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Abstract

In a stratified rotating fluid, frictionally driven circulations couple with the buoyancy
field over sloping topography. Analytical and numerical methods are used to quantify
the impact of this coupling on the vertical circulation, spindown of geostrophic flows,
and the formation of a shelfbreak jet.

Over a stratified. slope, linear spindown of a geostrophic along-isobath flow in-
duces cross-isobath Ekman flows. Ekman advection of buoyancy weakens the vertical
circulation and slows spindown. Upslope (downslope) Ekman flows tend to inject (re-
move) potential vorticity into (from) the ocean. Momentum advection and nonlinear
buoyancy advection are examined in setting asymmetries in the vertical circulation
and the vertical relative vorticity field. During nonlinear homogeneous spindown over
a flat bottom, momentum advection weakens Ekman pumping and strengthens Ek-
man suction, while cyclonic vorticity decays faster than anticyclonic vorticity. During
nonlinear stratified spindown over a slope, nonlinear advection of buoyancy enhances
the asymmetry in Ekman pumping and suction, whereas anticyclonic vorticity can
decay faster than cyclonic vorticity outside of the boundary layers.

During the adjustment of a spatially uniform geostrophic current over a shelfbreak,
coupling between the Ekman flow and the buoyancy field generates Ekman pumping
near the shelfbreak, which leads to the formation of a jet. Scalings are presented for
the upwelling strength, the length scale over which it occurs, and the timescale for
jet formation. The results are applied to the Middle Atlantic Bight shelfbreak.
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Chapter 1

Introduction

Ocean bottom boundary layers are regions adjacent to topography where turbulence

mixes heat, momentum and biogeochemical tracers. These regions serve as a dynami-

cal control on the circulation by dissipating energy and shape the local characteristics

of the marine environment by redistributing tracers. Tracers, such as sediment and

nutrients, are transported by the lateral circulation near the bottom as well as the

vertical circulation into and out of these layers. In order to quantify these momentum

and tracer fluxes, an understanding of the strength and structure of this circulation

is needed.

Friction plays an important role in driving this lateral and vertical circulation.

The boundary exerts a frictional stress on the flow that reduces the near bottom

velocity within a frictional boundary layer, the Ekman layer. This frictional force

induces an ageostrophic Ekman flow down the pressure gradient through a subiner-

tial balance between the frictional force, the Coriolis acceleration, and the horizontal

pressure gradient. The vertically-integrated Ekman flow, the Ekman transport, is

directed to the right (left) of the frictional force in the Northern (Southern) Hemi-

sphere. Convergences and divergences in the Ekman transport eject fluid out of,

Ekman pumping, or inject fluid into, Ekman suction, the boundary layer. This pro-

cess drives an ageostrophic secondary circulation that can accelerate or decelerate the

geostrophic flow in the interior.



Observational and theoretical studies have examined the role of cross-isobath Ek-

man advection of buoyancy in setting the structure of the ocean bottom boundary

layer as well as the frictionally driven circulation. Over an insulated stratified slop-

ing boundary, downslope (upslope) Ekman advection of buoyancy induces a positive

(negative) buoyancy anomaly and tilts the isopycnals near the bottom. This isopyc-

nal tilting leads to vertical shear in the geostrophic flow, reducing the bottom stress

and hence weakening the Ekman transport (MacCready and Rhines 1991, Trowbridge

and Lentz 1991). An arrested Ekman layer occurs when this buoyancy anomaly is

sufficiently large to reduce the bottom stress to zero. This process, known as buoy-

ancy shutdown of the Ekman transport, has important consequences for the interior

flow field (MacCready and Rhines 1991). By weakening the Ekman transport, buoy-

ancy shutdown also weakens Ekman pumping and suction. When the Ekman flow is

arrested, the interior geostrophic flow can evolve unimpeded by frictional forces.

The purpose of this thesis is to examine how coupling between the frictionally

driven flow and the buoyancy field over sloping topography modifies the vertical cir-

culation and the interior geostrophic flow through feedback by secondary circulations.

Analytical and numerical techniques are used to address how this coupling impacts

the temporal evolution and spatial characteristics of the flow. The results of this

analysis are applied to observations to determine the extent that cross-isobath Ek-

man advection of buoyancy can explain the structure of flows over stratified sloping

topography.

In the following sections, an overview of previous research is presented regarding

the significance of cross-isobath Ekman advection of buoyancy on the structure and

dynamics of flows along stratified boundaries. This overview addresses notable stud-

ies, with a primary focus on observations, that have shaped our current understanding

of frictionally driven flows over stratified sloping topography. Then, the goals of this

dissertation are presented, with relation to open questions unanswered by previous

research, followed by an outline of the thesis chapters.



1.1 Background and Motivation

Previous research has identified cross-isobath Ekman advection of buoyancy as a po-

tentially important mechanism influencing currents over stratified shelves and slopes.

Observational and theoretical studies have ranged from examining the one-dimensional

bottom boundary layer dynamics to accounting for lateral variations in its structure.

These studies have considered different aspects of this mechanism, which can be cat-

egorized into the following four questions.

How does cross-isobath Ekman advection of buoyancy:

* influence the height of the bottom boundary layer?

0 impact mixing processes by shear or convective instability?

* couple with the lateral Ekman flow and on what timescales?

0 modify the vertical circulation and feedback into the geostrophic flow

by secondary circulations?

These questions have been examined in different flow regimes along stratified slop-

ing topography. These regimes include coastal currents along continental shelves and

the upper continental slopes off of the west and east coast of the United States as well

as the more weakly stratified deep western boundary currents along the lower conti-

nental slope in the North and South Atlantic ocean. A particular region of interest

is the frontal system along the Middle Atlantic Bight shelfbreak, where the gradually

sloping continental shelf intersects the steeply sloping continental slope off of the east

coast of the United States. Studies of these regions reveal where cross-isobath Ekman

advection of buoyany may or may not be important to the subinertial dynamics over

sloping topography.

The overview of past research is presented in three parts. The impact of cross-

isobath Ekman advection of buoyancy on the structure of bottom boundary layers

over the continental shelves and slopes is presented in section 1.1.1. In section 1.1.2,

observations of flows near the Middle Atlantic Bight shelfbreak are presented as moti-

vation for studying how these stratified bottom boundary layer processes over slopes



feedback into the coastal currents. Finally, observations supporting or refuting the

importance of cross-isobath Ekman advection of buoyancy on bottom boundary layers

in deep western boundary currents is presented in section 1.1.3.

1.1.1 Bottom boundary layers over continental shelves and

upper continental slopes

Over continental shelves and upper continental slopes, characteristics in the near bot-

tom flow and tracer fields distinguish bottom boundary layers from the overlying flow.

First, currents tend to veer counterclockwise downward, which is consistent with the

direction of Ekman veering predicted by a balance between frictional forces and the

Coriolis acceleration (e.g. Weatherly 1972, Wimbush and Munk 1970, Kundu 1976,

Mercado and Van Leer 1976). Second, small scale measurements of temperature as

well as velocity gradients can be used to distinguish the bottom boundary layer as

a region with high levels of turbulent kinetic energy dissipation (e.g. Perlin et al.

2005, Moum et al. 2004). Third, temperature, salinity, and density tend to appear

vertically well-mixed within a bottom mixed layer (e.g. Weatherly and Niiler 1974,

Weatherly and Van Leer 1977, Pak and Zaneveld 1977). Observations indicate that

the Ekman layer thickness, determined from Ekman veering, may (e.g. Mercado and

Van Leer 1976) or may not (e.g. Perlin et al. 2005) equal the bottom mixed layer

thickness.

Observational and numerical studies have shown that coupling between frictionally

driven flows and the density field can impact the thickness of the frictional bottom

boundary layer and the bottom mixed layer. Over a flat bottom, Weatherly and

Martin (1978) argued on dimensional grounds that stratification reduces the bottom

boundary layer height from the unstratified case. By including stratification in the

scaling for the frictional boundary layer height, they showed that the revised stratified

scale height was qualitatively consistent with previous estimates of bottom bound-

ary layer thickness over the West Florida continental shelf (Weatherly and Van Leer



1977). From examination of near bottom temperature profiles in the Florida cur-

rent, Weatherly and Niiler (1974) suggested that horizontal advection of buoyancy

over sloping topography was key in explaining the formation of bottom mixed layers.

Weatherly and Van Leer (1977) also suggested that patterns of warming (cooling)

within the bottom boundary layer may be explained by frictionally driven downslope

(upslope) flows due to downwelling (upwelling) favorable along-shelf flows.

Weatherly and Martin (1978) used a numerical model, with the Mellor-Yamada

level 2 turbulence closure scheme, to examine how the frictional bottom boundary

layer is modified by upslope or downslope Ekman advection of buoyancy. The thick-

ness of the bottom boundary layer is specified by the height at which the turbulence

vanishes away from the bottom. For upslope Ekman flows, they showed that the

bottom boundary layer height tended to remain constant and approximately equal

to their stratified bottom boundary layer height scale. In contrast, for downslope

Ekman flows, their model showed a thickening of the bottom boundary layer beyond

this scale estimate. Model results compared with Weatherly and Van Leer's (1977)

observations showed qualitative agreement in bottom boundary layer heights.

Over the northern California shelf, estimates of the bottom mixed layer height

reveal a dependence on the stratification, the along-shelf current magnitude and the

along-shelf current direction (Lentz and Trowbridge 1991). From the Coastal Ocean

Dynamics Experiment (CODE) during the summer of 1981 and 1982, Lentz and Trow-

bridge (1991) showed that thicker bottom mixed layers tended to occur with weaker

stratification and stronger along-shelf flow. Furthermore, as shown in figure 1-1, the

direction of the along-shelf flow correlates with an asymmetry in the bottom mixed

layer heights, with thicker (thinner) heights for poleward, downwelling (equatorward,

upwelling) favorable along-shelf flow.

Cross-isobath Ekman advection of buoyancy can explain this asymmetrical bot-

tom mixed layer structure (Lentz and Trowbridge 1991). A downwelling favorable

flow drives lighter fluid under denser fluid, reducing the stratification and support-

ing the growth of the bottom mixed layer, while an upwelling favorable flow drives
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Figure 1-1: During CODE (1982), bottom mixed layer heights correlate with direction
of the along-shelf currents. Bottom mixed layer heights are thicker when the along-
shelf current is poleward (positive) and downwelling favorable while thinner when the
along-shelf current is equatorward (negative) and upwelling favorable (from Lentz
and Trowbridge (1991)).

denser fluid upslope, increasing the stratification and inhibiting the growth of the

bottom mixed layer (Lentz and rowbridge 1991). Trowbridge and Lentz (1991) used

a one-dimensional mixed layer model, with a bulk Richardson number based mixing

criterion, to examine this asymmetric response in the bottom mixed layer to upwelling

or downwelling flows. Bottom mixed layer height estimates from the CODE observa-

tions showed good agreement with these model results.

Recent observations have also found evidence in support of this correlation be-

tween the asymmetrical bottom structure with the direction of the along-shelf cur-

rent. Analysis of measurements over the Oregon continental shelf in the spring of

2001 showed that the greatest bottom mixed layer heights occured upon relaxation

of upwelling favorable winds (Perlin et al. 2005). Furthermore, the highest measured

turbulence within the bottom boundary layer occurred during this period (Perlin et

al. 2005). From these measurements, as shown in figure 1-2, Moum et al. (2004)

determined that these two features are due to convective mixing driven by an offshore



------- Vime ---. og alain G- -- =a PC mi
0.5 0 0.5 -10 4 -7 U 2&S

S0

100

150

10

100

25 20 15 10 5 25 20 15 10 5 25 20 15 10 5
CROSS4HELF DWTANCE Oft]

Figure 1-2: The cross-shelf sections for along-shelf flow (positive poleward), V, tur-
bulent kinetic energy dissipation rate, e, and potential density, o0 , is shown in time,
where time is with respect to May 19, 2001. The arrows are included for clarity to
indicate the direction of Ekman transport associated with upwelling favorable winds
(+85 hours), weak winds (+98 hours), and downwelling favorable winds (+118 hours)

(modified from Moum et al. (2004)). Winds were upwelling favorable for six days
prior to the reversal in wind direction. During the relaxation of upwelling winds, the
bottom boundary layer thickens and shows high levels of dissipation.

transport of lighter fluid under denser fluid within the bottom boundary layer during

the relaxation of upwelling favorable winds.

The preceding studies demonstrate how cross-isobath Ekman advection of buoy-

ancy controls the height of the bottom mixed layer. The following works have explored

how these changes to the bottom mixed layer height feed back into the frictionally

driven flow within the bottom boundary layer. Trowbridge and Lentz (1991) used a

one-dimensional numerical model to show that upslope or downslope Ekman advec-

tion of buoyancy produced thermal wind shear within the bottom mixed layer and a

reduction in the bottom stress.

This reduction in bottom stress and corresponding weakening of frictionally driven

flows was further examined in laboratory experiments (MacCready and Rhines 1991),

............... I .............. ....... ................... ...... - -.. .... ..... .......... .. ........... .. .... ............ ...... ... .............. .... .. .. .. ...... ...... .......... ........ ..........



one-dimensional models with no-slip boundary conditions and constant mixing coef-

ficients (MacCready and Rhines 1991), no-slip and a gradient Richardson number

mixing criterion (MacCready and Rhines 1993), a quadratic bottom drag with a gra-

dient Richardson number mixing criterion (Ramsden 1994), a quadratic bottom drag

with the Mellor-Yamada Level 2 turbulence closure scheme (Middleton and Ramsden

1996), and a quadratic bottom drag with a series of turbulent closure schemes (Brink

and Lentz 2009). Buoyancy shutdown timescales indicate faster Ekman arrest for in-

creasing slope angle and cross-isobath buoyancy gradients, and these timescales and

associated bottom boundary layer heights are found in the above references (see also

Garrett et al. 1993 for a comprehensive review).

Despite numerous numerical studies, observational evidence of arrested Ekman

flow over shelves and slopes is limited. This lack of observations may be due to

instrument limitations since near bottom flows tend to align along-shelf and cross-

shelf flows are weak with respect to current meter accuracy (Lentz and Trowbridge

1991). From the Sediment Transport Events on Shelves and Slopes (STRESS) pro-

gram during the winters of 1988-1989 and 1990-1991, Trowbridge and Lentz (1998)

used time series of temperature, salinity, and velocity to test the subinertial Ekman

balance over the northern California shelf. They test the hypothesis that the along-

isobath bottom stress is proportional to the cross-isobath transport, the cross-isobath

transport is modified by a buoyancy force, and temporal variability in the buoyancy

field is due to cross-isobath advection of buoyancy. In contrast to previous studies

with no along-isobath variations, along-isobath advection of buoyancy gives rise to a

significant contribution in the vertically-integrated along-isobath momentum balance

and heat balance within the bottom mixed layer (Trowbridge and Lentz 1998). In

agreement with these previous studies, cross-isobath advection of buoyancy is a sig-

nificant term in the vertically-integrated cross-isobath momentum balance and tends

to dominate over the bottom stress term during downwelling events when the bot-

tom mixed layer is thick (Trowbridge and Lentz 1998). Further analysis of STRESS

observations shows that the poleward along-isobath flow is reduced near the bottom



and its vertical shear is consistent with thermal wind balance on timescales of the

order of a week or longer (Lentz and Trowbridge 2001). Thus, the downward tilting

isopycnals, consistent with offshore flow, lead to weakening bottom stress, which pro-

vides observational support for buoyancy shutdown of the cross-isobath Ekman flow

(Lentz and Trowbridge 2001).

This section has addressed previous research on the role of cross-isobath Ekman

advection of buoyancy in setting the height of the bottom boundary layer and the

strength of the frictionally driven flow through coupling between the cross-isobath

Ekman flow and the buoyancy field. In the next section, observations of coastal cur-

rent systems are presented in which modelling studies have addressed the importance

of a cross-isobath Ekman buoyancy flux in setting the current structure.

1.1.2 Bottom boundary layer feedback on coastal currents,

with application to the Middle Atlantic Bight

Modelling studies have examined how a cross-isobath Ekman buoyancy flux modifies

the bottom boundary layer, which feeds back into the temporal and spatial evolu-

tion of the overlying currents (Chapman and Lentz 1997, Chapman 2000a, Chapman

2002a), with application to coastal currents along the eastern North American shelf.

A series of studies have examined the frictional offshore spreading of a buoyant cur-

rent on the shelf (Chapman 1986, Wright 1989, Chapman and Lentz 1994, Yankovsky

and Chapman 1997, Chapman 2000b, Chapman 2002b) with interest in the position

of the greatest lateral density gradient bounding the buoyant shelf waters from the

denser waters offshore. These and other works (e.g. Gawarkiewicz and Chapman

1992) address the possible dynamical significance of the shelfbreak to the existence of

the observed shelfbreak front, a density front that is located where the gently sloping

continental shelf intersects the more steeply sloping continental slope (Fratantoni and

Pickart 2007).

Results of these modelling studies suggest that an offshore Ekman buoyancy flux



can potentially play an important role in both the structure of the bottom boundary

layer and the overlying flow in coastal currents. In this section, a general description

of the coastal circulation in the western North Atlantic Ocean is given, with particular

attention given to flows near the Middle Atlantic Bight shelfbreak. This description

includes open questions that will be explored in this thesis.

In the western North Atlantic Ocean, the coastal circulation is dominated by an

equatorward flow over a shelf width of approximately 100-200 km over a depth 100-

200 m (see the comprehensive review by Loder et al. 1998). Freshwater sources to

the continental shelf include the transport of fresh subpolar water onto the Labrador

shelf, continental runoff, and sea ice melting (Loder et al. 1998). At the shelfbreak,

this equatorward flowing cool, fresh water comes into contact with the relatively

warm, salty water over the slope (Fratantoni and Pickart 2007). These two water

masses form a thermohaline front that is partially density compensating and sup-

ports a surface-intensified jet (shown in figure 1-3 and figure 1-4).

Observations of this shelfbreak current system are focused on the Middle Atlantic

Bight, which extends from Georges Bank to Cape Hatteras. From oxygen isotope

measurements, Chapman and Beardsley (1989) suggested that the equatorward flow

along the Middle Atlantic Bight was part of a buoyancy-driven coastal current orig-

inating south of Greenland. Since the mean flow opposes the direction of the mean

eastward along-shelf wind stress, previous studies (e.g. Stommel and Leetmaa 1972,

Csanady 1976) have suggested that this flow is associated with an along-shelf pres-

sure gradient. This along-shelf pressure gradient may arise from an along-shelf forcing

mechanism (Chapman et al. 1986) or from the large-scale circulation in the western

North Atlantic (see the review by Beardsley and Boicourt 1981).

In a recent study, Lentz (2008) analyzed current meter records longer than 200

days to quantify the mean circulation. With observations and a model for the mean

circulation, Lentz (2008) determined that the mean near-bottom flow was directed

offshore seaward of the 55 m isobath. This offshore near-bottom flow tends to re-

duce the bottom stress by buoyancy shutdown. However, the model shows that the
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Figure 1-3: This schematic illustrates the surface circulation of the western North
Atlantic Ocean, where the warm currents of Gulf Stream origin (red arrows) flow

adjacent to the shelfbreak jet (blue arrows) along the shelfbreak. The Middle At-
lantic Bight is indicated within the orange box (modified from Fratantoni and Pickart
(2007)).
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contribution of buoyancy shutdown to the mean depth-averaged along-shelf flow is

subdominant with respect to (in order of largest to smallest contributions) an along-

shelf pressure gradient, wind stress, and interior buoyancy gradients, owing to a weak

slope angle of approximately 6 x 10-' along the mid and outer shelf (Lentz 2008).

Although this result suggests that other mechanisms may play a more important

role in the dynamics of the mean along-shelf flow over the Middle Atlantic Bight shelf,

the question remains how this flow regime transitions offshore of the shelfbreak onto

the more steeply sloping upper continental slope. Near the shelfbreak, observations

suggest that the mechanisms controlling the bottom boundary layer are important

for understanding the overlying flow dynamics and tracer fields.

Observations near the Middle Atlantic Bight shelfbreak

Observations near the Middle Atlantic Bight shelfbreak have focused on describing the

properties of the thermohaline front, jet, the structure of the bottom boundary layer,

and upwelling near the shelfbreak. These features are important for understanding

the transport of tracers along-shelf (in which the jet can act as a downstream conduit),

cross-shelfbreak exchange (between the shelf and the deep ocean), as well as vertical

exchange (e.g. upwelling of nutrients from depth). Linder and Gawarkiewicz (1998)

used hydrographic data ranging from the early 1900s to April 1990 to quantify clima-

tological mean cross-shelf sections for temperature, salinity, density, and along-shelf

geostrophic flow fields over the shelfbreak (see figure 1-4). On Nantucket Shoals (390

- 41 0N, 690- 72'W), the temperature field is strongly modified by seasonal variability,

with the formation of a thermocline in the summer and its subsequent destruction by

vertical mixing from storms in the fall and winter (Linder and Gawarkiewicz 1998).

In contrast, the salinity fields remain approximately constant throughout the sea-

sons, so that temperature variability controls the density variability (see Linder and

Gawarkiewicz 1998 for further discussion on seasonal variability in the water proper-

ties). The frontal boundary has been historically characterized as the 100C isotherm

(Wright 1976), the 34.5 isohaline (Beardsley and Flagg 1976), and the 26.5 kg m-3
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Figure 1-4: From the Nantucket Shoals region, August and September averaged sec-
tions are shown for (a) temperature ('C), (b) salinity, (c) density (kg m-3 ), and (d)
the geostrophic flow (cm s- 1) with bottom reference flow speeds from the Nantucket
Shoals Flux Experiment. The contour intervals are (a) 20C, (b) 0.5, (c) 0.5 kg m-3 ,
and (d) 5 cm s- (from Linder and Gawarkiewicz (1998)).

isopycnal. From computations of bimonthly fields, Linder and Gawarkiewicz (1998)

determine that the temperature difference across the front ranges from 2-6'C, while

the salinity difference is 1.5-2 psu. With a climatology of synoptic sections along

the Middle Atlantic Bight, Fratantoni and Pickart (2007) estimate that the salinity

difference across the front is 1.3 psu over 30 km. Across the foot of the front, the

absolute cross-shelf buoyancy gradient, estimated as 1.9 x 10-7 S2 from a 0.2 kg

m-3 density difference over 10 km, is strong relative to the buoyancy gradient at the

surface and remains relatively constant despite seasonal shifts in the foot of the front

(Linder and Gawarkiewicz 1998).

Observations of the thermohaline and density front also reveal a baroclinic jet

at the shelfbreak, and effort has been made to quantify its flow speed, width, and

lateral shear. From the Linder and Gawarkiewicz (1998) climatology along the Nan-



tucket Shoals, the mean geostrophic speeds of the shelfbreak jet range from 0.2-0.3

m s- and estimates of transport range from 0.2-0.3 Sv (1 Sv 10-6 m2 s-1). The

width of the jet is determined from the contour representing half of the maximum

surface velocity, given the sum of the geostrophically balanced along-shelf flow with

an estimate of near bottom speeds. From this definition, the width of the jet is 15-20

km, except for December and January when the jet is 40 km wide. The cross-shelf

position of the jet core tends to vary seasonally with a 15 km seasonal drift, with

onshore movement in spring and summer and offshore movement in the late fall and

winter, although its mean annual position is 5 km seaward of the 100 m isobath.

From the laterally sheared jet structure, the Rossby number, defined as the ratio of

the vertical relative vorticity to the local Coriolis parameter, is a maximum of 0.4

on the offshore (cyclonic) side of the jet and ranges from -0.1 to -0.2 on the onshore

(anticyclonic) side of the jet.

In more recent observations, Fratantoni et al. (2001) presented a high resolution

mean description of the Middle Atlantic Bight shelfbreak jet from synoptic sections

near 70'W during fall and winter 1995-1997. They analyzed shipboard ADCP (Acous-

tic Doppler Current Profiler) velocity measurements to determine the geostrophic and

ageostrophic secondary circulation along a cross-section over the shelfbreak. Their

analysis revealed that the jet core was located between the 100 m isobath and the

shelfbreak at the 180 m isobath. The jet was geostrophic at leading order and surface

intensified with alongstream speeds exceeding 0.1 m s-1. They estimated that the

mean jet width was 25 km using the Linder and Gawarkiewicz (1998) definition of

the jet width. Lateral shears in the shelfbreak jet correspond to Rossby numbers

of approximately + 0.2. In the streamwise coordinate system, the cross-stream flow

shows an enhanced convergence at the surface and bottom, which they attribute to

local convergences in the along-shelf bathymetry feeding the downstream acceleration

of the mean jet.

Downstream of this location at approximately 74'W, Rasmussen et al. (2005)

used shipboard ADCP measurements to examine the shelfbreak front structure from



four cross-shelf sections taken during November 2000. From two of the sections, they

showed that the foot of the front intersected the bottom at the 120 m and 140 m

isobath, which are significantly deeper than the 75 m isobath presented in the Linder

and Gawarkiewicz (1998) climatology. Furthermore, the predominantly along-isobath

jet had strong speeds of 0.6 m s-, three times the climatological value, with a cross-

shelf width of 20-30 km, leading to maximum Rossby numbers of about + 0.6. The

largest cross-shelf buoyancy gradients were located at the foot of the front and the

overlying buoyancy gradients were in geostrophic balance with the jet core. They

conclude that discrepencies between these synoptic sections and the climatology may

arise from smoothing of data in the climatology.

In order to examine the structure of the bottom boundary layer near the Middle

Atlantic Bight shelfbreak, two approaches have been used. First, Houghton (1995)

examined data from the Shelf Edge Exchange Processes (SEEP-II) experiment to cal-

culate bottom mixed layer heights near the front. Then, these heights were compared

to both Weatherly and Martin's (1978) scaling for the height of the bottom boundary

layer from a one-dimensional model of flow over a stratified flat bottom and Trow-

bridge and Lentz's (1991) scaling for the height of the bottom mixed layer subject to

a downslope Ekman buoyancy flux. From ADCP velocity data onshore of the shelf-

break, calculations of veering angles above the bottom are predominantly positive,

consistent with an Ekman flow. By using the veering angle, the bottom boundary

layer thickness ranges from 10 - 40 m. From CTD (conductivity-temperature-depth)

data, Houghton (1995) determined the bottom mixed layer thickness from the height

at which there was a vertical change in temperature of 0.02'C with respect to the

temperature at 1 m above the bottom. With this definition, a cross-shelf spatial

pattern emerged with bottom mixed layer heights ranging from 4-18 m on the shelf,

a minimum at the foot of the front, and increasing to 40 m on the upper slope.

Houghton (1995) found reasonable comparison between bottom mixed layer estimates

with Weatherly and Martin's (1978) scaling. However, he found smaller bottom mixed

layer heights than predicted from Trowbridge and Lentz's (1991) scaling. Houghton



(1995) concluded that temporal variability at the shelfbreak might preclude the bot-

tom mixed layer growth to a height predicted for an arrested, initially downwelling

Ekman flow, and the existence of the density front (a two-dimensional structure with

curvature in the cross-shelf buoyancy field) at the shelfbreak might also limit the

bottom boundary layer growth.

The second approach used to examine the structure of the bottom boundary layer

near the shelfbreak has been to focus on the layer's detachment, in which fluid is pre-

dicted to upwell from the bottom boundary layer along the shelfbreak front. From the

Shelfbreak PRIMER experiment at approximately 70'W during 1995-1997, Pickart

(2000) used temperature measurements from CTDs to determine the thickness of the

bottom boundary layer, defined as a weakly stratified layer above the bottom. Pickart

(2000) found that the bottom boundary layer was thick (15-20 m) shoreward of the

shelfbreak front, thin (5-7 m) near the shelfbreak front, and then thicker seaward of

the front. This spatial pattern agrees with Houghton's (1995) measurements. Since

along-isopycnal upwelling is assumed to reduce the lateral tracer gradients along that

layer, the detachment of the bottom boundary layer is quantified by calculating the

accumulated temperature change, in which the along-isopycnal temperature gradient

is integrated along an isopycnal (Pickart 2000). Pickart (2000) used this method to

show that along-isopycnal upwelling occurred on the onshore side of the front. This

upwelling appeared to coincide with a convergence in the cross-shelf flow in the bot-

tom boundary layer as well as in the interior from flow sections constructed from

ADCP measurements. Pickart (2000) estimated an along-isopycnal upwelling speed

of 3.7 cm s- (equal to a vertical upwelling rate of 8 m day- 1 for an isopycnal slope

of 0.0025) by using the along-isopycnal distribution of the accumulated temperature

change in an advective-diffusive model. Pickart (2000) also estimated a vertical up-

welling of 23 m day- 1 from ADCP measurements. In a seasonal depiction of the

detached bottom boundary layer during the Shelfbreak PRIMER experiment, de-

tachment occured along the 26.0 kg m- isopycnal throughout the year (Linder et al.

2004). Following Pickart (2000), the detached bottom boundary layer was estimated



to reach 80 m above the bottom in the winter, whereas it was only able to reach 25

m above the bottom in the summer owing to strong stratification near the surface.

Other studies near the shelfbreak front have examined the secondary circulation

structure as well as the vertical or along-isopycnal upwelling along the front. In a se-

ries of tracer experiments, Houghton (1997), Houghton and Visbeck (1998), Houghton

et al. (2006) released dye in order to examine the secondary circulation near the shelf-

break front. In May 1996 along one of the Shelfbreak PRIMER transects, Houghton

(1997) revealed a convergent flow near the shelfbreak front, where the injected dye re-

mained in the bottom mixed layer of depth 3-6 m. The dye flowed upslope rather than

upwell into the interior because the dye was released offshore of the shelfbreak front.

In a subsequent study in May 1997, the dye was released into a bottom mixed layer

of depth 10-20 m and upwelled along the front at a rate of 4-7 m day- 1 (Houghton

and Visbeck 1998). During the New England Shelfbreak Productivity Experiment

(NESPEX) in August 2002, dye was released in the bottom boundary layer inshore

and offshore of the frontal boundary, identified as the 34.5 isohaline or the 26.1 kg

m-3 isopycnal, as well as in the interior along the frontal boundary (Houghton et al.

2006). They estimated upwelling rates of 6-10 m day- (Houghton et al. 2006).

From measurements of phytoplankton and suspended sediment levels, Barth et al.

(1998) inferred the secondary circulation about the shelfbreak front. They showed

that a band of suspended particulate matter extended upwards from the foot of the

front and inshore of the frontal boundary at the 25.8 kg m-3 isopycnal. By using

ADCP velocity measurements, Barth et al. (1998) assumed a balance between the

convergence in the cross-shelf flow and upwelling to estimate an upwelling rate of 9

+ 2 m day- 1 on the inshore side of the front. From June to July 1999 at approx-

imately 67' W, Barth et al. (2004) used a subsurface isopycnal float to measure a

mean along-isopycnal vertical velocity of 17.5 m day- 1 at the shelfbreak front, which

translated to a 5 day transit time from the bottom boundary to the surface.

The observed along-isopycnal upwelling at the shelfbreak can impact the lo-

cal marine ecosystem by transporting nutrient-rich water from depth to the surface.
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Figure 1-5: The Coastal Zone Color Scanner-derived pigment concentration is shown
for (a) a mean from May 1-20 from the years 1979-1986 and (b) a synoptic section on
May 10, 1980. The 100 m isobath is shown in black and the arrows indicate the along-
shelf endpoints of the shelfbreak chlorophyll enhancement. This region corresponds
to a portion of the orange boxed region for the Middle Atlantic Bight shown in the
previous figure (modified from Ryan et al. (1999)).

Linder et al. (2004) note that the vertical extent of along-isopycnal upwelling is

important for sustaining enhanced levels of phytoplankton at the shelfbreak (Mal-

one et al. 1983, Marra et al. 1990). During the summer, the development of the

thermocline tends to suppress the vertical extent of the upwelling and the supply of

nutrients to the euphotic zone (Linder et al. 2004). For the spring transition from

well-mixed to stratified conditions (mid-April to June), Ryan et al. (1999) used the

pigment concentrations from the Coastal Zone Color Scanner to show that a band of

enhanced levels of chlorophyll occurred along the Middle Atlantic Bight shelfbreak,

which could be explained by upwelling of nutrients. Ryan et al. (1999) suggested

that the along-shelf advection of chlorophyll and nutrients along the shelfbreak front

could also contribute to the along-shelf band of enhanced chlorophyll levels. Thus, an

understanding of the processes that control the structure of the shelfbreak front, the

corresponding jet, and the strength of the upwelling along the front has important

consequences for explaining the temporal and spatial patterns of biological produc-

tivity in this region.

These compelling observations motivate further theoretical investigation to de-

. ... .. ... .......... ...... ................ ......... .. ...... ....... ... ...... .. .. ..... .......... ......... . .. ............ ............................. .



termine the underlying mechanisms that control the circulation near the shelfbreak.

A key question arises as to the dynamical significance of the shelfbreak given the

persistence of the shelfbreak front, jet, and upwelling near the shelfbreak in the ob-

servations. Since the shelfbreak represents a location of transition from weak to

strong slope angles, to what extent can these features be explained by differential

cross-isobath Ekman advection of buoyancy leading to spatial variations in bottom

mixed layer heights and buoyancy shutdown timescales? These questions will be

addressed in Chapter 4.

1.1.3 Bottom boundary layers in deep currents along conti-

nental slopes

The impact of a cross-isobath Ekman buoyancy flux on the structure of bottom bound-

ary layers in the deep ocean is important for our understanding of what processes set

the abyssal structure of the stratification or potential vorticity. Climatological dis-

tributions of potential vorticity within the deep ocean show different regimes with

potential vorticity contours following or deviating from latitudinal circles or closing

to form uniform regions (O'Dwyer and Williams 1997). The outcropping of isopycnal

layers along boundaries can provide pathways for feeding boundary modified fluid into

the interior. Armi (1978) suggested that topography serves as locations where tracers

are modified by vertical mixing in bottom mixed layers of 50 m to 150 m thickness,

which then detach and are advected into the interior. The question remains as to

what processes drive this boundary mixing and redistribution of tracers.

Several mechanisms, including internal wave reflection and breaking, can serve

as the source of this boundary enhanced vertical mixing (see references within Gar-

rett et al. 1993, McPhee-Shaw and Kunze 2002). Cross-isobath Ekman advection

of buoyancy can also impact the characteristics of mixing and the height of these

bottom mixed layers. Although evidence presented in the previous sections suggests

that buoyancy shutdown of the Ekman transport can occur in coastal flows, buoy-



ancy shutdown processes in the deep ocean remain inconclusive. Time scale estimates

of buoyancy shutdown range from days to weeks on continental slopes to years on

abyssal plains (MacCready and Rhines 1991, MacCready and Rhines 1993). In this

section, observational and theoretical studies are presented which either suggest the

importance or unimportance of buoyancy shutdown on the dynamics of deep western

boundary currents.

If buoyancy shutdown were to impact the dynamics of the deep western bound-

ary currents, these currents could presumably flow frictionlessly along the continental

slope (MacCready and Rhines 1993). Analysis of observations along the western con-

tinental slope of the Brazil Basin consider the importance of cross-isobath Ekman

advection of buoyancy on the dynamics of deep western boundary currents. The

North Atlantic Deep Water Deep Western Boundary Current (NADW DWBC) flows

poleward over a slope inclined at an angle of approximately 0.01 from the horizontal,

and the Antarctic Bottom Water Deep Western Boundary Current (AABW DWBC)

flows equatorward over a slope inclined at an angle of approximately 0.002 from the

horizontal (Durrieu De Madron and Weatherly 1994). In the Southern Hemisphere,

the frictionally driven flow associated with the NADW DWBC is oriented upslope,

leading to a thinning bottom mixed layer, and the frictionally driven flow associated

with the AABW DWBC is oriented downslope, with a thickening bottom mixed layer.

Durrieu De Madron and Weatherly (1994) used hydrographic data to determine that

the bottom mixed layer thickness was consistent with the expected orientation of the

Ekman buoyancy flux for both currents. From estimates of the buoyancy shutdown

timescale and the bottom mixed layer thickness, they concluded that the cross-isobath

Ekman buoyancy flux was sufficient to set-up a frictionless bottom boundary layer

for the NADW DWBC but was insufficient to set-up a frictionless bottom boundary

layer for the AABW DWBC.

In contrast to the conclusion that cross-isobath Ekman advection of buoyancy

leads to a frictionless bottom boundary layer in the NADW DWBC flow (Durrieu

De Madron and Weatherly 1994), observational studies of the NADW DWBC in the



Northern Hemisphere support other mechansims responsible for the structure of the

bottom mixed layer. During the summer of 1992, Stahr and Sanford (1999) used

absolute velocity profilers to make high resolution measurements of flows near the

bottom along the Blake Outer Ridge. The Blake Outer Ridge extends out of the

continental shelf south of Cape Hatteras. Past observations at this site revealed thick

bottom mixed layers, on the order of 100 m, in both concentration of suspended par-

ticulates and in temperature (Amos et al. 1971, Eittreim et al. 1975). Eittreim et

al. (1975) noted that the DWBC was oriented in the downwelling favorable direc-

tion, thus leading to a downslope Ekman buoyancy flux and convective mixing, which

they termed the Ekman thermal pump. However, Amos et al. (1971) suggested that

these well-mixed layers could arise by turbulent mixing dependent on the roughness

of the bottom topography and the magnitude of the current. These two possible ex-

planations motivated Stahr and Sanford's measurements (1999) to determine which

mechanism was responsible for these well-mixed layers in the DWBC at the Blake

Outer Ridge.

From the density and current profiles as well as measurements of turbulent ki-

netic energy dissipation rate, Stahr and Sanford (1999) identified a frictional bottom

boundary layer (BBL), where currents veered in the Ekman sense over 20-50 m above

the bottom, embedded within a thicker bottom mixed layer (BML), where density was

vertically well-mixed on the order of 200-300 m above the bottom. In contrast to pre-

vious one-dimensional models for buoyancy shutdown, the measurements taken along

a cross-isobath section revealed a laterally varying structure in the bottom bound-

ary layers, as shown in figure 1-6. In contrast to the hypothesis that the well-mixed

layer arose by a downslope Ekman buoyancy flux (Eittreim et al. 1975), the density

measurements revealed weak cross-isobath buoyancy gradients, in which isopycnals

in the center of the current tended to align parallel to the sloping topography (Stahr

and Sanford 1999). Furthermore, the along-slope flow had most of its vertical shear

within the frictional bottom boundary layer and had little vertical shear within the

bottom mixed layer (Stahr and Sanford 1999). Thus, these observations serve as
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Figure 1-6: Observations from two cross-sections of the DWBC at the Blake Outer
Ridge (BOR) are shown where increasing distance across each section is downslope
and the slope angle is approximately 0.02. (a) The bottom mixed layer (BML) height
is calculated from the density field, and the frictional bottom boundary layer (BBL)
height is calculated from the friction velocity. (b) The mean along-slope speed in
the DWBC is shown within the BML but above the BBL. (c) The strength of the
downslope Ekman volume transport per unit width in the BBL correlates with the
BBL thickness (from Stahr and Sanford 1999).
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Figure 1-7: A schematic of the asymmetrical bottom mixed layer (BML) height cor-
responding to observations shown in figure 1-6 is compared with a symmetrical BML
structure. The observations indicate a frictional bottom boundary layer (BBL) em-

bedded within the BML. The BML height is due to (i) fluid entrainment on the

upslope side of the current where the BBL height coincides with the BML height, (ii)
flow into the BBL on the upslope side of the current, (iii) flow out of the BBL on the

downslope side of the current, and (iv) weak convection out of the bottom boundary
layer at the center of the current (from Stahr and Sanford (1999)).

evidence that buoyancy shutdown is not the leading order process at play in these

bottom boundary layers at this location.

The observations, illustrated in figure 1-7, reveal a thicker bottom mixed layer

on the downslope side of the current, where there is a region of convergence in the

downslope Ekman transport, and a thinner bottom mixed layer on the shallower side

of the current, where there is a region of divergence in the downslope Ekman trans-

port (Stahr and Sanford 1999). These observations suggest that laterally varying

processes are necessary to explain the structure of the current and the bottom mixed

layer.

Although Stahr and Sanford's (1999) observations demonstrate an example in

which buoyancy shutdown of the Ekman transport is a subdominant process, one can

pose the question of how lateral variations in the cross-isobath Ekman buoyancy flux



modify the lateral structure of the bottom mixed layer, in which vertical shear in

the geostrophic flow tends to reduce the bottom stress. Then, how would nonnegli-

gible cross-isobath buoyancy gradients modify the structure of the circulation shown

in figure 1-7? What are the relative contributions of vertical advection by Ekman

pumping and suction or convective mixing by a downslope Ekman buoyancy flux to

the thickness of the bottom mixed layer and what are the consequent effects on the re-

sulting bottom stress? Furthermore, given a laterally sheared along-isobath flow, can

one categorize the importance of momentum advection versus buoyancy advection to

the bottom boundary layer flow? Chapters 2 and 3 address the modification of the

bottom boundary layer structure and frictional flow in laterally sheared along-isobath

currents in which buoyancy shutdown plays a leading order role.

1.2 Dissertation goals and methodology

The preceding sections have indicated observational and modelling evidence for the

significance of cross-isobath Ekman advection of buoyancy on the dynamics of bot-

tom boundary layers over sloping topography in different flow regimes. A funda-

mental question unanswered by these studies is how cross-isobath Ekman advection

of buoyancy modifies the vertical circulation. This vertical circulation can redis-

tribute tracers and modify the dynamical properties of the flow outside of the bottom

boundary layer. The goal of this thesis is to address the impact of coupling between

cross-isobath Ekman flows and the buoyancy field on (i) the distribution of tracers,

(ii) the vertical circulation, and (iii) the subsequent feedback of this circulation on the

interior geostrophic flow.

This thesis addresses the temporal and spatial evolution of geostrophic along-

isobath flows at midlatitudes with emphasis on laterally sheared coastal flows over

constant slopes as well as the formation of a jet and upwelling near a shelfbreak. In

order to isolate the effect of cross-isobath Ekman advection of buoyancy on the ad-

justment of these flows, the spindown of an initially barotropic along-isobath flow over



a stratified sloping bottom is considered. Thus, surface forcings from wind stress or

diabatic sources or sinks are not considered. Analytical methods are used to identify

the key parameters characterizing the strength of the vertical circulation into or out

of the bottom boundary layer, the structure of the interior secondary circulation, and

the timescales over which the geostrophic along-isobath flow evolves. Process-oriented

numerical modelling is used to test the extent to which these analytical scalings hold

and determine where the theory breaks down.

Thesis outline

The adjustment of an initially barotropic along-isobath flow over an insulated, linearly

stratified sloping boundary is examined in three parts. The next two chapters examine

the adjustment problem in which the boundary is inclined at a constant angle to

the horizontal, and the subsequent chapter examines the adjustment problem over

a shelfbreak. In Chapter 2, the linear evolution of a laterally sheared along-isobath

flow is examined subject to constant mixing coefficients. An analytical framework for

viscous, diffusive flows is constructed to show how coupling between the frictionally

driven flow and the buoyancy field can both generate and suppress Ekman flows. This

framework is used to formulate and solve a coupled set of equations describing the

evolution of the frictionally driven dynamics, the buoyancy field, and the geostrophic

flow as both spindown and buoyancy shutdown proceed. This framework is also

used to quantify the sources or sinks of potential vorticity by diabatic and frictional

processes at the stratified sloping boundary.

In Chapter 3, the linear analysis of Chapter 2 is extended into the nonlinear regime.

The nonlinear evolution of a laterally sheared flow over a stratified sloping bottom

is considered and compared to the nonlinear evolution of a geostrophic flow in a

homogeneous fluid over a flat bottom. This problem contrasts the roles of momentum

and buoyancy advection in producing an asymmetry in Ekman pumping and Ekman

suction as well as in the spindown of cyclonic and anticyclonic vorticity.

In Chapter 4, the adjustment of a laterally uniform along-isobath flow is examined



over a stratified shelfbreak. In this configuration, a flat shelf intersects an idealized

continental slope at the shelfbreak, which is modelled with a discontinuity in the slope

angle. The implications of lateral variations in the offshore Ekman buoyancy flux on

convergences or divergences in the Ekman transport are examined. Analytical and

numerical techniques are used to show how buoyancy shutdown over the slope gives

rise to Ekman pumping offshore of the shelfbreak and the formation of a shelfbreak

jet.

Finally, in Chapter 5, the key results of this thesis are summarized and directions

for future research are suggested.



Chapter 2

Linear stratified spindown over a

sloping bottom

Abstract

The linear adjustment of a laterally sheared along-isobath flow over an insulated
sloping boundary in a stratified, rotating fluid is investigated analytically and nu-
merically for constant viscosity and diffusivity. The time-dependent evolution of the
flow and its secondary circulation is examined subject to buoyancy forces that both

generate and suppress Ekman flows. First, diffusion of the stratification generates an
upslope Ekman transport that is laterally uniform for constant stratification. This

upslope Ekman transport arises on a buoyancy generation timescale and asymptotes
to a steady-state. Second, stratified spindown is suppressed by coupling between the
Ekman flow and the buoyancy field on a buoyancy shutdown timscale. The ratio of
the spindown timescale to the buoyancy shutdown timescale measures the extent to

which buoyancy shutdown modifies spindown through Ekman pumping. During spin-
down, the potential vorticity of the fluid is modified by Ekman advection of buoyancy
and diffusion of the stratification. Ekman advection of buoyancy tends to increase
(decrease) the potential vorticity when the transport is upslope (downslope), while
diffusion of the stratification tends to reduce the potential vorticity. The ratio of the
initial Ekman transport to the steady-state upslope Ekman transport measures the
relative importance of the two processes to the net potential vorticity flux. An in-
crease in the slope angle, stratification, or viscosity for fixed Prandtl number amplifies
the net change in potential vorticity during spindown. The results of this study are

discussed for flows over the continental shelf and slope.



2.1 Introduction

In a rotating fluid, frictional processes drive Ekman flows that have important conse-

quences for the dynamics of the circulation as well as the modification and redistri-

bution of tracers. Lateral variations in the Ekman transport induce Ekman pumping

and suction that drive interior secondary circulations, which can accelerate or decel-

erate the interior of the fluid. On a flat bottom, classical stratified spindown occurs

when the secondary circulation decelerates the flow. For constant stratification, the

buoyancy field adjacent to the boundary evolves uniformly by diffusion and remains

decoupled from the Ekman dynamics in the small Rossby number regime. On an

insulated sloping bottom, buoyancy forces at the boundary become coupled to the

Ekman dynamics and not only generate Ekman flows (e.g. Thorpe 1987) but sup-

press the deceleration of geostrophic flows owing to the buoyancy shutdown of the

Ekman transport (e.g. Siegmann 1971, MacCready and Rhines 1991). Buoyancy

shutdown is the process by which Ekman advection of buoyancy generates cross-

isobath density gradients and vertical shear in the geostrophic flow,'thereby reducing

the bottom stress and weakening the Ekman flow. The purpose of this work is to

examine the linear adjustment of a laterally sheared along-isobath flow over a strat-

ified sloping bottom in a semi-infinite domain when both stratified spindown and

buoyancy shutdown take place. This work investigates how buoyancy forces couple

with the time-dependent Ekman dynamics to modify the buoyancy field, the vertical

circulation and the potential vorticity at the sloping boundary.

Over a flat bottom in a semi-infinite domain, the stratified geostrophic flow adjusts

in three stages. First, within an inertial period, 'Tertia = 27rf- 1 , an Ekman layer

forms in a depth oc = V2v/f, where v is the viscosity and f is the planetary vorticity.

Then, the geostrophic flow decelerates on a spindown timescale, Tspindown E- 1/ 2 f -1,

by the interior secondary circulation set up by Ekman pumping and suction. The Ek-

man number, E = (e/Hp ) 2, is assumed small and Hp is the depth of the secondary

circulation which is assumed less than the height of the domain (Holton 1965). Holton



(1965) demonstrated that spindown results in a geostrophic flow with vertical shear

over a height Hp = fL/N, where L is the horizontal length scale of the geostrophic

flow, N is the buoyancy frequency and the aspect ratio, F = Hp/L, is assumed small

and equal to the Prandtl ratio, f/N. Holton (1965) also showed that density varia-

tions occur over a diffusive boundary layer of depth 6T = El/ 4He, which is thicker

than the Ekman layer and decoupled from the Ekman dynamics. Viscous effects

arise in the interior flow on a diffusive timescale, Tagusic = E-f, and remove the

geostrophic shear left by spindown.

Over a sloping bottom, buoyancy forces become coupled to the Ekman dynamics

and can either generate or suppress Ekman flows. In order to satisfy an insulat-

ing boundary condition, diffusion of the stratification tilts the isopycnals adjacent

to the boundary and induces a cross-isobath pressure gradient that drives a cross-

isobath flow. For a nonrotating fluid, Phillips (1970) and Wunsch (1970) examined

the steady-state balance in which upslope advection of density by a secondary circu-

lation balanced a vertical diffusive density flux. From Phillips's (1970) nonrotating

solution, Thorpe (1987) presented the steady-state solution for the Ekman transport

in a rotating fluid with constant stratification over a boundary inclined at an an-

gle 6. In steady-state, the tilted isopycnals geostrophically balance an along-isobath

flow and an upslope Ekman transport, MThorpe = r, cot 0, for constant diffusivity, K

(Thorpe 1987). This steady-state is achieved by a balance between Ekman advection

of buoyancy and diffusion of the stratification. The structure of this solution raises

the question of the appropriate timescale for the upslope Ekman transport to arise in

time-dependent flows, since the solution predicts an infinitely large upslope Ekman

transport in the limit of vanishingly small slope angle.

For an along-isobath flow over a sloping bottom, the induced Ekman transport

is suppressed by buoyancy forces. MacCready and Rhines (1991) showed that for a

uniform flow, cross-isobath Ekman advection of density tilted the isopycnals and, by

thermal wind shear, reduced the bottom stress. For long times, the Ekman transport

decays as (t/Tshutdow, MR) 1/2 and approaches Thorpe's steady-state solution in a



time Zhutdown, MR (a1 + S)(cosOS 2 (1 + S))- 1f 1 where o- = v/I is the Prandtl

number and S = (Ntan0/f)2 is the slope Burger number (MacCready and Rhines

1991). When the initial flow has vertical relative vorticity, stratified spindown by Ek-

man pumping and suction also leads to a decaying Ekman transport in time. Then,

both spindown and buoyancy shutdown couple in their influence on the Ekman trans-

port. Chapman (2002a) examined the suppression of stratified spindown by buoyancy

shutdown in a finite-width current with horizontal piece-wise structure over a sloping

bottom, with a sufficiently small Rossby number, c = U/f L, to neglect advection of

momentum. In his model, the dynamics of buoyancy shutdown are specified by a set

of equations for the magnitude of the interior flow, which is assumed uniform within

the current away from the boundary, and the bottom mixed layer depth, which grows

until the vertical shear within the layer is large enough for shutdown of the Ekman

transport. Ekman pumping and suction is constrained to the edges of the current

over an infinitesimal width and implicitly assumed to decay as the bottom mixed layer

thickens. However, the solution for the Ekman transport is crucial for understanding

how the vertical circulation and tracers, such as potential vorticity, are modified by

buoyancy shutdown.

The potential vorticity (PV) field is modified at boundaries by diabatic and fric-

tional forces (Marshall and Nurser 1992). At the air-sea interface, heating and cooling

as well as wind forcing (Thomas 2005) transfer PV into and out of the ocean. At

stratified sloping boundaries, Rhines (1998) suggested that the intersection of isopyc-

nal layers at the boundary acts as a source of PV for the ocean interior. Hallberg and

Rhines (2000) as well as Williams and Roussenov (2003) numerically examined the

transfer of PV from the sloping sidewalls in density layered models. These analyses

that use layered models do not address the coupled interactions between diabatic

and frictional forcings on the PV dynamics. The bottom enhanced diapycnal mixing

that thickens the density layer and lowers the PV also drives a frictionally driven

secondary circulation that thins the density layer by upslope Ekman advection of

buoyancy. Similarly, upslope or downslope Ekman advection of buoyancy thins or



thickens, respectively, the density layer, which then reduces the frictionally driven

circulation by buoyancy shutdown. This work aims to clarify the feedback and rela-

tive roles of diabatic and frictional forces in determining the total PV flux into and

out of the sloping boundary.

The problem is formulated in section 2.2 for the linear adjustment of a stratified

along-isobath flow over a sloping bottom with constant viscosity and diffusivity, and

the buoyancy generation and buoyancy shutdown timescales are presented. In section

2.3, the generation of the upslope Ekman transport by the adjustment of the stratifi-

cation is examined and shown to asymptote to Thorpe's steady-state solution (1987).

In section 2.4, the adjustment of a uniform, along-isobath flow is solved for the full-

time behavior of the Ekman transport, in contrast with only the long-time behavior

presented in MacCready and Rhines (1991) and Duck et al. (1997). In section 2.5,

the adjustment of an initially barotropic along-isobath flow with a sinusoidal lateral

structure is examined subject to spindown and buoyancy shutdown. Solutions are

presented for the vertical and lateral structure of the flow, the density field, and the

Ekman pumping and suction, which was not determined in Chapman's work (2002a).

The analytical solutions are then compared to numerical solutions with parameters

that are applicable to flows on continental slopes. In section 2.6, a scaling for the PV

flux is determined for the adjustment of the stratification as well as the adjustment

of uniform and laterally sheared flows. The analytical model is used to explicitly

show that frictional and diabatic forcings couple on the slope in modifying the PV

flux, which was not demonstrated in previous numerical studies. Numerical calcula-

tions for the net change in the PV field are then interpreted in light of the analytical

analysis. Finally, in section 2.7, the role of mixing in the suppression of spindown by

buoyancy forces as well as the potential importance of buoyancy shutdown to flows

on continental shelves and slopes is discussed.



2.2 Theoretical formulation

The linear adjustment of an along-isobath flow is examined for a hydrostatic, incom-

pressible, Boussinesq fluid in a coordinate system that is rotated at an angle 0 with

respect to the horizontal, as shown in figures 2-1 and 2-2. The slope angle is assumed

sufficiently small such that cos 0 ~ 1 and sin 0 ~ 6. The density field is assumed

only temperature-dependent and is defined in the unrotated coordinate system as

p = po +# (z) - P b, where the background stratification is constant and N 2  9'
9 PO dz

Buoyancy, b, is defined as the buoyancy anomaly with respect to the background den-

sity field, po + p. The total pressure field is decomposed into a component due to the

background stratification and a dynamical component, p. In the rotated coordinate

frame, the flow is composed of an along-isobath flow, u, in the x-direction, a cross-

isobath flow, v, in the y-direction, and a flow normal to the sloping boundary, w, in

the z-direction. The viscosity and the diffusivity are assumed constant. The equa-

tions that describe the linear dynamics for a flow with no along-isobath variations

are

Ou 2 U 2 U
t f(±+w) v(_ + 2 ), (2.1)

av 1 iop 82V 82V
+f = -60b+v- + ), (2.2)

0 = + b, (2.3)

bN20V (N2 = r 2b + b (2.4)
at OZ Oy2 19z2

Dv Dw(25
- + = 0. (2.5)
By Oz

The nonlinear advection of buoyancy term is necessary to include in (2.4) because

the vertical gradient in the buoyancy anomaly at the boundary is as large as the

background stratification from (2.8). This set of equations is solved subject to the



following no-slip, no normal flow, and no normal buoyancy flux boundary condition:

u = V = 0 at z = 0, (2.6)

w = 0 at z = 0, (2.7)

+ N2 = 0 at z = 0, (2.8)

U -+> U(t = 0, y) as z -+oo, (2.9)

v, w, b - 0 as z -- oc. (2.10)

Following Thomas and Rhines (2002), the solution to this set of equations is deter-

mined by decomposing the flow into interior, Ekman layer and thermal boundary

layer components, where the variables u, v, w, p, and b are designated with the

corresponding i, e, and T subscripts. In the interior domain, a laterally sheared

along-isobath flow evolves geostrophically from vortex stretching and squashing by

an ageostrophic secondary circulation over a depth Hp = fL/N, where L is the

length scale that characterizes the lateral variations of an initially barotropic flow. In

the Ekman layer, the momentum balance is between the Coriolis and frictional terms

over a height 6, = V/2v/f, where the small angle approximation is applied. In the

thermal boundary layer, buoyancy variations occur over a height 6 T = v2Kt, which

grows diffusively in time. The Prandtl number is assumed order one, which means

that the thermal boundary layer depth is thicker than the Ekman layer depth for

times longer than an inertial period. Furthermore, a scale separation exists between

flows in the thermal boundary layer and the interior domain when t < o-E-f, i.e.

times that are less than a diffusive timescale for o- = 1.

The coupling between the frictionally driven flows and the stratification is exam-

ined with this flow decomposition. The timescales over which the Ekman transport

is either generated by diffusion of the stratification or suppressed by Ekman advec-

tion of the buoyancy field are determined. First, consider the case with no initial

along-isobath flow. In figure 2-la, diffusion of the stratification causes the isopycnals

to tilt adjacent to the bottom in order to satisfy the insulating boundary condition.



Figure 2-1: Buoyancy generation of the Ekman transport. (a) Diffusion of buoyancy
tilts the isopycnals (grey contours) normal to the boundary and forms a thermal
boundary layer of depth 6 T that is assumed thicker than an Ekman layer of depth
6e. (b) The tilted isopycnals generate a vertically sheared geostrophic along-isobath
flow, UT, and a cross-isobath Ekman flow, Ve, with an upslope Ekman transport.

This tilting of the isopycnals is equivalent to a positive buoyancy anomaly, which

scales as AbT ~ N 2 6T. A geostrophically balanced along-isobath flow develops in the

thermal boundary layer with magnitude AUT ~ OAbT/f. By the no-slip boundary

condition, an Ekman flow arises with an upslope Ekman transport, as shown in figure

2-1b. Upslope Ekman advection of buoyancy cools the thermal boundary layer by an

Ekman buoyancy flux, which scales as A1,be/e ~ rSN2 6TU/6e. This Ekman buoy-

ancy flux impedes the heating of the thermal boundary layer that grows by diffusion

of the stratification when the Ekman buoyancy flux, KAbe/e, is the same order of

magnitude as the diffusive flux of the background stratification, ,N 2 . From these

scalings, these fluxes balance on buoyancy generation timescale

Teneration =7S l-2f-. (2.11)

For constant stratification, this process occurs independently of the initial along-

isobath flow and the upslope Ekman transport has no cross-isobath variations, which

means that this solution does not contribute to the vertical circulation emanating

from the bottom boundary layer.

In contrast, an initial along-isobath flow drives an upslope or downslope Ekman

flow, as shown in figure 2-2a. Lateral shear in the along-isobath flow induces Ek-
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Figure 2-2: Buoyancy shutdown of the Ekman transport. (a) The along-isobath
flow, Uj, drives a cross-isobath Ekman flow, V, with Ekman pumping, Wi, arising
from convergences in the Ekman transport. The cross-isobath Ekman flow advects
the buoyancy field and fluxes heat into the thermal boundary layer, which tilts the
isopycnals. (b) The tilted isopycnals generate a vertically sheared geostrophic along-
isobath flow, UT, that reduces the Ekman transport as well as the Ekman pumping.

man pumping and suction by convergences and divergences in the Ekman transport.

In this case, cross-isobath Ekman advection of the background stratification gives

rise to an Ekman buoyancy flux, which scales as KAbe/ 6e ~ KSi/ 2NU-/6e. This

Ekman buoyancy flux heats (cools) the thermal boundary layer for downslope (up-

slope) Ekman flows, resulting in a thermal boundary layer buoyancy anomaly that

scales as AbT ~ AbeT/e. Physically, this buoyancy anomaly reduces the cross-

isobath pressure gradient that drives the Ekman flow. As shown in figure 2-2b, the

buoyancy anomaly geostrophically balances an along-isobath flow, with magnitude

AUTr OAbT/f, that opposes the initial along-isobath flow. Then, buoyancy shut-

down of the Ekman flow occurs when the along-isobath flow in the thermal boundary

layer is the same order of magnitude as the initial along-isobath flow, U. From these

scalings, this process occurs on the buoyancy shutdown timescale

Tshutdown 
1 2  (2.12)

The buoyancy shutdown timescale derived here is equal to the leading order buoy-

ancy shutdown timescale derived by MacCready and Rhines (1991) for slope Burger

numbers less than one and order one Prandtl numbers. The buoyancy shutdown



timescale is invariant to the coefficient of mixing. Thus, if the diffusivity is reduced,

where o is fixed, the Ekman buoyancy flux to the thermal boundary layer is reduced.

However, the thermal boundary layer depth is also reduced to the extent that the

buoyancy anomaly within this layer is independent of the diffusivity on the buoyancy

shutdown timescale. The steps to buoyancy shutdown for viscous and diffusive flows

contrasts with buoyancy shutdown that occurs by only advection and displacement of

the isopycnals. MacCready and Rhines (1991) showed that the buoyancy shutdown

timescale approached S-'f- 1 in the nondiffusive limit.

Although the buoyancy generation timescale is equal to the buoyancy shutdown

timescale, the buoyancy generation timescale represents the time for buoyancy forces

to generate an upslope Ekman flow and the buoyancy shutdown timescale represents

the time for buoyancy forces to suppress the initial Ekman flow. For subinertial

dynamics, the buoyancy generation and buoyancy shutdown timescales are assumed

longer than an inertial period, which means that S < (27ro)- 1/ 2 < 1.

The time-dependent adjustment problem is solved by decomposing the flow into

the following buoyancy generation (denoted by - ) and buoyancy shutdown (denoted

by ) components:

U = H(z, t) + i(y, z, t), (2.13)

V = (z, t) + F(y, z, t), (2.14)

w = w(y, z, t), (2.15)

b b(z, t) + b(y, z, t). (2.16)

The linear adjustment of the laterally uniform stratification is considered in section

2.3, the laterally uniform along-isobath flow is examined in section 2.4, and the lat-

erally sheared along-isobath flow is investigated in section 2.5.



2.3 Buoyancy generation of an upslope Ekman flow

The equations for the adjustment of the background stratification are examined on

the buoyancy generation timescale. These equations are formed by setting the cross-

isobath variations, the velocity component normal to the boundary, and the interior

variables to zero. Then, the variables are nondimensionalized in the thermal and

Ekman boundary layers by the following set of scalings:

= S 1/ 2 NT -'/, e = S 112 N6T Ue,

TT - S 1 / 2N6T(f T) -' V e = S 1/ 2N6T Ve,

bT N 2 6T b, be = SaN 26T be,

PT TN2 6? ', P pSN 2 T66e Pe

Time is nondimensionalized by the buoyancy generation timescale, where t' = t/T

and T = Tg4 eneration. The coordinate normal to the boundary is nondimensionalized in

the thermal boundary layer as (' = Z/ST, where 6 T = v'2riT = a-IS-1 6e, and in the

Ekman boundary layer asqr = z/ 6 e, where primes denote nondimensional quantities.

The leading order equations in the thermal boundary layer, where the primes of the

nondimensional variables have been dropped, become

aBUT 2 UDT
a T- VT Or ,- (2.17)8t 2 862

r = -bT7, (2.18)

0 = aT - bT, (2.19)

bT 1 T (2.20)
at 2 862

For a = 1, VT 0 and the along-isobath flow satisfies the buoyancy diffusion equation

by (2.18). A cross-isobath flow is induced in the thermal boundary layer for Prandtl

numbers not equal to one in order for the along-isobath flow to maintain geostrophic

balance. This cross-isobath flow is weaker than the Ekman flow by order uS 2 and,

for a > 1, is downslope. Then, for Prandtl numbers greater than one, momentum

diffuses away from the boundary more slowly than in a nonrotating fluid owing to the



Coriolis acceleration associated with this downslope flow. This process is described

as the slow diffusion of momentum by MacCready and Rhines (1991).

The leading order equations in the Ekman layer are

-Ve - (2.21)

e (2.22)
2 8772

OPe
0 =+ be, (2.23)

=- (2.24)
2 8172

In the Ekman layer, cross-isobath Ekman advection of the background stratification

balances diffusion of buoyancy. Buoyancy enters into the cross-isobath Ekman mo-

mentum equation, (2.22), at order o-S and is a higher order correction to the leading

order dynamics for order one Prandtl numbers and small slope Burger numbers.

The leading order boundary conditions become

UT( = 0) + Ue(7 = 0) 0, (2.25)

UJe (n = 0) = 0, (2.26)

(O = 0) + O (y= 0) + 1 = 0, (2.27)

UT,T, bT- 0 as (-+oo, (2.28)

e,Ue, be 0 as rj- o, (2.29)

and all variables are initially zero. The general form of the Ekman solution is

Ue -UT( =0)e- cos T, (2.30)

e r( =0)e~sin7, (2.31)

be -UT( =O)e 4 cosq. (2.32)



The Ekman transport is defined as Me = fo" U e(t, TI)d7 and

Me - tT(( = 0).2
(2.33)

The dimensional Ekman transport is (K/6)UT( = 0, t). The scaling for the Ekman

transport, r/0, on the buoyancy generation timescale is equal to Thorpe's (1987)

steady-state, upslope Ekman transport in the small slope angle approximation. The

time and spatial evolution of the along-isobath flow, UT, satisfies

OUT _2 
2 T

at 2 2'
(2.34)

and is solved subject to

UT(t = 0) = 0,

= 0) - UT( = 0) - 1

as ( - oo.

(2.35)

(2.36)

(2.37)

A Laplace transform, L, in time is applied. The Laplace transform of the solution,

UT(s,) = [LUT (t,()| fo*UT (tedt, becomes

(2.38)U (s, +) =\''s .
s(1 + V2s)

By the inverse Laplace transform (Abramowitz and Stegun 1972), the solution to the

along-isobath flow is

UT(t, > 0) =(- t/2 t e-r/2-T2/(2 - i -3/2e- 2/(2r)dr
v2 JTo rT 2 Jo

(2.39)

and

e t/ 2 j T/ 2e-T/ 2dT.
y0 - 4oEr(t, =0 =et/2 _ I _ _t, =O)'' = 7r

(2.40)_
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Figure 2-3: The buoyancy field in the thermal boundary layer grows by diffusion
in order to satisfy the insulating boundary condition. As the thermal boundary
layer thickens, the tilted isopycnals lead to an upslope Ekman transport. Then,
the buoyancy field grows more slowly as the Ekman transport advects denser water
upslope and reduces the flux of buoyancy into the thermal boundary layer. The scale
of the buoyancy anomaly is defined as AbT= N 2ST.

Figure 2-3 shows the spatial profile for the buoyancy field, where bT --UT, in

time. This solution shows that diffusion of the stratification forms a positive buoyancy

anomaly near the bottom, which corresponds to an along-isobath flow in the negative

x-direction. By (2.33), the Ekman transport associated with this flow is upslope,

i.e. in the negative y-direction as shown in figure 2-4, and initially grows as 2t/w

for t < 1. This Ekman flow advects denser water upslope and induces an Ekman

buoyancy flux that counteracts the buoyancy flux to the thermal boundary layer by

diffusion of the background stratification. As a balance is achieved by the buoyancy

fluxes, the Ekman transport grows more slowly in time.

The time-dependent solution to the adjustment of the stratification demonstrates

the dynamical coupling between the buoyancy field and the Ekman flow. In the
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Figure 2-4: The analytical solution for the upslope Ekman transport scales with

MThorpe = /O and evolves in time on the buoyancy generation timescale.

limit t -+ oo, UT(( = 0) -* -1 and the dimensional Ekman transport approaches

-- IO, which is consistent with Thorpe's (1987) steady-state solution. Thus, the

question regarding the steady-state solution, in which the magnitude of the Ekman

transport, r/0, goes to infinity for vanishingly small slope angles, is reconciled by

the full time-dependent solution. The timescale to develop a sufficiently large Ekman

transport to balance diffusion of the background stratification is proportional to 0-4

and generation -+ 00 as 0 --> 0. This result is consistent with the flat bottom solution,

where the Ekman transport is identically zero.

2.4 Buoyancy shutdown of a laterally uniform

Ekman flow

The buoyancy shutdown problem of MacCready and Rhines (1991) for a laterally

uniform along-isobath flow over a sloping bottom is reexamined to solve for the full

time-dependence of the Ekman transport. The adjustment of the along-isobath flow



is examined on the buoyancy shutdown timescale. The interior domain is defined

as the region above the thermal boundary layer. The interior along-isobath flow,

with magnitude U, is geostrophically balanced by a pressure field that varies over

a horizontal length scale, L. The variables are nondimensionalized in the interior

domain as well as the thermal and Ekman boundary layers by the following set of

scalings:

ii = AU ', T = AU W', e = AU W,

Ui = 0, ;UT AU(fT) ET, Ue = AU',

bi = 0, br = AUNS- 1 2 Yr, = AUNS 1/2U Yr,

i = poAULf p', P5T pOS-1/ 2 AUN6T pT, je = poo-S1 /2 6eAUN e.

The parameter A is defined such that the along-isobath flow drives a downslope Ek-

man flow for A = 1 and an upslope Ekman flow for A = -1. The thermal boundary

layer thickness sets the height over which the geostrophic flow is modified because

there are no convergences in the Ekman transport to drive an interior secondary circu-

lation over a Prandtl depth. Time is nondimensionalized by the buoyancy shutdown

timescale, where t' = t/T and T = Tshutdown, and primes denote nondimensional

quantities. As in section 2.3, the coordinate normal to the boundary is nondimen-

sionalized in the thermal boundary layer as (' = z/oT, where oT - 9-1S-16e, and in

the Ekman boundary layer as 1' z/ 6 . The leading order equations in the thermal

boundary layer, dropping the primes, become

-ViT - r a, ii

at r 2 2 (2.41)

ET -bT, (2.42)

0 -= +bT, (2.43)

bT = (2.44)at 2 0 2



For order one Prandtl numbers and small slope Burger numbers, the Ekman layer

equations are

-Ve

tie

0

-Ve,

2 191 2 '

1 02j5e

2 &772'

182e

+±be,

1 2 b
2 q2

(2.45)

(2.46)

(2.47)

(2.48)

At t = 0, all variables are zero except for the interior along-isobath flow, which equals

one for all time. The leading order boundary conditions become

1 + T( = 0) + ie( 7  0)

e (n =0)

&T 
0+e (I 0)

E, , b -+4 0

E1e, Ve, be -+0

= 0,

=0,

as ( - oo,

as --+ oo.

The general form of the Ekman solution is

ie = -(1±+iT( =0))e-1 cos7,

Ve = (1I + iT( =0))e-" sin 7,

be = -(1I + riT( = 0))e-" cos 7.

The Ekman transport is defined as Mfe = fe"ie(t, 71)d7 and

~1
Me = -(1 +r(T = 0)).

2

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)



The same method from section 2.3 is applied to solve for the thermal boundary layer

flow and the Ekman transport. The along-isobath flow evolves as the slow diffusion

equation

--UT = l&ZLT (2.58)
at 2 02

subject to

T(t = 0) = 0, (2.59)
OUT 0) - iT( = 0) ~ 1 = 0, (2-60)

UT -+ 0 as (-+oo. (2.61)

The equations governing UT and UT, (2.58)-(2.61) and (2.34)-(2.37), respectively, are

identical and therefore UT = UT. Thus, the modification of the buoyancy field in the

thermal boundary layer by a downwelling Ekman flow arising from a laterally uniform

along-isobath flow is mathematically equivalent to the modification of the buoyancy

field by the adjustment of the background stratification.

The total dimensional Ekman transport that results from the adjustment of the

laterally uniform along-isobath flow and the background stratification is examined.

The total Ekman transport is composed of contributions from Minitai e= eU/2, which

is the magnitude of the Ekman transport induced by the initial along-isobath flow, and

MThorpe = r,/0, which is the magnitude of the steady-state upslope Ekman transport.

Then, the total dimensional Ekman transport for all time is

Me = MThorpe'( = 0, t') + AMinitial(1 +(= 0, t')). (2.62)

For long times, the Ekman transport behaves as

Afe(t' > 1) = -MAThorpe + (rIThorpe + AMAnitia) (t/Tshutdown )-1/2. (2.63)



MacCready and Rhines (1991) found that the long-time behavior of the Ekman trans-

port is given by Me = MThorpe + (MThorpe + AMinitial) C(t/ThUtdow,MR)- 1/ 2 . The

constant C was empirically determined to equal 0.81 using numerical simulations

(MacCready and Rhines 1991). A comparison of this result with (2.63) shows that

the two solutions are quantitatively consistent since /2/ir ~ 0.80.

2.5 Buoyancy shutdown of Ekman pumping and

suction

2.5.1 Analytical results

Next, the dynamics of buoyancy shutdown in the suppression of stratified spin-

down over a sloping bottom is examined. The adjustment of a laterally sheared

along-isobath flow is examined with respect to the spindown timescale, [pindown

E- 1/ 2f-1. The key parameter in this problem is

pindown = S 2E-1/ 2, (2.64)
Ehutdown

which measures the influence of buoyancy shutdown on stratified spindown. The

adjustment problem is examined for / < 1, where # = 0 corresponds to stratified

spindown on a flat bottom.

The parameter space is further constrained to the case where the initial Ekman

transport, Minitil = 6eU/2, induced by the along-isobath flow is larger than the

steady-state Ekman transport, MThorpe = K/O, from the adjustment of the stratifica-

tion. Thus, the dominant contribution to the evolution of the buoyancy field in the

thermal boundary layer is due to cross-isobath Ekman advection of buoyancy rather

than diffusion of the background stratification. For linear dynamics in the thermal

boundary layer and the Ekman buoyancy equation, Rossby numbers are examined

subject to e < U 1 / 2E1/4, a condition that is further discussed in the following chap-



ter. From these two conditions, the flow subject to uS > E1/2 is examined. Although

the validity of the analytical solution is then further constrained to 13 > S, the solu-

tion asymptotes to the stratified spindown solution in the limit 13 -> 0.

The initial along-isobath flow is barotropic with magnitude U and sinusoidal cross-

isobath variations over a lateral length scale L. The flow is characterized by the

Rossby number, e, and the aspect ratio, F, which are assumed sufficiently small for

linear, hydrostatic flows. The flow is nondimensionalized by the following set of scal-

ings:

i= U E'i 7r =i T12 ', e =U E',

i =E1/2U i ,UT ~- 31/ 2 E 1
/

2 U UT, e =Ue,

- E1/2 U Wj, WT = / 1/ 2 ,- 1/ 2E 3/4FU 'r, Ge - E 1/ 2 FU 1',

bi =N 2H p b', bT = 1/2S-1/2eN 2 HP b', b = oS 1/ 2eN2 Hp b',

= poeN 2H Pp,, PT - pOS 1/ 2eN 2H p~' Pe =p 0 S 1/ 2E 1/ 2 eN 2H, p.

In the rotated, nondimensional system, the leading order initial flow is

il(t = 0, y) = cos(y). (2.65)

Time is nondimensionalized by the spindown timescale, where t' = t/T and T =

Tpindown. The coordinate normal to the boundary is nondimensionalized in the inte-

rior as z' = z/Hp, in the thermal boundary layer as (' = z/oT, where 6 T = N/2KT =

-1/2E 1/4Hp, and in the Ekman layer as r' = z/ 6 e, where 6e = E 1/ 2Hp, and primes

denote nondimensional quantities. The leading order equations in the interior domain,



where the primes are dropped, become

- Vi 0, (2.66)

ai = - (2.67)
ay

0 = + (2.68)Oz
b ±i = 0, (2.69)

at
+ = 0. (2.70)

ay Dz

The interior secondary circulation, 4'j, is defined such that vi = -L and i = 2

from the continuity equation. Then, the interior secondary circulation satisfies

a2, + = 0 (2.71)
By2  Dz2

which is forced by Ekman pumping and suction at the boundary. Next, the leading

order equations in the thermal boundary layer are

2O 8 2  (2.72)
at 2 862

4T = -bT, (2.73)

0 = ) 5 T+ bT (2.74)

DbT 1 D2 bT
-t 2 A2 (2.75)
8t 2 86 2

aiUT + WT 0.(2.76)
Dy 86

In the thermal boundary layer, buoyancy and the along-isobath flow evolve by diffu-

sion. For o- # 1, a weak secondary circulation exists with a cross-isobath flow that

is smaller than the cross-isobath Ekman flow by order vOIE. By continuity, lateral

variations in this cross-isobath flow drive a flow in the thermal boundary layer that



is normal to the boundary, but this normal

the interior and the Ekman layer by order

equations in the Ekman layer are

flow is smaller than the normal flow in

/a/cE 1/4. Finally, the leading order

ve - 2 2

071

10 2 b,
Ve- 20772'ay Bq

0e OWe
+ = 0.

By 077

These equations are solved subject to the boundary conditions

= 0) + 31
/

2 ir(( - 0) + iie ( = 0)

ie(7 = 0)

iz (= 0) + (= 0)

(O = 0) + Oe(TI= 0)

'i -+ i(t = 0,y)

ET, VT, T, bT - 0

'Le, Ve, We, be -+ 0

= 0,

= 0,

= 0,

= 0,

as z -+ oo,

as z -- oo,

as -+ ,

as 77-+o.

At the initial time, the along-isobath flow is specified in the interior and the interior

buoyancy anomaly is zero. The variables in the thermal boundary layer are initially

zero. The Ekman flow that induces Ekman pumping and suction is established within

an inertial period and is treated as an initial condition for the subinertial timescales

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)



considered here. The general solution for the Ekman flow is

'Ue = -(ii(z = 0) + #1/2 (( = 0))e-" cosTI, (2.90)

Ve = (ii(z = 0) + #1/2T( = 0))e-" sin m, (2.91)

We (Ei(z = 0) + #1/2E T(( = 0))e-'(sin 7 + cos), (2.92)
2 ay

be= (i(z = 0) + # 1 / 2 iT( = 0))e-" cos 7. (2.93)

The Ekman transport is defined as Me = fo"W Te(t, y, 71)d77 and

Me = I(i,(z = 0) + #1/2rT( = 0)). (2.94)
2

By the no normal flow boundary condition, Ekman pumping is given by

I a
ii(z = 0) = -- (ii(z = 0) + #1/2rT( = 0)). (2.95)

2 &y

This expression shows that buoyancy forces modify the Ekman pumping at leading

order when 0 = 1. The Ekman pumping solution is transformed into a boundary

condition on the interior secondary circulation

0(z =0) =-( * (z =0)-at 2 Dz
(2.96)1/2 = 0)).at

Next, the Ekman buoyancy solution as well as the geostrophic relationship in the

thermal boundary layer is used to transform the no normal buoyancy flux boundary

condition into a boundary condition on !T,

(iiT 0) = (z 0)
og

+ #1/2 ~ r( = 0). (2.97)



The lateral structure of the initial along-isobath flow determines the lateral structure

of the variables. Separation of variables is applied, where

(@iJ, i, IT) = (Wi(t, z), Ui(t, z), UT(t, ()) cos(y). (2.98)

The spatial structure of ipi is determined by (2.71) and

Wi(z, t) = p(t)e-z, (2.99)

where o is the measure of the Ekman transport strength. The dimensional Ekman

transport evolves as -eUY(t') cos(y') and is equal to (6e/2)U cos(y') at t = 0. Then,

o also sets the strength of the Ekman pumping and suction and determines the extent

of spindown in the interior along-isobath flow. A closed set of partial differential

equations that couple the dynamics of both spindown and buoyancy shutdown are

formed, where

aU- p(t)e-z = 0, (2.100)at

at 2 (2 = 0, (2.101)

subject to the boundary conditions

do 1 /U 0

d + 2 at =0)) = 0, (2.102)
aUT

(=0) - Ui(z = 0) - 31 1 2 UT(= 0) = 0, (2.103)

U, - as z -+oo, (2.104)

UT- 0 as ( -- o (2.105)



and the initial conditions

1
=(t 0) = (2.106)2)

U*~ 0) = 1, (2.107)

UT (t =0) = 0. (2.108)

This system of equations is solved using Laplace transforms in time, such that

(;i(s), U (s, z), UT(s, L)) = L[y(t), U (t, z), UT(t, ()] f (p(t), U (t, z)UT(t, ())e-s'dt

and

1
- (2.109)

1 + 2s + v2Os

+2 = s1 - )' (2.110)
s 1 + 2s + v 120s'

~-2e- V_

UT =2 + +(1 +2s) v2s (2.111)

The solutions are determined by operating on (2.109)-(2.111) by the inverse Laplace

transform (Abramowitz and Stegun 1972). The temporal structure of the interior

secondary circulation is

o(t) =- e cos(bt) + 2- 4(1 + 2a)eat sin(bt) (2.112)

+ eat cos(bt) T1/ 2e-ar 2a cos(bT) + b2 - 2] sin(bT) dT

+ sin(bt) T r 1/2e-a -b + 1 cos(br) + 2a sin(bT) dT}

where the coefficients are a = -(2 - 0)/4, which is negative for < < 1, and b =

±/#(1 - #/4)/2. In the limit 13 -+ 0, the coefficients approach a = -1/2 and b = 0

and, from the first term in (2.112), the Ekman pumping approaches the spindown

solution on a flat bottom, where ('pindomn(t) = -(1/2)et/ 2. The second term repre-

sents the opposition to spindown by buoyancy forces that initially grows as /t/(27r).

The third and fourth terms in (2.112) modulate the long-time behavior of the Ekman
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Figure 2-5: The decay of the Ekman pumping for the laterally sheared flow is com-
pared between the stratified spindown solution over a flat bottom (dashed line), / = 0,
and over a sloping bottom (solid line), / = 1, from the analytical model. The nu-
merical model solution is shown for /3 0 (o) and 3 = 1 (+) every 0.5 spindown
times where e = 0.1. Ekman pumping is measured by the vertical velocity evaluated
at z/HP = 0.08 in the numerical model and is equal to i Yj(z' = 0) in the analytical
model.

pumping. Figure 2-5 shows that Ekman pumping, which is evaluated at y = 7r/2,

decays faster due to buoyancy shutdown on a sloping bottom, # = 1, than on a

flat bottom, # = 0. Buoyancy forces cause Ekman pumping to initially decay as

o(t < 1) = -(1/2)e(0/4-1/2)t + v/3t/(27). However, Ekman pumping for # = 1 does

not remain weaker than Ekman pumping for 3 = 0. Instead, after t = 5, Ekman

pumping for 13 = 1 is greater than Ekman pumping for 3 = 0. This reversal in

magnitudes of the two solutions is explained by the temporal and spatial evolution

of the buoyancy field in the thermal boundary layer.

In the thermal boundary layer, the buoyancy anomaly is associated with a
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Figure 2-6: (a) The analytical solution for the time evolution of the thermal boundary
layer buoyancy anomaly evaluated at the boundary for 3 = 1. (b) The vertical
structure of the buoyancy anomaly for 4 = 1 is presented at t/'Tindown = 0.1, 1.4, 10.

The scale of the buoyancy anomaly is defined as AbT = 01/2S-1/2N2Hr.

geostrophically balanced along-isobath flow,

UT(t, > 0)
= sin(bt)

v/27 f

+ cos(bt) j

0 e-ar- 2/(2-)

0 VT

e-a-r- 2 /(2r)

2bT
- sin(bT) -

4b_

- sin(br)) drT

cos(b) ) dTr

and

UT(tj = 0) - eat sin(bt) - -

2b x

+ eat sin(bt)
v2x~ I t T1/2 -ar ( a/3

2 b
+ 2b cos(bT) - -+2a]

(2.114)

sin(bT) ) dT

+ cos(bt) j 1/2 e-a [a- 2bl sin(br) -12 + 2a

An initial along-isobath flow in the positive x-direction induces a downwelling

Ekman flow that gives rise to a positive buoyancy anomaly in the thermal boundary

layer. This buoyancy anomaly corresponds to an along-isobath flow that opposes

the interior flow and initially grows as V2t/w. In the limit 3 -+ 0, the dimensional

solution for the thermal boundary layer flow vanishes because buoyancy shutdown

(2.113)

cos(bT ) dT

0 cos(b-r)
2b-r 4b_



requires the intersection of isopycnals with the bottom boundary.

The time evolution of the buoyancy anomaly in the thermal boundary layer for

/= 1 is shown in figure 2-6a. The buoyancy anomaly grows to its maximum value

when t = 1.4 for # = 1. The buoyancy anomaly decays in magnitude beyond this

time as buoyancy shutdown reduces the Ekman transport and the Ekman buoyancy

flux into the thermal boundary layer. For constant viscosity and diffusivity, the

magnitude of the buoyancy anomaly at the boundary weakens because the thermal

boundary layer continues to thicken diffusively in time. This initial growth in the

buoyancy anomaly near the bottom and its subsequent diffusion is presented in figure

2-6b for # = 1. The reversal in the magnitude of the Ekman pumping for the / = 0

and / = 1 solutions is explained by this diffusion of the buoyancy anomaly that

impedes the Ekman transport.

By suppressing Ekman pumping and suction, buoyancy shutdown inhibits the

spindown of the interior along-isobath flow. By inverse Laplace transform of (2.110),

the interior along-isobath flow is

Uj(t, z) = 1 - e-'(1 - cos(bt)eat) e-z+at sin(bt) (2.115)

+ e-z+" sin(bt) / 2 e-a (a cos(bT) + bsin(br) dT

+ cos(bT) j 1/2 ea-( - a sin(b-r) + b cos(bT) dT}.

The first term, which is enclosed by brackets, approaches the spindown solution in

the limit / -+ 0, where Ui, spindown = 1- e-z(1 - e-t/2). The extent to which the

interior spins down is reflected in the time decay of the interior along-isobath flow

evaluated at the boundary. Spindown of the interior flow is compared in figure 2-7

for / = 0 and / = 1. For 3 = 1, buoyancy shutdown reduces the rate at which the

interior along-isobath flow decays, but the flow continues to decay in time because

Ekman pumping remains nonzero.
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Figure 2-7: The analytical solution for the time evolution of the interior along-isobath
flow at y = 0, z = 0 is shown for the stratified spindown solution over a flat bottom
(dashed line), 3 = 0, and over a sloping bottom (solid line), # = 1.

2.5.2 Numerical model results

The validity of the linear analytical theory is investigated in a series of numerical

experiments with application to flows over continental slopes. The experiments are

performed using the Regional Ocean Modeling System (ROMS) (Shchepetkin and

McWilliams 2005), which is a free-surface, hydrostatic, primitive equation model

with stretched, terrain-following coordinates. This model is configured with no along-

isobath variations and a bottom boundary that is inclined to the horizontal at an angle

0. The domain is 300 km wide with a uniform horizontal grid spacing of 1 km and is

bounded by sidewalls. The total depth is 4.5 km, with a variable vertical grid of 201

points and vertical grid resolution that ranges from Az = 1 m to Az = 55 m. At the

bottom, temperature satisfies the no heat flux boundary condition and an approx-

imate no-slip boundary condition is imposed. Mixing coefficients are uniform and

equal to v, , = 2.3 x 10-3 m2 s-. Uniform rotation is specified with f = 10-4 S-1.

The initial parameters are chosen within the range of possible physical charac-



teristics for flows over the continental slope. The initial along-isobath flow is given

by u(t = O,y) = Ucos(y/L), where U = 0.1 m s-1, L = 10.6 km for a narrow

slope current, and N 2 = 1.6 x 10-" s-2. From these parameters, the depth of the

secondary circulation is Hp = 266 m, the Ekman layer thickness is 6 c = 6.7 m,

Minitia = 0.34 m2 s-1, and MThOp = 0.23 m2 s- 1 for # = 1. The nondimensional

parameters are E = 0.09, E = 6.4 x 10-4, and F = 0.03. The numerical results are

shown for flows over a flat bottom, where 0 = 0 with / = 0, and flows over a conti-

nental slope, where 0 = 0.01 with 3 = 1 and S = 0.16. When the bottom is flat, the

timescale for stratified spindown is sindown = 6.3 inertial periods. When 0 = 0.01,

Tspindown = Tshutdown= 6.3 inertial periods.

In order to isolate the effect of buoyancy shutdown from buoyancy generation, the

model output was decomposed into components corresponding to the adjustment of

the stratification and the cross-isobath varying flow. This decomposition was per-

formed by running the model with no initial flow and subtracting the solution from

the total model output. The sections for the resulting along-isobath flow, the buoy-

ancy anomaly, and the secondary circulation are compared with the full analytical

solutions. The solution for stratified spindown over a flat bottom, 3 = 0, is shown in

figure 2-8 and over a sloping bottom, / = 1, in figure 2-9. For / = 1, the variables are

mapped onto the rotated coordinate frame to compare with the flat bottom case. The

flow is plotted at t/Eindow, = 1.4. At this time, the analytical solution to Ekman

pumping for / = 0 is half of its initial value and the buoyancy anomaly in the thermal

boundary layer for 3 = 1 is its maximum value.

For stratified spindown on a flat bottom, / = 0, the sections show agreement

in the spatial structure between the analytical and numerical solutions. The inte-

rior secondary circulation reduces the along-isobath flow over a height Hp. This

circulation also vertically advects the stratification and gives rise to negative (posi-

tive) buoyancy anomalies in regions of Ekman pumping (suction). In the numerical

model, the buoyancy anomaly is weaker near the bottom than in the analytical model.

This weakening occurs because the secondary circulation vertically advects the total
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Figure 2-8: The 3 = 0 analytical solution (a, b, c) is compared with the /3 0
numerical solution (d, e, f). The sections are shown at t/T,,piaown = 1.4. The along-

isobath flow, il/U (a, d), is contoured every 0.2 units, the buoyancy anomaly, b/N 2 Hp
(b, e), is contoured every 0.02 units, and the secondary circulation, @/Minitial (c, f),
is contoured every 0.1 units.
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Figure 2-9: The = 1 analytical solution (a, b, c) is compared with the 3 = 1
numerical solution (d, e, f) for the cross-isobath varying flow in the rotated coordinate
frame. The sections are shown at t/Tsindodn = 1.4. The along-isobath flow, i/U

(a, d), is contoured every 0.2 units, the buoyancy anomaly, b/N 2HP (b, e), is contoured
every 0.02 units, and the secondary circulation, 4/Minitiai (c, f), is contoured every
0.1 units.

stratification, which is reduced near the bottom due to diffusion of the stratification.

Consequently, vertical advection leads to a stronger secondary circulation, which is

consistent with a stronger secondary circulation in the numerical solution than in

the analytical solution. This component of the buoyancy anomaly and the secondary

circulation is not included in the analytical solution presented here but is further

examined in the following chapter.

For stratified spindown on a slope, 13 1, positive and negative buoyancy anoma-

lies form away from regions of Ekman pumping and suction. These buoyancy anoma-

lies are due to cross-isobath Ekman advection of buoyancy and are the components of

the buoyancy field that lead to buoyancy shutdown of the Ekman transport. Buoy-



ancy shutdown for / = 1 is evident in the secondary circulation, which is weaker than

the # = 0 secondary circulation, as well as in the along-isobath flow, which is not

as reduced away from the boundary as in the flat bottom case. For / = 1, features

are apparent in the numerical solution that are not included in the linear analytical

solution. First, the secondary circulation in figure 2-9f is tilted, which reflects its ten-

dency to align parallel to the isopycnals intersecting the slope. This order S1 / 2 effect

is not included in the equation for the interior secondary circulation. Second, the

interior buoyancy anomalies in figure 2-9e are asymmetric in magnitude for cyclonic

and anticyclonic vorticity. This asymmetry is due to nonlinear advection of buoyancy

and neglected in the linear theory.

The numerical model is used to test the analytical prediction for the decay in

the Ekman pumping and suction by buoyancy shutdown. The Ekman pumping at

y = 7/2 is calculated from the model output, filtered with a cut-off frequency of 0.12f,

and compared to the analytical solutions for / = 0 and 13 1 in figure 2-5. The nu-

merical model confirms the reversal in the strength of the / = 0 and / 3 1 Ekman

pumping solutions at t/%,indown = 5. The overall agreement between the analytical

and numerical model supports the physical mechanism for linear buoyancy shutdown

formulated in section 2.2. For order one Prandtl numbers and small slope Burger

numbers, cross-isobath Ekman advection of buoyancy drives a diffusively growing

thermal boundary layer, which reduces the along-isobath flow adjacent to the bottom

and hence the Ekman pumping.

2.6 Potential vorticity dynamics

On a stratified sloping boundary, the interplay between buoyancy and frictional dy-

namics produces potential vorticity (PV) fluxes adjacent to the bottom that can

impact the PV distribution and the dynamics of flows away from the boundary. The

processes that govern the strength and temporal nature of PV input and extraction

are of importance to our understanding of the ocean circulation. This section pro-



vides one of the first attempts to analytically demonstrate the physical mechanisms

of PV input or extraction over a stratified sloping boundary and to identify a scaling

for the corresponding PV flux. The analytical solutions are applied to estimate the

amount of potential vorticity that is transferred into and out of the system over a

sloping boundary and to compare the analytically calculated fluxes with the numer-

ical model. The time evolution of potential vorticity is determined by convergences

and divergences in the PV flux, where

--q = -V -J, (2.116)at

q = wa - VB is the Ertel potential vorticity, VB = Vb + N 2k is the total buoyancy

gradient, and wa = fk + V x u is the absolute vorticity, where k is the vertical unit

vector. The PV flux is given by (Marshall and Nurser 1992, Thomas 2005)

J = qu + VB x F - Dw, (2.117)

and is composed of advective PV fluxes, Ja = qu, frictional PV fluxes, JF = VBxF,

and diabatic PV fluxes, JD = -DWa, where

F = vV 2 u, (2.118)

D = KV2b, (2.119)

for the mixing scheme applied in this model. Equation (2.116) is integrated over a

control area that is defined by isopycnals intersecting the boundary. No along-isobath

variations and weak PV fluxes away from the boundary are assumed. Then, by the

impermeability theorem (Haynes and McIntyre 1987), in which there is no PV flux

through the isopycnals of the control area, the area-integrated PV is determined only

by the PV fluxes at the boundary. The equation for the area-integrated PV, Q, is

dQ Y2

d= (JF + JD) - h dy, (2.120)dt Y



where Q = ff q dA, A defines the control area, dA is an infinitesimal unit of area,

h is the outward normal unit vector at the boundary, and y1 and Y2 define the cross-

isobath positions of the isopycnals at the boundary that enclose A. An outward

positive PV flux leads to a reduction in the area-integrated PV, whereas an inward

positive PV flux leads to an enhancement. By integrating (2.120) in time, the net

change in the area-integrated PV, AQ = Q(t) - Q(t = 0), is

AQ=- j dr f (J;(TIy) + J' (T,y))dy, (2.121)

where J = JF - h and J3 = Jo -h are the outward normal PV fluxes.

Frictional and diabatic processes couple with the components of the total PV

flux, in which diabatic and frictional processes induce both frictional and diabatic

PV fluxes. In the adjustment of the stratification, diffusion reduces the stratification

near the boundary, which leads to an outward positive diabatic PV flux out of the

system. On the sloping bottom, the upslope Ekman transport tends to weaken this

outward diabatic PV flux by upslope advection of buoyancy. In the adjustment of

the along-isobath flow, the initial Ekman transport is either upslope, which tends to

stratify and drives an inward PV flux, or downslope, which tends to destratify and

drives an outward PV flux. Even though frictional processes induce both diabatic and

frictional PV fluxes, the following analysis shows that the diabatic PV fluxes scale

larger than the frictional PV fluxes for order one Prandtl numbers and small slope

Burger numbers. Thus, the diabatic PV fluxes generate the largest contribution to

the total change in PV on the sloping bottom.

In the rotated coordinate system, where the small angle approximation is applied,

the PV fluxes normal to the boundary at z = 0 are

J" = - N20 + , (2.122)
Fay g9y2 aZ2

r u 8U 2 b a2 b)
J; = '(f &2- + . (2.123)

gy (y2 1z292



The variables are decomposed into components corresponding to the interior domain

as well as the thermal and Ekman boundary layers. Next, the change in the PV field

during the adjustment of the stratification and laterally uniform flow is analytically

examined.

2.6.1 PV dynamics for a laterally uniform flow

The analytical solutions for the adjustment of the stratification, from section 2.3,

and laterally uniform flow, from section 2.4, are applied to determine the amount of

PV transferred into and out of the system. The PV fluxes are nondimensionalized

with respect to the scalings for the thermal boundary layer component of the diabatic

PV flux. Then, (J , J ) = (Soe/2)(fN)2 (J', J '), where primes denote nondimen-

sional quantities. The nondimensional frictional and diabatic PV fluxes, dropping the

primes, become

= 2S (= 0) - A0S(Mn4tial/Mhe) (= 0) (2.124)

- (J-S) (?7 0) - A(uS(Minl/MThorpe) ( = 0),

a T a T
J = (c = 0) + A(Minitial/MThorpe)2 ( = 0) (2.125)

__2b &2 b
+ (YS)i (r = 0) + A(aS)1 (MinitialMThorpe) be = 0).

For order one Prandtl numbers and small slope Burger numbers, the Ekman compo-

nents appear to have a larger contribution to the PV flux than the thermal boundary

layer components. However, by the no-slip boundary condition from equations (2.21),

(2.24), (2.45), and (2.48), the Ekman contributions are zero. Furthermore, the linear

Ekman contributions exactly cancel by equations (2.21), (2.24), (2.45), and (2.48) in

the sum J + J. By applying the no-slip condition and the geostrophic relations



(2.18) and (2.42), the PV fluxes become

J S (02 = 0) + AJS(Minitial/MThorpe) ( = 0), (2.126)

a2bT 2bT
J; ( = 0) + A(Minitial/MThorpe) ( = 0). (2.127)

Thus, diffusion of the stratification alone drives a diabatic PV flux out of the system

as well as a frictional PV flux out of the system that is smaller by order US. The

modification to the PV flux by the upslope Ekman transport is not explicitly rep-

resented in these PV fluxes but is part of the solution. Generation of the upslope

Ekman transport reduces the diffusion of the background stratification in the ther-

mal boundary layer and hence the PV flux out of the system. The laterally uniform

along-isobath flow drives a frictional PV flux that is smaller than the diabatic PV

flux by order uS and is out of the system for downslope Ekman flows, A = 1, and

into the system for upslope Ekman flows, A = -1. The relative contributions to the

total PV flux is determined by the ratio Minitial/MThorpe. The solution to the total

PV flux, Jn = J + Jg, is

J" = (1 + uS)(1 + A(Minitial/MThorpe)) - et/2erfc , (2.128)

which is positive for all time if AMinitial/MThorpe > -1, zero if AMinitial/MThorpe -1,

and negative for all time if AMinitial/MThorpe < --1.

The change in the area-integrated PV is calculated from (2.121), where 1, the

distance of separation between the two bounding isopycnals, remains constant in

time. Then, the change in the area-integrated PV is nondimensionalized such that

AQ = QoAQ', where Qo = (uS)-'(1 + uS)(1 + A(Minitial/MThorpe))fN26el. The

scaling for the area-integrated PV is inversely proportional to the slope Burger number

due to the slope Burger number dependence of the buoyancy shutdown timescale.

From integation of (2.121) and application of bT = bT and (2.44), the change in the



area-integrated PV, dropping the primes, is

AQ = -bT( = 0). (2.129)

This analytical analysis shows that frictional and diabatic processes couple in their

modification of the PV field and the change in the area-integrated PV explicitly

depends on the buoyancy anomaly in the thermal boundary layer.

2.6.2 PV dynamics for a laterally sheared flow: analytical

solution

Next, the change in the PV field during the adjustment of the laterally sheared

along-isobath flow is examined. The frictional and diabatic PV fluxes are nondimen-

sionalized as (J , J ) = (o- 1/2 E 3 /4 Hp/2)(fN)2 (Jj ', J '). The frictional and diabatic

PV fluxes become, dropping the primes,

J4 = -(Minitial/MThorpe)( -1/ 2E-1/ 4 ) a 0) - SE-1/ 2  
e ( = 0) (2.130)

US(Minitial/MThorpe) (c = 0) - aS (( = 0).

1/ 84 2 b &L2
J; (Minitial/MThorpe)(U 1/2E- 4)e( = 0) + SE-1/2 (7)=0) (2.131)

&2 bT D82
+ ( Minitial/MThorpe) 2 = 0) + A = 0).

The terms are shown in decreasing order of magnitude, where the assumptions of

linearity, cS > Ei/ 2 , 0 = 0(1), and Minitial/MThorpe > 1 are applied. By the

no-slip condition, the Ekman components are zero, although these terms have the

largest scalings. In general, by equations (2.21), (2.24), (3.39), and (3.41), the Ekman

components exactly cancel in the sum of the diabatic and frictional PV fluxes. Then,



the total PV flux, J", is

J= (1 + S) 2  = 0) + (1 + O-S)(Minitial/MThorpe) 02( = 0), (2.132)

where the frictional PV flux contributes to a smaller PV flux than the diabatic PV

flux by order oS. The ratio Minitial/MThorpe determines the relative contributions

from the adjustment of the background stratification and the laterally sheared flow.

From the laterally sheared flow, frictional processes drive a diabatic PV flux that is

spatially variable and outward (inward) where the flow is downwelling (upwelling).

Next, the net change in the area-integrated PV, (2.121), is calculated with a

control area A bound by isopycnals. The cross-isobath positions of these isopycnals

depend on changes to the buoyancy field by the adjustment of the stratification and

the cross-isobath varying flow. The area-integrated PV is nondimensionalized by

AQ = QoAQ', where Qo = .- 1/ 2 (1 + uS)E1/4L 2Nf 2. The amount of PV input

or extracted increases for increasing slope Burger number, from the slope angle or

stratification, and for increasing Ekman number, from the viscosity.

The cross-isobath varying buoyancy anomaly in the thermal boundary layer is

partitioned as bT BT(t, ) cos(y), where BT(t, ) = -UT(t, ). From (2.121), the

change in the area-integrated PV, dropping the primes, becomes

AQ = -(y 2 (t) - y(t))bT(t, =0) (2.133)

- (Minitial/MThorpe)(sin(y2(t)) - sin(y1(t)))BT(t, ( 0)

+ I ( dIy2 d yi )Tr(,T 0)
Jodr dr

+ (MinitialI/MThorpe)(cos(y2(T)) d - cos(y1(T)) dyi)BT(r, 0) dT.
dT dT

This expression explicitly shows that the time change in the area-integrated PV can

be expressed in terms of the time evolution of the buoyancy anomaly in the ther-

mal boundary layer as well as the position of the isopycnal surfaces. For a laterally

uniform flow, the ratio Iinitial/MAThorpe determines whether there is net PV input or



extraction. For a laterally sheared flow, the net PV input or extraction is not only

dependent on Miritial/MThorpe but # as well.

The parameter / controls the magnitude and temporal evolution of the cross-

isobath varying buoyancy anomalies that extract or input PV. As 3 increases, buoy-

ancy shutdown occurs more rapidly to produce larger buoyancy anomalies before the

interior flow spins down. In time, the magnitude of the cross-isobath varying buoy-

ancy anomaly at the boundary decays after the initial buoyancy shutdown because the

buoyancy anomalies diffuse into the interior. Then, the change in the area-integrated

PV owing to the cross-isobath varying flow decays for long times. In contrast, the

buoyancy anomaly owing to the adjustment of the stratification grows monotonically

to its steady-state value and corresponds to an extraction of PV. Thus, an asymmetry

exists for the total amount of PV input or extracted from the flow during spindown,

and, for long times, PV extraction dominates.

The change in the area-integrated PV is examined for regions of initially down-

welling and upwelling Ekman flows with the parameters used in the numerical simu-

lation, where # = 1 and Minitial/MThorpe = 1.5. For the downwelling Ekman flow, the

control area Ad is defined between y1(t = 0) = -7/4 and y2 (t = 0) = 7/4, and for

the upwelling Ekman flow, the control area A, is defined between y1(t = 0) = 37/4

and y2(t = 0) = 5f/4. At initial time, the distance between the isopycnals for the

downwelling case, 1d, and the upwelling case, 1s, is 7r/2. The displacement of the

isopycnals is calculated as the total buoyancy field evolves in time.

The change in the area-integrated PV is shown in figure 2-10a for the downwelling

Ekman flow and figure 2-10b for the upwelling Ekman flow. The main contributions

to AQ in figure 2-10 are from the first two terms of (2.133), and the time-integrated

contribution from the third term is small in both cases. For Ad, the adjustment of

the stratification and Ekman downwelling lead to a net extraction of PV from the

system with a negative change in the area-integrated PV. For A., Ekman upwelling

leads to an initial net input of PV into the system. As spindown progresses, the

cross-isobath varying buoyancy anomaly and the input of PV weakens. In time, the
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Figure 2-10: The analytical solution for the change in the area-integrated PV is shown
for # = 1 in regions where the flow is downwelling (a) and upwelling (b). The change
in Q associated with diffusion of the background stratification (dashed line, first term
in (2.133)) and the laterally sheared flow (dash-dotted line, second term in (2.133))
have the largest contributions to the total change in the area-integrated PV (solid
line).

adjustment of the background stratification leads to a net extraction of PV from the

system. A comparison between the change in the area-integrated PV shows that the

adjustment of the stratification has a larger contribution in the upwelling case than

in the downwelling case. This difference occurs because the distance between the

bounding isopycnals widens in the upwelling case, where l(t = 10) = 7r/2 + 0.3, and

the distance contracts in the downwelling case, where ld(t = 10) = 7r/2 - 0.3. Then,

the adjustment of the stratification extracts additional PV out of the system for the

upwelling case than for the downwelling case. This effect contributes to the even-

tual extraction of PV for an initially upwelling Ekman flow. The analytical estimate

for the PV fluxes and change in the area-integrated PV is further examined in the

numerical model.
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Figure 2-11: The time evolution of the change in the area-integrated PV from the
13 = 1 numerical solution is examined for regions of downwelling (a) and upwelling
(b). The change in the total area-integrated PV (solid line) has contributions from
the diabatic PV flux (dash-dotted line) and the frictional PV flux (dotted line). The
analytical estimate (x) for the total change in the area-integrated PV is included for
comparison.

2.6.3 PV dynamics for a laterally sheared flow: numerical

simulation

The change in the area-integrated PV from the # = 1 simulation is compared with

the analytical theory. The control areas defined in the numerical calculations are

the same as in the analytical calculations. The analytical estimate captures the

magnitude and temporal structure of the change in the total area-integrated PV.

From the upwelling case in the numerical model, the maximum input in the area-

integrated PV is AQ = 8.5 x 10-5 m2 s-3 at t = 0.3, and the analytical estimate is

AQ = 9.4 x 10-5 m2 s-3 at t = 0.3. The change in the area-integrated PV reverses

sign at t = 1.0 in the numerical calculation and at t = 1.2 in the analytical calcula-

tion.

The change in the area-integrated PV from the components of the diabatic and

frictional PV fluxes is shown in figure 2-11 for each case. Diabatic and frictional

components are of opposite sign but similar magnitude and largely cancel in their

contributions to the total change in the area-integrated PV. This calculation differs



from the analytical solution which predicts that the frictional PV flux is smaller than

the diabatic PV flux by order oS. The reason for this apparent discrepancy between

the analytical and numerical solutions is described as follows.

In the numerical model, the PV flux is calculated at a grid space above the bound-

ary where the no-slip boundary condition is applied. Then, the Ekman components

will not only be nonzero but the scalings show that these terms will dominate the

diabatic and frictional PV fluxes shown in equations (2.130) and (2.131). However,

the linear Ekman components exactly cancel in the sum of the diabatic and frictional

PV fluxes. The total change in the area-integrated PV from the # = 1 numerical

calculation is also compared with the analytical solution. The significant cancellation

between the frictional and diabatic PV fluxes in their contributions to the total area-

integrated PV is consistent with the analytical prediction for the behavior of the PV

fluxes with nonzero Ekman components. Therefore, the magnitude of the frictional

and diabatic PV fluxes alone provide an overestimate of the total PV flux. The sum

of the frictional and diabatic PV fluxes is necessary to estimate changes in the PV

field.

2.7 Discussion

Mixing processes control the coupling between the Ekman flow and the buoyancy field

on the sloping bottom. The theoretical results demonstrate that different aspects of

mixing enter into the dynamics. The timescale for buoyancy generation and shut-

down of the Ekman flow depends on the Prandtl number rather than the value of the

mixing coefficient itself, as explained in section 2.2. For fixed viscosity, an increase in

the diffusivity leads to a faster thickening of thermal boundary layer depth. Then, a

longer buoyancy generation time is necessary for the upslope Ekman buoyancy flux to

balance the buoyancy flux by diffusion of the stratification. Also, a longer buoyancy

shutdown time is necessary for the buoyancy anomaly within this layer to grow to a

sufficiently large magnitude to reduce the bottom stress.



In contrast, mixing of momentum, rather than buoyancy, determines the spin-

down timescale because the viscosity sets the strength of the Ekman pumping. Thus,

a reduction in the mixing coefficients for fixed Prandtl number increases the spindown

time while keeping the buoyancy shutdown time fixed. Then, buoyancy shutdown can

reduce the Ekman transport before Ekman pumping spins down the interior along-

isobath flow. This relative roles of mixing of buoyancy and momentum is reflected

in the parameter 13, the ratio of the spindown timescale to the buoyancy shutdown

timescale.

The ratio of timescales, 3, is not only dependent on the Prandtl number but also

the slope Burger number, with a sensitivity to the slope angle that scales as 64. For

the weak stratification that is used in the numerical simulations, a slope angle of

0 = 0.01 corresponds to / = 1. However, if the slope angle is reduced by half to

O = 0.005, which is still a significant slope angle in the oceanic regime, /3 is reduced

to # = 0.06 and spindown dominates over buoyancy shutdown. Physical parameters

are applied to examine the range in / values over the continental shelf and slope,

under the assumption that o = 1 and f = 10-4 s-1. The Ekman number is assumed

to equal E = 0.01, which corresponds to an Ekman depth of Jc = 10 m over a depth

of 100 m. Then, for a range of slope angles 0 = 0.0001 - 0.001 over the continental

shelf and 0 = 0.005 - 0.01 for the upper continental slope near the Middle Atlantic

Bight shelfbreak front, with a range of stratifications N 2 = 104 - 104 s-2 (Linder

and Gawarkiewicz 1998), the range of slope Burger numbers is S = 10- - 10-2 over

the continental shelf and S = 0.03 - 1 over the continental slope. This parameter

space corresponds to / = 10-9 - 10-3 over the continental shelf and 13 = 0.01 - 10

over the continental slope. This range of values suggests that buoyancy shutdown of

Ekman pumping and suction may occur to a greater extent over the continental slope

than over the continental shelf.

Although 13 measures the importance of buoyancy shutdown to the initial adjust-

ment of the along-isobath flow, the long-term behavior of the flow is dependent on the

spatial structure of mixing. For constant mixing coefficients, the buoyancy anomaly



that leads to shutdown of the Ekman transport diffuses away from the boundary and

enables spindown to progress. If the interior mixing is weak, the buoyancy anomaly

remains confined adjacent to the boundary and further limits the spindown of the

along-isobath flow. This behavior is consistent with Chapman's analytical model

(2002a), in which a geostrophic along-isobath flow over a stratified slope approaches

a nonzero steady-state. In his model, the buoyancy anomaly is confined to a bottom

mixed layer, which is analogous to our thermal boundary layer except that the thick-

ness of the bottom mixed layer is evaluated by a bulk mixed layer model forced by

the cross-isobath Ekman flow rather than a diffusion equation forced by a diffusive

Ekman buoyancy flux.

The use of constant mixing coefficients also does not capture the observed asym-

metry in the thickness of the buoyancy boundary layers for upwelling and downwelling

Ekman flows that has been examined in Id models (Weatherly and Martin 1978, Trow-

bridge and Lentz 1991, MacCready and Rhines 1993). Although this asymmetry is

shown to arise with state-dependent mixing schemes for Id upwelling and downwelling

flows, the important question to address in future studies is how the cross-isobath

structure of the Ekman flow is modified by mixing during the buoyancy shutdown

process. If the state-dependent mixing schemes modify convergences and divergences

in the Ekman transport, then the frictionally driven vertical circulations can modify

the dynamics away from the bottom boundary layer. This subject requires further

investigation.

2.8 Conclusions

The time-dependent adjustment of a stratified along-isobath flow with and without

lateral shear is examined on an insulated sloping boundary in a model with constant

viscosity and diffusivity. This adjustment process has two components. First, the

adjustment of the stratification tilts the isopycnals and induces an upslope Ekman

transport that arises on a buoyancy generation timescale. The buoyancy field dif-



fusively grows away from the boundary in time and the upslope Ekman transport

approaches the steady-state solution of Thorpe (1987).

Second, buoyancy shutdown of the Ekman transport is shown to oppose the spin-

down of a laterally sheared along-isobath flow. For order one Prandtl numbers, buoy-

ancy shutdown occurs due to cross-isobath Ekman advection of buoyancy that drives

an Ekman buoyancy flux into a thicker thermal boundary layer. In this thermal

boundary layer, the tilting of isopycnals reduces the geostrophic flow and hence the

Ekman transport. The ratio of the spindown to buoyancy shutdown timescales, 13,

is the key parameter that measures the importance of buoyancy shutdown to the

decaying Ekman pumping and suction. In contrast to previous works, an explicit

solution to Ekman pumping for < < 1 is constructed and its suppression by buoyancy

shutdown is shown.

Finally, the modification of potential vorticity by mixing processes at the strati-

fied sloping boundary is examined. The adjustment of the stratification by diffusion

yields an outward PV flux that reduces the area-integrated PV. The adjustment of

the along-isobath flow induces an outward (inward) PV flux for downwelling (up-

welling) Ekman flows that reduces (increases) the area-integrated PV. The relative

contributions of these processes to the total change in the area-integrated PV de-

pends on the ratio of the Ekman transport scalings, Minitial/MThorpe. For laterally

sheared flows, 13 also determines the magnitude and temporal evolution in the change

of the area-integrated PV, in which PV extraction dominates over PV input for long

times. For the total change in the area-integrated PV, the linear Ekman components

cancel and the main contribution to the change in PV is due to the diabatic PV

flux, which is larger than the frictional PV flux by order uS. The time evolution

of the area-integrated PV is explicitly dependent on the magnitude of the buoyancy

anomaly in the thermal boundary layer as well as the position of the isopycnals at the

boundary. An increase in the slope angle, stratification or viscosity for fixed Prandtl

number leads to a larger input or extraction of PV from the system. Thus, mixing

over stratified sloping boundaries provides a mechansim by which the PV structure



of the large scale ocean circulation may be modified aside from wind and buoyancy

forcing at the surface. For example, flows over the upper continental slope (such

as western boundary currents), along the Mid-Atlantic Ridge and over other topo-

graphic features are potentially subject to the input and extraction of PV through

coupling between the Ekman flow and the buoyancy field. The method in which the

boundary modified PV is redistributed, for example, by eddies, and the relative roles

of atmospheric and topographic forcing in setting the distribution of PV in the ocean

remains to be explored.
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Chapter 3

Nonlinear spindown

Abstract

The nonlinear stratified spindown of an along-isobath flow over an insulated sloping
boundary gives rise to asymmetry in Ekman pumping and suction. During spindown,
Ekman pumping is suppressed to a greater extent than Ekman suction primarily due
to nonlinear advection of buoyancy. This asymmetry contrasts with previous studies
of nonlinear homogeneous spindown over a flat bottom, in which Ekman pumping
is weaker than Ekman suction due to advection of momentum. The asymmetry
in Ekman pumping and suction is compared among homogeneous spindown over a
flat bottom, stratified spindown over a flat bottom, and stratified spindown over a
sloping bottom for increasing Rossby number. Time-dependent feedback between
the secondary circulation driven by nonlinear Ekman pumping and suction and the
geostrophic flow leads to asymmetry in cyclonic and anticyclonic vorticity. For homo-
geneous spindown over a flat bottom, a closed-form solution for the vertical velocity
and the vertical vorticity field is presented to order Rossby number. This correction
shows that the asymmetry in Ekman pumping and suction is due to advection of
momentum in the Ekman layer and in the interior. Cyclonic vorticity decays faster
than anticyclonic vorticity due to lateral advection of momentum in the interior. For
stratified spindown over a slope, an analytical scaling for the nonlinear correction
to Ekman pumping and suction is determined for order one Prandtl numbers and
small slope Burger numbers. When this nonlinear correction is larger than order
Rossby number, anticyclonic vorticity decays faster than cyclonic vorticity in the in-
terior. Numerical simulations are used to examine the asymmetry in Ekman pumping
and suction as well as cyclonic and anticyclonic vorticity for flows applicable to the
continental slope.



3.1 Introduction

The adjustment of a geostrophically balanced flow over a boundary produces fric-

tionally driven circulations, in which convergences in the Ekman transport eject fluid

out of the boundary layer (Ekman pumping) and divergences in the Ekman transport

inject fluid into the boundary layer (Ekman suction). The magnitude and lateral

structure of Ekman pumping and suction determines the strength and structure of

interior secondary circulations that spindown the geostrophic flow. In the linear

Ekman balance, the vertical velocity at the top of the frictional boundary layer is

dependent on the vertical component of the geostrophic relative vorticity, ( (Char-

ney and Eliassen 1949). Then, Ekman pumping is symmetric to Ekman suction for

a change in the sign of the vertical relative vorticity. The purpose of this chapter

is to examine how nonlinearity breaks this symmetry between Ekman pumping and

suction and modifies the geostrophic vertical vorticity field during spindown.

Previous studies have shown that Ekman advection of momentum in a homoge-

neous fluid over a flat bottom weakens Ekman pumping for cyclonic flows, ( > 0,

and strengthens Ekman suction for anticyclonic flows, ( < 0, at order Rossby num-

ber, e = U/f L, where U is the characteristic flow speed, f is the planetary vorticity,

and L is the characteristic lateral length scale. For flows with lateral shear that is

temporally and spatially constant, Benton et al. (1964) identified that the vertical

velocity was stronger for anticyclonic flows than cyclonic flows at order Rossby num-

ber. For steady flows, Hart (2000) analytically solved for higher order corrections to

nonlinear Ekman pumping for general shear lines and circular vortices. The order

Rossby number reduction in Ekman pumping and enhancement in Ekman suction is

due to horizontal Ekman advection of momentum (Hart 2000). Further examination

of the steady Ekman boundary layer structure reveals that the Ekman layer thickness

is modified from its linear value, oc = 2v/f, by momentum advection (Brink 1997,

Pedlosky 2008), where v is the viscosity. For general shear lines, a formal perturba-

tion expansion reveals that vertical advection of momentum causes the Ekman layer



to thicken in cyclonic regions and to thin in anticyclonic regions (Pedlosky 2008).

With the nonlinear Ekman layer thickness, the nonlinear correction to Ekman pump-

ing remains unchanged from Hart's formula (2000). These studies detail the relative

roles of horizontal and vertical advection of momentum in the nonlinear modification

of the Ekman layer thickness and Ekman pumping. However, the feedback between

nonlinear Ekman pumping and the interior vertical vorticity field is a fundamental

aspect of the time-dependent spindown problem.

The nonlinear spindown of a homogeneous, geostrophic flow is subject to nonlin-

ear Ekman pumping as well as horizontal advection of momentum in the interior.

For spatially uniform vertical vorticity, squashing and stretching of vertical relative

vorticity by the leading order Ekman pumping and suction dominates over squashing

and stretching of planetary vorticity by the order Rossby number Ekman pumping

and suction (Hart 1995). Hence, spatially uniform cyclones spin down faster than an-

ticyclones, even though Ekman pumping is weaker than Ekman suction (Hart 1995).

Zavala Sans6n and van Heijst (2000) compared the homogeneous spindown of cyclonic

vortices in a laboratory experiment with a model, in which momentum advection in

the interior was included but the nonlinear correction to Ekman pumping was ne-

glected. They justified neglecting the nonlinear correction to Ekman pumping due to

good agreement between the laboratory and numerical model for the temporal decay

of vertical vorticity. Numerical simulations for the spindown of axisymmetric vor-

tices subject to linear Ekman pumping and suction showed a faster decay in cyclonic

vortices than anticyclonic vortices. This behavior is consistent with the hypothesis

that horizontal advection of momentum in the interior dominates over the effects of

nonlinear Ekman pumping and suction (Zavala Sans6n 2001). In order to synthesize

these results with analyses of the steady nonlinear Ekman balance, the relative roles

of nonlinear Ekman pumping and horizontal advection of momentum in the interior is

investigated during the spindown of a general, uni-directional flow that is horizontally

bounded or periodic. Horizontal advection of momentum in the interior is shown to

control the asymmetric spindown of cyclonic and anticyclonic vorticity and, in doing



so, enhances the asymmetry in Ekman pumping and suction from the magnitude

predicted by Hart's formula.

The second focus of this paper is to show how nonlinear advection of buoyancy

can modify the asymmetry in Ekman pumping and suction as well as anticyclonic

and cyclonic vorticity during stratified spindown over a sloping bottom. In a strati-

fied fluid, the geostrophic flow spins down by a secondary circulation over a Prandtl

depth, Hp = f L/N, in a spindown time, Tpinomm = E- 1/2 f- 1. The Ekman number,

E = (e/Hp) 2 , is assumed small. On a stratified sloping bottom, Ekman pumping

couples with the buoyancy field. The geostrophic along-isobath flow induces a cross-

isobath Ekman flow that advects the buoyancy field. For an insulated boundary, this

cross-isobath Ekman advection of buoyancy balances a vertical buoyancy flux into a

thicker, diffusively growing boundary layer. This buoyancy flux tilts the isopycnals

within the layer, thereby reducing the geostrophic flow near the bottom as well as

the Ekman transport. This process, known as buoyancy shutdown of the Ekman

transport (MacCready and Rhines 1991), occurs in a time Tsahtd0ow = o--fu,

where the Prandtl number, o- = v/K, is assumed order one, the slope Burger number,

S = (N tan 0/f) 2 , is assumed small, r is the diffusivity, N is the buoyancy frequency,

and 0 is the slope angle.

As shown in Chapter 2, buoyancy shutdown equally reduces Ekman pumping and

suction during the linear adjustment of a laterally sheared along-isobath flow over a

stratified sloping bottom, where viscosity and diffusity are assumed constant. The ex-

tent to which buoyancy shutdown reduces Ekman pumping during spindown is given

by the parameter = Tspindown /Tshutaon. The analysis in Chapter 2 is used to de-

termine the correction to Ekman pumping and suction by buoyancy shutdown. This

chapter shows that Ekman pumping becomes further suppressed over Ekman suction

for increasing nonlinearity. However, the asymmetry in Ekman pumping and suction

is predominantly due to nonlinear advection of buoyancy rather than momentum ad-

vection. The scaling for the nonlinear correction to Ekman pumping is shown to be

greater than order Rossby number when 0 is order one. This scaling has consequences



for the time evolution of the vertical vorticity field. In this case, interior advection of

momentum is shown to not necessarily have primary importance to the asymmetric

decay of cyclonic and anticyclonic vorticity. Instead, nonlinear advection of buoyancy

can cause anticyclones to spindown faster than cyclones outside the boundary layers.

Numerical experiments are performed to examine the extent to which the analytical

solutions are valid for idealized flows applicable to continental slopes.

The spindown problem is formulated in section 3.2. In section 3.3, homogeneous

spindown on a flat bottom to order Rossby number is examined. In section 3.4, the

effect of stratification on nonlinear spindown on a flat bottom is discussed to order

Rossby number. In section 3.5, the leading order nonlinear correction to stratified

spindown on a sloping bottom is solved for a flow with sinusoidal lateral shear. In

section 3.6, the analytical solutions for Ekman pumping and suction as well as cy-

clonic and anticyclonic vorticity are compared with the flow fields in the numerical

simulations. The results are discussed and summarized in section 3.7.

3.2 Basic equations

The equations for an incompressible, Boussinesq fluid rotating about the vertical axis

at an angular velocity f/2 are

Bu1 gp,

+ u - Vu + f k x u -VP-+ u, (3.1)
t Po Po

V - u = 0, (3.2)

+= tV 2p, (3.3)

where u is the velocity field, P is the pressure field, p is the density field, g is the

acceleration of gravity, and k is the vertical unit vector. The density field is defined as

p = Po + Pb(z) - P b, where po is a constant reference value of density, N 2  p dpb
g g dz'

and b is the buoyancy anomaly. In the homogeneous spindown problem, Pb and b

are zero. The pressure field is assumed hydrostatically balanced and is defined as



P = Pb- p, where P satisfies d = -g(p, + Pb), and p is the dynamical component

of the total pressure. The viscosity, v, and the diffusivity, r, are assumed constant.

The flow is assumed to have no spatial variations in the x-direction. The fluid is

unbounded in the y-direction. This set of equations is solved for the leading order

nonlinear correction during homogenous spindown over a flat bottom, in section 3.3

and stratified spindown over a sloping boundary in section 3.5.

3.3 Nonlinear homogeneous spindown on a flat bot-

tom

The spindown of a barotropic, laterally sheared geostrophic flow is examined to order

Rossby number in a homogeneous fluid of constant depth, H. In order to filter

inertial oscillations, the assumption c > Ei/2 , where E = (6e/H)2 < 1, is made. The

aspect ratio, F = H/L, is assumed sufficiently small so that the flow is hydrostatic.

Within the Ekman layer, vertical variations in the pressure field are negligible. The

upper boundary is assumed rigid, where the Froude number, F = U//gH, satisfies

F < eE1/4 . The flow is subject to the following no-slip and no normal flow boundary

conditions:

u = v = 0 at z = 0, (3.4)

w=0 at z=OandH, (3.5)

The initial geostrophic flow is assumed either horizontally bounded such that I -+ 0

as y -- +oo or periodic with zero spatial average.

The flow, U, is decomposed into a frictionless interior region and an Ekman layer,

with subscripts i and e denoting the respective domains. Time is nondimensionalized

by the homogeneous spindown timescale as t' = t/Tspindow and Tspindown= E-1/ 2  1

Then, with primes denoting nondimensional quantities, the variables are nondimen-

sionalized in the interior and Ekman boundary layers by the following set of scalings:



Ui U U',

vi UEi/2 v',

wi =UEi/2FwI,

pi pofULp' .

U, = U e,

Ve = Uv',

We = UEi/2 l

The vertical coordinate is nondimensionalized in the Ekman boundary layer as 7' =

z/ 6 e. The interior equations to order Rossby number, primes dropped, become

at+ ev - v = 0, (3.6)at B9y
api
ay

avi + wi 0
ay az

(3.7)

(3.8)

The Ekman layer equations to order Rossby number, where

Ekman layer thickness are not explicitly expressed, become

Eve( + ) + (we + wi(z = 0)) - ve
B9y By O'q

ave Ove
Eve + E(we + wi(z 0)) + Ue

By By

ave+ aw
ay ay

slow variations in the

= a2 U
2 a 2

1 a2Ve
= - 2 ,

- 0.

The interior vertical velocity is evaluated at z = 0 because vertical variations of the

interior flow within the Ekman layer are O(Ei/ 2). The nondimensional boundary

conditions to order Rossby number become

Ui + Ue(yT = 0)

ve(77 = 0)

wi(z = 0) + We(7 = 0) = 0,

wj(z = 1)

Ue, Ve, We -+ 0

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)as ri -+4 00.



The flow variables are expanded in terms of the Rossby number as u = u(±) + u(1).

The Ekman pumping solution to O(c) for time-independent flows (Hart 2000, Ped-

losky 2008) is modified to include time-dependent feedback with the O(c) geostrophic

flow, where

1 0) "a7() 2 (0) (0)
wi(z = 0) E nO) +( )2 -E - . (3.17)2 By 40 y y2 By 2 By

This expression for Ekman pumping includes the first term, which is symmetric for a

change in sign of the vertical relative vorticity, the second term, which is Hart's non-

linear correction (2000) to Ekman pumping due to Ekman advection of momentum,

and the third term, which represents feedback with the time-dependent O(c) interior

vorticity field.

At leading order, the geostrophic flow spins down by the 0(1) secondary circula-

tion, where

--o = 0. (3.18)at i 0

The solution to the flow is determined by vertically integrating the interior continuity

equation and applying the Ekman pumping condition. The resulting expression

8v(0) I O (MS- - i (3.19)
Oy 2 B~y

is integrated horizontally from yo to y, under the constraint that u(yo) = v(yo) 0.

This constraint is applicable for flows that are horizontally bounded, in which u -+ 0

as y -> +oo, or periodic with zero horizontal average. Then, the secondary circulation

is given by

(0) 1 (0)v 2= u, (3.20)

2aoy 1 BU "I
W(O = (1 - z), (3.21)i 2 By



which is nonzero at initial time due to its spinup on the inertial timescale. By inte-

grating (3.18) in time, the leading order geostrophic flow decays as

(0) (0) ~=0
'U i U (t = 0, y)et/2. (3.22)

Next, the O(c) interior flow is solved to show that lateral advection of momentum

in the interior causes cyclones to spindown faster than anticyclones and enhances the

asymmetry in Ekman pumping and suction from Hart's nonlinear correction (2000).

The O(E) equations for the interior flow field are

(1) (0)N (1
at+ V a -v - 0, (3.23)

+ = 0. (3.24)
ay az

The continuity equation, (3.24), is integrated vertically, subject to the Ekman pump-

ing condition, (3.17), and then integrated horizontally from yo to y under the assump-

tion u(0) = v( )(yo) = 0. The resulting secondary circulation is given by

(1) = 7 (O) 1I1
v = 4U UZ (3.25)

40 *ay 2*
{ 7 0 (O2Z (0) (i )

() = +( ) 2  ai (1-z). (3.26)
2 40( * By2 ay 2 ay

The equation for the O(c) geostrophic flow becomes

(1) 1 (1) 7 () _ 1 (0) au
2 + -U --- U + -U a (3.27)

at 2 * 402 ay 2 5JBy

The interior geostrophic flow is forced by two opposing components from the 0(1)

flow. The first term on the right side of (3.27) is from Hart's nonlinear Ekman pump-

ing formula (2000), and the second term is from lateral advection of the interior

geostrophic flow. Lateral advection of momentum in the interior not only dominates

the forcing of the O(c) interior geostrophic flow but is opposite in sign to the contribu-
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Figure 3-1: The 0(c) vertical relative vorticity, which is scaled with the square of
the initial relative vertical vorticity, is shown on the cyclonic and anticyclonic axis.
The total correction (solid line) has contributions from lateral advection of momen-
tum in the interior (dotted line), which leads to stretching and squashing of vertical
relative vorticity, as well as feedback with the 0(c) Ekman pumping, which includes
modification by Ekman advection of momentum (dashed line).

tion from Hart's (2000) nonlinear Ekman pumping formula. Thus, Hart's nonlinear

Ekman pumping (2000) alone predicts a change to the 0(c) geostrophic flow that

is of the opposite sign than if lateral advection of the geostrophic flow is taken into

account. Furthermore, forcing by only the lateral advection of the geostrophic flow

overestimates the change to the 0(c) flow. As the 0(1) forcing decays in time, the

feedback term, which is the second term on the left side of (3.27), dominates and

spins down the 0(e) geostrophic flow.

The nonlinear modification of the geostrophic flow field can also be represented in

terms of vertical relative vorticity, c, -g. From (3.23), the 0(c) vertical relative

vorticity evolves as

aC ( 8(((0) Og1) (0)+v - & ) +(O) OW} (3.28)
at B Dy Oz Oz

Lateral advection of momentum contributes to both lateral advection as well as

stretching and squashing of vertical relative vorticity. The 0(c) Ekman pumping and



suction modifies stretching and squashing of planetary vorticity. Figure 3-1 compares

the contributions to (1) from right side of (3.28) on the cyclonic and anticyclonic

axis, where ' = 0. In terms of vorticity, stretching and squashing of vertical relative

vorticity dominates over stretching and squashing of planetary vorticity, which is of

opposite sign. Thus, stretching and squashing of vertical relative vorticity, i.e. lat-

eral advection of momentum in the interior, causes cyclones to spindown faster than

anticyclones. Nonlinear Ekman pumping at O(c) tends to reduce this effect.

The solution to the 0(c) geostrophic flow and the vertical relative vorticity is

) -( e-t/2 a er/2(O))2dr, (3.29)
80 Dy Jo

S e-t/2 j e/ 2 (0) _ )2 dr. (3.30)

The nonlinear correction to the vertical relative vorticity shows that the total vertical

relative vorticity is weakened on the cyclonic axis, where ( > 0 and = 0, and

strengthened on the anticyclonic axis, where ((0) < 0 and = 0, due to lateral

advection of the interior geostrophic flow.

During spindown, the asymmetry in cyclonic vorticity, (c, and anticyclonic vor-

ticity, (a, is measured by the ratio (c/(a. Consider the spindown of a cyclone and

an anticyclone, where (c(t = 0) = -(a(t = 0), of initial magnitude |((t = 0)1. On

the cyclonic and anticyclonic axis of the flow, the ratio of cyclonic to anticyclonic

vorticity evolves as

(c1 - eF1(t)- I-FI(t) where (3.31)
(a 1 + F1(t)'

13
F1(t) = |((t = 0)1(1 - e-t/2).20

At initial time, F1(t = 0) = 0, but in the limit t -+ oo, F1 -+ (13/20)1((t = 0)1.

Thus, the asymmetry in cyclonic and anticyclonic vorticity increases with time and

increasing Rossby number.

Next, the complete solution to the time-dependent 0(c) correction to the Ekman
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Figure 3-2: The 0(e) Ekman pumping, which is scaled with the square of the initial
relative vertical vorticity, is shown on the cyclonic or anticyclonic axis. The total
correction (solid line) has contributions from Hart's (2000) formula (dashed line) as
well as feedback with the interior geostrophic flow, which is predominantly modified
by lateral advection of the momentum (dotted line).

pumping solution is

W ( 0) = u-- (9l (04)2 (3.32)
40 By

+ et/2 er/2 ( ())2131 ft (0 ___

80 ] 0  ti ay \ 2 ~T

On the cyclonic and anticyclonic axis, where = 0, Ekman pumping becomes

z 0) 7 ((0))2 13 e-t/2 f er/2( 0))2dT, (3.33)40 40 J(

which is negative for all time. Thus, Ekman suction on the anticyclonic axis strength-

ens and Ekman pumping on the cyclonic axis weakens at 0(e). The first term in the

nonlinear correction, (3.33), is Hart's (2000) nonlinear Ekman pumping, which is

nonzero at initial time. As shown in figure 3-2, the second term in (3.33) provides

a significant contribution to the asymmetry in Ekman pumping and suction due to

feedback with the interior vorticity field. This time-dependent contribution is neces-



sary for an accurate calculation of the 0(e) Ekman pumping and suction.

The asymmetry in Ekman pumping, w,, and Ekman suction, ws, is measured by

the ratio w,/w,. Consider the time evolution of Ekman pumping and suction for

cyclonic and anticyclonic vorticity, where (c(t = 0) = -(,(t = 0) and w,(t = 0) =

-ws(t = 0), for vertical relative vorticity of initial magnitude |((t = 0)1. On the

cyclonic and anticyclonic axis of the flow, the ratio of Ekman pumping to Ekman

suction evolves as

wL 1 - eF 2 (t)
ws = +F() where (3.34)wS 1+ eF2 (t)')

13 6
F2(t) = - -(t = 0)1(1 - -et/2)20 13

At initial time, F 2(t = 0) = (7/20)1((t = 0)1, but in the limit t -+ oc, F 2 -

(13/20)1((t = 0)1. Within an inertial period, lateral Ekman advection of momentum

leads to asymmetry in Ekman pumping and suction. With time, this asymmetry

increases by advection of momentum in the Ekman layer and the interior.

Figure 3-3 summarizes the roles of advection of momentum in the Ekman layer

and the interior domain in setting the asymmetry in Ekman pumping and suction

and the asymmetric decay of cyclonic and anticyclonic vorticity. The temporal and

spatial structure of Ekman pumping is further examined in section 3.5, in which the

nonlinear correction to homogeneous spindown over a flat bottom is contrasted with

the nonlinear correction to stratified spindown over a sloping bottom.



Figure 3-3: (a) Cyclone. A geostrophic flow, Ui, induces an Ekman flow, V(0),
that is directed laterally toward the cyclonic axis. Ekman advection of momentum
contributes to an Ekman flow, Ve , that is directed laterally outward. This nonlin-
ear correction weakens Ekman pumping, Wi, from its zeroth-order approximation.
Ekman pumping drives an interior lateral circulation, V, that spins down the

geostrophic flow. This secondary circulation also advects lower momentum fluid
outward, which causes the cyclone to spindown faster.

(b) Anticyclone. A geostrophic flow, Uj, induces an Ekman flow, Ve(), that is
directed laterally outwards from the anticyclonic axis. Ekman advection of momen-
tum contributes to an Ekman flow, 1), that is also directed laterally outward.
This nonlinear correction strengthens Ekman suction, Wi, from its zeroth-order
approximation. Ekman suction drives an interior lateral circulation, Vi, that spins
down the geostrophic flow. This secondary circulation also advects higher momentum
fluid inward, which causes the anticyclone to spindown slower.
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3.4 Nonlinear stratified spindown on a flat bottom

As discussed in Chapter 2, stratification modifies linear spindown over a flat, insulated

bottom in two ways. First, a thermal boundary layer grows adjacent to the bottom,

weakening the stratification in time. The laterally uniform buoyancy anomaly in this

layer does not modify Ekman pumping and suction. Second, the secondary circulation

driven by Ekman pumping and suction vertically advects the density field and tilts

the isopycnals in the interior. By thermal wind balance, the geostrophic flow develops

vertical shear during spindown. For increasing Ekman number or Rossby number,

coupling between the frictionally driven secondary circulation and the buoyancy field

modifies Ekman pumping and suction. Appendix A.1 summarizes the corrections to

O(e) for an initially barotropic, geostrophic flow with sinusoidal variations. With

stratification, the main differences from nonlinear homogeneous spindown are de-

scribed as follows.

For increasing Ekman number, vertical advection of the laterally uniform buoy-

ancy anomaly in the thermal boundary layer causes Ekman pumping and suction

to strengthen at O(o- 1/2 E 1/4 ). Ekman pumping acting on this buoyancy anomaly

further weakens the stratification, whereas Ekman suction tends to increase it. The

induced horizontal pressure gradient causes slower decay of the geostrophic flow over-

lying the Ekman layer. This horizontal pressure gradient leads to additional Ekman

transport towards the cyclonic axis and away from the anticyclonic axis. Thus, both

Ekman pumping and suction strengthen from the leading order approximation. Con-

sequently, the stronger interior secondary circulation spins down both interior cyclonic

and anticyclonic vorticity faster. However, the total geostrophic flow overlying the

Ekman layer spins down slower than in the leading order approximation. When

6 < 0. 1/2E1/4 is assumed, as in Chapter 2, this correction to Ekman pumping and

suction is larger than O(c).

For increasing Rossby number, buoyancy effects modify asymmetry in Ekman

pumping and suction as well as spindown of cyclonic and anticyclonic vorticity. As



in homogeneous spindown, Ekman advection of momentum at O(E) weakens Ekman

pumping and strengthens Ekman suction. However, for a geostrophic flow with si-

nusoidal shear, Appendix A.1 shows that this asymmetry is modified by three other

nonlinear corrections. Lateral Ekman advection of the interior buoyancy anomaly

balances diffusion and leads to a buoyancy flux into the thicker thermal boundary

layer. This process modifies the lateral pressure gradient and enhances the asymme-

try in Ekman pumping and suction. In contrast, lateral Ekman advection and vertical

advection of the buoyancy anomaly associated with the O(r- 1/ 2E 1/ 4) correction to

Ekman pumping reduce the asymmetry in Ekman pumping and suction. Numerical

simulations are later presented to examine whether the net effect of these buoyancy

effects is to enhance or reduce the asymmetry in Ekman pumping and suction.

In the interior, cyclonic vorticity decays faster than anticyclonic vorticity for in-

creasing Rossby number. As in homogeneous spindown, lateral advection of momen-

tum in the interior contributes to this asymmetry. However, since the geostrophic flow

is vertically sheared during stratified spindown, vertical advection of momentum in

the interior also contributes to this asymmetry. In regions of cyclonic vorticity, verti-

cal advection brings lower momentum fluid upward and tends to enhance spindown of

the cyclone. In contrast, in regions of anticyclonic vorticity, vertical advection brings

higher momentum fluid downward and tends to slow spindown of the anticyclone.

The interior vertical relative vorticity equation, nondimensionalized by the scalings

for the interior flow in Chapter 2, is

0i+ eni -w (I = -(+ E(Z) + 'E .w ( (3.35)19t 09z By iBz

Lateral advection of momentum contributes to the lateral advection and stretching of

vertical relative vorticity. Vertical advection of momentum contributes to the vertical

advection of vertical relative vorticity and tilting of horizontal relative vorticity in

the x-direction. On the cyclonic or anticyclonic axis, the interior vertical vorticity



equation to 0(c) becomes

- - (1 + )- (3.36)at i9z az

Thus, during stratified spindown on a flat bottom, cyclones decay faster than anticy-

clones due to stretching and squashing of vertical relative vorticity as well as vertical

advection of vertical relative vorticity. This asymmetry in spindown is further exam-

ined with numerical simulations in section 3.6.

3.5 Nonlinear stratified spindown on a sloping bot-

tom

On a stratified sloping bottom, the Ekman flow couples with the buoyancy field.

Chapter 2 examines how this coupling suppresses Ekman pumping and suction as

well as the spindown of the geostrophic flow in the linear regime. In this section, the

linear analysis is extended into the nonlinear regime. During both homogeneous and

stratified spindown over a flat bottom, advection of momentum plays a dominant role

in the asymmetry in Ekman pumping and suction and the asymmetrical spindown of

cyclonic and anticyclonic vorticity. In contrast, over a stratified sloping bottom, non-

linear advection of buoyancy can dominate over advection of momentum in modifying

the vertical velocity and vorticity fields. First, a scaling for the nonlinear correction

to the flow field due to nonlinear advection of buoyancy is presented. Then, for an

initially barotropic flow with sinusoidal shear, the time-dependent evolution of this

nonlinear correction is solved from a closed set of equations.

The analytical model is formulated following section 2.5.1. The Boussinesq equa-

tions are rotated at an angle 6 with respect to the horizontal and the small angle

approximation is applied. The vertical domain is assumed semi-infinite, where the

Prandtl depth, Hp, is assumed less than the domain height, H. As in Chapter 2,

the flow is decomposed into an interior domain over a height Hp, a thermal bound-



ary layer of depth 6 T, and an Ekman layer of depth 6e, where the subscripts i, T,

and e, denote the respective domains. At the boundary, the no-slip, no normal flow,

and no normal buoyancy flux conditions are applied. Contributions to the nonlinear

dynamics from the adjustment of the background stratification are neglected under

the assumption Minitiat > MThorpe. The Prandtl number is assumed order one, the

slope Burger number is assumed small, where S < (27ro)-1/2, and the flow is assumed

hydrostatic given a small aspect ratio, F H /L. The flow is examined subject to

/- Tspindown/Tshutdown = US 2 E-1/2 < 1, where 3 is later assumed 0(1), in which

case Ekman advection of buoyancy modifies the leading order Ekman flow.

The scaling for the nonlinear correction to the flow by advection of buoyancy is de-

rived following section 2.2. By the insulating boundary condition, a thermal boundary

layer develops, in which isopycnal tilting modifies the cross-isobath pressure gradient

and the Ekman flow. In the linear theory, cross-isobath Ekman advection of the back-

ground stratification balances vertical diffusion of buoyancy. At zeroth-order, an Ek-

man buoyancy flux, which scales as kAbe)/6e ~ N2 0U6e, into the thermal boundary

layer results in a buoyancy anomaly of magnitude AbO ~ Abe0 )6r/,e. This buoyancy

anomaly balances a geostrophic along-isobath flow that scales as AuZJ) ~ Ab2O)/f,

which equals 31/ 2U on the spindown timescale. This flow opposes the interior along-

isobath flow, reducing the geostrophic flow near the bottom. Hence, buoyancy shut-

down suppresses the Ekman transport at order /1/2, and Ekman pumping and suction

are symmetrically weakened.

As illustrated in figure 3-4, this symmetry in Ekman pumping and suction is bro-

ken by two forms of nonlinear advection of buoyancy. First, cross-isobath Ekman

advection of the zeroth-order thermal boundary layer buoyancy anomaly produces

an additional Ekman buoyancy flux. This higher-order Ekman buoyancy flux yields

an additional buoyancy anomaly in the thermal boundary layer. The Ekman flow

advects buoyancy toward (away from) the cyclonic (anticyclonic) axis of the interior

flow. Thus, the additional buoyancy anomaly causes greater (less) weakening of the

geostrophic flow in cyclonic (anticyclonic) regions than in the linear case. Second, ver-
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tical advection of the zeroth-order buoyancy anomaly in the thermal boundary layer

enhances the effect of nonlinear Ekman advection of buoyancy at the same order. In

cyclonic regions, Ekman pumping strengthens the total buoyancy anomaly, and in

anticyclonic regions, Ekman suction weakens the total buoyancy anomaly. Therefore,

nonlinear advection of buoyancy weakens Ekman pumping to a greater extent than

Ekman suction, and this process is defined as nonlinear buoyancy shutdown.

From the above scaling argument, the correction to the flow by nonlinear buoy-

ancy shutdown occurs at order o 2 SQST/) 2 E. On the spindown timescale, the scaling

for the nonlinear correction to the flow by nonlinear buoyancy shutdown is equal to

1/201/2E-1/4E, (3.37)

where 6 T/ 6
e a- 1 2 E 1 /4 . When buoyancy shutdown enters into the leading order

dynamics, i.e. 3 = 0(1), and the Prandtl number is order one, this scaling shows that

nonlinear advection of buoyancy can dominate over 0(c) momentum advection. This

nonlinear correction enters into the leading order dynamics when E = -1/20-1/2E1/4.

Nonlinear buoyancy shutdown can lead to asymmetry in the spindown of cyclonic

and anticyclonic vorticity in the interior domain. During homogeneous spindown over

a flat bottom, O(E) stretching and squashing of vertical relative vorticity through

lateral advection of momentum causes cyclonic vorticity to decay faster than an-

ticyclonic vorticity. With stratification, O(E) vertical advection of vertical relative

vorticity contributes to this asymmetry. When o > El/2 , nonlinear buoyancy shut-

down can lead to an asymmetry in Ekman pumping and suction that is greater than

an asymmetry by 0(c) advection of momentum. Then, an asymmetry in cyclonic and

anticyclonic vorticity can arise by stretching and squashing of planetary vorticity at

0(o.1/20 1/2E- 1/ 4e). Since Ekman suction is stronger than Ekman pumping, anticy-

clonic vorticity can decay faster than cyclonic vorticity. This asymmetric decay in

vertical relative vorticity contrasts with homogeneous and stratified spindown over

a flat bottom, in which cyclonic vorticity decays faster than anticyclonic vorticity
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Figure 3-4: (a) Linear buoyancy shutdown. Consider the linear adjustment of an
initially barotropic jet, Uj, that is laterally symmetric about y0 . Convergence in
the cross-isobath Ekman flow, Ve, induces Ekman pumping, W, and suction. Since
the jet is laterally symmetric, Ekman pumping on the cyclonic axis, yc, is equal to
Ekman suction on the anticyclonic axis, ya. Ekman advection of the stratification
leads to a positive buoyancy anomaly, enclosed within the grey dashed line, within
the thermal boundary layer. This positive buoyancy anomaly tilts the isopycnals,
indicated by the grey solid line, and weakens the Ekman flow. Thus, the jet spins
down with a symmetric decay in cyclonic and anticyclonic vorticity.

(b) Nonlinear buoyancy shutdown. Consider the nonlinear adjustment of the
jet, Ui, in (a) but at higher Rossby number due to stronger initial flow. Two forms of
nonlinear advection of buoyancy strengthen the positive buoyancy anomaly, enclosed
within the grey dashed line, around the cyclonic axis, yc, and weaken the anomaly
around the anticyclonic axis, ya. First, cross-isobath Ekman flow, Ve, advects the
buoyancy anomaly from (a) downslope. Second, in the thermal boundary layer,
Ekman pumping advects the buoyancy anomaly upward and Ekman suction advects
the anomaly downward. The isopycnals, indicated by the grey solid line, tilt more
steeply around the cyclonic axis. The resulting buoyancy anomalies enhance the
weakening of the Ekman flow around the cyclonic axis but reduce the weakening
around the anticyclonic axis. Thus, by nonlinear buoyancy shutdown, Ekman pump-
ing is suppressed to a greater extent than Ekman suction. Asymmetry in the interior
relative vorticity field arises from vertical advection of vertical relative vorticity or
stretching and squashing of absolute vertical vorticity. At O(e), vertical advection of
vertical relative vorticity and stretching and squashing of vertical relative vorticity
causes cyclonic vorticity, at yc, to decay faster than anticyclonic vorticity, at ya. If
the nonlinear modification to Ekman pumping and suction at O(o.1/ 2 31/ 2E- 1/ 4 e) is

greater than O(E), the stretching and squashing of planetary vorticity induced by
the modified interior secondary circulation dominates and anticyclonic vorticity, at

Ya, spins down faster than cyclonic vorticity, yc.
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in the interior. Figure 3-4 illustrates the coupling between the Ekman flow and the

stratification during linear and nonlinear buoyancy shutdown.

In order to perform a perturbation expansion, the scaling (3.37) for the nonlinear

correction is assumed less than 0(1). Therefore, the Rossby number is constrained to

E < a- 1/2 E1/ 4 and, from these assumptions, oS > E 1/ 2 . Appendix A.2 summarizes

the hierarchy of nonlinear corrections that occur due to coupling between the Ekman

flow and the buoyancy field and are greater than O(c). From these assumptions, the

dominant nonlinear correction to spindown over a stratified sloping bottom occurs by

nonlinear buoyancy shutdown rather than advection of momentum. Next, equations

are formulated to examine the impact of nonlinear buoyancy shutdown on Ekman

pumping and its subsequent feedback into the interior along-isobath flow.

The equations of motion are nondimensionalized by the set of scalings presented

in section 2.5.1, where the tilde ( ~ ) notation is removed below. The equations are

examined to 0(EE-1/40 1 / 2), where the factor of 131/2 is already accounted for in the

scaling of the thermal boundary layer variables. Time is nondimensionalized by the

spindown timescale, where t' = t/Tgspn. The vertical coordinate is nondimension-

alized in the interior as z' = z/Hp, in the thermal boundary layer as (' = z/ 6 T, and

in the Ekman layer as 77' = z/e, where 6 T -o-1/ 2E 114HP, 6 e = E1 /2Hp, and primes

denote nondimensional quantities. With the primes dropped, the leading order initial

condition in the rotated coordinate system becomes

u(t = 0,y) = cosy. (3.38)

The Ekman flow is set-up within an inertial period and is treated as an initial con-

dition on the spindown timescale. The interior buoyancy anomaly and all variables

in the thermal boundary layer are initially zero. The Ekman layer equations to
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In the Ekman layer, advection of momentum is smaller than nonlinear advection of

buoyancy by O(a- 1/2E1 /4). Also, vertical variations in the thermal boundary layer

quantities are assumed small because the Ekman layer is thinner than the thermal

boundary layer by O( 1/2E1/4).

Next, the thermal boundary layer equations to O(eE- 1/4ai/2) are

OUT - + -E1/40/2W (z = 0) OUT

at og

ObT + eE-1/4 /2Wi(z = 0) bT

at a
&VT + WT

+
By a(

2 og2'
= -bT,

1. 2bT

2 0 2

=0.

In the thermal boundary layer, the interior vertical velocity is approximated by its

value at the bottom due to small vertical variations over the thermal boundary layer

thickness. By geostrophy, (3.44), the along-isobath flow satisfies the buoyancy equa-

tion, (3.45). For o- # 1, a secondary circulation exists to maintain geostrophic balance.

The cross-isobath flow is weaker than the cross-isobath Ekman flow by order v E

and the thermal boundary layer flow normal to the slope is weaker than the normal

flow in the interior and the Ekman layer by order /7oE /4 .
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O(eE-1/4Ui/2 ) are

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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The equations in the interior domain to O(EE-1/4Ui/2) are

a -vi
at

tti

0

at
vi + awi

ay az

=0,

ay'
a= + bi,az

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)= 0.

The interior secondary circulation, i, is defined as vi - - 0 and wi = , where

a2

ay2 + = 0az2 (3.52)

is forced by Ekman pumping and suction at the boundary.

The equations are solved subject to the following boundary conditions, which are

valid to O(eE~1/4ai/2)

ui(z = 0) + # 1/ 2 u(( = 0) + ue (T = 0)

Ve (r/ = 0)

w(z - 0) + we(7 = 0)
abT

a( =0)+ (ab 0)
89q

i - Ui (t = 0, y)

vi, wi, bi -+ 0

UT, VT, WT, bT 0

e, e, we, be -4 0

= 0,

= 0,

= 0,

= 0,

as z - 00,

as z -+oo,

as ( co,

as j- oo.

Next, the nonlinear correction to the flow is solved by expanding the variables as

(u, b, p) - (u(0), b(0), p(0 )) + EE- 1/ 4 i/ 2 (U(I), b(), p(1)). (3.61)
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(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)



The zeroth-order solution is decomposed as

-~ (()(t)ez3, Uif)(t, z), U" 4(t, )) cos(y), (3.62)

where p(o) measures the strength of the interior secondary circulation, which exponen-

tially decays over the Prandtl depth. The zeroth-order solution subject to buoyancy

shutdown is referred to in Chapter 2 and the O(cE- 1/4 i1 / 2) solution is presented here.

The general Ekman layer solution to O(eE- 1/4 i/ 2) is

= - (n (Z = 0) + #1/2 n)(( = 0))e~" cosTI,

= (n " (z = 0) +1/ = 0))e-" sin 7r,

(u()(z = 0) + 01/2n)(' = 0))e~4(sin 7 + cos 7),

= -(u 0 (z = 0) + 01/ 2 )( = 0))e-4 cos I,

_ _-( 1 )(z = 0) + #1/21)(( = 0) + 0(0)U 4)(= 0) sin(2y))e- cosr,

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

for n = 0, 1. The Ekman transport is defined as Me = f0 Ve(t, y, rq)dr7 = E" e

and

Me(n) (n)(Z = 0) + 01/2Ujn)(( = 0)).
2 z (3.68)

By the no normal flow boundary condition, Ekman pumping to O(cE- 1/4 i/ 2) is given

by wi(z = 0) = E" = 0) and

w (Z = 0) = - ( )(Z = 0) + #1/23n)(. = 0)). (3.69)

The Ekman pumping solution is transformed into a boundary condition on $3,

(z = 0)at
1 8

2 (z
2 Oz

= 0) -- 01/20 ( = 0)).at
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Next, the Ekman buoyancy solutions, (3.66, 3.67), as well as the geostrophic relation-

ship, (3.44), are used to transform the no normal buoyancy flux boundary condition,

(3.56), into a boundary condition on UT,

T = 0) = U )(z = 0) + T1/2un)(( = 0). (3.71)
8(

The n = 1 solution structure is decomposed as

(@41), ,4u, ug) = (p(l)(t)e-22 sin(2y), Ujl)(t)e-2z sin(2y), U( 1 (t, () sin(2y)). (3.72)

The lateral length scale of the second harmonic is half of the lowest-order mode.

Subsequently, by (3.52), the interior secondary circulation is confined closer to the

boundary over half of the Prandtl depth. The time evolution of the nonlinear correc-

tion is determined by the following closed set of partial differential equations:

dU(1
2- 2P 1  = 0, (3.73)

dt

TU 18U _ o(0)_ (3.74)
at 2 2 2 a(

subject to the boundary conditions

+ ((1 + -#1/ 2  r (T 0)) 0, (3.75)
at 2 at

BT_ ( 0) - UM- 1/2U (( = 0) = (0)U((= 0), (3.76)

U as - 0, (3.77)

and the variables are initially zero. This set of equations is solved numerically for

0 = 1 and o = 1 by the Crank-Nicolson scheme. The details of the numerical calcula-

tion are provided in Appendix B.2 and B.3. The resulting correction to the flow from

nonlinear buoyancy shutdown is presented and compared with the nonlinear correc-

tion from momentum advection during homogeneous spindown on a flat bottom.
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In both homogeneous spindown on a flat bottom and stratified spindown over a

sloping bottom, the nonlinear correction to the flow leads to asymmetry in Ekman

pumping, on the cyclonic axis, and Ekman suction, on the anticyclonic axis. Fig-

ure 3-5 compares the nonlinear corrections, which are calculated from 0) (z = 0) =

2tpm1 cos(2y) for nonlinear buoyancy shutdown and (3.33) for nonlinear homogeneous

spindown of the sinusoidally sheared flow. For each case, the nonlinear correction to

Ekman pumping and suction has the same sign and magnitude on the anticyclonic

axis, Ya = -7r/2+2m7r, and the cyclonic axis, yc = r/2+2mr, where m is an integer.

During homogeneous spindown over a flat bottom, the nonlinear correction is negative

and includes contributions from Ekman and interior momentum advection. Initially,

this correction is nonzero because the Ekman flow is set-up within an inertial pe-

riod. Since the correction is negative, Ekman pumping is weakened at yc and Ekman

suction is strengthened at Ya. During stratified spindown over a sloping bottom, the

nonlinear correction becomes negative by nonlinear buoyancy shutdown and Ekman

pumping is weaker than Ekman suction. In contrast to the homogeneous case, this

correction is initially zero and grows to its maximum negative value at t = 0.5. Then,

the correction decays while reversing sign at t = 4.7, reaches its maximum positive

value at t = 8.3, and then decays to zero. The temporal evolution of this correction

is explained by the forcing from the leading order flow and diffusion as this forcing

decays.

Forcing by the leading order Ekman flow weakens in time due to linear buoyancy

shutdown and spindown. Then, the nonlinear Ekman buoyancy flux to the thermal

boundary layer and the vertical advection of the buoyancy anomalies weaken as well.

For example, the forcing term on the right side of (3.76) reaches its maximum value

at t = 0.3. As the forcing terms decay, the higher-order buoyancy anomaly in the

thermal boundary layer diffuses away from the boundary and reaches its maximum

value at t = 2.9. The corresponding along-isobath flow, U(, is negative, enhancing

(weakening) the vertical shear in the geostrophic flow about the cyclonic (anticy-

clonic) axis. The higher-order interior along-isobath flow, UP, is positive, opposing
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Figure 3-5: For homogeneous spindown on a flat bottom and stratified spindown over

a sloping bottom, the analytical nonlinear correction to Ekman pumping and suction

on the cyclonic and anticyclonic axis, respectively, is examined in time for an initially
barotropic flow with sinusoidal lateral shear. The nonlinear correction is compared

between homogeneous spindown (solid line) and stratified spindown over a sloping

boundary (dashed line), where 3 = 1 and o = 1. The axis w)(z = 0) = 0 is also

indicated (dotted line). Note that the full contribution of these nonlinear corrections
is multiplied by e for homogeneous spindown and eE-1 4u1 /2 for stratified spindown

on a sloping bottom.
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the geostrophic flow in the thermal boundary layer. The higher-order Ekman flow,

proportional to <p(), is dependent on the sum of these components to the geostrophic

flow, U + -/2U 0). So, the higher-order Ekman flow decays as diffusion

weakens the negative U(1) as the positive U1) grows by the interior secondary cir-

culation. When the higher-order correction to Ekman pumping and suction reverses

sign at t = 4.7, the correction to the interior along-isobath flow reaches it maximum

value. The reversal in the interior secondary circulation causes U M to decay in time.

For long times, the nonlinear corrections decay to zero, leading to the spindown of

the along-isobath flow. The nonlinear correction to Ekman pumping is now used to

examine the nonlinear correction to the vertical relative vorticity field.

The vertical relative vorticity field develops asymmetry by both momentum advec-

tion and nonlinear advection of buoyancy. However, the asymmetry in cyclonic and

anticyclonic vorticity evolves differently for each of these mechanisms. The nonlinear

correction to the interior vertical relative vorticity on the cyclonic and anticyclonic

axis is shown in figure 3-6. During nonlinear homogeneous spindown over a flat bot-

tom, the nonlinear correction (1) at yc and ya from (3.30) is negative by 0(e) momen-

tum advection. Stretching and squashing of vertical relative vorticity causes cyclonic

vorticity to spindown faster than anticyclonic vorticity. Similarly, 0(o.1/2
1 /2E- 1/4e)

buoyancy advection can lead to asymmetry in vertical relative vorticity during strat-

ified spindown over a sloping bottom.

Nonlinear buoyancy shutdown modifies the vertical relative vorticity field in the

interior and thermal boundary layer. The geostrophic components to the vertical rel-

ative vorticity field are (j = -2U 1 ) (t)e- 2 z cos(2y) and (( = -2U(')(t, () cos(2y).

The total nonlinear correction to vertical relative vorticity in the thermal boundary

layer is measured by ((1(t, z = 0) + #i/2(?)(t, ( 0) evaluated on the cyclonic or

anticyclonic axis. Figure 3-6 shows the analytical nonlinear corrections to the ver-

tical relative vorticity field in the interior and the thermal boundary layer, where

= 1, ou= 1 and the nonlinear correction is greater than O(c) by E- 1/4. In the

thermal boundary layer, nonlinear buoyancy shutdown weakens the geostrophic flow
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Figure 3-6: The analytical nonlinear correction to vertical relative vorticity on the

cyclonic and anticyclonic axis is examined in time for an initially barotropic flow
with sinusoidal lateral shear. During homogeneous spindown on a flat bottom, the
nonlinear correction to the interior vertical relative vorticity (solid line), ( ,1) is neg-
ative. During stratified spindown on a sloping bottom, where # = 1 and - = 1, the

nonlinear correction to the interior vertical relative vorticity evaluated at the bound-
ary (dot-dashed line), ( M(z = 0), is positive. The vertical relative vorticity in the

thermal boundary layer (dashed line) is measured by #1/2(1 (1 = 0) + (P) (z = 0).
Note that the full contribution of these nonlinear corrections is multiplied by E for
homogeneous spindown and eE-1/ 4 for stratified spindown on a sloping bottom. The
axis (1) = 0 is also indicated (dotted line).

to a greater extent around the cyclonic axis than the anticyclonic axis. This weaken-

ing causes the cyclonic vorticity to decay faster than the anticyclonic vorticity in the

thermal boundary layer, which is demonstrated by a negative nonlinear correction.

This correction is proportional to Ekman pumping and suction.

In the interior, if the correction to Ekman pumping and suction by nonlinear

buoyancy shutdown at O(o.1/2/ 1/ 2E- 1/ 4e) scales larger than O(E), then stretching and

squashing of planetary vorticity controls the evolution of the vertical relative vortic-

ity field. Over a stratified flat bottom, stretching and squashing of vertical relative

vorticity as well as vertical advection of vertical relative vorticity causes cyclonic vor-

ticity to decay faster than anticyclonic vorticity at O(E). When / = 1 and o- = 1,
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the nonlinear correction by nonlinear buoyancy shutdown scales greater than O(C).

Then, since Ekman pumping is suppressed to an even greater extent than Ekman

suction, cyclonic vorticity decays slower than anticyclonic vorticity in the interior.

The interior vertical vorticity is measured by (1) (z = 0) evaluated on the cyclonic or

anticyclonic axis. This correction is positive and reaches a maximum at t = 4.7, at

which point the interior secondary circulation reverses directions and spins down the

nonlinear correction to the interior geostrophic flow.

In the next section, numerical simulations are run to address two questions. First,

to what extent does the theory of nonlinear buoyancy shutdown explain the asym-

metry in Ekman pumping and suction? Second, does the asymmetry in cyclonic and

anticyclonic vorticity evolve as predicted by nonlinear buoyancy shutdown when mo-

mentum advection is also present? During stratified spindown over a sloping bottom,

nonlinear buoyancy shutdown effects are shown as necessary to interpret the asym-

metry in Ekman pumping and suction as well as the evolution of the vertical relative

vorticity field.

3.6 Numerical experiments

Numerical simulations are run to compare homogeneous spindown over a flat bottom,

stratified spindown over a flat bottom, and stratified spindown over a sloping bot-

tom. These simulations are also used to test the analytical solutions for the first and

last of these cases. The numerical simulations are run for increasing Rossby number

within and outside the parameter range for which the analytical theory is valid. For

stratified spindown over a slope, the numerical simulations are used to show that the

asymmetry in Ekman pumping and suction cannot be explained by Ekman advection

of momentum alone. The extent to which nonlinear buoyancy shutdown explains the

asymmetry in Ekman pumping and suction and asymmetry in cyclonic and anticy-

clonic vorticity is investigated.

The Regional Ocean Modeling System (ROMS) is the numerical model used for
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the simulations. The model configuration for the stratified cases is detailed in section

2.5.2. For homogeneous spindown, N 2 = 0, over a flat bottom, 0 = 0, the domain

height is H = 266 m, so that the spindown time is the same as in the stratified sim-

ulations. For this case, the vertical domain has 60 grid points, with a grid resolution

varying from Az =1 m to Az = 6 m. In order to compare with the analytical theory,

the mixing coefficients are set to v, K = 2.27 x 10- m2 s-, and uniform rotation is

specified with f = 10' s-, such that the Ekman layer thickness is 6c = 6.7 m.

The initial parameters are applied following section 2.5.2, where the flow field is an

idealized representation of flows over the continental shelf or slope. The initial along-

isobath flow is given by u(t = 0, y) = U cos(y/L), where L = 10.6 km is fixed and

U increases for increasing Rossby number. For the stratified cases, the initial strat-

ification is constant with N2 = 1.6 x 10- S2 and the Prandtl depth is Hp = 266

m. The nondimensional parameters are E = 6.4 x 104, F = 0.03, and o = 1. Over

a sloping bottom, the slope angle is set to 0 = 0.01 where # = 1. As described in

section 2.5.2, in order to remove the effects of the laterally uniform flow that arises

from the adjustment of the stratification, the model output from simulations with no

initial flow is subtracted from the model output with an initial flow. This decompo-

sition assumes that the coupling between the laterally uniform and laterally sheared

flow is a higher order effect given that Minitial/MThorpe > 1. In order to focus on the

subinertial response of the system, the model output is further processed by filtering

the secondary circulation by a Butterworth low-pass filter with a cut-off frequency of

0.12f.

In this section, the time-dependent evolution of stratified spindown over a flat

and sloping bottom for c = 0.4 is presented to demonstrate the different roles of

momentum advection and buoyancy advection in the dynamics. Then, the asymme-

try in Ekman pumping and suction is examined for increasing Rossby number and

compared with the analytical solutions. Finally, the asymmetry in cyclonic and anti-

cyclonic vorticity is also compared for increasing Rossby number.

A comparison between nonlinear stratified spindown over a flat bottom and slop-
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Figure 3-7: # 0, 0 = 0. The sections from the c = 0.4 numerical strati-
fied spindown simulation are shown for t/Tindown = 1.4 (a, b, c), 2.8 (d, e, f), and
4.2 (g, h, i). The flow, u/U, (a, d, g) is contoured every 0.2 units, the buoyancy
anomaly, b/(N 2 Hp), (b, e, h) is contoured every 0.08 units, and the secondary cir-
culation, @P/Minitiai, (c, f, i) is contoured every 0.1 units.
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Figure 3-8: /3 = 1, 0 = 0.01. The sections from the c = 0.4 numerical stratified
spindown simulation are shown in the rotated coordinate frame for t/T dos =

1.4 (a, b, c), 2.8 (d, e, f), and 4.2 (g, h, i). The along-isobath flow, u/U, (a, d, g) is
contoured every 0.2 units, the buoyancy anomaly, b/(N 2Hp), (b, e, h) is contoured
every 0.08 units, and the secondary circulation, /Mintiai, (c, f, i) is contoured every
0.1 units.
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ing bottom for U = 0.4 m s1, = 0.4, shows that nonlinear buoyancy shutdown

plays a significant role in modifying the flow and buoyancy field. Over a flat bottom,

figure 3-7, momentum advection modifies stratified spindown in several ways. First,

interior momentum advection causes cyclonic vorticity to decay faster than anticy-

clonic vorticity. Second, momentum advection causes Ekman pumping to decay faster

than Ekman suction, as demonstrated by the secondary circulation streamlines, which

spread apart on the cyclonic axis and squeeze together on the anticyclonic axis near

the bottom. The buoyancy anomaly is modified by two forms of buoyancy advection.

Despite weaker Ekman pumping than Ekman suction, the interior buoyancy anoma-

lies are stronger on the cyclonic axis than the anticyclonic axis due to nonlinear

advection of buoyancy at 0(e). Near the bottom, vertical advection of the later-

ally uniform buoyancy field in the thermal boundary layer leads to an O(o-1/E'/4)

correction to the buoyancy field, positive on the cyclonic axis and negative on the

anticyclonic axis. This correction explains why the interior buoyancy anomaly does

not attain its maximum negative value on the cyclonic axis near the bottom. New

features emerge during nonlinear stratified spindown over a sloping bottom.

Over a sloping bottom, nonlinear advection of buoyancy modifies the spindown

dynamics. Figure 3-8 shows the time-evolution of the flow for 6 = 0.01, 3 = 1

and U = 0.4 m s-1, E = 0.4. In contrast to the flat bottom case, the buoyancy

field shows significant variations within the thermal boundary layer, which grows

in thickness from or/HP = 0.2 at t = 1.4 to 6T/HP = 0.3 at t = 4.2 in the sec-

tions shown. For small Rossby numbers, these buoyancy anomalies are maximum

where the interior geostrophic flow is maximum due to linear Ekman advection of

buoyancy. For large Rossby numbers, e.g. E = 0.4 in this case, nonlinear advec-

tion of buoyancy causes these buoyancy anomalies to converge on the cyclonic axis.

The isopycnals (not shown) indicate the formation of a density front, a maximum

in the cross-isobath density gradient, on the cyclonic axis. Consequently, nonlinear

buoyancy shutdown influences the along-isobath flow within the thermal boundary

layer. The convergence in thermal boundary layer buoyancy anomalies is correlated
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with a reduction in the geostrophic flow, and the cyclonic vorticity, on the cyclonic

axis. Then, Ekman pumping is weaker than Ekman suction because cyclonic vor-

ticity is weaker than anticyclonic vorticity. The secondary circulation sections show

that the streamlines are more closely spaced on the anticyclonic axis than the cy-

clonic axis, which is consistent with both nonlinear buoyancy shutdown and Ekman

advection of momentum. The correction from nonlinear buoyancy shutdown scales

as O(o.1/24 1/2E- 1/4e) ~ 6.3 e and is expected to modify the secondary circulation

to a greater extent than momentum advection. In the interior, cyclonic vorticity

spins down slower than anticyclonic vorticity, which is consistent with weaker Ekman

pumping than Ekman suction. This behavior shows that nonlinear buoyancy shut-

down causes Ekman pumping to weaken to a greater extent than Ekman suction and

dominates over O(e) momentum advection in controlling the asymmetry in cyclonic

and anticyclonic vorticity. Next, the role of momentum advection is compared to

buoyancy advection in setting the asymmetry in Ekman pumping and suction.

The asymmetry in Ekman pumping and suction is examined for increasing Rossby

number during homogeneous and stratified spindown. The numerical model is com-

pared with the analytical theory to evaluate the relative contributions of momentum

advection and nonlinear advection of buoyancy to Ekman pumping and suction. The

temporal decay in Ekman pumping at ye and Ekman suction at ya from the analytical

theory and the numerical simulations is shown in figure 3-9 for homogeneous spin-

down over a flat bottom and figure 3-10 for stratified spindown over a sloping bottom.

In the analytical model, Ekman pumping is measured as wi(z = 0). In the numerical

model, Ekman pumping and suction are measured by the vertical velocity evaluated

at z = 0.08, outside the base of the Ekman layer at z = 0.03. This height is chosen

from the average height of the maximum absolute vertical velocity on the cyclonic and

anticyclonic axes. During stratified spindown over a sloping bottom, Ekman pump-

ing and suction is influenced by both nonlinear buoyancy shutdown and momentum

advection. Despite the order Rossby number correction by momentum advection, the

modification to Ekman pumping and suction by nonlinear buoyancy shutdown shows
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Figure 3-9: For homogeneous spindown over a flat bottom, Ekman pumping (solid
line) on the cyclonic axis and Ekman suction (dashed line) on the anticyclonic axis
from the numerical simulations are compared with the analytical solutions for Ekman
pumping (+) and Ekman suction (o). The solutions are shown for e = 0.1, 0.3, 0.5
with increasing asymmetry in Ekman pumping and suction for increasing Rossby
number.

good initial agreement with the numerical simuluations. Although the analytical the-

ory for nonlinear buoyancy shutdown is strictly valid for e < .--1/20-1/2E1/4 = 0.16

given the model parameters, the correction is included to e = 0.5.

The numerical simulations show a different decay rate than the analytical solu-

tions. For homogeneous spindown over a flat bottom, this difference may arise due

to an imperfect implementation of the no-slip boundary condition in the numerical

simulation. The difference is also explained by the O(e2) correction providing a non-

negligible contribution at higher Rossby number. From Hart's formula (2000), the

O(e2) correction, without feedback with the 0(62) interior flow, is 15c/56 as large as

the O(E) correction, ranging from 0.02 for 6 = 0.1 to 0.13 for e = 0.5. This O(62)

correction tends to enhance both Ekman pumping and suction, which is consistent

with the discrepency between the numerical model and the analytical solution.

For stratified spindown over a sloping bottom, the different decay rates may be
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Figure 3-10: For stratified spindown over a sloping bottom, where # 1, Ekman
pumping (solid line) on the cyclonic axis and Ekman suction (dashed line) on the
anticyclonic axis from the numerical simulations are compared with the analytical
solution for Ekman pumping (+) and Ekman suction (o). The solutions are shown
for e = 0.1, 0.3, 0.5 with increasing asymmetry in Ekman pumping and suction for
increasing Rossby number.

explained by a number of different reasons, including an imperfect no-slip boundary

condition in the numerical simulation. At early time, t < 1, the correction from

nonlinear buoyancy shutdown captures the time evolution of Ekman pumping and

suction, although these quantities are systematically larger than the analytical calcu-

lation. This systematic error may be explained by the O(o.- 1/2E 1/ 4) correction from

vertical advection of the laterally uniform buoyancy anomaly in the thermal boundary

layer (see correction L.a in Appendix A.1). This correction causes Ekman pumping

and suction to increase from the 0(1) solution during stratified spindown on a flat

bottom. At later times, t > 1, the correction due to nonlinear buoyancy shutdown

underestimates the difference between Ekman pumping and suction. The breakdown

in the theory is in part due to the neglect of momentum advection. In the analytical

theory, vertical diffusion of the buoyancy anomalies weakens the nonlinear correction

to Ekman pumping and leads to its reversal in sign. In the numerical model, as the
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correction by nonlinear buoyancy shutdown decays, Ekman advection of momentum

appears to become important in sustaining the asymmetry in Ekman pumping and

suction throughout spindown. Despite the discrepency between the analytical solu-

tion and numerical model, the asymmetry in Ekman pumping and suction at early

times is consistent with the prediction by nonlinear buoyancy shutdown and indicates

that nonlinear advection of momentum plays a secondary role then.

In order to further illustrate the asymmetry in Ekman pumping and suction in

each case, the ratio of Ekman pumping, wp, on the cyclonic axis, yc = 7r/2, to Ekman

suction, w,, on the anticyclonic axis, ya = -7r/2, is shown in figure 3-11 at t = 1.4 for

increasing Rossby number. From the ratio of Ekman pumping to Ekman suction for

homogeneous spindown on a flat bottom, (3.34), F2(t = 1.4) = 0.50, and a MacLau-

rin series expansion in Rossby number yields the ratio |w,/w| 1 - e for e < 1.

For stratified spindown over a sloping bottom, where # = = 1, w1 /wp = -0.18

at t = 1.4, and a MacLaurin series expansion in Rossby number yields the ratio

|w,/ws| = 1 - 0.36 U1/ 2E-1/4 E or 1 - 2.3 E for E < 1. These measures show that

the asymmetry in Ekman pumping and suction becomes more pronounced by nonlin-

ear buoyancy shutdown than advection of momentum for increasing Rossby number.

Although the analytical calculations for the temporal evolution of Ekman pumping

and suction show deviations from the numerical simulation, the ratio |w,/w| shows

agreement. The ratio of Ekman pumping to Ekman suction from stratified spindown

on a flat bottom is weaker than the ratio from homogeneous spindown. This result

occurs because the O(o-u1/2E 1/4) correction (see correction L.a in Appendix A.1) in-

creases both Ekman pumping and suction, thereby reducing the ratio. The significant

point shown here is that the asymmetry in Ekman pumping and suction shown for

stratified spindown over a sloping bottom cannot be accounted for by advection of

momentum alone.

The difference in Ekman pumping on the cyclonic axis and Ekman suction on

the anticyclonic axis modifies the lateral structure of Ekman pumping. Figure 3-12

shows the spatial and time evolution of Ekman pumping for increasing Rossby num-
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Figure 3-11: The ratio of Ekman pumping, w,, on the cyclonic axis to Ekman suction,
ws, on the anticyclonic axis is examined at t/Tpindown = 1.4 for increasing Rossby
number. The symbols denote the numerical model solutions for homogeneous spin-

down on a flat bottom (A), stratified spindown on a flat bottom (+), and stratified

spindown on a sloping bottom (o). The analytical solutions, calculated from (3.34)
for homogeneous spindown on a flat bottom (dashed line) and section 3.5 for stratified
spindown on a sloping bottom (solid line), are also shown for comparison.
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ber for homogeneous spindown (HSD) on a flat bottom, stratified spindown (SSD)

on a flat bottom and on a sloping bottom. In each case considered, weaker Ekman

pumping at ye than Ekman suction at ya is balanced by Ekman pumping where the

initial geostrophic flow is an absolute maximum or minimum, i.e. at y/7 = m and

m = -1, 0, 1. As the asymmetry in Ekman pumping and suction increases for in-

creasing Rossby number, Ekman pumping off of the cyclonic axis increases. For SSD

on a flat bottom, the contours indicate that, for e = 0.1, Ekman pumping and suc-

tion is stronger than in HSD, which is consistent with the O(o.- 1/ 2 E'/ 4 ) correction.

In contrast to HSD, the asymmetry in Ekman pumping and suction becomes more

pronounced along with stronger Ekman pumping off of the cyclonic axis for increas-

ing Rossby number and time. These features may be explained by the nonlinear

corrections documented in Appendix A.1. For SSD on a flat bottom, Ekman advec-

tion of the interior buoyancy anomlies, correction 5.a, along with Ekman advection

of momentum, correction 4.a, tend to increase the asymmetry in Ekman pumping

and suction in time. These effects contribute to an increasing difference in Ekman

pumping on the cyclonic axis and Ekman suction on the anticyclonic axis, leading to

increasing Ekman pumping off of the cyclonic axis.

For SSD on a sloping bottom, the sections for Ekman pumping show notable

differences with the flat bottom case. For e = 0.1, Ekman pumping and suction are

weaker than in SSD on a flat bottom, due to linear buoyancy shutdown, and also

show evidence of asymmetry from nonlinear buoyancy shutdown. With increasing

Rossby number, the asymmetry becomes more pronounced. As in the flat bottom

case, Ekman pumping becomes larger off of the cyclonic axis than on the cyclonic

axis. Furthermore, the Ekman pumping adjacent to y = 0, on the downwelling side,

becomes larger than Ekman pumping near y/'r = -1, 1, on the upwelling side. This

feature could be due to nonlinear corrections 3.b and 4.b in Appendix A.2 because

they tend to increase Ekman pumping at y = 0 and decrease Ekman pumping at

y/x = -1, 1. Interestingly, for c = 0.5, an intense spike of Ekman pumping, with a

maximum value of 0.91, occurs at t = 1.71 and y/7 = 0.13. The only other time when
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Figure 3-12: Ekman pumping is shown for c = 0.1 (a, b, c), 0.3 (d, e, f), 0.5 (g, h, i),
during its spatial and temporal evolution, and contoured every 0.2 units. The sections
are from the numerical simulations of homogeneous spindown on a flat bottom (HSD)

(a, d, g), stratified spindown (SSD) on a flat bottom (b, e, h) as well as on a sloping
bottom (c, f, i).
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Figure 3-13: Cyclonic vorticity (solid line), at yc = 7r/2, and anticyclonic vorticity
(dashed line), at Ya = -7r/2, decay asymmetrically for e = 0.4. The profiles are from
the numerical simulations of homogeneous spindown (HSD) on a flat bottom in the
interior domain (a), stratified spindown (SSD) on a flat bottom in the interior at
z = 0.5 (b), and stratified spindown on a sloping bottom in the interior at z = 0.5
(c), and in the thermal boundary layer at z = 0.15 (d).
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the Ekman pumping reaches this value is at t = 0.09, during the initial formation

of the Ekman layer. In Chapter 2, buoyancy shutdown is shown to modify Ekman

pumping on the cyclonic axis and Ekman suction on the anticyclonic axis. Here,

nonlinear advection of buoyancy is shown to play a significant role in altering Ekman

pumping away from the cyclonic axis and to produce intense vertical flows out of the

boundary layer where the interior geostrophic flow is an initial maximum.

Next, the results from the asymmetry in Ekman pumping and suction are used

to interpret the evolution of the vertical relative vorticity field. The spindown of the

vertical relative vorticity on the cyclonic axis, ye = 7r/2, and on the anticyclonic axis,

Ya = r/2, is compared in figure 3-13 for each of the e = 0.4 numerical simulations.

The vertical relative vorticity during stratified spindown on a flat bottom, figure 3-

13b, does not decay as fast as during homogeneous spindown on a flat bottom, figure

3-13a, due to vertical shear in the geostrophic flow. In both cases, cyclonic vorticity,

(c, decays faster than anticyclonic vorticity, (a. The ratio |(c/(al decreases from 0.76

at t = 1.4 to 0.69 at t = 2.8 in figure 3-13a and from 0.83 at t = 1.4 to 0.74 at t = 2.8

in figure 3-13b.

Similarly, on a stratified sloping bottom, the interior cyclonic vorticity initially

decays faster than anticyclonic vorticity, as shown in figure 3-13c at z = 0.5. This

behavior is explained by interior advection of momentum initially causing cyclonic

vorticity to weaken faster than anticyclonic vorticity. However, in contrast to the flat

bottom cases, cyclonic vorticity becomes larger than anticyclonic vorticity at t = 0.7

and remains larger. At z = 0.5, the ratio |(c/(al grows from 1.05 at t = 1.4 to 1.10

at t = 2.8. In contrast to the interior, cyclonic vorticity decays faster than anticy-

clonic vorticity in the thermal boundary layer, as shown in figure 3-13d at z = 0.15.

The greater weakening of cyclonic vorticity over anticyclonic vorticity is correlated

with the convergence of the buoyancy anomalies on the cyclonic axis, which is consis-

tent with nonlinear advection of buoyancy. Thus, the temporal evolution of vertical

relative vorticity in the interior is interpreted as follows. In time, nonlinear buoy-

ancy shutdown suppresses Ekman pumping over Ekman suction to the extent that
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Figure 3-14: The ratio of cyclonic vorticity, (, on the cyclonic axis to anticyclonic
vorticity, (a, on the anticyclonic axis is examined at t/Tindown = 1.4 for increasing
Rossby number. The symbols denote the numerical model solutions for homogeneous
spindown on a flat bottom (A) at z/H = 0.5, stratified spindown on a flat bottom
at z/Hp = 0.5 (+), and stratified spindown on a sloping bottom at z/Hp = 0.15
(o) and at z/Hp = 0.5 (*). The analytical solutions, calculated from (3.31) for
homogeneous spindown on a flat bottom at z/H = 0.5 (dashed line) and section 3.5
for stratified spindown on a sloping bottom at z/Hp = 0.5 (solid line), are also shown
for comparison. The axis |(c/(al = 0 is also indicated (dotted line).

stretching and squashing of planetary vorticity by the O(o.1/2Q1/ 2E- 1/4e) correction

to the interior secondary circulation dominates over stretching and squashing of ver-

tical relative vorticity and vertical advection of vertical relative vorticity. Therefore,

nonlinear buoyancy shutdown plays an important role in controlling the asymmetric

decay of cyclonic and anticyclonic vorticity.

The ratio of cyclonic vorticity at yc = 7r/2 to anticyclonic vorticity at ya =--7/2

is shown in figure 3-14 for increasing Rossby number to measure the asymmetry be-

tween cyclonic and anticyclonic vorticity. At t = 1.4, the numerical model's vorticity

ratios from homogeneous spindown on a flat bottom and stratified spindown on a flat

bottom at z = 0.5 as well as stratified spindown on a sloping bottom at z = 0.15 show

that cyclonic vorticity is increasingly weaker than anticyclonic vorticity for increas-
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ing Rossby number. The ratio from the analytical solution, (3.31), for homogeneous

spindown agrees with the numerical model.

For stratified spindown on a sloping bottom, the vorticity ratio at z = 0.5 from the

numerical model shows that the ratio of cyclonic to anticyclonic vorticity increases

for increasing Rossby number. The analytical solution from section 3.5 overestimates

the ratio. Thus, at this time, nonlinear buoyancy shutdown alone overestimates the

asymmetry between cyclonic and anticyclonic vorticity. This overestimate occurs

because momentum advection is neglected in the analytical nonlinear buoyancy shut-

down solution. The interior secondary circulation is set-up within an inertial period,

laterally advecting momentum and initially causing cyclonic vorticity to spindown

faster than anticyclonic vorticity over a Prandtl depth. This effect is shown in fig-

ure 3-13c, where momentum advection controls the ratio for t < 0.7. In contrast

to momentum advection, nonlinear buoyancy shutdown's modification of the interior

secondary circulation is initially zero because the buoyancy anomalies are initially

zero. As the buoyancy anomalies grow in the thermal boundary layer, nonlinear

buoyancy shutdown suppresses Ekman pumping to a greater extent than Ekman suc-

tion. When nonlinear buoyancy shutdown modifies the interior secondary circulation

to a greater extent than 0(6), stretching and squashing of planetary vorticity by the

O(o.1/201/2E- 1/4e) correction to the secondary circulation causes the interior anticy-

clonic vorticity to decay faster than cyclonic vorticity over a vertical scale that is

half a Prandtl depth. Thus, momentum advection reduces the ratio of cyclonic to

anticyclonic vorticity from the ratio predicted by nonlinear buoyancy shutdown alone.

However, nonlinear buoyancy shutdown is still necessary to explain the asymmetry

in cyclonic and anticyclonic vorticity in the numerical model for stratified spindown

on a sloping bottom.

127



3.7 Conclusions

During the nonlinear spindown of a geostrophic flow, two primary mechanisms lead

to an asymmetry in the strength of Ekman pumping and suction and an asymme-

try in the decay of cyclonic and anticyclonic vorticity for increasing Rossby num-

ber. For homogeneous spindown over a flat bottom, a complete analysis of the order

Rossby number correction shows that momentum advection in both the Ekman layer

and the interior reduces Ekman pumping and enhances Ekman suction. The full

time-dependent solution to order Rossby number shows that horizontal advection of

momentum in the interior causes cyclonic vorticity to decay faster than anticyclonic

vorticity despite weaker Ekman pumping than Ekman suction. Thus, stretching and

squashing of vertical relative vorticity dominates over stretching and squashing of

planetary vorticity. This result is consistent with Zavala Sans6n's (2001) findings in

numerical experiments, in which the cyclonic vortices decay faster than anticyclonic

vortices. Although the numerical simulations in that work neglect the nonlinear con-

tribution to Ekman pumping, the simulations in this work show the same behavior,

a faster decay of cyclonic vorticity than anticyclonic vorticity. However, without the

nonlinear contribution to Ekman pumping, the measure of the vertical circulation

within the vortices will overestimate Ekman pumping and underestimate Ekman suc-

tion.

For stratified spindown over a sloping bottom, new criteria have been identified

for when nonlinear advection of buoyancy is important to the asymmetries in vertical

velocity and vorticity. Nonlinear advection of buoyancy strengthens (weakens) buoy-

ancy anomalies within the thermal boundary layer about the cyclonic (anticyclonic)

axis through an Ekman buoyancy flux and by vertical advection from the interior

secondary circulation. Then, by geostrophy, the cyclonic vorticity is weakened to a

greater extent than anticyclonic vorticity in the thermal boundary layer. This process,

defined here as nonlinear buoyancy shutdown, weakens Ekman pumping over Ekman

suction at O( 1 /2 1/ 2E- 1/46). When o/3 > Ei/2, this nonlinear correction is greater
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than the 0(c) correction due to momentum advection, and when e > .-1/20-1/2E1/4,

this nonlinear correction can enter into the leading order dynamics.

If o#o > Ei/2, the suppression of Ekman pumping over Ekman suction by non-

linear buoyancy shutdown can modify the nonlinear evolution of the interior vertical

vorticity field. Then, stretching and squashing of planetary vorticity dominates over

both O(E) stretching and squashing of vertical relative vorticity and 0(c) vertical ad-

vection of vertical relative vorticity. Consequently, the interior anticyclonic vorticity

decays faster than cyclonic vorticity, in contrast to nonlinear stratified spindown on a

flat bottom. Numerical simulations support the predictions of the asymmetry in the

Ekman pumping and suction by nonlinear buoyancy shutdown and show that this

mechanism can cause the interior anticyclonic vorticity to decay faster than cyclonic

vorticity.

Nonlinear buoyancy shutdown may play an important role in the evolution of high

Rossby number flows over topography with large slope Burger number. For a later-

ally symmetric along-isobath current with a downwelling Ekman flow, as shown in

figure 3-4, a thicker boundary layer in buoyancy and weaker Ekman transport on the

downslope side may signify evidence of nonlinear buoyancy shutdown. In Chapter 2,

estimates of / indicate that linear buoyancy shutdown could modify the dynamics

over the upper continental slope. On the lower continental slope, measurements of

the North Atlantic Deep Western Boundary Current at the Blake Outer Ridge reveal

a frictional bottom boundary layer embedded within a thicker bottom mixed layer

(Stahr and Sanford 1999). The bottom mixed layer is thicker and the Ekman trans-

port is weaker on the downslope side of the current (see figure 1-7). This configuration

would also hold if nonlinear buoyancy shutdown was important to the flow. However,

the cross-isobath density gradients within the bottom mixed layer are small with lit-

tle vertical shear in the along-slope flow, indicating that other processes govern the

dynamics other than linear and nonlinear buoyancy shutdown.

In summary, this work has provided insight into the nonlinear coupling between

frictionally driven flows and the buoyancy field. Future challenges include identifying
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features of nonlinear buoyancy shutdown in observations and understanding how this

mechanism can modify the evolution of three-dimensional structures, such as slope

vortices, and their vertical circulation.
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Chapter 4

Stratified spindown over a

shelfbreak

Abstract

The adjustment of an initially uniform along-isobath flow is examined in a stratified

fluid over a shelfbreak, where a flat shelf intersects a steep slope. On the shelf, the

along-isobath flow drives an offshore Ekman transport. On the slope, the offshore

Ekman transport advects buoyancy downslope, which causes the bottom mixed layer

to thicken and the Ekman transport to weaken by buoyancy shutdown. Near the

shelfbreak, convergence in the offshore Ekman transport induces Ekman pumping.

Over the slope, Ekman pumping drives a secondary circulation that accelerates the

along-isobath flow. Scalings are identified for the strength of Ekman pumping near

the shelfbreak, the length scale over which it occurs, and the time scale for the along-

isobath flow acceleration over the slope. A simple model of the secondary circulation

over the slope reveals the formation of a jet near the shelfbreak. The scalings are

tested in a series of numerical simulations with application to flows near the Middle
Atlantic Bight shelfbreak.
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4.1 Introduction

In the previous two chapters, linear and nonlinear stratified spindown over a con-

stant slope demonstrate how coupling between the frictionally driven flow and the

buoyancy field can impact the vertical circulation and the temporal evolution of the

vertical vorticity field. In this chapter, stratified spindown over an idealized shelf-

break shows how this coupling can generate both upwelling and the formation of a

jet near the shelfbreak.

This theoretical study is motivated by observations of flows near the Middle At-

lantic Bight shelfbreak and previous modelling studies of buoyant shelf flows that

attempt to explain the observed front located at the shelfbreak. The shelfbreak is the

location in which the gently sloping continental shelf transitions to the more steeply

sloping continental slope. Near the Middle Atlantic Bight shelfbreak, observations

support the existence of a partially density-compensating thermohaline front and jet

(e.g. Linder and Gawarkiewicz 1998, Fratantoni and Pickart 2007) as well as upwelling

from the bottom boundary layer (e.g. Pickart 2000, Linder et al. 2004). Fratantoni

and Pickart (2007) recently showed how the Middle Atlantic Bight shelfbreak front

and jet is one component of a continuous flow along the western North Atlantic shelf-

break. Estimates of the Middle Atlantic Bight shelfbreak jet speed ranges from 0.2-0.3

m s-1 from climatology (Linder and Gawarkiewicz 1998) although synoptic sections

can reveal faster flow speeds of 0.6 m s-1 (Rasmussen et al. 2005). The climatological

jet width ranges from 10-15 km (Linder and Gawarkiewicz 1998), leading to Rossby

numbers on the order of -0.1 on the onshore (anticyclonic) side of the jet and 0.4 on

the offshore (cyclonic) side of the jet (Linder and Gawarkiewicz 1998). North of Cape

Hatteras, Rossby numbers as large as 2 have been estimated for the shelfbreak jet

(Gawarkiewicz et al. 2008).

Previous observational studies have identified upwelling near the shelfbreak from

the bottom boundary layer into the interior along the density front. This upwelling

leads to a detached bottom boundary layer, in which tracer gradients are weakened
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along the isopycnal where upwelling occurs (Pickart 2000, Linder et al. 2004). Up-

welling brings nutrients up from depth, supporting biological productivity, and hence

its rate is important to quantify. Upwelling rates range from vertical velocities of 9 +

2 m day- 1 (Barth et al. 1998) and 23 m day- 1 (Pickart 2000) from ADCP measure-

ments, 4-7 m day- 1 (Houghton and Visbeck 1998) and 6-10 m day-1 (Houghton et al.

2006) from dye tracer experiments, and an along-isopycnal vertical velocity of 17.5 m

day- 1 from a subsurface isopycnal float (Barth et al. 2004). The physical mechanisms

that set the strength and structure of the front, jet, and upwelling remain an open

question.

Past modelling studies have indicated that an offshore Ekman buoyancy flux acts

as a control on the bottom boundary layer and the flow dynamics near the Middle At-

lantic Bight shelfbreak. Modelling of the shelfbreak front includes three-dimensional

approaches to examine the role of bottom friction in the adjustment of buoyant shelf

flows. Chapman and Lentz (1994) examined the along-shelf evolution of a front

formed by a buoyant discharge over a constant sloping shelf. Bottom Ekman trans-

port advects lighter fluid under denser fluid and pushes the front offshore. When

the front reaches the depth where the along-shelf vertical shear leads to a reversal in

the cross-shelf Ekman flow, the coastal density front becomes trapped. Their model

reveals vertical velocities of 4 m day- 1 with the strongest upwelling occurring onshore

of the density front. Yankovsky and Chapman (1997) derived an approximation for

the trapping isobath given a specified buoyant inflow transport and density anomaly,

and Chapman (2000) revised the estimate to include ambient stratification. Through

numerical simulations, Chapman (2000) found that the estimate for the frontal trap-

ping depth held well even with the inclusion of a shelfbreak into the model, in which

the front was either located onshore or offshore of the shelfbreak. Chapman (2000)

asked the question: "Is the shelf break dynamically important in determining the

location of the shelfbreak front? If so, what are the dynamics. If not, are shelfbreak

fronts located near the shelf break by coincidence?"

Other modelling studies examined the dynamical significance of the shelfbreak to
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the formation of the front, jet, and upwelling. Gawarkiewicz and Chapman (1992)

examined the along-shelf evolution of flows near the shelfbreak, in which vertical mix-

ing induced by downslope Ekman advection of buoyancy created a density front that

was formed at the shelfbreak. They considered cases with either initial or no lateral

shear at the shelfbreak and noted in both cases the formation of a density front as

well as upwelling. In their model with a uniform inflow, vertical upwelling at the

shelfbreak is on the order of 4 m day-.

Previous studies have also applied one-dimensional bottom boundary layer models

to explain how the bottom boundary layer structure changes about the shelfbreak.

For a one-dimensional (vertical) along-isobath flow over a stratified sloping bottom,

downslope Ekman advection of buoyancy leads to a thickening bottom mixed layer.

Within this bottom mixed layer, isopycnals tilt downward toward the slope. Then,

by thermal wind balance, vertical shear in the geostrophic flow leads to a weaker

geostrophic flow near the bottom, weaker bottom stress, and weaker Ekman trans-

port (e.g. MacCready and Rhines 1991, Trowbridge and Lentz 1991, Brink and Lentz

2009). This process can lead to a steady-state when the buoyancy anomaly shuts

down the Ekman transport and occurs faster and leads to thinner bottom mixed lay-

ers for steeper slope angles or stronger stratification (e.g. Brink and Lentz 2009).

Chapman and Lentz (1997) examined the adjustment of a stratified along-isobath

current over a slope and showed thicker (thinner) bottom mixed layers in regions

of smaller (larger) slope angle for a linear background stratification. However, this

model did not take into account the time-dependent adjustment to reach this state,

which may result in Ekman pumping from convergences in the Ekman transport. The

model also neglected the feedback of Ekman pumping on the along-isobath flow due

to the assumption of flat isopycnals outside of the bottom mixed layer.

In a numerical model, Romanou and Weatherly (2001) examined the Ekman

pumping arising from a spatially uniform along-isobath flow on a constant slope with

increasing stratification downslope, an analogous configuration to a linearly strati-

fied fluid with a steeper slope angle offshore of a shelfbreak. They showed that this
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configuration generated Ekman pumping where the stratification changed, although

they did not examine the feedback of this vertical flow on the geostrophic flow. They

also indicated that this process could be applied at shelfbreaks with the generation

of Ekman pumping, but, for this scenario, they did not give any estimates of the

vertical velocity arising by buoyancy shutdown. Thus, further work is necessary to

clarify the dynamical relevance of the shelfbreak and the coupling between Ekman

flows and the buoyancy field in setting the location of the density front, the strength

of the upwelling, the horizontal length scale over which it occurs, the structure of

the interior ageostrophic secondary circulation, and its feedback into the geostrophic

flow.

In this work, the adjustment of a laterally uniform along-isobath flow over a

stratified shelfbreak is examined in order to address the following questions: (i) In

the vicinity of the shelfbreak, what determines the height and temporal evolution of

the bottom mixed layer arising from cross-isobath Ekman advection of buoyancy?

(ii) What sets the strength of the Ekman pumping near the shelfbreak, where does

this upwelling occur with respect to the shelfbreak, and over what lateral length

scale? (iii) How does the secondary circulation driven by Ekman pumping impact the

along-isobath flow, i. e. how does the secondary circulation accelerate the flow on the

continental slope or decelerate the flow on the shelf? Can this secondary circulation

form a jet near the shelfbreak?

These questions are first considered in section 4.2, in which scalings are derived

to quantify the strength of the upwelling, the horizontal length scale over which the

upwelling occurs, and the timescale for the interior along-isobath flow to accelerate

over the slope due to the vertical circulation. The feedback of the along-isobath flow

acceleration over the slope on the bottom boundary layer dynamics and upwelling

is also considered. In section 4.3, a simple model of upwelling at the shelfbreak is

presented to demonstrate the preferential formation of a jet near the shelfbreak. In

section 4.4, process-oriented numerical simulations are run with application to the

Middle Atlantic Bight shelfbreak in order to test these scalings and the hypothe-
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sized structure for the secondary circulation and shelfbreak jet. In section 4.5, the

role of mixing processes at the shelfbreak is discussed. Results from Gawarkiewicz

and Chapman (1992) are compared with this model, and results from Romanou and

Weatherly (2001) are interpreted in light of this model's scalings. Finally, in section

4.6, the main results of this study are summarized.

4.2 Theoretical formulation and scaling arguments

The adjustment of an along-isobath flow over a stratified shelfbreak is considered in

a horizontally unbounded domain. The flow is assumed incompressible, Boussinesq,

and hydrostatic with no along-isobath variations. At initial time, the density field

is linearly stratified in temperature, with a constant buoyancy frequency N, and the

background salinity field is constant. The initial along-isobath flow, U, is spatially

uniform, geostrophically balanced by a tilted free surface, and downwelling favorable.

For clarity, the along-isobath flow is denoted as Ushelf over the shelf and Usope over the

slope. The continental shelf is modelled as flat under the assumption that the local

buoyancy shutdown timescale, discussed below, is long compared to the timescale

for the dynamics of interest near the shelfbreak. The continental slope is modelled

with a constant slope angle, 0, over a horizontal width Lsiope that intersects the

continental shelf at the shelfbreak, where there is a discontinuity in the slope angle.

Farther offshore, the continental slope intersects a flat, deep region. The initial flow

configuration is shown in figure 4-la.

Next, the speed, length, and time scales that characterize the adjustment of the

bottom boundary layer flow over the slope are considered. In the early stage of the

along-isobath flow's temporal adjustment, an offshore Ekman flow develops within an

inertial period, Tinertial = 27/f, where f is the planetary vorticity. Within this time

period, the density field also goes through an initial adjustment, in which a bottom

boundary layer forms over a height on the order of u,(f N) -1/2 (Pollard et al. 1973),

where u,, is the friction velocity. This height scale characterizes the bottom boundary
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Figure 4-1: Stratified spindown over a shelfbreak. (a) At initial time, the along-
isobath flow, U, is uniform. The density field is linearly stratified and isopycnals are
indicated by the grey contours. The shelf is flat with a depth Hself. The slope is
inclined at a constant slope angle, 0, over a width Lsiope and intersects a deep, flat
region.

(b) On the flat shelf, an offshore Ekman transport, Mshelf, passes over the
shelfbreak and onto the slope, where it advects buoyancy downslope. When the
bottom mixed layer has thickened to a depth 6, the Ekman transport on the slope
is arrested. Thus, the Ekman transport converges over a horizontal length scale
Lupwelling, which leads to Ekman pumping, w., = wwening. Ekman pumping drives
an interior secondary circulation on the slope, which accelerates the along-isobath
flow, U5,,e, over the slope. In this configuration, the secondary circulation closes
offshore on the deep, flat region over a length scale Ldownwelling, where there is a
divergence in the Ekman transport.
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layer height over the shelf for all time.

On the slope, the offshore Ekman flow advects buoyancy downslope, forming a

bottom mixed layer that thickens in time until the Ekman flow is arrested by buoyancy

shutdown. In the arrested state, the height of the bottom mixed layer is

_ FUsiopef (4.1)
N 2 0

1
F (1 + (1 + 4RiDS)1/2)2

where F > 1 and accounts for nonzero stratification in the bottom mixed layer (Brink

and Lentz 2009). In the above expression, the nondimensional parameters include

the gradient Richardson number, RiD (ab/&z)/Q9u/az) 2, which is constant in

the arrested state. Note that &b/&z is the vertical gradient in buoyancy and au/&z

is the vertical shear in the along-shelf flow. The slope Burger number is given by

S = (NO/f) 2 , where the small slope angle approximation is applied. In the limit of

a well-mixed bottom mixed layer, F 1, the height scale reduces to the previously

derived height scale

Usiope f
6 TL =-Npg (4.2)N 20

that is presented in Trowbridge and Lentz (1991). The buoyancy shutdown timescale

for downslope Ekman flow (Brink and Lentz 2009) is

_ F(1 + S)Usope
Thutdown = 2brNS3/ 2  (4.3)

where a linear bottom drag law is applied. In this expression, r is the linear drag

coefficient, b, is the ratio between the along-isobath flow speed near the bottom to its

speed in the interior and b2 = 0.4 is assumed. For small slope Burger numbers, this

shutdown timescale is the same order of the buoyancy shutdown timescale estimated

in Garrett et al. (1993).

The scale for the steady-state bottom mixed layer height is used to determine
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scalings for the vertical upwelling near the shelfbreak, the horizontal length scale

over which it occurs, and the timescale for the acceleration of the interior along-

isobath flow over the slope. Over the upper part of the slope, a transition region

develops between the Ekman transport on the shelf, Mheelf, that flows offshore of

the shelfbreak unimpeded by buoyancy shutdown and the Ekman transport on the

slope that is arrested due to thermal wind shear in a bottom mixed layer height given

by (4.1). The isopycnal initially intersecting the shelfbreak is pushed offshore until

this bottom mixed layer height is reached. The horizontal length scale between the

shelfbreak and the offshore location of this isopycnal defines the horizontal boundary

layer over which the Ekman transport converges. This convergence in the Ekman

transport induces upwelling, wupwelling, over a length Luweuing. As illustrated in

figure 4-1b, a geometric argument can be applied to determine the length scale over

which the upwelling occurs, subject to the small slope angle approximation,

Lupweling - -= sf (4.4)

Given this length scale, the scaling for the strength of the upwelling,

upwelling SMshelff
Lupwelling -(s.ope

explicitly shows a slope Burger number dependence. The upwelling drives a secondary

circulation that closes in the deeper part of the domain, where the slope intersects

the flat bottom. The offshore Ekman transport advects water from the slope region

onto the deep, flat region. In this flat region, offshore Ekman advection of buoyancy

tilts the isopycnals within the bottom mixed layer and weakens the bottom stress. In

contrast to the horizontal boundary layer over which upwelling occurs, the horizontal

length scale over which downwelling occurs, Ldownwelling, continually broadens in time

as isopycnals are advected offshore. The focus of this study is on the upwelling at

the shelfbreak since the location where the secondary circulation closes offshore may

result from other processes over the slope other than a change in topography, e.g.
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weakening stratification.

Over the slope, the interior secondary circulation accelerates the interior along-

isobath flow and generates anticyclonic (cyclonic) vorticity in regions of vortex squash-

ing (stretching) by Ekman pumping (suction). The timescale over which vertical

relative vorticity is generated is determined from the linear along-isobath momen-

tum equation and the continuity equation. In terms of vertical relative vorticity,

= -Bu/Dy, where

= f , (4.6)
at az

Ekman pumping near the shelfbreak drives the growth of anticyclonic vorticity in a

flow with no initial lateral shear. This anticyclonic vorticity is characterized by a

local Rossby number, c = (/f, that is negative. The timescale for the generation of

anticyclonic vorticity is determined from dimensional analysis. Near the shelfbreak,

the vertical velocity is set by Ekman pumping near the bottom and reduces to zero at

the surface by the rigid lid condition. Then, the timescale for anticyclonic vorticity

to develop (denoted by the jet, (-subscript) is

Eiet,c = CHsh.1f (4.7)
Wupwelling

If stratification is sufficiently strong, as noted in the next section, and the height

of the secondary circulation is reduced to a Prandtl depth, Hp, then modifications

to this expression are necessary. From the upwelling strength, (4.5), a larger slope

Burger number leads to faster acceleration of the along-isobath flow over the slope.

Note that the ratio of the timescale to generate anticyclonic vorticity of order ef to

the buoyancy shutdown timescale is

__et,_(__ 2b~?fS11 2NHshlf (4.8)
Tshutdown (I + S)fAlshelf
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This expression shows that the time scale separation between 7j-et,( and T shutdown in-

creases with increasing N and S (for small slope Burger numbers) and decreases with

increasing S (for large slope Burger numbers greater than one) and increasing Mshelf.

In the time-dependent model, these estimates for the strength of the upwelling and

the length scale over which it occurs is subject to time-dependent feedback with the

formation of the interior jet, which may influence the direct applicability of these

scalings.

The temporal feedback between the bottom boundary layer and the interior flow

can be examined by considering the above scalings subject to the linear drag param-

eterization. Then, the Ekman transport and Ekman pumping, (4.5), scales as

Mshelf = rb Ushelf (49)
f

Wupwelling = (4.10)
( F Uslope

The horizontal length scale, Ljet, over which the horizontal flow varies and leads to jet

acceleration is not known a priori. The secondary circulation's spatial structure that

sets this length scale is examined in the next section. Here, suppose that time scales

for changes in Ljet and Ushelf are long compared to 7 et,( and that U51 pe depends only

on time. Then, from the linear along-isobath momentum equation and the continuity

equation, the along-isobath flow near the shelfbreak over the slope evolves as

dUsiope _ Sf 2Le MeI (4.11)
dt l'Hshelf ) Usiope

The solution to this equation gives expressions for the temporal evolution of the

interior along-isobath flow over the slope,

Uszope (t) = U(1 + 2t/Tety)1 / 2 , (4.12)
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the Ekman pumping,

Wupwelingt) = FU(1+ 2t/rety)1 /2  (4.13)

and the length scale over which it occurs,

FU(1 + 2t/Tetp)1/2
Lupweningt) Sf (4.14)

where

'FHshelf U2 (4.15)
Sf 2 LjetMshelf

is the timescale for the along-isobath flow to accelerate (denoted by the jet, U-

subscript) and Usiope(t = 0) = Ushelf = U. These expressions show the magnitude

of the interior along-isobath flow over the slope grows as t1/2 , which strengthens the

downslope Ekman buoyancy flux, thickening the bottom mixed layer and causing

the upwelling region to widen in time as t1/2. Then, this widening of the upwelling

region weakens Ekman pumping, which decays as t- 1/2 . This feedback, with increas-

ing Usiope, also lengthens the buoyancy shutdown timescale, Tsutdown. The timescale

TietU suggests that Usiope/U increases faster with weaker U and all other parameters

fixed. These scalings and temporal relationships are tested in numerical simulations in

section 4.4. In the next section, an examination of the interior secondary circulation's

spatial structure over the slope shows that Ekman pumping leads to jet formation

near the shelfbreak.

4.3 A simple model of jet formation at a shelfbreak

In this section, the spatial structure of a modelled secondary circulation over a slope

reveals the formation of a shelfbreak jet by buoyancy shutdown of the Ekman trans-

port on the slope. The secondary circulation structure is considered under the ap-
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proximation that the topographic change in fluid height over the slope as small with

respect to the fluid height over the shelf. This approximation enables an analyti-

cal examination of how topography modifies the secondary circulation, although this

approximation may not hold for realistic shelfbreak configurations. This problem is

formulated by considering the initial flow configuration in the previous section. In

this section, the focus is on the interior flow, subject to the following equations for

the subinertial, linear dynamics:

- fv = 0, (4.16)at
1 ap

fu = -1a, (4.17)

0 = + b, (4.18)
po Oz

+ N2w 0, (4.19)at
v+ aw 0 (4.20)

ay az

where u is the along-isobath flow in the x-direction, v is directed positive offshore in

the y-direction, and w is the vertical flow in the z-direction. Density is assumed only

dependent on temperature, where p = po + (z) - pob/g and N 2 = - is constant.

The variable b is the buoyancy anomaly with respect to the background density field,

po + p(z). The total pressure field is composed of contributions from the background

density field and the dynamic pressure field, p.

From the continuity equation, the interior secondary circulation, 4@, is defined as

v= w_ a= , (4.21)
az ' ay

The component of the secondary circulation from the bottom boundary layer cir-

culation is neglected. From the above equations, the interior secondary circulation
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satisfies the Eliassen-Sawyer equation,

N21 + f2 =0, (4.22)
19y2 Bz2

within 0 < y < Lsioe, -Hself - Oy < Z < 0.

The set-up of this problem is configured as discussed in section 4.2. The domain

is configured with a flat shelf that intersects the continental slope at the shelfbreak at

y = 0. The continental slope is inclined at a constant slope angle 6 with respect to the

horizontal and intersects a flat region at y = Lzope. In order to focus on the secondary

circulation over the slope, the domain is considered horizontally unbounded onshore

of y = 0 and offshore of y = Lsope. At the shelfbreak, Ekman pumping from the

bottom boundary layer is represented as a delta-function in y and constant in time.

At y = Lsiope, Ekman suction into the bottom boundary layer is represented with a

delta-function of the same magnitude but opposite sign. Along the bottom for y < 0

and y > Lszope, Ekman pumping and suction is zero to confine the interior secondary

circulation to the slope. At the surface, a rigid lid approximation is applied and the

vertical velocity is zero.

The interior secondary circulation is determined from these boundary conditions.

For a semi-infinite domain as considered in Chapters 2 and 3, the height of the leading

order secondary circulation is set by the Prandtl depth, Hp = f Liope/N. In contrast

to the previous chapters, the secondary circulation is also vertically confined to the

height of the fluid column, h(y), over the slope. The fluid height is specified as

h(y) = Hself + Qy, where the small slope angle approximation, sin 0 0, is applied.

The boundary conditions on V) are

b= 0 at z =0, (4.23)

V) = 0 at y < 0, Z = -Hself, (4.24)

= 0 at y > Lsiope, z = -Hshelf - OLsiope, (4.25)

4 = I' at 0 < y < Lsope, Z = -Hshelf - Qy, (4.26)
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where T > 0. The variables are nondimensionalized by

y y/Lsiope, Z' = Z/Hshelf, )' = (4.27)

where primes denote nondimensional variables. The nondimensional Eliassen-Sawyer

equation, primes dropped, becomes

2 + =07 (4.28)
&z2  &y2

within -1 - xy < z < 0, 0 < y < 1, where H = HP/Hhself and X = OLslope/Hshelf.

These two parameters control the spatial structure of the secondary circulation. The

parameter R specifies whether the Prandtl depth or the fluid height over the shelf is

more significant in controlling the vertical extent of the secondary circulation. The

parameter x describes the ratio of the change in fluid depth over the slope with respect

to the fluid depth over the shelf. This examination is restricted to x < 1, since this

parameter leads to a breaking of symmetry in the secondary circulation.

The nondimensional boundary conditions, primes dropped, become

=0 at z = 0, (4.29)

=0 at y < 0, z = -1, (4.30)

z=0 at y> 1, z=-1-X, (4.31)

0/= 1 at 0 < y < 1, z = -1 - xy. (4.32)

In order to solve (4.28) subject to the above boundary conditions, the boundary

condition (4.32) is expanded in a Taylor series about z = -1,

(y = -1 -xy) = @(y, z = -1)+ (Y, z= -1)(-xy)+-- = 1. (4.33)
Oz
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Furthermore, V) is expanded in a power series of X, where

= = (O) + X + ... (4.34)

The solution to @ is determined to O(x). At 0(1), the secondary circulation satisfies

2 a2(o) + 20(o)
02 42.35

within -1 < z < 0, 0 < y < 1.

conditions

4(0) =0

= 0

(0) = 0

(0) 0

0 =1

This equation is solved subject to the boundary

at z = 0,

at y < 0, z = -1,

at y > 1, z = -1,

at 0 < y < 1, z = -1.

The 0(1) solution is solved by separation of variables and is given by

00

00) - A1
0) sinh uz) sin(nry),

where

A = 2 (-1 + (-1)")csch n7r
n7r R

At O(x), the secondary circulation satisfies

2 (1)
(z2 +

02V'(1) - 0

Oy
2
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within -1 < z < 0, 0 < y < 1. This equation is solve subject to

V(') 0 at z = 0, (4.43)

0l)=0 at y < 0, z = -1, (4.44)

(1) = 0 at y > 1, z = -1, (4.45)

OM = (y, z = -1)y at 0 < y < 1, z -1. (4.46)az

By separation of variables, the solution to O) is

A) ZA ) sinh sin(m7ry), (4.47)
m=1

where

A() = csch ( ) (1 - (-1)")coth (4.48)

X ((cos(7r(n - m)) - 1) (cos(7r(n + m)) - 1) + 7r sin(7r(n - m))

(n -M)2 (n+ M)2 (n - m)

Note that in the limit n -+ m, (cos(7r(n - n)) - 1)(n - M)- 2 - -T 2 /2 and sin(r(n -

m))(n - m)- 1 -+ ir .

Figure 4-2 shows the secondary circulation to O(x), where the values for R are

chosen from the numerical model parameters in section 4.4 and x is either 0 or 0.1

in order to demonstrate the changes to the structure of 4. In the numerical model,

the depth of the shelf is fixed to 100 m and the Prandtl depth is varied yielding

R = 6.32, 4.0, 2.83 for increasing stratification. At leading order, the structure of the

secondary circulation is symmetric about y = 0.5. For increasing H (weakening strat-

ification) the V)-contours become increasingly flattened within the vertical domain.

In the next section, numerical experiments are run to test the scalings and

hypotheses regarding the growth of the bottom mixed layer over the slope, the cor-

responding weakening in Ekman transport, the upwelling near the shelfbreak, the

secondary circulation over the slope, and jet formation near the shelfbreak.
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Figure 4-2: The structure of the secondary circulation, V), is shown for 'H =

6.32 (a, d), 4.0 (b, e), 2.83 (c, f) and X = 0 (a, b, c), 0.1 (d, e, f). Increasing x leads
to an asymmetrical structure in 4), with stronger vortex squashing near the shelf-
break than vortex stretching on the deeper side of the domain. 0 is contoured every
0.1 units.

148

MMME=71 I

'H = 6.32



At O(x), the symmetry of the structure to V) is broken by the tilting bottom slope,

in which the secondary circulation closes offshore deeper down in the domain (not

shown). Along a horizontal level, an increase in x weakens the vertical gradient in V)

near the z = -1 geopotential on the offshore side of the domain. From (4.16), the

along-isobath flow (in dimensional form) is

=9 -fb .(4.49)
(9t az

Thus, increasing x leads to preferential acceleration of the along-isobath near the

shelfbreak rather than in the deeper domain offshore. In terms of vertical relative

vorticity, (4.6), the formation of a jet near the shelfbreak is explained by an asymmetry

in vortex squashing, near y = 0, and vortex stretching, near y = 1. On the offshore

side of the domain, vortex stretching weakens for increasing x because the vertical

variation in the vertical velocity, which has its magnitude set by Ekman suction at

the bottom, is weaker owing to a greater fluid depth. Therefore, stronger vortex

squashing near the shelfbreak leads to jet formation near the shelfbreak rather than

farther offshore.

4.4 Numerical experiments

In order to test the scalings for the flows and the structure of the shelfbreak jet, a

series of numerical experiments were run using the Regional Ocean Modeling System

(ROMS), which solves the hydrostatic, primitive equations in a terrain-following coor-

dinate system. The model is configured with no along-isobath variations and density

variations depend only on temperature variations. The horizontal domain is 80 km

wide with a uniform horizontal grid spacing of 250 m. The domain has a 20 km flat

shelf, a 20 km slope that is inclined to the horizontal at an angle 0, and a 60 km deep,

flat region. Two slope angles are considered, 0 = 0.01, 0.02. In the vertical domain,

the height of the water column over the shelf is fixed to 100 m and the height of the

domain is 300 m for 0 = 0.01 and 500 m for 0 = 0.02. The vertical grid has 50 levels
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and the vertical grid resolution ranges from Az =1 m at the bottom to Az = 8 m in

the interior for 0 = 0.01 or Az = 13 m for 0 = 0.02.

At the surface, no heat flux and no momentum flux boundary conditions are ap-

plied. At the boundaries of the horizontal domain, open boundary conditions are

applied, with no heat flux, no momentum flux, and the free surface height satisfying

the Chapman condition. At the bottom, the no heat flux boundary condition is ap-

plied to the temperature field and bottom shear stress is specified with a linear drag

law, Tb/po = r Ub, where the linear drag coefficient is r = 5.0 x 10-4 m s-1 and Ub is

the horizontal velocity at the first grid point above the bottom. The vertical mixing

coefficients are determined from Mellor-Yamada Level 2.5 mixing scheme, which is

Richardson number dependent. Background vertical mixing coefficients are set to

10-5 m2 s-1. The time step is 30 s. Biharmonic horizontal viscosity and diffusivity

are applied with coefficients equal to 105 m4 s-1. The coefficient of thermal expansion

is set to 2.2 x 10-4 C- 1 in the linear equation of state.

The model parameters are motivated by flow characteristics near the Middle At-

lantic Bight shelfbreak. Uniform rotation is specified with f = 10-4 s-'. The initial

along-isobath flow speeds are given by U = 5, 10, 15, 20 cm s-1 in a linearly stratified

fluid, where N 2 = (1.0, 2.5, 5.0) x 10-5 S-2. Table 4.1 summarizes the parameters

used for each of these different runs and the corresponding scalings for 6, Lupweiiing,

Wupwelling, and 7 ;et, . All simulations were run for 15.0 inertial periods.

Figure 4-3 illustrates the temporal evolution of the along-isobath flow, the temper-

ature field, and the secondary circulation from Run 10. The secondary circulation has

been low-pass filtered with a cut-off frequency of 0.12 f. In time, the along-isobath

flow over the slope accelerates, in which Usiope/U = 2 by t/Thstd0ow = 4.0. The tem-

perature field shows a thickening bottom mixed layer over the slope. The position

of the isotherm that initially intersected the shelfbreak moves farther offshore along

the bottom in time. At t/Teshtd1 . = 1.0, the isotherm is located at 1.6 km, which

is on the order of the upwelling length scale, Lupweiiing = 2.2 km, estimated from ini-

tial flow parameters. In time, this isotherm is displaced farther offshore, surpassing
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Table 4.1: Numerical model parameters. Note that for clarity the variables are la-
belled as L, - Lupweuing, Wup = Wupwelling, Tuh Tshutdown, T = jnertiai, and N 2 is
shown in units of x 10- 5 s-2. The scalings are determined from the initial flow param-
eters and the timescale for Tjet,( corresponds to c = 0.1 and RiD is assumed equal to
0.25.

Run N2 0 S U (cm/s) 6 (m) Lu (km) wu, (m/day) ,h/
7 Tet,c/7i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1.0
1.0
1.0
1.0
2.5
2.5
2.5
2.5
5.0
5.0
5.0
5.0
1.0
2.5
5.0

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02

0.10
0.10
0.10
0.10
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.40
1.00
2.00

5
10
15
20
5
10
15
20
5
10
15
20
10
10
10

51
102
154
205
21
42
64
85
11
22
33
45
55
24
14

5.1
10.2
15.4
20.5
2.1
4.2
6.4
8.5
1.1
2.2
3.3
4.5
2.8
1.2
0.7

2.7
2.7
2.7
2.7
6.4
6.4
6.4
6.4

12.3
12.3
12.3
12.3
10.0
22.6
40.0

14.2
28.4
42.5
56.7
2.7
5.3
8.0
10.7
0.8
1.7
2.5
3.4
4.8
1.2
0.5

5.2
5.2
5.2
5.2
2.1
2.1
2.1
2.1
1.1
1.1
1.1
1.1
1.4
6.1
3.4

the initial estimate of the length scale by t/T~hutsw, = 2.0. In between the location

of this isotherm and the shelfbreak, the isotherms deflect upward, which suggests

vertical advection of buoyancy by Ekman pumping and a thickening of the bottom

mixed layer. The secondary circulation shows Ekman pumping near the shelfbreak

with a p-contour deflecting upward from the shelfbreak into the interior before clos-

ing offshore. Note that small scale structures arise in the secondary circulation by

t/Tshutdawvn= 4.0. These small scale features are indicative of symmetric instability

within the bottom mixed layer (see Allen and Newberger (1998) for a thorough dis-

cussion). Next, the measures corresponding to the length scale over which upwelling

occurs, the Ekman pumping from the bottom boundary layer, and the acceleration

of the along-isobath flow over the slope are examined in time.

First, the length scale over which upwelling occurs is considered. In section

4.2, the analytical scalings over the slope assume that the bottom mixed layer height
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Figure 4-3: Run 10: temporal evolution. The adjustment of the along-isobath flow,
where U = 10 cm s-1, is shown at t/Tshutown = 1.0 (ab,c), 2.0 (d,e,f), 4.0 (g,h,i).
The along-isobath flow, u/U, is shown in (a,d,g) and is contoured at 1.0, 1.5, 2.0
units. The maximum along-isobath flow is u/U = 1.3 (a), 1.6 (d), and 2.1 (g).
The temperature field, T - T(z = -300m)/AT, is shown in (b,e,h), where AT is the
change in temperature over 300 m. The temperature field is contoured every 0.1 units.
The purple contour indicates the isotherm that initially intersected the shelfbreak.
The horizontal distance of the isotherm at the bottom to the shelfbreak is y = 1.8
km (b), 2.5 km (e), and 3.3 km (h). The secondary circulation is shown in (c,f,i),
where @) is normalized by Mself = 0.32 m2 s-1 and contoured every 0.25 units from
zero. The maximum Ekman pumping is 4.1 m day- 1 (c), 3.1 m day- 1 (f), and 2.7 m
day- 1 (i). From the initial flow parameters, Lupweiiing = 2.2 km and wuwelling = 12.3
m day-1 .
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reaches a thickness, 6 on a buoyancy shutdown timescale. The bottom mixed layer

corresponding to the isopycnal Pshelf break that initially intersects the shelfbreak is also

assumed to grow on this time scale. Then, the offshore position of this isopycnal sets a

horizontal length scale over which the Ekman transport converges and drives Ekman

pumping. From the simulations, Ekman pumping is calculated normal to the bound-

ary and low-pass filtered. In figure 4-4, the time series for this isopycnal's offshore

displacement evolves on the buoyancy shutdown timescale and correlates well with

the offshore position of the maximum Ekman pumping. This correlation supports the

assumption in section 4.2 that the offshore position of the isopycnal that is initially

located at the shelfbreak sets the horizontal length scale of upwelling. In section

4.2, temporal feedback between the jet formation near the shelfbreak and the bottom

boundary layer suggests that the buoyancy shutdown timescale increases with time,

the bottom mixed layer continues to thicken, and the horizontal length scale over

which upwelling occurs continues to widen past its initial estimate. Simulations run

longer than a buoyancy shutdown time indicate that this feedback occurs as the po-

sitions for Pshelfbreak and the maximum Ekman pumping extend beyond the Lupeiiing

estimate from the initial flow parameters.

Next, the calculated maximum Ekman pumping, w,, is examined with respect to

the scaling for Ekman pumping, Wupwelling, from initial flow parameters. Figure 4-5

shows the temporal evolution of the nondimensional Ekman pumping in time, which

reaches a local maximum within an inertial period. The calculated Ekman pumping

is on the order of magnitude of the estimated Ekman pumping. However, the cal-

culated Ekman pumping tends to be weaker than the estimated value for increasing

stratification and decreasing initial along-isobath flow speed. From section 4.2, the

temporal feedback between the acceleration of the along-isobath flow over the slope

is hypothesized to widen the upwelling region and weaken Ekman pumping in time.

Since the acceleration of the flow is hypothesized to occur faster for stronger Ekman

pumping (larger S), the scaling for Ekman pumping from initial flow parameters may

overestimate the strength of the upwelling for increasing S. Also, for the cases run
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Figure 4-4: Upwelling length scale. With respect to the shelfbreak, the offshore
position of the maximum Ekman pumping (o) is correlated with the position of the
isopycnal Pshelfbreak (solid line) that initially intersected the shelfbreak. The position
of maximum Ekman pumping is shown every 0.6 inertial periods and its time series is
truncated at the onset of symmetric instability. The profiles are shown for 0 = 0.01
and U = 5 cm s-1 (a,b,c) and U = 10 cm s- (d,e,f). The profiles correspond to
N 2 = 1.0 x 10-5 s-2,N = 6.32 (ad), N 2 = 2.5 x 10-5 S2, R = 4.00 (b,e), and N 2

5.0 x 105 S-2, H = 2.83 (c,f). The variables are nondimensionalized with respect to
the scalings derived from initial flow parameters for each of the runs, as presented in
Table 4.1. In (f), the position of Pshelf break oscillates at later times, deviating from the
monotonic offshore displacement in the other profiles, which suggests that symmetric
instability impacts the buoyancy field by upslope or downslope buoyancy advection.
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Figure 4-5: Maximum Ekman pumping. The ratio of the measured Ekman pumping,
w,, to the scaling, Wupwelling, determined from the initial flow parameters is shown in
time. The runs corresponding to 0 = 0.01 are shown in (a) Runs 1-4: N 2 = 1.0 x 10-5

s-2, H = 6.32, weupwciing = 2.7 m day-, (b) Runs 5-8: N 2 = 2.5 x 10-5 S-2, 'H = 4.00,
Wupwelling = 6.4 m day 1 , and (c) Runs 9-12: N 2 = 5.0 x 10-5 S-2, H= 2.83,

Wupwelling = 12.3 m day- 1 . The curves correspond to initial along-isobath flow speeds
of U = 5 cm s1 (dot-dashed line), U = 10 cm s- (dotted line), U = 15 cm s-1

(dashed line), and U = 20 cm s-1 (solid line). The curves are truncated at the time
that symmetric instability dominates the vertical velocity field near the bottom.

longer than a buoyancy shutdown time, notably figure 4-5c, the maximum Ekman

pumping tends to weaken in time. The temporal feedback in (4.12) suggests that the

ratio of the along-isobath flow over the slope to its initial speed accelerates faster for

smaller initial flow speeds, thus leading to greater disparity between the calculated

Ekman pumping and its initial estimate for smaller initial flow speeds.

The average Ekman pumping between 1.0 to 4.0 inertial periods is compared with

the scaling for the upwelling strength for increasing slope Burger number in figure

4-6. For small slope Burger number, the scaling for the upwelling strength is on

the order of the calculated Ekman pumping in the model. The deviation of the es-

timated upwelling strength from the initial flow parameters increases for increasing

slope Burger number and decreasing initial flow speeds. The figure includes a line

indicating weaker upwelling strength given Uslope/Ushelf = 2. This line accounts for

temporal feedback with the along-isobath flow acceleration over the slope and a weak-

ening of Ekman pumping in time. Ekman pumping from most of the runs fall between

these two upwelling estimates. In comparison with previous work, Gawarkiewicz and
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Figure 4-6: The average Ekman pumping, w,, calculated from t/Tinertiai = 1.0 - 4.0,
is shown with respect to S from the 0 = 0.01 runs. The symbols correspond to U = 5
cm s-1 (*), U = 10 cm s-1 (o), U 15 cm s-1 (+), U = 20 cm s- 1 (LI). The
dashed line indicates the estimated Wupwelling as a function of S from the initial flow
parameters, where Usiope = Usheif = U, and the dotted line corresponds to Wupwelling,
where Usope/Ushef= 2.

156



X = 6.32 H =-4.00 7-= 2.83

3 3 3

2.5(a) 2.5(b) 2.5(c)

2 2 oe2

I-

0 5 10 15 0 5 10 15 0 5 10 15

t/Tinertial t/Tinertial t|Tinertial

Figure 4-7: Normalized maximum along-isobath flow speed. The ratio of maximum
along-isobath flow speed, uma,, over the slope to the initial along-isobath flow speed,
U, is shown in time. The runs corresponding to 0 = 0.01 are shown in (a) Runs 1-3:
N 2 = 1.0 x 10- 5 S-2, H = 6.32, (b) Runs 5-7: N 2 - 2.5 x 10-5 S-2, H = 4.00, and

(c) Runs 9-11: N 2 = 5.0 x 10-5 S-2, ' = 2.83. The curves correspond to initial

along-isobath flow speeds of U = 5 cm s- 1 (dot-dashed line), U = 10 cm s-1 (dotted

line), U = 15 cm s-1 (dashed line). For clarity, the curves corresponding to U = 20

cm s1 (Runs 4, 8, 12) are not shown since they closely follow the U = 15 cm s-1
curves.

Chapman's (1992) model shows a vertical velocity of 4 m day- 1 for a uniform inflow

of 10 cm s-1 over a shelfbreak with S = 0.36 on the slope. Their model result falls

within the estimated bounds on the upwelling strength.

The maximum along-isobath flow speed, umax, over the slope is examined for each

of the 0 = 0.01 simulations. The profiles in figure 4-7 show greater acceleration of the

along-isobath flow with respect to its initial flow speed for increasing slope Burger

number. This greater acceleration is due to increasing Ekman pumping for increasing

slope Burger number. From the timescale 'jetU, the maximum along-isobath flow

speed with respect to its initial speed, Umax/U, increases faster for increasing slope

Burger number and weaker initial flow speeds with the other parameters kept fixed.

The profiles for Uma/U qualitatively follow this pattern at early times, t < 5 iner-

tial periods. The ratio Umax/U is larger for weaker initial along-isobath flow speeds,

which is consistent with the predicted temporal evolution from (4.12). At later times,

oscillations in the maximum along-isobath flow indicate the influence of symmetric

instability on the geostrophic flow structure.
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Figure 4-8: Normalized along-isobath flow speed squared. The square of the ratio of
maximum along-isobath flow speed, umax, over the slope to the initial along-isobath
flow speed, U, is shown in time. The runs for 0 = 0.01 and U = 5 cm s-' (a,b,c) and U
= 10 cm S-1 (d,e,f) are shown. The curves (o) are fit to the numerical model solution
(solid line) from t/Tinertial = 5.0 -15.0 for U = 5 cm s-1 and from t/nertiai = 0 -15.0
for U = 10 cm s-1. The profiles correspond to N2 = 1.0 x 10-5 s-2, H = 6.32 (a,d),
N 2 = 2.5 x 10-5 s-2, H = 4.00 (b,e), and N 2 = 5.0 x 10-5 s-2, H = 2.83 (c,f).

The predicted temporal structure of the interior along-isobath flow's evolution,

(4.12), is tested by fitting linear curves to (Uma/U) 2. For 0 = 0.01, the curves are fit

to the numerical model solution from t/Tinertia = 5.0 - 15.0 for U = 5 cm s-1 and

t/Tinertiai = 0 - 15.0 for U = 10, 15, 20 cm s-. Figure 4-8 shows a comparison of

the data and the fitted curves for U = 5 cm s-1 and U = 10 cm s-1. The agree-

ment between the predicted temporal structure and the flow evolution in the model

supports the temporal coupling between the interior along-isobath flow acceleration

and the bottom boundary layer dynamics, with a widening region of upwelling and

a weakening Ekman pumping. Given the predicted temporal structure, (4.12), the

slope of the fitted curves is used to estimate the timescale TjetU and the length scale

Ljet in the model. The results of these estimated values for all 0 = 0.01 cases are
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Table 4.2: Linear curves are fit to the square of the ratio of the maximum along-
isobath flow speed to its initial flow speed. From the initial flow parameters and the
assumption that RiD = 0.25, the slope of the curve is used to determine 7 t y,u and

Ljet. The coefficient of determination, R2 , gives the fraction of variation in the data
that is explained by the fitted curve and ranges in values from 0.96-0.99.

Run N 2  0 S U (cm/s) Tjetu/Ter,tia Ljet (km)

1 1.0 0.01 0.10 5 19.7 1.3
2 1.0 0.01 0.10 10 27.4 1.9
3 1.0 0.01 0.10 15 31.3 2.5
4 1.0 0.01 0.10 20 34.6 3.0
5 2.5 0.01 0.25 5 6.2 1.7
6 2.5 0.01 0.25 10 8.6 2.5
7 2.5 0.01 0.25 15 10.3 3.1
8 2.5 0.01 0.25 20 11.1 3.9
9 5.0 0.01 0.50 5 3.3 1.7
10 5.0 0.01 0.50 10 4.5 2.5
11 5.0 0.01 0.50 15 5.1 3.3
12 5.0 0.01 0.50 20 5.3 4.2

shown in Table 4.2. The quantity Ljet ranges from approximately 1 to 4 km and

shows a dependence on the initial flow speed as well as the slope Burger number.

Next, sections of the along-isobath flow are presented at long times for 0 = 0.01

and 0 = 0.02 in figure 4-9. These sections serve as measures of the time-integrated

secondary circulation over the slope. As demonstrated in figure 4-7, increasing strati-

fication for fixed slope angle leads to faster acceleration of the along-isobath flow over

the slope. For increasing slope angle, the sections show that the magnitude of the

along-isobath flow is stronger as well as more intensified near the shelfbreak. These

sections are compared with the predicted secondary circulation structure in figure

4-2, although X is no longer a small parameter. The simple model of jet formation

near the shelfbreak suggests that the structure of the secondary circulation becomes

increasingly asymmetrical over the slope for increasing X, in which the deeper region

leads to a greater vertical length scale for the secondary circulation. Thus, the jet

forms near the shelfbreak due to stronger vortex squashing near the shelfbreak than

vortex stretching over the deeper region offshore. In the numerical model, X is dou-
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Figure 4-9: The along-isobath flow, u/U, is shown at t/'Iertsat = 15.0 for U = 10 cm
s-'. The flow is contoured every 0.5 units for u/U > 1.0. The sections are shown for
the following cases (as well as the maximum flow speed at this time)
(a) Run 2: 0 = 0.01, N 2 = 1.0 x 10- 5 s- 2, (umax/U = 1.4),
(b) Run 6: 0 = 0.01, N 2 = 2.5 x 10-5S- 2, (umx/U = 2.1),
(c) Run 10: 0 = 0.01, N 2 = 5.0 x 10-5s-2, (umna/U = 2.7),
(d) Run 13: 0 = 0.02, N 2 = 1.0 x 10- 5s- 2, (Umax/U= 2.0),
(e) Run 14: 0 = 0.02, N 2 = 2.5 x 10- 5s- 2 , (Umax/U = 2.5), and
(f) Run 15: 0 = 0.02, N 2 = 5.0 x 10- 5s- 2, (umax/U = 2.8).
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Figure 4-10: Jet Rossby number versus slope Burger number. The Rossby number

onshore of uma, (E < 0) and offshore of umax (c > 0) is estimated from all runs at

t = 15.0 inertial periods. The symbols correspond to U = 5 cm s-1 (*), U = 10

cm s- 1 (o), U = 15 cm s- 1 (+), U = 20 cm s-1 (0) for 0 = 0.01. The (<) symbol
corresponds to U = 10 cm s-' for 0 = 0.02.

bled with an increase in 0 = 0.01 to 0 = 0.02 with Hhelf and Liope kept constant.

These sections support the analytical scalings for the strength of the along-isobath

flow, which increases for increasing slope Burger number. These sections also agree

with the structure predicted by the simple model, in which the jet becomes more

confined to the shelfbreak for increasing x.

Finally, Rossby numbers are estimated with respect to either the anticyclonic

(onshore) or the cyclonic (offshore) side of the jet. The Rossby number is calculated

by first identifying the location of uma, over the slope. Then, the horizontal positions

corresponding to Umax + (Umax - U)/2 are identified along the geopotential corre-

sponding to the position of umax. The distances between these horizontal positions

and the location of Umax give length scales to measure the Rossby numbers on either

side of the jet. The Rossby number is calculated from (Umax - U)/2 divided by the

length scale and the planetary vorticity.

In figure 4-10, the calculated Rossby numbers are shown with respect to slope
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Burger numbers from along-isobath profiles at t = 15.0 inertial periods. Two features

are apparent. First, for 0 = 0.01, the Rossby number corresponding to anticyclonic

vorticity tends to increase with increasing initial flow speed and slope Burger num-

ber. The maximum along-isobath flow increases with increasing initial flow speed and

slope Burger number, while the horizontal length scale on the anticyclonic side of the

jet remains nearly constant. For S = 0.5, U = 15 cm s- 1 , this relationship appears

not to hold because symmetric instability modifies the structure of the maximum

geostrophic flow, which is located near the bottom boundary. On the cyclonic side of

the jet, the relationship between the Rossby number and the slope Burger number is

less clear.

Second, these estimates reveal an asymmetry in the Rossby number on either side

of the jet. For 0 = 0.01, Rossby number magnitudes corresponding to anticyclonic

vorticity are significantly larger than magnitudes corresponding to cyclonic vorticity.

This relationship occurs because vortex squashing on the shallower side of the domain

is stronger than vortex stretching on the deeper side. For 0 = 0.02 (an increase in X),

this asymmetry in Rossby number is less pronounced as the jet core is increasingly

confined to the shelfbreak. The offshore length scale decreases and becomes compa-

rable to the onshore length scale. Note that the Rossby numbers for 0 = 0.02 tend

to increase in magnitude for increasing slope Burger number.

4.5 Discussion

In this section, mixing processes in the shelfbreak model and comparisons with pre-

vious numerical studies are discussed. Mixing processes enter into the flow evolution

in two ways. First, the downslope Ekman buoyancy flux weakens the stratification,

which enhances vertical mixing and thickens the bottom mixed layer on a buoy-

ancy shutdown timescale. The redistribution of buoyancy modifies the cross-isobath

pressure gradient and induces Ekman pumping offshore of the shelfbreak. Another

mechanism, which has not been thoroughly explored in the present work, could also
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Figure 4-11: At t = 0.5 inertial periods, sections are shown from the 0 = 0.01,
N 2 = 5.0 x 10-5 S-2, U = 10.0 cm s- 1 simulation for (a) the vertical diffusivity, (b)
the vertical diffusion term in the temperature equation, (c) the geostrophic along-
isobath flow, (d) the temperature field, (e) the vertical velocity, and (f) the along-
isobath flow. Shear-driven mixing over the slope tilts the isopycnals and modifies
the horizontal pressure gradient and the geostrophic flow in (c). The nonzero vertical
velocity offshore of the shelfbreak may arise from convergences in the Ekman transport
as a result of this buoyancy redistribution. In (a), the vertical diffusivity ranges from
10-5 m2 S-1 in the interior to 3.5 x 10~3 m2 s- 1 in the bottom boundary layer. In
(b), positive vertical diffusion leads to downward isopycnal tilting over the slope and
is contoured every 1.0 x 10-6 C S-1 from -3.0 x 10-6 C s-1 to 7.0 x 10-6 oC s- 1. In
(c), the geostrophic flow is computed from the horizontal pressure gradient force and
is contoured every 0.75 cm s- 1 from 6.0 cm s-1 to 10.5 cm s-1. In (d), the isotherms
are contoured every 0.15*C from 3.5'C to 5.0*C. In (e), the vertical velocity has a
maximum value of 5.0 m day- 1 and is contoured every 6.0 m day- 1 from -28.0 m
day- 1 to 2.0 m day- 1 . The negative vertical velocity reflects the downslope Ekman
flow and the positive vertical velocity reflects flow out of the bottom boundary layer.
In (f), the along-shelf flow is contoured every 0.75 cm s-1 from 6.0 cm s-1 to 10.5 cm
s-1 and reveals the Ekman layer, where near bottom along-shelf flow is reduced, over
the shelf.
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modify the cross-isobath pressure gradient. Within an inertial period, the impulsively

applied along-isobath flow causes shear-driven mixing, which leads to the formation

of a bottom mixed layer (e.g. Pollard et al. 1973, Trowbridge and Lentz 1991). This

redistribution of buoyancy could also modify the cross-isobath pressure gradient near

the shelfbreak and induce Ekman pumping as shown in figure 4-11. In the case where

the buoyancy shutdown timescale is significantly longer than an inertial period (e.g.

figure 4-5a), the early onset of Ekman pumping in the model suggests that this process

may be dominating over Ekman advection of buoyancy in modifying the cross-isobath

pressure gradient at early times. However, Ekman advection of buoyancy can explain

the longer time behavior in which along-isobath flow acceleration causes a thickening

in the bottom mixed layer beyond the estimate from initial flow parameters and a

weakening in Ekman pumping.

The two-dimensional shelfbreak configuration used in this model is similar to a

cross-shelf section in the three-dimensional configuration used in Gawarkiewicz and

Chapman (1992). For an upstream, uniform inflow over a shelfbreak, their model

shows vertical homogenization of density over the shelf and a density front near the

shelfbreak. In contrast, the model in this study shows a nonzero stratification over

the bottom mixed layer on the shelf and does not show a density front along the

bottom near the shelfbreak. These differences may be due to differences in the con-

figuration of the shelf and the horizontal boundary conditions in the two models. In

Gawarkiewicz and Chapman (1992), the shelf is inclined at an angle and intersects

a coastal wall, whereas in this model, the shelf is flat and open boundary conditions

are applied along the horizontal boundary. With an inclined bottom, downslope Ek-

man advection of buoyancy leads to vertical mixing of buoyancy and can vertically

homogenize the density field over the shelf. Furthermore, with a coastal boundary,

the secondary circulation driven by Ekman pumping at the shelfbreak must close on

the shelf, leading to a region near the coastal boundary where an onshore interior flow

turns downward and then offshore in the Ekman layer. This secondary circulation

can advect isopycnals downward and then offshore, leading to a region of vertically
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homogenized fluid near the boundary.

In contrast, this model uses a flat shelf, which precludes the possiblity of downs-

lope Ekman advection of buoyancy driving vertical mixing. Furthermore, the open

boundary condition on the shallower side of the domain allows an Ekman inflow

into the domain and interior outflow. Thus, the secondary circulation on the shelf

does not close in the domain. Then, the isopycnals near the horizontal boundary

are not advected downward and then offshore. If the horizontal boundary were a

wall, the closed secondary circulation may contribute to spindown of the geostrophic

flow on the shelf, weakening the offshore Ekman transport, the Ekman pumping near

the shelfbreak, and the acceleration of the along-isobath flow over the slope. These

potential outcomes suggest that the choice of model configurations and boundary

conditions can play an important role in setting the structure and temporal evolution

of the flow and density fields at the shelfbreak.

Both this shelfbreak model and the Romanou and Weatherly (2001) constant

slope model indicate that cross-shelf variations in the slope Burger number can lead

to cross-shelf Ekman buoyancy flux variations and consequently Ekman pumping or

suction. In their model, a downslope Ekman flow from a neutrally stratified region in

the upper half of the domain proceeds into a linearly stratified region in the lower half

of the domain. In this stratified region, a downslope Ekman buoyancy flux tilts the

isopycnals downward, which arrests the Ekman flow and leads to Ekman pumping

on the onshore side of the density front. From numerical simulations, they determine

that the horizontal length scale over which the Ekman transport converges is on the

order of 10 km. They state that this length scale is not known a priori.

However, from this shelfbreak model, the method for determining the upwelling

strength and the length scale over which it occurs can be applied to the constant

slope case. The bottom mixed layer within the stratified region will grow until reach-

ing a height 6 (4.1). The offshore Ekman transport, Mshelf, converges over a length

scale L,,pweiin, (4.4), and leads to Ekman pumping, Wpweeing (4.5), from the bottom

boundary layer. Figure 4-12 shows the configuration used in Romanou and Weath-
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Figure 4-12: Ekman pumping at a density front, a reexamination of the Romanou
and Weatherly (2001) model. At initial time, the along-isobath flow, U, is uniform.
The density field is neutral in the upper half of the domain and linearly stratified
below a certain depth (isopycnals are indicated by the grey contours). The boundary
is inclined at a constant slope angle, 0, to the horizontal. The along-isobath flow
drives a downslope Ekman transport, Mself, which advects buoyancy downslope in
the stratified region. Within this region, the bottom mixed layer grows to a depth
6, at which time the Ekman transport is arrested by buoyancy shutdown. Thus,
the Ekman transport converges over a horizontal length scale, Lupweiiing, which leads
to Ekman pumping, w -- Wupwelling. Ekman pumping drives an interior secondary
circulation, but its horizontal and vertical structure depends on the horizontal and
vertical boundary conditions.

erly (2001) and includes references to these scalings. In their model, N = 1.28 x

10-2 s-I, 0 = 2.4 x 10-3, f = 6.3 x 10-5s1 so that S = 0.24. The initial along-

isobath flow is U = 15 cm s-1. Assuming that RiD = 0.25, application of (4.4) yields

Lupweiiing = 10.6 km, which is consistent with their numerical model results. Thus,

these scalings show that the horizontal length scale over which Ekman pumping oc-

curs can be estimated a priori. Near the Middle Atlantic Bight shelfbreak, the region

in which Ekman pumping will occur depends on the cross-shelf gradient in the slope

Burger number. Thus, hydrographic observations can be used to identify regions

of convergence and divergence in the Ekman transport around the shelfbreak front,

assuming that buoyancy shutdown processes are significant to the dynamics.
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4.6 Conclusions

The adjustment of an initially uniform geostrophic current over a shelfbreak leads to

Ekman pumping and the formation of a jet near the shelfbreak. An offshore Ekman

transport passes over the shelfbreak and onto the slope. On the slope, downslope

Ekman advection of buoyancy forms a bottom mixed layer that thickens in time,

weakening the bottom stress and the Ekman transport. This process creates a hori-

zontal region in which the Ekman transport converges and leads to Ekman pumping.

Ekman pumping drives an interior secondary circulation over the slope that closes

offshore in the deep, flat region, where the Ekman transport diverges.

Scalings are derived for the strength of the upwelling, the length scale over which

it occurs, and the timescale for jet formation near the shelfbreak. Time-dependent

feedback between the jet and the bottom mixed layer is predicted to increase the

length scale over which upwelling occurs, thereby weakening the Ekman pumping.

This feedback increases the buoyancy shutdown timescale.

A simple model of the secondary circulation over the slope demonstrates two key

parameters that control the structure of the secondary circulation. The first pa-

rameter, H - Hohelf/Hp, sets the vertical structure of the secondary circulation, in

which the secondary circulation becomes more confined to the bottom for increas-

ing stratification (decreasing Hp). The second parameter, X OLslope/Hshelf, also

plays an important role in the secondary circulation's structure. For increasing x,

the secondary circulation becomes increasingly asymmetric about the middle of the

slope due to a larger vertical length scale on the offshore, deeper side of the domain.

Increasing asymmetry in the secondary circulation leads to more pronounced acceler-

ation of the along-isobath flow near the shelfbreak and the formation of a shelfbreak

jet.

Process-oriented numerical simulations are run to test the scalings and the hy-

pothesized temporal and spatial structures of the flow. The cross-shelf position of

the maximum Ekman pumping correlates with the bottom, cross-shelf position of the
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isopycnal that initially intersected the shelfbreak. These positions evolve on a buoy-

ancy shutdown timescale and are on the same order of magnitude as the predicted

upwelling length scale from initial flow parameters.

Next, Ekman pumping from the model is compared with the scaling for Ekman

pumping, which predicts an increase in Ekman pumping for increasing slope Burger

number. The scaling for Ekman pumping is of the same order of magnitude as Ek-

man pumping in the model. The discrepency between the values and the temporal

behavior of Ekman pumping in the model is a subject for future investigation. When

along-isobath flow acceleration over the slope is taken into account, most values from

the model fall within the bounds. A comparison with the Gawarkiewicz and Chapman

(1992) model shows that the vertical velocity from their run with an initial laterally

uniform along-isobath flow over the shelfbreak falls within the scaling bounds. In

the model runs for 0 = 0.01, the maximum Ekman pumping is 8.5 m day-1, which

is within observed estimates. Thus, this scaling for Ekman pumping may provide a

measure to compare with observed upwelling rates near the Middle Atlantic Bight

shelfbreak front.

An examination of the along-isobath flow over the slope shows that it accelerates

consistently with the predicted temporal evolution. The ratio Umax/U tends to grow

faster for smaller initial flow speeds and larger slope Burger numbers. In most cases,

the ratio (Umax/U) 2 temporally evolves as predicted, with a linear growth in time

before the onset of symmetric instability. A jet forms near the shelfbreak which be-

comes more pronounced for increasing x.

Other features arise that can modify the structure of the flow. Cross-isobath Ek-

man advection of buoyancy is shown to thicken the bottom mixed layer height but

vertical advection of buoyancy can also increase the height. Offshore of the shelf-

break, vertical advection of buoyancy can lead to a thickening bottom mixed layer,

which is analogous to Pickart's (2000) detached bottom boundary layer. Symmetric

instability becomes evident in the temperature field, the secondary circulation, and

the geostrophic flow. This feature modifies the structure of the bottom boundary
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layer and can impact the dynamics and the scaling arguments presented here. Fur-

ther work is necessary to quantify the impact of symmetric instability on the Ekman

pumping, the interior secondary circulation, and the jet acceleration.
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Chapter 5

Conclusions

The purpose of this dissertation is to examine the dynamics of frictionally driven

flows over stratified sloping boundaries. The main idea explored in this work is that

frictionally driven flows couple with the buoyancy field to redistribute tracers, mod-

ify Ekman pumping and suction, and influence the geostrophic vertical vorticity field

through feedback with interior secondary circulations. In Chapter 1, previous re-

search with a focus on observations is presented to identify unanswered questions

on this subject and to motivate further examination of the coupled dynamics with

analytical and numerical techniques. Theoretical frameworks are formulated and ap-

plied to investigate this coupling and feedback process. The following three scenarios

are considered: the linear spindown of a laterally sheared along-isobath flow over a

stratified slope inclined to the horizontal at a constant angle, the transition of linear

spindown into the nonlinear regime, and the stratified spindown of an initially uni-

form along-isobath flow over a shelfbreak. This section summarizes the key findings

of each chapter, places these findings in the context of previous research, and presents

questions for future work.

In Chapter 2, the linear adjustment of a laterally sheared along-isobath flow

is examined over a stratified sloping boundary inclined at a constant angle to the

horizontal. An analytical framework for viscous, diffusive flows in a uniformly rotat-

ing fluid is used to examine how buoyancy forces and Ekman dynamics couple on
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the insulated slope. The flow's linear adjustment consists of a component from the

adjustment of the stratification, which leads to the generation of an upslope Ekman

transport, as well as a component from the adjustment of the laterally sheared flow,

which leads to the suppression of the laterally sheared initial Ekman transport.

Within this framework, the temporal adjustment of the stratification alone shows

that diffusion causes the initially flat isopycnals to tilt in a thermal boundary layer

adjacent to the slope. Then, the horizontal pressure gradient induces a geostrophic

along-isobath flow and an upslope Ekman transport, which advects denser fluid up-

slope and tends to reduce the diffusive heating of the thermal boundary layer. In

contrast to previous steady-state works (e.g. Thorpe 1987), the timescale is identified

for the generation of upslope Ekman transport, under the assumption of small slope

Burger numbers and order one Prandtl numbers. Furthermore, the time-dependent

solution is shown to asymptote to Thorpe's (1987) steady-state solution.

Next, the temporal adjustment of the laterally sheared flow shows that the initial

Ekman transport drives a downslope or upslope buoyancy flux, which buoyancy into

or out of a thicker thermal boundary layer. This buoyancy flux causes the isopyc-

nals to tilt within the thermal boundary, weakening the bottom stress and hence the

Ekman transport. In the limit of small slope Burger numbers and order one Prandtl

numbers, the buoyancy shutdown timescale considered in this case is equal to the

buoyancy shutdown timescale in previous studies (e.g. MacCready and Rhines 1991).

In contrast with previous works that did not have lateral variations (e.g. MacCready

and Rhines 1991) or did not explicitly calculate the Ekman pumping and suction

(Chapman 2002a), the time-dependent solution for Ekman pumping and suction is

explicitly solved. A comparison of this solution with the classical stratified spindown

solution over a flat bottom reveals the linear suppression of Ekman pumping and

suction by buoyancy shutdown. The ratio of the spindown timescale to buoyancy

shutdown timescale is the key parameter that determines the extent of coupling be-

tween the frictionally driven flow and the buoyancy field. When this ratio is order

one, buoyancy shutdown weakens both Ekman pumping and suction at leading order.
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Finally, the analytical theory is used to examine how the potential vorticity (PV)

field is modified by frictional and diabatic processes near the sloping boundary. For

small slope Burger numbers and order one Prandtl numbers, diabatic PV fluxes are

shown to scale larger than frictional PV fluxes. In contrast to previous density-layered

models (e.g. Williams and Roussenov 2003), which did not clarify the coupling be-

tween frictional and diabatic forcings, this work shows that frictional processes can

drive diabatic PV fluxes and diabatic processes can drive frictional PV fluxes in a

continuously stratified model. Furthermore, Ekman components dominate the dia-

batic and frictional PV fluxes but cancel in the total PV flux, which suggests that an

estimate of the total PV flux by the magnitude of either contribution alone can lead

to an overestimate of the total PV flux. The ratio of the initial Ekman transport to

the steady-state upslope Ekman transport determines the relative contributions to

the total PV flux from adjustment of the laterally sheared flow and the adjustment of

the stratification. Diffusion of the stratification extracts PV, while upslope (downs-

lope) Ekman flows tend to input (extract) PV. Finally, a scaling for the change in the

area-integrated PV shows that the slope Burger number also controls the amount of

PV extracted from or input into the system.

In Chapter 3, homogeneous or stratified spindown over a flat bottom as well as

stratified spindown over a sloping bottom are examined for increasing nonlinearity.

This work reveals an asymmetry that arises in Ekman pumping and suction as well as

an asymmetry in the spindown of cyclonic and anticyclonic vorticity. The adjustment

of a laterally sheared geostrophic flow with sinusoidal lateral shear is used to contrast

the relative roles of momentum advection and nonlinear buoyancy advection in these

asymmetries.

For nonlinear homogeneous spindown over a flat bottom, previous works indicate

an asymmetry in Ekman pumping and suction at order Rossby number (e.g. Hart

2000), where Ekman pumping is weaker than Ekman suction. Other works (e.g.

Zavala Sans6n and van Heijst 2000) note that cyclonic vorticity decays faster than

anticyclonic vorticity for increasing Rossby number. In order to synthesize these two
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features in time-dependent spindown, a uni-directional geostrophic flow is expanded

to order Rossby number. The general solution shows that time-dependent feedback

between lateral advection of momentum in the interior and the interior geostrophic

flow is an important contribution which enhances the time-dependent asymmetry in

Ekman pumping and suction. Furthermore, the solution shows that lateral advection

of momentum in the interior causes cyclonic vorticity to decay faster than anticyclonic

vorticity. Thus, stretching and squashing of vertical relative vorticity dominates over

stretching and squashing of planetary vorticity by nonlinear Ekman pumping and

suction in setting the asymmetry in spindown of vertical relative vorticity.

For nonlinear stratified spindown over a sloping bottom, the linear analysis from

the preceding chapter is extended into the nonlinear regime. An analytical expansion

shows that nonlinear Ekman advection of buoyancy leads to a correction to the flow

that can scale larger than order Rossby number corrections by momentum advection.

A theoretical formulation shows that nonlinear Ekman advection of buoyancy leads

to nonlinear buoyancy shutdown, in which the bottom stress is suppressed to a greater

extent in regions of cyclonic flow than regions of anticyclonic flow. Vertical advec-

tion of buoyancy in the thermal boundary layer tends to enhance this effect. This

distribution of buoyancy enhances suppression of Ekman pumping over Ekman suc-

tion. Then, since the correction to Ekman pumping and suction can scale larger than

order Rossby number, stretching and squashing of planetary vorticity can dominate

over stretching and squashing of vertical relative vorticity in setting the asymmetri-

cal decay of vertical relative vorticity. Numerical experiments support the analytical

analysis and show that anticyclonic vorticity can decay faster than cyclonic vorticity

when nonlinear advection of buoyancy dominates over momentum advection. For

flows over upper continental slopes, where timescale estimates, e.g. on the order of a

day, indicate that buoyancy shutdown may be important to the Ekman flow, correc-

tions to Ekman pumping and suction by nonlinear buoyancy shutdown can enter into

the leading order dynamics. Then, an asymmetry in Ekman pumping and suction

may arise and lead to faster spindown of anticyclonic vorticity than cyclonic vorticity
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outside of the bottom boundary layers.

In Chapter 4, the adjustment of an initially uniform along-isobath flow over a

stratified shelfbreak is examined. This work investigates the dynamical significance

of the shelfbreak, a questioned posed in previous research. The adjustment process

demonstrates how coupling between the Ekman flow and the buoyancy field leads to

the generation of Ekman pumping and jet formation near the shelfbreak. From a

flat shelf, an offshore Ekman transport flows past the shelfbreak and onto the slope,

where downslope Ekman advection of buoyancy forms a thickening bottom mixed

layer which weakens the bottom stress. Then, a horizontal boundary layer forms

over which the Ekman transport converges and leads to Ekman pumping. Ekman

pumping drives an interior secondary circulation that accelerates the along-isobath

flow over the slope. Scalings are derived for the upwelling strength, the length scale

over which it occurs, and the timescale for jet formation.

An analytical analysis of the secondary circulation over the slope reveals that the

horizontal structure of the secondary circulation becomes increasingly asymmetrical

for an increasing change in fluid depth over the slope with respect to the fluid depth

over the shelf. This asymmetrical structure leads to the preferential formation of a

jet near the shelfbreak.

Temporal feedback between the accelerating flow over the slope and the bot-

tom boundary layer dynamics is also considered. An accelerating along-isobath flow

thickens the bottom mixed layer, widens the upwelling region, and weakens Ekman

pumping. Thus, this feedback increases the buoyancy shutdown timescale as well as

the timescale for along-isobath flow acceleration over the slope.

Process-oriented numerical simulations are used to further explore the coupled

dynamics, test the scalings, and the hypothesized temporal evolution and spatial

structure of the flow. Agreement between the maximum Ekman pumping, the maxi-

mum along-isobath flow over the slope, and the width of the upwelling region in the

model with the analytical scalings and predicted evolution suggest that these scalings

may be used in understanding flow features near shelfbreaks. Ekman pumping by
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buoyancy shutdown is comparable to observed rates of upwelling near the Middle

Atlantic Bight shelfbreak front.

Future work

The theoretical work presented in this thesis provides motivation for future numeri-

cal and observational studies. In this section, ideas for future research are presented.

In Chapter 2, diabatic and frictional processes along the stratified sloping boundary

lead to potential vorticity input and extraction from the ocean. However, the mod-

ified potential vorticity remains confined within the thermal boundary layer as the

non-eddying model is not able to transmit this modified potential vorticity into the

quasi-inviscid interior. Future numerical work is necessary in order to understand

how this modified potential vorticity is transferred into the interior and the role of

these processes in setting the structure of potential vorticity in the deep ocean and,

for example, deep western boundary currents. Stratified sloping boundaries serve as

sources or sinks of potential vorticity and their net effect on the circulation still re-

mains to be quantified.

In Chapter 3, the relative roles of momentum and buoyancy advection in the dy-

namics of nonlinear spindown show that nonlinear buoyancy advection can dominate

the frictionally driven circulation, modifying both the vertical circulation as well as

the spindown of cyclonic and anticyclonic vorticity. The two-dimensional analysis

considered here raises the question of how this process could modify not only the

structure of narrow boundary currents but the spindown of small scale, geostroph-

ically balanced eddies or vortices over stratified sloping topography. The coupling

between the Ekman flow and the buoyancy field may lead to a vertical circulation

and an asymmetrical spindown of vorticity with a temporal and spatial structure

unlike that predicted for a homogeneous fluid. For increasing Rossby number, the

characteristics of three-dimensional instabilities that may arise during the adjustment

process remain to be explored.
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In Chapter 4, an analytical and numerical examination of coupling between the

Ekman flow and the buoyancy field leads to upwelling and jet formation near the

shelfbreak. The numerical study chose parameter regimes applicable to the Middle

Atlantic Bight shelfbreak front. This work could potentially be extended to other

shelfbreak currents, such as in the Beaufort Sea where a halocline exists at depth,

or in the Irminger Sea. Application of the scaling for upwelling by buoyancy shut-

down requires hydrographic information on the cross-isobath buoyancy gradients at

the bottom as well as velocity measurements of the geostrophic along-shelf flow.

Future observational studies are necessary to test the extent to which buoyancy

shutdown processes play a crucial role in setting the position of the shelfbreak front,

the upwelling along the front, and the strength of the shelfbreak jet. In contrast to the

two-dimensional shelfbreak problem examined in this work, flow temporal variabil-

ity, three-dimensional instability, as well as surface and offshore forcing complicate

the dynamics of the observed shelfbreak front. The relative roles of these processes

and bottom boundary layer processes to the shelfbreak front is subject to further

investigation.
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Appendix A

Nonlinear corrections to Ekman

pumping in stratified spindown

In this appendix, the nonlinear corrections to Ekman pumping are documented for

an along-isobath flow that is initially u = U cos(y/L) during stratified spindown over

a flat or sloping bottom. The purpose of documenting these corrections is to show

how frictionally driven secondary circulations can couple with the buoyancy field to

modify both the strength and lateral structure of Ekman pumping. In Chapter 3,

these nonlinear corrections are used to contrast the roles of momentum advection

and buoyancy advection in setting the asymmetry in Ekman pumping and suction.

In contrast to homogeneous spindown over a flat bottom, buoyancy advection by the

secondary circulation can modify Ekman pumping at a lower order than at order

Rossby number. These corrections are listed from lowest to highest order up to or-

der Rossby number under the following assumptions. In Chapter 2, over a sloping

bottom, o- = 0(1), E < o-~1/2E1/4 < 1, S < 1, uS > E1/2 and Minitial/MThorpe > 1-

Over a flat bottom, the corrections are listed in order subject to the first two of these

assumptions.

The higher order corrections are denoted by a superscript, n > 1. Note that the

leading order Ekman pumping scales as Ei/21'U for n = 0 and this scaling has been

factored out from the corrections. The magnitude, lateral structure, and sign of the
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correction to Ekman pumping is presented and the corresponding nondimensional

equations used to determine that structure is also presented when necessary. The

equations not listed in the below documentation are the linear equations previously

given in Chapter 2 subject to a flat or sloping bottom. At the end of Chapter 3,

these corrections to Ekman pumping are used to interpret the temporal and spatial

structure of Ekman pumping for increasing Rossby number for homogeneous spin-

down, stratified spindown over a flat bottom, and stratified spindown over a sloping

bottom.

A.1 Flat bottom

For stratified spindown over a flat bottom, there are five corrections to Ekman pump-

ing, w, = ili (z = 0), to order Rossby number.

1.a. w )x o- 1/ 2E1/4 sin(y).

Vertical advection of the laterally uniform buoyancy anomaly, bT, as shown in

__ ~bT 182(1)

at+ Wi (z =' 0)-= (A. 1)

reduces the total tilt of isopycnals in the thermal boundary layer. This reduction

in tilting of isopycnals leads to anomalously lower (higher) pressure in the cyclonic

(anticyclonic) region and a horizontal pressure gradient that enhances the Ekman

transport in phase with the Ekman transport in the linear approximation. Thus,

this correction to Ekman transport enhances the leading order Ekman pumping and

suction. In the wind forced problem, Thomas and Rhines (2002) note that vertical

advection of the laterally uniform buoyancy anomaly in the surface thermal boundary

layer is necessary for an accurate representation of the temperature field and the flow

evolution. This nonlinear correction is solved numerically in time in Appendix B.l.

Ekman pumping at y = r/2 is plotted in figure A-1 with and without this nonlinear
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Figure A-1: Ekman pumping at y = r/2 increases from its linear analytical solution
(dashed line) when the O(E 1 /4) correction is included (solid line). Ekman pumping is
measured by the vertical velocity evaluated at z' = 0.08 in the numerical model and by
wi(z = 0) in the analytical model. Numerical simulations, where E = 0.01, o = 1, and
E1/4 = 0.16, show that this nonlinear correction can account for the greater Ekman
pumping in stratified spindown than in homogeneous spindown over a flat bottom.
The filtered Ekman pumping solution from homogeneous spindown (o) decays over
the timescale Tpindon = E- 1/2 f- 1 , where E = (6e/H) 2. The filtered Ekman pumping
solution from stratified spindown over a flat bottom (+) decays over the timescale

Tspindown = E- 1/2 f-1, where E = (6e/Hp)2. In both homogeneous and stratified
spindown, Minitiaa = 0.07 m2 s-1 and L = 10.6 km.

correction as well as the filtered Ekman pumping from the homogeneous and strati-

fied spindown simulations for E = 0.01, o = 1 and E1/4 = 0.16. The greater Ekman

pumping in stratified spindown than in homogeneous spindown over a flat bottom is

consistent with the addition of this nonlinear correction.

2.a. w (2) a _ .1 / 2 E cos(2y).

Vertical advection of the thermal boundary layer buoyancy anomaly, bI, from cor-
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rection 1.a, where

T59 ~ O) T5) 12g
t+ w7 i(z 0) = - , (A.2)

contributes to a secondary circulation which tends to enhance Ekman pumping at

y = 7/2 and reduce Ekman suction at y = -7/2. This O(E) correction tends to

oppose the effect of momentum advection, which tends to reduce Ekman pumping

and enhance Ekman suction. However, since the buoyancy anomalies, bWl, )b, need

to grow in time in order for this effect to occur, numerical simulations are necessary

in order to see whether this correction has a nonnegligible effect on Ekman pumping

and suction for increasing Rossby number.

3.a. w( oc -e cos(2y).

Lateral Ekman advection of the thermal boundary layer buoyancy anomaly, b(), from

correction 1.a, balances diffusion of buoyancy,

5(1) 18b&() __ a (A.3)e ay 2 r/2'

and, by the no buoyancy flux boundary condition, leads to a higher order thermal

boundary layer buoyancy anomaly that grows by diffusion. This correction modifies

Ekman pumping at the same order and with the same structure as correction 2.a,

but, as previously noted, the buoyancy anomaly needs to grow in time in order to

counter the effects of momentum advection at order Rossby number.

4.a. w(2) x c cos(2y).4a.wp

As in homogeneous spindown over a flat bottom, horizontal Ekman advection of mo-

mentum leads to an asymmetry in Ekman pumping and suction, in which Ekman

pumping at y = w/2 is reduced and Ekman suction at y = -7/2 is enhanced. In con-

trast to the corrections to Ekman pumping that arise from buoyancy modifying the

pressure field, this nonlinear correction is nonzero within an inertial period, whereas
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the buoyancy anomalies arise in time.

5.a. w,( oc cos(2y).

Lateral Ekman advection of the interior buoyancy anomaly balances diffusion of buoy-

ancy,

____) - -__ (A.4)
* ay ~2 Br7 '

leads to a thermal boundary layer buoyancy anomaly by the no buoyancy flux bound-

ary condition. This buoyancy anomaly modifies the horizontal pressure gradient and

the Ekman transport such that it enhances the asymmetry in Ekman pumping and

suction from Ekman advection of momentum. Since corrections 2.a and 3.a tend

to oppose corrections 4.a and 5.a, the numerical simulations are needed to examine

which effects play a more substantial role for increasing Rossby number.

A.2 Sloping bottom

For stratified spindown over a sloping bottom, there are 10 corrections to Ekman

pumping that arise from coupling between the frictionally driven circulation and the

buoyancy field and are larger than order Rossby number. Correction 1.b modifies the

linear dynamics in spindown over a sloping bottom and, in order to keep consistent

notation with Chapters 2 and 3, is denoted as n = 0. The nonlinear corrections are

only documented for the first or second harmonic. Furthermore, in order to simplify

this analysis, the examination is restricted to coupling between the Ekman flows due

to the laterally sheared along-isobath flow and the buoyancy field, i.e. higher order

coupling with the flows arising from diffusion of the stratification is neglected.

In this section, the equations are shown in the rotated coordinate frame. In the

thermal boundary layer, the geostrophic along-isobath flow is balanced by two com-

ponents to the pressure field. By using the hydrostratic relationship, this expression
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in dimensional form is

fT - j bTd' - ObT. (A.5)

As applied in Chapters 2 and 3, the second term on the right hand side of the above

expression leads to buoyancy shutdown of the Ekman transport and is larger than

the first term on the right hand side when E1/ 2 < oS on the spindown timescale. So,

from stratified spindown over a flat bottom, all the nonlinear corrections to Ekman

pumping from coupling at order Rossby number due to coupling with the buoyancy

field can give rise to an additional correction that is larger than order Rossby number

on a sloping bottom if E 1/ 2 <cr.

1.b. (0 "c -6/1/2 Sin (y).

Lateral Ekman advection of the background stratification balances diffusion of buoy-

ancy, where

-- (O) - Ik 0  (A.6)
e 2 Dr/2

and leads to buoyancy shutdown of the Ekman pumping at 0(01/2) from the second

term in (A.5). As detailed in Chapter 2, when 3 = 1, this correction reduces the

leading order Ekman pumping and suction equally.

2.b. ( c( #1/2,.1/ 2E- 1/ 4e cos(2y).

Lateral Ekman advection of the buoyancy anomaly in correction 1.b balances diffusion

vj(O) = T - 1 (A.7)e 89y 2 Br2

and leads to a larger buoyancy anomaly in regions of cyclonic flow than anticyclonic

flow. From the second term in (A.5), this buoyancy anomaly leads to nonlinear

buoyancy shutdown, in which Ekman pumping is suppressed to a greater extent than
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Ekman suction. At the same order, this buoyancy anomaly is enhanced by vertical

advection in the thermal boundary layer, where

0(1) g_(0) a 2bM
T () (Z ) T _ T (A.8)

at O 2 862

which contributes to a larger buoyancy anomaly in regions of cyclonic flow than anti-

cyclonic flow. Since this correction occurs at O(/31/ 2 ui/ 2E- 1/4e), nonlinear advection

of buoyancy can lead to more pronounced asymmetry in Ekman pumping and suction

than by Ekman advection of momentum alone at O(e).

3.b. w (2) oc S2 cos(y).

From lateral Ekman advection of the background stratification in correction 1.b,

the buoyancy anomaly that arises in the thermal boundary layer balances an along-

isobath flow from the first term in (A.5). In contrast to the component that leads

to linear buoyancy shutdown, this correction does not enter into the leading order

dynamics.

4.b. w( oc S 112 cos(y).

From vertical advection of the laterally uniform buoyancy anomaly in the thermal

boundary layer, the resulting buoyancy anomaly that is noted in L.a leads to another

component of the along-isobath flow from the second term in (A.5). Both nonlinear

corrections 3.b and 4.b cause Ekman pumping (suction) where the initial interior

along-isobath flow is a (maximum) minimum, rather than modify Ekman pumping

and suction on the cyclonic and anticyclonic axes.

5.b. w c ai/2E 1 /4S/ 2e sin(2y) =31/2-1/2e sin(2y).

In correction 2.a, vertical advection of the cross-isobath varying buoyancy anomaly

leads to another buoyancy anomaly in the thermal boundary layer. This buoyancy

anomaly balances an along-isobath flow from the second term in (A.5).
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6.b. w cC 1i/2E- 1/4S 1/2e sin(2y) = 0 1/ 2 S- 1/2e sin(2y).

In correction 3.a, lateral Ekman advection of the cross-isobath varying buoyancy

anomaly balances diffusion. By the no normal buoyancy flux boundary condition,

the buoyancy flux from the Ekman layer leads to a higher order buoyancy anomaly in

the thermal boundary layer. This buoyancy anomaly balances an along-isobath flow

from the second term in (A.5).

7.b. w7  c -oi/ 2 E-1/4 S/ 2 sin(2y) -#1/2 -1/2csin(2y).

In correction 5.a, lateral Ekman advection of the interior buoyancy anomaly balances

diffusion. By a buoyancy flux from the Ekman layer, the buoyancy anomaly arises in

the thermal boundary layer. This buoyancy anomaly balances an along-isobath flow

from the second term in (A.5).

8.b. w oc ai/ 2E 1/4Si/2 sin(2y) = # 1/2 -1/2 csin(2y).

In correction 1.b, lateral Ekman advection of the background stratification balances

diffusion and gives rise to a buoyancy anomaly in the thermal boundary layer that

leads to buoyancy shutdown. From vertical advection of this buoyancy anomaly in

the thermal boundary layer, another buoyancy anomaly is formed and balances an

along-isobath flow from the first term in (A.5).

9.b. w7 cx a 1/2E-1/4 1/2 sin(2y) =3 1/2 -1/2 esin(2y).

In correction 2.b, the buoyancy anomaly that corresponds to nonlinear buoyancy shut-

down from the second term in (A.5) also contributes to an additional along-isobath

flow that is balanced by the first term in (A.5). Note that this correction does not

modify the Ekman pumping and suction on the cyclonic and anticyclonic axes of the

interior along-isobath flow.

10.b. w c a- 1/ 2El/ 4 sin(y).
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As previously documented in 1.a, vertical advection of the laterally uniform buoyancy

anomaly leads to an O(E/ 4) correction to Ekman pumping and suction. However,

in contrast to stratified spindown over a flat bottom, this correction is not the most

dominant correction.

The order of the corrections listed above are justified as follows. In Chapter

2, in order to focus on the dynamics of buoyancy shutdown, E 1/4u-1/ 2 <gi2,

so that the second term in (A.5) dominated over the first term. This assump-

tion means that the O(S1/ 2) corrections dominate over the O(o- 1/2E 1/4) correc-

tion. The corrections 5.b-9.b are larger than O(-1/2E1/4) given the assumption

that Minitial/MThorpe = EE-1/2Si/2- > 1. Correction 10.b still remains larger than

O(e) under the assumption that E < u-1/ 2E 1/4. This assumption is necessary so that

the nonlinear corrections do not modify the leading order dynamics in the analytical

analysis. The numerical simulations examine the case in which the Rossby number

is not restricted to this constraint.
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Appendix B

Discretization of the equations for

linear and nonlinear stratified

spindown

This appendix presents the numerical method that is used to solve for the leading

order correction to stratified spindown (SSD) on a flat bottom, i.e. correction L.a in

Appendix A, and the nonlinear correction on a sloping bottom, i.e. correction 2.b in

Appendix B. The equations are solved using the Crank-Nicolson method (Crank and

Nicolson 1947), in which the partial derivatives in time and space are discretized at

a fictitious point in between two time steps.

The labels j and k denote the nondimensional time index and the thermal bound-

ary layer vertical coordinate index, respectively. The numerical solution is calculated

on a grid from 1 < j < J and 1 < k < K, where the initial conditions are applied

at j = 1 and the maximum number of time steps and spatial steps in the domain

are given by J and K, respectively. For stratified spindown on a flat bottom, the

forcing term to the nonlinear correction is applied from the analytical linear solution.

On a sloping bottom, the forcing terms in the equations for the nonlinear correction

are applied from the numerical solution to the linear problem. The linear problem is

solved by first discretizing the set of equations, boundary conditions, and initial con-
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ditions (2.100)-(2.108) that describe the linear dynamics of spindown and buoyancy

shutdown. Then, the numerical solution for the linear dynamics is applied to the

set of equations and boundary conditions that describe nonlinear buoyancy shutdown

and (3.73)-(3.77).

B.1 Discretization of the equations for the correc-

tion to SSD on a flat bottom

The vertical advection of the laterally uniform buoyancy anomaly, bT, in the thermal

boundary layer by the zeroth-order Ekman pumping, leads to a buoyancy anomaly,

where bg)(t, y, ) e-t/2 sin(y)B ) (t, (). In the thermal boundary, the equations for

the buoyancy anomaly and the along-isobath flow become

at 2BT
182B(1)

1 2
_1 bT

1 8 b r (B.1)

(B.2)J 00
U() = e-t/2

for t > 0, 0 < ( < oc. In the interior, the along-isobath flow satisfies

= __- (1) , (B.3)at

where o(1) (t) determines the temporal evolution of the interior secondary circulation.

From the analytical solution,

=_ -erfc( ).
0 vf2-t

is applied.
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These equations are solved subject to the following Ekman pumping, no normal

buoyancy flux at the bottom, and no far-field thermal boundary layer flow boundary

conditions:

dpm1 1
d pl) +
dt 2

a U T() 
)

aBT (t, 0))

T(t, (= 0)

U(1, B() -00

- 0,

= 0,

as ( -+ 0.

(B.5)

(B.6)

(B.7)

These equations are discretized, where A = 1/2 for the Crank-Nicolson scheme, r =

At/(2(A() 2), At is the nondimensional time step, and AZ is the nondimensional

thermal boundary layer grid step. The discretized diffusion equation is

-ArB k+I + (1 + 2Ar - A)BS)|+ - ArB1)| .k-1

- (1- A)rB(1)I I+1 + (1 - 2r(1 - A) + )BSP| + (1T~ i 4 7
Atr j >1 k

4 O -+1

for j > 1, 1 < k < K.

(B.8)

- A)rB) I-1

DbT kJ+ b)

The boundary condition for BR at ( = 0 is derived such

that it is consistent with the diffusion equation. From an expansion of B() at k = 1,

where the no buoyancy flux boundary condition is applied,

82B (l
a82 J

2 (B(lI k=2 - B()I=1).
(Ag) 2 T T

(B.9)

From substituting (B.9) into equation (B.1), the boundary condition for B1, j > 1

at ( = 0, becomes

(1 + 2Ar -
A t)B(1) k1 - 2ArB() |k=2
4 T Ti (B.10)

= (1 - 2(1 - A)r + A)B(1) k1 + 2(1 - A)rB 1 j 2 +
4 T -1T iI+ 2
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For ( -+ oc, the no far-field thermal boundary layer buoyancy anomaly boundary

condition becomes

B() =K 0. (B.11)

The initial condition for B(1) becomes

B _11 = 0. (B.12)

From equation (B.8), B(1) is determined at each time step, j > 1, by solving

AB()|1<k<K-1 = b, (B.13)

where A is a K - 1 x K - 1 tridiagonal coefficient matrix with elements determined

by the left hand side of (B.8), B(') |kK-1 is the K - 1 x 1 solution column vector,

and b is the K - 1 x 1 column vector with elements determined by the right hand

side of (B.8), subject to the boundary condition (B.11). This tridiagonal system

of equations is solved with the Thomas algorithm. Then, U(1 ) is determined from

(B.2) by vertically integrating the solution to B(P. Then, (1) is determined from the

discretized Ekman pumping boundary condition

() 4 -At ()2 (1k1U()k1(B14
|- = ()- - At )(UT)=1 US1 | ). (B.14)

Finally, the time evolution of the interior along-isobath flow is solved the interior

momentum balance

U i | =1 Uf _1 + At ( j3| + 90O|().I) (B. 15)2

This system of equations is solved with At = 0.01, A = 0.02 on a grid from t = 0 to

t = 10 and = 0 to ( = 10. Thus, J = 1001, K = 501 and r = 12.5.
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B.2 Discretization of the linear SSD equations on

a sloping bottom

In Chapter 2, the zeroth order linear solution for the interior along-isobath flow is

decomposed as UI0 ) (t, z) = 1 - T(O)(t)ez. The time evolution of the interior along-

isobath flow is determined by

+ pf") = 0, (B.16)
dt

after the solution o() is solved below. The coupled set of partial differential equations

reduces to the diffusion equation

BU(O) I 2U(O)
T 2 T (B.17)

at 2 8(2

for t > 0, 0 < < oc, subject to the following no-slip, Ekman pumping, no normal

buoyancy flux at the bottom, and no far-field thermal boundary layer flow boundary

conditions:

1(0) + (1 - W a) + #1/2Uf(( = 0)) = 0, (B.18)

+ -((0) + 11/2 ( 0)) 0, (B.19)
dt 2 at

T (0) ) 0, (B.20)

U 0as -- oo, (B.21)

and the following initial conditions:

( -C")(t= 0), U 0)(t = 0), p(0)(t = 0)) = (0,0, -). (B.22)

These equations are discretized, where A - 1/2 for the Crank-Nicolson scheme,

q - At/Ac, r = At/(2(A )2 ), At is the nondimensional time step, and A is the

193



nondimensional thermal boundary layer grid step. The discretized diffusion equation

-Ar UT 4+ + (1 + 2Ar)U | j+ 1 - Ar U |j

= (1 - A)r U(2 )| +1 + (1 - 2r(1 - A))U(?)J3 + (1 - A)rU()| I,

(B.23)

for j > 1, 1 < k < K. The boundary condition for U 0" at ( = 0

it is consistent with the diffusion equation, where

at j+ 2
A &2U(O)

2 +1 +

is derived such that

1 - A &2U(O)

2 8(2 i
(B.24)

From an expansion of U0 at k,

a2U(O)
T 1 -U ()[) 2 0 U()

- j ) -( j|. (B.25)

Then, at k = 1, with (B.20),

2 2 - U I) ) + ( )( .

Equation (B.19) is discretized on the Crank-Nicolson stencil at j + 1/2, k = 1, so that

() + = - )At (0) 4 2 /t)(U =j - U? k 1).

Then, from substituting equations (B.26)-(B.27) into equation (B.24), the boundary

condition for U) j > 1, becomes

(1 + 2Ar + )U() ' - 2Ar U) =2
4 ±At T j AT +2(1

4-i+AtT -

(B.28)

A)rU0 ) jk=2

+ (2Aq(4 + )+2(1-
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The boundary condition as ( --+ oc becomes

U =O) K =0. (B.29)

The initial conditions become

((0 C0y=, U - 1, (0)I=1) = (0, 0, - (B.30)

From equation (B.23), U 0) is determined at each time step, j> 1, by solving

AoU2) l k<K-1 = bo, (B.31)

where AO is a K - 1 x K - 1 tridiagonal coefficient matrix with elements determined

by the left hand side of (B.23), U2) kK-1 is the K - 1 x 1 solution column vector,

and bo is the K - 1 x 1 column vector with elements determined by the right hand

side of (B.23), subject to the boundary conditions (B.28) - (B.29). Then, once the

solution for UT0) is solved at each time step, o(o) is determined from (B.27). Finally,

the time evolution for the interior along-isobath flow is solved from the discretized

no-slip boundary condition, (B.18), such that

(0) = 1 + 2( |5 + #1/2UO) I k=1 (B.32)

This set of equations is solved with the Thomas algorithm for o = 1 and # = 1,

where At = 0.001, A( = 0.02 on a grid from t = 0 to t = 20 and ( = 0 to ( = 10.

Thus, J = 20001, K = 501, r = 1.25, and q = 0.05. The maximum error between the

numerical solution for p(0) as calculated above and the analytical solution, (2.112), is

0.02%.

195



B.3 Discretization of the nonlinear SSD equations

on a sloping bottom

For the nonlinear correction to the linear dynamics by nonlinear buoyancy shutdown,

the interior along-isobath flow is already decomposed in time and space, such that

WC (t) -- U 1 (t). Now, the time evolution of the interior along-isobath flow is

(B.33)

and the forced diffusion equation is

at
182U 11 T
2~ a 2

(0) T__

1 0o B 4 (B.34)

for t > 0, 0 < < oo, subject to the following no-slip, Ekman pumping, no normal

buoyancy flux at the bottom, and no far-field thermal boundary layer flow boundary

conditions:

p(1) + I ((1) + 31/2U(l)( 0))

dp(1)
dt

1/2 aU
2 8) ( = 0)2 at

( =T 0) + 2 p

U 0+

= 0,

= 0,

= ) U (0)( =0),

as -+ ,

and the following initial conditions:

(T 1 (t = 0), U T( (t = 0), O(1 (t = 0)) = (0, 0, 0). (B.39)
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The forced diffusion equation is discretized using the Crank-Nicolson scheme,

where A -= 1/2 and

- ArUl)| +1 + (1 + 2Ar)UP 1 - ArU") (B.40)

= (1 - A)r U1)| +1 + (1 - 2r(1 - A))Uj _1 + (1 - A)rU(1 ) Ik

+ (P(O)|I + (P(O)| _ 1 )(U(O) k+1 - + U(?) +1 - U k),

f 16 < K. T b c ar di

for j > 1, 1 < k < K. The boundary conditions are discretized as in the previous

section such that they are consistent with the diffusion equation.

with (B.37),

a2U k=1

a 1

Then, at k = 1,

- 2 (U) k=2 - UMI k1)
( )2 T ( TIj(

4 ()(1)L 2 ()(O)IU(O)k~1

(B.41)

Equation (B.36) is discretized on the Crank-Nicolson stencil at j+ 1/2, k = 1, so that

|+1 = 2 - A t (1

2 + At
1 / 2 (

2 + At

By substitution of equations (B.41)-(B.42) into diffusion equation on the stencil used

in the Crank-Nicolson scheme, the boundary condition for j > 1 becomes

(1 + 2Ar + 2 1 2Aq 2Ar(1) k=2 (B.43)
2 + At T 2A'T ij

= (1 + 2# 1/2 Aq - 2(1 - A)r)U 1 _I=1 + 2(1 - A)rU( 1 I
2 + At TiITI-

+ (2Aq( 2+ -At)+ 2(1 - A)q)(p _1j- - AqWf53|jU(Ol~

- (1 - A)qW(| 1 _=I - (t )(0)|-i + )

The boundary condition as - oc becomes

Ul)| =K = 0. (B.44)
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The initial conditions become

(9051,iI UT(| 1, P(11|=1) = (0, 0, 0). (B.45)

From equation (B.40), U0 is determined at each time step, j > 1, by solving

A 1U41 (j, 1 < k < K - 1) = bi, (B.46)

where A1 is a K - 1 x K - 1 tridiagonal coefficient matrix with elements determined

by the left hand side of (B.40), U(,)jk<K1 is the K - 1 x 1 solution column vector,

and bi is a K -I x 1 column vector with elements determined by the right hand side of

(B.40), subject to the boundary conditions (B.43) - (B.44). Then, 01) is determined

from (B.42), after the solution for U(1) is solved at each time step. Finally, the time

evolution for the interior along-isobath flow is solved from the discretized no-slip

boundary condition, (B.35), such that

-= -2(I) | - 1/2U(l) k=1 (B.47)

The above set of equations is solved with the Thomas algorithm, subject to the

previously calculated numerical solution for U0 and o(O) with o = l and # = 1. The

grid is set-up from t = 0 to t = 10 and ( = 0 to ( = 10, where At = 0.001, A = 0.02,

J = 10001, K = 501, r = 1.25, and q = 0.05.
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