

E

x
-x +x

Figure 3-4: Schematic of image charge model.

-2
F = + eE (3.30)

47rco(2x) 2

Here we can see that the image charge pulls back the ion against the electric field.

The equation 3.29 becomes,

W -e 2  - eEx (3.31)
167reox

This energy is maximum when

e )1/2

Xmax = (3.32)

and

e 3E 1/2
Wmax = ( El ) (3.33)

This is called the Schottky depression which reduces the energy barrier by the

effect of charge and field. Thus, the equation 3.28 can be modified as,

kT 1 e3E
j = o- exp AGo - (3.34)h kT 47reo

To overcome the energy barrier AGo solely by the electric field, the Schottky

depression needs to be roughly equal to AGO. Therefore the electric field necessary

is:



4ire A G2
E ~ 37EOG (3.35)

This indicates that the field evaporation occurs at around 1 - 2 V/nm [26] which

corresponds to AGo of 1.2 - 1.7 eV.
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Chapter 4

Ionic Liquids

4.1 General Properties

Ionic liquids, also called room temperature molten salts (RTMS), are matter solely

composed by ions, anions and cations, and their volatility is significantly lower than

other liquids. [39],[40] This property is desirable for electrospray thrusters under vac-

uum conditions. The volatility of ionic liquids is low because the interaction between

ions are dominated by Coulomb-type forces. It is possible to evaporate ions from an

ionic liquid when an electric field of enough strength is applied perpendicular to the

liquid surface which is shown in chapter 3. The volatility limit of ionic liquids has

been recently probed spectroscopically [41] and by distillation [39]. The general con-

clusion is that the vapor pressure of ionic liquids, at moderate temperatures, remains

negligible. Another attractive point is their high conductivity which enables a surface

reaction to strong electric fields. In addition, they are not flammable and do rarely

react with other materials, thus avoiding contamination of spacecraft systems in vac-

uum. However, some ionic liquids are sensitive to moisture and can be contaminated

when exposed to atmosphere and also care is needed due to potential toxicity. The

general characteristics of organic ionic liquids are shown in table 4.1. [42]

Ionic liquids have found applicability in many areas such as: green chemistry in-

dustry for their stable and organic nature, gas handling using ionic liquids as solvents



Table 4.1: Typical Characteristic of Organic Ionic Liquids
Low melting point Treated as liquid at ambient temperature

Wide usable temperature range
Non-volatility Thermal stability

Nonflammability

Composed by ions High ion density
High ion conductivity

Organic ions Various kinds of salts
Designable

Unlimited combination

for wide variety of compounds and gases [43], nuclear industry for recovery of ura-

nium and other metals from spent nuclear fuel and other sources [44], solar energy

for use as a heat transfer and storage medium [45] and batteries [46]. More recently,

magnetic ionic liquids have also been reported. [47]

4.2 EMI-BF 4

1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4) is one of dialkyl-imidazolium

cation family of ionic liquid. The general properties are shown in table 4.2.

EMI-BF 4 has one pair of large anion and small cation as shown in figure 4-1.

The off-balance of size (e.g. large cation) has been considered as the reason why the

liquid state is the most stable in ionic liquids. Another distinguishing property of

EMI-BF 4 includes a strong tendency to supercool. [48] The electrical conductivity

increases and the kinematic viscosity decreases with increasing temperature, same as

typical organic fluids. [49] Another interesting characteristic has been identified: a

Table 4.2: EMI-BF 4 general properties

Melting point [deg C] 12.0 - 12.5

Conductivity at room temp. [Si/m] 1.3
Dynamic viscosity at room temp. [Pa . s] 0.043

Density at room temp. [kg/m 3 ] 1517
Surface tension at room temp. [dyn/cm] 41



Figure 4-1: EMI-BF 4

phase-change in the vicinity of 333 K. [50] This is investigated by measuring diffusion

coefficients and suggests the transformation of the diffusion particle from "discrete

ion-pair" to "individual ion" at temperatures above 335K due to decomposition of

the EMI-BF 4 ion pair.

Figure 4-2 shows partial charges of EMI-BF 4 according to de Andrade et al. [51].

The signs on atoms follows AMBER atom type. AMBER is a type of force field which

is widely used for organic materials. The electric charge distribution of the ions by

atomic point charges was calculated by quantum mechanics (QM) calculations on the

ab initio level.

As for application to electrosprays, from the previous work[52], it is shown that

EMI-BF 4 is one of the most widely used liquids in electrospray thruster research.

Thrust efficiency with EMI-BF 4 is estimated to be higher compared to other kinds

of ionic liquids in the work although efficiency is greatly affected by fragmentation of

solvated ions. The detail of solvated ion is explained in next section.
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4.3 Solvated Ions

Solvated ions are defined here as ions attached to neutral pairs. For example, EMI-

BF 4 can have (EMI-BF 4), EMI+ for a positive solvated ion and (EMI-BF 4), BF- for

a negative solvated ion. n is defined as the number of solvation which is the number

of neutrals attached to the ion.

In general, the solvation is caused by different types of intermolecular interac-

tions: hydrogen bonding, ion-dipole and dipole-dipole attractions or van der Waals

forces. [53] Ionic liquids are composed by polar molecules, thus, any of the above may

happen to make solvated ions. In EMI-BF 4 or in other types of ionic liquid, solvated

ions have been observed in time-of-flight (TOF) experiments. [52],[54],[55],[56],[57]

Specifically, it is found by mass spectrometry that the species population peaks at

n = 0 and n = 1, with significantly lower traces of ions with n > 2. Even though

experimental observations are crucial in obtaining information on the macroscopic

outcome of the field evaporation process, direct measuring techniques are unable to

probe the emission mechanics at the molecular level. In addition to this, it is difficult

to study the stability of solvated ions through experiments alone.

The simulation results regarding ion emission of solvated ions will be presented in

chapter 7.
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Chapter 5

Numerical Simulation Methods

Continuous formulations [58] an scaling analyses have been able to describe in detail

the fluid dynamics of electrojets and the parametric relevance of ion emission. How-

ever, these approaches lose their ability to track the physics when the dimensions of

interest become similar in size to the liquid molecules. Molecular dynamics (MD) is

a powerful tool for investigating atomic-scale phenomena which takes into account

intra- and inter- molecular forces. This enables us to segmentalize most materials

into an atomistic scale at which continuum methods, like CFD, are not appropriate.

In this chapter, the basics of MD will be explained.

5.1 Molecular Dynamics Fundamentals

Molecular dynamics simulations have become a standard tool for the investigation of

atomistic problem such as biomolecules or structural failure [59]. It basically contains

four steps as shown in figure 5-1.

MD basically calculates the equation of motion to obtain coordinates and velocities

of next step. Forces in the equation of motion are derived by differential calculus of

potentials (Fi = -j)) which requires assumptions depending on conditions.



et initial coordinates and veloci Velocity: Random
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Calculate Force Intra-atomic potential
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Obtain new coordinates
Velocity Verlet
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Figure 5-1: Molecular Dynamics fundamental procedure
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Figure 5-2: Schematic of point particle representation of covalent bond

5.1.1 Potentials in MD Simulations

MD does not directly calculate electrons and core interaction. They are repre-

sented as point particles and the interaction between point particles includes repul-

sion and attraction (figure 5-2). The black line in right graph of figure 5-2 is the sum

of energies of repulsion and attraction forces and particle dynamics follow the energy

profile. The repulsion and attraction are due to Pauli's exclusion and formation of

chemical bond by sharing of electrons, respectively.

Here, we assume the EMI-BF 4 system has two types of potentials; intra-atomic

potential and pair potential.

Electrons

Core Point particle
representation

r

......... ....... ............. = _ .......... ..... .......... .. ...
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Figure 5-3: Molecular Dynamics fundamental procedure

The harmonic potential (figure 5-3) is applied to the intra-atomic potentials be-

cause it can be considered that atom bonds never break. As for the pair potential,

we use electrostatic (Coulomb) potential and Lenard-Jones (van der Waals) poten-

tial [60].

The equation of the potentials is expressed as follow:

K,(r - req)2 + ( Ko(O - Oeq) 2

angles

+ E

dihedrals

[1
2

+ cos(nqp - )] + i
i<j

L 3
q+

R3 coRj

where

Here, egj is the traditional well-depth and o-j is the size parameter. K is the

energy coefficient for each kind. r is a distance between atoms which are attached

total =

bonds

(5.1)

............... ........... ............................ ..........

Aij 4eijogj

Bij 4ei joij
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E: well depth
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(equilibrium distance
between atoms)

a CYr

Figure 5-4: Schematic of Lennard-Jones (U) potential

each other by covalent bonds. 0 is an angle within three atoms connected by covalent

bonds. n and y are coefficients for dihedral (torsional) angles which is formed on

two planes. The plane is defined by three atoms connected by covalent bonds. #

is a dihedral angle. R is the distance between pair atoms. co is the permittivity of

vacuum. q is a charge on atom. As for suffixes, they correspond to an equilibrium

state. This typical AMBER force field expression and the first three terms represent

covalent interactions: bond stretching, bending and torsion, respectively. The last

term provides pair potentials for atom-atom interactions including Lenard-Jones (U)

[60] and Coulomb terms.

The Lennard-Jones potential is the empirical model for van der Waals forces which

are attractive or repulsion forces between nonbonded atoms. It is the fourth term of

equation 5.1. The schematic of the potential is shown in figure 5-4. The well depth

E and u corresponds to those in Aij and Bij in equation 5.1.
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Figure 5-5: Thermodynamic ensemble schematic

5.1.2 Thermodynamic Ensembles

Another important aspect of MD are the thermodynamic ensembles which provide

a robust framework to calculate a range of "macroscale" properties. MD provides

snapshots of phenomena which are defined by extensive variables, which are propor-

tional to volume and mass. However the macroscopic world is presented by intensive

properties such as temperature and pressure. Macroscopic conditions translate to the

microscopic system as boundary conditions. The distribution of microscopic states is

related to the macroscopic conditions.

Effective method in MD derive from so-called Ergodic hypothesis, which suggests

that ensemble (statistical) averages are equal to time averages and all microstates are

sampled with appropriate probability density over long time scales.

I A (i) = (A) Ens _(A)Tme = IE A(i) (5.2)
i=1 ...NA i...Nt

In a way, this is a point in common between Monte Carlo (MC) simulations and

MD simulations. MC and MD can be compared in three ways.

1. How to obtain ensemble average

MC: obtains ensemble average by random stepping scheme.

MD: obtains ensemble average by dynamical solution of equation (time history).

. .......... .. .....



2. Assumption

MC: Acceptance/rejection algorithm leads to proper distribution of microscopic

states.

MD: Time average equals ensemble average (Ergodic hypothesis)

3. Dynamical information

MC: No dynamical information about system behavior (only equilibrium pro-

cesses) - no "real" time

MD: Existence of dynamical information about system

5.1.3 Definition of Temperature

We assume the classical mechanics (kinetic theory) definition of temperature:

rm(c,) =(m)= kBT (5.3)
i=1...Nf

where, Nf is the total number of degrees of freedom (Nf = 3N, N=Number of

particles) and kb and T are Boltzman constant and temperature in Kelvin, respec-

tively. Here average kinetic energy per degree of freedom is related to temperature

via Boltzmann's constant.

5.1.4 Time Step Selection

The idea is to keep time step as large as possible due to computational efficiency

but not too large to cause error. The rule of thumb is that time step must be much

smaller ( 100 ... 1000 times) than the fastest time-scale dynamics in the system, e.g.

high frequency oscillations of light atoms (e.g. C-H bonds, O-H bonds). Typical

vibrational frequencies is wo = 1013[sec- 1], thus it is common to select a time step of

10-15 sec = Ifs. This was also the limit of time steps we found, and stable results

could not be provided for time steps larger than 1 fs.



Chapter 6

Basic Numerical Simulation

Procedure

This chapter explains three steps carried out in this research to apply an external

electric field to an EMI-BF 4 droplet.

6.1 Modeling a Single Ionic Liquid Molecule

A three-dimensional system has been used in this computational model to ensure the

mechanical integrity of the molecule. The optimized atom coordinates (Table 6.1)

for a single EMI-BF 4 molecule were obtained by the semiempirical orbital program

MOPAC 6 [61]. We verify that the cartesian set of coordinates corresponds to the

structure of EMI-BF 4 indicated by Katsyuba et al [62]. The structure includes loca-

tion of anion relative to cation. We use a force field which was introduced for EMI-BF 4

by de Andrade et al. [51]. The force field parameters are based on the AMBER force

field [63], which contains a complete force field for liquid state EMI-BF 4 based on

the results from both Quantum Mechanical (QM) and Molecular Mechanical (MM)

simulations. Figure 4-2 shows the chemical structural formulae which indicate atom

types and partial charges of EMI-BF 4, as they appear in the results of de Andrade

et al.



Table 6.1: Single EMI-BF 4 coordinates. Unit in A
[Atom type x y z

N -1.543 0.630 -0.795
C -0.169 -0.630 -0.795
N 0.270 1.934 -0.795
C -0.853 2.780 -0.803
C -1.988 1.964 -0.807
C -2.370 -0.556 -0.690
C -2.694 -1.214 -2.019
C 1.644 2.336 -0.684
H -3.047 2.227 -0.805
H 0.492 -0.288 -0.737
H -0.765 3.868 -0.798
H 1.693 3.363 -0.235
H 2.116 2.346 -1.703
H 2.188 1.604 -0.015
H -1.815 -1.288 -0.020
H -3.324 -0.250 -0.173
H -1.767 -1.554 -2.540
H -3.330 -2.110 -1.811
H -3.255 -0.526 -2.695
B 1.233 -1.338 1.219
F 1.465 -1.697 -0.075
F -0.114 -1.329 1.392
F 1.834 -2.182 2.072
F 1.691 -0.068 1.366

6.2 Equilibration of a Single Droplet

As the initial condition, 64 and 125 EMI-BF 4 molecules are aligned in cubic with

potentials described in section5.1.1 (6-1). Each molecule has the coordinate obtained

in previous section 6.1

Five different equilibrium states of 125 molecules are prepared at temperature

intervals of 50 K between 250 K and 450 K for applied electric field simulations.

Additional simulations at 300, 323 and 373 K are used in non-applied electric field

cases. In a typical simulation, atoms in the droplet are allowed to interact until

equilibrium is reached using a sequence of NVE and NVT ensembles. NVE ensemble



Figure 6-1: First stage of equilibration

is also called the microcanonical ensemble in which the number of moles, volume and

energy are kept constant. In a similar way, NVT ensemble is called the canonical

ensemble in which the number of moles, volume and temperature are kept constant.

Excess energy stored in the initial random coordinate distribution is released in

an NVE ensemble. The procedure has several steps. In the first step the system

is initialized at 10 K. As the simulation progresses, the temperature increases until

converging to a higher value, in some instances near 700K. In the second step, the

excess energy is released by initializing the coordinates with the set obtained at the

end of the first step and adjusting the temperature back to 10 K. This procedure

is repeated until the temperature converges to the target temperatures at every 50

K between 250 K and 450 K. The optimization of the structure is then performed

with constant number of moles, volume, and temperature (NVT, canonical ensemble)

using a Nos6-Hoover thermostat [64] with a temperature fluctuation of 100 K at the

target initial temperature. These simulations are carried out with a cutoff distance

of 200 nm for both the Lennard-Jones and the Coulombic potentials thus accounting



for every atom in the droplet. The equilibrium states of the EMI-BF 4 droplet of three

different temperatures are shown in figure 6-2. The droplet has an ellipsoidal shape

at least below 300 K because of the unsymmetrical shape of the ions.

The condition of an EMI-BF 4 droplet for 125 molecules after the equilibration is

temperature: 300K, droplet diameter: 4 [nm] and EMI-BF 4 mass: 111[u] for EMI

and 87 [u] for BF 4. From here, the computed density is 1.226 [g/cm 3 ], which can

be compared against the comparing the experimental value of 1.24 [g/cm3] at 295

[K] [65],[66].



(a) 300K (b) 350K

(c) 400K

Figure 6-2: Equilibrium state of EMI-BF 4 (a) 300K (b) 350K (c) 400K
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6.3 Droplet Response to Electric Fields

Table 6.2: Simulation variations.

E field types E field [V/nm] Temperature [K] I of samples
Droplet External 1.0-2.0 250-450 5

Internal - 300, 323, 373 3
Droplet + Tungsten External 3.0-6.0 300 1

The electric field is applied once the equilibrium state is obtained for the different

initial coordinates and temperatures (Table 6.2). The electric field is applied in two

different ways: an external constant and homogeneous field and through adding or

removing charges from the droplet. Here the second way is more realistic because

electric fields are far from uniform in ion emiting from Taylor cones. Details of the

droplet systems are explained in chapter 7 and 8 and the droplet and tungsten system

is shown in chapter 9. The external constant electric field is applied in the x direction.

In the molecular dynamics simulation, the additional force term (F = q$) is added

to the fundamental equation 5.1 to include applied electric fields.

Examples of ion emission for positive and negative sides are shown in figure 6-3

and 6-4. Due to electric field in the x direction, positive ions are emitted to the right

and negative ions is to the left. Once ions are emitted, the droplet is charged so it

starts moving along the electric field. Although the NVE ensemble is used for the

simulations, the energy from the electric field is added to the system at every time

step. Thus, the droplet does not cool down even when in motion.
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Figure 6-3: First ion emission in positive side

E field (x direction)
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Figure 6-4: First ion emission in negative side
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Chapter 7

Ion Evaporation under Applied

Electric Fields

7.1 Analysis of Electrical Currents

Once the electric field is applied, the droplet is polarized in the direction of the field

(rotating in some cases due to the induced dipole of the highly unsymmetrical droplet

(figure 7-1)) and eventually experiencing evaporation of non-solvated and solvated

ions.

The emitted ions are observed at the edge of droplet along the direction of the

electric field and currents are obtained from the ion dynamics. The current is esti-

mated by counting the number of ions for both non-solvated and solvated ions that

cross the liquid surface in a given time interval. The total number of positive and

negative emitted ions for each electric field is approximately 60. Afterwards, the

droplet collapses and retains nothing of the original form. Statistics of the emitted

ions are obtained until the droplet itself starts to break up chaotically and observation

of ion emission is difficult. Ion emission is observed mainly in the electric fields for

1.2 V/nm through 2.0 V/nm. The current profile as a function of applied electric

fields are examined in this electric field range and is shown in figure 7-3 [76]. In the
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Figure 7-1: Schematic of droplet rotation

figure, the total current includes both solvated and non-solvated ions. Error bars

indicate standard deviation of five samples. The total current profile is dominated

by non-solvated ions in both positive and negative cases and the fraction of solvated

ions is larger at smaller applied E fields. The maximum number of solvation is n = 4

in the positive side and n = 5 in the negative side.

We also examined current profiles as a function of temperature to estimate the

activation energy of ion evaporation using Schottky's model [24]. The detail of the ac-

tivation energy analysis is discussed in section 7.4.1. The current profile is specifically

measured at an applied electric field of 1.4 V/nm (figure 7-3). As expected, the cur-

rent increases with temperature and the total current is dominated by non-solvated

ions.
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7.2 Local electric fields

Local electric fields are different from applied electric fields due to space charge dis-

tribution in the droplet. In order to investigate the difference, the local electric field

experienced at the position at an extracted ion is estimated through the superposition

of the contribution of each individual point charge and the applied electric fields.

E = Espacecharge + Eexternal (7.1)

and

V e 5 = 6(7.2)
60

Example of local electric fields along x, y and z directions are shown in figure 7-4

and 7-5, respectively. In this case, the externally applied field is directed along x

only. The local electric field is tracked from the beginning of the simulation until

the followed ion is emitted and leaves far enough until the electric fields from charges

in the droplet become negligible. The center of mass of the target ion is used for

the calculation and all partial charges of every atom are considered, except those

of the followed ion. Before emission occurs, the ion is exposed to strong negative

electric fields from its surroundings and is kept inside the droplet while the field

magnitude decreases throughout the relaxation process. As for ion emission, in a

macroscopic sense, it is not possible to measure such localized phenomena. Ions leave

from a droplet when the local electric field in the x direction reaches its highest value,

while highest values along y and z do not always happen when Ex is largest. The

Schottky model relies on a statistical ensemble and therefore applies to macroscopic

phenomena. The microscopic details described here are very peculiar to the atomistic

analysis.
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Figure 7-6: Local electric field vs. applied electric field at the point of ion emission

in 300K

To investigate the trends of local electric fields at the point of ion emission in terms

of various applied electric fields, the local electric fields are taken as the average of

five samples obtained by root-mean-square of the electric field magnitude in all three

x, y and z directions. The local electric fields are compared to the applied electric

fields as shown in figure 7-6. Local electric fields are smaller than applied electric

fields for both positive and negative ions. Though the number of extracted ions is

similar between positive and negative sides, it can be seen that positive ions (EMI)

locally require higher electric fields probably because of the unsymmetrical shape of

the cation. In the experiment by Hogan et al. [67], the activatoin energies differ by

approximately 0.25eV.
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Figure 7-7: Schematic of sphere on cone model

7.3 Estimation of propulsive properties

Propulsive properties of electrospray thrusters are estimated using the current and

electric fields relationship shown in figure 7-2 [68].

We assume the existence of a Taylor cone [1] with ion emissions issuing from its

apex. The electric field distribution along a Taylor cone surface is inversely pro-

portional to N4 , where r is the distance from the tip along the surface. Thus, ion

evaporation could occur not only from the very tip of the cone, but also from adjacent

regions upstream from the tip, provided the field is strong enough. By definition, a

Taylor cone has infinite curvature at its apex. In real electrospray sources, such a

cone is an idealization which is only accurate far away from this singularity. Instead

of an ideal sharp point, the tip has some finite radius of curvature that dictates the

strength of the field. The radius of curvature is a function of electrostatic and liquid

properties, such as the applied voltage, electrical conductivity and surface tension.

To account for the rounded apex at Taylor cone, the electric distribution on the liquid

surface is obtained from the sphere on cone (SOC) model [69],[55].



In the SOC model, the equipotential lines are found by solving the Laplaces equa-

tion, V2 <D = 0 in spherical coordinates. The potential distribution is;

v v+1

ra

<D = -V 1PV(cosO)D a
a D

(7.3)

Here, P, is the Legendre function of order v. From this potential distribution, the

electric field is derived,

Dr
1 D-
r DO

(7.4)

(7.5)

where,

Dr
Vr)

[v + (v + 1)f- 2 /-'1]P1(cosO)

(7.6)

(7.7)

(7.8)

d
-+d[P (cosO)]

E =

V
r

18D
r DO

r

a

D

a

(7.9)

a

~r}a
D

(7.10)



Here, rm = fa is the radius of the meniscus, where f is a factor that determines

the surface equipotential and a correspondes to the model sphere radius. It can also

see that the applied voltage is necessary to obtain the surface electric fields.

Equation 7.8 is used for the Legendre polynomial considering the limit of our

target x and v (-1< cosO <1 and 0< v <1).

n

S (v -n+1)...v...(v+n) 1 X- (
pv (X) = (-1)" (n!)2 2 (7'11)

n=O

(v> 0, -1 < X <1) (7.12)

Once the equipotential lines are obtained for a selected applied voltage between

the tip and extractor, the equipotential line whose angle relative to the x axis is

approximately 49 degrees is selected as the Taylor cone surface model. Then the

electric field on such equipotential line is found by equation 7.5 and used for the

distribution along the cone surface. This electric field distribution dictates the level

of ion evaporation from the Taylor cone surface and establishes the individual ion

statistics for each electric field.

In estimating the thrust, velocities are measured when the emitted ions are 20-

40 nm far from the droplet in the direction of the electric field. This distance is

not arbitrarily chosen. In a true electrospray system, the field amplitude drops off

dramatically with distance, yielding an equally pronounced acceleration amplitude

decay. In the MD simulation system, the ions are accelerated by constant electric

fields. Here, we assume that this 20-40 nm artificial distance is equivalent to the

approximate terminal velocities in its physical correlate, even though weaker field

keeps accelerating the ions through longer distances in a real system. The solvated

ion break up is taken into account for the thrust on both the positive and negative

sides. Because some of the solvated ions appear to be in a metastable state, breakup

of solvated ions cause fewer accelerated ions.[54] Once the solvated ion breaks into

a neutral(s) and a bare ion, only the ion is accelerated. Neutral ion emissions are
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Figure 7-8: Mass flow from droplet

not included in the thrust. The thrust density is given as the thrust divided by one

half of the surface area of the droplet. The area is approximately 27 un 2 . The mass

flow from the droplet is measured and related to total mass flow from the surface

of the Taylor cone. Data from five different initial conditions are averaged out for

electric fields from 1.2 to 2.0 V/nm. In previous studies, it was found that solvated

ion emission is rarely observed above 2.0 V/nm and ion emission does not occur below

1.1 V/nm, at least within the simulation time. [76]

Based on the ion evaporation analysis using the MD simulation, the number of

emitted ions in each electric field is between 20 and 40 in both positive and negative

polarities. After ions have been emitted by this amount, the droplet itself loses its

consistency and breaks up.

The thrust from the droplet is shown in Figure 7-9. The thrust from (EMI-

BF 4),BF4- is smaller than (EMI-BF 4),EMI+ because of the mass difference. As

expected, thrust increases with stronger electric fields. Mass flow from the droplet is

shown in Figure 7-8. The mass flow of positive ions is relatively random compared

. ................ ........
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Figure 7-9: Thrust from droplet

to the negative polarity. This tendency can be seen even considering ion break-up

because the fraction of solvated ions is small when the ion evaporations occur at

more than 1.3 V/nm. The fraction of the solvated ions appear in Figure ??. The

total current is dominated by bare ions, and current by solvated ions remain low even

under stronger electric fields.

Figures 7-12, 7-10 and 7-11 show the calculated thrust, Isp and current from the

Taylor cone when 2.5 to 3 kV are applied between the needle and extractor. These

values are approximately on the same order at same experimental results. [52],[70]

Because thrust is dominated by bare ions and mass flow is not affected significantly

by the breakup of solvated ions, it can be said the results reflect an emission of

mainly intact solvated ions even in strong constant electric fields. The reason why

the breakup is hard to occur and why the number of emitted solvated ions is small

might relate to the force field difference between the stationary state and under strong

electric fields. A more accurate quantum model would be required to dynamically

characterize the charge distributions of the emitted ions. Such approach would be

............ ................ ..................................................... .....



important to establish the metastability of solvated ions.
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7.4 Activation energy analysis

7.4.1 Schottky model

The activation energy, or the free energy of the field evaporation process is estimated

using a Schottky-type model [24]. In equilibrium, the field-enhanced thermionic emis-

sion of charged particles is described by,

kT 1 e3E
j = o-exp [i(AGo - (7.13)

h kT (41reo

where o, k, T, h and AGO are the surface charge density, Boltzmann constant,

temperature, Planck's constant and activation energy, respectively. The second term

inside the exponential is commonly known as the Schottky depression and represents

the amount by which the surface-ion interaction barrier is decreased due to the pres-

ence of an electric field. This expression is derived from statistical physics arguments

in equilibrium and is therefore valid for aggregate systems formed by a large number

of particles. Nevertheless, in the same spirit that the statistical identity of a given

system can begin to be observed with a reduced number of particles (in quantum

statistics, for example, by finding the form of the most probable distribution), the

nano-droplet system composed of a few thousand atoms is sufficiently large for this

expression to be applied with an acceptable degree of confidence. To obtain a numer-

ical value of the activation energy, Equation 7.13 is compared against an exponential

fit of the total emitted current density as a function of temperature from 250K to

450K and a fixed electric field with a magnitude of 1.4 V/nm which is shown in

section 7.1.

The exponential fit is used to match the equation from the Schottky model 7.13

to estimate the activation energy in this section.

7.4.2 Droplet energy

To take advantage of the discrete nature of MD simulations, the activation energy is

also examined by keeping track of the droplet energy before and after a particular ion



is emitted. It is examined that the temperature of droplet remains constant during

the emission process.

We assume the kinetic energy acquired by flying ions does not modify in an appre-

ciable way the internal energy of the system. Therefore, as an approximation, changes

in the droplet energy are only related to changes in the interaction potentials within

the atoms that make up the droplet and the field evaporated ions. The potential

energies include covalent bond, LJ and Coulomb interactions. The droplet energy is

expected to change by a certain amount when an ion is extracted. This energy change

is directly related to the activation energy (or the free energy for an open system,

dGTP= E pidNi, where pi is the chemical potential and Ni the number of particles

for species i), at constant pressure and temperature. This approach to estimate the

activation energy includes the contributions of the different interaction potentials in a

direct way. Upon ion emission, Coulomb and van der Waals forces practically vanish

between atoms in the droplet and the extracted ion. The extracted ions include both

non-solvated and solvated ions.

Energy profiles of potential energy of droplet are obtained against time. The

approximate activation energy is derived from the slope of energy vs. time character-

istics and the number of emitted ions per unit time. This activation energy represents

the average energy change of every ion emission. The analysis of activation energy is

done using applied electric fields from 1.2-2.0 V/nm for five different initial conditions.

To obtain the activation energy, the potential energy of the droplet tracked during

ion emission. One example of an energy profile is shown in figure 7-13 This represents

the droplet's potential energy under an electric field of 2.0 V/nm encompassing the

extraction of four negative ion emission and three positive ions. The activation energy

is approximated by the slope of the energy during the emission time interval. How-

ever, due to the strong imposed electric field, the droplet deforms with an effective

reduction of the activation energy. Thus, we took only the first 5-6 ions to obtain the

activation energy to avoid strong deformations. The results are shown in figure 7-14.

These data are averaged over five different initial conditions. The experimental data

show that nano droplets of EMI-BF 4 gives activation energies of 1.83 [eV] and 1.58
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[eV] for negative ions and positive ions respectively. [67] From figure 7-14, activation

energies at 1.2, 1.3 and 1.4 [V/nm] give 1.5 times higher values than other cases.

However the other values provide around 1.8 eV which is a reasonable value when

compared with experiments, though further investigation is necessary to make sure

whether higher activation energies is real or is introduced as an artifice of the model.
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Chapter 8

Ion Evaporation by Internal Fields

8.1 MD Approach to High Internal Electric Fields

Based on the Rayleigh limit argument, ion emission before coulomb fission was inves-

tigated using MD simulations. Coulomb fission happens when charges find a droplet

force the the balance between electrostatic and surface tension of the liquid near the

limit of stability.

The electrostatic pressure for a fully relaxed charged sphere is,

(8.1)

where o- is the surface charge density and co is the permittivity of vacuum.

The surface tension pressure of the liquid droplet in vacuum with the spherical

radius R is,

(8.2)27
PR = R

where -y is the surface tension.

Rayleigh instability occurs when the values of equation 8.1 and 8.2 become equiv-

alent.

PE 2 a
2eo



qR = 18reok-yd3  (8.3)

The electric field strength at the droplet surface in the absence of an external field

is

E = q (8.4)
ircod 2

and the critical field is from equation 8.3 and 8.4,

qR
ER = 2 > Ejon (8.5)

where

47reoLG 2
Eon = e3 0 (8.6)

This indicates that the Coulomb fission occurs under certain internal electric field

and the electric field for the fission has to be larger than the E field for ion evaporation.

To investigate the energy required for the ion evaporation, we model this condition

avoiding the fission using MD simulation removing ions from a nano-droplet and

therefore forcing droplet charging. The droplet contains 64 EMI-BF 4 molecules and

BF 4 ions are removed one by one until ion emission is observed. To achieve this we:

1. Equilibrate the droplet following the same steps shown in section 6.2 for three

different initial conditions at each temperature (300, 323 and 272 [K]).

2. Remove one BF 4 ion from the last step of the previous simulation and run a new

simulation using the NVT ensemble until the new droplet reaches equilibrium.

3. Check for ion emission. If the emission is observed, stop the simulation and

restart the last simulation using the NVE ensemble. If ion emission is not

observed, repeat from step two.

Equilibrium is checked by the stabilization of the total energy, which is sum of



energy of pair and intra molecular potentials. As for visualization of the MD result,

Visual Molecular Dynamics (VMD) [71],[72] is used for the ion emission observation.

8.2 Activation Energy Analysis as a Function of

Temperature

One case of simulation results is shown in figure 8-1. Steps represent ions removed,

with the energy difference mainly caused by breakup of electrostatic bonds.

To verify this point, we estimated the energy reduction per unit volume of a

droplet when a single ion is removed. [37]

Energy
Volume

1 (4 e ) 2

2 47ceoR2
(8.7)

using the volume of a sphere,

E1erg e ) 2

Energy =-
2 47reoR2

4
3

(8.8)

converting unit to [eV],

1 1 e
Energy[ey] = --- ~~ 0.24[eV]

24 co7r R
(8.9)

Now, converting the energy unit in figure 8-1, using 100 [g/mol] as an average

mass of EMI (111 [g/mol]) and BF 4 (87 [g/mol]), the energy step (approximately 150

kcal/mol) is 0.197 [eV], which is close to the value in equation 8.9.

Table 8.1: Number of ions removed when ion emission occurs
Initial condition types 300K 323K 373K

ver.1 8 7 7
ver.2 7 7 7
ver.3 8 8 7

The table 9.1 shows the number of ions removed when ion emission occurs. For

all temperatures, ion emission is observed when 7 or 8 ions are removed. Although



the energy profile also includes the emitted ion's kinetic and potential energy, the

large energy drop represents that the pair potential, specifically the Coulomb force,

is strong enough compared to the emitted ion energies. These emissions are not only

for single ion emission, but also for solvated ion emission and even droplet breakup

as shown in figure 8-2. Here, the energy drop for each emission type takes almost the

same value (150 kcal/mol).

In order to investigate ion emission without a thermostat, NVE simulations are

conducted for the sequence at which ion emissions are observed in the NVT simula-

tions. Here, the total energy is nearly constant, therefore pair potential energies are

checked for the energy profile. Ion emission exist in all initial conditions/temperatures

and we could see energy drops for ion emission similar to the NVT cases (figure 8-4).
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Chapter 9

Interaction between Solid Plate

and Liquid Droplet

9.1 Computational Model

One final model includes an EMI-BF 4 droplet and a tungsten plate (figure 9-1). This

flat tungsten plate represents the preliminary simplified model for the electrospray

emitter. The size of the tungsten plate is changed depending on the total number

of molecules. The initial coordinates for the simulations with high electric fields are

obtained from the equilibrium state at near room temperature T = 300 K. The details

of the equilibrium process are discussed in section 9.4 and 9.5.

The force field of EMI-BF 4 is same as before and for the tungsten plate, we

assume the interactions are of the Lenard-Jones (LJ) type, with a Body Centered

Cubic (BCC) configuration. For the tungsten atoms, we use the force field parameters

suggested by Tanaka et al. [73].
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9.2 MD simulation methodology

The following are the steps for used for the MD simulation.

1. Equilibration of system

(a) Equilibration of a nano-droplet of EMI-BF 4 with NVT ensemble.

(b) Equilibration of tungsten and the nano-droplet with NVE ensemble.

2. Simulate the system under electric field conditions.

* Apply constant and uniform electric field to the system.

* Apply surface charge on the top layer of the tungsten plate.

For the first step 1(a), EMI-BF 4 molecules are placed arbitrary in a cubic con-

figuration as an initial condition. Once the MD simulation is started, the cubic

configuration gradually transforms to a spherical shape. The diameter of the droplet

depends on the number of EMI-BF 4 molecules. It is approximately 1 nm to 2 nm

for 8 and 27 EMI-BF 4 molecules, respectively. This simulation is conducted with the

NVT ensemble for 300 K using the N6se-Hoover thermostat[64] with a temperature

damping of 100 K. The cutoff distances are 8 A and 100 A for LJ and Coulombic po-

tentials, respectively. The time step is 1 fs and the maximum total simulation time is

50 ns which corresponds to 50 million iterations. The periodic boundary condition is

not used because this is an isolated floating system. The completion of equilibration

is checked both by visualization and energy profiles. After the equilibrium is reached

with the NVT simulation, the final trajectory of 1(a) is used for the initial condition

of 1(b). Here, the tungsten plate is added to the system and the distance between

the nano-droplet and the plate is set to approximately 3 A. The initial condition of

the tungsten plate has BCC configuration with a lattice constant of 3.165 A. This

tungsten plate initial configuration is obtained by several trials using different shapes.

The details are in section 9.5.

Once the equilibration is achieved in step 1(b), the tungsten and the nano-droplet

are exposed to electric fields. We investigated two types of electric field circumstances



as mentioned above. The former model provides a simpler configuration and has been

discussed in several studies. [74]' [75]' [76] However, because it is only consistent with

a realistic model very near to the surface, we consider also a model using surface

charges, which gives a decaying electric field which is more realistic. The details of

the surface charge approach are discussed in section 9.2. The constant electric field

is applied perpendicular to the surface of the tungsten plate. In these calculations,

the position of all tungsten atoms are fixed due to the severe computational cost that

otherwise would arise. Also, to make the simulations faster, a neighbor list is applied.

The skin distance for the neighbor list is set to 10 A. A shrink wrapping algorithm

is used for ion emission which have a possibility of leaving the simulation box. The

boundary conditions are not periodic in this calculation, either, and the ensemble is

NVE with a time step of 1 fs. The initial temperature is 300 K.

9.3 Surface Charge on Tungsten Plate

To simulate a charge distribution, charges are applied to atoms on the top layer of

the tungsten plate, such that

o-sm. Q - coE (9.1)
S

where o-ur, Q, S, co and E are surface charge, total charge on the surface, surface

area, permittivity and electric field, respectively. The area is obtained from the lattice

constant as shown in figure 9-2. Here,

Q=Nq (9.2)

where N and q are the number of atoms at the top layer of the tungsten plate

and charge on each atom, respectively. Therefore, the charge for each atom is

q 0= E 
(9.3)

N

This amount of charge is applied to provide an electric field E on the surface. The
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Figure 9-2: Schematic of the first layer of the tungsten plate.

electric field is varied to observe ion emission of EMI-BF 4 .

It is important to point out that a uniform charge distribution on the finite sim-

ulated plate does not produce an equipotential surface and as a consequence the

corresponding field is not necessarily normal to the surface. This is a good approxi-

mation only if the size of the plate is much larger than the size of the droplet, which

is not the case of our simulations, mostly because of computational cost. In future

work we plan to address this problem by incorporating periodic boundary conditions

(see figure 9-2, left drawing) such that an infinite plate is simulated to produce a

normal field from a uniform charge distribution.

9.4 Equilibration of Tungsten Plate

Because it is necessary to use LJ potential for the tungsten plate to calculate the

interactions under non-periodic boundary conditions, there is a computational limi-

.. ..................... w _



tation to the thickness of the tungsten plate. We tried several patterns to reduce the

computational cost. The cutoff distance is 20 A for LJ potential and the Coulombic

force is not calculated because tungsten atoms are initially uncharged.

Figure 9-3 shows three examples of tungsten plates. The left figures (figure 9-

3 (a), (d) and (g)) show model schematics, and the center (figure 9-3 (b), (e) and

(h)) and right (figure 9-3 (c), (f) and (i)) figures correspond to snapshots of initial

coordinates and time varying coordinates, respectively. The round model 1 (figure 9-3

(d), (e) and (f)) is built with a concept that provides a thick tungsten plate where

the nano-droplet is placed while other parts have smaller thickness to reduce the

number of tungsten atoms. The square model (figure 9-3 (a), (b) and (c)) and round

model 2 (figure 9-3 (g), (h) and (i)) have uniform thickness of 3 lattices. It can be

seen that the there are deformations in the square model and the round model 1.

The deformation of the square model is not critical compared to the round model 1,

however the number of atoms of the round model 2 are less than the square model.

Also, the round model 2 perfectly keep its configuration as shown in figure 9-3 (h)

and (i). Therefore we use the round model 2 for further simulations.

9.5 Equilibration of Tungsten Plate and EMI-BF 4

Nano-droplet

Equilibration of the tungsten plate and the EMI-BF 4 nano-droplet is done for two

different system sizes with 8 and 27 molecules EMI-BF 4 droplet. The diameters of the

tungsten plates are 8 nm and 10 nm, respectively. The total number of atoms are 2499

and 5343 for these systems. The combination of (a), (b) of figure 9-4 and 9-5 shows

the initial condition and the equilibrated condition of 8 and 27 EMI-BF 4 molecules,

respectively. Compared to the sole equilibration of droplets, these equilibrations need

a longer cutoff distance for LJ potential because of the relatively large LJ coefficient

of tungsten atoms. Here, we use 30 A and 80 A for 8 and 27 EMI-BF 4 molecules

respectively. From figure 9-4 and 9-5, it can be seen that the equilibration condition
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Figure 9-3: (a) (b) (c) Square model of tungsten plate. (d) (e) (f) Round model 1 of
tungsten plate. (g) (h) (i) Round model 2 of tungsten plate



is totally flat and both EMI+ and BF4 ions completely wetted the tungsten surface

due to a strong attraction by tungsten atoms. For a more precise investigation of ion

emission from a Taylor cone, a thicker liquid layer might be needed.

Figure 9-6 is the total energy profile throughout the equilibration runs. The 8-

molecule system is equilibrated approximately at 50 ns, and the 27-molecule system

converge at around 30 ns. The physical simulation time is 4 days for 350 ps in the 27

molecules case, even using a neighbor list and fixed tungsten atoms. Here, the force

on tungsten atoms are not calculated and are set to zero. The most expensive part

is the calculation of the LJ and Coulombic potentials with long cutoff distances. To

study a larger system, it will be necessary to consider certain techniques such as the

multiple time step method[77].

9.6 Tungsten plate and nano-droplet under elec-

tric fields

Here we investigate tungsten plate and nano-droplet under two sources of electric

fields. Table 9.1 indicates the ion emission existence in four different conditions:

a. Ion emission under external constant electric field with 8 EMI-BF 4 molecules.

b. Ion emission with surface charge with 8 EMI-BF 4 molecules.

c. Ion emission under external constant electric field with 27 EMI-BF 4 molecules.

d. Ion emission with surface charge with 27 EMI-BF 4 molecules.

Figure 9-7 shows an EMI+ ion emission from the 27-molecule system. The electric

field is applied in the x direction which is perpendicular to the surface. Ion emission

from an ionic liquid surface usually occurs in electric fields of 1.0 V/nm - 2.0 V/nm.

However, here, the electric field needed for ion emission is higher than those values

because ions are directly attached to the metal surface.

At electric fields stronger than 3.5 V/nm, ion emission along the x direction is

observed under the external constant electric field condition, but no axial ion emission



(a) Initial condition with 8 EMI-BF 4 molecules.

(b) Equilibrated condition with 8 EMI-BF 4 molecules.

Figure 9-4: Equilibration of 8 EMI-BF 4 molecules and tungsten plate.
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(a) Initial condition with 27 EMI-BF 4 molecules.

(b) Equilibrated condition with 27 EMI-BF 4 molecules.

Figure 9-5: Equilibration of 27 EMI-BF 4 molecules and tungsten plate.
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Figure 9-7: EMI+ Ion emission from tungsten surface.

is observed through a surface charge distribution. However, in the system with a

surface charge, it can be seen that a single molecule is emitted from the the edge of

the tungsten surface where the electric field is strongest. This emission occurs at a

surface charge distribution which corresponds to 6.0 V/nm. This reinforces the notion

that a modified surface charge model is needed to model perpendicular ion emission

The number of ions emitted is larger in the system with 27 molecules as shown

in table 9.1. From the ion emission tendency, the U potential of tungsten atoms

seems to work properly, though further investigation with more layers of EMI-BF 4 is

needed to compare against experimental values. Also, there is the more interesting

aspect of this type of simulations, namely, the ionic (electrochemical) interactions of

counterions with metal structure. That might require some form of reactive MD.
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Table 9.1: Ion emission profile for 27 EMI-BF 4 molecules and tungsten plate. (a)
Ion emission under external E field with 8 EMI-BF 4 molecules, (b) Ion emission with
surface charge with 8 EMI-BF 4 molecules, (c) Ion emission under external E field
with 27 EMI-BF 4 molecules, (d) Ion emission with surface charge with 27 EMI-BF 4
molecules. Parenthesis indicates the time when the first ion emission is observed.

Electric field [V/nm] (a) (b) (c) (d)
3.0 - - -
3.5 Q (138 ps) - Q (139, 140 ps) -
4.0 0 (41, 182 ps) - 0 (19, 92, 113 ps) -
5.0 O (1, 2, 7 ps) - Q (3, 4, 16, 17 ps) -
6.0 0 (Every 1 ps) 0 (198 ps) 0 (Every 1 ps) 0 (172 ps)
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Chapter 10

Conclusions and Future Work

10.1 Summary of Results and Contributions

Atomistic modeling has the potential to be a versatile tool to reveal the physics

of electrosprays. Preliminary studies for electrospray thrusters have been done by

molecular dynamics simulations of ionic liquid droplets. The goal is to establish the

first milestone of multi-scale modeling of electrosprays to reveal their mechanisms

mainly based on the analysis of ion emission current and activation energy.

Current was measured by keeping track of the number of emitted ions from ionic

liquid droplets under two conditions: fixed temperature (300 [K]) at various electric

fields and fixed electric field (1.4 [V/nm]) at various temperatures (250 - 450 [K]).

Electric current analysis was conducted using simulation results for the first time and

the obtained total current density was reasonably well matched with experimental

values. These results show ion emission of both solvated ions and non-solvated ions

with a largest number of solvation of n = 4 in the positive side and n = 5 in the

negative side. But n = 0 was by far more common. Activation energy analysis was

made by fitting current vs. temperature curves with a Schottky-type model. This

resulted in slightly lower values for the activation energy compared to experimental

data with an average error of approximately 10 percent. The potential energy of

droplets is also measured for various electric fields (1.2-2.0 [V/nm]) as an alternative

to study activation energy under external electric fields. It is found that this method



is greatly affected by droplet deformation so only the first five or six emitted ion are

used for the analysis. This analysis agrees relatively well with the latest experimental

results for nano-droplets. Activation analysis through internal electric fields was also

considered. The energy drop corresponded well to a rough analytical estimation. The

summary of activation energy for each method is shown in table 10.1.

Table 10.1: Approach and activation energies.
Efield Method Activation energy per ion [eV]

External Schottky fitting 1.4
Droplet potential energy 1.8

Internal NVT 0.2
NVE 0.1

Propulsion properties have been investigated applying the ion emission results

from droplets and electric field distributions along the liquid surface using the sphere-

on-cone model. Thrust, Isp and current from one Taylor cone were calculated for both

positive and negative polarities.

A final model was presented for the interaction between a liquid droplet and a

solid have been observed using full AMBER force field model. Electric fields from

a surface charge distribution was applied which gives a decaying field model that is

closer to reality. The results indicate that the surface charge would work but the

modification for the charge distribution and force field are needed for more realistic

model.

Molecular dynamics simulations yield reasonable predictions for the activation

energy of ionic liquids. Further research is necessary as mentioned in section 10.2,

however, atomistic modeling is a promising way to understand this nano-scale phe-

nomena.



10.2 Recommendations for Future Work

10.2.1 MD Simulation of Droplets

As indicated in chapter 6 and 7, there are several problems in the droplet simulations.

Among them:

a. Moving droplet

Under external electric fields, the floating droplet moves along the electric field

when it is charged due to ion emission. It is possible to analyze ion emission

with the moving droplet but it prevents from a simple kinetic and potential

energy analysis and may affect the energy calculations especially when a larger

droplet is used with more ion emission because it also gives shorter time to

accelerate the droplet itself.

The suggested solution is fixing four or five molecules placed at the center of

the droplet. This is artificial but it should not affect too much the behavior of

surface ions when a droplet is large enough and the atoms keep their partial

charges and LJ potentials. The fixing should be made after the droplet is fully

relaxed so that no more rotation occurs due to dipoles.

b. Number of molecules

The largest number of atoms in this work is 3000, but in general MD is able to

handle more than ten to hundred billions of atoms. However, this is possible

when special treatments, such as periodic boundary conditions or a reasonable

neighbor list are applied and the code is run on "Teraflop" computers which

require more than 1000 Opteron CPUs and large memory. (The estimation

of computational time can be made with flops per clock per CPU for each

computer.) One of the reasons for the limited number of molecules is the time

step restriction (section 5.1.4) which requires approximately 1,000,000 iteration

steps to cover only 1 [ns] trajectories. In addition to massive iterations, pair



potentials, especially long-range Coulomb potentials, increase computational

burden due to the summations of every combination of particles thus scaling as

N2 . Cutoff distances and neighbor lists can reduce this amount but this trade-

offs with the accuracy of the potential calculation. Also, periodic boundary

conditions are difficult to apply to droplet systems which are isolated from

their surroundings. Thus, to tackle on larger systems, fast CPUs and large

memories or appropriate modeling of systems are necessary. To observe an ion

emission from liquid surfaces, it might be necessary to analyze a large plate

of liquid instead of droplets, including periodic boundary conditions and apply

external electric fields. If it is necessary to keep investigating droplet physics,

NSF supercomputer is available for larger computations. [78]

c. Fraction of solvated ions

As shown in section 7.1, the fraction of solvated ions against non-solvated ions

are small although experimental results show that monomer and dimer almost

give same percent of total current in negative side and 4:6 in positive side. [52]

This indicates that solvated ions in the simulation are easy to break, id est,

there is a possibility that the coefficients of the force field are not appropriate

in this case. The force field is validated in equilibrium states [51], however,

apparently not under strong electric fields. In reality, the external electric fields

might change the partial charge which atoms have and even the van der Walls

potential. Another possibility is the effect of different electric field distributions:

Taylor cone and constant electric fields, a condition that can be represented as

a droplet placed between parallel plate electrodes. Further consideration is also

required for the value of dielectric constant of the ionic liquid.

10.2.2 MD Simulation of Liquid and Solid

Further investigation is necessary mainly for the selection of an adequate force field.

Currently it is impossible to mix up two different force fields in one MD simulation

and the AMBER force field is the best option for organic materials but not for metals.
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The reason that metals have different force fields can be described by their bonding

system. Organic materials have pair potentials as inter molecular potentials, but on

the other hand, metals have multi-body potentials in which bond strength is weaker

at the surface of crystals. This is affected by quantum mechanical effects that describe

the influence of the electron gas. Embedded atom method (EAM) potentials are used

as force fields for metals, however, it does not have options to calculate liquids. It

is known that the first-principle based ReaxFF has an ability to calculate two-phase

systems although it is not capable get to calculate ionic liquids because lacks many

atomic interaction types. We might be able to wait for ReaxFF to add new atoms

but there is another option to create a force field called CVFF using appropriate

software. [79] Technically it is possible to obtain the force field by direct calculation

but this is not recommended because the process takes too much time in order to

adjust the potential curve until obtaining the appropriate values of parameters for

every intra- and inter- atomic potential. The software for CVFF force field is material

"Material Studio" and the CVFF force field also works on LAMMPS. [80]

Electrochemical effect between solid and liquids would require a quantum method

because molecular dynamics simulation does not directly calculate the motion of

electrons. The problem of quantum methods is that they handle smaller number of

atoms than MD. Thus it might be difficult to see mesoscopic phenomena such as

Taylor cone with QM calculation due to the limited capacity and processing speed of

machines.

10.2.3 Other Simulation Techniques

Other than molecular dynamics simulation, PIC (Particle in Cell) model is one of

options to investigate behavior of ion jets. The detail is described in Appendix C.
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Appendix A

Validation of MD simulation

A.1 Relaxation Time

The relaxation time of the EMI-BF 4 droplets under electric fields are checked. The

droplets have 125 EMI-BF 4 molecules and these were all equilibrated at 300 [K] using

thermostat [64] before the electric fields are applied. The time when first ion is emitted

is assumed when the relaxation is completed and the time of five different samples

in each electric field strength are averaged out. Figure A-1 shows the obtained result

both for positive and negative emissions. We can see that the simulation values are

in same order with typical relaxation time which is in order of 100-200 ps obtained

from arguments in section 3.1.
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Figure A-1: Charge relaxation time
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A.2 Evaporation Temperature

The evaporation temperature is investigated for EMI-BF 4 droplet with 64 molecules.

Starting from room temperature, temperature is increasing using Nose Hoover

thermostat with dumping of 100 [K] as shown in figure A-2. Force fields of molecules

are same as before [51], but there is no electric field in this case. The neutral ion

emission was observed at approximately 1140K which is higher than experimental

value (approximately 400 [K]). However, the experimental value is not obtained by

a nano droplet neither emission of one molecule. Therefore further investigation is

needed to explore the evaporation temperature of ionic liquids.
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Figure A-2: Temperature transition
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Appendix B

Computation

B.1 Molecular Dynamics Software

The LAMMPS (http://lammps.sandia.gov/) MD software has been used throughout

this research. All the descriptions and explanations of commands for input files can

find on the website. To make LAMMPS run on the SPL cluster machine, OpenMPI

option is selected.

B.2 Visualization Software

B.2.1 General Information

Visual Molecular Dynamics (VMD) was used for visualization of MD simulation re-

sults. VMD is developed by theoretical and computational biophysics group in Uni-

versity of Illinois at Urbana-Champaign and is available for free from the link below.

http://www.ks.uiuc.edu/Research/vmd/

Instructions and tutorials can be also found on the website.

of LAMMPS results, we use dump and dcd files to load on the

As for visualization

VMD.
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B.2.2 Ion Tracking

An ion tracking script was created to make movies following moving droplets. This

script was based on Dr. Axel Kohmeyer's work and the details can be found in section

6.2 of the link below.

http://sites.google.com/site/akohlmey/redirect/cpmd-vmd.pdf

The following is the script for our EMI-BF 4 droplet. Underlines show parts where we

needed to make modifications depending on the files and target ions.

ion tracking code for EMI-BF4

load trajectory:

mol new { (dump file name) } type lammpstrj waitfor all

mol addfile { (dcd file name) } type dcd waitfor all

jmol delrep 0 top

Omol selection type 1 2 3 4 5 6 7 8 9 10

set molid 1

set hoffs 0

# let all selections be recalculated for each frame

y and smooth the trajectory a little bit for all representations

y that's part two of the magic.

set n [molinfo $molid get numreps]

for {set i 0} {$i < $n} {incr i} {

mol selupdate $i $molid on
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mol smoothrep $molid $i 2

}

proc do-realign {args} {
global molid chist hcount hoffs dhist

this is the axis to align to

set avec [vecnorm {1.0 0.0 0.0}]

this is the sliding window size

set asize 5

initialize the cache counters

if ([info exists hcount]) { } else {
set hcount 0

set hoffs -1

}

find center

set sel [atomselect $molid "underlineindex (atom ID) or index (atom ID)"]

lassign [$sel get {x y z}] emil emi2

set cent [vecscale [vecadd emilemi2] 0.5]

set dir [vecsub emilemi2]

store data in cache for sliding window averaring

if {$hcount < $asize} then { incr hcount }
iner hoffs

if {$hoffs >= $hcount} then { set hoffs 0 }

set chist($hoffs) $cent

set dhist($hoffs) $dir
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calculate averages

set csum [veczero]

Sset dsum [veczero]

for {set i 0} {$i < $hcount} {incr i} {

set csum [vecadd $csum $chist($i)]

set dsum [vecadd $dsum $dhist($i)]

}
set csum [vecscale [expr 1.0/[expr $hcount * 1.0]] $csum]

Sset dsum [vecnorm $dsum]

get rotation axis

Sset rvec [vecnorm [veccross $dsum $avec]]

set origin

molinfo $molid set

{centerJmatrix}
[list [trans origin $csum] ]

S[trans axis $rvec [expr acos([vecdot $dsum $avec])] rad]]

clean up selections

$sel delete

}

scale to 0.01

trace variable vmdiframe(1) w do-realign

# go back to the start of the trajectory.

animate style rock

animate goto start
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B.3 SPL Cluster Machine and Execution of LAMMPS

All the simulation of this work has been done using SPL cluster machine (spl.mit.edu).

It has 16 nodes with four AMD Opteron cores per node and two nodes with 8 Shang-

hai cores per node. OS is Red hat enterprise Linux and all the basic options for

numerical simulations are available. However, it is necessary to modify bash file of

an account to install the LAMMPS on the account before making LAMMPS. The

".bashrc" file at a home directory of an account needs to be:

# .bashrc

y Source global definitions

if [ -f /etc/bashrc ]; then

. /etc/bashrc

fi
User specific aliases and functions

PATH=$PATH./home/(user name)/bin

Modification of a make file is also required depending on the bash settings. The

"Makefile.openmpi" needs to be modify. Here are the first half of the makefile in latest

(Feb2010) version of LAMMPS. It is necessary to add "CCFLAG" and "LINKFLAG".

y openmpi = Fedora Core 6, mpic++, OpenMPI-1.1, FFTW2

SHELL = /bin/sh

# compiler/linker settings

# specify flags and libraries needed for your compiler

CC = mpic++
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CCFLAGS = -02 -funroll-loops -DFFTFFTW -DLAMMPSGZIP

-fstrict-aliasing - Wall - W - Wno-uninitialized

-g -0 -I/home/(username)/include -I/opt/openmpi.gcc/

include -I/opt/openmpi.gcc/include/openmpi

DEPFLAGS = -M

LINK = mpic++

LINKFLAGS = -g -0 -L/home/(username)/ib -L/opt/

openmpi.gcc/lib -L/opt/openmpi.gcc/bin/

LIB = -Istdc++

ARCHIVE = ar

ARFLAGS -rcsv

SIZE = size

This file is updated frequently and formats are slightly different in each version of

LAMMPS, but the modifications are same.

The OpenMPI is used for parallelization to run LAMMPS and the command is

executed in a shell script.

An example of the shell script is as following:

cd (folder name)

time mpirun (execution file) < (input file)

Here, the execution file for OpenMPI in LAMMPS is "lmp.openmpi". The shell

script file needs to have an extension of ".sh" and it is run by "qsub" command

assigning nodes to parallelize. The example of the command is:
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qsub - I nodes = (node name) ppn = (number of CPU)

+ (node name) ppn = (number of CPU) (shell script file)

The details of other files (input file, data file etc...) can be found in the LAMMPS

manual on the website (http://lammps.sandia.gov/).
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Appendix C

PIC model

PIC simulation has been done to try to observe interactions between ion jets. The

detail descriptions of PIC is explained in M.S. thesis by Fife [81].

C.1 Code Modification

The original code was developed by Prof. Paulo Lozano and modifications were

applied to calculate ion emissions. The modified code was able to increase the number

of sources and also can read RPA data obtained by an experiment. The RPA data

provided an information about the fractions of solvated ions in ion jets. We use RPA

data of an ionic liquid EMI-I (1-Ethyl-3-methylimidazolium Iodide) obtained by Tim

Fedkiw, MIT (figure C-1).

C.2 Two Ion Jets

Figure C-2 shows visualization of the simulation results in chronological order. The

simulation time step is 5 [ns] and currents for monomer and dimer are 63 [nA] and 97

[nA] respectively. The beams are both in negative polarity. Interaction can be seen

from jet formations which are apparently not straight jets. It is necessary to verify

the current model and further investigation are expected to adapt the model to array
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Figure C-1: RPA data for EMI-I. Courtesy of T. Fedkiw (MIT)

of electrosprays.
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(a) 300K

(b) 350K
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(c) 400K
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(d) 400K

Figure C-2: Equilibrium state of EMI-BF 4 (a) 300K (b) 350K (c) 400K
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