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Abstract

Colloidal dispersions are usually stabilized by interparticle electrostatic repulsion.
However, strong electrostatic potentials prevent nucleation of new structures. When
the electrostatic potential is strongly attractive, particles coagulate into a disordered
structure; if it is strongly repulsive, known processes can order them into a close-
packed structure. Driven by the need to make tailored structures, researchers have
focused on circumventing electrostatics to nucleate and stabilize newer structures.
Yet most colloidal systems of interest are strongly charged. Reducing the electro-
static potential of a system may create only unstable structures without long-range
order. In this thesis, electrostatic interaction between strongly charged particles is
exploited to make novel structures. It is shown that -with an added steric compo-
nent in the interaction potential- oppositely charged particles, which undergo rapid
coagulation otherwise, can be arranged into stable, long-range ordered structures.
Compared to their like-charged counterparts, these structures have greater stability
due to an attractive electrostatic potential. It is shown that an entire class of sur-
factants, amphiphilic non-ionic surfactants, can be used to stabilize an oppositely
charged particle system. Stabilizing these systems, allows for the nucleation of newer
structures. For instance, it is shown that a non-close-packed arrangement of positive
particles can be obtained on a layer of negatively charged particles. Creating such
non-close-packed 2D structures on a template is essential for creating 3D non-close-
packed structures. Indeed, it is shown that at high Debye lengths, by varying the
concentration of particles in a suspension of like-charged colloids, electrostatic repul-
sion among particles can stabilize "sparse" structures. In these structures, particles
occupy only a few of the many sites that are available to them. Yet, they form an
ordered structure. Nuclei of a sparser structure are assembled at higher Debye length
and lower particle concentration. Monte Carlo simulations confirm that these struc-
tures are stabilized by electrostatic repulsion when particle concentration is low. It
is shown that the remaining sites in a sparse structure can be filled by a different
particle type. By replicating this process of 2D heterostructure formation, layer by
layer, and removing one kind of particle in the last step of the process, a two-layer



non-close-packed structure is obtained.
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Chapter 1

Motivation and Layout of the

Thesis

Colloidal dispersions were regarded as ideal systems to experimentally simulate molec-

ular behavior [1, 2, 3]. Thus, the behavior of colloidal particles in suspension has been

the subject of several studies [4, 5]. It is only in the last few years that researchers

have come to realize the significance of colloidal crystals. These ordered aggregates of

colloidal particles have shown a remarkable promise as sensors [6, 7, 81 and molecular

filters [9, 10], and most notably as photonic crystals [11, 12, 13].

Colloidal self-assembly on bare substrates produces close-packed structures. As a

result, templates are required to nucleate and stabilize non-close-packed structures.

Recently, Santamaria et al. demonstrated that a diamond cubic complete photonic

band gap (CPBG) structure is produced when polymer and silica particles are robot-

ically placed, one by one, on a template [14]. Since this process is lengthy and expen-

sive, methods that rely on self-assembly are favored. In the last few years, researchers

have used mildly repulsive and hard-sphere potentials to make perfect close-packed

crystals [15]-[19]. Others have proposed that templated assembly of ionic colloidal

crystals (ICCs), in a dispersion with mildly attractive electrostatic potential, may be

able to create CPBG photonic crystals [20, 21].

In this thesis, novel self-assembly methods are used to order strongly charged par-

ticles. These methods utilize electrostatic interaction to nucleate newer structures. It



is shown that the motif of these structures can serve as a starting point for generating

the complex periodic architectures, which are needed for integrated photonic crystal

applications.

The objective of this thesis is twofold. The first objective is to outline methods

that can be used to create stable aggregates from strongly charged particles, whether

they are similarly or oppositely charged. The second objective is to utilize these meth-

ods to create binary and non-close-packed structures through directed self-assembly.

It is shown that when particles are oppositely charged, a steric force is necessary

to order them into stable structures [22]. Binary colloidal crystals are nucleated

and show greater stability compared to their like-charged counterparts. Therefore,

they are better candidates for making low-volume and non-close-packed architectures.

Findings from this study are contrary to published reports, which state that only

mild electrostatic attraction can nucleate stable and ordered structures [23]. It is

also shown that like-charged particles order in a non-close-packed arrangement on

a close-packed substrate of oppositely charged particles. Clearly, greater attraction

between particles leads to a more stable structure. Stability of these structures is

verified through theoretical calculations.

When particles are similarly charged, it is shown that a suitable 2D template can

be used to nucleate non-close-packed structures [24]. These structures are sparsely

ordered*. In other words, the particles occupy only a few of the sites available to them.

Yet, they form an ordered structure. Experiments and computational Monte Carlo

simulations show that a high Debye length in the solvent and a low concentration of

particles in the suspension are necessary requirements for nucleating sparse structures.

If the Debye length is small, thermal motion would prevent the nucleation of sparse

domains. It is shown that sparse arrangement of particles can be exploited to make

a non-close-packed two-layered structure.

*In this thesis, sparse ordering refers to an arrangement of particles, such that they are ordered
with a (110) orientation (with respect to the underlying substrate) on a template with holes arranged
in (100) orientation. Additionally, only 50% of the holes on the template are occupied.



1.1 Layout of the Thesis

Chapter 2 provides a background of colloidal forces. Later in the chapter, a brief lit-

erature survey of colloidal self-assembly is presented. Thereafter, a few self-assembly

and directed self-assembly methods, relevant to this thesis, are discussed.

Chapter 3 discusses a simple and rapid layer-by-layer method to order strongly

and oppositely charged particles. By using a spin-coating method, stable LS2 and LS6

structures are nucleated. Later in the chapter, a dip-coating method is used to make

two layers of a non-close-packed structure. Theoretical calculations show that, using

oppositely charged particles creates more stable structures compared to similarly

charged particles. At the end of this chapter, the role of hydrophobic interaction

during self-assembly of charged particles on charged substrates, is discussed.

Chapter 4 discusses the formation of a sparse layer of particles on a template,

with holes arranged in (100) symmetry. It is shown that the sparse order depends

on the Debye length of the solvent and concentration of particles in the suspension.

Subsequently, a 2D heterostructure is formed by filling the unoccupied sites in the

sparse layer. Thereafter, the conditions and experiments for the formation of a two-

layer heterostructure are discussed. It is shown that the removal of one type of particle

from this structure, leads to a two-layer structure with non-close-packed arrangement

of particles.

Chapter 5 reviews the mechanism behind stick and slip. Recently, a few methods

have been used to make colloidal crystals; in these methods there was no stick and slip

of the meniscus. In this chapter, the feasibility of these methods, such as Langmuir-

Blodgett (LB), to assemble a sparse pattern of particles, is discussed.

Chapter 6 discusses the results from Monte Carlo simulations. Conditions for the

arrangement of colloidal particles into sparse domains are discussed. The results from

these simulations show that the formation of sparse domains requires a large Debye

length in the solvent and a low concentration of particles in the suspension. Further,

conditions for the formation of sparsert domains are discussed.

tIn this thesis, sparser ordering refers to an arrangement of particles, such that they are ordered
with a (111) orientation (with respect to the underlying substrate) on a template with holes arranged



In Chapter 7, general conclusions and the scope of this thesis are discussed. In

the end, future directions for this work are outlined.

in (100) orientation. Additionally, only 25% of the holes on the template are occupied.



Chapter 2

Colloidal Forces and Methods of

Self-Assembly

Colloidal science has its roots in nineteenth-century discoveries concerning the be-

havior of minute particles suspended in a solvent. These systems are called colloidal

dispersions. A distinguishing feature of these dispersions is that the area of con-

tact between the dispersed particles, and the solvent is relatively large. The name

"colloid" itself, comes from a study of colloidal dispersions by Thomas Graham in

1860. While looking at the passage of various solute dispersions through a dialysis

membrane, one kind of solute could not pass through. This solute (natural gum) led

Graham to coin the term "colloid" (after kolla, meaning natural gum). Presently,

colloidal dispersions are used all around us. Some notable examples are milk, paints,

etc.

Colloidal dispersions occur in many forms. The most widely used and studied are

dispersions of solids in liquids. The majority of conclusions from these studies are

applicable to dispersions of liquids in liquids (emulsions) and gases in liquids (foams).

However, those conclusions cannot be extended to dispersions of solids or liquids in

gases (aerosols). This thesis will be focused on dispersions of solids in liquids.

Particle size and shape are of considerable importance in setting the properties of

a colloidal system. A colloidal particle is a macroscopic entity, composed of a number

of atoms or molecules. The size of a colloidal particle ranges from a few nanometers



to hundreds of micrometers. However, the solute particles should be distinguishable

from the solvent molecules. As a result, the colloidal particles should be no smaller

than a nanometer.

Since the latter part of the 2 0 th century, production of near-monodisperse disper-

sions has enabled many fundamental studies on colloidal particles. These particles

are uniform in size, shape, composition and surface properties. Spherical colloids in

particular, have been the most successful, best-established examples of monodisperse

systems. Elaborate schemes exist to synthesize spherical colloids from different ma-

terials. Driven by the minimization of interfacial energy, the spherical shape may

represent the simplest form into which a colloidal particle can develop for isotropic

surface energies. Experimental studies on spherical colloids have greatly enriched

our understanding of their light-scattering properties, interactions between colloidal

particles and their hydrodynamic properties.

In addition, spherical colloids represent ideal building blocks that can be readily

assembled into ordered structures. These ordered lattices are referred to as colloidal

crystals. Colloidal crystals allow for the observation of interesting functionality from

long-range ordered structures and not just the constituent particles. For example, the

beautiful colors of opal are the result of light diffraction from close-packed crystals

of silica colloids, which are themselves colorless. More recently, calculations have

shown that some colloidal crystal structures have a complete photonic band gap.

This has generated a lot of excitement and heralded newer ways of controlling crystal

growth orientation. As a result, newer ways of assembling colloidal crystals have

been proposed and almost all of these rely on controlling colloidal interaction. More

detailed discussions on these topics can be found elsewhere [25]-[32].

2.1 Brownian Motion

For very dilute suspensions, any interparticle interactions can be ignored. When

these dispersions are viewed under a microscope, the particles are seen to move in

a random motion. This is called Brownian motion. Brownian motion of particles



originates due to an uneven bombardment of the particles by solvent molecules. At

each step, the particles move in the direction of lower molecular densities. Due to

the random motion of water molecules, the directional motion of colloidal particles

fluctuates in a random manner and their velocities are governed by hydrodynamic

drag. For a spherical particle, the Stokes drag factor, so, is a function of the radius

of the sphere, a, and the viscosity of the fluid, 7, as shown in eq. 2.1:

s, = 67rqa. (2.1)

The root mean squared (rms) velocity depends on the rms distance moved, Xrms, in

a time interval t, as:

Vrms = Xrmst. (2.2)

The work done to move the particle is the hydrodynamic force, fV = VrmsSv, times

the distance xrms. This is the same as the thermal energy for the particle, kBT,

where kB is the Boltzmann's constant and T is the absolute temperature. Two

important parameters can be derived from the above equations. The first is the

diffusion coefficient, D, shown in eq. 2.3:

x 2 kBTD =_ - = . (2.3)
t (67rqa)

The above equation, eq. 2.3, is the Stokes-Einstein equation. The second parameter

is tc: the characteristic time it takes for a particle to diffuse a distance equal to its

radius, and is given by eq. 2.4:

tc = 67rqas3 (2.4)
kBT

The above equation is the Einstein-Smoluchowski equation. For an isolated 1 Am

particle at 20 C in water, the characteristic time is 0.5 seconds. For concentrated

colloidal dispersions, the movement of particles is influenced by neighboring particles

and interparticle forces (electrostatic, hydrodynamic or van der Waals).



2.2 Interactions between Colloidal Particles

2.2.1 Van der Waals Interaction

The van der Waals (vdW) interaction is the term used to describe the forces resulting

from interactions between dipoles, quadrapoles and multipoles. There are several

interactions that can occur, which are electrodynamic in origin; traditionally, these

are separated into three distinct forms. These are dipole-dipole interaction (Keesom

interaction) [33, 34, 35], dipole-induced dipole interaction (Debye interaction) [36, 37]

and induced dipole-induced dipole interaction (London interaction) [38, 39]. More

details about these forces can be obtained from an excellent review by French [40].

In general, colloidal particles do not have permanent dipoles. In that case, London

forces dominate the total van der Waals interaction and are briefly discussed below.

London forces describe the interaction that results between non-polar substances.

For colloids, the London interaction between two particles is assumed to the the sum

of the pairwise interactions of their atoms. The interaction energy can be written as

follows [39]:

U = -CL (2.5)

The London constant, CL, is proportional to the ionization energy of the outer elec-

trons, hvi, and the polarizability a:

CL oc hv1 a2. (2.6)

For two dissimilar molecules, this becomes:

V11V12
CL oc haia2  . (2.7)

In 1937, Hamaker published an article where he investigated the properties of van

der Waals interaction between large bodies [41]. The analysis in this paper was

far-reaching and showed that the strength of vdW interaction between large bod-

ies is distinct from vdW interaction between molecules, which had been considered



previously. Hamaker used pairwise summation approximation to calculate these in-

teractions. The idea in this approximation was that infinitesimal parts of large bodies

interact with one another according to the London equation. The total strength of

the vdW interaction between two bodies integrates over all such infinitesimal inter-

action terms. De Boer had shown previously [42] that the vdW interaction between

large planar slabs varies as the inverse of the square of separation distance between

them. As a result, vdW interaction came to be viewed as a longer-range interaction

than previously thought.

Of special importance in colloidal science is the interaction between two spherical

particles, 1 and 3, in a medium, 2. This is given by eq. 2.8 [43]:

A123  2aia3  2aa 3  1nr 2  (a1 + a3 )2  (28)
Udw 6 r -(a+ a3 )2  r2 - (a - a3 )2  r2 - (ai - a3 )2

where r is the separation between particles with radii ai and a3 . The influence of the

intervening medium, 2, and material properties of the bodies, 1 and 3, is captured by

the Hamaker constant A123. From eq. 2.8, the interaction is divergent at contact. In

order to avoid this, a cut-off radius equal to the diameter of the solvent molecule is

used as the limiting distance for vdW interaction [44].

The Hamaker constant, A123 , is of central importance in the analysis of vdW forces

between colloids. Although it is difficult to calculate in most instances, approximate

values of the Hamaker constant for materials in vacuum are 100-300 zJ for metals,

10-30 zJ for ionic materials and 3 zJ for hydrocarbons. In a solvent, these values are

greatly reduced due to screening of the interaction.

A123 can be approximated from the Hamaker constant of materials in vacuum, as

shown in eq. 2.9 [28]:

A123 = (VA11 - A22)( A33 - A22). (2.9)

Early theories relied on pairwise additivity to calculate A123 . This ignores the influ-

ence that neighboring atoms or molecules have on the interaction between any two

atoms. This interaction was treated exactly by Lifschitz [45]. According to his theory,



the Hamaker constant for the interaction of two media 1 and 3, across the medium

2, is given by eq. 2.10 [28]:

3  Ei - 62 es - 62 3h o cE1(iv) - 62 (iv) 63 (iv) - E2 (iv)
A123 ~~w -kBT( )( )+ (7 )( ) du, (2. 10)

4 C1 + 62 63 + 62 47 u e(iv) + 62 (iv) Ei(iv) + e2 (iv)

where ei, 62 and 63 are the static dielectric constants of the three media and e(iv) are

the values of c at imaginary frequencies. The first term gives the zero frequency energy

of van der Waals interaction and includes the Keesom and the Debye interaction.

The second term includes the contribution from London dispersion interaction. Two

important points should be noted about eq. 2.10: (i) first, the vdW force between any

two bodies in vacuum is attractive; (ii) second, vdW force between identical bodies

across all media is attractive, but may be attractive or repulsive for dissimilar bodies

in a medium.

2.2.2 Electrostatic Interaction

If vdW forces were to act alone, one might expect all suspended particles to coagu-

late. Normally, this does not happen because the suspended particles are stabilized

by electrostatic repulsion or steric repulsion, and do not coalesce. Electrostatic inter-

action is one of the most important stabilizing forces for charged colloidal dispersions.

Steric interaction is another, and is discussed later.

Interfaces between colloidal particles and ionic solutions, like water, almost always

acquire charge. This alters the concentration and spatial variation of free ions in so-

lution. Several mechanisms have been identified for the charging of colloidal particles

[30]. Two relevant mechanisms for the purpose of this thesis are:

(i) The ionization of surface groups: for instance, ionization of surface hydroxyl

groups, shown in eq. 2.11, leads to negatively charged silica particles, whereas ion-

ization of carboxyl groups (or sulfonic acid groups), shown in eq. 2.12, leads to

negatively charged latex particles. Ionization of amine and amidine groups leads to

positively charged latex particles.



Si - OH <-+ Si - O- + H+

-COOH <-+ -COO- + H+ (2.12)

(ii) Adsorption or covalent bonding of charged entities from the suspension, onto

an uncharged surface. For instance, adsorption of amphiphilic polyelectrolytes charges

hydrophobic particles in water.

Poisson-Boltzmann Equation

Helmholtz gave the earliest treatment to describe the electrostatics related to a

charged particle in solution. He proposed a simple model, wherein a uniformly charged

sphere is surrounded by ions of opposite polarity, the counter-ions, in a uniform layer.

The counter-ions were assumed to be point charges. Later, a more complete treatment

of this was offered, wherein the finite size of the counter-ions and the diffuse nature of

the counter-ion distribution were taken into consideration [46]. The counter-ions (that

include particle counter-ions, ions from dissociated salts and ions from self-dissociated

solvent molecules) form an oppositely charged atmosphere in rapid thermal motion

close to the surface. This is called the diffuse double layer.

A model for the distribution of counter-ions, pg, depends on the electrostatic

potential, @b, and is given by eq. 2.13 [28]:

pg=pieo p( ), (2.13)

where

pi = Einizie. (2.14)

Together with the Poisson equation, eq. 2.15:

-eco 2 $ = p, (2.15)

(2.11)



this leads to the Poisson-Boltzmann equation (PBE), eq. 2.16:

S-2 -Ei exp( ),BTl (2.16)
Er CO kBT

where ni is the number density of ions i of valence zi and e is the electronic charge.

PBE is one of the most important equations in colloidal science, and is the basis for

understanding the electrostatic interaction between colloidal particles.

Solutions of the Poisson-Boltzmann Equation

PBE is a second-order non-linear differential equation. It can be simplified by making

the following assumptions:

(i) Although there may be multiple salt species present in the solution, the ionic

concentration is dependent upon the majority salt component.

(ii) While a colloidal solution does not have an equal number of positive and

negative ions, the number of counter-ions from colloidal particles is small and can be

safely ignored. Moreover, the majority of salts are symmetric: that is, they have the

same magnitude for positive and negative ions.

With the above assumptions, the summation in eq. 2.16 reduces to a sum of two

exponentials. The resulting equation is shown in eq. 2.17:

znte ze@ 2.7

2 V)= 2 -- sinh( T) (2.17)
Er EO kBT

The hyperbolic sine term in eq. 2.17 can be expanded as shown in eq. 2.18:

X3  X5

sinh(x) = x + - + - .... (2.18)
3! 5!

Eq. 2.17 can be simplified further if the electrical energy |ze4| is small compared to

the thermal energy kBT. In this case the first term in the sinh series is much larger

than the second term. As a result, all higher order terms can be ignored. With these

assumptions, eq. 2.17 can be linearized. The resulting equation, eq. 2.19, is known



as the Debye-Hiickel approximation:

V2 e 2Vg, (2.19)
EOErkBT

where

= [e2nz2 ]1/ 2 . (2.20)
EkBT

For a system with surface charge, eq. 2.19 has an additional term for the surface

charge density, p,(X, y, z). Eq. 2.21 is the modified equation [28]:

72= 2 + (x, y, z) (2.21)

The variable K is known as the Debye-Hiiekel parameter and plays a central role in

describing the strength of electrostatic interaction in colloidal systems. The extent of

the double layer is measured by ,-1, also known as Debye length, and ranges between

1 nm to 250 nm for most aqueous systems. At 25 'C in water, K-1 is given by eq.

2.22:
1 corR 1
-= (2 )1/2 [] (2.22)
K ( -2000F2 7 m

1
0.304- [nm], (2.23)

where I is the ionicity and F is Faraday's constant. The linearized PBE, eq. 2.19,

is valid for surface potentials where 0, < 25 mV. For a colloidal particle with 4, >

25 mV, the non-linearized PBE, eq. 2.17, should be numerically solved, since the

linearized PBE is no longer valid at close proximity to the particle. However, for a

many-particle system where @, > 25 mV, this becomes computationally prohibitive.

As a result, although solution of the linearized PBE may be less accurate, it continues

to be widely used in order to obtain behavioral trends and to identify regimes where

more detailed models may be required. Thus, larger phase-space can be analyzed by

compromising a bit on the accuracy of the solution.



Boundary Conditions and Interparticle Potential

Linearized PBE, eq. 2.21, is a second order equation. Therefore any mechanism to

obtain a solution requires two boundary conditions. One boundary condition is that

the gradient of Vb vanishes as r -+ oc:

V0 -iF/|r = 0 as r - oo. (2.24)

The limitations for the second boundary condition are: constant surface charge

or constant surface potential. It is instructive to consider the following scenarios

to infer the correct boundary condition. For an isolated particle, both boundary

conditions lead to an identical solution. The choice is more subtle when particles start

to interact. For like-charged particles with a constant charge boundary condition, the

electrostatic potential at the point of contact of particles would be close to twice the

surface potential of an isolated particle. On the other hand, for like-charged particles

with a constant potential boundary condition, close approach leads to an increase

of surface charge. Thus, although the results in these two regimes may be different

for like-charged particles, the physical behavior is similar: like-charged particles repel

each other. For oppositely charged particles with a constant potential boundary

condition, the surface charge would be infinity at the point of contact of particles.

Thus, oppositely charged particles would be inseparable on contact. In reality, this is

an incorrect assumption since each particle has limited charging sites, and therefore

the surface charge approaches a maximum as the particle separation becomes small.

As a result, one usually assumes a constant charge boundary condition for analyzing

colloidal interactions.

Choosing correct interparticle potential is also critical. There are two principal

potentials: the screened electrostatic Yukawa-type potential [47, 48] and the Ohshima

potential [49]. The Yukawa-type potential is valid at low ionic strengths. An impor-

tant assumption for this potential is that the particle interior has properties (dielectric

constant and ionic strength) similar to the bulk solvent. Assuming that interactions

with neighboring particles can be neglected, the potentials can be superimposed. On



the other hand, the Ohshima potential assumes a Yukawa-type potential as the first-

order term and corrects for the ionic strength and dielectric constant of the particle

core by adding a series of converging infinite sums. However, in making these cor-

rections, an additional assumption is made that two interacting particles are only

surrounded by the solvent. Thus, the Ohshima potential is not useful for low ionic

strength dispersions.

The interaction energy in the case of the Yukawa-type potential is given by a

product of the point-charge representation of one particle and the potential field of

other particles. The effective point-charge for a particle with radius, a, and surface

potential, V), is given by eq. 2.25 [50, 51]:

qpoit = 41reao, exp (n). (2.25)

This is the result of superposition of the potential field of other particles and is known

as the linear superposition approximation (LSA). The total energy of interaction

between particles 1 and 2, with radii ai and a2 , is given by eq. 2.26:

U1 2 = qiq 2 exp( sr) (2.26)
r

= [47rea1@s,1 exp (Kai)] [47rEa2V8 ,2 exp (Ka 2)] exp(-Kr) (2.27)(47re)

exp (-Kr)
= 47reaia 2Os,1Vs, 2 exp (i(ai + a2 )) r (2.28)

r

The interaction potential in eq. 2.28 is called a Yukawa-type potential, or a screened

electrostatic potential [52]-[67]. It is widely used in this thesis to model the electro-

static interaction between particles.

Zeta Potential

Information regarding the interaction between particles depends on the electrical

double layer around them. Determining the zeta potential [26], (, for a colloidal

particle is a useful way of obtaining information about the structure of the double



layer. Electrokinetic processes are usually used to determine (. Electrokinetics refers

to processes in which the boundary layer between one charged phase and another

is forced to undergo some sort of shearing process. During this process the charge

associated with the particle's compact layer will move in one direction, and that

associated with the diffuse layer in the liquid, will move in the opposite direction. Zeta

potential is an electrokinetic potential, and is defined as the equilibrium potential at

the "surface of shear," where the velocity of liquid is zero.

Many electrokinetic processes can be used to determine (, although electrophoresis

is most widely used. When an electric field is applied to a particle, there is an external

force that moves the particle with a velocity that is proportional to (. Using a force

balance, eq. 2.29, one can obtain information about ( by measuring the terminal

velocity of the particle, v, which is related to the electrophoretic mobility, A, and the

applied electric field, E, by eq. 2.30:

F = -3v + Eq = 0 (2.29)

and

v q Ep, (2.30)
13

where # = 1/s,.

Electrophoretic mobility for a particle can be related to ( through numerous meth-

ods. Two most common models are: the Hiickel model [68] (for na << 1) and the

Smoluchowski model [69) (for sa >> 1), where a is the radius of the particle.

The Hiickel regime is applicable when particles have a very thick double layer. In

this case, the electric field lines are unaffected by the particle, and the electrical force

on the particle is balanced by the viscous drag of the solvent. Thus:

o 47rE(a 2f(
P = - = - _ . (2.31)

E 67rqa 3q

The Smoluchowski regime is applicable when particles have a thin double layer.

In this case, the viscous force on the particle, on a volume element with surface area

A, is balanced by the electrical force. The viscous term is derived from the Stokes



equation and the electrostatic term is obtained from the Poisson equation. Thus, one

has:

d2v d20
F dx 2 +EA+ dx2 . (2.32)

For the first integration, eq. 2.32 can be simplified by assuming that only velocity,

v, and electrical potential, 4, vary. As a result, eq. 2.32 becomes eq. 2.33:

dv d
7- = -FE- + C (2.33)

dx dx

After integration of eq. 2.33, two boundary conditions are required in order to

obtain (. These are: (i) electrical potential approaching zero, very far from the

particle and (ii) the velocity equal to zero at the surface of shear. With these, the

electrophoretic mobility is related to the zeta potential by eq. 2.34:

P = .( (2.34)

For most colloidal systems, it is easier to arrange for a > 1 than Ka < 1. There-

fore, the Smoluchowski regime is more appropriate for colloidal systems than the

Hiickel regime.

2.2.3 Steric Interaction

In many colloidal systems, one adds non-ionic materials that adsorb on the surface of

the particles and prevent coagulation. In order to stabilize a colloidal system, these

molecules should not just adsorb onto the surface of particles, but also extend into the

solvent. The purpose of this morphology is to prevent particles from coming in such

close proximity, that aggregation may result. This is known as steric stabilization

while the interaction of polymer sheets as particles approach each other is called

steric interaction [31], [70]-[87]. The most notable steric stabilizers are non-ionic

block copolymers (BCP). One end of the BCP, usually lyophobic, adsorbs onto the

surface of the particle, whereas the other end, usually lyophilic, extends into the



solvent. Simple homopolymers are rarely used for this purpose, as they need to be

chemically grafted into the particle surface, if they are lyophilic. On the other hand,

if they are lyophobic, they would form a dense layer on the particle surface and will

be ineffective as stabilizers. Simple surfactant molecules also serve as good steric

stabilizers.

Most models that analyze steric interaction have two regimes. In the first regime,

when two sterically stabilized particles approach, the outermost parts of the surfac-

tants start to mix. This results in increased enthalpy, as molecules prefer to be in the

solvent. This is called the osmotic regime, as the osmotic pressure of the solvent, in

the overlap zone, will be lower than in the bulk solvent. This leads to a driving force

for spontaneous flow of the solvent into the overlap zone, which pushes the particles

apart.

The second regime is when the separation between particles is less than the

length of one layer of surfactant. In this regime, the polymers (or surfactants) are

compressed. As a result, there are fewer possible configurations available for each

molecule. This leads to a reduction in entropy.

In order to analyze steric interaction, three pieces of information are required.

These are (i) the coverage of the polymer (in other words, the amount of polymer

adsorbed on a unit area of the particle surface); (ii) the thickness of the adsorbed

layer, once it extends into the solvent, and (iii) the profile of the outer part of the

layer.

2.2.4 Hydrophobic Interaction

Water molecules are known to form an extensive network of hydrogen bonds (H-

bonds) with one another. When a non-polar substance is placed in water, water

molecules can reorient themselves around it without much loss of the hydrogen bond-

ing. Reorientation is highly unfavorable entropically, as the molecules have fewer

available orientations. This is the reason why hydrocarbons are insoluble in water.

This effect on the H-bonding of water in the presence of non-polar substances, is

called the "hydrophobic effect." Closely tied to this is the hydrophobic interaction



[88]-[94].

For some time in the colloid community, it has been well known that hydropho-

bic particles placed in water attract each other over a distance of 10-30 nm, with

forces that are 10-100 times stronger than vdW force. However, no conclusive evi-

dence exists about the origins of this force. First measurements of the hydrophobic

force were completed 27 years ago [92]. One source of confusion about the origin of

this force is the existence of two different force regimes. It has been suggested that

the measured hydrophobic force between particles is a combination of a short-range

(< 10 nm) truly hydrophobic force (that originates from the reorientation of water

molecules), and a long-range force (> 10 nm) due to a mechanism only indirectly

related to the hydrophobicity of the surfaces. Overcoming hydrophobic interaction,

either between particles or between a particle and a surface, is crucial in obtaining

higher mobilities of hydrophobic colloidal particles over surfaces. As will be shown

later (section 3.6), higher mobilities of colloidal particles are almost always required

for perfect 3D colloidal assembly.

2.3 Stability of Colloidal Dispersions: DLVO The-

ory

The stability of colloidal dispersions is dependent upon interactions that occur be-

tween particles and the solvent, as well as among particles. Collisions between parti-

cles that are suspended in a solvent are inevitable. If the particles are large, these can

be due to Brownian motion, agitation and flow, hydrodynamics or sedimentation. As

a result of these collisions, if the particles rebound off one another, the dispersion is

considered stable. On the other hand, if the particles coagulate as a result of collisions

the dispersion is considered unstable.

The stability of monodisperse spherical colloids is often described by the "Der-

jaguin [95], Landau, Verwey and Overbeek [96]" (DLVO) theory. In this theory, the

stability of the colloidal dispersion is interpreted as a change in energy, resulting from



the effects of colloidal forces, as two particles approach each other. The total energy

is given by eq. 2.35:

UDLVO = Ueiectrostatic + UdW. (2.35)

For most aqueous dispersions of monodisperse particles, at an interparticle separation

of 100 nm or more, vdW and electrostatic interactions have no effect on particles.

When the particles approach one another, there is an increase in the electrostatic

as well as vdW interaction. As the vdW force increases faster than the electrostatic

force, there is a slight domination of the vdW force resulting in a weak secondary

minimum. As the interparticle separation decreases further, the repulsive electrostatic

interaction leads to a barrier that prevents particles from coming closer. This occurs

until a critical distance is reached, at which the vdW force dominates the electrostatic

force, resulting in strong irreversible coagulation. The behavior of particles on close

approach is also dictated by their kinetic energy. If the kinetic energy of colliding

particles is large enough to surmount the barrier, coagulation in the primary minimum

will result. If the particles do not have enough kinetic energy, then stable weak particle

associations result in the secondary minimum. The depth of the secondary minimum

depends on the Hamaker constant and particle characteristics such as surface charge

density, particle radius, etc.

2.4 Self-assembly of Colloids

Self-assembly is defined as the spontaneous organization of two or more components

into larger aggregates using covalent or non-covalent bonds. It is a bottom-up ap-

proach that relies on the cooperative interactions of small components. The compo-

nents assemble spontaneously to produce larger structures in two or three dimensions

[97].

This section describes two types of self-assembly of colloidal particles: (i) non-

templated self-assembly, where the individual particles interact to produce a larger

structure without the influence of external forces or spatial constraints and (ii) tem-

plated self-assembly, where the individual particles interact with each other and an



external force or a spatial constraint to produce a larger structure. More detailed

discussion on other aspects of self-assembly can be obtained elsewhere [98].

Figure 2-1: SEM image of the top view and cross-section of a colloidal crystal of
polystyrene particles. The particles assemble in a face centered cubic (f.c.c.) structure
with (111) orientation relative to the substrate.

In a dispersion of charged monodisperse particles with radius R, three-dimensional

organization of particles into close-packed structures, such as face centered cubic

(f.c.c.), takes place at low KR. More complexity can be added by using a binary

system- in other words, a dispersion with two types of particles. A beautiful example

of this phenomenon is the formation of Ionic colloidal crystals (ICCs) [23], [99, 100,

101]. ICCs are crystals that form in a dispersion with two particle types, such that

the particles are oppositely charged. They are formed at large Debye lengths (>100

nm). This concept was proposed by Dr. Garry Maskaly [101] and experimentally

demonstrated by Leunissen et al. [23]. Since these structures are formed in the

solvent, solvent behavior plays a central role in their formation. As a result, ICCs

can be easily destroyed on exposure to atmosphere (this leads to an increase in KR) or

vibrations. Thus, the majority of methods are based on obtaining colloidal crystals

without the solvent (made solely of colloidal particles). These structures are known

as colloidal crystals.

The easiest way to obtain a colloidal crystal is by drying a dispersion of monodis-

perse colloids. As the solvent evaporates, capillary forces pack the particles into a

close-packed structure [102]. A scanning electron microscope (SEM) image of this



structure is shown in fig. 2-1. Amid a self-assembly process, there are only a few

parameters that can be controlled to influence the final structure. Chief among these

are the concentration of the dispersion, Debye length and density of the solvent.

If there were no interactions between particles in a dispersion, on collision they

would behave like billiard balls. This type of interaction is called a hard-sphere

interaction [103]. However, if the particles are charged, they interact mainly through

electrostatic and vdW interactions. Hence, they behave as soft spheres because their

"presence" is felt by other spheres in the suspension. Hard-sphere suspensions act

like fluids at low volume fraction of particles, #, but crystallize into a close-packed

structure when # > 0.55. On the other hand, suspensions of charged particles form

close-packed f.c.c. with (111) orientation (relative to the substrate at # > 0.10 [104].

By lowering # further, one can obtain a structure with body centered cubic (b.c.c.)

packing. Detailed studies have been done on the phase behavior of colloids and can

be explained by a pure Yukawa or a hard-sphere plus Yukawa-type potential.

In order to assemble more complex structures with different orientations, newer

periodic potentials should be created. These potentials need to be anisotropic so that

they break the isotropic symmetry of the colloidal interactions that results in f.c.c.

crystals with (111) orientation. Such potentials have been created by applying exter-

nal electric or optical fields and by manipulating the interaction potentials. Crystal

orientation can also be controlled by using a patterned surface. Periodic one- or

two-dimensional height profiles impose uniformly varying potentials on the colloidal

spheres, during their assembly. Van Blaaderen et al. [105] were among the first to

explore this idea. In the following subsections, processes used for self-assembly of

colloids are discussed.

2.4.1 Methods of Self-assembly

Colloidal assembly can be induced by gravitational [106, 107, 108], electric [109]-[112]

and magnetic fields [113, 114]. Although sedimentation is conceptually easy to un-

derstand, precise control of parameters, such as size and density of the particles, is

needed to obtain a large single crystal. Particles will only settle, in times that are



short enough to be observed, if their size and density are large enough. Controlled

sedimentation of particles in a gravitational field leads to a f.c.c. crystal. Unfortu-

nately, the process of sedimentation is rather slow, and successful fabrication of a

crystal can take weeks. The sedimentation can be expedited through centrifugation

or filtration [115]. Although these processes are faster, the quality of the crystals

shows negligible improvement.

Another disadvantage of the gravity method is that the thickness of the colloidal

crystal cannot be controlled during sedimentation. In comparison, vertical deposition

techniques [116]-[122] are ideal for controlling the thickness of the colloidal crystal.

During vertical deposition, a substrate is held vertically in a beaker that has a colloidal

dispersion. Colloids assemble on the substrate either when the substrate is pulled out

slowly, or when the suspension is evaporated or pumped out slowly. Convective

assembly is one of the most widely used vertical deposition method [117]. Convective

assembly has often been used to make 2D colloidal crystals (or, in other words,

colloidal monolayers). During convective assembly, crystallization is initiated in the

solvent meniscus by attractive capillary forces between the particles at the drying

front. These capillary forces lead to particle aggregation. A schematic showing the

shape of a meniscus and arrangement of particles on the substrate is shown in fig.

2-2.

A balance between convection and capillary forces is essential for the formation of

a uniform monolayer. A few recent reports [2, 21] use one or another form of vertical

deposition to obtain a particle monolayer. The formation of two-layer binary colloidal

crystal was also first reported using vertical deposition [123]. For this process, a close-

packed layer of large particles is first formed through convective assembly. In the

second step, depending on the concentration of smaller particles in the dispersion,

some or all of the interstices in the first layer are filled. In order to have precise

control of thickness, domain size and ordering in the crystal, a number of parameters

need to be carefully controlled simultaneously. These include the choice of substrate

material, tilt angle of the substrate with respect to the liquid-air interface, solvent,

ambient temperature, relative humidity, concentration of colloids and evaporation
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Figure 2-2: Schematic of a convective assembly process.

rate. Fabrication of large photonic devices demands large ordered domains. As shown

by Xia et al. [124], using physical confinement of colloidal particles leads to colloidal

crystals, with different orientation and larger ordered domains, compared to crystals

created on bare substrates.

2.4.2 Directed Self-assembly

Using bare templates makes it difficult to control the orientation of colloidal crystals.

Templated assembly allows for the fabrication of crystals with predefined orientation.

In-depth discussion of the progress in templated assembly of colloids is available

elsewhere [125]-[129].

Templates can be created by physical patterning [130]-[133] (known as hard lithog-

raphy) or by chemical patterning [134]-[138]. Chemical patterning methods, like

soft lithography and nanoimprint lithography, are widely used to print and attach

molecules on the surface of a substrate. The topological pattern of the stamp de-

termines the chemical pattern on the substrate. Colloids can be assembled on these

chemically patterned regions of the template by vertical deposition methods. Another

........... ................................ ... . .... .... .. ..... - .1-



widely used method is dip-coating. In dip-coating, chemically patterned substrates

are dipped, held and then withdrawn from a colloidal dispersion [139]-[144]. Chemi-

cal patterns can lead to either positive or negative patterns of particles. In positive

patterns, particles assemble only in regions that are chemically stamped, whereas in

negative patterns they assemble only in regions without the chemical stamp. Col-

loidal assembly on chemically patterned templates occurs because of a combination

of electrostatic and hydrophobic interaction between the chemical pattern and the

particles and capillary interaction between colloidal spheres.

Assembly on Templates created by Lithography

Although chemically patterned templates are easier to make, physically patterned

templates offer better control of the orientation of assembled structures. Van Blaaderen

et al. [105] were the first to demonstrate the use of a patterned template to obtain a

colloidal crystal with a known crystallographic orientation. Morphological patterning

of substrates has been successfully used to direct crystallization in the semiconductor

industry as well as in block copolymer ordering. Standard approaches used to create

these, are electron beam lithography and interference lithography.

One of the simplest topographical templates consists of periodic grooves with a

rectangular shape. Whitesides et al. [145] studied the coupling of laminar flow of

colloidal dispersions with topological confinement of particles in the groove. They

showed the formation of close-packed hexagonal, rhombic or disordered structures

depending upon the ratio of the particle diameter to the width of the groove. More re-

cently, Ozin et al. [146] used templates with tapered dimensions to fabricate colloidal

crystals with (100) orientation relative to the substrate. They created anisotropically

etched, V-shaped grooves inside Si(100) wafers through lithography. Subsequently,

colloidal particles were sucked into these grooves by capillary forces during convective

assembly. Colloidal crystals with multiple layers formed as a result. Following the

same approach, Yodh et al. [147], achieved well-ordered and defect-free f.c.c. colloidal

crystals (up to 50 layers) by using a template with a square pattern.

As a nice continuation of the above approach, Xia et al. [148, 149] used a template



with etched 2D regular arrays of pyramidal tips in Si. The objective was to obtain

a f.c.c. colloidal crystal with an orientation different from (111). They were able to

obtain f.c.c. crystals with (100) orientation. Matuso et al. [150] demonstrated that

by varying the opening angle of the pyramids through lithography, one can control

the orientation of the assembled crystal. They obtained f.c.c. colloidal crystals with

(100) as well as with (110) orientations. In another work, Xia et al. [129] created

colloidal particle aggregates with many shapes such as dimers, triangles, pentagons

and hexagons. For this work, they used a template with holes patterned in (110)

symmetry. Thereafter, by varying the ratio of the particle diameter to the hole

diameter, they were able to create differently shaped aggregates.

Binary colloidal crystals exhibiting building blocks of different sizes were fabri-

cated using a layer-by-layer method by van Blaaderen et al. [123]. The authors pre-

pared a hexagonally close-packed layer of large particles using convective assembly.

In the second layer, smaller like-charged particles were directed into the interstices of

the first layer, also using convective assembly. The array of arrangements included

AB, AB 2 and AB 3 , depending upon the concentration of smaller particles that were

used for deposition. More recently, Wang et al. [151] have shown that spin-coating

of particles can be used to prepare the second layer. In this method, spin speed de-

termines the final structure. At lower speeds the authors obtained AB 2 order, and at

higher speeds, AB 3 order.

Templated self-assembly was originally conceived as a promising route to fabricate

complete photonic band gap (CPBG) structures. Colloids are of interest as CPBG

building blocks because, by changing the size of the constituent particles, the band

gap can be shifted. Although the results outlined in this section are useful, they fail to

offer a clear procedure for making CPBG structures. Recently, Santamaria et al. [14]

fabricated the diamond cubic structure by using a prefabricated template (with holes

arranged in a square pattern), silica and polystyrene (PS) particles. This method is

an excellent example of templated assembly.



Chapter 3

Controlled Ordering of Oppositely

Charged Colloidal Particles

3.1 Introduction

Ordered crystalline packing of nanoscale particles have technological applications,

including those in photonic materials [11, 12, 13], sensing [6, 7, 8] and molecular fil-

ters [9, 10]. Ordering in colloidal suspensions, which is a well-known phenomenon,

provides a template for ordered nanoscaled structures, if the suspending media can

be removed without disrupting particle ordering [152]. Conventional processes for

ordering colloids, which employ repulsive forces between particles that carry electro-

static charges of the same sign, produce close-packed crystalline analogs. Using a

composite suspension of two particle types, each monodisperse with a different size

and with opposing charge, provides a method to create colloidal crystals of lower

symmetry [23, 101, 153], and therefore may produce stable structures with novel pho-

tonic, sensing, and filtering properties. However, processing methods that produce

lower symmetry structures prove to be more difficult to realize, primarily because the

colloidal composites attractive electrostatic and vdW forces limits the length scale of

ordering.

Researchers have shown that a suspension with oppositely charged particles can

have long-range order if the particles are weakly charged and sterically stabilized



[23]. Additionally, the Debye length needs to be on the scale of particle diameter

and the vdW forces need to be absent. As a result, although the particles can stay

ordered (in the solvent), the stabilizing forces are mild. Therefore the structure can

be destroyed on exposure to atmosphere or vibrations, or when the solvent is re-

moved. Such a system has limited applicability. Recently, Mukhopadhaya et al. [154]

showed that strongly and oppositely charged PS particles can order irrespective of

their surface charge. Neither did they disclose the Debye length in the system from

which these structures were crystallized, nor did they elaborate on the stabilizing

forces and mechanism. Their results are contrary to the available literature about

oppositely charged particles. For instance, a simple experiment shows that when

positively charged PS particles are distributed onto a layer of negatively charged PS

particles, attractive electrostatic forces are so strong that they trap the particles in a

deep primary minimum. The resulting structure has no long-range order. Therefore,

in the absence of a clear explanation it becomes imperative to understand the mech-

anism for ordering oppositely charged colloids. Factors that influence the assembly

of oppositely charged particles into ordered structures can then be exploited to make

three dimensional structures that remain ordered as the solvent dries.

Ordered aggregates of oppositely charged particles show greater stability com-

pared to their like-charged counterparts. Therefore, they are better candidates for

making low-volume non-close-packed structures. Whereas the like-charged analogs

are stabilized by vdW forces only, the oppositely charged non-close-packed structures

are stabilized by vdW as well as electrostatic forces.

A layer-by-layer method is reported herein [22], and demonstrates a simple pro-

cessing route for making 2D low-symmetry packing of strongly and oppositely charged

colloids. Previous observations [23] demonstrate that sterically stabilized, weakly and

oppositely charged colloidal particles can produce low-symmetry ordering in suspen-

sions. However, these colloidal crystals are stable when in suspension and for weakly

charged particles. Schevchenko [155] on the other hand, has shown that it is possible

to evaporate the solvent and retain order for smaller, weakly charged nanoparticles.

Three studies are discussed in this chapter. In the first study, spin-coating is



used to distribute charge-stabilized colloids [151] on an underlying layer of larger and

oppositely charged colloidal particles. It is demonstrated that a surface agent, which

produces short-range steric repulsion, permits ordering even as the particles' opposing

charges are increased to magnitudes that prevent ordering in previous observations.

In the second study, it is shown that, by manipulating the electrostatic repulsion

between like-charged particles, a non-close-packed layer of particles can be assembled

on a layer of close-packed and oppositely charged particles. Since capillary attraction

between particles can lead to close-packed structures, schemes that rely on rapid

assembly through evaporation of the solvent cannot be used here. As a result, dip-

coating is used to distribute and arrange particles in the second layer.

In the third study [156], ordering of hydrophobic, charged particles on charged

surfaces is discussed. It is shown that amphiphilic surfactants can be used to order

hydrophobic particles on hydrophobic, like-charged surfaces.

3.2 Materials and Methods

3.2.1 Colloidal suspensions

Suspensions of monodisperse polystyrene (PS) beads measuring 100 nm (amidine

functionalized, (= 52.56 mV at i-1= 127 nm, and charge density measured by the

manufacturer equal to 0.032 C/m 2 ) 210 nm (amidine functionalized, (= 54.62 mV at

-1 = 127 nm, and charge density measured by the manufacturer equal to 0.1 C/m 2 )

and 420 nm (sulphate functionalized, (= -61.57 mV at K-1= 127 nm, and charge

density measured by the manufacturer equal to -0.032 C/m 2 ) were purchased from

Molecular Probes Inc., Eugene, OR. Electrophoretic mobility for different colloidal

samples was measured using a Zeta-PALS (Brookhaven Instruments Corporation).

Once electrophoretic mobility was measured, zeta potential was calculated using the

Smoluchowski model. The PS suspensions were dialyzed against DI water to lower

their salt concentrations before use.



3.2.2 Surfactants

Triton-X 100 ((C14H22 O(C2 H40),) was purchased from VWR International Inc. In

most cases 60-70 pl of 10 w/v% Triton X-100 was added to 1 ml of the final suspension

of colloidal particles before spin-coating. Adsorption of the non-ionic surfactant on

PS was measured by Quartz Crystal Microbalance (QCM-D E4 from Q-Sense AB,

Sweden). A single sensor crystal with PS spin-coated on gold, which was purchased

from Q-Sense, was used for all the experiments. QCM can measure the change in

the resonance frequency depending on the change in mass of the sensor crystal, i.e.

if anything is adsorbed or desorbed from the sensor crystal. The change in frequency

can be related to the change in mass by the Sauerbrey equation (eq. 3.1).

Am = -C , (3.1)
n

where Am is the change in mass and Af is the corresponding change in resonance

frequency. C is 17.7 ng cr-2Hz-1 and denotes a constant that characterizes the

sensitivity of the equipment to the change in mass and n is the resonance overtone.

For all the measurements described in this study, the third overtone (n=3) was used at

a temperature of 25'C. The fundamental resonance frequency for the sensor crystal

was 4.95 Mhz. The sensor crystal was cleaned with copious amount of de-ionized

(DI) water prior to any measurement. Thereafter, it was placed in the QCM cell

where a baseline measurement was done in DI water. This was followed by QCM

measurements in Triton-X 100 suspensions in DI water. Five suspensions of Triton-X

100 in DI water were used in this study. They were 0.01cmc, 0.1cmc, cmc, 5cmc

and 10cmc, where cmc is the critical micelle concentration for Triton-X 100 (cmc

for Triton-X 100 in water is 0.24 mM [157]). Between any two measurements, the

adsorbed surfactant was washed off the sensor crystal by running DI water through

the cell. A flow rate of 0.5 ml/min was maintained during all the QCM measurements.

Cationic Polyelectrolyte Dodecyltrimethylammonium bromide (DTAB, CH3 -

(CH2)11 - N+ - (CH3)3 - Br-) has a cmc of 15.6 mM/l (i.e., 4.810 mg/ml). It

dissociates in aqueous solution with a positively charged headgroup. The concentra-



tions used in this study ranged from 0 to 4 mg/ml. Block copolymer (BCP) Poly(N-

methyl 2-vinyl pyridinium iodide-b-ethylene oxide) (P2VPQ-PEO) was bought from

Polymer Source Inc. Between 0-0.5 M of this amphiphilic and cationic BCP, was used

in experiments.

3.2.3 Solvents

De-ionized water (DI water) was used for most of the experiments and was readily

available. However, in one case, Class 1 isopropanol (Hubbard Hall Inc.) 80%-DI

water 20% mixture, was used. The Debye screening length for DI water with varying

salt concentrations was calculated based on conductivity measurements (YSI 3200

Conductivity Instrument).

3.2.4 Template

Interference Lithography

Interference lithography (IL) provides an easy and simple way to create periodic

patterns on a substrate. With a single exposure, pattern of gratings with periods as

small as 170 nm can be written. More complex patterns, like grids, holes or poles can

be written with multiple exposures.

The basic principle of interference lithography (IL) is as follows: two mutually

coherent beams of light intersect and form a standing wave in the region where these

two overlap. Fig. 3-1 shows the set-up for an IL system. For this thesis, Lloyd's mir-

ror IL was used. In a Lloyd's mirror IL set-up, spatial as well as temporal coherence

is important to consider. Temporal coherence defines the narrowness of the range of

wavelengths from a light source. For IL, the important measure of temporal coher-

ence is coherence length. This defines the maximum distance along the direction of

propagation of the light wave, over which, waves can be expected to show mutual co-

herence. If light waves come from different sources, they would be incoherent. Thus,

a single light source is used to promote mutual coherence. In a Lloyd's mirror set-up,

the mirror divides a wavefront from the source into two overlapping beams that form



Figure 3-1: A schematic for the Lloyd's Mirror Interference Lithography set-up

the interference pattern. In order to form a fringe pattern with good contrast, the

path lengths of the two interfering beams from the source to a point on the substrate

should differ by less than the coherence length. In the current set-up, the light comes

from a helium-cadmium (HeCd) laser, emitting at 325 nm. The particular model of

laser used in the Lloyds mirror has good temporal coherence, with a coherence length

of 30 cm, long enough that temporal coherence is generally not a concern.

Spatial coherence defines the uniformity of the wavefronts along the width of the

beam. For instance, if a source has good spatial resolution, it will appear like a point

in space and the wavefronts will appear as concentric spheres centered on a point. In

the Lloyd's mirror set-up, the light is spatially filtered before reaching the substrate.

Practically, the beam should expand to cover the exposure area with high intensity

and uniformity. This is achieved by using a lens to focus the beam through a 5 Im

pinhole. Since there are no collimating optics between the pinhole and the substrate,

the beam expands to a diameter of about 30 cm at the wafer chuck. As the spatial

filter is the last element before the light reaches the substrate, the wavefronts reaching
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the substrate are nearly spherical.

Template preparation

Silicon templates were prepared through IL. A 4-inch silicon wafer was spin coated

with negative photoresist PS4. After baking, this was exposed to a 325 nm wave-

length, HeCd laser. A pattern of holes arranged in (110) symmetry was created as

follows. The baked wafer was exposed in IL for 33 seconds at 0.23 mW. It was then

rotated 90 degrees and exposed again for 33 seconds at 0.23 mW. The resulting pat-

tern was baked for 90 seconds at 110 *C and then developed in CD-26 developer for

60 seconds. This creates a pattern of holes with (110) symmetry in the photoresist.

To etch the pattern of holes into silicon, the sample is treated in a plasma-etcher

with CF4 -02 plasma at 20 mTorr for 3 minutes. In the end, the photoresist is re-

moved by treating in 02 plasma at 20 mTorr for 7 minutes. A schematic for template

preparation is shown in fig. 3-2.

1 Spin Coating of 2. Exposure 3. Development
the Photoresist

/N/VVV\Ik/

4 RIE with CF4 5. Photoresist Removal

SILICON PHOTORESIST

Figure 3-2: A schematic for the procedure to fabricate the template
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3.2.5 Spin-coating

Glass substrates to be used, were cleaned by ultrasonication in acetone followed by

treatment in Pirhana solution, which is a mixture of concentrated sulfuric acid (VWR

international Inc.) and hydrogen peroxide (Alfa Aesar) (H2 SO4 : H2 0 2 = 3:1, volume

ratio) to obtain a hydrophilic surface. It was then washed with copious amounts

of water and dried with nitrogen gas before use. The first layer from negatively

charged PS particles was made by convective self-assembly. In this method the clean

micro glass plate was fixed vertically inside a beaker, which contained the colloidal

suspension at 35'C as the suspension is slowly pumped out of the beaker forcing the

particles to pack under the capillary forces.

Spin-coating was used to distribute the positive PS particles on the substrate made

from negative PS particles. Spin-coating has been previously used to make charge

stabilized 2D colloidal crystals [151]. Starting with 50pl of the dialyzed colloidal

solution with manufacturer supplied concentrations (provided above), 0.25-w/v% and

1.0 w/v% suspensions of 100nm positive PS particles were prepared for spin-coating

in DI water whereas 1.0-w/v% solution of 210 nm positive PS particles was prepared

in DI water. In most cases 60-70 pl of 10-w/v% Triton X-100 was added to the final

solution before spin-coating. Spin-coating was done at 3000 rpm for 60 seconds for

all of the above systems by putting approximately 20 pI of the resulting solution,

on a substrate of negatively charged 420 nm PS particles. Additionally, for 0.25-

w/v% solution of 100nm positive PS particles, spin-coating at 3000 rpm was done

with 0.01635 mM, 0.094 mM and 0.879 mM NaCl salt concentrations. Table 3.1

lists the Debye lengths that are inferred from conductivity measurements on solvents

without addition of any colloidal particles to the solvent, for the above three salt

concentrations and a measurement with no added salt (DI water). Calculations show

that on addition of colloidal particles, the change in Debye length, due to the counter-

ions from charged particles is not substantial. Therefore, the Debye lengths calculated

[158] for solvents without addition of particles were used for all calculations in this

work. For 1-w/v% solution of 100 nm positive PS particles, spin coating at 6000 rpm



for 60 seconds was also done. Finally, the spin-coated substrates were sputtered with

gold for 20 seconds before being imaged under the Scanning Electron Microscope

(SEM) (Gemini 982, Zeiss).

Table 3.1: Variation of Debye length with increasing NaCl concentration in water

NaCl concentration [ x 0.01 mM] Debye screening length [nm]
No added salt (DI water) 250.354

1.635 75.22
9.4672 31.26

87.9 10.256

3.2.6 Dip-coating

Dip-coating was used to form a non-close-packed layer of colloidal particles on an

underlying layer of oppositely charged particles. The substrate was a close-packed

layer of 420 nm negatively charged spheres. Before dip-coating the substrate, it was

made hydrophilic by exposure to oxygen plasma for 10 seconds. This is required for

obtaining a monolayer of particles in subsequent deposition steps. Thereafter, it was

dipped in a 0.1-w/v% suspension of 140 nm positively charged PS particles for 60

seconds. In order to reduce irreversible coagulation of oppositely charged colloidal

particles due to electrostatic attraction, Triton-X 100 was added to the suspension

of positively charged particles. By lowering the surface tension of water, Triton-X

100 also reduces capillary attraction between positive PS particles. To further limit

the close-packing of positive PS spheres, the substrate is slowly withdrawn, manually,

from the suspension of colloids and immersed in DI water without drying. It is allowed

to stay in water for about 60 seconds, after which it is dried at ambient temperature

(250 C).



Figure 3-3: SEM image of 100 nm diameter positively charged PS sphere suspension
(0.25-w/v%) spin-coated at 3000 rpm on a substrate made from 420 nm diameter
negatively charged PS spheres

Figure 3-4: 100 nm diameter positively charged PS sphere suspension (1.0-w/v%)
spin-coated at 3000 rpm on a substrate made from 420 nm diameter negatively
charged PS spheres



3.3 Spin-coating of Oppositely Charged Colloids

Fig. 3-3 and fig. 3-4 are SEM images for 100 nm positively charged polystyrene (PS)

particles suspended in DI water and spin-coated on a hexagonally ordered packing

made from 420 nm negatively charged PS particles. These figures indicate that some

short-range order may be present but long-range ordering is not produced by spin-

coating positive PS particles on the negatively charged substrate of PS particles when

no surfactant is added. While not representative of most of the system, the short-

range order (enclosed within the box in fig. 3-3) showing a 100 nm positive PS sphere

separated from the other three 100 nm (= D) diameter spheres by a distance h (= r

- R1 - R 2) of 193.97 nm (~~2D), is produced by electrostatic repulsion between the

positively charged PS spheres since the Debye length in the present case is on the order

of the interstitial spacing ( 250.5 nm ~ 2.5D). The absence of long-range order in fig.

3-3 and fig. 3-4 can be attributed to the strong DLVO attraction between oppositely

charged PS particles. Besides the strong electrostatic attraction between oppositely

charged colloids, the hydrophobic interaction between PS spheres also reduces the

mobility of positive PS spheres, being spin-coated. However, as discussed in section

3.5, introduction of a short-range repulsive interaction, in the form of a steric barrier

can lead to ordered assemblies.

3.3.1 Surfactantless spin-coating of colloidal particles

In the absence of a non-ionic surfactant, electrostatic and vdW attraction prevent or-

dering of the spin-coated oppositely charged colloidal spheres whereas the hydropho-

bic interaction between the positive and negative PS spheres reduces their mobility.

Spin-coating positive PS spheres from a suspension with reduced electrostatic

interaction (in other words by increasing the salt concentration) leads to lower elec-

trostatic attraction between oppositely charged colloidal spheres. The increased salt

concentration concomitantly reduces the electrostatic repulsion between positively

charged PS spheres, resulting in their coagulation during spin-coating. Additionally,

hydrophobic interaction between the positive and negative PS spheres still prevents



greater mobility of the spin-coated PS spheres. In order to improve the mobility of

the spin-coated positive PS spheres the solvent was changed from DI water to an

isopropanol(80%)-DI Water(20%) mixture. Isopropanol wets PS better than water

and therefore leads to greater mobility of the particles being spin-coated on the sub-

strate. Additionally, isopropanol has a lower surface tension than water and exerts

a weaker capillary force than water. This can lead to fewer coagulates. Not sur-

prisingly, DI water-IPA suspension of 100 nm negatively charged PS particles when

spin-coated onto a substrate made from 420 nm negatively charged PS leads to an

ordered packing. However, on spin-coating positively charged PS particles suspended

in a mixture of isopropanol and DI water, there are a number of coagulates as well

as a disordered structure as shown in fig. 3-5. Isopropanol has a relative permittivity

(e20) nearly a fourth that of water (~80. 1) and therefore a Debye length which is half

that of water under identical salt concentrations. The coagulation in the presence of

isopropanol can therefore be explained based on reduced Debye length. Moreover on

using 80%-20% mixture of isopropanol- DI water, although leading to greater mobility

for spin-coated positive PS spheres, is not sufficient to offset the strong electrostatic

and vdW attractive forces. This leads to the disordered packing observed in fig. 3-5.

3.3.2 Spin-coating of colloidal particles with non-ionic sur-

factant

Long-range and well ordered regions of oppositely charged colloidal particles are ob-

served on spin-coating positive PS sphere suspension with a non-ionic surfactant

(Triton X-100 (C14H22 O(C2 H4 0), with n 9 - 10) [159, 160] on the substrate made

from negative PS spheres (fig. 3-6), where the hydrophobic end of the surfactant ad-

sorbs to the PS surface; the other end is hydrophilic and soluble in water. Adsorption

of the non-ionic surfactant on the positive PS particle surface leads to a steric barrier,

which serves as a short-range repulsive force. Because this surfactant is non-ionic, it

has no effect on the total surface charge and prevents particle coagulation whereas



Figure 3-5: 100 nm diameter positively charged PS sphere suspension (1.0-w/v%) in
isopropanol (80%) - DI water (20%) spin-coated at 3000 rpm on a substrate made
from 420 nm diameter negatively charged PS spheres

the amphiphilic character of it produces a change in the hydrophobicity of PS. As

shown in section 3.5, this promotes particle rearrangement into lower energy config-

urations during spin-coating. Other non-ionic, amphiphilic surfactants may produce

long-range ordering as well. Spin-coating from a 0.25-w/v% suspension of positively

charged PS particles in water at 3000 rpm, with Triton-X 100 in the suspension,

produces the 2D LS 2 ordered structure shown in fig. 3-6 (size ratio of 4.2). The LS 2

structure remains stable up to a particle size ratio of 2 (210nm positive PS on 420 nm

negative PS) (fig. 3-8). On doubling the rotation rate of the spin-coater to 6000 rpm

and increasing the concentration of 100nm positive PS particles in the suspension

to 1.0-w/v%, a LS 6 long-range ordering is present (fig. 3-10). Ordered regions were

typically 200-400 pm2 large, as shown in fig. 3-12 and fig. 3-13. Combining rapid

ordering of oppositely charged colloids through spin-coating with templated assem-

bly, one can fabricate binary colloidal crystals with a non close packed orientation.

By using a template, a layer of 250 nm negatively charged PS particles were ordered

with (110) orientation, through convective assembly. In the second step, spin-coating

was used to spread 20-40 pl of a 1.5-w/v% suspension of 140 nm positively charged



Figure 3-6: 100 nm diameter positively charged PS sphere suspension (0.25-w/v%)
in DI water with Triton X-100, spin-coated at 3000 rpm on a substrate made from
420 nm diameter negatively charged PS spheres for 60 seconds
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Figure 3-8: 210 nm diameter positively charged PS sphere suspension (1.0-w/v%)
in DI water, spin-coated at 3000 rpm on a substrate made from 420 nm diameter
negatively charged PS spheres for 60 seconds
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Figure 3-10: 100 nm diameter positively charged PS sphere suspension (1.0-w/v%)
in DI water, spin-coated at 6000 rpm on a substrate made from 420 nm diameter
negatively charged PS spheres for 60 seconds
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Figure 3-12: SEM image of a larger domain with LS6 ordering

PS particles on the substrate at 3000 rpm. The resulting structure has CsC1 symme-

try. Fig. 3-14 shows a SEM micrograph where the first layer of 250 nm negative PS

particles and the second layer of 210 nm positive PS particles are seen.

3.4 Dip-Coating of Oppositely Charged Colloids

The zinc blende or the ZnS structure has been reported to have a complete photonic

band gap (CPBG) [12] with a large enough dielectric contrast. Indeed, by merely

scaling the size of the colloidal constituents in this structure, the frequencies that are

blocked can be changed. Along the (111) plane, ZnS presents a unique configuration

in which only one type of charged species constitutes a layer. The assembly of ZnS

type structure was attempted through the following procedure: the starting substrate

should have f.c.c. symmetry with (111) orientation and it should be made of like-

charged (negative) colloids. The second layer of particles should be oppositely charged

and smaller. These should fill only half of the interstices on the first layer. The final

structure is akin to the schematic shown in fig. 3-15. The third layer of negatively

charged colloids then sits on top of the positive ones. Fig. 3-16 shows the most



Figure 3-13: SEM image of a larger domain with LS 2 ordering

Figure 3-14: 140 nm diameter positively charged PS sphere suspension (1.0-w/v%)
in DI water, spin-coated at 3000 rpm on a substrate made from 250 nm diameter
negatively charged PS spheres for 60 seconds. The layer of 250 nm particles were
assembled on a template with holes arranged in (100) symmetry, through convective
assembly.



energetically favorable positions for negative PS particles in the third layer. The

most energetically favorable positions for positive particles in the fourth layer are

shown in fig. 3-17.

Os
Figure 3-15: A schematic showing the first two layers for a layer-by-layer assembly of
ZnS-type structure. Green spheres represent positive PS particles in the second layer
and red spheres represent negative PS particles from the first layer. In the second
layer only half of the total interstices are occupied.

Fig. 3-18 is a SEM micrograph of a non-close-packed layer of 140 nm positive

PS particles arranged on top of a close-packed layer of 420 nm negative PS particles.

The first layer of negative particles was deposited using convective transport from a

suspension of 420 nm PS particles. For the second layer, adsorption seems to be the

most appropriate method. The parameter that determines the ordering in the second

layer is the Debye screening length in the suspension of positive PS particles. Since

the particles are oppositely charged, the amount of contact between the negatively

charged substrate and the suspension of positively charged particles is critical. As a

result, convective assembly cannot be used to deposit particles in the second layer.

Although an assembly of particles through dip-coating is less uniform, limited time

of contact between oppositely charged particles is a more important factor.
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Figure 3-16: A schematic showing the first three layers for the layer-by-layer as-
sembly of ZnS-type structure. Green spheres represent positive PS particles in the
second layer and red spheres represent negative PS particles. The position of negative
particles in the third layer is shown in translucent blue.

Figure 3-17: A schematic showing the first four layers for a layer-by-layer assembly of
ZnS-type structure. Green spheres represent positive PS particles in the fourth layer
and red spheres represent negative PS particles



Figure 3-18: SEM image after a suspension of 0.1-w/v% 140 nm diameter positively
charged amidine functionalized PS spheres with Triton X-100, deposited on a sub-
strate of 420 nm negatively charged PS particles which were arranged in f.c.c. pattern
with (111) orientation. The dip-coating lasted for 60 seconds

3.5 Theoretical Calculations

Most studies on the heterocoagulation of charged colloidal particles rely on deter-

mining the stability factor through turbidity studies [161]-[164]. However, here the

interparticle energy for colloidal particles with and without Triton-X 100 is calculated

and it is shown that the increased stability imparted by adsorbing Triton-X 100 onto

oppositely charged particles maybe the reason for ordering.

The interaction energy of geometric configurations relevant to the observed struc-

tures was calculated as follows. Following Maskaly et al., the method of Derjaguin,

Landau, Verwey and Overbeek (DLVO theory) is adapted to model interactions be-

tween oppositely charged colloidal particles. The two important interaction terms

in DLVO theory for the present systems are the vdW and electrostatic. Although

the Hogg Healy and Fuerstenau model (HHF) [165] is usually used to describe the

electrostatic behavior for heterocoagulation studies, it is valid at high ionic concen-

trations. Because here experiments were done at low ionic concentration, the Yukawa

pair-potential provides a good approximation to the electrostatic interaction between
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two charged spheres. However, a two-particle potential may not suffice in cases where

local order produces multiple particle proximity effects. Thus, a numerical solution of

the Poisson-Boltzmann equation [166] is used to calculate the interaction interaction

energy for a collection of charged spheres.

The steric interaction between colloidal particles was modeled by using Vincents

formulation [167]. QCM measurements, described earlier in section 3.2.2 show that

the adsorption plateau is reached at close to cmc of Triton-X 100. These results are

tabulated in table 3.2. As the concentration of Triton X 100 used for the current ex-

periments were always greater than cmc, a uniform profile for the adsorbed non-ionic

surfactant is assumed. Vincents analysis had two steric contributions for approaching

polymer or surfactant coated spheres: if 6 denotes the average thickness of the surfac-

tant coils covering the particle surface then the interaction has an osmotic component

at intermediate separations H, i.e. (6 < H < 26) (eq. 3.2).

Table 3.2: Variation of Triton-X 100 coverage on Polystyrene with bulk concentration
of Triton- X 100, as determined by QCM

Triton-X 100 concentration in DI water [ x cmc] Coverage [pM/m 2

(cmc = 0.24 mM)
0.01 1.16
0.1 2.2
1.0 3.57
5.0 3.40
10.0 3.44

Eosm(6 < H < 26) = 81rkBTRlR 2 #2(0.5 - X) ( - 0.5H) 2  (3.2)
v1(R1 + R2)

At smaller separations an elastic component arises and the interaction is modeled as

shown below in eq. 3.3

(k( - 0.25n(H))
Eosm(0 < H < J) = 87rkBg2 1j2#2 (0.5 - X) 2 (3.3)

v1(R1 + R 2 ) (3.3

where R1 and R2 are the radii for spheres 1 and 2 respectively, # is the effective volume



fraction of the segments in the adsorbed layer, vi is the molecular volume of the solvent

and x is the Flory-Huggins solvency parameter. v1(water) = 2.99 x 10- 29 m3 and X

is 0.45 for Triton-water. Using the electrostatic interaction, the interaction energy is

calculated in the absence of a surfactant, at sequential positions (fig. 3-19) of a 100

nm positive PS sphere on the surface of one of the seven negative 420 nm PS spheres

that form a close-packed layer. As shown, the most stable configuration occurs when

the positively charged particle settles into the interstice of the fixed negatively charge

particles. Although it is energetically favorable, this configuration is rarely observed

on large length-scales after spin-coating in the absence of Triton-X.
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Figure 3-19: Normalized electrostatic force (relative to the Brownian force) and elec-
trostatic energy (relative to kBT ) with respect to the position of a 100 nm positive
PS sphere moving on the surface of one of the 420 nm negative PS spheres, which
are packed into close packed with fec (111) orientation. Salt concentration has been
assumed to be 0.001 mM whereas the surface charge density for each kind of sphere
has been assumed to be identical to the value supplied by the manufacturer. The cal-
culation was done by solving the linearized Poisson Boltzmann equation for a system
of 7 negative PS spheres and one positive PS sphere through the PoissonBoltzmann
solver. For position 1, the positive PS sphere sits in the crevice formed by 3 negative
PS spheres. 02 = 45*, 03 = 55*, 04= 65*,0 5= 750 and 06 = 90*
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Because thermal effects should be insufficient to produce disorder, it can be in-

ferred that the presence of surfactant's steric hindrance promotes ordering via surface

slip after and during deposition. This surface slip is accommodated by the larger equi-

librium separation. This is illustrated by fig. 3-21 where the interaction is the sum

total of the vdW, electrostatic and the steric energies. With no steric hindrance the at-

tractive interaction produces different minimizing configurations. These observations

suggest that steric hindrance makes the primary minima (of the DLVO potential)

inaccessible and leaves the observed interstitial positions as the only energetically

favored location.
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Figure 3-20: DLVO (van der Waals + electrostatic) interaction energy (in red) and
DLVO + steric interaction energy (in blue). The above calculations are for a negative
420 nm PS and a positive 100 nm PS approaching each other in water. For the steric
interaction, # = 0.10, vi = 0.03nm 3 and X = 0.45

The steric interaction between colloidal particles has been widely researched and

extensive literature exists detailing the various aspects that control it ([31] and the

references contained therein). From eq. 3.2 and eq. 3.3 one of the most important

parameters in controlling the interaction is #. By changing the volume fraction of the

adsorbed surfactant one can vary the magnitude of the steric repulsion even in the

presence of very strong electrostatic attraction as modeled in fig. 3-21.
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Figure 3-21: DLVO + steric interaction as a function of the adsorbed surfactant
volume fraction #

3.6 Colloidal Self-assembly on Charged Substrates:

Role of Hydrophobicity

In this section, a discussion of colloidal self-assembly on charged surfaces is presented.

In this study [156], self-assembly of negatively charged PS particles in a sessile drop,

on charged substrates, was monitored in-situ. In a sessile drop, self-assembly starts

from the edge of the drop and proceeds inwards.

In the absence of any surfactant in the system, if the particles and substrate

are oppositely charged, the assembly of colloidal particles always results in a disor-

dered arrangement. For instance, if the assembly takes place on negatively charged

glass substrates, negatively charged PS spheres show long-range order on assembly,

whereas positively charged PS particles do not. Assembly on positively charged glass

substrates shows similar behavior. This behavior can be attributed to electrostatic

attraction between particles and the oppositely charged substrate.

The behavior of particles is more complex when a surfactant is present in the

system. Section 3.5 demonstrated that the presence of a non-ionic and amphiphilic
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surfactant in a system, ensures ordered assembly of charged hydrophobic particles on

a layer of oppositely charged hydrophobic particles. As shown earlier, steric hindrance

prevents trapping of particles by attractive electrostatic potential. Consider a system

where the substrate is hydrophilic, but the particles are hydrophobic. If the surfactant

is amphiphilic and non-ionic, particle and substrate surface charges are unaffected.

Surfactants adsorb onto hydrophobic particles but not on the hydrophilic substrate.

Thus, there is no steric barrier between the particles and substrate. As a result, akin to

ordering in a surfactant-free system, charged particles form a disordered arrangement

on an oppositely charged substrate.

An interesting scenario occurs when the substrate and particles are similarly

charged, and an oppositely charged surfactant is added to the system. The behavior

of the particles depends on the hydrophobicity of the surfactant. For instance, in

one experiment, self-assembly of negatively charged PS particles was monitored on

a negatively charged substrate when (a) DTAB was present in the system and when

(b) P2VP+I- - PEO was present in the system. DTAB is a hydrophobic surfactant,

whereas P2VP+I- - PEO is an amphiphilic cationic polyelectrolyte. The mobil-

ity of PS particles in (a) was sluggish compared to the mobility of particles in (b).

Additionally, domains in (b) showed long-range order compared to domains in (a).

Since both surfactants are cationic, electrostatic interaction alone cannot describe the

above observations. It was inferred that lower mobility in (a) is caused by attractive

hydrophobic interaction between DTAB layers adsorbed on the substrate and the

spheres; due to lower mobility, the particles assembled in a disordered pattern. On

the other hand, adsorption of P2VP+I- - PEO leads to a steric barrier between

particles and the substrate. It was inferred that this led to greater mobility of PS

particles and an ordered arrangement.

3.7 Concluding Remarks

To summarize, it was shown that oppositely charged particles can be ordered in spite

of strong surface charge. A new layer-by-layer method was used to order these parti-



cles. Strong electrostatic attraction produces structures that tolerate capillary forces

during drying. The final structure is stabilized by attractive electrostatic as well as

van der Waals forces. It was found that a non-ionic amphiphilic surfactant, Triton-X

100, was necessary to produce long range ordering. Stable structures were obtained

by spin-coating positively charged particles from solution onto a fixed substrate of

negatively charged particles. By varying the concentration of particles in the sus-

pension and the spin-speed during deposition of particles, different structures can be

obtained. A model that combines the electrostatic and vdW terms, from DLVO the-

ory, with the steric interaction term, shows that the energetic barrier to coagulation

produced by steric hindrance along with the greater mobility afforded to the particles

by its adsorption is consistent with our observation. As a result, it is inferred that

any non-ionic amphiphilic surfactant can be used instead of Triton-X 100.

Further, it was suggested that non-close-packed zinc-blende-type structure can be

made through a layer-by-layer assembly of oppositely charged particles. Non-close-

packed ordering of positively charged PS on a close packed layer of negatively charged

PS, was obtained through a dip-coating procedure.

Finally, ordering of like-charged colloidal particles on charged substrates was dis-

cussed. It was shown that hydrophobic attraction can lead to disordered aggregates

of charged particles on like-charged surfaces when hydrophobic polyelectrolytes are

used. However, use of amphiphilic polyelectrolytes can lead to the formation of or-

dered domains.
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Chapter 4

Layer-by-Layer Self-Assembly of

Non-C lose- Packed

Heterostructures

4.1 Introduction

In recent years, fabrication of complete photonic band gap structures has attracted

a lot of attention. Presently, there are three methods that are widely used to make

photonic crystals. These are: colloidal assembly [106], holographic lithography [168]

and micro-machining [169]. Compared to the latter two, colloidal self-assembly is

easier, cheaper and scalable [170, 171].

However, when spherical particles spontaneously assemble, the packing fraction

and orientation of the crystal is limited to 0.74 and f.c.c. (111), respectively. At

this packing fraction, a CPBG is not observed. Photonic band gap calculations have

shown that a packing fraction of around 0.20 and a refractive index contrast of 2.5 is

required to observe a CPBG. This limitation prompted researchers to look for newer

strategies for making low-packing-fraction structures.

These strategies focused on using templates to direct the growth of colloidal crys-

tals. The earliest templated colloidal crystals were fabricated by van Blaaderen et al.



[105]. By sedimenting silica particles from an aqueous dispersion (a process named

"colloidal epitaxy"), they were able to grow a f.c.c. colloidal crystal with (100) ori-

entation. Colloidal epitaxy can be used to grow crystals with other orientations too.

However, it takes weeks to form a crystal through colloidal epitaxy, and the thickness

of the crystal cannot be controlled. In comparison, vertical deposition methods (such

as convective assembly), are best suited for use with templates, as they offer control

over thickness during colloidal assembly.

Recently, Santamaria et al. [14] proposed a novel approach for making a CPBG

diamond cubic crystal. They fabricated a b.c.c. crystal, composed of interpenetrating

diamond cubic, silica and polymer lattices. In the end of the process, they removed

the polymer particles and obtained a diamond cubic structure made of silica particles.

Their approach was based on two facts. These were (i) a body centered cubic (b.c.c.)

lattice is made of two interpenetrating diamond cubic lattices and (ii) a b.c.c. lattice

is easier to grow since sphere sites are stable in it. Santamaria et al. used the following

procedure: a silicon template with holes patterned in (110) symmetry was used to

direct the assembly. By using a robot attached to a SEM, polystyrene (PS) particles

were placed in alternate holes and silica particles in the remaining holes. This process

was repeated particle by particle and layer by layer to make a b.c.c. crystal. In the

end, PS particles were removed by etching in oxygen plasma. The silica particles that

were left behind, were arranged in a diamond cubic structure. In principle, robotic

assembly can be used to form any non-close-packed structure, so long as particles are

in contact with one another. However, it is evident that there is a need for a more

efficient and less expensive method to make non-close-packed structures.

In this chapter, templated self-assembly of an ordered 2D heterostructure of like-

charged PS and silica particles is described [24, 172]. A silicon wafer with holes

patterned in (100) symmetry is used as a template. Particles are arranged in the

heterostructure akin to the pattern on a checkerboard; PS particles reside in every

other hole and silica particles fill the remaining holes. A two-step convective assembly

process is used to form this structure. In the first step, it is shown that PS particles

form a sparse structure if the Debye length (r-1) of the solvent and concentration of



particles is correctly controlled. Domains with a sparse arrangement of PS particles

are hundreds of micrometers large; these domains are referred to as Li-PS. In the

second step, convective deposition is used to fill the remaining holes with silica parti-

cles. The resulting 2D heterostructure domains in the first layer (hereafter, referred

to as Li) are tens of micrometers large.

Compared to earlier methods, this technique relies on self-assembly of charged

particles to produce a sparse domain and a 2D heterostructure. By replicating the

process above, layer by layer, one can create a multilayered heterostructure with two

particle types. Removal of one particle type from the final heterostructure leads to

a non-close-packed multilayered structure. For example, it is shown that a two-layer

heterostructure of silica and PS is formed by layer-by-layer assembly. In the end of the

process, PS particles are removed. This leaves behind a two-layer non-close-packed

structure of silica particles.

4.2 Materials and Methods

4.2.1 Materials

Suspensions of monodisperse polystyrene (PS) beads measuring 250 nm (sulphate

functionalized, (= -52.56 mV at ,-'= 127 nm, and charge density measured by the

manufacturer equal to -0.019 C/m 2), 140 nm (sulphate functionalized, (= -54.62 mV

at r-'= 127 nm, and charge density measured by the manufacturer equal to -0.011

C/m 2) and 500 nm (sulphate functionalized, (= -61.57 mV at K-= 127 nm, and

charge density measured by the manufacturer equal to -0.041 C/rm2 ) were purchased

from Molecular Probes Inc., Eugene, OR. Suspension of monodisperse carboxyl func-

tionalized PS particles was also bought from the same supplier (it had (= -52.56

mV at ,-= 127 nm, and charge density measured by the manufacturer equal to -

0.032 C/m 2 ). Monodisperse silica suspension of 250 nm particles was purchased from

Corpuscular Incorporated. It had (= -45.54 mV at K-'= 127 nm. Electrophoretic

mobility for different colloidal samples was measured using a Zeta-PALS (Brookhaven



Instruments Corporation). Once electrophoretic mobility was measured, zeta poten-

tial was calculated using the Smoluchowski model (eq. 2.34). All the above suspen-

sions were dialyzed against de-ionized (DI) water to lower their salt concentrations

before use.

Poly(allylamine hydrochloride) (PAH; M.=50,000) was purchased from Sigma

Aldrich Inc. Polyelectrolyte solutions were prepared by thoroughly mixing appropri-

ate amounts (1 mg/ml to 7 mg/ml) of powdered PAH in DI water.

4.2.2 Solvents

De-ionized water (DI water) was used for most of the experiments and was readily

available. However, in a few cases, 99% anhydrous Ethyl Alcohol (Hubbard Hall

Inc.) was used as a solvent. Ethanol-based silica suspensions were prepared via the

following procedure: silica particles were centrifuged from 10 ml of their original

aqueous suspension. Then they were transferred to 10 ml ethanol. The ethanol

suspension was sonicated for 60 minutes. Thereafter, the particles were centrifuged

again and resuspended in ethanol. Centrifuging and resuspension of the particles was

repeated five times.

Conductivity of DI water was measured (YSI 3200 Conductivity Instrument) in

the absence of particles, and these values were used to infer the Debye lengths. Large

Debye lengths were obtained for the particle suspensions as a result of: i) dialysis of

the particle suspensions (dialysis was used to lower salt concentrations in the parti-

cle suspensions). Particles were dialyzed against DI water in Float-a-lyzer dialysis

bags from Spectrum Labs. These bags allow salt ions to diffuse into DI water while

preventing the diffusion of particles at the same time. The salt concentration of the

particle suspension was tracked by measuring the conductivity of the reference sol-

vent, and the process continued until no further change in the conductivity of the

reference solvent could be detected; and ii) low concentration of particles. Since low

particle concentration was used for the experiments, the concentration of particle

counter-ions was also low. Calculations showed that although the particle counter-

ions led to a drop in Debye length, the Debye length in the suspension was large



enough to influence long-range interparticle interaction.

4.2.3 Template Preparation

Silicon templates with pitches = 185 nm, 330 nm or 660 nm, were prepared by

interference lithography (IL). The procedure for this is outlined in section 3.2.4. These

templates had holes arranged in a pattern with (100) symmetry. Fig. 4-1 is a SEM

image for a template with a pitch of approximately 330 nm.

Figure 4-1: SEM image of a silicon template, which has holes arranged in a pat-
tern with (100) symmetry. The holes were 45 nm deep. This template was created
according to the procedure described in section 3.2.4

All templates had holes with a depth of 45 nm. For optimum results, the following

two factors were controlled:

Diameter of the hole
Diameter of the particle

Pitch of the template
A2 = Diameter of the particle'

(4.1)

(4.2)



4.2.4 Colloidal Assembly

Prior to all particle deposition steps, templates were treated with oxygen plasma at

6 mTorr for 10 seconds. Subsequent contact angle measurements showed the wetting

angle of water to be between 0* and 60. Fig. 4-2 is an image with a drop of water

on a bare template. A droplet of water was placed on a bare template and it spread

immediately. In fig. 4-2 the droplet is visible. Here, the contact angle was 0.800.

Particles were assembled through convective assembly. In this process, templates

Siio Te plt

Figure 4-2: Contact angle measurement on a bare silicon template after exposure to

oxygen plasma. The contact angle was 0.80'.

were attached to the side-walls of a beaker, with the particle suspension. When

the suspension was slowly withdrawn, particles assembled on the template. For PS

particle assembly, a 8-v/v% suspension was diluted in DI water (Debye length = 204

nm) to 0.025-v/v%. Thereafter, a beaker with PS suspension and templates, was

placed in a water bath at 35'C. Silica particles were assembled as follows. A 5-v/v%

aqueous suspension of silica was diluted to 0.025-v/v%. Thereafter, a beaker with

this suspension and substrates, was placed in a water bath at 50'C.

Unless otherwise stated, the withdrawal speed of the suspension during all depo-

sition steps was 46.1 pm/min.



4.3 Results

4.3.1 Li-PS: Sparse Polystyrene Layer

When PS particles are assembled on a template, the final arrangement depends on

the concentration of PS particles in the dispersion and the Debye length of the sol-

vent. Fig. 4-3 is a schematic and shows the different kinds of ordering seen on the

template during this work. Convective assembly of PS particles is characterized by

Close-packed
OrderingIAll holes on the

template occupiedISparse Ordering

Figure 4-3: Schematic showing the different kinds of ordering seen on the template.

the formation of bands (consisting of sparse domains) separated by regions without

any particles. This is shown in fig. 4-4 and is attributed to the stick and slip of

meniscus on the template [173]. The effect of stick and slip is characterized through

Aband (eq. 4.3) and 6 band (eq. 4.5), whereas the extent of sparse ordering, within a

band, is characterized through qOsparse (eq. 4.4):

,\band = Average center-to-center distance between two bands. (4.3)

qOsparse = Average area of a band, which is occupied by the sparse pattern. (4.4)

Jband = Average width of a band. (4.5)

Fig. 4-5, fig. 4-6 and fig. 4-7 show scanning electron microscope (SEM) images

of the final arrangement of PS particles on the template when the Debye length was

fixed at 204 nm and the concentration of particles was 0.01-v/v% , 0.025-v/v% and

............ . ...................... ......... ........... ............ ............. ------------- ..... ..... ...................... .......



Figure 4-4: SEM image of a template after convective assembly of PS particles from
a 0.025-v/v% aqueous suspension. Due to stick and slip of the meniscus, the particles
assemble in bands, separated by regions on the template without any particles. In
this image, bright regions are bands of PS particles, whereas dark regions are regions
on the template without any particles

0.10-v/v%, respectively. Insets in these figures schematically show the arrangement

of PS particles on the template. In these insets, PS particles on holes are shown in

red and the empty holes are shown as open circles. The pair distribution function

(PDF) for the arrangement of PS particles in the SEM images above, are plotted

in fig. 4-8 and fig. 4-9 respectively. Fig. 4-10 is a SEM image, showing the side

view of a template with Li-PS arrangement. Fig. 4-11 is a SEM image showing

the arrangement of PS particles when the Debye length was 30 nm; concentration of

particles for this experiment was 0.025-v/v%. The PDF for the arrangement of PS

particles in fig. 4-11 is plotted in fig. 4-12. Aband, #sparse, and 6 band for the above

experiments are summarized in table 4.1:

When 0.1-v/v% suspension was used, an increase in polydispersity led to the for-

mation of close-packed domains. In contrast, at lower concentrations (0.01-v/v% and

0.025-v/v%) the assembled pattern withstood larger fluctuations in dispersity and re-

tained the sparse pattern. However, even at these concentrations, a few domains with

close-packed order, and with PS particles occupying all holes on the template, were



Table 4.1: Variation in Aband, #,parse, and 6band at different Debye lengths and con-
centrations for 250 nm PS particles

K-1 concentration Aind [um] #sparse 5 band [PM]
204nm 0.025-v/v% 27.6±13.24 0.90±0.10 15.2±7.5
204nm 0.01-v/v% 40.1+20.12 0.91±0.06 8.0±3.4
30nm 0.025-v/v% 25.1±12.39 0.19±0.09 14.9±7.6

Figure 4-5: SEM image of a template, after convective assembly of 250 nm PS parti-
cles from a 0.01-v/v% aqueous suspension. The withdrawal speed of the suspension
was 46.1 pm/min at 35*C. i-' was 204 nm. This was inferred from conductivity mea-
surement of the solvent. As seen in this image, particles arrange in a sparse pattern.
The inset shows a schematic arrangement of particles on the template: red circles
denote particles and open circles denote empty holes. Due to the low concentration
of the particles in suspension, narrow bands of PS particles assemble on the template.

......... .............. I ...... .......



Figure 4-6: SEM image of a template, after convective assembly of 250 nm PS particles
from a 0.025-v/v% aqueous suspension. The withdrawal speed of the suspension
was 46.1 pm/min at 35'C. r-1 was 204 nm. This was inferred from conductivity
measurement of the solvent. As seen in this image, particles arrange in a sparse
pattern. The inset shows a schematic arrangement of particles on the template: red
circles denote particles on holes and open circles denote empty holes.

... .. .... .... ....... .



Figure 4-7: SEM image of a template after convective assembly of 250 nm PS particles
from a 0.1-v/v% aqueous suspension. The withdrawal speed of the suspension was
46.1 pm/min at 35'C. r- was 204 nm. This was inferred from conductivity mea-
surement of the solvent. Due to high concentration of PS particles in the suspension,
they fill all the holes in the template. The inset shows a schematic arrangement of
particles on the template. Red circles denote PS particles on holes.

2 4 6 d 8a 10 12 14

Figure 4-8: Plot of the pair distribution function for
particles in fig. 4-5 and fig. 4-6. o is the diameter of

the arrangement
the sphere

of 250 nm PS
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Figure 4-9: Plot of the pair distribution function for the arrangement of 250 nm PS
particles in fig. 4-7. o- is the diameter of the sphere

Figure 4-10: SEM image of the cross-section of a template with 250 nm PS particles
ordered in Li-PS arrangement



Figure 4-11: SEM image after convective assembly of 250 nm PS particles from a
0.025-v/v% aqueous suspension. The withdrawal speed of the suspension was 46.1
pm/min at 35 C. r, 1 was 30 nm. This was inferred from conductivity measurement
of the solvent. Random filling may be associated with the reduced Debye length.

2 4 6 8 61 10 12 14 16

Figure 4-12: Plot of the pair distribution function for the arrangement of 250 nm PS
particles in fig. 4-11. a is the diameter of the sphere. Due to low r-', the arrangement
shows short-range order compared to the arrangement of particles in fig. 4-6
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observed. In general, the number of close-packed domains and their size, decreased

on lowering the concentration of particles. Due to stick and slip of the meniscus, the

domains with sparse order were bigger, perpendicular to the direction of withdrawal

of the suspension. Thus, typical Li-PS domains were 15prm wide along the pumping

direction, and hundreds of micrometers large, perpendicular to the direction of with-

drawal of the suspension. A SEM image of a typical Li-PS domain is shown in fig.

4-13.

Figure 4-13: SEM image of a large area of the template after convective assembly
of 250 nm PS particles from their 0.025-v/v% aqueous suspension. The withdrawal
speed of the suspension was 46.1 pum/min at 35'C. r- was 204 nm. This was inferred
from conductivity measurement of solvent. This image shows a Li-PS band where
PS particles are arranged akin to their arrangement in fig. 4-6. Thus, typical Li-PS
domains were 15 pam wide along the direction of withdrawal of the suspension and
hundreds of pm large, perpendicular to it.

4.3.2 Results and Discussion: Mechanism of Sparse Struc-

ture Formation

Orientation of the template during convective assembly plays a key role in the for-

mation of the sparse structure. In a set of experiments, the template was fixed such

that the holes are oriented along (100), (110) and (120), relative to the direction of



withdrawal of the suspension. Results from these experiments are shown in fig. 4-14

and fig. 4-15. Fig. 4-14 is a plot Of oband and Aband, and fig. 4-15 is a plot Of #sparse for

---- Yband
50 - band

30

10

(100) (110) (120)
Orientation of the template

Figure 4-14: Variation of Aband and Jband when PS particles were assembled onto
templates, fixed at different orientations relative to the direction of withdrawal of the
suspension. The suspension was withdrawn at 46.1pm/min at 35'C.

different orientations. Fig. 4-15 shows that ,,,arse is larger if the template is oriented

along high-symmetry directions ((110) and (100)), with respect to the direction of

withdrawal of the suspension. When the template is oriented along a high-symmetry

direction, such as (100), holes on the template are oriented parallel to the meniscus.

On the other hand, when the template is oriented along a low-symmetry direction,

such as (120), the holes are not oriented parallel to the meniscus. This may indicate

that PS particles are stabilized in a non-close-packed pattern at the three-phase line

(i.e. the meniscus), prior to their deposition on the template. It is shown later that

this is due to electrostatic repulsion between particles.

4.3.3 Discussion: Conditions for Sparse Structure Formation

Dependence of the final arrangement of particles can be interpreted with the following

ratio, A3 . This is given by eq. 4.6.

............... .... ....... ......
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Figure 4-15: Variation of #sparse when PS particles were assembled onto templates,
fixed at different orientations relative to the direction of withdrawal of the suspension.
The suspension was withdrawn at 46.1prm/min at 35'C.

Diameter of the particle (4.6)
Debye length of the solvent

It was verified that formation of sparse PS domains is not restricted to 250 nm

sized particles. In fact, sparse domains were observed when 140 nm and 500 nm PS

particles were assembled on their respective templates at 35 C. The Debye length

was 204 nm and the concentration of PS particles in the dispersion was 0.025-v/v%

for both experiments. When -1 = 204 nm, A3 is 0.408 in a dispersion of 500 nm

particles, whereas it is 0.816 for 250 nm particles and 1.46 for 140 nm particles.

Detailed Monte Carlo simulations, discussed in chapter 6, show that the concen-

tration of particles and K- play a central role in the formation of domains with sparse

arrangement of particles. Besides these two, the other parameters that were controlled

for obtaining large domains with sparse ordering are briefly discussed below.



Hydrophobicity

Surface treatment of starting templates played a key role during convective deposition.

When the surface of the template was hydrophobic, the meniscus at the air-water in-

terface had a higher concentration of particles. As a result, multiple layers assembled

during deposition. On the other hand, when the surface was super-hydrophilic (wet-

ting angle for water ~ 00), a monolayer of particles assembled. Common methods

to make the template super-hydrophilic are, treatment with Pirhana (3:1 mixture of

sulphuric acid and hydrogen peroxide respectively) or exposure to oxygen plasma.

Plasma treatment was used instead of the Pirhana treatment because of its effective-

ness and handling.

Withdrawal Rate of the Suspension

The largest bands of sparsely ordered PS particles were obtained when withdrawal

speed was 46.1 pm/min. At faster speeds, narrower bands with sparse order were

observed, whereas at a slower speed (23.3 pim/min) wider bands with low #sparse
were observed. The most likely explanation for this is the variation in concentration

at different withdrawal speeds. When the withdrawal speed is slow, more particles

migrate to the air-water interface. As a result, dense packing of particles is more

likely. On the other hand, at high withdrawal speeds, a monolayer is formed because

fewer particles migrate to the air-water interface. These results are summarized in

table 4.2.

Table 4.2: Formation of the sparse structure at different speeds of withdrawal of the
suspension

Speed of withdrawal Aband [/-Lm] #sparse oband [pm]
of the suspension[pm/min]

46.1 27.6+13.24 0.90+0.10 15.2±7.5
23.3 12.67+6.33 0.60+0.09 21.2+5.2



4.3.4 Li-Silica

Li-PS was used as the starting substrate for deposition of silica particles. Before

deposition, Li-PS was exposed to oxygen plasma for 10 seconds. Contact angle

measurements showed that the surface is hydrophilic, with a wetting angle between 0*

and 60. As previously discussed, a super-hydrophilic surface is required for assembling

a monolayer through convective assembly. Fig. 4-16 is an image of a drop of water on

a Li-PS substrate, after exposure to oxygen plasma. The droplet spread immediately

on coming in contact with the substrate. However, it is visible in fig. 4-16. The

contact angle for this experiment was 4.7*.

Figure 4-16: Contact angle measurement on Li-PS substrate, after it was exposed to
oxygen plasma for 10 seconds. The contact angle of water was 4.7*

Silica particles were deposited from a 0.025-v/v% suspension at 46.1 pm/min and

50'C. The arrangement of these particles is also characterized by the formation of

bands. Thus, bands with silica particles, arranged in a sparse pattern (hereafter,

referred to as Li-silica) were separated by regions without silica particles.

When the assembly was carried out at 35*C, silica particles occupied fewer holes

on the substrate. This could have been due to the higher sedimentation of silica

particles. Various methods have been used to reduce sedimentation. Most researchers
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use silica dispersion in ethanol instead of DI water [127]. Since ethanol is more volatile

than water, a greater number of silica particles are transported to the meniscus.

Other researchers prefer to assemble silica particles on a horizontal template, using

gravitational force to their advantage [2]. In the present set-up, ethanol is not an

appropriate dispersion medium because PS particles are partially soluble in ethanol

and become inflated. For instance, fig. 4-17 is a SEM image and shows inflated PS

particles (~ 350 nm) that were originally 250 nm in diameter. These were exposed

to ethanol during deposition of silica particles from a silica dispersion in ethanol.

Assembly on a horizontal template is also not preferable because the thickness of

the final structure cannot be controlled, unlike in vertical deposition. The preferred

approach is to assemble particles from their aqueous dispersion at 50*C. During this

process, the beaker was partially immersed in a water bath at 50'C. This created

convective currents that transported more particles to the meniscus and reduced the

effect of sedimentation.

Figure 4-17: SEM image of a template with 250 nm PS particles arranged on the
template. This image was taken after silica particles were assembled from a 0.025-
v/v% ethanol suspension, on a substrate with 250 nm PS particles arranged on the
template. PS particles are partially soluble in ethanol. As a result, they swell to 350
nm and coalesce

Fig. 4-18 is a SEM image showing bright silica particles and dull PS particles,



ordered in the first layer. The contrast was a result of different material composition

of these particles. Fig. 4-19 is a SEM image showing a larger area of the first

layer. Note that bands of silica particles only partially overlap with bands of PS

particles. As a result, Li domains were smaller than Li-PS domains. Typically,

Asilica-bands was 26.1 pum, #5L was 0.70 and silica-bands was 8.74 pm. This is the

Figure 4-18: SEM image showing the arrangement of 250 nm silica and PS particles,
after silica particles were assembled from a 0.025-v/v% aqueous suspension, at 50*C,
on Li-PS substrate. The speed of withdrawal of the suspension was 46.1 pm/min.
This kind of order is referred to as L1. PS particles appear dark and silica particles
appear bright. The contrast is due to different material composition

first experimental demonstration of self-assembly being used to form a 2D non-close-

packed heterostructure. The structure was formed on a template and stabilized by

repulsive electrostatic interaction between particles. Ionic colloidal crystals (ICCs)

are non-close-packed structures too. However, they collapse into a close-packed or

disordered structure on removal of the solvent.

By controlling the repulsive electrostatic potential between particles, multiple

structures can be nucleated on a template. For instance, fig. 4-20 shows a SEM

image, where PS particles formed a sparser structure. This structure were stabilized

when concentration of PS particles was 0.01-v/v% and A3 ~.0 *. The empty sites

*In this structure, second nearest neighbors are seperated by 737.9 nm. Even at this distance, and



Figure 4-19: SEM image of a large area with Li ordering. This region is made of dark
250 nm PS particles arranged in every other hole and bright 250 nm silica particles
filling the remaining holes. The contrast is due to different material composition.
Typical bands with Li order were 8 pm wide along the direction of withdrawal of the
suspension, and tens of micrometers large, perpendicular to it



were filled in the second step with silica particles. Fig. 4-21 is a SEM image taken

after silica particles were deposited in the second step.

Figure 4-20: SEM image of a template after convective assembly of 250 nm PS par-
ticles from their 0.01-v/v% aqueous suspension. The withdrawal speed of the sus-
pension was 46.1 pm/min at 35'C and r- was 250 nm. This was inferred from
conductivity measurement of the solvent. Due to low concentration of PS particles
in the suspension and due to high r,, sparser pattern was stabilized by electrostatic
repulsion between particles

Formation of sparse structures is not restricted to the present template. Tem-

plates with other geometries can be used to nucleate different 2D heterostructures.

Fabrication of a stable 2D heterostructure is the key to 3D assembly of non-close-

packed colloidal architectures. In the present study, a two-layer non-close-packed

heterostructure was made by layer-by-layer assembly of the 2D heterostructure de-

scribed in section 4.3.3. Similar to the formation of L1, the formation of the het-

erostructure in the second layer (L2) was a two-step process. In the first step, PS

particles formed a sparse pattern on L1. This pattern is referred to as L2-PS. In the

next step, unoccupied sites in L2-PS were filled with silica particles.

K-1= 250 nm, electrostatic interaction energy is approximately 2370kBT and may be responsible
for stabilizing this structure.
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Figure 4-21: SEM image of 250 nm bright silica particles and 250 nm dark PS particles
arranged on a template. Silica particles were deposited on a template with PS parti-
cles arranged in a sparser pattern, shown in fig. 4-20. Silica particles were deposited
from a 0.025-v/v% aqueous suspension at 500C. The suspension was withdrawn at
46.1 pm/min

4.3.5 L2-PS

In the second layer, sparse domains of PS particles were smaller than sparse domains

in the first layer. As before, deposition of PS particles was preceded by a 10-second

exposure to oxygen plasma. A 0.025-v/v% aqueous suspension of PS particles was

used for deposition; Debye length in the suspension was 204 nm. Due to stick and

slip of the meniscus, the deposition was characterized by the formation of bands of

PS particles, separated by regions without particles. Typically, these bands were 5

pm wide. Fig. 4-22 is a SEM image of a band of PS particles in the second layer.

Fig. 4-23 is a SEM image showing a smaller region with L2-PS ordering. For clarity,

PS particles in L2-PS (in fig. 4-23) are colored in bright green. The colored image is

shown in fig. 4-24. Dull green circles represent vacant L2-PS sites.

When the PS suspension was withdrawn at 46.1 pm/min, L2-PS domains were

only a few particles large. Larger L2-PS domains were observed when the suspension

was withdrawn at 23.3 pm/min. Further reduction in the withdrawal rate led to the
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Figure 4-22: SEM image of a large area with 250 nm PS particles arranged in a sparse
pattern in the second layer. The underlying first layer had Li order. PS particles
were deposited from a 0.025-v/v% aqueous suspension at 23.3 pm/min and 35'C,
through convective assembly. Typical bands with L2-PS order were 5 pm wide.
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Figure 4-23: SEM image of a region with 250 nm PS particles arranged in a sparse
pattern on the second layer. The underlying, first layer had Li order. PS particles
were deposited from a 0.025-v/v% aqueous suspension at 23.3 [pm/min and 35*C,
through convective assembly

GRAIN I GRAIN 2 GRAIN 3

Figure 4-24: PS particles in L2-PS in fig. 4-23, are colored in green. Dull green
discs denote vacancies, whereas bright green discs denote PS particles. Here, L2-PS
domain is made of three L2-PS grains. These are represented by coloring the rim of

the discs differently. Discs with identically colored rims belong to the same grain
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formation of close-packed bands without affecting the size of sparsely packed L2-PS

domains. Interestingly, larger regions of sparse L2-PS domains were observed when

the underlying layer was made solely of PS particles. Fig. 4-25 is a SEM image

showing sparsely ordered PS particles arranged on a first layer of PS particles.

Figure 4-25: SEM image of a region with 250 nm PS particles arranged in a sparse

pattern in the second layer. In the first layer PS particles occupy all the holes. Larger
domains of PS particles with sparse ordering were observed when the underlying layer

was made solely of PS particles. Here, PS particles were deposited in the second layer

from a 0.025-v/v% aqueous suspension at 23.3 pm/min and 350C, through convective
assembly

4.3.6 L2-Silica

After deposition of PS, the substrate was exposed to oxygen plasma for 10 seconds.

Thereafter, silica particles were deposited through convective assembly. Due to stick

and slip, the deposition was characterized by the formation of bands along the direc-

tion of withdrawal. However, there was negligible overlap between L2-PS and bands

with sparsely ordered silica particles (hereafter, referred to as L2-silica). It was found

that a reduction in the electrostatic repulsion between particles plays a key role in

increasing the overlap of L2-silica with L2-PS. In addition, relative humidity (RH)
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was also varied but had negligible effect on the overlap between L2-PS and L2-silica

bands. Details of these experiments are discussed below.

Electrostatic Interaction

During deposition of silica, the suspension was maintained at 50'C and withdrawal

speed was 46.1pm/min. The interaction potential between the substrate and silica

particles in the suspension was repulsive, as all the particles were negatively charged.

It was modified as follows:

(i) Ionicity in the suspension: Ionicity was modified by changing the concentration

of sodium chloride (NaCl) in the suspension. However, even at moderate (1.6 x 10-5

M) and high (10- M) ionicity, overlap of L2-silica and L2-PS bands was negligible.

(ii) Charge on the substrate: The charge on the substrate was modified by dip-

coating the substrate with a cationic polyelectrolyte. Researchers have often used

layer-by-layer assembly of polyelectrolyte on a layer of assembled colloids [174], to re-

duce or reverse the surface charge. In the current study, Poly(allylamine hydrochlo-

ride) (PAH) was used to reduce the surface charge. Although I had no means to

quantify the variation of surface charge, larger regions of overlap between L2-PS and

L2-silica bands were observed after longer exposure to PAH. Larger regions of overlap

were also observed when denser suspensions of PAH were used during dip-coating.

This may have led to greater reduction of the surface charge by adsorption of PAH.

Dipping in PAH was carried out by changing the dipping time in PAH (at constant

PAH concentration) and by changing the concentration of PAH (at constant dipping

time). Table 4.3 summarizes these values.

Table 4.3: Summary of Dip-coating in PAH
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Concentration of PAH Dipping time in PAH
in the suspension [mg/ml] suspension [minutes]

1 5
1 10
3 5
7 5
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Figure 4-26: Variation of Asilica-band and 6 silica-band for silica particles after dip-coating
in different suspensions of PAH

Fig 4-26 shows the variation in Asilica-band and 6 silica-band, and fig. 4-27 shows

the variation of #L2 on changing the dipping conditions in PAH. According to fig.

4-27, #L2 is zero until the samples were dipped in PAH. When samples were dipped

in 1 mg/ml PAH suspension, small regions with L2 order (#L2 =0.05) were observed;

larger 6 silica-band was also observed. Fig. 4-28 is a SEM image showing a substrate

that was dipped for 10 minutes in a 1 mg/ml suspension of PAH, followed by the

assembly of silica particles. For better visual contrast, silica and PS particles in the

second layer are colored red and green, respectively. The colored image is shown in

fig. 4-29. However, according to fig 4-26, largest regions with L2 order were observed

when samples were dipped in 3 mg/ml suspension of PAH for 5 minutes, followed by

silica deposition (#L2=0-19). Fig. 4-30 is a SEM image and shows a region of overlap,

L2, which has been circled. For better visual contrast, silica and PS particles in the

second layer are colored red and green, respectively. The colored image is shown in

fig. 4-31.

When silica particles were deposited on substrates that were dipped in 7 mg/ml

suspension of PAH for 5 minutes, many silica particles were perched on top of the

underlying PS particles. This is shown in fig. 4-32. Enclosed in the box, is a
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Figure 4-27: Variation of #L2 after dip-coating in different suspensions of PAH

Figure 4-28: SEM image after 250 nm silica particles were deposited in the second
layer, from a 0.025-v/v% aqueous suspension at 50*C and 46.1 pm/min, through

convective assembly. Prior to silica deposition, the substrate was dipped in 1 mg/ml
suspension of PAH for 10 minutes
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Figure 4-29: Identical SEM image to fig. 4-28. PS particles in the second layer are
colored green and silica particles in the second layer are colored red, for better visual
contrast. The colored particles form a L2 domain

Figure 4-30: SEM image after 250 nm silica particles were deposited in the second
layer, from a 0.025-v/v% aqueous suspension at 50*C and 46.1 pim/min, through
convective assembly. Prior to silica deposition, the substrate was dipped in 3 mg/ml
suspension of PAH for 5 minutes
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Figure 4-31: Identical SEM image to fig. 4-30. PS particles in the second layer are
colored green and silica particles in the second layer are colored red, for better visual
contrast. The colored particles form a L2 domain

silica particle perched on a PS particle. This kind of arrangement may indicate

that the surface charge of the substrate was reversed. According to fig. 4-26 this is

accompanied by the formation of larger bands (typically 6
sizicands, =25.19pm and

#L2=0.11).

Relative Humidity (RH) and Hydrophobicity

Researchers have found that stick and slip of the meniscus can be reduced by using a

super-hydrophilic template [143]. Indeed, before every deposition step, the substrate

was exposed to oxygen plasma for 10 seconds. In addition, the following conditions

were used.

In one set-up, carboxyl-functionalized PS particles were used for Li-PS and L2-PS

steps, instead of sulphate-functionalized PS particles. Although both are negatively

charged, carboxyl-functionalized particles are hydrophilic. Consequently, stick and

slip of the meniscus should be further reduced during formation of PS and silica

bands. However, it was found that, irrespective of the functionality of PS particles,

ordering of PS and silica particles led to formation of similar sized bands.
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Figure 4-32: SEM image after 250
layer, from a 0.025-v/v% aqueous
convective assembly. Prior to silica
suspension of PAH for 5 minutes.
perched on top of another particle
reversal took place for particles in
pension of PAH

nm silica particles were deposited in the second
suspension at 50'C and 46.1 pm/min, through
deposition, the substrate was dipped in 7 mg/ml
Note that a negatively charged silica particle is
in the first layer. This may indicate that charge
the first layer, after dipping in the 7 mg/ml sus-
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Table 4.4 shows that Li-PS bands formed from carboxyl

alized particles have similar characteristics.

Table 4.4: Characteristics of Li-PS bands from carboxyl and
PS particles

and sulphate function-

sulphate functionalized

Functionalization of Aband [pm] #sparse 5band [Am]
PS particles

sulphate 27.6+13.24 0.90±0.10 15.2+7.5
carboxyl 25.1+12.35 0.85+0.07 14.3+6.85

In another experiment, deposition of silica particles was carried out at different

relative humidities (RH). It has been shown that stick and slip of the meniscus can be

reduced at high RH [143, 175]. Fig. 4-33 is a plot of the characteristics of the bands

of silica particles after deposition. As shown here, an increase in RH leads to wider

bands; at RH= 80%, no particles are deposited on the template due to high slip on

the template. However, silica particles have close-packed order in these bands. As a

result, #L2 was approximately 0 at all relative humidities. A plot of 4L2 is shown in

fig. 4-34.

-e 6band
50 * band.50
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E
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Figure 4-33: Variation of A silica-band and 6 silica-band after deposition of silica particles

at different relative humidities.
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Figure 4-34: Variation of #L2 after deposition of silica particles at different relative
humidities

4.3.7 L2

From the above discussion, one can infer that optimum domains of L2 were obtained

when L2-PS substrates were dipped in 3 mg/ml PAH suspension for 5 minutes. L2 is a

two-layer heterostructure formed from PS and silica particles. A low volume fraction

silica structure was obtained from this heterostructure by removing the PS particles,

without disturbing the silica ones. Latex calcination was not considered for this

purpose because it produced liquid latex, which dragged the silica beads by surface

tension and caused the structure to collapse. Therefore, a more gentle method was

used: oxygen plasma etching at 6 mTorr for 7 minutes. Plasma selectively removes

PS and hardly affects the silicon wafer or silica particles.

Fig. 4-35 shows a SEM image of the resulting structure after removal of PS

spheres. Fig. 4-36 and fig. 4-37 show a close-up of the top view and the cross-

section of the resulting structure. Typically, average values for 6 non--close-packed,

#non--close-packed, and Anon--close-packed are 24.2pm, 0.11 and 51.2 pm respectively.
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Figure 4-35: SEM image showing a band of 250 nm silica particles arranged in a 3D
non-close-packed structure. PS particles were removed from the sample by exposure
to oxygen plasma.
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Figure 4-36: SEM image of 250 nm silica particles arranged in a 3D non-close-packed
structure. PS particles were removed from the original sample by exposure to oxygen
plasma

Figure 4-37: SEM image of a cross-section of a template with 250 nm silica particles
arranged in a 3D non-close-packed structure
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4.4 Concluding Remarks

In summary, it was shown that a sparse pattern of PS particles on a template was

obtained by convective assembly. This was obtained at high Debye length in the sol-

vent and low concentration of particles in the suspension. It was further shown that

at low Debye length or high concentration of particles, the sparse pattern cannot be

stabilized. The sparse pattern was used to make an ordered 2D heterostructure of

PS and silica particles. This was fabricated by deposition of identically sized silica

particles in the empty sites of the sparse pattern. Compared to traditional methods

of obtaining 2D heterostructures, this method is facile, faster, scalable and can po-

tentially produce layers with different symmetries, governed by template geometry.

Additionally, a layer-by-layer method of making 3D heterostructures from 2D het-

erostructures was proposed. Through this method, a two-layer heterostructure of PS

and silica was fabricated. Removal of PS particles from the final assembly led to a

non-close-packed structure of silica particles. This structure represents the first two

layers of a CPBG diamond cubic unit cell. Because self-assembly is used, one is not

limited by the particle and solvent type, as long as the process conditions are correctly

controlled. Stick and slip of the meniscus was identified as the main impediment in

obtaining large domains.
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Chapter 5

Stick and Slip During Convective

Assembly

In chapter 4, it was shown that convective assembly of colloids leads to the formation

of bands with particles separated by regions without any particles. This stripe pattern

is formed due to stick and slip of the meniscus on the template. A reduction in stick

and slip may lead to larger bands ( 6 band, eqn. 4.5) and therefore larger domains with

sparse structure. Recently, a few methods have been proposed that can prevent stick

and slip [145, 176, 177]. Thus, the applicability of these methods to the present set-up

is discussed.

The vertical deposition method was developed by Nagayama et al. [122]. They

showed that the main factors that contribute to the ordering of particles are the

attractive capillary attraction between particles and the convective transport of the

suspension to the meniscus. It was further shown that stick and slip of the menis-

cus during horizontal deposition is a result of the competition between the surface

tension of the deposited film, YDF, surface tension of the suspension, 7Ys, and the

friction force at the contact line. Leh et al. [173] showed that stick and slip during

vertical deposition is due to the interplay between YDF and the surface tension at

the substrate-suspension-air contact line. They suggested that controlling particle

concentration, relative humidity and temperature are essential in reducing stick and

slip.
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Fig. 5-1 shows the different surface tension forces during convective assembly.

The equation of motion of the contact line, L(t), for this set-up, is shown in eq. 5.1.

Figure 5-1: Plot of the surface tension forces during convective assembly. The sus-
pension is withdrawn at a rate v.

d2 L &vz
P = YDF - YSCOS(9) + - pg. (5.1)

Here, p is the density of the suspension, q is the viscosity of the suspension,

vz is the z-component of the velocity of the suspension, and g is the gravitational

acceleration. This is similar to the analysis presented by Won et al. [176].

Won et al. [176] recently showed that stick and slip can be avoided when colloidal

films are assembled through Langmuir-Blodgett (LB) technique at high humidity

and high concentration of particles. They found that the final particle density on

the template is significantly lower than the initial particle density at the air-water
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interface. In their experiments, transfer efficiencies were 0.19±0.04* when a template

with holes arranged in (100) symmetry was used. They also showed that the transfer

efficiency decreases with an increase in the lifting speed of the substrate. In their

model, they assumed that at high humidity, water does not evaporate during self-

assembly. With this assumption, their analysis showed that #, the particle area

fraction in the monolayer on a template, is given by eq. 5.2:

D 2 B9Y 6,qU
# = #0 + -) 0 =0. ( + pg). (5.2)c -Cos (0) 09# D6

Here, #0 is the particle area fraction in the monolayer on the solvent (i.e. far away

from the contact line), D is the particle diameter, c is an adjustable parameter, U

is the velocity at which the template is withdrawn during LB assembly, and 6 is the

wetting film thickness. In the sparse pattern, fig. 4-6, # is 0.22. The corresponding

0 , according to eq. 5.2, is 0.24 for particles with D = 250nm. This corresponds to

a concentration of 5 x 1012 particles/m2. For this calculation, it was assumed that

6 = D, U = 1mm/min, c -cosO = 15.15 x 10-15, and 87y/&q# = -3.2 x 10-4mN -m.

In comparison, if an isotropic distribution of particles is assumed during convective

assembly, the concentration at the air-solvent interface is 9.77 x 1010 particles/m2t

-assuming a volume concentration of 0.025-v/v%. This indicates that a lower #o
may be required during LB assembly.

According to eq. 5.2, a lower #o can be used if the second term on right side of

eq. 5.2 is decreased. This indicates that during LB assembly of particles, it is ideal

to have transfer efficiency as close to 1.0 as possible. As shown by Won et al. this

is possible if the colloidal film is assembled at a lower U. At very low U, it may be

possible to ignore the entire second term on the right side in eq. 5.2 and obtain transfer

efficiency close to 1.0. Clearly, in this regime, the final arrangement of particles on the

template will also be influenced by the interaction between particles. Additionally, a

high humidity may be required to avoid stick and slip during deposition.

*Transfer efficiency is defined as the ratio of the density of particles assembled on a template to
the density of particles on the air-solvent interface.

tThis corresponds to a 40 = 0.0048
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Besides LB method, spin coating [177] and hydrodynamic flow of particles [145]

can lead to domains without stick and slip. However, both these methods are kineti-

cally driven, where the particles are forced to arrange in or between surface features

due to rapid solvent evaporation or flow. Additionally, a high concentration of parti-

cles is required. Therefore, these may not lead to the formation of the sparse pattern.
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Chapter 6

Monte Carlo Simulations of Sparse

Ordering

A number of methods exist to predict the nucleation of stable colloidal phases [2,

100]. Researchers have often relied on free energy calculations to predict the most

stable colloidal structures. They have shown that when the potential in a colloidal

system is repulsive, packing arguments and entropy alone are sufficient to cause bulk

crystallization of stable phases [123].

Contrary to this argument, in chapter 4 it was shown that sparse structures do

not nucleate at high rnR, irrespective of the concentration of particles. To investigate

this further, detailed Monte Carlo simulations are discussed in this chapter. These

show that the final order in fig. 4-6 results from an interplay of the concentration

and electrostatic repulsion between particles.

In Monte Carlo methods, random system changes are rejected or accepted ac-

cording to predefined rules. The scheme followed here is the Metropolis algorithm

[179]. In this scheme, a change is always accepted if it results in lower system energy.

However, it is only accepted with a Boltzmann probability, if it leads to an increase in

the total system energy. These rules satisfy the conditions of detailed balance, which

states that the number of transitions from state A to state B must equal the number

of transitions from state B to state A. More detailed information about Monte Carlo

schemes can be obtained elsewhere [180].
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The internal energy in a colloidal system is obtained by a pairwise summation

of the interaction energy. In a canonical ensemble (NVT system), the movement of

a particle leads to a change in the internal energy AU. The acceptance rules for a

transition in such a system from Ai to Bi are:

acc(Ai -+ B) = 1AUS < 0

AUz > 0 a

(6.1)

(6.2)cc(Aj --+ B ) = exp(- ETiAU').

In a grand canonical ensemble (pVT), in addition to the movement of particles,

the internal energy can change due to creation or destruction of a particle. As a

result, there are additional acceptance rules. These are:

For particle creation:

AUz - ptT < 0 acc(A --+ Bj) = 1

E giaU- pT)
acc(Ai -* B ) = exp( kBT

and for particle destruction:

AUi + pT < 0

AU + pT > 0

acc(Ai -* Bi) = 1

EsgiU + puT
acc(Ai -- B ) = exp(- kBT

where p is the chemical potential.

6.1 Simulation Set-up

Simulations were conducted to verify the formation of a sparse pattern of polystyrene

(PS) particles, discussed in section 4.3. The templated assembly set-up described
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in chapter 4 is best simulated by a grand canonical ensemble. Indeed, the template

represents a system where particles may enter or leave at will; this is dictated by

the chemical potential and the volume of the suspension. Thus, a grand canonical

ensemble was chosen for the Monte Carlo (MC) simulations. The simulation box is a

template with holes arranged in a square pattern, akin to fig. ??. For the current set-

up, the simulation template had 24 x 24 sites. All templates were tested with periodic

boundary conditions. Since A2 > 1, the final arrangement of colloidal particles is non

close packed, even when all the holes are occupied. Thus, vdW interactions can

be ignored. As a result, internal energy is given by a pairwise summation of the

electrostatic energy only. The picture that emerges is that of an Ising model type

system, with each site either with or without a particle.

MC simulations were carried out to obtain optimal arrangement of 140 nm, 250

nm and 500 nm sized PS particles. Corresponding pitches for the templates were 185

nm, 330 nm and 660 nm, respectively. A colloidal dispersion is characterized by K-1

in the solvent, the concentration of particles in the suspension and temperature, T.

Thus, for each particle type, MC runs were carried out when r-' = 30 nm, 100 nm

and 204 nm.

The phase boundary between sparsely ordered phase and the phase where all sites

on the template were occupied, was tracked by the change in a translational order

parameter, r. r [181, 182, 183], was computed over T - p phase space, at constant

K-1. The translational order parameter, -r, is given by eq. 6.7 [183]:

1 SC
= - Ig(s) - 11ds, (6.7)

sc JO

where g(s) is the pair distribution function, and s = rp1 /3, is the radial distance

scaled by the number density, and se is a numerical cutoff. In this work sc=6.0.

For each MC set-up, initial arrangement of particles was chosen by randomly

deciding if a site is occupied (that is, if it has a particle), or vacant. A thousand

MC steps were run before recording any data. Fluctuations in the system energy

were negligible after 1,000 steps. A further 2,000 steps were run to gather data after
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initialization. During each of these steps, system energy and arrangement of the

particles were recorded.

6.2 Simulation Results

The energy of a configuration depends on the electrostatic interaction between parti-

cles and the chemical potential energy of the system. Electrostatic energy is calculated

as a pairwise summation of the Yukawa interaction between particles. On the other

hand, the chemical potential energy is proportional to the concentration of particles

and the temperature of the system. It is given as a product between the chemi-

cal potential for the system and the average number of particles on the template.

Mathematically, the system energy is written as:

Usystem = UYukawa + y x Nay9 , (6.8)

where

p= kB x T x lin(c). (6.9)

Although T was tracked over I - T space, it is more instructive to look at changes

in r in the concentration-T landscape. The system energy varied smoothly over

p - T and concentration-T phase spaces. As a result, nucleation of a new phase

was undetectable from energy plots. On the other hand, T showed discontinuous

variation over p - T. Since p is proportional to concentration, c, these discontinuities

were observed on the c - T landscape too. This indicates that there might be one or

more phase transitions in the system.

For all particle sizes, when ,-1 was 30 nm, electrostatic interaction between parti-

cles was weak. Thus, system energy was dominated by the chemical potential energy.

As a result, configurations where all sites on the template were filled, were stabilized

over all others. For 140 nm particles, this is seen in the contour plot of T (fig. 6-1).

Here, r = 1.1, when all sites on the template are occupied. This configuration is

labeled and is stable over most of the plot. When r-7 is 100 nm, the configuration
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when all sites on the template are occupied, is stable over a smaller region in the c - T

landscape (fig. 6-2). Finally, when K-' is 204 nm, the configuration when all sites on

the template are occupied, is stable over a very small region in the c - T landscape

(fig. 6-3). Similar plots are shown for 250 nm and 500 nm particles in fig. 6-4-fig.

6-6 and fig. 6-7-fig. 6-9 respectively.

When , 1 is 204 nm, there are numerous features on the c - T landscape; many

phases may be stable. For a better understanding, a brief discussion for the arrange-

ment of particles at different T, r-1=204 nm, and ln(c)=40.1 is presented.

40
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0

Phase with all sites
on the template occupied

0 600
T/10 [K]

800 1000

1.15

0.45

Figure 6-1: Plot of r across In(c) - T landscape, for the arrangement of 140 nm
particles, when -1=30 nm

6.3 Discussion

The variation in the arrangement of 140 nm, 250 nm and 500 nm particles at K-1

= 204 nm and ln(c) = 40.1 is presented in fig. 6-10 - 6-13, fig. 6-14 - 6-17 and fig.

6-18 - 6-21 respectively. In these figures, solid red circles represent an occupied site,

whereas an empty circle represents an empty site. A pair distribution function (PDF)

for each arrangement is plotted next to its respective figure.
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Figure 6-2: Plot of r across ln(c) - T landscape, for the arrangement of 140 nm
particles, when r-1=100 nm
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Figure 6-3: Plot of r across ln(c) - T landscape, for the arrangement of 140 nm
particles, when r-1=204 nm

126

.... .. ... .. .... ..



40

30

20

10

0
0 200 400 600

T/10 [K]
800 1000

1.50

0.34

Figure 6-4: Plot of r across ln(c) - T landscape, for the arrangement of 250 nm
particles, when n-1=30 nm
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Figure 6-5: Plot of r across ln(c) - T landscape, for the arrangement of 250 nm
particles, when K-1=100 nm
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Figure 6-6: Plot of r across ln(c) - T landscape, for the arrangement of 250 nm
particles, when '-1=204 nm
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Figure 6-7: Plot of r across ln(c) - T landscape, for the arrangement of 500 nm
particles, when n-1=30 nm
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Figure 6-8: Plot of r across ln(c) - T landscape, for the arrangement of 500 nm
particles, when i,-1=100 nm
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Figure 6-9: Plot of r across ln(c) - T landscape, for the arrangement of 500 nm
particles, when n-1=204 nm
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At T=1100K, nuclei of a sparser structure (similar to fig. 4-20) are visible in the

arrangement of 140 nm (fig. 6-10) and 250 nm (fig. 6-14) particles. In comparison,

500 nm particles arrange randomly. Their arrangement at T=1100 K is shown in

fig. 6-18. At T=3100K, nuclei of sparse structure are stabilized for all particle sizes.

Fig. 6-11, fig. 6-15 and fig. 6-19 show the arrangement of 140 nm, 250 nm and 500

nm particles at 3100 K, respectively. Sparse domains of 140 nm (fig. 6-12) and 250

nm (fig. 6-16) particles remain stable up till T=5100K; sparse domains of 500 nm

particles start to shrink at T=5100 K (fig. 6-20). Finally, when T=7100K, the sparse

structure disappears completely and is replaced by a structure in which all sites are

occupied. Fig. 6-13, fig. 6-17 and fig. 6-21 show the arrangement of 140 nm, 250 nm

and 500 nm particles at 7100 K, respectively.

For all particle sizes, the sparse structure is stable up to T ~3100K, when r-1=100

nm, and not stable at all when r--1=30 nm. These simulations show that decreasing

K-1 reduces the size of domains with sparse arrangement of particles. This agrees

with the experimental observations discussed in chapter 4. As a result, it can be

inferred that although entropy maximization may have a role to play in stabilizing

the sparse structure, the key role is played by the high Debye length in the system

and a low concentration of particles.

Fig. 6-10 and fig. 6-14 show that small domains with sparser structure can also

be nucleated if the concentration of particles is low. However, as seen in fig. 4-20,

stabilization of large domains with this structure, requires an even higher -.
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Figure 6-10: (a)Arrangement of 140 nm particles at ,- 1 =204 nm, ln(c)=40.1 and
T=1100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
K-1=100 nm and 30 nm are plotted in blue and green respectively. These PDF
plots show that unlike at ,-1=204 nm, at ,-1=30 nm, all sites on the template are
occupied.
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Figure 6-11: (a)Arrangement of 140 nm particles at ,-1=204 nm, ln(c)=40.1 and
T=3100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
K-1=100 nm and 30 nm are plotted in blue and green respectively. These PDF
plots show that unlike at ,-1=204 nm, at ,-1=30 nm, all sites on the template are
occupied.
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Figure 6-12: (a)Arrangement of 140 nm particles at ,-1=204 nm, ln(c)=40.l and
T=5 lOOK. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
K-1.=100 nm and 30 nm are plotted in blue and green respectively. These PDF plots
show that at ,c 1=30 nm all sites on the template are occupied; many domains where
all sites are occupied, are also stabilized for ,- 1 =204 nm.
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Figure 6-13: (a)Arrangement of 140 nm particles at s--1=204 nm, ln(c)=40.1 and
T=5100K. (b)Pair Distribution Function (PDF) for the particles on the template,

in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
n-1100nm and 30 nm are plotted in blue and green respectively. These PDF plots
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Figure 6-14: (a)Arrangement of 250 nm particles at ,-'=204 nm, ln(c)=40.l and
T=1100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
K-1 =100 nm and 30 nm are plotted in blue and green respectively. These PDF
plots show that unlike at ,-~1=204 nm, at ,-1=30 nm, all sites on the template are
occupied.
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Figure 6-15: (a)Arrangement of 250 nm particles at ,-'=204 nm, lm(c)=40.1 and

T=3100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
K~- 100 nm and 30 nm are plotted in blue and green respectively. These PDF
plots show that unlike at ir-=204 nm, at ,-1=30 nm, all sites on the template are
occupied.
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Figure 6-16: (a)Arrangement of 250 nm particles at r-1=204 nm, ln(c)=40.1 and
T=5100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
n-1=100 nm and 30 nm are plotted in blue and green respectively. These PDF plots
show that at n-1=30 nm all sites on the template are occupied; many domains where
all sites are occupied, are also stabilized for - 1=204 nm.
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Figre6-7:(aAraeenteo 25 nmprtce ati 1 4 m, lnc=4 an1d

T=7100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
,-1=100 nm and 30 nm are plotted in blue and green respectively. These PDF plots
show that at all n- values, all sites on the template are occupied.
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Figure 6-18: (a)Arrangement of 500 nm particles at ,- 1=204 nm, ln(c)=40.1 and
T=1100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at

-1=100 nm and 30 nm are plotted in blue and green respectively. These PDF
plots show that unlike at -1=204 nm, at r- 1=30 nm, all sites on the template are
occupied.
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Figure 6-19: (a)Arrangement of 500 nm particles at r,-1=204 nm, in(c)=40.1 and

T=3100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
K-1 =100 nm and 30 nmn are plotted in blue and green respectively. These PDF

plots show that unlike at r,-1=204 nm, at r,-1=30 nm, all sites on the template are

occupied.
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Figure 6-20: (a)Arrangement of 500 nm particles at r- 1=204 nm, ln(c)=40.1 and
T=5100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
K-1=100 nm and 30 nm are plotted in blue and green respectively. These PDF plots
show that at r,-1=30 nm all sites on the template are occupied; many domains where
all sites are occupied, are also stabilized for K-1=204 nm.
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Figure 6-21: (a)Arrangement of 500 nm particles at rn-1=204 nm, ln(c)=40.1 and
T=7100K. (b)Pair Distribution Function (PDF) for the particles on the template,
in (a), is plotted in red. For comparison, PDF for the arrangement of particles at
K-1=100 nm and 30 nm are plotted in blue and green respectively. These PDF plots
show that at all r.-1 values, all sites on the template are occupied.
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6.4 Conclusion

In summary, it was correlated with simulation that nucleation of stable sparse struc-

tures, akin to fig. 4-6 and fig. 4-20, takes place at high r and low concentration

of particles. It was shown that electrostatic repulsion is the key to obtaining large

domains with sparse order. Moreover, sparser domains can be nucleated and stabi-

lized over large distances if i-- is higher, and concentration of particles in the system,

lower. Although higher r,-- may not be achievable in aqueous suspensions, it can be

obtained in mildly polar solvents, like isopropanol or ethyl alcohol. Thus, in these

solvents it may be possible to nucleate and stabilize other sparser structures over

larger distances.
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Chapter 7

Conclusions and Outlook

Among the many approaches to create non-close-packed structures, self-assembly is

appealing because it can create a colloidal crystal quickly and over a desired length

scale. In this thesis, lower symmetry structures were created by exploiting interpar-

ticle interactions between strongly charged particles.

It was shown that oppositely charged hydrophobic particles can be rapidly ar-

ranged into ordered 2D architectures through spin-coating. Calculations showed that

non-ionic amphiphilic surfactants create a steric barrier, that prevents these particles

from coagulating during self-assembly. Previously, only oppositely charged particles

with charge densities two orders of magnitude lower had been ordered. It was shown

that, at high Debye length and low particle concentration, a layer-by-layer method

can be used to create a non-close-packed arrangement of like-charged particles, on a

substrate of close-packed and oppositely charged particles.

Electrostatic repulsion between similarly charged colloidal particles was exploited

to nucleate and stabilize non-close-packed structures with sparse ordering on litho-

graphically fabricated templates. It was shown that a 2D heterostructure can be

created by filling the remaining holes on the template with another particle type.

Two layers of a 2D heterostructure were created through layer-by-layer assembly.

In the end, one kind of particle was removed to create a two-layer non-close-packed

structure of silica particles. Stick and slip of the meniscus limited the overlap between

bands of particles during each deposition step. As a result, non--close-packed domains
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were only a few micrometers large. Monte Carlo simulations confirmed that sparse

structures are nucleated only at high Debye lengths and low particle concentrations.

In addition, it was found that sparser domains can be nucleated at an even higher

Debye length and lower concentration of particles.

Implications from the above studies are many. Newer structures, which are more

robust compared to their like-charged counterparts, can now be fabricated from op-

positely charged particles. These include binary structures or non-close-packed struc-

tures, like zinc blende. On the other hand, templates with different geometries may

be used to create multiple sparse structures.

The biggest challenge lies in arresting the effect of stick and slip. It was shown

that bands with sparse order were around 15 pm wide, although these were hundreds

of micrometers long perpendicular to the direction of meniscus slip. If stick and slip

can be arrested, it may lead to very wide bands. This may encourage the discovery

of newer self-assembly processes. Already, horizontal assembly reduces stick and slip,

but it provides no control over the thickness of colloidal crystals that are fabricated.

It may be that a combination of vertical and horizontal deposition is required to

overcome stick and slip.

Interest in the fabrication of crystals of colloidal particles with controlled packing,

symmetry, periodicity, crystal orientation and packing quality, is fueled by the need

for colloidal crystals exhibiting tailored structures in many applications. Methods

and results described herein constitute a step in this direction, allowing for the use

of self-assembly to fabricate novel non-close-packed structures.
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