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Abstract
Nanoporous anodic aluminium oxide (AAO) can be created with pores that self-

assemble into ordered configurations. Nanostructured metal oxides have proven to be

very useful as scaffolds for growth of nanowires and nanotubes with tunable diameters

and with tight diameter distributions. For 50 years, field-assisted dissolution of the oxide

has been cited as the mechanism that leads to pore formation in alumina, and by analogy,

porous anodic TiO2 and other functional metal oxides.

We show that field-assisted dissolution models are consistent with the observed

dependence of the A1203 dissolution rate on the electric field, as well as the existence of a

critical field for pore initiation. However, we further show that the well-known ordered

porous structure, which has a significantly different length scale, does not result from a

field-induced instability, but is instead the result of a strain-induced instability with

forced plastic deformation and flow of the oxide during further anodization. We

demonstrate that these pore generation mechanisms can be controlled independently,

even when they co-exist, by controlling the electric field across the oxide as well as the

anodization conditions. We also show that mechanical confinement results in a dendritic

pore structure. Through interpretation of these results we develop a generalized

mechanism for ordered pore formation in AAO in analogy with cellular solidification.

In addition, we report on abnormal behavior in anodic oxidation of Al in

mechanically confined structures for formation of horizontal nanoporous anodic alumina

oxide, H-AAO. Instead of smooth pore walls, periodic dendrite inner pore structures

form, the growth rate is suppressed to 5 % of its value during bulk anodization under the

same conditions, and a steady-state is never reached. These anomalies associated with



formation of H-AAO originate from suppressed volume expansion and plastic flow of

A12 0 3 confined by the Si0 2 hard mask. By determining new anodization conditions

leading to zero volume expansion, dendritic H-AAO can be avoided and kinetic

retardation can be minimized.

A new method for perforation of the AAO barrier layer has been developed, based

on anodization of Al/W bilayer films on substrates. When Al/W bilayer films are

anodized and pores approach the Al/W interface, tungsten oxide forms and penetrates the

alumina barrier oxide, in part, due to enhanced plasticity of the alumina layer. By

selectively etching the tungsten oxide, the barrier oxide can be removed and the base of

the pores opened, without etching of the AAO.

Finally, we further refined the selective barrier perforation process using the W

interlayer to develop a methodology for fabrication of through-pore AAO scaffolds on

any conducting substrate (AS) by anodizing an Al/W/AS tri-layer. Structural and kinetic

study of the W0 3 extrusion revealed that the anodization of W consumes a fixed

thickness of the W layer in acidic electrolytes under specific anodization conditions.

Based on this study, the optimum thickness of the W interlayer in the Al/W/Au tri-layer

was measured for various anodization conditions. Through-pore AAOs were fabricated

on Au layers with exposure of the surface at the base of the pores, using the optimum W

thickness without a violent 02 evolution reaction and without changing the pore

diameters. With scaffolds made using this methodology, vertically-aligned free-standing

Au and Pt nanowires with diameters ranging from about 12 nm to about 120 nm were

grown by electrodeposition on a gold substrate.
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Chapter 1. Introduction and Previous Work

1.1 Anodization of Aluminum

Anodization of aluminum is a well-established process for production of

protective and decorative coatings on Al surfaces [1-4]. Anodization of Al is an

electrochemical oxidation process carried out by applying positive voltage to Al in an

electrolyte and results in thickening of its oxide. Because of their simple fabrication

procedure and its excellent corrosion resistance, anodic aluminum oxide (AAO) films

have been used in numerous products for 100 years.

The structure of AAO films was first revealed in 1953 by Keller, Hunter, and

Robinson who used transmission electron microscopy (TEM) to observe hexagonally

closed packed pore arrays as an ideal structure of AAO [5]. In 1995, Masuda and Fukuda

discovered that the ideal structures of AAO can be realized at certain anodization

conditions [6]. Since then, with burgeoning progress in nanotechnology, AAO has come

to be seen as an ideal scaffold for the synthesis of various low-dimensional nanomaterials

[7-10].

Despite rapid progress in anodization technology, however, the mechanism for

pore formation in AAO is still in debate. Fundamentally, pores are believed to form as a

result of instability in the oxide during anodization [11-13]. The origin of the instability is

still unclear. For exploitation of novel structures of AAO, a much improved

understanding of pore formation must be provided.



In this chapter, I will present an overview of the science and technology in the

field of Al anodization. Throughout the overview, I will identify scientific and

technological challenges whose resolution constitutes the objective of this thesis.

1.2 Thermodynamics and Kinetics

1.2.1 Thermodynamics [14]

It is well-known to a vacuum scientist that formation of aluminum oxide from

aluminum is thermodynamically favorable in an oxygen ambient, even at room

temperature. The spontaneous reaction of oxidation of Al is driven by a large negative

Gibb's free energy change during oxidation. Aluminum also readily reacts with water in

aqueous environments, but yields various stable by-products including A120 3,

Al 2O3-3H20, aluminum ions (A13*), and aluminate ions (A10). For the Al-water system,

6 reactions are known to occur, assuming the absence of complexing agents with Al. For

example, Al forms its oxide with water by,

2A + 3H20 = A12 0 3 + 6H + 6e. (1)

From the Nernst equation, the equilibrium equation of the reaction (1) is given as a

function of electrode potential E and pH of the solution by

E =E -Iln[H*]3 =-1.505-0.0591pH , (2)
zF

where E is the standard reduction potential, R is the universal gas constant, T is

the absolute temperature, z is the charge number of the electrode reaction (in this

case, z = 3), and F is the Faraday constant (96,500 C/mol). The other 5 reactions

are



Al3 . + 2H20 = A10 2 + 4H, (3)

2A13 . + 3H 20 = Al2O3 + 6H', (4)

A12 0 3 +H 2 O=2AlOI2 +2H*, (5)

Al=Al 3* + 3e-, (6)

Al+2H 20= Al0+4H'+ 3e-. (7)

Each reaction has corresponding equilibrium equations, determined by the Nernst

equation if the reaction is electrochemical in nature (the reaction (1), (6), and (7)) and

Gibb's free energy of the reactions if the reaction is chemical in nature (the reaction (3),

(4), and (5)).

The resulting equilibrium equations allow construction of domain boundaries in a

potential-pH diagram or a Pourbaix diagram of the Al-water system as shown in Fig. 1-1

[151. The Pourbaix diagram for the Al-water system is a thermodynamic stability map of

chemical species of the metal-aqueous solution at 25*C in the space of potential (y-axis)

and pH of the solution (x-axis). When Al is anodically polarized or anodized, that is E >

0 in Fig. 1-1, in neutral, weak acidic, and basic solutions, the growth of the oxide is

thermodynamically favored as described by reaction (1). A compact layer of aluminum

oxide, called a barrier-type oxide, is known to grow in these conditions [1-4]. If Al is

anodized in a strong acid such as perchloric acid, Al dissolves into the solution, and this

process is called electropolishing of Al [2]. The electropolishing of Al proceeds by the

reaction (6). In mildly acidic solutions, such as diluted phosphoric, oxalic, and sulfuric

acids, it is well-known that porous alumina grows as a result of anodization [1-4]. It

should be noted that formation of porous alumina is not expected from the simple



thermodynamic considerations shown in Fig. 1-1. Generally, it is widely believed that

combination of the oxidation reaction (1) and the Al dissolution reaction (6) occurs [1].

However, this argument relies on slow kinetics of Al dissolution, not thermodynamics.

Therefore, a more detailed thermodynamic argument for porous alumina formation must

be provided to answer whether porous alumina solely the result of kinetic constriants.

AJH 3(s)

2 0 2 4 6 8 10 12 14

pH

Figure 1-1. Pourbaix diagram of Al-H 20 system 298K [15].

1.2.2. Kinetics and Interfacial Reactions

Anodic oxidation of Al proceeds though various kinetic steps associated with

different ionic species (Al13 and 02-). It is generally accepted from marker experiments

that the anodic oxide grows simultaneously at both interfaces, i.e. at the metal/oxide



(m/o) interface by transport of oxygen ions and at the oxide/electrolyte (o/e) interface by

transport of aluminum ions [16-18]. The relative fraction of the total current carried by a

given ion is called as the transport number of an ion. In Al anodization, the transport

number of Al3. varies from 0.2 ~ 0.7 as a function of anodic conditions such as pH,

temperature, and applied current density [16, 18]. For porous oxides, a transport number

for Al3" of about 0.4 is generally accepted [19].

For 02- ion transport during anodization, first, an oxygen ion (or OH-) transfer

reaction occurs at the o/e interface by the water splitting reaction [12] or

H2O =O 2 +2H*. (8)(2 q (OX) (aq)

The transferred oxygen ions then migrate across the oxide to the m/o interface driven by

the high electric field across the oxide, which is in the order of 106 ~ 107 V/cm [1].

Finally, the oxygen ions that arrive at the m/o interface react with Al metal to form A12 0 3

by

2Al + 30 2 - Al2O +6e-.
m Ox 2 3 (9)

Regarding the A13+ ions, the following reactions can occur. At the m/o interface,

an ion transfer reaction takes places, such that

Al =Al3 + 3e~. (10)

At the o/e interface, two interfacial reactions are suggested, depending on the pH of the

solution:

2A13* +302- =A12O3  (11)

in neutral solutions and/or



A13 - A13* (12)

in acidic solutions. Implications of reaction (12) on porous alumina formation will be

discussed in detail later in this chapter. The Al ion transport across the oxide is also

driven by the high electric field. It should be noted that only reactions at the m/o interface

are responsible for generation of anodic currents [20]. Shown in Fig. 1-2 is a summarized

overall anodic reaction at both interfaces for porous oxide formation. Note the

incorporation of the oxide dissolution reaction (4) in Fig. 1-2.

H+ Ala+
HO - + 2H A -A'H20

A O3Al 0, 46H(,, -2Al'+,+ 3H2A1203  A 203 (N 204 -2Al)

Al 2Ai 4+30 -) Ai,0,+6e- Al Ai (ox . 3e-

Figure 1-2. Summary of the interfacial reactions at the anode (Al).

Each kinetic step shown above can be a rate-determining step for film growth and

the associated anodic oxide growth models have been proposed by various authors [1, 21,

22]. The specific description of each model is out of scope of this thesis but can be found

in a review paper by Lohrengel [21] and in a work by Macdonald and coworkers [22].

Comparison of some of established models is summarized in Table 1-1. It is important to

.............. ................ .



point out that regardless of the rate-determining step, the kinetics of Al anodization can

be described with a high-field conduction model or the Guntherschultz-Betz (G-B)

equation,

Ai = jo exp(#3E). (13)

Here, ji is the ionic current density due to the ion species i, jo and # are temperature

dependent parameters, and E is the electric field across the oxide.

Authon Ref. Ion Rate Field Kinetics
determining strength
step

00nthrcbude and Beta (1934) 109 +, o E-AU/I 4-it ezp(#E)
Vewey (1935) 110 + ox i-l ezXp(#E)

Mott and Cabrera (1947) 113 + me/ox E- onst. i -to exp(PE)
1/4-a -b InWs

Vermilyes and Vetter (1955) 176 + ox E. Atlid i-i, ep(E)
dd/d-Ag exp(AE)

Cohen and Sato (1964) 114 du-A +8 in(t+te)
Couective plac exchange

Peibler and Sato (1964) 179 - Mel E-eonst. d-A+D In(+to)
W-f(d)

Macdonald e al. (1981, 1991) 107 +4, - o E ornst. Point defect model
e, h* me/ox No f(dU)

ac /el

Table 1-1. Comparison of kinetic models of anodic oxide growth [21].

1.3 Porous Anodic Aluminum Oxide Film

1.3.1 Nanostructure and Anodization Parameters

Porous anodic aluminum oxide is formed in

promote dissolution of the oxide with application

(potentiostatic mode) or a constant anodic current

mildly acidic solutions which

of a constant anodic voltage

density (galvanostatic mode).



Typically, anodic voltages in the range of 10 ~ 200 V or current densities of 0.1 ~ 100

mA/cm 2 are used. Fig. 1-3 illustrates the structure of a porous alumina film. Porous

alumina consists of vertically aligned cellular and cylindrical pores with diameters of the

order of 10 ~ 300 nm and with, in principle, indefinite thickness. A scallop-shaped

barrier layer at the base of the pores separates the porous layer and the Al substrate [5].

Por e Cell

Figure 1-3. Schematic of ideal porous structure of anodic alumina [45].

While the thickness of porous alumina is controlled coulombically, the structure

of porous AAO largely depends on the anodic potential (or formation voltage in the case

of constant current mode) [1, 12]. Pore spacing, pore diameter, and thickness of the

barrier layer at the pore base are linearly proportional to the anodic voltage and

independent of the electrolytes used. For example, O'Sullivan and Woods showed that

anodic voltage to barrier-layer thickness ratios, pore spacing, and pore diameter were



1.04, 2.77, and 1.29 nmV-' in the range of 80 ~ 120V in phosphoric acid [12]. Fig. 1-4

summarizes structural parameters for porous alumina as a function of anodic voltage in

various electrolytes. More subtle dependencies of the structural features of porous

alumina on other anodic conditions (pH, temperature, etc.) can be found in Dr.

Krishnan's Ph.D. dissertation [23].

a) b)

* _________

Figure 1-4. Linear dependence of (a) the pore diameter and (b) the pore spacing on the

anodic voltage [12].

Since kinetics of anodization is governed by the high field conduction equation or

the G-B equation, the ratio of the thickness of the barrier layer to the anodic voltage is an

important parameter for understanding anodization kinetics and is called the anodizing

ratio with units nmV-1 [1]. Indeed, the anodizing ratio represents the reciprocal of the

electric field across the barrier oxide (E = V./d) and, therefore, represents the anodic

current or growth rate of the oxide given by Eq. (13). According to Eq. (13), the smaller

the anodic ratio is, the faster porous alumina grows. For films formed in 0.4 M



phosphoric acid, the anodizing ratio decreases from 1.14 to 1.04 as the electrolyte

temperature increases from 20 to 30'C at a constant voltage, and therefore the growth rate

also increases with temperature [12]. In general, the anodizing ratio decreases as the

aggressiveness of common electrolytes for porous oxide formation increase, and as a

result, the growth rate of porous oxide increases with the aggressiveness of the

electrolytes [1, 121. The aggressiveness of electrolytes can increase by increasing the

concentration of acids and temperature or by changing types of acids. For example,

sulfuric acid is more aggressive than phosphoric acid and the resulting porous film has

anodizing ratios of about 1 nmV-1 and 1.14 nmV1 , respectively, so that porous films in

sulfuric acid solutions grow much faster at a given anodic voltage [12]. These

characteristics are believed to arise from the coupled interplay of film formation and

dissolution under the field, which will be discussed in the following chapter. In this

regard, it is worth noting that the anodizing ratio of a planar barrier type oxide, which is

formed in an electrolyte that does not dissolve Al20 3, is about 1.4 nmV-, larger than that

of porous type oxides [1].

For complete understanding of the kinetics of porous alumina formation,

however, quantitative analysis of the electric field distribution across the scalloped barrier

layer of porous oxide must be provided. Surprisingly, it was not until 1992 that Parkhutik

and Shershulsky calculated the electric field at both the m/o and o/e interfaces using the

Poisson Equation, assuming the geometry of the barrier layer as a concentric hemisphere

[24]. More recently, Houser and Hebert studied numerical simulation of the E-field and



potential distribution in porous oxide during steady-stage growth using the Poisson

Equation with and without consideration of space charge, as shown in Fig. 1-5 [25].

a)
1o0

1%

b)

1-5. Potential distribution in the anodic oxide (a)

A constant voltage of 100V is applied [25].

with and (b) without space

1.3.2 Current Transient and Pore Formation Stages

The structural evolution of pore formation can be monitored through the anodic

current density in a constant voltage mode (or the formation voltage in constant current

mode) [24, 26]. Fig. 1-6 (a) and (b) shows a schematic diagram of the anodic voltage and

the anodic current transient, respectively, for anodization in mildly acid solutions [24].

Also shown are pore formation stages. In the galvanostatic mode, a constant current-

density mode, (Fig. 1-6 (a)), the initial increase in the formation voltage represents

gradual growth of the barrier type oxide, governed by the G-E equation (stage I). In

50 V

76 V
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phenomenological terms, the resistance of the oxide is increasing at a constant rate due to

thickening of the oxide. At stage II, embryonic pore structures develop at the o/e

interface. Fig. 1-6 (c) shows a TEM image of the pore structure at stage II [26]. The stage

II is also associated with the on-set of pore formation and Krishanan pointed out that the

electrical charge passed through the oxide is constant regardless of anodization condition

until the on-set of pore formation [23]. He also suggested that it could be related to the

mechanism of pore initiation caused by generation of a critical tensile stress during

anodization. Further anodizing results in a non-uniform E-field distribution across the

oxide and therefore leads to well-developed pore structures with a scalloped barrier layer

at the m/o interface (stage III). The formation voltage gradually decreases due to the drop

in overall resistance due to the increase in the Al/oxide interfacial area. Finally, a steady-

state pore structure is formed (stage IV). Evolution of a pore structure in a potentiostatic

mode can be similarly explained. However, it must be noted that the barrier layer growth

and pore initiation at the on-set of pore formation are not well-defined in potentiostatic-

mode growth. To the best of the author's knowledge, details of pore evolution during

stage I and II have not been investigated in potentiostatic mode, partially due to rapid

evolution of the structure (typically < 30 s).
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Figure 1-6. Schematic of the voltage and current transient in (a) galvanostatic and (b)

potentiostatic modes [24]. The stages of porous structure evolution are also shown. (c)

TEM image of the stage II [26].



1.4 Pore Formation Mechanisms

1.4.1 Field-Assisted Dissolution Model

Formation of porous AAO by anodizing Al in acidic electrolytes has distinctive

features that contrast with formation of planar barrier-type oxides, which shed light on

the mechanisms of pore formation [1, 121. First, in the potentiostatic mode, or with

application of a constant anodic voltage, porous alumina can grow indefinitely, while a

barrier-type oxide stops growing with self-limiting manner as thickening of the oxide

decreases the E-field across the oxide, as governed by the G-B equation. Second, the

coating ratio or the current efficiency, that is the ratio of the weight of oxide formed to

the weight of the aluminum consumed, for the formation of porous alumina is less than

100%. For example, the current efficiency for film growth in 0.4 M phosphoric acid with

an anodizing current density of 5 mA/cm 2 at 293K is 62% [13]. In addition, as discussed

above, the anodizing ratio of the barrier layer of a porous oxide, ~ 1.2 nmV1 , is smaller

than that of the barrier-type oxide, ~ 1.4 nmV'. These features imply that during porous

growth a dynamic equilibrium is established between film formation by oxidation at the

metal/oxide (m/o) interface and film dissolution at the oxide/electrolyte (o/e) interface.

The chemical dissolution rate of the oxide, represented in Eq. (4), is, however, several

orders of magnitude smaller than the formation rate at steady state. For instance, Hunter

and Fowle estimated that dynamic equilibrium for anodizing at 0.2 mA/cm2 in sulfuric

acid at 21"C would require 53% acid boiling at 124*C at the pore bases to maintain

dissolution at the required rate [27]. Local Joule heating at the base of pores was also



suggested for elevated dissolution rates of the oxide but the rise in temperature is less

than 10*C [12].

The field-assisted dissolution model was first proposed by Hoar and Mott in 1959

[11]. In this model it is assumed that the dissolution rate of A120 3 is greatly enhanced in

presence of an E-field. As shown in Fig. 1-7 (a), the strength of the E-field is greatly

increased at the pore bottom, P, due to the geometry, and therefore, the dissolution rate of

the oxide is also increased at the pore base and the dynamic equilibrium between

dissolution and oxidation can be establish. In detail, Hoar and Mott suggested that A12 0 3

at the o/e interface at the point P in Fig. 1-7 (a) is spontaneously decomposed to Al3 and

02- ions in contact with acids and the 02 ions becomes OH~ with reaction with H' in the

acid and transport to the m/o interface due to the high E-field to form new oxide at the

m/o interface, while A13+ ions goes into the solution. Since the oxide ions from point P

are spread over a large area MN at the m/o interface, they suggested that the barrier oxide

becomes thinner, that is dissolution of the oxide in net reaction is higher, based on

volume conservation of oxygen in the oxide. The model, however, had not been widely

accepted until O'Sullivan and Wood suggested a detailed physical mechanism for the

electrochemical dissolution reaction in 1970 [1, 12, 28].

The seminal work by O'Sullivan and Wood has constituted a cornerstone for

understanding the mechanisms of pore formation in Al and other metal oxide [12]. First,

they suggested that the origin of oxygen ions in the oxide is mostly from water, which

was later confirmed by 016 and 018 nuclear microanalysis, through hydrogen bond

interaction between adsorbed water molecules and acid anions at the o/e interface [28,



29]. Second, they provided a physical origin for the field-assisted dissolution, as shown in

Fig. 1-7 (b). They considered that the rate-limiting step for dissolution of the oxide is the

interfacial reaction of breaking Al-O bonds in the Al lattice at the o/e interface. While

hydrogen bonding in the solution can weaken the Al-O bonds, they further argued that

application of a field across the oxide stretches the Al-O bond in the direction of the E-

field from its equilibrium position, which can lower the effective activation energy for the

dissolution, and, thus, greatly enhance the oxide dissolution rate. Since the E-field is

focused in the pore bottom, the dissolution rate is greatest at the pore bottom and a

dynamic equilibrium can be established.

Despite enormous amounts of experimental efforts on fabrication of anodic

oxides, a very limited amount of work has been done on theoretical modeling of porous

oxide formation [24, 30, 31]. By calculating the electric field distribution in the oxide

using the Laplace equation and assuming the field-assisted dissolution of the oxide at the

o/e interface as a rate-determining step during Al anodization, Parkhutik and Shershulsky

were first to present an analytical expression providing a relationship between the pore

structure and the electric field in the oxide with anodizing parameters, with successful

demonstration of the linear dependence of pore spacing on the anodic voltage in a steady-

state [24]. Thamida and Chang later modified Parkhutik's model using a linear and

weakly non-linear stability analysis and predicted the critical electrolyte pH (< 1.77) for

pore formation [30]. Additionally, Singh et al. performed a similar analysis but included

the effects of stress on the dissolution rate of the oxide, arising from the Laplace pressure

at the curved interfaces due to surface energy and volume expansion associated with



aluminum oxidation at the m/o interface [31]. Moreover, by incorporating of the effect of

elastic stress from volume expansion, the Singh model allows prediction of the formation

of self-ordered porous AAO.
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Figure 1-7. Schematics of field-assisted dissolution mechanism (a) by Mott and Hoar

[11] and (b) O'Sullivan and Wood [12].

Unfortunately, Friedman et al. systemically showed that none of the theoretical

models are consistent with experimental results [32]. While the models predicted a linear
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relationship between pore spacing and the anodic voltage, they showed that the models

do not fit the experimental data. More importantly, the predicted behaviors (pore spacing

and pore diameter) as a function of pH from the models show large discrepancy with the

experimental results.

This discrepancy originates from the fact that there is very limited information on

the kinetics of the field-assisted dissolution of the oxide. Indeed, O'Sullivan and Wood

[12] stated that 'until it is possible to measure field-assisted dissolution rates on plane

surfaces as a function of the field, in the absence and presence of Joule heating, it does

not seem possible to calculate further the interplay of film formation and film dissolution

at the pore bases.' Diggle et al. measured the time required for re-establishment of a

steady-state observed in capacitance-voltage curves for porous oxide growth by suddenly

lowering the anodic voltage from 10 and 15V to 5 V in sulfuric acid, and indirectly

observed an enhanced dissolution rate of the oxide without growth of the oxide [331.

However, to best knowledge of the author, the field enhanced dissolution rate of the oxide

has never been determined on planar surfaces as a function of the field, in isolation.

1.4.2 Al' Direct Ejection Model

While porosity of typical anodic films formed in an acid solution is 10 ~ 20%, the

current efficiency at the same anodic conditions is about 60%. This implies that an

additional oxide dissolution process takes places during anodization. Cherki and Siejka

showed that the growing oxide layer is formed only at the m/o interface by oxygen ion

transport, using an 018 nuclear isotope experiment [28]. They proposed that the lower



current efficiency originates from direct dissolution of aluminum cations into the

solutions. They also determined from the nuclear isotope study that the anodic oxide

grows only at the m/o interface by 02 transport.

Later, Siejka and Ortega observed that enhanced oxygen ion loss at the pore base

into the solutions does not occur during pore initiation, from an 018 nuclear isotope

experiment, which is contradictory to the field-assisted dissolution model [29]. They

argued that pore formation consists of an oxide decomposition process involving only

cation transfer into solutions. Therefore, reactions (10) and (12) occur and the overall

reaction becomes

Alm = Al + 3e-. (14)

This overall reaction is called Al3 direct ejection [17, 26]. It must be noted that while the

direct ejection of Al ions model is not directly related to pore formation, it is generally

believed as a necessary condition for porous oxide formation [17, 34]. In other word, any

initiated pores would be healed without the Al3 direct ejection mechanism due to

preferential formation of A12 0 3 at the o/e interface because of the high E-field at the

initiated pore bases.

1.4.3 Field-Assisted Plastic Flow Model

Recently, the Manchester group led by Prof. G. E. Thompson rejected the field-

assisted dissolution model and proposed a field-assisted plastic flow model for pore

formation in a steady-state [35]. In this model, they suggested that steady-state growth of

pores is maintained by plastic flow of the film under growth stresses during anodization



in acidic electrolytes. To confirm their theory, they performed a tungsten tracer study to

visualize details of mass transport in the porous oxide films, using transmission electron

microscopy (TEM) [13, 36]. As shown in Fig. 1-8 (a), they introduced a thin layer of

tungsten tracer in the middle of an Al substrate and anodized the substrate. The W tracer

entered the oxide in the form of W0 3 as anodization was continued. Tungsten was chosen

as a tracer because of its high atomic mass, which facilitates observation in TEM, and

slow cation mobility (- 0.3 times of A13* mobility). From the distribution of the W tracer

in the scalloped barrier layer, they argued that the mechanisms of pore formation could

be determined as illustrated in Fig. 1-8 (b). If pores are formed by field-assisted

dissolution of the oxide, tungsten tracer at the pore base should lie ahead of the tungsten

at the cell boundary, due to outward migration of the ions driven by the concentrated E-

field at the pore base [37].

TEM images of the porous film formed in phosphoric acid shows an inverted

distribution, contrary to expectations based on the field-assisted dissolution model, as

depicted in Fig. 1-8 (c) [13]. From the distortion of the tracer distribution in the porous

film, they concluded that the pores are created mainly by flow of materials from the pore

bases to the cell walls in phosphoric acid. Fig. 1-8 (d) illustrates motion of the oxide flow

during anodization. Through a series of W tracer studies in various electrolytes,

Thompson et al also concluded that steady state growth of pores proceeds by plastic flow

of the oxide in sulfuric acid [38], and by field-assisted dissolution of the oxide in chromic

acid [39] and in alkaline solutions [37].
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Figure 1-8. TEM images of aluminum with a W tracer (a) before and (c) after

anodization in 0.4 M phosphoric acid at 5 mA/cm 2 [13]. Proposed distribution of the W

tracer by (b) field-assisted dissolution mechanism [37] and by (d) plastic flow mechanism

[35].

Computational modeling of the plastic flow model by Houser and Hebert [40]

soon followed. In the model, they assumed that the volume of the porous AAO is not lost

in a steady-state and that the oxide behaves as a Newtonian fluid, following a viscous

creep model, under anodization conditions. They then enforced uniform interface motion

at the m/o and o/e interface from the geometry of the steady-state pore structure. From



those assumptions (volume conservation, room temperature viscous flow and uniform

interface motion of the oxide), they successfully matched simulated W tracer motion to

the experimental results by the Manchester group. However, it must be noted that they

did not include stress as a driving force for migration and they also did not include the

impact of the volume expansion stress at the Al/A120 3 interface on the flow of the oxide.

Instead, they concluded that the oxide flow arises at the o/e interface at the pore base due

to compressive stress and they also suggested that the compressive stress originates from

competition of strong anion adsorption with deposition of oxygen.

However, a close examination of the boundary conditions used in the model

reveals that the origin of the oxide flow is, in fact, volume expansion due to Al oxidation

at the o/e interface. For example, the boundary condition at the o/e interface was given by

v,-n=( 2 i+JVoJ+v)-n, (15)
2F

where vi is the uniform interface velocity, rq is the current efficiency, F is the Faraday

constant, i is the anodic current density, Vo is the molar volume of 0- ions in alumina,

Jo is the 02. transport flux, and v is the creep velocity, respectively. Note that Vo is, in

fact, the molar volume of the alumina since the volume of 02- consists 98.6% of volume

of alumina. According to Houser and Hebert, the first term on the right is the deposition

rate of 02 ions and the second and third terms represent 02- migration flux and the

volume flow, respectively. The boundary condition at the m/o interface, on the other

hand, was given by

vi -n = M i' n = (Vo JO + v)' n. (16)
3F



Here, Om is the molar volume of Al metal. By comparing Eq. (15) and (16), it becomes

obvious that new volume of alumina is generating at the o/e interface by so-called 02

deposition from water electrolysis. However, the boundary conditions are clearly

inconsistent with 018 isotope studies and do not satisfy the necessary conditions for pore

formation, which are described in earlier in this chapter.

The deposition of 02 at the o/e interface does not necessarily increase the volume

of alumina, depending on the type of charge carriers in the oxide. The most likely charge

carrier for 02 in anodic oxide is thought to be oxygen ion vacancies [20]. In this case, the

volume of the oxide is generated at the metal/oxide interface by creating oxygen

vacancies and no significant volume expansion is expected at the oxide/electrolyte

interface, because the 02 transferred to the o/e interface from water just occupies the

oxygen vacancy at the same interface. Therefore, the charge carrier in the anodic Al

oxide must be determined to provide a precise theoretical model for the field-assisted

plastic flow model.

It also must be noted that a tracer study alone can not verify the plastic flow of the

oxide nor can it disprove the field-assisted dissolution of the oxide. For example, the

Manchester group also conducted Nd and Hf tracer studies in phosphoric acid and found

that the distribution of the Nd and Hf tracer is the exactly the same as that of the W tracer

in the alkaline solution [41, 42]. According to Fig. 1-8 (b), such a distribution of a tracer

indicates that pore forms by field-assisted dissolution of the oxide. Instead, they

attributed this unexpected distribution of the Nd and Hf tracer to the dissolution of the

tracer to the phosphoric acid by fast cation migration through the oxide, still arguing that



porosity forms by the plastic flow of the oxide based on the W tracer study. However,

this result indicates that only W tracers in specific electrolytes show evidence of oxide

flow. Therefore, supportive experimental evidence other than W tracer studies is

required to verify the oxide flow model and to determine whether field-assisted

dissolution of the oxide occurs during anodization.

1.4.4 Pore Initiation Mechanisms

It is well-known that pores are initiated by roughening of the o/e interface during

anodization, as shown in Fig. 1-6 [17, 26]. At valleys of the o/e interface, the E-field is

concentrated, and pores can grow either by field-assisted dissolution or by field-assisted

plastic flow of the oxide. However, very few studies have been conducted on what causes

the initial roughening of the o/e interface to form a periodic pattern [17, 23, 26]. For

example, Krishnan proposed that tensile stress from Al vacancy formation causes the

initial roughening at the Al/oxide interface due to a strain-induced instability, which is,

however, inconsistent with previous experimental observations [23]. On the other hand,

Raja et al. also proposed a strain-induced instability at the o/e interface to explain pore

formation in anodic TiO2 [43]. However, they did not provide any supportive evidence.

Therefore, more systematic study is required to understand the pore initiation mechanism

at the o/e interface.

1.5 Ordered Anodic Aluminum Oxide Films

1.5.1 Self-Ordering Anodization Conditions



Mild and Hard Anodization

While the structure of porous AAO has been modeled as a hexagonally close

packed cellular structure since its first SEM observation, it was only after about 50 years

that Masuda and Fukuda first discovered in 1995 that pores self-organized into the ideal

honeycomb structure at the Al/AAO interface, but only after prolonged anodization (-

160 hrs) in 0.3 M oxalic acid at 00C with application of a constant voltage of 40V [6]. In

the work of Masuda and Fukuda, domains of hexagonally closed-packed pores form with

a pore spacing, D, of about 100 nm. Soon after this discovery, other anodization

conditions that lead to formation of self-ordered porous structures with various D, have

been extensively sought [44-47]. As a result, anodization conditions for self-ordered

AAO with D, = 50, 65, 100, 420, and 500 nm have been found after anodizing Al foil for

extended anodization time, typically > 10 hrs, in sulfuric acid at V. = 19 and 25V, in

oxalic acid at Va = 40V, and in phosphoric acid at Van = 160 and 195V, respectively.

These conditions have been called self-ordering anodization regime in mild anodization

conditions.

Recently, new anodization conditions that lead to self-ordering in AAO with D,

from 90 ~ 140 nm and 220 ~ 300 nm were discovered [48-52]. These anodization

conditions were called high-field anodization by Chu et al. and One et al., or hard

anodization by Lee et al. Fig. 1-9 summarizes self-ordering voltages and corresponding

values of D, in the mild and hard anodization conditions. Hard anodization usually

involves very high current densities, typically > 100 mA/cm 2, and results in very fast

growth rates,> 50 [tm/hr. However, it suffers from extensive heat generation and fracture



of the oxide, which prevents stable anodization and ideal ordering of pores. To avoid

such side effects, aging of electrolytes or pre-treatment of the Al by forming a pre-oxide

layer of ~ 400 nm is required. For example, Chu et al reported that formation of domains

of self-ordered pores with D, = 90 ~ 140 nm, using aged sulfuric acid at 40 ~ 70V [48].

Interestingly, when the anodic voltage is further increased to V. = 70V, A120 3 nanotubes

form instead of porous A12 0 3 . Lee et al. systemized stable hard anodization using the pre-

anodizing technique and demonstrated self-ordering of pores with D, = 220 ~ 300 nm

with application of a constant voltage from 120 ~ 150 V using 0.3M oxalic acid at 1"C

[49]. Similarly, the self-anodization conditions in other electrolytes, such as citiric,

malonic, and tartaric acid were also found using hard anodization [51-53]. It should be

noted that the proportionality factor , in hard anodization is about 2.0 nm/V while 'jnl in

mild anodization is about 2.5 nm/V. In addition, DS increases as the current density drops

for an initial 30 min at 140V, indicating the anodizing current density is also an important

parameter for obtaining self-ordered pores in hard anodization [49]. Interestingly,

Schwirn et al. discovered spontaneous modulation of pore diameters at V. = 27 ~ 32V

during an H2S0 4 hard anodization process [54].

Recent advances in anodization of Al using high anodic voltage/high electric field

have allowed exploitation of self-ordered nanoporous AAO using unconventional

electrolytes, namely acidic organic electrolytes [55-57]. Notably, Li et al. used mixtures

of ethanol and various acids (phosphoric, oxalic, sulfuric acid) in water as electrolytes to

increase the anodic current density but maintain V. at the self-ordering conditions, i.e.

195V in phosphoric acid [56, 57]. As result, they achieved self-ordered AAO with a



growth rate of 240 ~ 600 Rm/hr. They also found that the D, is dependent not only of the

anodic voltage but also of the anodic current density.
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Figure 1-9. Summary of self-ordering voltages and the D, in various anodization

conditions [49].

Self-Ordering under Galvanostatic Conditions

It is widely believed that self-ordering of pores occurs only in potentiostatic mode

(constant voltage), since the pore spacing is directly dependent on the anodic voltage.

Recently, however, Zhao et al. demonstrated that self-ordered porous AAO can be

formed under galvanostatic conditions of 160 mA/cm2 using mixture of H2 SO 4 and

Al2(SO 4)3 as a electrolyte at 1"C [58]. In addition, they also showed that additional pores

can be opened at the triple cell junctions of the hexagonally closed packed pores after

treatment of the AAO in HCl/CuCl2 solutions, as shown in Figure 1-10 (a). Lee et al. also

.. ........... ........ .... ...... ........................ ..... ... .. ....... . . . . ............... . ............... . ....
.. ..........



showed self-ordering of pores using concentrated sulfuric acid [59]. By switching to a

constant voltage mode after establishment of pore ordering in the galvanostatic mode,

they further showed that domains with two different Ds, 120 and 160 nm, co-exist, as

illustrated in Fig. 1-10 (b). However, process parameters and mechanisms leading to the

pore ordering under galvanostatic conditions are not well-established in detail.

Domain Structures

The self-ordered porous AAO forms multi-domains of hexagonally closed packed

pore arrays with different in-plane orientations. One of the most important parameter that

controls the domain size of the self-ordered porous AAO is the quantity of the reacted Al

or the formed A12 0 3 , not the anodization time, in the self-ordering anodization regime.

The anodization time for self-ordering at the metal/oxide interface can be reduced by

increasing the rate of the AAO formation through increasing the concentration of the

electrolytes or temperature. For example, Masuda himself reduced the anodization time

from 160 h to 10 h by increasing temperature from 0 to 17"C to increase the growth rate

of the AAO in 0.3 M oxalic acid at 40V [6, 60]. Li et al. quantitatively showed that the

domain size of the self-ordered AAO linearly increases as a function of the anodization

time and temperature. For example, domains of area ~1 Im 2 can be achieved after 1 h at

150C while 4 h is required at 0"C in 0.3M oxalic acid at 40V [61]. On the other hand,

Nielsch et al. showed that there appears to be an optimum anodization time to achieve a

maximum domain area; the domain size increased to about 17 m2 until 24 h, then the

size of the domains decreased for further anodization in anodization condition for AAO

with D, = 500 nm, i.e., 1% phosphoric acid at 195V [62]. However, effects of varied



anodization conditions, such as electrolyte concentration and temperature, on domain

structures as a function of time are still uninvestigated.

Figure 1-10. (a) SEM image of AAO with small pores at the cell junction [58]. Scale bar

= 100 nm. (b) TEM image of AAO with domains with different D, [59]. Scale bar = 1

itm.



1.5.2 Highly Ordered Anodic Aluminum Oxide

Two-step Anodization Process

As described earlier, domains of self-ordered pores only form at the m/o interface

as AAO grows after prolonged anodization times in specific self-ordering anodization

regimes. However, the pores at the top surface of AAO remain disordered, indicating that

many pores at the top surface do not run through to the bottom surface. In order to

fabricate ordered AAO with straight pores, Masuda demonstrated a two-step anodization

process [60]. In the two-step anodization process, anodization is first carried for a long

time to form ordered arrays of pores at the m/o interface, and then the AAO is selectively

removed. As a result, the Al surface has ordered dimples, a replica of the ordered pores at

the bottom of the removed porous alumina. This Al nano-pattern then guides the

initiation of pore formation in a second anodization which is usually carried out under the

same conditions as the first anodization. Using this technique, Masuda was able to

fabricate thin, ordered AAO membranes for shadow mask deposition of Au dots. The

two-step anodization process has subsequently become a standard procedure for creation

of locally ordered AAO scaffolds.

Lithographically Guided Anodization Process - Templated Porous AAO

When bi-periodic dimples are patterned on an Al surface using nano-lithographic

techniques, monodomain ordered AAO can be created by anodizing the pre-patterned Al

with application of a constant anodization voltage from which the expected pore spacing

matches to the period of the dimples, i.e. V. ~ D,/' . Like the two-step anodization

process, the dimples on the Al surface guide the initiation of pore formation and the



process is called templated anodization. The templated anodization process does not

require a thick Al foil for self-ordering of pores, which is vital in the two-step anodization

process, and therefore, can be used to form ordered AAO from thin films of Al on a

substrate.

Masuda et al. first demonstrated fabrication of monodomains of ideally ordered

porous AAO by creating hexagonally ordered dimples on Al by nano-imprint lithography

before anodization [63]. Fig. 1-11 (a) and (b) show a schematic of the two-step and

templated anodization processes. With advances in nanotechnology, various lithography

technologies have been used to pattern bi-periodic dimples on Al surfaces. For instance,

various nano-lithographic technique, including nano-imprint lithography using different

masters [64-66], e-beam lithography [67], interference lithography [68-70], and block-

copolymer lithography [71], have been used to create periodic dimples on Al surfaces.

Templated anodization has unique features in porous AAO formations.

Monodomain ordered AAO can be achieved with a wider range of pore spacings and with

pore geometries other than hexagonally closed packed. For example, Choi et al.

fabricated ordered AAO with moire patterns by anodizing Al substrates with moire

patterns and by nano-indenting the Al surface twice by rotating a master with a hexagonal

pattern [72]. Asoh et al. [73] and Masuda et al. [74] demonstrated fabrication of an

ordered AAO with square cells by anodizing Al surface-patterned with a SiC mold with

square symmetry. Krishnan et al. fabricated ordered AAO with hexagonal and square

symmetries [70]. They further demonstrated that templated anodization allows



independent control of pore diameter and pore spacing using mild and hard anodization,

as shown in Fig. 1-12.
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Figure 1-11. Schematic of (a) the two-step anodization process [60] and (b) templated

anodization processes [63].

Structural Engineering of Ordered AAO

Independent control of pore spacing and pore diameter also enables modification of

the pore structure of the templated AAO [49, 70]. For example, Krishnan and Thompson

fabricated ordered AAO with modulated pore diameter by switching the electrolyte for

mild anodization (H3 P0 4) from that for hard anodization (oxalic acid) [70]. Similar pore

structures can also be fabricated by changing the anodic voltage in a fixed electrolyte. In

a)



this case, the fabrication process can be automated. Lee et al. demonstrated the use of

pulse anodization to fabricate AAO with modulated pore diameters, without changing

electrolytes [75]. Fig. 1-13 shows a schematic for the pulse anodization process as well as

fabricated pore structures. Losic et al. also used a similar technique, i.e., cyclic

modulation of the anodic voltage, to form modulated porous structures [76].

Figure 1-12. SEM images of templated AAO arrays with (a) hexagonal, and (b) and (c)

square symmetry. Pore diameter is ~ 80 nm in (a) and (b), and ~ 30 in (c), respectively.

The scale bars in the inset are 200 nm [70].
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Figure 1-13. (a) Schematic of pulse anodization process. (b) TEM image of AAO with

modulated pore diameter [75].

15.3 Thin Film AAO and Barrier Perforation

Thin-Films of highly ordered AAO can be formed on a substrate to serve as a

scaffold for growth of low-dimensional materials, such as nanowires and nanotubes. To

incorporate low-dimensional nanomaterials into devices on a substrate, electrical contact

should be made at both the top and bottom of the porous AAO. However, the bottom of

the as-anodized AAO is electrically isolated from the substrate by an aluminum oxide

barrier layer, as discussed earlier in this chapter. An additional process is required to

remove the barrier layer and to expose the substrate surface at the pore bottom. Typically,

the barrier layer is removed using a chemical etching process with phosphoric acid and

results in a significant widening of the pores that makes it difficult to provide scaffolds

for small-diameter 1-D nanomaterials [77, 78]. So far, few techniques have been

proposed for selective removal the barrier layer but their use is limited by the need for

specific anodization conditions or specific choices of a substrates [79, 80]. Therefore, a



new process for selective perforation of the barrier layer is required for use over a wide

range of anodization conditions and on various substrates.

1.5.4 Horizontal Porous Aluminum Oxide

Thin film horizontal AAO scaffolds have also been fabricated on substrates [81-

84]. Masuda et al. were first to propose a side anodization process to fabricate mono- and

double layers of horizontal pores in AAO with D, - 200 nm, by anodizing vertical Al

sidewalls of 200 and 400 nm thickness, prepared by cleaving A1203/Al/glass structures, as

shown in Fig. 1-14 [81].
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Figure 1-14. Schematic of a side anodization process for fabrication of a horizontal

AAO array on a substrate [81].



Recently, Cojocaru et al. also fabricated horizontal AAOs with multilayers of

pores with D, < 50 nm on SiO 2 substrates [82]. In previous reports, however, anodization

to form lateral pores has been performed only for very short times (5~10 min), resulting

in lateral pores with low aspect ratios (<10:1) and poor ordering. Therefore, to achieve

highly ordered lateral pore arrays, horizontal anodization for extended times under self-

ordering anodization conditions is required.

1. 6 Thesis Objectives

The objective of this thesis is to provide a quantitative understanding of pore

formation mechanisms and self-ordering behavior in Al anodization. This includes

devising a new experimental procedure to separately reveal underlying physical

phenomena that govern the growth mechanisms.

I also explore pathways for utilization nanostructured AAO films for assembly of

ordered arrays of low-dimensional materials with controlled diameter, spacing, and

orientation on a desirable substrate. For the controlled synthesis of low-dimensional

materials, it is required that a process that allows perforation of the insulating barrier

oxide without modifying the porous structure of as-grown AAO films be developed for

use on any substrate. In order to control of the orientation of pores, we also investigate a

side anodization processes to fabricate horizontal porous AAO thin films on a substrate.



1.7 Thesis Outline

In chapter 2, we report a mechanistic study of pore formation during Al

anodization. We exploit a new anodization process, called discontinuous anodization, to

decouple interface motion at the m/o and o/e interfaces as a function of the E-field. From

discontinuous anodization, we show that field-assisted dissolution models are consistent

with the observed dependence of the A1203 dissolution rate on the electric field, as well as

the existence of a critical field for pore initiation. However, we further show that the

well-known ordered porous structure that as been widely studied is the result of a strain-

induced instability with forced plastic deformation and flow of the oxide during further

anodization. We also show that mechanical confinement of anodizing Al results in a

dendritic pore structure. Through interpretation of these results, we develop a generalized

mechanism for ordered pore formation in AAO, in analogy with cellular growth during

solidification.

In chapter 3, we report abnormal behavior in anodic oxidation of Al in

mechanically confined structures used for formation of horizontal anodic alumina oxide,

H-AAO. We show that side anodization for H-AAO results in formation of periodic

dendrite inner pore structures and a reduction of the growth rate. I demonstrate that these

anomalies associated with H-AAO originate from suppressed volume expansion and

plastic flow of the A120 3 confined by the SiO 2 hard mask. I further present a new

anodization conditions that lead to zero volume expansion avoid dendritic H-AAO and

kinetic retardation.



In chapter 4, I report development of a selective barrier perforation process based

on anodization of Al/W bilayer films on substrates. We show that W0 3 forms and

penetrates the barrier layer of AAO. Based on thermodynamic calculation of the

solubility of A1203 and WO3 in water, I successfully remove penetrated WO3 and exposed

the metallic W surface at the base of the pores, without changing the as-anodized pore

structure. Application of this technique was demonstrated, used with templated pore

formation, by creation of Ni nano-electrode arrays with fixed electrode spacings but

varied electrode diameters.

In chapter 5, I report a W interlayer process for fabrication of a through-pore

AAO scaffold on any substrate (AS). I demonstrate fabrication of through-pore AAOs on

a variety of substrates for various anodization conditions, without changing the pore

diameter. This is done through determination of the thickness of the W interlayer in the

Al/W/AS tri-layer that will allow complete removal of W metal (through oxidation and

selective removal) at the bottom of the pores. With this W interlayer process, I fabricated

vertically aligned free-standing Au and Pt nanowires with diameters ranging from about

12 nm to about 120 nm using electrodeposition on an Au substrate.

Finally, chapter 6 contains a summary of the results of the previous chapters. This

chapter also includes suggestions for future research.
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Chapter 2. Pore Formation During Aluminum Anodization;

the Interaction of Two Instabilities

2.1 Introduction

Porous anodic aluminum oxide (AAO) is created through electrochemical

oxidation in an acidic electrolyte which dissolves A12 0 3 at the same time new A12 0 3 is

formed. In the steady-state, the thickening of porous layers occurs at a constant rate,

while the thickness of the continuous A120 3 layer at the bottom of the pores, the barrier

layer, remains constant. This implies that a dynamic equilibrium between film formation

by oxidation at the metal/oxide (m/o) interface and film dissolution at the

oxide/electrolyte (o/e) interface develops [1-3]. This occurs when the field across the

oxide is 8.33 to 12.5 MV/cm. However, the chemical dissolution rate of the oxide is, in

fact, several orders of magnitude smaller than the formation rate in the steady state [4]. A

field-assisted dissolution model was suggested to explain steady-state anodization

kinetics, by arguing that the dissolution rate of A12 0 3 increases in the presence of a high

external electric field (E-field) at the tips of pores [1,2]. The porous structures can

therefore achieve a steady state when the field-enhanced dissolution at the base of the

pores balances the oxide formation rate. Moreover, pores are thought to first form at local

points, e.g. associated with defects and non-uniform oxide thickness, where the E-field is

concentrated [5]. However, the effect of the electric field on the oxide dissolution rate has

not been measured due to the nature of the dynamic equilibria and the non-uniform E-

field distribution at pore tips.



In addition to the field-assisted dissolution of the oxide at high external electric

field, it has also been shown that A13* ions are directly ejected into the acidic electrolyte,

without deposition of oxide at the o/e interface [6, 7]. This process is called as field-

assisted ejection of A13, ions and is thought to be a necessary condition for the formation

of porous aluminum oxide, otherwise roughened surfaces associated with the initiation of

pore formation at the o/e interface will be flattened by preferential thickening at the pore

tip due to oxidation from mobile A13* ions at the o/e interface [8].

In this chapter, we investigate pore formation mechanisms by decoupling kinetic

and morphological interactions between the m/o and o/e interfaces during Al anodization.

To measure the effect of an external E-field on the A120 3 dissolution rate, we developed a

discontinuous anodization process that allows decoupling of the dynamic equilibria

associated with the oxidation and dissolution reactions. As illustrated in Fig. 2-1, this was

done by first pre-forming an A120 3 barrier oxide layers with flat surfaces, and then

continuing anodization under conditions that lead to formation of porous AAO formation,

i.e. using 5 wt.% H3P0 4 as the electrolyte. Pre-forming of the A120 3 allows application of

an electric field that drives dissolution of the alumina without causing further oxidation

of the aluminium. The initial E-field, E., across the oxide is controlled by the thickness of

the pre-formed oxide, h., and the applied anodic voltage, V. (EO = V./ho).



Conventional anodization

Al Al

Discontinuous anodization

Al Al Al

Figure 2-1. Schematic illustration of the discontinuous anodization process. (top) In

conventional anodization processes, field-assisted dissolution of the oxide is hard to

characterize because of simultaneous growth and dissolution processes. (bottom) A

discontinuous anodization process was devised to measure the rate of oxide dissolution

due to an applied electric field and to determine morphological evolution of pore

formation. This involved pre-anodization under conditions that lead to an oxide of

uniform thickness with a flat surface, followed by anodization under conditions that are

known to lead to pore formation.

2.2 Experiments

Thin films of Al (500 ~ 600 nm) were deposited on thermally oxidized Si

substrates using e-beam evaporation. The base pressure was 1 x 10-6 Torr and the

thickness of the films was determined using a quartz crystal monitor. For formation of

A120 3 with flat surfaces, Al thin films were anodized in a solution of 0.5 M boric acid

(H3B0 3, Merck) and 0.05 M sodium borate (Na2B40 71OH 20, J. T. Baker) at various

current densities (0.15, 1.5, and 15 mA/cm 2) and at room temperature. The thickness of

the barrier oxide was controlled by controlling the reaction time by monitoring the anodic

"I "- -..........



voltage. The pre-formed barrier oxide was then transferred to 5 wt.% phosphoric acid.

Anodization in 5 wt.% phosphoric acid was conducted at a constant voltage, ranging

from 86V to 150V, and at room temperature. Changes in the thickness and morphology

of the barrier oxide were observed using scanning electron microscopy. In Fig. 2-9 (b),

thin films of SiO 2 with 500 nm thickness were deposited on the Al film using plasma-

enhanced chemical vapor deposition (PECVD) at 250'C to prevent anodization from the

top surface of the Al. SiO 2 gratings were patterned using photolithography and reactive

ion etching (RIE) in CF4. Photoresist (AZ1518, Shipley; 1.5[tm-thick) was deposited on

the SiO 2 capping layer was also used as a mask layer to prevent unwanted anodization of

Al from the top surface through pin-holes in the PECVD SiO 2. The exposed Al surface

where the SiO 2 mask was removed was anodized in 5 wt.% H3P0 4 at 86V and 3C.

2.3 Pore Formation Mechanisms; Field-induced and Strain-induced

Instabilities

Figures 2-2 (a) and (b) show SEM images of pre-formed A12 0 3 before and after

re-anodization in 5 wt.% H3P0 4 at RT and an anodic voltage of 86V. The initial E-field,

E., for the second anodization in 5 wt.% phosphoric acid was set significantly lower than

the anodic ratio of porous alumina, i.e. 1.12 nm/V. For example, the anodic ratio during

the second anodization becomes 1.86 nm/V (or 5.36 MV/cm in E-field). The E0 was then

too low to drive anions to react with Al through the barrier oxide. Figure 2-2 (b) clearly

shows that the thickness of the barrier oxide decreased to 131 nm from 160 nm after

anodization for 49 min in 5 wt.% H3P0 4 at 86V, while the thickness of the Al remained



unchanged. During the second anodization, the morphologies of the m/o and o/e

interfaces in Figure 2-2 (b) do not change, allowing calculation of the E-field across the

layer.

a) b)

A120 3

Al

Figure 2-2. Field-assisted dissolution of AAO. (a), (b), Cross-sectional SEM images of

A120 3 formed from an Al film on a Si substrate by anodizing in 0.5M boric acid and

0.05M sodium borate solution: (a) before and (b) after re-anodizing in 5 wt.% H3PO4

solution with electric field (Va=86V) turned-on for 49 min at room temperature. Scale

bar = 200 nm.

Figure 2-3 shows the dissolution rate for a fixed initial thickness and different

applied bias. Also shown is the dissolution rate at zero applied bias. The zero-bias results

show the result of purely chemical dissolution. When a bias is applied, the alumina

thickness decreases over time and the electric field increases. Initially, at high fields, the

dissolution is purely chemical, with a rate of 0.24 nm/min. However, as the field



increases there is a point at which the dissolution rate significantly increases. For

example, at E, = 5.36 MV/cm, while the dissolution rate is consistent with the chemical

dissolution for an initial 20 min, as the thickness of the A120 3 decreases, the E-field

across the barrier oxide increases and the dissolution rate begins to significantly increase,

to about 0.45 nm/min. When E0 is increased to 6.685 MV/cm in 5 wt.% H3PO4, the

dissolution rate of the A120 3 is about 17 times faster (4.08 nm/min) than the chemical

dissolution rate. It should be noted that during the measurement shown in Fig. 2-3, the

morphology of the pre-formed oxide and the thickness of the unreacted Al film did not

change.

170
-o- EO = 0 W/cm

165 e E+ =36 W/cm(86V)
160 A E, = 6.235 W/cm (100V)
155 -y- E0 = 6.685 W/cm (11V)
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. -1 T
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Time (min.)

Figure 2-3. Field-assisted dissolution of AAO. Changes in

formed A1203 layer lead to associated changes in the

dependent dissolution behavior in 5 wt.% H3 P0 4 solution.

the thickness of a planar pre-

subsequent field- and time-

.. .. .............. .. .........



The field effect illustrated in Fig. 2-3 sheds light on the dissolution mechanism.

Mott and Hoar suggested that dissolution of aluminum oxide in an acid electrolyte

proceeds by spontaneous decomposition of A120 3 at the o/e interface into A13+ and 02

ions leading to net dissolution with the dissolution rate determined by the rate of removal

of the 02- ions via field-enhanced diffusion through the oxide. In this case A120 3 forms at

the m/o interface and a dynamic equilibrium between dissolution and formation of the

alumina would be established [1]. However, the observed invariance of the Al film

thickness indicates that the E-field is too week to drive transport of the oxygen ions

though the oxide. Therefore, our results indicate that dissolution of A120 3 occurs through

the following reaction

Al 20 3 + 6H* -> 2A13+ + 3H20 (1)

at the o/e interface, through modification of the polarization of the Al-O bond [2]. It

should be noted that reaction (1) is chemical in nature and hence does not contribute to

the anodization current.

At sufficiently high E-field, the o/e interface becomes unstable with respect to

perturbations due to non-uniform dissolution. Fig. 2-4 (a) and (b) demonstrates incipient

pore formation after 5 minutes of anodization in 5 wt.% H3PO4 at 1 1OV. Invariance of the

Al film thickness and the m/o interface morphology confirms that the incipient pores are

developed by field-assisted dissolution so that pore formation occurs as a result of a field-

induced instability at the o/e interface. Pore growth due to a field-induced instability is

self-stabilized since the local E-field at the base of the pores increases the dissolution rate

of the oxide at the base, which results in further strengthening of the E-field. In turn, the



E-field becomes strong enough to drive diffusion of 02- ions to the m/o interface for

A120 3 growth. After 7 minutes of anodization, anodic oxidation of Al begins as the E-

field at the base of the pores further increases to 8.4 MV/cm (Fig. 2-4 (a)). As a result, the

total thickness of the A12 0 3 increased to 174 nm, thicker than the pre-formed A12 0 3 , and a

dynamic equilibrium is maintained. It should be noted, however, that the interpore

distance associated with the field-induced instability, 4, is only about 30 nm,

significantly smaller than the 275 nm expected from conventional anodization.

The dissolution rate, incipient pore formation, and anion transport through the

barrier oxide are governed by the E-field across the oxide [3]. Fig. 2-4 (c) shows changes

in the E-field at various anodic voltages. The E-field increased as the pre-formed barrier

oxide thinned via field-assisted dissolution at a constant voltage. After the initiation of

pore formation, i.e. after 5 min at 11OV, the barrier thickness rapidly decreased as the

pores developed, as shown in Fig. 2-4 (a), and a rapid increase of the E-field across the

barrier oxide results, reaching a steady-state value of 8.9 MV/cm. Interestingly, the E-

fields at which the incipient pores formed are consistently about 7.46 MV/cm, regardless

of the initial anodic voltage. Therefore, the transition E-field in Fig. 2-4 (c) is defined as

the critical E-field for initiation of pore formation, E*, associated with the field-assisted

dissolution mechanism. E* is 7.46 MV/cm in 5 wt.% phosphoric acid at room

temperature. The oxide only thins without a morphological change if E < E*, and pores

will form at the o/e interface if E > E*. It should be noted that E* is much smaller than

the E-field associated with steady state pore formation (8.9 MV/cm).
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Figure 2.4. Incipient pore formation due to field-assisted dissolution. a) Morphological

evolution of A12 0 3 layers with initially flat surfaces as porous structures form during

anodization in a 5 wt.% H3PO4 solution with an anodic voltage of 11OV at RT. The

incipient pores form at the oxide/electrolyte interface after 5 min of anodization. b) A 250

tilted higher-magnification view of the incipient pores at the o/e interface after 5 min of

anodization at 1 1OV at room temperature (the middle figure in a)). c) The average electric

field across the AAO during anodization in a 5 wt.% H3PO 4 solution at a constant voltage

from 86 to 120V, as a function of time. The electric field initially slowly increases due to

the thickness reduction caused by field-assisted dissolution of the oxide. The field then

rapidly increases due to re-growth of AAO and pore formation in phosphoric acid.

Formation of the incipient pores begins at the critical E-field, E*. The arrows in the plot

indicate E*. Scale bar = 200 nm.



When E increases from E* to the value associated with steady state pore

formation, 8.9 MV/cm, a second instability begins to develop. This instability ultimately

results in pores with the larger spacings usually associated with anodization of aluminum.

Fig. 2-5 (a) illustrates the transition stage in the morphological evolution from incipient

to secondary porous structures when anodization was carried out for 4 min at V. = 140V

in 5 wt.% H3PO4 at room temperature, with a pre-formed oxide of thickness of 160 nm

(E0 = 8.75 MV/cm). As shown in Fig. 2-5 (a), both the pore-oxide interface (p-o) and the

metal-oxide interface developed perturbed shapes and one of the incipient pores at a

minimum in the p-o interface began to grow preferentially and to widen. This secondary

instability leads to development of a larger scale pore structure and a dual scale pore

structure near the o/e and m/o interfaces. The spacing of the secondary pores at the m/o

interface is about 400 nm and that of the incipient pores at the o/e interface is about 37

nm. In conventional porous AAO formation, the pore spacing has been empirically

shown to depend linearly on V. with a proportionality, , of 2.0 ~ 2.5 nm/V [2, 9].

Porous alumina with different pore periods can form only when the anodic voltage also

changes during anodization, where the spacing is still set by the $ and V [2, 10].

However, Fig. 2-5 (a) shows that a constant anodic voltage can create a dual-scale porous

structure having distinctively different 's, such as 0.27 nm/V (in the regime of a weak

voltage dependence) and 2.8 nm/V (in the regime of a strong voltage dependence). This

implies that these two instabilities have different formation mechanisms. In the

discussion of Fig. 2-4 (a) - (c) we demonstrated that the incipient pores, for which =

0.27 nm/V, originate from field-assisted dissolution of the oxide at the o/e interface with



E > E* = 7.46 MV/cm. The weak voltage dependence of the pore spacing can be inferred

from the fact that the dissolution kinetics of the oxide depends on the electric field at the

o/e interface, not on the applied voltage. Therefore, the secondary pore structure, with =

2.8 nm/V in Fig. 2-5 (a), may originate from a mechanism other than field assisted

dissolution of the oxide. Indeed, we found that secondary pores formed at significant

electrical currents (- 1.4 mA/cm 2 at V. = 140V) from an electrochemical reaction, while

the incipient pores did not, as shown in Fig. 2-6. The electrochemical oxidation reaction

is associated with generation and transport of charged species, such as oxygen and

aluminum ions as well as anion impurities, at the m/o and the o/e interfaces of the

aluminum oxide. Hence, we postulate that the initiation of a secondary instability is

associated with these charged species.

Based on this postulate, we increased E0 to 8.82 MV/cm to generate and drive

sufficient ions through the oxide to cause initiation of the secondary instability without

prior formation of the incipient pores. The pre-formed A1203 was about 170 nm thick

when a current density of 15 mA/cm 2 in a mixed solution of boric acid and sodium borate

was used. Subsequent application of V. = 150 V for 50 sec in 5 wt.% H3PO4 at RT, as

shown in Fig. 2-5 (b), clearly caused a secondary instability to develop at the o/e

interface, while the m/o interface stayed flat. In Fig. 2-5 (b), the small-scale instability

due to field assisted dissolution also developed at the o/e interface, because E, > E*, but

did not evolve into incipient pores. A large scale surface instability developed at the o/e

interface, as seen in Fig. 2-5 (b), and led to an increased driving force for oxidation of Al

at the m/o interface, due to an increased electric field associated with the thinner barrier



oxide. As a result, the m/o interface follows the surface morphology of the o/e interface,

later leading to the steady-sate growth of porous structures at = 2.5 nm/V.

Figure 2-5. Larger-scale secondary pore formation due to a mechanical instability. a)

Cross-sectional SEM image of AAO with a pre-formed A120 3 after re-anodizing in a 5

wt.% H3PO 4 solution at RT with Van=140V for 4 min. Waviness at the oxide/electrolyte

interface, which was initially flat, indicates plastic deformation of the AAO during the re-

growth of AAO in a 5 wt.% H3PO 4 solution. b) Tilted-angle (250) SEM image of AAO

with a pre-formed A1203 after re-anodizing at Van=150V for 50 sec. in 5 wt.% H3PO4 at

RT. Here the pre-formed A120 3 was formed at 15 mA/cm 2 for 15 sec. Scale bars = 200

nm.
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Figure 2-6. The j-t curve for anodization of Al with a pre-formed A120 3 layer re-anodized

at different anodic voltages (V.) in 5 wt.% H3PO4. The large-scale instability at the o/e

interface shown in Fig. 2-5 (a) accompanies significant growth of the AAO and hence the

anodic current.

Defects and impurities in a film generate stress and strain in the film. In Al

anodization, from in-situ stress measurements it has been shown that the compressive

stress in the oxide develops during anodization [11-13]. While the volume expansion

associated with transforming from Al to A120 3 can contribute to the measured stress, the

in-situ compressive stress is relaxed or even changes sign after anodization is stopped.

Therefore, this in-situ stress is believed to originate, at least in part, from insertion and

transport of anions (02- or OH~, impurity ions and phosphorous in our case) and cations

(A13,) in the oxide, as well as from electrostriction, forced by the external electric field

.. .. .. .. ..............



[11-13]. We postulate that growth stress/strain that develops during anodization cause the

o/e interface to become unstable and induces the secondary instability in the oxide-

dissolving electrolyte interface. Asaro and Tiller showed that if a bi-axial stress larger

than critical stress, oc, is applied to a material in a corrosive environment, the surface of

the material can develop a roughness to lower strain energy, such that

7rEy (2)

where Ac is the minimum period for a stable perturbation, E is the Young's modulus of

the material and y is the interface energy [14]. Asaro and Tiller also showed that for

growth of the perturbation by surface diffusion, the fast growing period A. scales with

Ac. Therefore, the large-scale secondary instability in Fig. 2-5 (b) can develop to lower

the strain energy due to localized dissolution and/or incorporation of anion impurities at

the o/e interface. According to Eq. (2), oc = 180 MPa is required to produce a

perturbation with a periodicity of 400 nm, assuming a Young's modulus of 122 GPa [15]

and y= 34 mJ/m 2 [16]. Aziz and co-workers suggested that a reaction interface subjected

to a bi-axial stress can be unstable to perturbations due to a stress-dependent diffusivity

of reaction species across an interface [17] and Yu and Suo also showed that Ac 1/uc

for a kinetically driven stress instability [18]. While a detailed mechanism for the growth

of the secondary instability at the o/e interface in Fig. 2-5 (b) is still unclear, all analyses

suggest that kc (and therefore A,) decreases with oc, according to Ac x 1 /ac or

Ac x 1/aor, depending on the detailed origin of the instability. It has been reported that the

constant compressive stress observed in-situ during anodization at a constant current

begins to either decrease or increase (the stress decreases in phosphoric acid and



increases in sulphuric acid at the on-set of pore formation) at the on-set of pore formation

[12, 13]. This implies the existence of a critical stress o, for the secondary instability. For

further clarification, in-situ stress measurements at the on-set of pore formation are

required as a function of the anodic conditions to relate pore periodicity and the

maximum compressive stress oa with different values of V. and in different

electrolytes, to determine the detailed mechanisms of the stress induced instability.

The growth stress in the oxide also has an impact on the steady-state pore growth.

Fig. 2-5 (a) shows that the morphology of the o/e interface, which was initially flat before

anodization, distorts and follows the waviness of the m/o interface, clearly indicating that

the oxide was plastically deformed. Recently, Garcia-Vergara et al proposed that the

growth of porous AAO is maintained by 'plastic flow' of the oxide, as indicated by

experiments in which a tungsten tracer layer was used to indicate flow resulting from

steady-state anodization at a constant current [19]. Our result also shows direct evidence

that the pore growth, but not the initiation of pore formation, is associated with plastic

deformation and flow of the anodic oxide, when the E-field is close to the steady-state

value (8.9 MV/cm) and when constant voltages are applied.

The interplay between field-assisted-dissolution and strain-induced instabilities

and subsequent plastic deformation and flow in nanoporous AAO can explain formation

of hexagonally closed packed porous AAO at certain anodization conditions [9, 20]. At

the m/o interface, the rate of formation of new oxide is balanced by the lateral flux

through plastic flow of the A12 0 3 . The pores, therefore, pack densely to minimize the



flow distance for the collection of pores with repulsive mechanical interactions of each

pore arising from the need to share a volume in which the oxide flows.

In steady state, pore propagation is limited by the forced plastic flow of the oxide.

Figure 2-7 is a schematic of steady-state pore formation. In analogy with cellular growth

during solidification [21], the flux of the newly-generated aluminium oxide at the m/o

interface, JE, must be balanced with the flux of the forced plastic flow of the oxide toward

the pore wall, J,. From Faraday's law, the flux of the newly-generated A12 0 3 at the m/o

interface, JE, is linearly proportional to the anodic current density,j,

JE Kij= N^ j (3)
2zF

where NA is Avogadro's number, z is the valence number of Al (= 3), F is Faraday's

constant, and rq is the current efficiency for anodic oxidation, which is defined as the

current used for formation of the anodic oxide divided by the total current. Under pore-

forming anodization conditions, 17 is less than 1 and also dependent on the specific anodic

conditions.

Now, the flux from the flow of the oxide toward the pore walls, J0, is a product of

the flow velocity of the oxide at the m/o interface, v, and the atomic concentration of

aluminium oxide, co, such that,

J = cov. (4)

The flow velocity is related to the strain rate,i , through a general relationship with the

flow stress at the m/o interface, -r, by [22]

e=r~ 1  dA~ 1(5t=Kr" =-I A = -V. (5)
A pf dt A P



In Eq. (5), K is a temperature and material-dependent constant, n is a constant related to

the atomistic mechanism for the plastic flow, and A,, is the spacing between pores. It

should be noted that Eq. (5) can also represent the flow rate of viscous materials, in

which case K is the reciprocal of the viscosity of the material. If Eq. (5) is substituted into

Eq. (4), then

Ja = KAr". T(6)

In steady-state, JE= J. Therefore,

A, = xn NA const. (7)
ij 2zFK

In equation (7), the material-dependent constant K of the anodic alumina is assumed to be

independent of the anodization conditions. However, it should be noted that K can

depend on the anodic conditions through their effect on anion incorporation and the

microstructure of the anodic oxide.

SJE

Figure 2-7. Schematic diagram of the cellular growth model for the formation of ordered

AAO in a steady-state.

............



The large-scale instability at the o/e interface will have a characteristic spacing, A.

(associated with Ac in Eq. (2)) and the steady state spacing associated with mechanical

flow will have a characteristic spacing )y, both of which are large compared to the

characteristic length scale of the structure resulting from the electric-field-induced

instability, 4. However, 2y in Eq. (7) is not necessarily identical to the A because of

differences in the underlying mechanism that control the characteristic length scales. If

# A., ordering of the pores driven by the plastic flow at the m/o interface will be

disturbed by branching (if )p > k,) or closing (if )p < As) of pores through morphological

and kinetic interactions. Therefore, for the formation of self-ordered AAO, the anodic

conditions for ?p ~ A are required. This postulate is supported by the observation that

changes in Xp by application of mechanical tensile loads during anodization decreases

ordering of AAO under what would otherwise be typical self-ordering anodization

conditions (e.g. sulfuric acid, 23V) [23].

In summary, porous structures can independently result from field-induced and

strain-induced instabilities. In conventional anodization, AAO results in a porous

structure with a single length scale which depends on V. with = 2 ~ 2.5 nm/V, and is a

consequence of a strain-induced instability. However, pre-forming A120 3 can lead to a

dual-scale porous structure, even at a constant anodic voltage, associated with both field-

induced and strain-induced instabilities. Fig. 2-8 (a) shows a typical example of a dual-

scale porous AAO structure resulting from discontinuous anodization at a constant

voltage of 86 V. Pores with smaller 4 at the top surface result from field-assisted

dissolution at E > E* with o < or. As anodizing continues, a strain-induced instability



with characteristic length scale As results when o- > o;, leading to growth of the

conventional ordered porous alumina structure associated with plastic deformation and

flow of the oxide (Fig. 2-8 (a) and (b)). Furthermore, Fig. 2-8 (c) - (f) illustrates that by

controlling the thickness of the pre-formed A120 3, which suppresses growth of AAO in 5

wt.% H3PO4 , the secondary strain-induced instability is delayed and the field-induced

instability becomes dominant when a becomes less than o;, even when the anodization

conditions are the same for all pre-formed oxide thicknesses.

2.4 Dendrite-like Pore Formation; Tertiary Instability

Fig. 2-9 (a) demonstrates the impact of mechanical confinement on plastic flow of

porous AAO. Here, an underlying Al film was anodized in a radial direction due to a pin-

hole in the pre-formed barrier oxide of thickness 160 nm, formed at anodic conditions of

Van = 86V in 5 wt.% H3PO 4. When the pre-formed oxide is too thick to be deformed

mechanically, the plasticity in the radial direction at the Al-preformed-oxide interface is

suppressed, leading to a build up of stress in the radial direction. As this stress builds up

at the m/o interface, a secondary strain-induced instability develops as Ag decreases

according to Eq. (7). The resulting structure is analogous to dendrite structures formed

during solidification, just as the ordered porous structures are analogous to cellular

structures developed during solidification [21]. Therefore, this instability becomes a

tertiary instability if the field-induced instability is included. When half of a

mechanically stiff SiO 2 mask was removed, as shown in Fig. 2-9 (b), conventional pores



were observed in the exposed Al area but dendritic pores formed under the mask, owing

to the mechanical constraint of the hard mask.

b) Fie'd-induced instability when E E*

Strain-induced instability when a s ck

Figure 2-8. Dual-scale porous AAO and mechanisms for formation of AAO. a) Cross-

sectional SEM image showing dual-scale porous AAO with a pre-formed A120 3 layer,

after re-anodizing in a 5 wt.% H3PO4 solution at RT with Van=86V. Scale bar = 500 nm.

b) Pore generation mechanisms; a field-induced instability when E > E* and a strain-

induced instability when a > or. These instabilities are independent in origin and have

different characteristic wavelengths, AF and As, respectively. While the field-induced

instability develops in electrolytes which dissolve A120 3 (acidic and basic solutions)

when E > E*, a strain induced instability can develop in any electrolyte, even in neutral

solutions, when a> ar. c)-f) Top-view SEM images of porous AAO anodized in 5 wt.%

H3PO4 at Van = 86 V and at RT with a pre-formed planar A120 3 layer of thickness (c) ho =

0 nm, (d) ho = 64 nm, (e) h = 96 nm, and (f) ho = 128 nm. The strain-induced instability

prevails in (c) where anodizationwas carried out under conventional anodization

conditions. With pre-formed A120 3 layers the time to reach the condition a> ag is longer

and as ho is increased, the depth of the pores formed due to the electric-field-induced

instability is greater, since E is greater than E* for a longer time. In (f), only pores from

the field-induced instability can be seen. Scale bars = 200 nm.



Figure 2-9. Dendritic growth under mechanical constraints. a) Cross-sectional SEM

image of AAO after re-anodization in 5 wt.% H3PO 4 solution at V = 86V and RT for 49

min. with a 160 nm-thick pre-formed A12 0 3 layer. Growth of porous AAO forms at a pin-

hole in the pre-formed A120 3. Scale bar = 200 nm. b) Cross-sectional SEM image

showing that a dendritic instability develops when a pore forms under a silicon dioxide

layer, due to mechanical constraint of plastic flow. Here, the dendritic porous structure is

only seen under the edge of the SiO 2 mask. Conventional porous AAO formation occurs

where the mask was removed and plastic flow of the AAO is allowed. Scale bar = 400

nm.



Interestingly, growth of porous AAO was found to be retarded in the presence of

the mechanical constraint; the growth rate of unconstrained growth of AAO was about 18

nm/min but that of constrained AAO was about 3 nm/min in 5 wt.% H3PO4 at 3"C and at

V.= 86V. From Eq. (7), the formation rate of AAO is directly related to the rate of

plastic flow of the oxide. Therefore, the formation rate of AAO will be significantly

reduced when the rate of plastic flow of the oxide is decreased.

2.5 Conclusions

We have demonstrated that the formation of nanoporous AAO is affected by both

electrochemical and mechanical instabilities. This was done by growing flat oxides with

uniform thickness, but of different thicknesses, before switching to the conditions that

lead to pore formation. When present, the field-instability precedes the strain-induced

instability and leads to disordered pores with relatively small spacings. Contrary to

common belief, it is shown that it is a mechanical instability that leads to the larger-scale

ordered structures often used as scaffolds for growth of the nanoscale 1-D structures.

Once a mechanical instability develops, the growth of the associated pore structure is

limited by the kinetics of lateral deformation/flow of the oxide at the base of the pores.

This mechanism and the resulting structure are analogous to cellular growth during

solidification. Mechanical constraints can also lead to dendritic growth of pores.

Recognition of the influences of mechanical deformation and mechanical constraints on

oxide flow should provide new insight into methods that can be used to control the



structures resulting from anodization, not only for aluminum but possibly also for other

metals such as Ti.
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Chapter 3. Abnormal Anodic Aluminum Oxide Formation in

Confined Structures for Lateral Pore Arrays

3.1 Introduction

Nanostructured porous materials provide important templates and scaffolds for

growth and assembly of one-dimensional (1-D) nanomaterials for a wide spectrum of

applications such as electronic, optical, and energy storage devices [1-4]. When the

nanostructure of the template can be controlled, control of the position of individual 1-D

nanomaterials can also be exercised, allowing, in principle, integrated functionality for

each individual nanowire and nanotube. Because of the anisotropic nature of 1-D

nanomaterials, arrays of nanowires and nanotubes can be formed vertically and

horizontally with respect to a substrate and the orientation of the assembly should be

chosen to maximize their functionality. For example, vertically ordered 1-D

nanomaterials are suitable for devices requiring high-surface area and high density, such

as Li-ion batteries, and horizontally ordered semiconductor 1-D wires and tubes are

desirable for devices with more than 3 electrodes, such as a metal-oxide-semiconductor

field effect transistors [4-6]. Therefore, development of a nanostructured template with

pores aligned horizontally as well as vertically on a substrate offers important

opportunities for integration of nanowires and nanotubes into devices and systems.

Thin film nanoporous anodic aluminum oxide (AAO) has been extensively

studied for its use as a template or scaffold for growth of 1-D nanomaterials [7-10].

Porous AAO consists of vertical cylindrical pores in an aluminum oxide matrix formed



by anodic oxidation from the top of an Al film. The pore diameter D, is adjustable from

less than 10 nm to more than 400 nm with controllable high aspect ratio > 1,000: 1. The

pore spacing D, linearly depends on the anodic voltage Vanwith proportionality = 2 ~

2.5 nm/V [9, 11-13]. In addition, after prolonged anodization (2~12 hrs) under specific

anodization conditions, the vertical pores self-organize into domains with hexagonally

close-packed structures. For example, anodization in sulfuric acid at V. = 19 ~ 25 V,

oxalic acid at 40V and 120 ~ 150 V, and phosphoric acid at 160 ~ 195 V lead to ordered

pore formation [11-13]. Moreover, by templating pore formation, a mono-domain of

perfectly ordered pores with arbitrary D, can be produced with controlled symmetry

(including non-hexagonal symmetries) and with independently controlled Ds and D, [14,

15]. By modifying the anodization conditions, the nanostructure of the ordered AAO can

be further engineered to have hierarchically branched pores and modulated pore

diameters along the pore propagation direction [16, 17]. With these characteristics,

porous AAO provides an ideal scaffold for growth of vertically aligned mono-disperse

nanowires and nanotubes for functional devices.

Recently, AAO scaffolds with horizontal pore arrays in the plane of substrate

surfaces have also been fabricated on glass and Si substrates, allowing template-assisted

growth of Te and Ni nanowires in lateral scaffolds [18-21]. Because pores only grow in

directions normal to the Al surface, a side anodization process for horizontal AAO, H-

AAO on substrate surfaces, requires anodization of edges of patterned Al films, with top

surfaces protected from anodization. Masuda et al. were first to propose a side

anodization process and fabricated mono- and double layers of H-AAO with D, ~ 200



nm. This was done by anodizing vertical Al sidewalls of 200 and 400 nm thickness,

prepared by cleaving Al2 03/Al/glass structures [18]. Cojocaru et al. further refined the

process to prepare vertical Al surface confined by SiO 2 layers using photolithography and

patterning technology, and successfully fabricated multilayers of H-AAO with Ds < 50

nm [19]. In previous reports, however, anodization to form lateral pores has been

performed only for very short times (5~10 min), resulting in lateral pores with low aspect

ratios (<10:1) and poor ordering [18-2 1]. To achieve highly ordered lateral pore arrays, a

prolonged anodization is required under so-called self-ordering anodization conditions.

Since a volume expansion occurs during anodic oxidation, typically ~ 140%

under the self-ordering anodization conditions [12], additional stress associated with this

volume expansion may arise due to mechanical confinement for prolonged anodization

times. As we discussed in earlier chapters, recent literature indicates that mechanical

stress accounts for steady-state growth of AAO via plastic deformation and flow of the

oxide during anodization of Al [22-24]. Additional mechanical stress from confinement

may therefore modify nanostructure evolution and kinetics during horizontal anodization

of Al in confined structures, and important insights into understanding of mechanistic

aspects of AAO formation may be gained through study of confinement effects.

However, a role of mechanical constraint during horizontal anodization of Al in

governing the pore structure and kinetics of H-AAO formation has not been studied since

side anodization in previous studies was conducted for very short times (5 ~ 10 min.) [18-

21].



In this Chapter, we report on prolonged anodization of the edges of SiO 2-capped

aluminum films, leading to highly ordered lateral pore arrays with D, ranging from 50 nm

to 500 nm and having various numbers of pore stacks from monolayers to 12 layers. For

the first time, we observed abnormal growth behavior of AAO in confined structures,

including periodic dendritic pore structures. Furthermore, we will show that the

unexpected anodic behavior originates from suppressed volume expansion and plastic

deformation of the oxide in confined structures during anodization. Based on this

understanding, we also explored new anodization conditions that minimize the

confinement effect and demonstrated the formation of dendrite-free H-AAO.

3.2 Experiments

Fabrication of vertical Al sidewalls on a substrate:

First, an Al thin film was deposited using e-beam deposition on thermally grown

SiO 2 on a Si substrate. Al films with thicknesses from 50 nm to 600nm were deposited.

Thin films of SiO 2 with 500 nm thickness were then deposited on the Al using plasma-

enhanced chemical vapor deposition (PECVD) at 250*C. These films served as mask

layers on the Al, to prevent un-wanted anodization from the top surface. The SiO 2 was

then patterned into strips using photolithography and reactive ion etching (RIE) with CF4,

and the Al surface was locally exposed where the SiO 2 mask was removed. Using the

SiO 2 strips as hard masks, the exposed Al area was etched using Al etchant type A

(Transene) and Al sidewalls were exposed between the SiO 2 hard mask and the substrate.

However, the Al sidewalls were not vertical because of the isotropic nature of wet



etching. To make the sidewalls vertical, the Al was electropolished using a mixed

solution of perchloric acid and ethanol (1:3 ratio) at 15 V for 5 ~ 15 sec. at room

temperature (RT). Photoresist, PR, (AZ1518, Shipley) about 1.5 [Im thick left on the SiO 2

was also used as a mask layer to prevent unwanted anodization of Al from the top surface

through pin-holes in PECVD SiO 2 -

Anodization:

Anodization of vertical Al sidewalls was carried out under various conditions,

such as in 10 vol.% H2 SO 4, 0.3 M oxalic acid, and 5 wt.% H3PO4 at Van from 20 to 185 V

for extended times, i.e., 2 to ~ 6 hrs.

3.3 Results and Discussion

Figure 3-1 shows a schematic illustration of our side anodization process for self-

aligned H-AAO made by anodizing two vertical Al edges capped with a mask on a

substrate. Figure 3-1 also shows the expected structure of the H-AAO, characterized by

smooth inner pore walls and smoothly scalloped shapes of the barrier layer at the base of

the pores, based on characteristics of V-AAO. A photoresist/SiO2 capping layer was used

as a mask that prevents anodization from the top surface of the Al. In side anodization,

the anodic voltages and thickness of the Al films, hAl, were carefully chosen to achieve

the desired features of the resulting pore structures of the H-AAO, such as Ds, D,, and

the number of pore stacks Ns (monolayer or multilayer). For example, a monolayer (Ns =

1) and 10 layers (N,, = 10) of H-AAO with the D, of 500 nm and 50 nm formed when



anodizing 500nm-thick Al sidewalls at Va = 195 V and 20 V, respectively, or NP, ~ hAI/D,

= hA,/2.5V.

I anodization

Figure 3-1. Schematic illustration of the process flow for fabrication of structures for

formation of Horizontal-Anodized Aluminum Oxide (H-AAO). H-AAO structures were

formed by anodizing vertical Al sidewalls capped with insulating masks on a substrate,

made by patterning Al/insulating-layer lines. A multilayer of photoresist and SiO 2

deposited using Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) was chosen for

the mask, due to its mechanical and electrochemical inertness.
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Figure 3-2 shows an SEM image of the self-ordered H-AAO monolayer with D, ~

500 nm on a SiO 2 substrate, obtained by anodizing a 600 nm-thick confined Al vertical

wall in 5 wt.% phosphoric acid at 185 V and 20'C for 6 hrs. For top view SEM

observation, the PR was removed using acetone and rinsed using isopropanol and the

SiO 2 was thinned to about 250 nm using reactive ion etching (RIE). In Fig. 3-2, it is

clearly seen that two rows of H-AAO are produced as two exposed vertical Al sidewalls

of an Al line were anodized. The length of the H-AAO pores is about 4.2 [tm and is

uniform along the edge of the Al line. As growth of H-AAO continued, pores became

straight and regularly spaced, to form self-ordered lateral pore arrays. Notably, the

ordering of lateral pores is often interrupted by oblique pores, which results in formation

of lateral domains of ordered lateral pores with a domain size of ~ 6 [tm, as expected

from analogous behavior in bulk anodization [11, 12].

To investigate pore structures in H-AAO confined by two SiO 2 layers, cross-

sectional scanning electron microscopy was used. Figure 3-3 shows a cross-sectional

SEM image of a self-aligned H-AAO monolayer anodized for 6 hrs in 5 wt.% H3PO4 at

185V and 20"C. The pore structure of the H-AAO was expected be a monolayer of pores

with smooth inner pore walls and smoothly scalloped shapes of the barrier layer at the

base of the pore, as illustrated in Fig. 3-1. However, Fig. 3-3 (a) reveals dramatic

differences compared to the schematic in Fig. 3-1. Despite the fact that a monolayer of

AAO was formed, periodic secondary pore structures appeared at the inner walls of the

pores, resulting in dendritic shapes. The periodicity of the secondary pores is about 85 nm

at 20'C in 5 wt.% H3P0 4 at V. = 185 V. This periodic dendritic structure also appears at
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lower temperatures, 3 and 10C, in the same electrolyte and at the same anodic voltage,

but with shorter periodicity ~ 60 nm.

H-AAO H-AAO

Figure 3-2. Plan-view Scanning Electron Microscopy (SEM) image of a self-aligned H-

AAO monolayer with a pore spacing of D, ~ 500 nm, anodized for 6 hrs in 5 wt.% H3PO4
at V. = 185 V and 20C. Scale bar = 10 [tm.

We also conducted side anodization at/near other self-ordering anodization

conditions, i.e. in oxalic acid at 40V and sulfuric acid at 20V, in order to determine if the
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dendritic inner pore structure developed in these cases as well. Figure 3-3 (b) shows

cross-sectional SEM images of H-AAOs formed by anodization for 2 hrs. at 3"C, in 10

vol.% sulfuric acid at 20V (D, = 50nm). Since D, < hAl ~ 600 nm, multilayers of

multilevel pores formed with N,, ~ 15 layers normal to the plane of the substrate surface.

As seen in Fig. 3-3 (b), multi-level pores near the pore openings are straight and have

smooth inner walls, but propagation of pores is eventually disrupted and dendritic pores

form as the growth of H-AAO continues further into the Al. Similar pore structures

developed in H-AAO with D, = 100 nm and NP, ~ 7, when the pores were formed in 0.3

M oxalic acid at 40V. It should be noted that the D, of the straight pores was about 25 nm

and decreased to less than 10 nm in the H-AAO, with D, = 100 nm, implying that an

extra volume of A120 3 expanded from the center of the primary pores as the dendrites

formed. In addition, the pore/Al interfaces have convex curvature into the Al films while

the outermost surface of the oxide remains straight. Since a pore grows in a direction

normal to the Al surface, the growth of the pores follows the curvature change of the

Al/H-AAO interface, which may facilitate the formation of dendrites, as seen in Fig. 3-3

(b). Nonetheless, the dendrites observed at the center of the H-AAO films in Fig. 3-3 (a)

and (b) are a unique characteristic of H-AAO at self-ordering anodization conditions for

prolonged times.

High-aspect-ratio cellular pores are hard to achieve in H-AAO, even after

prolonged anodization time. For example, the length of H-AAO pores in Fig. 3-3 (b) is

only about 570 nm after 2 hrs of anodization. Figure 4 summarizes the pore length for V-

AAO and H-AAO with various values of hAl, from 50 to 600 nm, and as a function of
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time for anodization in 10 vol.% sulfuric acid at 3C and 20 V. In general, the pore length

of AAO, LAAW depends on the anodization time, t, according to LAAO octn . The growth

of V-AAO, as shown in Fig. 3-4, linearly increases (n = 1) with anodization time with a

rate of ~ 240 nm/min, given a constant steady-state anodization current with a constant

applied anodic voltage. On the other hand, the pore length for H-AAOs has a sub-linear

dependence on time (n = 0.4 ~ 0.6). Moreover, the initial pore growth for H-AAO is

further retarded as the Al film thickness is decreased, while changes in pore length after 5

min are similar for all H-AAOs with various hAl or various degrees of confinement. For

instance, formation of 500 nm pores for H-AAO with hAl = 600 nm is 20 times slower

than for unconfined V-AAO and 27 % of the pore growth for H-AAO occurs in less than

5 min. As seen in Fig. 3-3 (b), pores at/near the H-AAO/electrolyte interface, which

formed early during the side anodization reaction, have straight and well-defined

structures without dendritic side arms. Therefore, it can be deduced from Fig. 3-3 (b) and

Fig. 3-4 that the development of dendrite structures in H-AAO accompanies kinetic

retardation and can be avoided if the side anodization is performed under less aggressive

confinement conditions, i.e. hAl > 500 nm and D, < 50 nm or N,, >> 10, and for short

anodization times (<5 min). However, abnormal H-AAO formation is inevitable for H-

AAO for Ns < 10, especially for N, = 1 under the anodization conditions associated with

Fig. 3-3 (a) and (b). To produce cellular rather than dendritic horizontal pores with

controlled D and NP, it is important to understand differences in anodization in

mechanically constrained structures compared to bulk anodization.
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Figure 3-3. Cross-sectional SEM images of H-AAO anodized (a) for 6 hrs in 5 wt.%

H3PO4 at Va. = 185 V and 20"C, and (b) for 2 hrs in 10 vol.% H2SO4 at 20V and 3"C,

respectively. Scale bars = 500 nm in (a), and 200 nm in (b). The pore spacing is fixed by

the anodic voltage, D, 2.5 nm/V, enabling control of the number of pore layers with

respect to the thickness of the Al films. The dendritic structures were formed under all

self-ordering anodization conditions. (c) a close-up image of the H-AAO shown in (b).

An arrow indicates a dendritic structure. Scale bar = 100 nm.
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Figure 3-4. Length of V-AAO and H-AAO pores for various Al film thicknesses (50

600 nm) as a function of anodization time in 10 vol.% H2 SO 4 at 20 V and 3"C. Growth of

H-AAO is significantly slowed due to mechanical confinement, for all the Al film

thicknesses.

When aluminum oxide forms by oxidation of Al, the volume of A1203 that results

is generally larger due to incorporation of oxygen ions and the volume expansion is

represented by the Pilling-Bedworth ratio (PBR). The PBR defines the expected ratio of

the volume of the produced A120 3 over the volume of the reacted Al [25]. For barrier-

type A12 0 3 (planar non-porous alumina), for which the current efficiency rI, the ratio of

consumed electrical charge for electrochemical oxidation to form A120 3 from Al to total

the electrical charge provided, is close to 100 % and the PBR is 1.61 [26]. In the case of
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porous AAO, where ri < 100 %, however, the volume expansion, R, defined as the ratio

of the thickness of the produced A120 3, hAO 3 , over the initial thickness of the reacted Al,

hAI, is often used instead of the PBR, because of incorporation of free space as pores in

the AAO, and loss of volume of the A120 3 and Al in the electrolyte during anodization.

Typically, R is about 1.4 under self-ordering anodization conditions [12]. Therefore, in

side anodization it is expected that the outermost H-AAO/electrolyte interface would

move toward the electrolyte from the position of the initial Al/electrolyte interface, by

sliding of the H-AAO between the SiO 2 layers, in order to accommodate the 140 %

volume expansion. However, optical microscope images of a single Al line before and

after side anodization in 5 wt. % H3PO4 at 185 V and 20C reveal that the H-

AAO/electrolyte interface has not moved relative to the position of the initial

Al/electrolyte interface, implying that volume expansion of H-AAO does not occur.

In chapter 2, we reported that formation mechanisms for V-AAO are affected by

both an electrochemical instability due to a field-assisted dissolution of the oxide and a

mechanical instability due to strain developed in the AAO and Al. We argued that the

period of the steady state pore structure is a consequence of the requirement that the rate

of plastic deformation of the oxide match the rate of oxide formation. In addition,

Garcia-Vergara et al. and Skeldon et al. also concluded that W tracer studies indicate that

growth of V-AAO is maintained by plastic flow of the A120 3 from the barrier oxide at the

bases of the pores toward the pore walls [22, 23]. Moreover, Houser and Hebert recently

suggested that steady-state growth of AAO could be quantitatively modeled when

viscous flow of the oxide is assumed [24]. Hence, the volume expansion of anodic
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alumina is maintained by plastic deformation and flow of the oxide during anodization. In

side anodization, however, flow of A120 3 toward the pore wall is inhibited by traction at

the Si0 2 interfaces. Therefore, we postulate that the dendritic growth mode illustrated in

Fig. 3-5 results from suppression of the plastic flow needed to accommodate the stress

associated with the needed volume expansion, and the dendrite structures in Fig. 3-3 (a)

and (b) form as a result of plastic flow in spaces surrounding the primary pore wall

centers. While aluminum oxide is brittle, AAO is known to exhibit significant plasticity

during anodization [27, 28]. Indeed, the formation of the dendritic structures in H-AAO

was also observed in V-AAO when the flow was prohibited by local constraint, and,

therefore, is a general characteristic of AAO formation in confined structures, and has

been called a dendritic instability in chapter 2.

Figure 3-5. Schematic illustration of the formation mechanism of H-AAO with dendritic

pore structures. Since volume expansion by plastic flow in the pore growth direction is

inhibited due to traction at the Si0 2 mask interface, the extra volume of newly formed

A1203 extrudes inside the primary pore, leading to the dendritic structure. Plasticity of the

oxide in the presence of an electric field facilitates the extrusion.

108

............................. ... .. ........................... ................. ......... .......



The suppressed plastic flow of the oxide and the consequent formation of the

secondary dendritic pores due to traction at the interface are also believed to affect the

kinetics of anodic oxidation reaction. In V-AAO without constraint, a steady-state growth

is achieved when a constant rate of anodic oxidation of Al is balanced by a constant rate

of plastic flow of the oxide away from the tip of the pores. Therefore, when the plastic

flow is suppressed by mechanical constraints, a reduced steady-state growth rate is

expected for H-AAO.

From the arguments presented above, we expect that anodization conditions for

which there is no volume expansion (R ~ 1) are required in order to minimize

confinement effects, i.e. the dendrite instability and growth rate reduction observed for

H-AAO. It is well-known that R depends on the anodic conditions, especially the current

density or anodic voltage [29]. Figure 3-6 shows R as a function of the anodic voltage in

5 wt.% phosphoric acid at 3C, as determined by measuring the thickness of anodized V-

AAO from 600nm-thick Al films. R increases from 1.02 to 1.59 since a smaller pore

volume results from the decreased pore density and the increased current efficiency 'q, as

Van is increased from 20 V to 185 V. The growth rate of the V-AAO was measured and

found to increase from 3.93 to 121.97 nm/min exponentially with anodic voltage. H-

AAO was also formed from 600nm-thick Al films, in order to compare the formation

kinetics and structures under the same anodization conditions for 120 ~ 135 min. Since

the growth rate of H-AAO is not constant over time, the pore length of H-AAO, LH 0 ,

was normalized by dividing by the pore length for V-AAO, i.e., LHAAO/ LVAAO, at a given

anodization condition, to quantify the growth rate suppression in horizontal anodization.
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Figure 3-6 shows LHAAO and LHAAO/ LVAAO as a function of the R. Here, LVAAO was

calculated based on the measured growth rate of V-AAO and the growth time. It is

clearly seen that the normalized pore length of H-AAO decreases as R increases. For

example, LAAO is only 4.2 % of LVAAO at Va = 185 V. The normalized pore length of H-

AAO increases and saturates at around 0.45, i.e., LHAO 0.45 LVAAO, as R approaches 1

or at V s 40 V. Therefore, minimization growth retardation for horizontal anodization is

achieved with R ~ 1, for which H-AAO forms without generating a compressive stress

due to suppressed plastic flow of the oxide. The inner pore nanostructures in the H-AAOs

shown in Fig. 3-6 were also investigated as a function of anodic voltage. Figures 3-7 (a)

and (b) show corresponding cross-sectional SEM images of H-AAOs formed at Va. =

86V and 20V, respectively. With fixed Al thickness = 600 nm, NP, the number of layers

of pores in the H-AAO increases from a monolayer to ~ 12 layers with decreasing Va,

since D, ~ 2.5 V.. When H-AAO was formed by anodization at V. = 86 V, with R =

1.37, as shown in Fig. 3-7 (a), the dendritic structure appears inside the pores. On the

other hand, dendrite-free cellular H-AAO formed with V. s 40 V and R ~ 1. For

example, Figure 3-7 (b) shows dendrite-free H-AAO with D, ~ 50 nm and NP, ~ 12,

anodized at 20 V.

Using these anodization conditions i.e., V. < 40 V in 5 wt.% H3P0 4 solution, we

further fabricated dendrite-free horizontal pores with the number of layers of pores

controlled varied by varying the Al film thickness. Figure 3-8 (a) shows ~ 6 layers of H-

AAO pores with D, ~ 50 nm, formed by anodizing 200 nm-thick Al films confined by

SiO 2 at 20 V. Monolayers of H-AAO pores were also produced without dendrites with 50
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and 75 nm-thick Al films and Va. = 20 V and 30 V, as shown in Fig. 3-8 (b) and (c),

respectively. Figure 3-8 (d) shows a top-view SEM image of the H-AAO monolayer

anodized for 2 hrs. at the same conditions but at an elevated temperature, 200C, to

increase the growth rate. The length of the H-AAO pores increases by a factor of about

3.5 ~ 3.75 when the temperature is increased from 3C to 200C for fixed electrolyte

concentrations and reaction times. However, the lateral ordering of the H-AAO in Fig. 3-

8 (d) is poor compared to H-AAO anodized under self-ordering conditions, such as those

used for Fig. 3-2. However, the V-AAO counterpart also exhibits poor ordering and the

inter-pore confinement effect that leads to ordering has been removed by achieving

conditions for which R=1. Therefore, while dendritic growth and growth rate reductions

have been suppressed, templating may be required to achieve highly ordered H-AAO.
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Figure 3-6. Volume expansion ratio of V-AAO and the normalized pore length of H-

AAO as a function of anodic voltage in 5 wt.% H3PO4 at 3*C. The H-AAOs were grown

for 120 ~ 135 min. at all anodization conditions and the pore length was normalized with

respect to that of V-AAO at each anodic voltage at a given anodization time.
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Figure 3-7. Cross sectional SEM images of the corresponding H-AAOs in Fig. 3-6,

formed at (a) V.= 86 V, and (b) 40 V. Scale bars = 200 nm.

Figure 3-8. Cross sectional SEM images of dendrite-free H-AAO (a) 6 layers by

anodizing 200 nm-thick Al, and (b) a monolayer of pores obtained by anodizing 50 nm-

thick Al at 20 V and 3*C for 2 hrs. (c) a monolayer of pores with D, ~ 75 nm obtained by

anodizing 75 nm-thick Al at 30 V and 20"C for 2 hrs. Scale bars = 200 nm. (d) Plan-view

SEM image of dendrite-free H-AAO anodized in 5 wt.% H3PO 4 at 20"C and 20 V for

2hrs. Scale bar = 500 nm.
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3.4 Conclusions

Highly ordered H-AAO was fabricated by anodizing vertical Al side walls

confined by SiO 2 layers at self-ordering anodization conditions for prolonged times > 2~

6 hrs. However, while domains of self-ordered H-AAO were achieved, it was found that

dendrite nanostructures formed and the growth rate was significantly suppressed. We

demonstrated that the kinetic retardation and dendritic structures originate from

suppression of volume expansion due to suppressed plastic flow of the A120 3 because of

traction at the interfaces with the confining SiO 2 layers. In addition, a strategy was

provided to avoid these abnormalities by using anodization conditions for which there is

no volume expansion associated with formation of AAO from Al (R ~ 1). This was

achieved by anodizing in 5 wt.% H3PO4 at values of V. from 20 to 40 V. Using this

anodization condition, we successfully demonstrated dendrite-free H-AAO formation

with a controlled number of pore layers, from monolayers to ~ 12 layers and with D,

from 50 to 100 nm. However, the lateral ordering of the dendrite-free H-AAO was poor

due to the lack of repulsive forces between the pores. These forces are normally

associated with plastic deformation at the pore tip. Finally, the experimental procedure

used in this work, i.e., the anodization of metals in a confined structure, can be used as a

general methodology for the understanding pore formation mechanisms in other

nanoporous anodic oxide, such as porous TiO2.
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Chapter 4. Selective Barrier Perforation in Porous Alumina

Anodized on Substrates

4.1 Introduction

Anodic aluminum oxide (AAO) formed from films on substrates can have mono-

disperse pores with diameters as low as a few tens of nanometers and with lengths of tens

of micrometers [1, 2]. At specific anodization conditions, domains of close-packed pore

arrays form, with interpore spacing D, from 50 nm to 500 nm [1-4]. Pores typically are

only ordered within domains, and D, and the pore diameter D, can not be varied

separately. However, with pore formation guided by lithographically defined templates,

pores with perfect long range order, with controlled ordering symmetry (including

symmetries other than close-packed), with controlled pore locations, and with

independently controlled D. and D,, can be produced [3, 5-7]. Control of these

characteristics in porous AAO (PA) is key for producing ideal templates for growth of

mono-disperse nanowires and nanotubes, and for use as a scaffolds that separate and

align wires and tubes for electrical connection and integration with other materials and

devices. To facilitate the functional integration of these nanostructures, layers of ordered

porous AAO (OPA) with through-pore contact to electrically conducting underlayers is

desirable.

However, anodization of aluminum on a conducting underlayer, for subsequent

through-pore electrical connections, faces two significant challenges. First, the insulating

barrier oxide at the base of the pores should be etched without widening the pore

119



diameter or detaching the PA from the substrates. Second, the underlying contact layer

should not react electrochemically in an uncontrollable manner after Al anodization is

complete. A metal underlayer can not be used if anodization of the underlayer itself

involves reactions that might hinder uniform anodization over large-area substrates, lead

to detachment of the PA from the substrate, or leave insulating by-products that can not

be removed.

Currently, the most widely used underlayers for PA are noble metals such as Pt

[1, 6]. However, this leads to formation of an inverted barrier oxide (Figure 4-1 (b)) that

leads to pore broadening at the base [1]. Conventional chemical etching processes for

barrier oxide removal also result in enlargement of the pore diameter (Figure 4-1 (d)),

due to the isotropic nature of PA etching. Barrier thinning techniques based on decreasing

the anodization voltage [6] or using a reverse bias in KOH [1] and sulfuric acid [2] have

been applied to minimize pore widening while removing the barrier layer. However, Au

and Pt underlayers catalyze electrolysis of water at anodization or reverse bias conditions,

so that bubbles of oxygen gas (H2 gas when a reverse bias is applied) violently evolve

when the noble metal interface is reached [1, 2]. Consequently, voids form at the

oxide/metal interface and eventually the PA delaminates from the substrate, even when

thin Ti adhesion layers are used [1, 2]. Therefore, noble metals do not provide

appropriate contact layers beneath PA.

If a metal is used as an underlayer that also oxidizes under Al anodization

conditions and has an oxide with a higher ionic conductivity than alumina, the underlayer

oxide will penetrate the alumina barrier oxide [8] and grow into the alumina pores [9].
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The oxides of Ti, Ta, and Nb have higher ionic conductivity than alumina and are known

to penetrate the barrier layer of porous alumina (Figure 4-1 (c)) [9]. Therefore, by

selectively etching the penetrating oxide, which is insulating as well, the base of the

alumina pores can be opened without etching of the PA. However, TiO 2, Ta20 5, and

Nb 20 5 are chemically stable in aqueous solution. If the oxide that forms is

semiconducting, it can still be used to electrodeposit materials in the pores, but not to

make ohmic contacts to underlying metallic layers. Iwasaki et al. reported electro-

deposition of cobalt catalyst particles in PA on Nb, without post-anodization etching of

Nb20 5 [10]. In this case, electrical contact was made through a semi-conducting NbO 2

layer created by thermal reduction of insulating Nb20 5 in a reducing ambient at 500'C,

which did not provide direct and complete ohmic contact to the underlying Nb.

Furthermore, the pores were also widened significantly in dilute phosphoric acid etching

before the thermal reduction process. Direct ohmic contact to metallic underlayers by

removal of the penetrating oxides (e.g. TiO 2, Ta2O 3, and Nb20 5 ) has not been reported in

earlier studies. In this chapter, we show that tungsten also forms an oxide that can

penetrate the PA barrier oxide, but that tungsten oxide can be readily and selectively

etched in aqueous solutions to open PA pores and expose the metallic W layer at the

bottom of the pores, without pore widening.
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a) b)

d)

Figure 4-1. Schematic diagrams of porous alumina formed on different underlayers: (a)

Scallop-shaped barrier oxide forms on Al [1]; (b) An inverted barrier oxide forms on

noble metals with a void at the base of the pore [1]; (c) When ionic conduction is higher

in the oxide of the underlying layer, and the layer oxidizes under the same conditions as

the aluminum, the oxide of the underlayer (e.g., Ta and Nb) penetrates the bottom of the

pores [9]; (d) The diameter of the pore is widened when alumina etching is used to clear

the barrier oxide at the base of the pores. Note the decreased contact area between the PA

and the underlayer; (e) The result of selective etching of W0 3 protruding into the pores,

as in (c).
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4.2 Experiments

Al/W bilayers

W (60 nm)/Ti (15 nm) bilayers were deposited on thermally oxidized Si substrates

using multi-source e-beam evaporation. The base pressure was 1x10-6 Torr and the

thickness of the films was determined using a quartz crystal monitor. Ti serves as an

adhesion layer for W on SiO 2. 500 nm-thick Al layers were deposited after W deposition

was complete.

Pre-patterning of Al/W layers

Al/W bilayers were coated with a negative photoresist (Ohka-PS4) and anti-

reflection coating (ARC, XHRi- 11). The resist and ARC stack was patterned using

interference lithography using a Lloyd's mirror arrangement and double exposure at right

angles, to expose square arrays with a periodicity of 200 nm [11]. After the pattern was

transferred to the ARC layer using an 02 plasma, dimples on the Al surface were made by

wet etching the exposed Al (Al etchant type A, Transene).

Anodization

In the case of mild anodization, the pre-patterned Al/W layers were anodized

using a 5 wt.% phosphoric acid solution at a constant voltage of 86 V and at room

temperature. In the case of hard anodization, a constant voltage of 100 V was applied in

0.3 M oxalic acid at 30C, after the Al/W bilayers were first anodized for 2.5 minutes

under mild anodization conditions. Disordered PA was also fabricated by anodizing un-
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patterned Al/W bilayers with 10 vol.% sulfuric acid at 20 V and 3*C and 0.3 M oxalic

acid at 40 V and 3C, respectively. To promote the penetration of W0 3 into A120 3 barrier

oxide, anodization was continued for about 1 to 2 min., without changing any anodization

parameters, after the current first began to decrease. A mesh of platinum wires was used

as the cathode.

The W0 3 in the PA was removed using a pH 7 buffer solution (a mixture of

sodium phosphate and potassium phosphate with pH = 7.00 at 25"C, The VWR

International) at room temperature. The typical etching time was 10 min for all samples.

Ni nanowire growth

Nickel was electroplated from a Watts bath (containing 300 g/L NiSO4.6H20, 45

g/L NiCl2.6H20, 45 g/L H3BO3, pH 4.5) using a platinum anode at room temperature. A

constant current density of 1 to 2 mA/cm2 was maintained during electrodeposition.

When the cathodic voltage began to drop slightly from the saturation value (about -2 V ~

-2.15 V), the deposition was stopped.

For fabrication of free-standing nanowires, the OPA scaffold was removed using

a mixture of 1.8 wt.% chromic acid and 6 wt% phosphoric acid at 65 'C for 2 hrs. After

the OPA was removed, the sample was rinsed with acetone and isopropanol. In some

cases (e.g. Figure 4-5 (c)), Ni wires in the OPA scaffold were annealed at 4500C in

forming gas for 1 hr before the OPA was selectively removed. In other cases (e.g. Figure

4-5 (d)), the Ni was not annealed.
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4.3 Results and Discussion

Figure 4-2 (a) shows a current-time (I-t) curve for anodization of an Al/W bilayer

in 5 wt.% phosphoric acid at a constant voltage of 86 V and room temperature (RT).

During anodization of Al/Au or Al/Pt bilayers, the current surges abruptly as gas

evolution occurs when the alumina barrier layer reaches the Au or Pt interface [1]. In

contrast, as seen in Figure 4-2 (a), for Al/W bilayers the current drops gradually and

saturates after the alumina barrier oxide interface reaches the tungsten layer and an

anodic oxide of tungsten forms. Figure 4-2 (b) shows a scanning electron microscope

(SEM) image of a cross-section through a pore that has reached the final state shown in

the current-time curve. This SEM image clearly shows W0 3 protruding through the

barrier oxide, while the pore structures otherwise remain intact. Since the ionic

conductivity of W0 3 is higher than that of A120 3 (the electric field for the ionic transport

in W0 3 is about 5. 6 to 5.9x10 6 V/cm, while that in alumina 8.3x10 6 V/cm [12]), anodic

W0 3 forms preferentially when W is exposed to anodizing species, such as OH- or O2

ions. The large volume change associated with oxidation of W (Pilling-Bedworth ratio of

3.6 [12]) may also help W0 3 to penetrate the PA barrier oxide. It should be noted that the

features shown here (the I-t curve and penetration of tungsten oxide into the pores) are

general to other anodization conditions, including anodization using sulfuric or oxalic

acid.

Since W0 3 is insulating, it must be removed selectively with respect to A120 3 for

ohmic contact through the pores. Figure 4-3 shows the equilibrium ion concentrations in
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an aqueous solution with a-alumina and W0 3, as a function of pH at room temperature.

Dissolution reactions for alumina in aqueous solution are given by [13]

2A 3* + 3H20 = Al 20 3 + 6H+ (1)

and

Al 2 0 3 + H20 = 2A10 2 + 2H* . (2)

From these reactions, the equilibrium concentrations of aluminum and aluminate ions are

given by [13]

log[AI02 ] 203 + p 2 0 + pH = -11.76+ pH (3)
2RT -2.303

and

- 3
log[A13. =AO3 20 - 3pH =8.55 - 3pH, (4)

2RT -2.303

where pi 10 and pug0 are the standard chemical potentials of aluminum oxide (solid)

and water (liquid), respectively. From equation (3) and (4), it can be seen that alumina

will dissolve in strongly acidic or strongly basic solutions, such as phosphoric acid or

potassium hydroxide solutions, respectively. However, the dissolution of alumina is

negligible in mildly acidic or basic solutions.

The influence of pH on the solubility of tungsten oxide is given by the following

reaction [13],

W0 3 + H20 = W0 4
2 +2H*. (5)

The equilibrium concentration of tungsten oxide ions in aqueous solution is given by [13]

1og[WO2-]= "" + p320 + 2pH = -14.05 + 2pH , (6)
RT -2.303
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where 4,, and p, , are the standard chemical potentials of W0 3 (solid) and water

(liquid), respectively. From equation (6) and figure 4-3 it can be seen that W0 3 is stable

in an acidic environment but will dissolve in neutral and basic solutions.
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Figure 4-2. (a) A current-time curve for anodization of an Al/W/Ti multilayer film

deposited on oxidized silicon substrates; (b) A cross-sectional scanning electron

microscope image of a corresponding anodized Al/W/Ti multilayer. Note the protrusion

of W0 3 into the alumina pores, as schematically illustrated in Figure 4-1 c. (The scale bar

=200 nm.)

At pH = 7, the equilibrium concentration of W0 4 -is about 1 mol/L, while that of

A10 2 is 1.74x10-5 mol/L. Therefore, an aqueous solution with pH = 7 will dissolve W0 3

without etching A120 3.
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Figure 4-3. The influence of pH on dissolution of Al2O3 and WO3- Based on data in

reference 13.

Figure 4-4 shows cross sectional SEM images that illustrate the formation and

selective etching of WO3 in the perfectly ordered PA films formed on W underlayers. By

templating the original Al surface with a di-periodic pattern of dimples with square

ordering symmetry, perfectly ordered PA layers on W were fabricated, with pores

arranged with square symmetry, with a pore spacing of 200 nm, and with pore diameters
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of 83 nm or 55 nm. The larger-diameter pores were obtained using 'mild' anodization

conditions, 5 wt.% phosphoric acid at 86 V and room temperature, and the 55 nm-

diameter pores were obtained using 'hard' anodization conditions, 0.3 M oxalic acid at

100 V and 30C [7, 14]. The pores with varied diameters, shown in Figures 4-4 (c) and (d),

were anodized first under mild conditions, and then under hard conditions [7, 14].

It can clearly be seen that the protruding W0 3 in Figures 4-4 (a) and (c) is

selectively removed (Figures 4-4 (b) and (d)) in a pH 7 buffer solution, without

modification of the AAO pore structure. The top diameter of the pore increased

negligibly, from 83 nm to 83.8 nm, after etching, while that of the bottom of the pore

widened due to the shape of the protruding W0 3. Again, it should be noted that the

process of sacrificial oxidation and selective removal of W0 3 works for anodization with

different electrolytes (sulfuric and oxalic acid) and different voltages, as shown in Figure

4-5.

Figure 4-6 shows SEM images of Ni nanowires grown in long-range-ordered PA

prepared as described above. In Figure 4-6 (a) and (b), Ni nanowires with aspect ratios of

6.9 were grown to a uniform height and with a filling ratio > 97 %, indicating complete

removal of the insulating barrier oxide and W0 3. Figures 4-6 (c) and (d) show free-

standing Ni nanorods obtained after selective removal of the OPA scaffold using a

mixture of phosphoric and chromic acid at 650C.
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Figure 4-4. Pore opening through selective removal of W0 3: (a) SEM image of ordered

porous alumina (OPA) formed on a W underlayer using mild anodization conditions (86

V, 5 wt.% phosphoric acid solution); (b) A sample like the one in a), after selective

removal of the W0 3 that penetrates the pores. The anodic W0 3 was selectively removed

using a pH 7 buffer solution; (c) OPA formed on W underlayers using hard anodization

conditions (100 V, 0.3 M oxalic acid solution) followed by mild anodization conditions

[as in (a) above]; (d) A sample like the one in (c), after selective removal of the W0 3 that

penetrates the pores. (The scale bars = 200 nm).
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Figure 4-5. Selective barrier perforation process with oxalic and sulfuric acid

anodization: (a) SEM image of AAO formed on W at 40 V with 0.3 M oxalic acid

solution. The W0 3 protrusions have penetrated the barrier oxide of the alumina; (b)

Anodic W0 3 created by anodization in oxalic acid is selectively removed from alumina

pores using a pH 7 buffer solution. The bottom of the pores has been opened without

significant pore widening; (c) AAO formed on W in sulfuric acid (20 V, 10 vol.%

sulfuric acid solution). The W0 3 protrusions have penetrated the barrier oxide of the

alumina; (d) Anodic W0 3 created by anodization in sulfuric acid was selectively removed

from alumina pores using a pH 7 buffer solution. In both cases, anodization was carried

out using untemplated Al at 3C.
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Figure 4-6. Perfectly ordered Ni nanowire arrays: (a) Cross-sectional SEM image of

arrays of Ni nanowires grown by electrodeposition in an OPA scaffold, with square

ordering symmetry and with a periodicity of 200 nm (The scale bar = 2 gm); (b) top-view

SEM image of Ni nanowire arrays in an OPA scaffold (The scale bar = 1 pm); (c) SEM

image (at a tilt of 300) of a free-standing Ni nano-electrode array made by selective

etching of porous alumina scaffolds of the type shown in (a) and (b). The nanowire

spacing is 200 nm and the diameters are 83 nm. (The scale bar = 2 km); (d) SEM image

(at a tilt of 300) of a free-standing Ni nano-electrode array with a wire spacing of 200 nm

and diameter of 55 nm (The scale bar = 1 pm).
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4.4 Conclusions

A new method for perforation of the barrier layer in ordered porous alumina has

been developed, based on anodization of Al/W bilayer films and selective removal of

tungsten oxide. This technique does not lead to pore widening, and uniformly opens

pores over large areas without damaging or causing delamination of the porous alumina.

This technique has been demonstrated through the templated growth of perfectly ordered

uniform arrays of Ni nanowires with different wire diameters but the same wire spacing.
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Chapter 5. A Tungsten Interlayer Process for Fabrication of

Through-pore Anodic Aluminum Oxide (AAO) Scaffolds on

Any Substrate

5.1. Introduction

Arrays of one-dimensional (1-D) nanomaterials have attracted much attention for

various applications in electronic, optical, and energy storage devices [1-5]. Nanoporous

materials as scaffolds have been successfully demonstrated to provide effective routes to

the growth and assembly of the vertically aligned 1-D nanomaterials over very large areas

on various substrates [2, 6-8]. Thin film nanoporous anodic aluminum oxide (AAO), in

particular, has been extensively studied because of the ability to produce ordered pore

arrays with tunable nanostructural features [9-12]. Thin films of AAO are formed by

anodizing Al films on a substrate that offers mechanical support and often functionality

for vertically aligned 1-D nanomaterials as desired for specific applications [13-20]. For

example, AAO scaffolds have been grown directly on substrates with electrical

conductivity (Pt, Ti, W, and etc) [14-161, optical transparency (glass and indium tin oxide

(ITO)) [17, 18], and/or mechanical flexibility (polydimethylsiloxane (PDMS)) [19].

Moreover, a substrate under an AAO scaffold can allow epitaxial growth of

semiconductor nanowires from the substrate surface at the pore bottom, such as epitaxial

growth of (100) Si nanowires on (100) Si surfaces, by constraint of the vapor-liquid-solid

(VLS) mechanism [20].
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In practice, however, an additional barrier removal process is required to expose

the substrate surface at the pore bottom, since a thin layer of A120 3 , the barrier layer,

separates the pores from the substrates after anodization [10-12]. The barrier layer can be

removed by chemical etching (typically in diluted phosphoric acid), but this results in a

significant widening of the pores that makes it difficult to provide scaffolds for small-

diameter 1-D nanomaterials as defined by the etched AAO scaffold [13, 18, 20].

Furthermore, a substrate can react electrochemically after Al anodization is complete.

Metals, such as Pt, and ITO, violently produce 02 gas from water electrolysis under

anodic conditions (or H2 gas in cathodic conditions) which leads to non-uniform

anodization over large-area substrates and detachment of the AAO from the substrate [14,

17, 18]. Oxidative metals, such as Ta [21] and Nb [22] leave insulating and semi-

conducting by-products that are difficult to selectively remove with respect to A12 03-

To fully utilize the important structural features of AAO scaffolds for assembly of

vertically aligned 1-D nanomaterials, it is highly desirable to develop a process for

fabrication of AAO scaffolds on any substrate (AS) and expose the surface of the

substrate under at the base of the pore without widening of pores. So far, fabrication of

through-pore AAO structures has only been realized without pore widening for a limited

set of substrates, such as Ti and W [14-16].

In chapter 4, we reported a new method for perforation of the barrier A12 0 3 layer

without pore widening and decohesion of the AAO. In this method, a thin tungsten film

under the Al was used to form an anodic tungsten oxide that penetrates the barrier layer at

the base of the pores. A selective chemical etching process was developed to selectively

137



remove the penetrated anodic W0 3 and expose the surface of the metallic W underlayer

at the base of the pore, without pore widening.

In this chapter, we describe development of a W-interlayer process as a general

strategy for fabrication of a small-diameter through-pore AAO on any substrate (through-

pore AAO/AS) under various anodization conditions without increasing the pore

diameter. The process is based on the previously reported barrier perforation technology

using a tungsten underlayer, but we further refine the process to expose surfaces of any

substrate, not just W, at the pore bottom. First, we report that anodic oxidation of W

results in barrier type WO3 formation, which reaction is self-terminating with application

of a constant anodic voltage in porous AAO-forming electrolytes. Then, we determine the

consumed thickness of the remaining W layer for the anodic oxidation under a variety of

conditions. A through-pore AAO/AS structure (in the present case, to Au substrates) was

fabricated by anodization of multilayer structures, i.e., AlIW/AS, with W interlayers with

precisely controlled thickness so that the AAO barrier layer can be perforated to expose

the substrate surface at the pore base using a selective wet etching process. Finally, Au

and Pt nanowires with controlled diameter from about 12 nm to about 120 nm were

grown using electrodeposition to demonstrate the successful implementation of the W

interlayer process for the through-pore AAO/AS process without modification of the

nanostructure of the as-grown scaffold.

5.2 Experiments

Multilayer thin films, W (10 and 20 nm)/Au (200 nm)/Ti (15 nm) and W (80
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nm)/Ti (15 nm), were deposited on thermally oxidized Si substrates using e-beam

evaporation. The base pressure was 1 x 10-6 Torr and the thickness of the films was

determined using a quartz crystal monitor. Thin layers of Ti were used as adhesion layers

for Au and W films on SiO 2 substrates. Al (500 nm) thin films were then deposited on the

multilayer films.

Anodization of the multilayer thin films was carried under various anodic

conditions to produce porous AAOs with different pore spacings D, and diameters DP. For

example, V. = 86V in 5 wt.% phosphoric acid solution at room temperature (RT) and V.

= 89V in 0.3 M oxalic acid at 3C were used to fabricate AAOs with D, 200 nm with D,

120 nm and 40 nm, respectively. For AAO with Ds ~ 60 nm and 100 nm, Al multilayers

were anodized with 0.3 M sulfuric acid at V. = 25V and 3*C, and with 0.3 M oxalic acid

at Van = 40V and 3*C, respectively. A mesh of platinum wires was used as the cathode.

Anodic tungsten oxide which forms at the bottom of the pores in the AAO at the end of

anodization of Al/W bilayer was removed using a pH 7 buffer solution (a mixture of

sodium phosphate and potassium phosphate with pH = 7.00 at 25"C, VWR International)

at room temperature for 10 min.

Gold and platinum nanowires were grown by electrodeposition in a through-pore

AAOs on Au/Ti bilayers on a thermally oxidized Si wafers using a platinum counter

electrode at RT. Gold was electroplated from a commercial solution (BDT@510,

Enthone) and a constant current density of 0.25 mA/cm2 was applied. For Pt,

electrodeposition was conducted using a solution of 0.5 mM K2PtCl4 (Alfa Aesar) in 0.5

M H2 SO 4 at RT with application of a constant voltage of 0.01V versus a Ag/AgCl
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reference electrode (Beckman). For fabrication of free-standing Au and Pt nanowires, the

AAO scaffold was removed using a 25 wt.% tetramethylammonium hydroxide (TMAH,

SACHEM, INC) solution at 60'C for 2 hours. TMAH solutions also remove the

remaining W on Au substrates. After the AAO was removed, the sample was rinsed with

acetone and isopropanol.

5.3 Results and Discussions

Figure 5-1 (a) and (b) illustrate conventional (Fig. 5-1 (a)) and W-interlayer (Fig.

5-1 (b)) process schemes for fabrication of through-pore AAO scaffolds for growth of

nanowires or nanotubes. In our case, an Au film was used since it is a well-established

electroplating base for growth of metallic nanowires. In the conventional process shown

in Fig. 5-1 (a), a thin insulating barrier oxide, A12 0 3 , separates the pores from the Au

substrate. In most cases, barrier removal is achieved by controlled chemical etching of

the A12 0 3 . However, use of a chemical etching processes results in widening of the pore

and therefore limits the ability to grow the smallest-diameter nanowires as defined by the

as-grown AAO scaffold. Moreover, violent water electrolysis reactions at the Au

substrate often induce mechanical failure of the AAO, though crack formation and even

delamination from the substrates.

Figure 5-1 (b) presents the W interlayer process for formation of a through-pore

AAO scaffold on an Au substrate, retaining the minimum pore diameter achieved in the

as-grown scaffold. In the W interlayer process, a thin layer of tungsten is inserted

between the Al film and the Au substrate, constituting an Al/W/Au tri-layer. When the tri-
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layer is anodized, the anodization reactions proceeds as 02 ions reach each interface;

with the W interlayer reacting with 02 ions, after porous AAO formation is finished, to

form W0 3 that penetrates the barrier layers at the base of the AAO pores and, then, abrupt

02 gas evolution occurs from reaction with the Au substrate upon complete consumption

of W interlayer. By precisely controlling anodic oxidation of the W under the AAO,

therefore, it is possible to achieve the condition for complete oxidation of W under the

pore base without 02 gas evolution, as illustrated in Fig. 5-1 (b). The Au surface at the

bottoms of the pores can then be exposed by selective removal of the penetrating W0 3

with respect to both the AAO and the Au substrate through use of a wet etching process

using pH 7 buffer solutions, as reported in our previous study [16]. Therefore, for ideal

implementation of the W interlayer process, it is critical to determine the point at which

the W thickness is fully consumed through W0 3 formation as a function of anodization

parameters such as the anodic voltage, electrolyte chemistry, and anodization time for the

W under the AAO.

To investigate the structural details of W0 3 formation at the base of the pores of

AAO, the anodization of Al (500 nm)/W (80 nm) bilayers was conducted with application

of a constant anodic voltage in various electrolytes. Figure 5-2 shows the anodic current

density-time (j-t) curve for anodization of an Al/W bilayer in 5 wt.% H3PO4 at V. = 86V

and at room temperature (RT). The anodic current density becomes constant at ~ 1.9

mA/cm 2 from 260 to 720 sec, indicating that the AAO forms in a steady-state. After the

end of Al anodization, W0 3 forms at the pore bottom, where the electric field is

concentrated with respect to the pore walls, and penetrates the A120 3 barrier layer, in part
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due to a large volume expansion ratio. In the j-t curve, as the anodization of W starts, the

current density rapidly drops to about 0.5 mA/cm2 and then more gradually decreases.

After 1100 sec., the anodic current density saturates at less than 0.06 mA/cm2.

a) b)
Au Au

Au Au

Au Au

Figure 5-1. Schematic processes for fabrication of a through-pore AAO on a substrate.

(a) The conventional process for anodization of an Al/Au bilayer followed by etching of

the AAO to clear the barrier oxide at the base of the pore. This results in an increase in

the pore diameter. (b) The new W interlayer process for anodization of an Al/W/Au tri-

layer. Here, the W interlayer forms W0 3 that perforates the A120 3 barrier layer and can be

selectively etched to open the base of the pores without pore widening. The W also

promotes adhesion of the AAO to the Au substrate.
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Figure 5-2. The anodic current density-time (j-t) curve for anodization of an Al/W bilayer

in 5 wt.% phosphoric acid at 86V and room temperature. The tungsten oxide forms as the

j begins to decrease. The gradual decrease and saturation in j at the end of anodization

corresponds to barrier-type anodic oxidation of W.

It is well-known that anodization of W results in formation W0 3 with flat

surfaces, forming a so-called barrier type oxide in electrolytes used to form porous AAO,

such as phosphoric and sulfuric acid [23]. In contrast with porous oxide formation, for

which the growth rate can be maintained at a steady state with application of a constant

anodic voltage, growth of a barrier type oxide is self-limiting; and the growth of the oxide

stops as the driving force for anodic oxidation, i.e. the electric field across the oxide,

decreases as a result of thickening of the oxide at a fixed anodic voltage [24]. Since the

anodic current density is directly related to the growth rate of the oxide by Faraday's law,

the gradual decrease of the anodic current density in Fig. 5-2 confirms that the
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penetrating W0 3 at the pore bottom also grows as a barrier type oxide and that the growth

is self-limiting.

Figures 5-3 (a) and (b) show cross-sectional scanning electron microscopy (SEM)

images of anodized Al/W bilayers under the condition shown in Fig. 5-2 for different

anodization times at which j drops to 1.17 and 0.2 mA/cm 2. Here, the selective removal

of W0 3 using a pH 7 buffer solution for 10 min. was carried out to emphasize the

formation of the perforating W0 3, and that dimples in the W underlayer were produced as

a consequence of the constraint of oxidation of tungsten under the AAO pores. The depth

of the dimples in the W layer was measured as a function of W anodization time. When

the anodic current density rapidly drops, as shown in Fig. 5-3 (a), the barrier-perforating

W0 3 forms only locally, due to non-uniform anodization of W under the AAO. As W

anodization continues, with a gradual decrease in the anodic current density, the W0 3

penetrates the barrier layer of each pore of the AAO. The self-limiting nature of the W0 3

growth facilitates uniform perforation by suppressing the growth of the early-penetrating

W0 3. Figure 5-3 (b) shows that the pore bases of the AAO are uniformly perforated when

i = 0.2 mA/cm 2 . Figure 5-3 (c) shows the measured dimple depth in the W underlayer as a

function of the W anodization time. The W anodization time is defined by subtracting the

time at which the anodic current drops due to complete anodization of Al from total

anodization time for the Al/W bilayer. For example, the W anodization times for Fig. 5-3

(a) and (b) were about 81 and 257 sec., respectively. Figure 5-3 (c) clearly shows that the

anodic oxidation of the Al/W bilayer consumes about 19.3 nm of W for the formation of

penetrating W0 3 in 5 wt.% H3PO4 at V. = 86V and room temperature, independently of
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the W anodization time. This confirms that the anodic W0 3 grows as a barrier-type oxide

under AAO.

The consumed thickness of the W layer for penetrating W0 3 formation was also

measured under various porous AAO formation conditions. Figure 5-4 presents a

summary of measurements of the W dimple depth as a function of the anodic voltage in

different electrolytes, after treatment of W0 3 in pH 7 buffer solutions for 10 min. Anodic

conditions, such as 0.3 M sulfuric acid at 25V and 30C, and 0.3 M oxalic acid at 40V and

89V and 30C, including 5 wt.% phosphoric acid at 86V and RT, were used. Since the

W0 3 also grows as a barrier-type layer under sulfuric and oxalic anodization conditions,

the Al/W bilayers were anodized until the anodic current density gradually decreased and

saturated in all conditions, or for W oxidation times were 165, 170, and 60 sec. The

measured dimple depth in the W films was about 10.4 nm at 25V, 11.5 nm at 40V, 19.3

nm at 86V and 24.5 nm at 89V.

The measured dimple depth shown in Fig. 5-4 allows determination of the

optimum thickness of the W interlayer for fabrication of a through-pore AAO on any

substrate, without enlarging the pore diameter and without violent anodic reactions with

the substrate. It should be noted that the optimum thickness of the W interlayer must be

empirically determined for each anodic voltage and electrolyte chemistry. For instance,

Fig. 5-5 shows the j-t curves for anodization of Al/W/Au tri-layers in 5 wt.% H3PO4 at V.

= 86V and RT, for which the optimum thickness of the W interlayer was determined to be

about 19.3 nm, and illustrates the impact of the W interlayer thickness on the anodization

behavior of the tri-layer. If the W interlayer thickness (10 nm) is thinner than the
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optimum thickness (- 19.3 nm), the resulting WO3 is too thin, and the electric field across

the oxide is still strong enough to drive oxygen ions to the Au substrate. In consequence,

the anodic current surges due to 02 evolution from the substrate immediately after Al/W

anodization is finished. On the other hand, if the interlayer thickness is close to the W

optimum thickness, the tungsten oxide can grow to its self-limiting thickness and the

abrupt increase in the current density can be avoided, until the full thickness of the W

interlayer is consumed. Additionally, in Fig. 5-3, we see that the barrier layer of the AAO

can be perforated by stopping anodization of the Al/W layer when the current density

starts to gradually decrease. Therefore, selective barrier perforation can be achieved by

stopping anodization of the Al/W (20 nm)/Au tri-layer after a gradual decrease in the

current but before the current surge, i.e. at about 160 sec of W anodization, or the time at

which j= 0.5 mA/cm 2 in the j-t curve. The inset in Fig. 5-5 clearly shows that the surface

of the Au substrate was exposed at the base of the pores through selective removal of the

penetrated W0 3. Traces of W under the cellular boundary of the AAO also appeared

where the AAO was detached during preparation for SEM imaging.
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Figure 5-3. Cross-sectional scanning electron microscope images of through-pore AAO

on a W underlayer, after anodization in 5 wt.% H3PO4 at 86V and RT until (a) j = 1.17

mA/cm2 (or the W oxidation time = 81 sec) and (b) j = 0.2 mA/cm 2 (or the W oxidation

time = 257 sec). The penetrating W0 3 at the pore bottom was removed using a pH 7

buffer solution for 10 min, revealing dimples in the W underlayer. Scale bars = 200 nm.

(c) Measured depth of the dimples in the W underlayer as a function of W anodization

time under the same anodization conditions as in (a) and (b).

147

J-ft



30

25

S20

315

~10

I

. . 0.3 M Sulfuric acid, 3C
* . 0.3 MOxalic acid, 3C

- A 5 wt.% Phosphoric acid, 22C

TI-I

- 1 *

20 30 40 50 60 70
Anodic Voltage (V)

80 90

Figure 5-4. Depth of dimples in the W underlayer resulting from consumption of W to

form the penetrating W0 3 at the base of the pores, measured under various anodization

conditions. The measured depth of the dimples provides the optimum thickness of the W

interlayer for each anodization condition.
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Figure 5-5. Effect of the thickness of the W interlayer on the anodic current density-time

(j-t) curves for anodization of an Al/W/Au trilayer in 5 wt.% phosphoric acid at 86V and

room temperature. For a W film with a thickness of 10 nm, j surges immediately after

AAO formation is finished. Sequential anodic reactions are observed as the W oxidizes.

The inset image shows a cross-sectional SEM image of the through-pore AAO on Au

with a 20nm thick layer after anodization was stopped when j = 0.5 mA/cm2. Scale bar =

200 nm.
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Figure 5-6 shows SEM images of arrays of gold and platinum nanowires

electrodeposited in selectively perforated AAO scaffolds on Au substrates using the W

interlayer process under various anodization conditions. The AAO scaffolds were

fabricated by anodizing the Al/W/Au tri-layers in 5 wt.% phosphoric acid at 86V and

room temperature (Fig. 5-6 (a)), 0.3 M oxalic acid at 40V and 3"C (Fig. 5-6 (b)), and 0.3

M sulfuric acid at 25V and 30C (Fig. 5-6 (c) and (d)). The Au surfaces were exposed by

selectively etching the penetrating W0 3.After the growth of the Au and Pt nanowires, the

through-pore AAOs were etched for release of the nanowires. Two different thicknesses

of the W interlayer (10 and 20 nm) were used, based on the dimple depth measurements

shown in Fig. 5-4. Using the scaffolds with different nanostructures, nanowires with

various diameters and densities were grown. For example, Fig. 5-6 (a) and (b) shows

vertically-aligned Au nanowires with diameters of about 120 nm, and 31.8 nm,

respectively. Figure 6 (c) shows an SEM image of the Pt nanowires grown in the scaffold

with the smallest pore diameter (- 12 nm) used in this work, demonstrating that the

diameters of the nanowires are the same as the pore size of the as-grown AAO scaffold.

In addition, a low magnification image of the Pt nanowire array (Fig. 5-6 (d))

demonstrates that Pt nanowires with diameters of about 10 nm can be uniformly grown

on the Au substrates over very large areas using the W interlayer process.
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Figure 5-6. Tilted-angle (300) SEM images of free-standing Au and Pt nanowires on Au

substrates, formed by electrodeposition in various through-pore AAOs formed with

controlled pore diameters. (a) Au nanowires with diameters of about 120 nm and spacings

of about 200 nm and lengths of about 590 nm and (b) Au nanowires with diameters of

about 31.8 nm and spacings of about 100 nm and lengths of about 530 nm. Scale bars = 1

[m. (c) Pt nanowires with 12 nm diameters, spacings of 65 nm and lengths of about 710

nm. Scale bar = 200 nm. (d) Large-area view of the Pt nanowires in (c). Scale bar = 5 [tm.
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5.4 Conclusions

We developed a W interlayer process for formation of small-diameter through-

pore AAO scaffolds with different pore diameters and spacings on an Au substrate. The

W interlayer process is based on anodization of an Al/W/Au tri-layer with precise control

of the W thickness for the formation of AAO scaffolds with the WO3 extrusion at the pore

bottoms and selective removal of the W0 3 to expose the surface of the Au substrate,

without widening pore diameter.

For precise control of the W thickness, we first showed that anodic oxidation of

W constrained under AAO consumes a constant thickness of W with application of a

constant voltage in acidic electrolytes. From comparison of the j-t curve and the structural

evolution of the penetrating W0 3 during anodization of Al/W bilayer, we showed that the

saturation in the anodic current density at the end of anodization indicates the self-

limiting nature of the WO3 growth. We then determined the thickness of consumed W for

anodic oxidation under the pore bottom in various anodization conditions.

A through-pore AAO on an Au substrate was fabricated by anodization of an

Al/W/Au tri-layer with W interlayers with optimum thickness. For example, the optimum

thickness of the W interlayer for anodization of the tri-layer in sulfuric acid at 25V is

about 10 nm. The barrier layer at the pore bottom can be perforated by formation of the

penetrating W0 3 which can be monitored by the j-t curve of the anodization of the tri-

layer and the Au surface is exposed by selective wet etching of the penetrating W0 3 in

pH 7 buffer solution for 10 min.

Using such scaffolds, vertically aligned free-standing Au and Pt nanowires with
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different diameters from about 12 nm to 120 nm were grown on Au substrates by

electrochemical deposition. Since anodization of an Al/W/Au tri-layer proceeds in

sequential manner and anodic oxidation of the W interlayer is self-limiting, the W

interlayer process developed in this work can be applied to other substrates under a range

of specific anodization conditions. Therefore, the W interlayer process provides a simple

way to fabricate a through-pore AAO scaffolds for the growth of hetero-epitaxial

nanowires or 1-D nanomaterials with controllable Ohmic and Schottky contact on

substrates required for various applications.
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Chapter 6. Summary and Future Work

6.1 Summary

For 50 years, field-assisted dissolution of the oxide has been the generally

accepted model for formation of porous alumina. According to this model, it is suggested

that the dissolution rate of the oxide is greatly enhanced in pore-forming electrolytes in

the presence of the external field during anodization and hence steady-state pore

formation can be maintained. However, the dissolution rate of the oxide as a function of

the external electric field has never been measured, partly due to the fact that the anodic

oxidation of Al is in dynamic balance between dissolution at the oxide/electrolyte (o/e)

interface and oxidation at the metal/oxide (m/o) interface.

In work performed for this thesis, we developed a new experimental procedure,

called discontinuous anodization, to decouple dynamic equilibrium between two

interfaces as a function of the electric field during Al anodization. In discontinuous

anodization, an A12 0 3 layer with flat surfaces is first formed, and the thickness was then

reduced through use of a controlled applied anodic voltage, and therefore a changing E-

field across the oxide during anodization in acidic electrolytes. We quantitatively

demonstrated that the dissolution rate of the oxide was enhanced in the presence of the

external E-field and pore formation initiated due to a field-induced instability. However,

the spacing of the pore structures resulting from this field-induced instability was

significantly different from that of the well-known porous structures studied in previous

work. The spacing of these pores also had a linear dependence on the anodic voltage
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which is significantly smaller than the pore spacing of the conventional pores. The field-

assisted dissolution model is therefore not consistent with these experimental results.

Instead, it is demonstrated that mechanical behavior of the anodic oxide has a

governing role in initiation and steady-state growth of pores during Al anodization. It is

shown that the well-known pore structures initially form due to a mechanical instability

and the pore spacings are initially determined by the fastest growing wavelength, .ax. In

addition, the steady-state pore growth is a result of forced plastic deformation and flow of

the oxide. Based on these observations, a model, in analogy with cellular solidification, is

proposed to quantitatively explain the formation of hexagonally closed packed porous

AAO at certain anodization conditions, based on the flux balance between oxidation and

lateral plastic flow at the m/o interface. In this model, repulsive mechanical interactions

of each pore arising from the need to share a volume in which the oxide flows are

suggested as a driving force for self-organization of the pores.

New insight gained from this mechanistic study of formation of porous aluminum

oxide allowed us to develop new routes to nano-structuring of AAO scaffolds for

assembly of ordered arrays of low-dimensional materials with controlled diameter,

spacing, and orientation with respect to a substrate surface.

Horizontal porous AAO (H-AAO) on a substrate provides an ideal platform for

growth of ordered arrays of semiconducting nanowires and nanotubes in the plane of a

substrate surface. H-AAO can be fabricated by anodizing vertical sidewalls of patterned

Al films capped with insulating SiO 2 mask layers. The mask layers prevent unwanted

anodization at the top surfaces. However, plastic deformation and flow of the aluminum
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oxide are severely inhibited during anodization of Al in mechanically confined structures.

Under anodization conditions for which 140% of volume expansion is expected,

mechanical constraints are shown to result in formation of periodic dendrite inner pore

structures and a reduction of the growth rate under self-ordering anodization conditions.

Based on this mechanistic understanding, we demonstrated that anodization conditions

that lead to zero volume expansion avoid dendritic H-AAO pores and kinetic retardation

of pore formation. This is a new and potentially very useful result.

A process for perforation of the insulating barrier oxides at the base of pores,

without modifying porous structure from as-grown AAO films, was developed. This

process can be carried out on any conducting substrate. In the process, plastic

deformation and flow of A120 3 facilitates penetration of anodic W0 3, which has a high

volume expansion ratio of ~ 3.6, into the barrier layer of the porous AAO during

anodization of Al/W bilayers on a Si substrate. This allows exploitation of a new

selective barrier perforation process, since the two anodic oxides are chemically distinct

and can be selectively etched.

In chapter 4, we present a thermodynamic background for a selective wet etching

process for of W0 3 with respect to A120 3 using pH 7 buffered solutions. We also

successfully demonstrated selective removal of penetrated W0 3 to expose a metallic W

surface at the base of pores. without changing the as-anodized pore structure. In chapter

5, we discussed a further refinement of this process, and report a W interlayer process for

fabrication of a through-pore AAO scaffold on any conducting substrate (AS) by

anodizing Al/W/AS tri-layers. By empirically determining the optimum thickness of the
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W interlayer for specific anodization conditions and by selective wet etching of the

anodic W0 3 on AS, we successfully demonstrate through-pore AAOs on a variety of

substrates for various anodization conditions without changing the pore diameter on any

substrate. With this W interlayer process, we fabricated vertically aligned free-standing

Au and Pt nanowires by electrodeposition on an Au substrate.

6.2 Future Work

Through the work described in this thesis, we showed that the growth stress of the

anodic oxide formed during anodization drives pore initiation due to a mechanical

instability and that steady-state pore growth results from plastic deformation and flow of

the oxide. However, there has been very limited work done on measurement of the

growth stress during anodization. To elucidate the detailed origins of the mechanical

instability, it is important to understand the stress evolution of the oxide during pore

formation as a function of anodic conditions. For example, as we discussed in chapter 2,

the origin of the mechanical instability (energetically driven or kinetically driven strain

instabilities) can be indentified from monitoring how the critical wavelength depends on

the critical stress, i.e. Ac 1/0, or Ac 1/ot. Therefore, future work should include in-

situ growth stress measurements under various anodization conditions. Furthermore, the

effects of the externally applied stresses on the pore spacing at the on-set of pore

formation should also be investigated.

In chapter 2, we showed that plastic flow of the oxide drives self-ordering of

pores in a steady state. In chapter 3, we also showed that the growth rate of porous
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alumina is greatly reduced as a result of suppressed plastic deformation and flow needed

when anodization leads to a volume expansion. Therefore, the next question is how

ordering and the growth rate of porous anodic oxides in steady-state are affected by

external stress during anodization. Moreover, anodic alumina shows significant plasticity

during anodization, while A120 3 is known as a brittle material. Therefore, future work

should include studies of the origin of the plasticity of the oxide during anodization. In

analogy to discontinuous anodization, this can be done using tensile mechanical tests of

the pre-formed oxides as a function of the E-field during anodization.

Finally, through the work described in chapter 4 and 5, we demonstrated

fabrication of metallic nanowires with various diameters on any substrate. In future work,

the various electrical and electrochemical properties of the arrays of metallic nanowires

should be evaluated for use in functional devices.
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