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Abstract

Pressure solution is a naturally occurring deformation process in fluid-bearing rocks,
with implications for sediment consolidation rates and deformation in the mid to up-
per crust. The process involves dissolution at asperities under load; diffusion along

grain-to-grain contacts; and precipitation in the pore space. The kinetics of the pro-

cess and the identity of the rate-limiting step in quartzose rocks are still a subject of

debate and depend critically upon the structure of the inter-granular boundary during

deformation. To investigate the mechanisms and kinetics of pressure solution and the

effects of changes in boundary morphology, we continuously monitored deformation

and the evolution of boundary morphology at a Y-cut convex quartz lens that was

pressed against a flat surface of Y-cut quartz under hydrothermal conditions (425 0C,
150 MPa fluid pressure, 80-435 MPa effective normal stress) in a see-through optical

pressure vessel. The pore fluid was de-ionized water, which became saturated with

quartz during the initial heat-up period. Several different boundary morphologies
were used, including polished flats, etched and roughened flats, and an island-channel
structure fabricated by plasma etching. The island-channel structure had square pil-

lars of quartz, either 4[tm or 8pim on a side, surrounded by an inter-connected grid

of open channels of comparable width. Deformation at the interface between the

quartz flat and lens (i.e., inter-granular convergence) was observed in only one case:
the 4pum island-channel structure. In that instance, pillars within the contact region
were eroded at a rate that decreased with time, and SEM photomicrographs after
the experiment showed significant cataclasis within and adjacent to the pillars. The
total transient convergence (0.15i0.02pum) observed during the 472 hour period was
less than the original pillar height (0.55±0.005pim). For all surface morphologies, the
shapes of the surface structures in both the loaded and unloaded regions evolved, per-

haps owing to capillarity forces. Although an inter-connected island-channel structure
was initially imposed upon some of the experiments, this open, fluid-filled boundary
structure was seen to be a transient phenomenon that was largely destroyed dur-

ing convergence. Thus, there was no evidence for a dynamically stable interface, as

previously suggested.

Thesis Supervisor: Brian J. Evans
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Chapter 1

Introduction

1.1 Motivation

Rock deformation in the mid to upper crust is controlled by a variety of mecha-

nisms including cataclastic processes such as fracturing or frictional grain sliding and

rotation, and, relatively slow plastic processes like dislocation creep and pressure so-

lution creep (Groshong, 1988). Pressure solution creep is a stress-enhanced, solution-

transfer mechanism, that slowly dissipates the strain energy accumulated during sed-

imentation/burial/tectonic events. It involves dissolution at stressed, fluid-saturated,

inter-granular contacts, diffusion along the contact and precipitation at relatively low

stressed points in the pore space (see Figure 1-1). Pressure solution occurs at two

different scales in nature: at the micro-scale, between grain-grain contacts (inter-

granular pressure solution or IPS) and at the macro-scale, in the form of stylolites.

Stylolites are insoluble seams of pyllosilicates that are thought to originate exclusively

under non-hydrostatic conditions. They are very commonly found parallel to bed-

ding planes in carbonates rocks. At both scales, pressure solution acts as a source of

cement and an agent of compaction. It plays a significant role in porosity evolution

and diagenetic compaction of rocks (Tada & Siever, 1989). Studies also suggest that

pressure solution creep plays an important role in the strength and sliding behavior

of faults, fault sealing, and, earthquake recurrence rates (Rutter & Mainprice, 1979 ;

Bos et al., 2000 ; Hickman et al., 1995). The evidence for pressure solution in nature



is ubiquitous. Rocks from the upper to mid-crust in low metamorphic grade condi-

tions exhibit clear evidence of fluid enhanced deformation: interpenetrating grains,

stylolites, truncated fossils, tectonic overgrowths, striped cleavages, pressure shadows

(Weyl, 1959 ; Trurnit, 1968 ; Rutter & Elliott, 1976 ; McClay, 1977 ; Tada & Siever,

1989). Quartz veins and slicken-fibers have been observed in exhumed faults (Durney

& Ramsay, 1973 ; Cox & Paterson, 1991 ; Hickman et al., 1995).

Effective Normal Stre
within contact

it It t it

ss

Grain

trnit r~Grain

Grain-Grain Boundary

- 1) Stress driven dissolution along grain-grain contact
2) Diffusion along the grain-grain boundary, characterised by grain-boundary

diffusivity
3) Diffusion in pore-space, characterised by free fluid diffusivity.
4) Precipitation at unstressed pore surface.

Figure 1-1: Illustration of pressure solution mechanism at a grain-grain contact

Pressure solution was first described by Sorby (1863) and became widely accepted

after the systematic analysis of Stockdale (1926, 1936). Interest in pressure solution

was renewed after the pioneering work of Weyl (1959). Paterson (1973), Rutter &

Elliott (1976) and De Boer (1977) discussed the thermodynamics of pressure solu-

tion and attributed the driving force to the chemical potential difference between

the stressed grain contact and relatively unstressed pore space. Later, Lehner (1985)

Pore Space

......................................... ................. 4 ......................................... ............ .. ... ..



and Shimizu (1995) introduced non-equllibrium thermodynamics to the problem. De-

scriptions of mechanisms of pressure solution creep can be coarsely lumped into four

different models: 1) fluid-film diffusion model, 2) island-channel model, 3) micro-

cracking grain boundary model, and 4) under-cutting model.

Fluid-film diffusion model

The grain-grain boundary is assumed to be coated by a thin, structured, fluid film that

supports the load and allows the material dissolved at the grain contacts to diffuse

into the free pore space (Rutter & Elliott, 1976 ; Gratier & Guiguet, 1986 ; Hickman &

Evans, 1995). The diffusivity in the film is often assumed to be less than that in a free

fluid, but several orders greater than that in a dry grain-grain boundary. Diffusion

through the grain-grain boundary is often assumed to be the rate-limiting mechanism

in this model, which is adapted from the Coble creep law and has similar sensitivity

to grain size and to stress. The volumetric strain rate is linearly proportional to the

applied effective normal stress and inversely proportional to the cube of the grain

size. Several experimental studies have appealed to this mechanism: Hickman &

Evans (1995) monitored the evolution of the contact when a halite lens was pressed

against fused silica. They concluded that diffusion is rate-limiting and estimated

the film thickness to be less than 30 nm. Spiers et al. (1990) conducted compaction

experiments on halite aggregates and concluded that diffusion is rate-limiting based

on the observed grain size sensitivity. Experiments by Pashley (1981), Pashley &

Israelachvili (1984) and Israelachvili (1986) suggest that such films can exist in silica,

mica and alumina sheets. Nakashima (1995) found that the diffusivity of silica and

oxygen ions in thin films is about 5 x 10-1 4 m 2 /s at room temperature and estimated

the activation energy to be 15-30 kJ/mol. Despite these studies, the existence of the

fluid film and the values of the diffusivity in the film and the thickness of the film

are still debated. There is no clear experimental evidence of the existence of such

films during pressure solution creep of quartzose rocks under natural hydrothermal

conditions.



Island-channel model

Raj (1982) argued that fluid films cannot sustain shear stresses and proposed an

island-channel structure that transmits the load through the islands and allows dif-

fusion through the fluid in the channels. The diffusivity in the channels is assumed

to be equal to the free fluid diffusivity and the interfacial kinetics (dissolution or pre-

cipitation) are considered to be rate limiting (Raj, 1982 ; Schutjens, 1991 ; Niemeijer

et al., 2002 ; Noort, Spiers, & Pennock, 2008). The volumetric strain rate is inversely

proportional to the grain size and linearly proportional to the effective normal stress.

The stress sensitivity is linear only at low effective normal stress and exponential at

higher stress (Niemeijer et al., 2002 ; Gratier et al., 2009). Raj assumed the island-

channels to be non-equilibrium structures, dynamically maintained, owing to entropy

creation. Noort (2008) attempted to justify the existence of island-channel structures

and introduced a yield stress criterion above which island-channel structures exist

and below which they heal. Many authors have identified micro-structures recovered

after the experiments that resemble the island-channel structures (Cox & Paterson,

1991 ; Gratier et al., 2005). However, the origin is often ambiguous. For example,

such structures can be formed by the healing of grain boundary fractures during

unloading (see discussion in Hickman & Evans (1991) ). Most of the experimental

evidence (Schutjens, 1991 ; Niemeijer et al., 2002 ; Noort, Spiers, & Pennock, 2008)

suggesting interfacial controlled pressure solution is based on estimation of a high

activation energy (70-100 kJ/mol) and on micro-structure observations.

Micro-cracking grain boundary model

Gratz (1991) proposed a model that uses a hierarchical structure in which grain

boundaries consist of islands coated by grain boundary films, separated by micro-

cracks, and connected to inter-granular porosity. This model postulates that thin

fluid-films exist at grain-grain contacts, but the diffusion rate along the thin films is

not sufficient enough to cause geologically observed strain rates. Instead, the micro-

cracks within the contact act as short-circuit paths for diffusion into the pore space,



enhancing deformation rates. Zubutsov (2005) conducted separate indenter experi-

ments on halite and calcite at identical conditions and attributed the higher conver-

gence rate in calcite, after correcting for difference in solubility, to the presence of

micro-cracks beneath the indenter, in calcite.

Under-cutting model

In this model, the deformation is due to free surface dissolution at the edges of

the contact and subsequent reduction in contact size leading to cataclastic failure

(Bathurst, 1958 ; Weyl, 1959 ; Pharr & Ashby, 1981 ; Tada et al., 1987). This process

is repeated, leading to time-dependent creep. Tada and Siever (1986) pressed a quartz

knife against halite and observed under-cutting. On the other hand, Hickman & Evans

(1995) did not observe undercutting in their halite-silica experiments. The under-

cutting observed in Tada's experiment was due to the use of a sharp and rigid indenter

that produces high stresses at the contact edges. Whereas, the contact geometries in

Hickman & Evans (1995) experiments employed polished lenses, in which the highest

stresses were in the center of the contact. Gratier's (2009) indenter experiments

on quartz, using rectangular punch, also showed significant under-cutting, but grain

boundary diffusion was identified as rate-limiting mechanism.

Pressure solution creep rates and the rate-limiting mechanisms are sensitive to the

mineralogy of the solids in contact. Hickman & Evans (1991) did not observe pressure

solution creep when a halite lens was pressed against halite. Rather, micro-structural

evidence suggested healing of the grain boundary. They observed diffusion controlled

pressure solution creep when halite was pressed against fused silica and a five fold

increase in the convergence rates when a thin montmorillonite clay layer separated

halite and silica (Hickman & Evans, 1995). This latter observation is consistent with

the general observation from naturally deformed rocks and limited polycrystalline lab

experiments that the presence of phyllosilicates enhances the pressure solution creep

rates (Weyl, 1959 ; Rutter, 1983 ; Houseknecht & Hathon, 1987 ; Renard et al., 1997;

Rutter & Wanten, 2000).

Though various authors argued whether dissolution or diffusion is rate-limiting,



it is possible that no single mechanism is rate-limiting at all the conditions and at

all stages of the deformation process. Creep laws in the literature (Rutter & Elliott,

1976 ; Gratz, 1991 ; Niemeijer et al., 2002 ; Noort, Spiers, & Pennock, 2008) have,

so far, simplified the problem by attributing average parameters to govern the creep

law, assuming a single rate-limiting step under steady-state conditions. These models

can be considered macroscopic. Lehner (1995) worked towards a microscopic model

which considered several processes operating concurrently along the grain boundary.

Recently, Bernabe and Evans (2007) proposed a numerical scheme to monitor the

evolution of a single asperity due to pressure solution, accounting for the variability

of properties along the grain boundary. Although Bernab6 et al. did not make a

priori assumptions about the distribution of stress along the contact, the numerical

model considered only two of the many processes that might occur simultaneously in

nature. Bernab6's simulations demonstrated that different processes are coupled and

assuming a singe rate-limiting mechanism may not be correct.

1.2 Problem Statement

Despite considerable research on pressure solution, over the last few decades, the

kinetics of the pressure solution process, identification of the rate-limiting mechanism

and the nature of the inter-granular boundary during pressure solution (especially in

quartzose rocks) is still not well understood. In this thesis, we focussed our attention

on experimental studies of pressure solution creep at quartz-quartz grain contacts

with controlled contact stresses and fluid chemistry and varied the structure at the

contact to see the effect of morphology on pressure solution rates.



Chapter 2

Experimental Technique

2.1 Introduction

Experimental work on pressure solution (PS) creep often focuses on halite because sig-

nificant strain rates can be achieved at relatively low temperatures (80 -90 0C) and low

effective normal stresses (1-14 MPa) (Hickman & Evans, 1995). For example, Tada

and Siever (Tada & Siever, 1986) pressed a quartz knife against halite and noted that

under-cutting is the dominant mechanism. Later, (Hickman & Evans, 1995) system-

atically studied PS at single grain-grain contacts between halite and fused silica, and

established that diffusion is rate-limiting. Uniaxial compaction experiments by Spiers

(1990) on halite aggregates also suggested that diffusion is rate-limiting.

In contrast, PS creep is slow in quartz and is active only at higher temperatures

(above 3500C) and higher effective normal stresses (Schutjens, 1991). The fastest

strain rates estimated for minerals composed of quartz deforming via PS in nature

are of the order of 10-"/s (Rutter & Elliott, 1976) and observing such slow rates ex-

perimentally is hard. Creep in the lab can be artificially expedited by using a alkaline

solution (De Boer, 1977; Gratier & Guiguet, 1986) or working at higher temperatures

(Cox & Paterson, 1991 ; Luan & Paterson, 1992) or at high normal stresses (Gratier

et al., 2009), each having its own side effects. In a very different type of experiment,

Sprunt and Nur (1977) demonstrated the stress dependence of solution transfer in

quartz at a free-face subjected only to in-plane tangential stress, by loading quartz



slab containing a hole, under uniaxial compression perpendicular to the hole axis.

They concluded that dissolution was rate limiting in this case of "free-face" pressure

solution. De Boer (1977) compacted quartz aggregates uni-axially in a brine medium

(3600C; 51 MPa effective pressure ) and showed micro-structural evidence for pres-

sure solution. Gratier & Guiguet (1986) showed that the compaction rates increase

with the concentration of NaOH in pore fluid and are inversely proportional to the

grain size. He reported dissolution to be the rate-limiting step. Cox & Paterson

(1991) conducted compaction experiments on quartz aggregates at elevated tempera-

tures (12000 K, 100 MPa effective pressure ) and observed relatively high strain rates

(10- 6/s). They interpreted the micro-structures to resemble island-channel structure

and argued that interfacial kinetics were rate-limiting. Schutjens (1991) performed

1D compaction tests on quartz sands (150 - 300 0C, 20.7 effective pressure, 20-100 Pim

grain size ) and observed strain rates of 10- 8/s. He reported an activation energy

of 61-76 kJ/mol and wide-spread micro-cracking in the recovered micro-structures.

He suggested that deformation is controlled by time-dependent micro-cracking be-

low 300 0 C and interface-limited pressure solution above 3000C. Dewers & Hajash

(1995) isostatically compacted aeolian quartz sand (150 - 2000C, 35 MPa effective

pressure) and inferred that PS was the dominant mechanism, but was accompanied

by time-dependent cataclasis at lower temperatures. Based on the activation en-

ergy (73 kJ/mol), Dewers & Hajash (1995) concluded that interfacial kinetics was

rate-limiting. The influence of clay on pressure solution rates in quartzose rocks was

tested by a few authors. Rutter & Wanten (2000) observed an increase in compaction

rates in phyllosilicate bearing sands (3000 - 4500 C; 10-210 MPa effective pressure).

However, Niemeijer (2002) did not observe any enhancement in creep rates when

muscovite was added to the quartz aggregates, under similar conditions (500 0C; 100

MPa effective pressure). The influence of clays has to be explored further. When not

mentioned explicitly, the pore fluid was pure water in the above experiments.

Niemeijer (2002) studied pressure solution creep in quartz aggregates more sys-

tematically. He conducted isostatic compaction experiments on quartz aggregates,

varying the temperature (4000 - 600 0C), effective pressure (50-150 MPa) and grain



size (30-100p in). He reported an activation energy of 77.6 kJ/mol, stress exponent

of 3 and an inverse grain size dependence. Comparing these results with interface-

controlled pressure solution rate laws and based upon his observed activation energy,

he concluded that dissolution was rate-limiting. Noort (2008) arrived at the same

conclusions from his isostatic compaction experiments on quartz aggregates (3-129pim

initial grain size, 3000 - 600 0C, 25-100 MPa effective pressure), but also, noted that

micro-structures were dominated by micro-fracturing at low temperatures, giving way

to pressure solution related micro-structures at higher temperatures. Karner (2003)

and Chester (2004 ; 2007) monitored the acoustic emissions during compaction ex-

periments on quartz aggregates at low temperatures (250 - 150 0C). The cumulative

number of acoustic emissions scaled with total volumetric strain and strongly suggest

micro-cracking and frictional grain sliding. Though these experiments were conducted

at relatively low temperatures, the results emphasize the role of cataclasis in aggregate

experiments. He (2007) reported that micro-granulation at quartz grain boundaries

resulted in production of high energy ultra-fine particles that enhanced dissolution

(150 0C; 34.5 MPa effective pressure).

Most data from aggregate compaction experiments in quartz suggest that inter-

face kinetics are rate-limiting. But, most workers arrive at this conclusion by compar-

ing their measured apparent activation energy (about 60-100 kJ/mol) with that for

dissolution in quartz (61-105 kJ/mol) (Rimstidt & Barnes, 1980). However, these ac-

tivation energies are comparable to the activation energy of sub-critical crack growth

(Atkinson, 1984) and so, it is not straight forward to distinguish between the two

mechanisms. In addition, it is likely that multiple mechanisms operate in the aggre-

gate compaction experiments, complicating the interpretation of mechanical data.The

complicated mechanisms present in the aggregate experiments suggest that simpler

experiments with more controlled geometries might be useful. Indenter techniques

offer simple geometries to study the problem.

Recently, Gratier (2009) published his work on indenter experiments on quartz,

spanning a 10 year period. He pressed a steel indenter (200pm diameter) against a

quartz single crystal in NaOH solution at 350 0C and under differential stress (uniax-



ial stress - pore fluid pressure) varying from 25-350 MPa. He varied the orientation

of the pressed surface, the NaOH concentration in the pore fluid and the nature of

quartz (natural or synthetic). Unfortunately, he could not vary the indenter diam-

eter and thus could not test the grain size sensitivity. In general, he observed more

indentation rate with increasing NaOH concentration and an exponential dependence

of indentation on differential stress. Based on the growth kinetics of different faces

of quartz and comparing the observed strain rates with diffusion and dissolution con-

trolled rate laws, he concluded that diffusion was rate-limiting. However, due to the

flat-bottomed geometry of the indenter, there was considerable free-face dissolution

and "en echelon" fractures formed around the indenter. In addition, his experiments

involved interfaces (quartz-steel) which probably alter the kinetics (as observed for

halite/silica contacts (Hickman & Evans, 1991) ). It is, thus, desirable to study single

quartz-quartz contacts, to allow for a more direct comparison with mono-minerallic

quartz aggregates deformed in nature and in the laboratory.

In this study, we monitored pressure solution at single quartz-quartz grain con-

tacts by pressing a quartz plano-convex lens against a quartz plano-plano lens under

hydrothermal conditions (425 0C, 150 MPa fluid pressure), using dead quartz weights.

This well-defined geometry allows us to estimate the stress field within the contact,

to have control over diffusional path length and to monitor convergence and contact

evolution in real time. In addition, this configuration does not induce high stress

concentration at the contact edge, a situation which leads to free-face dissolution

(Gratier et al., 2009). The experimental technique is very similar to that used by

Hickman & Evans (1991, 1995). The mutual approach of the lenses is measured using

optical interferometry, accurate to 0.02ptm.

The objective of the experiments was to see if quartz-quartz contacts healed or de-

formed at hydrothermal conditions and to examine the effect of boundary morphology

on the pressure solution creep rates.



2.2 Sample Preparation

The plano-convex lenses and the plano-plano lenses (referred to as quartz flats, or

simply, flats) used in the experiments were Y-cut single crystals of synthetic alpha-

quartz. The radius of curvature of the plano-convex lenses was 0.443 inch. The quartz

flats were 0.7 inch in diameter and 0.25 inch in thickness. The lenses and flats were

prepared and polished by Boston Piezo-Optics, Bellingham, MA, from the quartz

crystals synthesized by Sawyer Research Products, Eastlake, OH.

As mentioned earlier, our goal was to examine the effect of surface morphology on

PS rates. We used a smooth quartz flat in our first experiment, PS031209, as a control

and then introduced more complicated surface structures in the later experiments.

Some trial and error was necessary to achieve repeatable, well-characterized surface

morphologies. We first attempted to fabricate an inter-connected grid of channels

on the surface of the quartz flat by wet etching with 49% HF acid. A fine Ni wire

mesh (2000 wires per inch, each wire 5pm thick) was laid over the flat surface of

the quartz flat (sample 5) and gold was vapor deposited over it. Then, the Ni mesh

was carefully removed leaving the surface exposed in a gridded pattern of straight

lines matching the mesh pattern and size. The gold coating masked the remaining

surface. The surface of the flat with the pattern on it was exposed to HF vapors

by holding the surface at a distance 3mm away from 49% HF solution at 60 0C for

3.5 hrs. The etch rate was approximately 0.286pm/hr in a direction normal to the

surface. We expected the exposed area to be etched, leaving a grid pattern of inter-

connected channels with their depth proportional to the exposure time. But, the

gold pattern was washed away and the surface exhibited anisotropy in the etch rates

along different crystal directions. This resulted in triangular etch pits of comparable

size all over the surface, with no grid pattern evident. Nevertheless, owing to the

overall roughness of the surface produced, these features could have produced the

desired effect: produce stress concentrations within the contact and provide short-

circuit pathways for diffusive transport. We characterized the etched surface using a

mechanical probe profiler, Talyscan 150. The etch pits were, on an average, 1±0.2pm



deep. This quartz flat (Sample 5) was used in the experiment PS041309.

To avoid anisotropy in the structure introduced by wet-etching, we next tried

dry/plasma etching. The plasma is generated on ionizing the etchant gases in vacuum

by using RF excitations. Because the plasma etch process uses a large energy, the

effects of differences in the surface energy along different crystal directions on etching

rates is negligible and do not cause anisotropic etching. Since plasma etches both

the mask and the substrate, the plasma should be designed to selectively etch the

substrate (here quartz). Ideally, we want the plasma to etch normal to the surface

without undercutting the mask. The gases in the plasma and their ratio determine the

selectivity of the process and the etch rates normal and parallel to the exposed surface.

The masking material should adhere well to the surface, be resistant to the etching

plasma, but be removed easily by a chemical treatment neutral to the substrate.

We used Drytek4, an inductively coupled plasma etching machine, at Stanford Nano

Fabrication Facility (SNF) to plasma /dry etch the quartz flats. The plasma etchant

was a gaseous mixture of CHF3 (100 standard cubic centimeters per minute , sccm)

and 02 (10 sccm) ejected from an Al ionizing electrode. Drytek4 was operated at

150 mT (milli Torr) pressure, 150W power and 310-330V voltage. Chromuim(Cr)

was chosen to be the masking material due to its good adhering property to oxides

and low etch plasma rate. Standard Cr etchant (22% Ceric Ammonium Nitrate, 9%

Acetic Acid, 69% water) was used to remove the Cr masking layer on top of the quartz

flat after dry/plasma etching. The etch rate, normal to the surface, was observed to

be approximately 1.2pm/hr.

The structure on 'Sample 2' was fabricated by dry/plasma etching as follows: A Ni

mesh (1500 wires per inch, each wire 5.6pim thick) was laid on the flat surface of the

quartz flat. The mesh was carefully removed after Cr deposition to leave a grid pattern

of lines (approximately as wide as the thickness of the wires) as discussed earlier,

while the rest of the surface was masked by Cr. This surface was then subjected to

plasma etching. Quartz was etched all along the grid pattern of lines leaving inter-

connected channels on the surface. The residual Cr, masking the space in between the

channels, was removed by wet etching the sample with standard Cr etchant. Thus, we



fabricated an island-channel structure of square pillars surrounded by interconnected

grid of channels. The etched surface of the flat was characterised using Zygo White-

Light 3D Surface Profiler, which is based on optical phase-shifting interferometry.

In plan view, the top surfaces were slightly rounded (Figure 2-1(a)). The height

of the pillars or the depth of the channels was 1.05t0.005pim and the channels were

trapezoidal in cross section (Figure 2-2(a)). The average dimensions of the pillars and

channels are tabulated in Table B.l'Sample 2' was used in experiment PS052009.

The plasma etching protocol was successful, but it was difficult to control the

masking process when we used the Ni Mesh. Moreover, the width of the channels

was limited by the Ni wire thickness. So, optical photolithography, a standard pro-

cedure in semi-conductor manufacturing, was used to make the patterned Cr mask

on subsequent samples. This method involves creating a pattern on photo-resist, a

photosensitive material, by exposing it to light through a photo-mask, that carries the

pattern, through the following process. First, the quartz flat was coated uniformly

with Cr (thickness ~840 A'). A photo-resist was spun onto the Cr layer and then

exposed to a pattern of grid of lines, using the photo-mask. The resist was then

developed, uncovering the Cr layer beneath the pattern. The flat was then treated

with standard Cr etchant, exposing the quartz surface through the grid pattern. The

photo-resist on top of the remaining Cr layer was stripped to leave the sample with a

Cr mask. The entire process is explained in detail in Appendix A. During exposure,

we aligned the crystallographic c-axis of the quartz flats with the grid pattern on the

photo-mask.

Using this photo-lithography process, we fabricated a 4pam wide, 0.5pm deep inter-

connected grid of channels spaced 8pm center to center on four flats (Samples b2, ci,

al and d) by etching the samples with plasma for 24 minutes. Similarly, we fabricated

an 8[tm wide, 1pn deep interconnected grid of channels spaced 16pm center to center

on four flats (Samples 2, b1, c2 and a2). These samples were plasma etched for 48

minutes. The etched surfaces of all these flats were characterised by Zygo White-

Light 3D Surface Profiler. The actual dimensions of the fabricated structures were

very close to the attempted values and are tabulated in Table B.1.
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'Sample ci' was used in experiment PS062309. A plan view of the fabricated island

channel structure on 'Sample ci', as measured by Zygo, is shown in Figure 2-1(b). A

cross section along the centers of pillars is shown in Figure 2-2(b). The depth of the

channels or the height of the pillars was 0.55±0.005pim. The dimensions of the surface

structure are tabulated in Table B.1. The fabricated island-channel structures on

'Sample 2' and 'Sample c1' were oriented at an angle of 50 from the crystallographic

c-axis despite our efforts to align them during fabrication.

2.3 Experimental Set-up

To measure the evolution of the quartz-quartz contacts, we pressed the convex side

of the plano-convex quartz lens against a plano-plano quartz flat under hydrothermal

conditions in a see-through optical pressure vessel. A constant normal load was ap-

plied throughout the duration of the experiment (2-3 weeks) by means of quartz dead

weights. The weights also served to maintain the fluid at maximum concentration of

silica in experimental conditions. A schematic diagram of the apparatus is shown in

Figure 2-3.

The pressure vessel (Beeler & Hickman, 2004) is an externally heated pressure

vessel made up of Rene 41 (Inconel), with valves for inlet and outlet of fluid on the

top and a cone-in-cone seal utilizing an Inconel seal at the bottom. We controlled the

fluid pressure in the vessel, using a hydraulic pump, an inline pressure transducer,

and a pressure gauge accurate to ±2 bars. A detachable three-coil furnace was used

to maintain uniform temperature throughout the vessel. Thermocouples (accurate

to t0.20C) were attached to the inner metal sleeve on which the three coils of the

furnace were wound and provided input to three Omega furnace controllers that

controlled input current to the coils. The temperature at the contact was monitored

by a thermocouple inserted into a hole bored into the pressure vessel that was close to

the samples. Furnace profiling conducted earlier shows that the actual temperature

at the contact is within 100C of the measured value. The interior of the vessel was

lined with gold to prevent corrosion and to control the fluid chemistry.



Inside the pressure vessel, the quartz weights were stacked on top of the quartz

lenses, and were held in a coaxial position by a gold wire passing through a hole in the

center of the cylindrical weights (Figure 2-4). The load was transferred onto the flat

surface of the lens through the spherical tip at the end of the gold wire. This pressed

the curved surface of the lens against the quartz flat, which sat over the observation

sapphire window. The flat and the window were separated by a thin annular gold

ring to avoid interference of light reflected from the bottom of quartz flat and the top

of sapphire window. The sapphire window rested on a polished annular flat at the

top of the conical seal with an intervening annealed gold washer, which deformed as

the fluid pressure was increased and sealed the vessel. Figure 2-4 shows a schematic

diagram of the lens geometry inside the pressure vessel and the loading mechanism.

A long working-distance microscope was equipped with a digital camera to monitor

the evolution of the contact as the experiment proceeded (Figure 2-3). A mercury-

zenon arc lamp in conjunction with a grating monocrometer was used as a tunable

monochromatic light source, which operated over a range of wavelengths (360 nm to

600 nm). An 'AVT PIKE F-100 B' camera, operated at 60 fps and 1 mega pixel

resolution, was used to take the photomicrographs in all the experiments, except the

experiment PS031209, which used an older, analog camera and frame grabber card.

The vessel and the optical equipment were placed on an air-suspension vibration

isolation table during the experiment.

The quartz weights, lenses, sapphire window, gold ring, gold washer, gold wire

and the conical seal of the vessel were cleaned with acetone, methanol and de-ionised

water in an ultrasonic cleaner before assembly. The interior of the pressure vessel

was also rinsed with acetone, methanol and de-ionised water. While assembling the

pressure vessel, we first inserted the sample assembly and weights, filled the ves-

sel with de-ionised water, sealed it and raised the confining pressure. The contact

between the lenses was fully saturated with de-ionised water. After the vessel was

pressurized (about 50 MPa), the furnace was lowered over the pressure vessel and the

temperature was raised slowly from room temperature (22 0C) to the target temper-

ature, while the pressure was manually controlled to achieve its final desired value.



This process was slow enough (about 4 hours) that the de-ionised water should have

reached silica saturation by the time it reached run conditions through dissolution

of the quartz weights (see discussion in Beeler & Hickman (2004)). The design pres-

sure and temperature were 150 MPa and 4250 C, respectively and were continuously

recorded during each experiment. The pressure was maintained at 150±1 MPa. The

temperature in the vessel, as measured by the thermocouple in the lower seal of the

vessel, varied from experiment to experiment from 414 0C to 418 0C. During a single

experiment temperature fluctuated by ±10 C.
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Chapter 3

Analysis

3.1 Convergence Measurement

Convergence is defined as the relative approach of two distant reference points in

the two lenses when they are pressed against each other, under the experimental

conditions. When the load is applied, we expect an instantaneous convergence due to

the initial elastic/plastic deformation. Creep mechanisms lead to a time-dependent

convergence. Convergence is measured using the move-out of the interference minima

in the Newton's rings pattern (Hickman & Evans, 1991, 1995). For example, in

Hickman & Evan's (1991) halite-halite pressure solution experiments, neck growth

occurred without convergence. The contact size (the central dark spot) increased

without any move-out in the interference pattern.

The light rays reflected back from the bottom of the convex lens and from the top

of the flat interfere constructively or destructively depending upon the thickness of

the fluid layer between the two surfaces. Thus, we see a pattern of concentric bright

and dark bands corresponding to the interference maxima and minima. As the lenses

move towards each other, the separation between the lenses decreases and the rings

appear to move out from the center. By tracking the change in the radius of the

interference minima, convergence is measured. The separation between the lenses

required for minima is given by:



mA
hm= , m = 0,1,2, 3,.. (3.1)

2p-

where m is the order of the interference minima, A is the wavelength used for obser-

vation (here we used 435 nm, 542 nm and 575 nm) and t is the refractive index (see

section 3.5) of the saturated quartz solution.

As explained above, the position of the interference minima is a function of the

thickness of quartz solution separating the lenses. The thickness of the quartz solu-

tion, between the lenses, 'h', at a radial distance r from the center of the contact is

given by (see figure 3-1):

h(r) Re - s - R 2 - r2z ~ s
22Rc

= r - s from binomial expansion,since Re >>r (3.2)
2Re

where, Re is the radius of curvature of the lens (0.443 inch), s is the total convergence

until the time of observation. For the case, when we have pillars on top of the quartz

flat and 'h' is measured relative to the base of the pillars,

2

h(r) = - + ho - s (3.3)
2Re

where ho is the height of the pillars (see Figure 3-1). Combining equations 3.1and 3.3,

. 2 + ho -mA (3.4)
2Re 2pt

Since, we are interested only in the time-dependent deformation at the contact, we

look for the time dependent component of convergence after the initial elastic/plastic

loading. From equation 3.4, As = s(t)-s(0), is given by:

Arm2

As = m (3.5)
2Re

where Arm2 is the change in the square of the mth order fringe radius relative to its

value just after loading.
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(a) Separation between the lenses when no load is applied.

(b) Separation between the lens when they are pressed against each other.

The profiles come closer by the total convergence 's'
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radial distance 'r'

ho Height of the pillars above the flat lens

Figure 3-1: Schematic diagram of profile separation



Knowing the radius of curvature of the lenses, we determined As by measuring the

change in the radius of the interference fringes. The radius of the interference fringes

were measured as described in section 3.2. The convergence was calculated using

the equation 3.5 for each tracked interference fringe and averaged, using calculations

of refractive index to identify the order of each fringe (see sections 3.5, 3.6). The

standard deviation of the convergence value was less than the estimated error in the

convergence (see section 3.2). We ignored the first few fringes, which tend to be

distorted, and tracked up to 8 - 10 fringes in each interferogram.

3.2 Radius of Interference Minima

The radius of each interference minimum was tracked in the time-lapse photos of

the contact. The accuracy with which we can measure the radius is theoretically

limited by the resolution of the photo. In addition, the illumination was not uniform,

introducing extra noise in the experiments. We processed the images by rescaling

the color histograms to enhance contrast. We applied a band-pass filter, to enhance

features greater than 4 pixels and smaller than 40 pixels, which reduced the spatial

variation in brightness due to non-uniform illumination and also suppressed the high

frequency noise. The processed photos were finally analyzed to measure the radius of

the interference minima.

The radius of each interference minima was calculated separately through a two-

step process. First, a minimum of 10 points was selected manually on each interference

fringe. The best-fit circle to the manually selected points was determined by non-

linear least squares. The best-fit circle was then discretized. At each point on the

discretized circle, a square region of pixels, with the discretized point at the centre,

was selected. The side of the square was approximately equal to the width of the

fringe. The weighted centroid of the square region was calculated, with the pixels

weighed exponentially by darkness. This centroid was assumed to represent the min-

imum of the considered fringe. The radius of the best-fit circle to these centroids was

taken to be the radius of the interference minimum. The root mean square error in



the radius of the best-fit circle, thus calculated, varied from 0.5 pixels to 1.5 pixels.

Thus, the radii of interference minima were estimated within ±1.5pm.

The non-linear least squares algorithm, used to find the best-fit circle, iteratively

solves for the center of the best-fit circle. The radius of the best-fit circle is the average

radial distance of the data points from the center. The algorithm minimizes the 12

norm of the difference between the radial distance of each point and the average radial

distance of all points. The initial guess to the non-linear least squares algorithm was

the average of the centers of circles, passing through three points selected at a time.

Points too close to each other were avoided. The termination criteria were the default

termination criteria of Matlab optimization toolbox.

Propagating the error in the measurement of radius into convergence calculations,

the error in measuring the convergence, ASerror, is of the order of 0.02pum on average

(see Figure 4-2(b)). Thus, we can measure convergence accurate to 0.02pm.

3.3 Newton's Rings Pattern

When we used quartz flats with added surface morphology the interference pattern

was complicated (see Figures 4-3, 4-4, 4-5 and 4-6). In particular, in the case of

square pillars, the central interference pattern appears to be surrounded by additional

interference patterns (see Figures 4-5 and 4-6), which are caused by the interference

of rays reflected from either the top of the pillars or the bottom of channels with rays

reflected from the bottom of the convex lens. However, if the pillars and channels

occupy different surface area, the interference pattern corresponding to the greatest

surface area dominates. For example, if the channels occupy more surface area than

the pillars, the interference pattern associated with the bottom of the channels will

dominate.

To interpret the observed interference pattern, we numerically modeled the inter-

ference pattern due to a convex lens on top of a flat with pillars as follows. The center

of the lens is assumed to rest on the center of a pillar and the separation between the

two lenses at any point on the surface of the flat is calculated. Whenever the point



lies on top of a pillar the separation 'h' is given by the equation 3.3, depending on the

radial location of the point from the axis of symmetry of the convex lens. Similarly,

whenever the point lies on the bottom of a channel, the separation is given by the

equation 3.2, depending on the radial location of the point. The phase difference

between the rays reflected from the bottom of the convex lens and the top of the

quartz flat, 4, is given by

4 = 2ph +27r (3.6)

The extra phase difference of 7r is introduced by the reflection at the bottom of the

convex lens due to reflection at medium with higher refractive index. For the purpose

of calculating the position of the minima and maxima, we assume total reflection

and thus, both the interfering wave fields have same amplitude,'o. The resultant

amplitude at any observation point V is given by

0= o V/2 (1 + cos(4)) (3.7)

This assumption only affects the amplitude values at the observation points, but

not the position of the minima and maxima. A numerically computed interference

pattern is compared with the observed interference pattern when the convex lens was

pressed onto 'Sample 2' at a load of 0.015 N in air (Figure 3-2). The separation

between the lenses for use in the simulation was calculated using equations 3.2, 3.3,

assuming an elastic initial convergence (see section 3.6 ). Note that the concentric

bands surrounding the central interference pattern, as well as the overall intensity of

the central contact spot in the simulated pattern matches the observed pattern quite

well. This good agreement indicates that the central interference pattern observed

with 'Sample 2' (Figure 3-2(a)) is formed on the bottom of the channels. This can

also be seen in Figure 3-3, which shows the interference patterns when either channels

or pillars occupy more surface area. We can see that a bright central interference

pattern is formed only when more light is reflected off the bottom of the channels

(Figure 3-3(a)).



(a) Observed Pattern

(b) Simulated Pattern

Figure 3-2: Comparison of observed and simulated interference patterns. Scale bar is

300 microns
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Figure 3-3: (a) Channels occupy more surface area: Interference pattern is on the

bottom of channels (b) Pillars occupy more surface area: Interference pattern is on

the top of Pillars
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3.4 Stress Estimation

From Hertzian Contact theory, we estimate the contact stresses in our experiments

by calculating the stress distribution produced by the contact of a sphere pressed

against a flat (Johnson, 1985). This is readily applicable to experiment PS031209,

where no morphology was added to the surface. But, the stress distribution within

the contact is more complicated with experiments PS052009, PS062309. We estimate

the stress distribution within these contacts by considering the fabricated pillars as

rigid punches. Indeed, the elastic shortening of the pillars (about 0.01 pm for a mean

stress of 1000 MPa on the pillars) is small compared to the overall elastic displacement

(about 0.26 pm for a load of 0.85 N). In these calculations, we assume a square grid of

pillars with the center of the contact located on top of a central pillar (eg: Figure 3-1).

In this configuration, we have rings of pillars located radially from the center of lens

(see Figure 3-4). For a contact problem, we need to solve for both contact radius and

the stress distribution. We do it iteratively, as follows: 1) First, the contact radius

/ the number of rings in contact is guessed. 2) The load distribution on the pillars

within the contact is computed (as explained below). 3) The contact radius (thus,

the number of rings in contact) is increased if all the pillars within the contact are

under compression. The contact radius is decreased if any pillar within the contact

is under tension. 4) Steps 2 and 3 are repeated until the number of rings in contact

is maximized when all the pillars within the contact are under compression. The

deformation in the lens and the flat (which is assumed identical) is calculated from

the distributed loads exerted by the pillars within the contact.

At a given iteration, let the rings i = 0 to m be in contact. The zeroth ring

corresponds to the central pillar while the m'h ring corresponds to the outermost ring

in contact. The number of pillars on the ith ring (radius ri ) is given by ni. For a

given macroscopic load 'P' on the lens, we assume that all the pillars on a ring share

the same load pi (from symmetry arguments). Following Hertz's approach to contact



problem, the following conditions are true for pillars inside and outside the contact:

hi = 2uo - 2ui i < m, inside the contact

> 2uo - 2ui i > m, outside the contact (3.8)

where hi is the separation between pillars on the jth ring and the lens, given by , no2R,)

is the normal displacement under the central pillar, and ui is the normal displacement

under the pillars on the ith ring, caused by the elastic deformation of the surface of

the flat. 2uo is the relative approach of two distant points in the lens and the flat.

m =1 Yn =2 %m=3

m. 0

Figure 3-4: Illustration of pillars within the contact

An expression for the normal displacement, 'n ' is obtained by considering the

displacement under a given pillar due to the load on all the pillars in contact. The

normal displacement 'u' at a radial distance 'r' from the center of the punch (here

representing a pillar), due to a load 'P' on it is given by (Johnson, 1985):

(11 - v2)pU 2 P - for r < ap, i.e, beneath the punch
2Ea,

= (1 - )Parcsin( ) for r> a, outside the punch (3.9)
7rEa, r



For a given pillar on the ith ring (i=0,1,2,..., Im), ui is given by:

(1 v), (i_ 2)m nj a

i )p, + V2) pj Yl arcsin (3.10)
2Eap ,rEa j=0 kr1,rjkOijk

where E is the elastic modulus, v is the Poisson's ratio, a, is the effective radius of

the square pillars and rijk is the radial distance of the given pillar on the ith ring from

the kIh pillar on the jth ring. The first term gives the component of the displacement

under the given pillar due to the self load (here rik = 0).

From equations 3.8 and 3.10, we have:

(1- V2 )p+ (1- V2)j E arcsin ( = Uo - - i = 0,1,2,..,m
2Eap rEar j=o k=1,rijk#O rijk 2

= o - (3.11)
4Re

Thus, we have m+2 unknowns (po,p1,p2, ... ,pm and no) and m+1 equations. For the

final constraint, we require that, the sum of the loads on all pillars in contact should

equal the total load applied on the lens for equilibrium:

m

P = nip (3.12)
i=O

From these equations, we can solve for the load distribution within the contact. To

validate the approach, we modeled the stress distribution with 2pm size pillars on

the flat and reduced the channel width from 10- 1pm to 10 3 fpm. We assumed quartz

to be isotropic and took E = 95600 MPa and v=0.08 for all the simulations. As the

channel dimension was decreased, the solution approached the Hertzian solution for

a sphere pressed against a flat (Figure: 3-5(a)). We assumed a total load of 0.847 N

on the lens and solved for the stress distribution and contact radius. For experiment

PS52009 (8pim island channel structure), the mean stress on the central pillar was

calculated to be 531 MPa while the outer most pillars saw a mean stress of 34 MPa

(see Figure: 3-5(b)). We predicted 7 pillars across the diameter of the contact, which



is roughly consistent with the observations (Figure 4-9). Similarly, for experiment

PS062309 (4pm island channel structure), the calculated mean stress on central pillar

and outermost pillars were 554.6 MPa and 2.84 MPa, respectively (Figure 4-12(a)).

We predicted 14 pillars across the diameter within the initial contact area for this

experiment, which matches very closely within a region of SEM images revealing

damaged pillars (Figure 4-12(a)). The mean stress on the pillars is compared with

the classical Hertzian contact solution (Figure 3-5(b)). Note that the contact radius

remains almost same, but the stress on the pillars is greatly amplified. The increase

in stress on the pillars is proportional to the area occupied by the channels.
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3.5 Refractive Index

Knowledge of the refractive index of the quartz solution was necessary to compute the

lens separation from the order of the interference minima. We were not aware of any

experimental data on refractive index of the silica-water solution at the experimental

conditions and so assumed that the refractive index of the solution was same as that

of water at 425 0C and 150 MPa. The mole fraction of dissolved quartz in water under

these conditions is very small (7 x 10-4) (Kennedy, 1950) and so the assumption is

probably valid. The refractive index of water calculated using a software (Verma,

2003) based on the 'JAPWS 1995 formulation' (Wagner & Pru#, 2002) was 1.2400,

1.2361, 1.2354 for wavelengths 431nm, 542nm, 575nm, respectively. Further, we

estimated the refractive index of the solution from the slope of the line when the

square of the radius of the interference fringes was plotted against the order number

(Figures 4-1, 4-2). Equation 3.4 relates the slope to the refractive index. The value,

thus calculated, was between 1.21 to 1.25.

3.6 Order Number of Interference Minima

In experiments PS062309 and PS052009, the contact was on the top of pillars and the

interference pattern was formed from the reflections off the bottom of the channels.

The central interference fringe, does not necessarily mark the edge of the contact

region. The order of the central fringe depends upon the height of the pillars at the

center and the refractive index of the medium. In our experiments, although the initial

fabricated structure was well characterised, it might be possible that during setting

up the experiment or due to rolling of the lens, the pillars might be crushed. Use

of variable wavelength light source is one way in which the extant of pillar crushing

at the start of an experiment can be diagnosed. Hickman (1992) found the order

of the interference fringes and the seperation between the lenses by monitoring the

change in wavelength required to offset the interference minimum at a given location

by one order. In the present set of experiments, the interference fringes moved very



little with the change in wavelength possible with our apparatus, because the radius

of curvature of the lens in our experiments was smaller than that used in Hickman's

experiments (about 1 cm vs about 10cm). This limits the use of that method to our

problem.

Instead, we tried to estimate the initial lens separation/pillar height by matching

the radii of interference minima observed at the start of the experiments with those

theoretically calculated by varying the initial lens separation. The interference pat-

terns should match when the initial lens separation is assumed right. From equation

3.4 and assuming elastic convergence (s = 3e, mutual elastic approach), the radius of

interference minima is given by:

rm 2 Rc mA+ e - ho (3.13)

The elastic approach of the two lenses assuming Hertzian contact (Johnson, 1985) is

9P2E
6 = _ _ where E*= (3.14)

e 16RcE*2  1-V(

where P is the applied load. We calculated the elastic convergence to be 0.2479 pm

for a load of 0.847 N. The simulations for contact stress profile, discussed in the pre-

vious section, suggest that the elastic approach should be 0.2620pum, 0.2548pm when

the quartz flat has 8pm, 4pm size island channel structures, respectively (for a load

of 0.847 N). The initial plastic deformation is probably an order of magnitude less

than the elastic deformation and does not affect these calculations much. We applied

this to experiments PS052009 and PS061309 and matched with the radius of inter-

ference minima from the observed interference patterns. For a given wavelength, the

observed and calculated pattern matches at discrete pillar heights separated by A.

So, we looked at three different wavelengths (542 nm, 575 nm, 431nm ) and picked the

common pillar height. This estimated pillar height was 1.02±0.02 for PS052009 and

0.52±0.02 for PS062309, values which match the fabricated pillar heights (Table B.1).

The interference minima order numbers were calculated, knowing the separation be-

tween the lenses.
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Chapter 4

Results

A total of 4 experiments with different surface morphologies (Table 4.1) were con-

ducted in this study. We started with no surface morphology on the quartz flat in

experiment PS031209 and introduced etch pits in experiment PS041309, and island-

channel structures with varying pillar and channel sizes in experiments PS052009 and

PS062309 (Tables 4.1, B.1). The quartz lenses (both plano-plano and plano-convex

lenses) used in the experiments were Y-cut single crystals, with lens bases cut paral-

lel to the (1100) plane. The plano-convex lenses had a radius of curvature of 0.443

inch. We tried to maintain a grain boundary twist angle of 20-300 in the experi-

ments. All the experiments were conducted in a saturated quartz solution at 150t1

MPa fluid pressure, while the measured temperature close to the contact varied from

4140 to 418 0C for the four experiments (see Table 4.1). The applied load varied from

0.8466 N to 0.8476 N. The variation in the load was due to the change in the mass

of quartz weights used in the experiments. The quartz weights were weighed before

and after each experiment and they showed a slight decrease in weight after each

experiment due to the dissolution of quartz in the initially distilled water as it came

up to saturation. The pressure vessel was sealed at a pressure close to 50 MPa and

the temperature was slowly raised from the room temperature in three steps, 300 0C,

3500C, 425 0C, each taking about 1.5 hours. Pressure was always maintained above 50

MPa ensuring that water does not undergo phase transition to steam before it enters

the super-critical regime.



Experiment PS031209 PS041309 PS052009 PS062309

Quartz Flat Sample 1 Sample 5 Sample 2 Sample c1

Surface morphology smooth A" etch pits 8pm pillars 4pm pillars

Load(N) 0.8465+1 0.8476±2 0.8471±1 0.8467±1
Temerature, T (OC) 417±1 417±1 414±1 418±1

Fluid Pressure, Pf (MPa) 150±1 150±1 150±1 150±1

Mean Normal Stress, Pm(MPa) 81±2 94.5±5 443±65 417±118
(at the start of exp.)
Time, t(hrs) 450±4 433±4 477±4 472±4

Convergence, s (pam) no no no 0.15±0.02

Table 4.1: Summary of the experiments

For all but one experiment, PS031209, a manual pressure generator was backed off

as the temperature was raised to prevent the over-pressuring the vessel due to ther-

mal expansion of water. In this experiment, however, while rising the temperature,

the valve connecting the pressure vessel to the pressure transducer was accidentally

closed, preventing us from being able to read the increase in the fluid pressure with

temperature. When we rectified this problem, the fluid pressure in the system (pres-

sure vessel, piping and the pump) read 120 MPa. During this process, two cracks

initiated near the contact between the two lenses (Figure 4-3). Assuming the same

compressibility for the vessel and the rest of the system, the pressure in the vessel

when accidentally isolated was estimated to be 178.6 MPa. The temperature and fluid

pressure in the vessel were then brought to 3420 C and 80 MPa respectively, and held

stable for 20 hours to allow the cracks to heal and stabilize. Then the temperature

and pressure were raised to the run conditions of 4170 C and 150 MPa over an hour

and the experiment was carried out for 450 hrs.

4.1 Contact Morphologies

The crack that formed under the contact in experiment PS031209 was stable through-

out the experiment, and the contact did not evolve during the experiment (Figure 4-3).

The recovered contact on the quartz flat is shown in the Figure 4-7. Similarly, Figures

4-4(a) and 4-4(b) show the contact in experiment PS041309 at the start and end of



the experiment. The contact had a channel, composed of etch pits, running through

the center (see Figures 4-4(b) and 4-8). In neither experiment did the recovered

contact show any morphological evidence of pressure solution or neck growth.

The contact size was the same at the start and end of the experiment PS052009

(Figures 4-5(a), 4-5(b)). But, the recovered contact on the quartz flat (see Figure

4-9) showed significant evolution in the surface morphology throughout the surface

of the flat. The pillars, which were initially square in shape (see figure 2-1(a)), grew

by about 7pm along the c-axis < 0001 > of the crystal, closing the channels perpen-

dicular to the caxis (see Figures 4-10, 4-11). The growth direction was same through

out the surface of the flat. Iwasaki (1997) measured the growth rate anisotropy of

synthetic quartz grown in Na 2 CO3 solution and found that the ratio between the

growth rate of the basal plane (along c-axis, see Figure 4-16) and the prismatic m

face (the top of the pillars, edges parallel to c-axis) is around 60. The ratio between

the growth rate of the rhomb r face (the inclined planes in the grown pillars) and

the prismatic m face is close to 10. Our observations are consistent with the rates

reported by Iwasaki.

The pillars outside the contact evolved different from those inside the contact.

Pillars outside the contact faceted on the top and grew uniformly in the direction of

c-axis (see figure 4-10). Pillars inside the contact grew forming 'c' shaped structures,

probably, due to faster growth at the corners (see Figure 4-11(a)). The corners

might have acted as nucleation sites due to the stress concentration and grew faster

consuming silica from the pore fluid in the channel. At the same time, the interior

of the face might not have free access to the pore fluids in the channel, hindering its

growth. Inside the contact, the top surfaces of the pillars, which would have been in

contact with the lens surface, had small indentations that are reminiscent of inter-

granular fluid inclusions (Figure 4-11(b)). We could not recover the contact region

with the upper lens in place and thus can only conjecture that this region had formed

into a grain boundary during the experiment. We could see faceting inside the pits,

which also suggests that the structure was not moving rapidly. Outside that region,

the surface of the pillar looked relatively smooth or faceted in some cases (Figure



4-11(b)). Thus, we conclude that the newly grown regions of the pillars inside the

contact were not in contact with the lens.

The sample recovered from experiment PS062309 showed similar growth of pillars

along c-axis as discussed above. But the growth of the pillars was limited only to

those pillars which were considerable away from the contact. Figure 4-15 shows the

pillars that grew away from the contact. Within the contact, the SEM photomicro-

graphs reveal crushing of pillars and fracturing (Figure 4-12). Some pillars completely

disappeared 4-12, while some showed undercutting 4-13.

4.2 Contact Stresses

The mean normal stress pm in each of the experiments was calculated by knowing

the load and measuring the contact area. In experiments PS031209 and PS041309,

we could see the central dark spot/spots in the interferograms (Figures 4-3, 4-4).

These central dark spots correspond to the zeroth order minima and are the actual

contact between the two lenses. We measured the area by counting the pixels on the

interferogram and scaling them. The mean normal stress in experiments PSO31209

and PS041309, accounting for uncertainty in the load and the uncertainty in the

contact area measurements, was 81 ± 2 MPa and 94.5 ± 5 MPa respectively.

But in experiments PS052009 and PS062309, when the interference pattern was

formed at the bottom of the channels, it was not straightforward to calculate the con-

tact area from the interferograms. Here, the central interference fringe does not mark

the edge of the contact region. The contact region can have more than one interfer-

ence maxima or minima if the pillars are deformed. So, we looked at the recovered

contact on the quartz flats to estimate the contact area. The SEM photomicrographs

of the contact on the recovered quartz flats from experiments PS052009 and PS062309

showed features distinguishing the pillars inside and outside of the contact.

Figures 4-10 and 4-11 show the top of the pillars inside and outside the contact in

the experiment PS052009. Based on the indentation marks on top of pillars, which

suggest formation of inter-granular boundary, we identified the pillars within the



contact. Figure 4-9 shows the contact region on 'Sample 2'. Though the sides of

the pillars grew, the actual surfaces of the slid-solid appeared to remain constant.

Figure 4-11 shows a single pillar inside contact. Note that the grown portion of

the pillar is smooth, implying no contact. Knowing the initial size of the pillars

and counting the number of pillars inside contact we measured the contact area

in experiment PS052009. Interestingly, the number of pillars in contact (34 ± 1)

match with the number of pillars expected to be in contact from the simulations (37).

The central fringe radius in the interferogram also matches the observed contact

radius. The dimensions of the portion of pillar in contact, as observed from SEM

photomicrographs, varied from 7.lpmx7.lpm and 7.9pmx7.9pm. Accounting for

this variation, we calculated the initial mean normal stress to be 443±65 MPa. The

simulation results shown in Figure 3-5(b) were conservative and assumed pillars to

be 8pmx8pm and thus the stress levels in the simulations are less than the mean

normal stress quoted from the experiments.

Estimating the mean normal stress in experiment PS062309 was more challenging.

We identified the contact spot on the recovered quartz flat (Sample c1) by matching

with scratches and other features observed on the interferogram taken during the

experiment. Unlike the previous case, we did not see any difference in the surface

morphology on the top of the pillars inside and outside the contact. Except that

some pillars inside the contact, closer to the center of the contact, were crushed or

deformed (Figure 4-12(a) ). From the interference pattern observed under 431 nm

wavelength illumination, the radius of the minima corresponding to a separation of

0.52pm was 58purm and 89.6im, at the start and end of the experiment, respectively.

This should approximately correspond to the range of the contact radius, since the

fabricated pillar height was 0.55pim. Even, the numerical simulations estimate the

initial contact radius to be 56.5pm. Assuming an initial contact radius, the contact

radius at every observation time was calculated by knowing the convergence until

that time (from equation 3.5 ) . For the calculations, the initial contact radius

was allowed to vary, about the radius of interference fringe corresponding to 0.52pm

lens separation, from 55pm to 6 5pm. The estimated values of final contact radius



were 76pm to 83pm, correspondingly. Moreover, some pillars were crushed inside the

initial contact area. Crushing might have occured during the loading of the lens or

during the experiment. So, there is uncertainty in the mean stress estimated though

we knew the exact contact radius. To estimate contact stress, we considered two

extreme cases: either none of the pillars were crushed at the start of the experiment,

or up to 1/3 of the pillars in the initial contact area failed. Allowing for uncertainty

in the number of intact pillars and the uncertainty in the initial contact radius, we

estimated the initial and final mean normal stresses to be 417±118 MPa and 178±23

MPa, respectively.

4.3 Convergence

Convergence was calculated from equation 3.4 following the method described in

section 3.1. As we mentioned before, it is the time-dependent component of con-

vergence (As = s(t)-s(O)) that we are referring to as convergence here. The square

of the radius of interference minima plotted against order number is shown for the

experiments PS031209 and PS052009 in the Figure 4-1. Within the experimental

error, the radius of the interference minima did not change during the course of the

experiments, indicating no convergence. In experiment PS041309, the interference

pattern was complicated (Figures 4-8) and thus we could not measure the radii of

interference fringes. For this experiment, convergence is qualitatively measured by

overlaying the interference patterns on one another in transparent overlays. There

was no change in the interference patterns taken at 19hrs after the start of the ex-

periment and those taken at the end of the experiment. The photomicrographs from

the start of the experiment to 19hrs were too distorted to interpret. Thus, there was

no observable convergence in the experiments PS031209, PS041309 and PS052009.

Convergence was observed only in one case, i.e., experiment PS062309. The total

convergence in 472 hours was 0.15±0.02pm. Convergence was rapid initially and

slowed with time (see Figure 4-2). The average convergence rate over the experimental

duration was 0.007pm/day. When the convergence data was fit to a power-law of the



form A s = O' t', we obtained a' = 0.02228 and #' = 0.3134 with a R square goodness

of fit of 0.9607; Using the above fit we calculated the instantaneous convergence rates

at t = 4 hrs , t=470 hrs to be 2.7x10-3 m/hr and 1.02x10-4pm/hr.

It should be noted that the convergence observed in PS062309 is associated with

recovered micro-structures indicative of fracturing, suggesting that cataclysis may

have played an important role in convergence (discussed in discussion).



4.4 Figures

Figure Captions

Figure 4-1 The square of the radius of interference minima (looked under 431nm,

542 nm, 575 nm) is plotted against the order number at the start(A) and end(x) of

the experiments PS031209 and PS052009. The data indicates no convergence. The

lines should shift to the right preserving the slope when the lenses converge. The

constant slope of the line indicates a constant radius of curvature.

Figure 4-2 (a) The square of the radius of interference minima is plotted against

the order number at different elapsed times for the experiment PS062309 (wavelength

431 nm). The lines shift to the right preserving the slope, indicating convergence.(b)

The convergence of lenses after initial loading (As = s(t) - s(O)) is plotted against

elapsed time. Convergence is rapid initially and slows down as time proceeds.

Figure 4-3 Comparison of interferograms at the start (Figure 4-3(a)) and the end

(Figure 4-3(b)) of experiment PS031209. The fringes did not move out. But, note

that the contact moved a little bit. The branch of the trilobite shaped crack, above

the contact, was not completely under the contact at the start of the experiment.

Analysing the crack under optical microscope revealed that it actually lies below the

surface. Also, note the fine crack which passes through the center of the contact.

This caused the first few fringes to be displaced.

Figure 4-4 Comparison of interferograms at the start (Figure 4-4(a)) and the end

(Figure 4-4(b)) of experiment PS041309. Because of the triangular etch pits, there

were no trackable circular fringes. The contact was at two spots as pointed out in the

figure. Fringes can be observed in the channel (series of etch pits) that passed through

the center of the contact. The area occupied by the two dark spots was measured

and considered as the contact area. We were unable to take a good image until first

19 hours.The interferograms were over laid over one another to measure convergence



qualitatively. We observed no convergence.

Figure 4-5 Comparison of interferograms at the start (Figure 4-5(a)) and the end

(Figure 4-5(b)) of experiment PS052009. The fringes were stationary through out the

experiment.

Figure 4-6 Comparison of interferograms at the start (Figure 4-6(a)) and the end

(Figure 4-6(b)) of the experiment PS062309. The fringes moved out with time sug-

gesting convergence.

Figure 4-7 SEM photomicrograph of the recovered contact spot on Sample 1 (Ex-

periment PS031209). The contact region is marked.

Figure 4-8 SEM photomicrograph of the recovered contact spot on Sample 5 (Ex-

periment PS041309). The channel marked in the interferogram (Figure 4-4(b)) can

be observed in the photomicrograph. The maximum width of the channel within the

contact was 120pm.

Figure 4-9 SEM photomicrograph of the recovered comntact spot on Sample 2 (Ex-

periment PS052009). The contact is within the yellow circle. The surface structure

on the top of pillars within and outside the contact is different (compare Figures 4-10

and 4-11 ). Based on this, we identified the number of pillars within the contact

region and thus the contact area. Note that the pillars outside the contact grew until

they touch, while the pillars inside tend to form fluid inclusion like structures.

Figure 4-10 (a) SEM photomicrograph of the pillars outside the contact in experi-

ment PS052009. The pillars, which were initially square, have grown in one direction

(along crystallographic c-axis) closing the channel. There was no significant change

in the pillar dimensions in other directions. (b) SEM photomicrograph of the top of

a pillar outside the contact. Faceting can be observed on top of the pillars.



Figure 4-11 (a) SEM photomicrograph of the pillars inside the contact region in

experiment PS052009. The pillars, which were initially square, have grown in one

direction (along crystallographic c-axis). Unlike the pillars outside the contact, they

donot close completely along the c-axis. The evolution is governed by surface tension

and they tend to form fluid inclusion like structures. (b) SEM photomicrograph of the

top of a pillar inside the contact. We don't see any faceting because the surface was

not exposed to free pore fluid. Also, observe the structures on the top which resemble

fluid inclusions. The sharp edges within the structures imply that the structures were

there for a long time and were not dynamic. Since we could not recover the same

spot on the lens, we cannot say conclusively whether they were fluid inclusions. The

spherical particles found in the images are due to metal coating for SEM imaging and

should not be interpreted.

Figure 4-12 (a) SEM photomicrograph of the recovered contact spot on sample

ci (Experiment PS062309). The initial contact region is approximately within the

marked circle. We arrived at this by looking at the deformed pillars and locating

the center of the contact by matching the existing cracks and damage zones on the

interferogram and the photomicrograph. (b) A higher resolution image of the the

contact area. We could see hertzian contact cracks and crushed pillars. The regions

marked with the green squares indicate an initially existing pillar at that location

which was crushed and removed completely. The regions indicated with the yellow

squares are magnified in Figures 4-13 and 4-14.

Figure 4-13 SEM photomicrographs of pillars inside the contact in experiment

PS062309 (a) The pillar was deformed initially and then evolved with time. Un-

dercutting can be observed at the center of the pillar due to the high stresses taken

by it. (b) Pillars with cracks through them could facilitate high stresses and thus

undercutting.



Figure 4-14 SEM photomicrographs of pillars inside the contact in experiment

PS062309 (a) A pillar punched into the surface causing the cracks associated with a

square punch (b) A pillar which is relatively undeformed.

Figure 4-15 SEM photomicrographs of pillars far outside the contact in experiment

PS062309. The blue square box indicates the initial pillar location and dimension.

Note that the pillars grew along the c-axis. But, the pillars did not close the channels

completely in the direction of the growth.

Figure 4-16 Crystallographic planes on the grown pillars. The pillar shown in the

figure was a pillar outside the contact on sample ci, in experiment PS062309. Same

faces were exposed on the 8prm size pillars in experiment PS052009.
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(a) Interferogram at the start of experiment PS031209

(b) Interferogram at the end of experiment PS031209
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(a) Interferogram at the start of experiment PS041309

(b) Interferogram at the end of experiment PS041309
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(a) Interferogram at the start of experiment PS052009

(b) Interferogram at the end of experiment PS052009
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(a) Interferogram at the start of experiment PS062309

(b) Interferogram at the end of experiment PS062309
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(a) Pillars outside the contact region in experiment PS052009

(b) Top of a pillar outside the contact region

Figure 4-10:
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(a) Pillar inside the contact region in experiment PS052009

(b) Top of a pillar inside the contact region
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Chapter 5

Discussion and Conclusions

5.1 Discussion

5.1.1 Grain Boundary Structure

Grain boundary structure has a significant role in the kinetics of pressure solution.

As discussed in the first chapter, the grain boundary is envisaged to have either

1) a continuous thin fluid-film, allowing dissolved material to diffuse into the pore

space, or 2) a dynamically stable island-channel structure. Models that support

diffusion-limited pressure solution (Rutter & Elliott, 1976 ; Gratz, 1991 ; Gratier

et al., 2009) propose that the grain boundary has a structured continuous fluid-film

capable of transferring the normal stress. Arguing that the diffusivity of thin fluid-

films is not high enough to explain geologically observed strain rates at temperatures

below 200 0C, Gratz (1991) proposed that the grain boundaries might have inter-

connected cracks that would decrease the diffusion path lengths of fluid-film diffusion.

On the other hand, the models suggesting that interfacial solution kinetics are rate

limiting (Raj, 1982 ; Schutjens, 1991 ; Niemeijer et al., 2002 ; Noort, Spiers, &

Pennock, 2008), assume that the underlying boundary structure is a dynamically

stable island-channel structure and that structured thin fluid-films do not exist. In

these island-channel models, material is dissolved due to free face dissolution on the

lateral surfaces of the pillars and the base of the channels and is transported out



into pore space via bulk fluid diffusion through the channels. Since diffusivity of

solute in the channels is often assumed to be equal to free-fluid diffusivity, diffusion

is often assumed not be rate-limiting. However, the existence of dynamically stable

island-channel structures has still not been conclusively demonstrated.

The wettability of grain boundaries depends on the relative energies of the grain

boundaries and the solid/fluid interfaces. Fluid wets the grain boundary and forms

a continuous fluid-film if twice the solid/liquid interface energy, 7'SL, is less than the

grain boundary energy, YGB, i.e., 2 X 7SL < '7GB. The limiting condition, 2 x 73L =

'7GB, corresponds to a zero wetting angle, i.e., the angle formed between the two

solid / liquid boundaries at the junction with the grain boundary ). Thus, the fluid

penetrates the grain boundary only if the wetting angle of the liquid and the solid is

zero (Smith, 1948). When the wetting angle is greater than zero, the pore fluid will

reside as discrete pockets in the grain boundary (fluid inclusions).

Farver (1992) demonstrated that the diffusivity of 02 in novaculite (quartz) grain

boundaries varied by 4 to 5 orders of magnitude, depending on whether the fluid

was wetting (6M NaCl) or non-wetting (pure H20, pure CO 2 ). Although water

against quartz has a wetting angle close to zero at room temperature, it increases

with temperature (Stepanov et al., 1977). In another set of experiments, Watson

& Brenan (1987) showed that, at elevated temperatures and pressures, pure H 2 0

does not wet quartz grain boundaries. In our experiments, we did not observe any

evidence of thin fluid-films. Rather, in experiment PS052009, the tops of the pillars

appeased to bond with the lens. The recovered micro-structure of the pillars showed

pits resembling fluid inclusions (see Figure 4-11). Previously, Beeler & Hickman

(1999) pressed quartz lens against a polished quartz flat at similar conditions and

observed neck growth and formation of fluid inclusions under the contact, suggesting

a non-zero wetting angle at the experimental conditions using pure water. However,

fluid chemistry can play an important role in wetting the grain boundary, and a more

fluid lain boundary might exist when electrolyte solutions are used. Previous studies

reported that the addition of solutes like NaCl, KCl, CaF2, Na 2CO3 to water reduces

the wetting angle drastically (Watson & Brenan, 1987 ; Farver & Yund, 1992). Future



experiments should be designed to explore this effect.

The fabricated structures on top of the quartz flats corresponded to the three

types of boundary morphologies discussed above. In experiment PS031209, there was

a fine crack running through the center of the contact (Figure 4-3). Similarly, there

was a larger channel (Figure 4-4) running through the center of the contact (Figure

4-4) in experiment PS041309. Here, the channel was large enough (about 1t m deep

) to have free-fluid diffusivity. Both these surface structures represent variations on

Gratz's grain-boundary model. Further, the island-channel structures are also an

end member of Gratz's grain-boundary model. In the case of the regular island-

channel structure, the diffusion length from grain boundary to channels was reduced

to half the pillar width. However, convergence was observed only in experiment

PS062309. And in this case, the convergence rate in experiment PS062309 was less

than the convergence rate predicted by diffusion limited pressure solution (see section

5.1.3) and appears mainly due to crushing of the pillars, perhaps rate-limited by sub-

critical crack growth (as discussed below). As we discussed earlier, the grain boundary

appears not be wetted and fluid-film diffusion or Gratz type pressure solution did not

occur.

The island-channel model does not require a fluid film on top of the islands. The

dissolution occurs at the pillar sides and channel surfaces and maintains the island-

channel structure dynamically (Noort, Visser, & Spiers, 2008). On the other hand,

surface tension tries to heal the island-channel structure. Balancing both the driving

forces, Noort (2008) suggested that island-channel structures might be dynamically

stable if the normal stress is above a critical normal stress, cr given by:

oa, = 2a E (cos - cos ) (5.1)

where a is the ratio of the contact area occupied by islands to the total contact area, 0

is the dihedral angle, 0 eq is the equilibrium dihedral angle and 6 is the grain boundary

thickness (in an island-channel model, it is the height of the islands). We took ',s -

0.145 j/m 2 (at 300 0C, from Noort (2008)), (cos q--cos - )=0.17 (from Noort (2008)),



E = 95600 MPa and a = 0.25. The value of -ysl taken here gives a conservative

estimate of the critical stress because -7,l likely decreases with temperature. Using

the above values, we calculated the critical normal stress, -cr, for island-channel

structures in experiments PS052009 (3 = 1.05pmru) and PS062309 (3 = 0.55pum) to

be 24 MPa and 33 MPa, respectively. The mean normal stress at the start of our

experiments, accounting for the area occupied by the channels, was approximately 80

MPa, which is greater than o, for both the experiments. Moreover, the parameters

of the island channel structures in the experiments were comparable to the island-

channel structures envisaged (see Table 5.1).

Parameters Values
Exp. PS052009 Exp. PS062309 Suggested by Noort,2008

Density of islands, M (m-') 3.9 x 109 1.56 x 1010 1010 - 13

a 0.25 0.25 0.2-0.5
3 (P, m) 1.05 0.55 10-3 - 10-1

Table 5.1: Comparison of the island-channel structure parameters with values sug-

gested by Van Noort

However, there was no convergence in experiment PS052009. Indeed, the pil-

lars inside the contact showed signs of healing and tend to form fluid inclusion like

structures (see Figure 4-11 ). The top of the pillars bonded with the lens indicating

non-zero wetting angle. There was no significant free-face dissolution of the pillars or

channels and in fact, the pillars grew even though there was no pressure solution.

In the only case where the lenses converged, the contact region showed significant

crushing of pillars, nicro-fracturing and micro-granulation. The pillar remnants ap-

peared to be dissolved away with time. We did not see significant free-face dissolution

on channel beds to suggest that an island-channel structure was being established.

Also, the failure of the 4pim size pillars, while 8pm size pillars survived, indicates that

smaller islands may not be able to sustain large normal stresses. Thus, it is possible

that if sufficient time was allowed, the boundary might have healed. Finally, although

Noort (2008) argued that the islands can take higher normal stresses (of the order of

GPa) than observed in PS062309, this argument was based on indenter experiments

and the two cases are not comparable. In indenter experiments, when an indenter



is pressed against a polished flat surface, the material surrounding the region under

the indenter acts as a confining medium and enhances the strength. For the islands,

there is effectively no confinement and pillars are loaded under uni-axial compression.

Thus, they are prone to fail more easily.

5.1.2 Surface Damage

The geometries of the island-channel structures in experiments PS052009 and PS062309

were scaled to ensure equal mean normal stress in both experiments. Even, numerical

simulations suggested a similar stress distribution in both the cases (section 3.4). The

height was also scaled to ensure comparable bending stresses at the bottom of the

pillars. However, during the experiments, the 4pm sized pillars failed while the 8 pm

size pillars remained intact. The cause of the failure is not clear. Perhaps smaller pil-

lars at the center of the contact failed in progression, owing to the tangential stresses

imposed during sample assembly. The pillars might also have been damaged due to

the rolling of the lens, as the temperature and pressure were raised to the design

values. This rolling have sheared or damaged the smaller pillars more easily than

the larger ones. Once, some pillars fail at the center of the contact, the surrounding

pillars take more normal stresses and fail in turn.

During the experiments, the plano-convex lens rested with its convex side pressed

against the quartz flat while the load was applied on the back through the tip of the

gold wire (see Figure 2-4). This configuration is not stable and small disturbances

might roll the lens back and forth. Transferring the load on to the lens through a

larger contact might stabilize the system and in future experiments, the tip of the

gold wire may be modified to be a disc with diameter close to the lens diameter.

As a secondary effect, the plasma etching on the quartz flats causes surface dam-

age. Previous studies have shown that plasma etching can cause 40 nm diameter and

40 nm deep conical pits on the etched surface (Pantchev et al., 1983). The density

of the defects (about 4 x 1014) was reported to be independent of the etch rates and

crystal orientation. Unfortunately, we did not characterize the quartz flats under

SEM/TEM before the experiments. In any case, if there was a damage zone, the



4pm structure would see more damage since it had more exposed surface area. It

is possible that the greater surface damage might lead to the preferential cataclastic

failure of the 4pam pillars when compared to the 8pm. In the future, quartz flats

might be treated with HF acid after the plasma etch to remove any damage zone on

the surface.

5.1.3 Deformation Mechanism

Classical models of pressure solution suggest that at a grain-grain contact, the con-

vergence rate, t, is given by, either

ds _ 8eqDb 8 m when diffusion is rate-limiting (Rutter & Elliott, 1976)
dt RTd2

or

ds KdisVsP. when dissolution is rate-limiting (Raj, 1982) (5.2)
dt RT

where pm is the effective mean normal stress and 'd' is the diffusional path length.

More recently, Lehner & Leroy (2004) suggested a creep law, considering the coupling

of dissolution and diffusion. But, when either of the mechanisms dominate, the law

reduces to one of the above equations, accordingly. Using the values listed in the table

for the parameters, we estimated the convergence rates expected in our experiments,

for both rate-limiting steps. Of these parameters, Db is the most poorly known and

estimates vary by orders of magnitude.

For experiment PS052009, taking the diffusion path length to be half the pillar

width (d = 4pm ), pm=443 MPa and the convergence rates were estimated as 0.29p

m/hr and 0.088pm/hr for diffusion or dissolution rate-limited pressure solution, re-

spectively. However, despite a resolution of 0.02P m to measure convergence, we

did not observe any convergence over a period of 477 hours. Therefore, we interpret

that none of the mechanisms were active or Db was much lower than assumed in

our calculations. Similarly, for experiment PS062309, taking d = 2pm, pm =417 MPa

and the convergences rates were estimated as 1. 14pum/hr (diffusion rate limiting) and



Parameters

Molar Volume of Quartz ,V (m 3 /mol)
Free fluid Diffusivity, D, (m 2 /s)
Grain Boundary Diffusivity, Db, (m 2 /s)
Dissolution Rate Constant,Ki (m/s)
Equilibrium Concentration,q(mol/m 3 )
Grain Boundary Thickness,S(nni)
Universal Gas Constant, R (J/K/mol)
Temperature, T (K)

Values

2.27 x 10- 5 *

9 x 10-7 x exp(-" 0 ) *
10-3 x D ***
2.27 x 10 -(3.826+0.002028T+4) *

31.5 **

2
8.314472
698.15

* from Lehner and Leroy (2004)
** calculated from solubility data by Kennedy at 4250C and 150 MPa fluid pressure,
* from Bernab6 (2007)

Table 5.2: Numerical values of parameters for PS creep models

0.084p m/hr (dissolution rate limiting). But, the observed convergence rate at the

start of the experiment was approximately 0.002p m/hr. Even in this case, diffusion

or dissolution did not appear to govern the convergence rate.

On the other hand, the convergence rate (see section 4.3) when plotted against

the mean normal stress (see section 4.2) at each observation time gave a stress expo-

nent of 5.1 ± 0.5 (Figure 5-1). The stress exponent, which should be linear in stress

(see equation 5.2), is much too high for dissolution/diffusion limited pressure solu-

tion, perhaps indicating sub-critical crack growth to be the underlying mechanism

(Atkinson, 1984). Moreover, the recovered micro-structures show micro-cracking and

micro-granulation. Plastic deformation under the pillar could have contributed to

the high stress exponent, too, although we don't have any means to determine the

role of plastic deformation in the present experiments. Although, determining stress

exponent from a single experiment is not robust, these results agree with several

previous studies of aggregate compaction that suggested that micro-cracking and

sub-critical crack growth might be important mechanisms under hydrothermal con-

ditions. Karner (2008) did isotropic and triaxial compression experiments on St.

Peter quartz sand stone up to 2250 C. They reported that triaxial yield points at

higher temperatures decreased with increase in temperature in a way consistent with

sub-critical crack growth. The data showed acoustic activity proportional to the de-
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Figure 5-1: For experiment PS062309, convergence rate is plotted against mean
normal stress on a log-log scale. As the lenses converge, the contact area increases and
the mean normal stress decreases. Contact radius was estimated from the convergence
at each observation point and the mean stress was calculated. The data fits to a power

law with a stress exponent of 5.1 ± 0.5. We interpret this high stress exponent to be
associated with sub-critical crack growth.

formation. Similar observations were made by Chester (2007) and Karner (2003) at

lower temperatures. Noort (2008) performed iso-static compaction experiments on

granular quartz at 3000 - 6000C and 25-100 MPa of effect pressures. He reported

extensive micro-cracking in the recovered micro-structures and grain size reduction

from 129pm to 30pum due to micro-cracking and micro-granulation.

There is no robust model for aggregate compaction due to sub-critical crack

growth. Thus, interpreting the aggregate experiments in terms of sub-critical crack

growth is not straight forward. In general, various authors (Niemeijer et al., 2002 ;

Noort, Spiers, & Pennock, 2008 ; Schutjens, 1991 ; Dewers & Hajash, 1995) attributed

the observed compaction in aggregate experiments to pressure solution creep based

on the activation energy (60-100 kJ/mol), grain size dependence (d-) and micro-

structures, which are consistent with dissolution-limited pressure solution. An aver-

age stress exponent of 3 is usually reported in the aggregate compaction experiments.



However, the explanation for such high stress exponent is not satisfactory. On the

other hand, sub-critical crack growth has similar activation energy and has higher

stress exponent (Atkinson, 1984). Chester et. al (2007) reported a grain size depen-

dence of d- 1 for time-dependent compaction of quartz aggregates where sub-critical

crack growth was dominant mechanism. Micro-structures resembling pressure so-

lution can be produced even by micro-cracking, micro-granulation and subsequent

dissolution. For example, Dickinson & Milliken (1995) examined the quartz rich,

Etjo sand stone from nothern Namibia by cathodoluminescence imaging and showed

that the concave-convex interpenetrating features associated with pressure solution

may be due to micro-cracking. In their study, micro-cracks healed with authegenic

cements at grain-grain contacts were visible under cathodoluminescence imaging.

However, we note that, Gratier's (2009) indenter experiments (at 3500 C, 20 -

120 MPa of pore pressure and 25 -350 MPa of differential stress) on quartz crystal

suggested diffusion controlled pressure solution and a stress exponent of 1.75. There

are two significant differences between Gratier's experiments and this study. First,

Gratier's indenter was steel (dissimilar solid phase boundary) and second, the fluid

used was IM NaOH (changes wettability and greatly enhances dissolution kinetics).

The specific geometry of the indenter used by Gratier induces under-cutting at the

edges and the observed convergence rates at least in part be due to this fact. In any

case, the indenter experiments demonstrate that fluid chemistry and dissimilar solid

boundaries are important aspects to be considered.

5.2 Conclusions

We did not observe evidence for classic pressure solution creep even though we tested

several different possible boundary morphologies including: 1) a micro-crack through

the contact, 2) a channel through the contact, and 3) island-channel structures fabri-

cated at two different scales (4pm and 8pim). The quartz surfaces approach to bond

with each other and form fluid inclusions similar to that observed by Hickman & Evans

(1991) in halite-halite contacts. The island-channel structures in the experiments were



comparable in dimension to the island-channel structures suggested by previous work-

ers in natural grain-grain boundaries. However, even though mean normal stresses on

our island channel structures were well above the critical stresses suggested by Noort

(2008) for dynamically stable island-channel structures, the island-channels did not

appear to be dynamically stable, and in one case, the pillars (islands) in the contact

grew, forming structures similar to fluid inclusions. We suggest that over-growth fea-

tures and healing/precipitation features in micro-structures need not always indicate

pressure solution. In the only case where convergence was observed, the recovered

micro-structures indicated wide spread micro-cracking and crushing of pillars. The

convergence rate followed a power law with a stress exponent of 5, perhaps suggest-

ing that the dominant mechanism was sub-critical crack growth rather than pressure

solution creep, although solid state-dislocation creep cannot be ruled out as factor.

Finally, we must observe that our conclusions are applicable to quartz-quartz

boundaries at hydrothermal conditions in the presence of water that is saturated

only with respect to silica. Presence of alkali ions or dissimilar solid grain boundaries

might enhance wettability and may lead to true pressure solution. This would be

good topic for future research.



Chapter 6

Future Work

Though we took measures to mis-orient the grain boundaries in the present experi-

ments, we did not observe deformation by 'true' pressure solution. We suspect that

the lack of fluid-film at the inter-granular boundary reduces the diffusion coefficient to

very small values. We may be able to create favorable conditions for grain boundary

wetting, either by decreasing the solid-liquid interfacial energy (-ys) or by increasing

the solid-solid interfacial energy (-g). ysl can be decreased by adding solutes like

NaCl, KCl, CaF2, Na 2 CO 3 (Watson & Brenan, 1987 ; Farver & Yund, 1992). How-

ever, this may also change the dissolution kinetics. It is well known that Na enhances

the dissolution rate multi-fold (Gratier et al., 2009). We can increase the solid-solid

interfacial energy by increasing the grain boundary mis-orientation or by having dis-

similar solid phase boundaries. So, the next step should be to try dissimilar materials.

Sapphire is a good choice because it is harder than quartz and has relatively lower

solubility and sluggish dissolution kinetics. The next experiment should be to press

a sapphire lens against a quartz flat with a 8p m island-chanel structure. Since, the

channels are large enough, the pillar size determines the diffusion path length. If we

observe convergence in this case, we should try increasing the pillar sizes and verify

that the convergence rate varies proportional to the square of the pillar size. In these

experiments, I expect the convergence rate to be constant until the pillars are dis-

solved and then to drop suddenly to a much lower value due to the sudden increase in

the diffusion path length. It will be interesting to fabricate an island-channel struc-



ture on sapphire to see if the convergence rate is constant through out, since the

roughness on sapphire is not eroded with time. On the other hand, different set of

experiments at quartz-quartz contacts, varying the fluid chemistry (add electrolytes)

would help us understand the pressure solution process in natural settings better. It

would be interesting to see if addition of Na will lead to under-cutting or as well lead

to true pressure solution at enhanced rates.

The other new experiment to try would be to repeat the experiment on 4pm pillar

geometry with no pore fluid (dry). This checks indentation creep via dislocation creep

and, if none were found, would strengthen the conclusion about cataclysis being rate

limiting in 4p case. Further into the future, the influence of presence of clays on PS

rates can be tested by using a quartz flat coated with a thin clay layer.

It is worth mentioning here that the plano-convex sapphire lens to be used in the

experiments proposed above, should have a larger radius of curvature than the quartz

lens used in the present experiments. The benefits are two fold. Firstly, since sapphire

has a young's modulus at least 3 times greater than quartz, using the same radius of

curvature would cause larger stresses on the pillars and they may fail. Because it is

possible to estimate the radius of curvature, from Hertzian contact theory, it should

be possible to design the experiments, so that the quartz pillars would experience

a stress state similar to that of the quartz-quartz experiments. Secondly, using a

lens with larger radius of curvature would increase the resolution of our convergence

measurements.



Appendix A

Fabrication Process

The recipe followed for fabricating the structure on the quartz flats is described below.

All the steps were carried inside the clean room at Stanford Nano Fabrication facility

(SNF). The process is pictorially depicted in the Figure A

" The quartz flats (Plano-Plano lens) were cleaned with Acetone and Isopropanol

to remove any organic compounds present on the surface. Then, they were dried

using a Nitrogen gun.

" A 840A0 thick Cr layer was vapour deposited on these clean samples at a rate of

6.7A0/sec.Innotec ES26C E-Beam Evaporator was used for the Cr deposition.

" The flats were then subjected to Vapor Prime in 'Yes oven' for 30 min. In

the 'Yes oven', the flats were heated to 150 0C to evaporate any fluid on the

surface of the flats and then HMDS (Hexamethyldisilazane) was deposited on

the surface. This would make the surface hydrophobic and enhance the surface

adhesion of the resist to the oxide/metal on the surface.

" Shipley Photoresist 3612 was then coated over the vapor primed Cr layer at

a spin rate of 3400 rpm for 1 minute to achieve a target thickness of 1.6pim.

After spinning the photo-resist, the quartz flats were baked at 90 0C for 5 min

on a pan. When an oven was used, the flats were allowed to bake for 30 min at

90 0C. This helped to harden the resist.



" The flats were aligned with the respective grid pattern on the Photo-Mask and

exposed to UV light for 2 sec.Karlsuss Contact Aligner was used for aligning

and exposure. A soft contact with 0.2 bar pressure was maintained between the

mask and the quartz flats. The Cr side of the Photo-Mask touched the resist

coated surface of the flats.

" Quartz flats were then prebaked (prior to development) in an oven for 20 minutes

at 90 0C. And then, they were developed for 90 seconds in MF-26A (standard

developer) and rinsed in water for 1 minute. After developing, the flats were

post baked for 25 minutes in an oven.

* The flats with the developed photo-resist were dry etched with a plasma of

Oxygen (25Watt, 150mT, 02 20 secm) for 30 seconds to remove any thin layer

of resist that was masking the Cr layer along the pattern. Then, the flats were

wet etched in standard Cr etchant (22% Ceric Ammonium Nitrate,9% Acetic

Acid,69% water) for 50 seconds and rinsed in water for one minute. This process

removed the Cr layer along the desired pattern.

* The flats were then cleaned for 5 minutes each in Acetone, Methanol and Iso-

propanol to strip off the residual resist. Cr thickness was measured on Zygo

White-Light 3D Surface Profiler to ensure that the Cr layer was removed along

the desired pattern.

" Now, the flats with the patterned Cr mask on the surface, were dry etched with a

plasma of CHF3 (100 standard cubic centimeters per minute, sccm) and 02 (10

sccm) on Drytek4, an inductively coupled plasma etching machine.Drytek4 was

operated at 150 mT (milli Torr) pressure, 150W power and 310-330V voltage.

This etched the quartz flats along the pattern, not protected by the Cr mask.

The etch rate was observed to be 0.2pm/10 minutes. For 0.5pm target depth,

flats were etched for 24 min and 48 min for 1pm target depth.

" This step was followed by dry etching again with a plasma of 02 (150 watt,

150 mT, 20sccm) for 5 minutes to remove polymer (bi product of dry etching



of quartz) deposited on the surface. The thin layer of polymer could prevent

Cr mask from being wet etched.

" The residual Cr mask on the surface was removed by wet etching in Cr etchant

for 3-5 min.

" The flats were again cleaned with acetone, methanol and isopropanol, in the

order.

" The fabricated structure was then characterised on Zygo. All the processes from

vapor-prime to post-development bake were done in a litho room.

* The photo-mask ( 5x5x0.09 inch3 soda lime plate) used for photolithography

has 5 different patterns. Each pattern allows light to pass through a grid of

lines. The lines in all the five patterns are spaced, center to center, twice

their width apart. The region enclosed between lines is a square of side equal

to the width of the lines. So, within a macroscopic square we have i of the

area was exposed in all the patterns. The patterns differ in the width of the

lines (4[tm,5pm,8/pm,12[tm,16pm) and thus the spacing. The photo-mask has

two copies of each pattern except for the 16tm pattern. Thus, a total of nine

patterns are present on the photo-mask.



Clean Quartz Flat

Uniform layer of Cr deposited
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flat after stripping off the residual
Cr

Figure A-1: Fabrication procedure
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Appendix B

Sample Dimensions

(a) Surface structure on dry etched flats. Refer to Figure B-i for reading the table

Quartz Flat ho(pm) p(ptm) pb(pm) ct(pm) cb(/Im)

Sample 2 1.05±0.005 8.3±0.1 10.6±0.1 8.3±0.1 6.0±0.1
Sample bi 1.025±0.005 7.2±0.1 9.9±0.1 8.8±0.1 6.1±0.1
Sample c2 1.00±0.01 6.6±0.1 9.4±0.1 9.4±0.1 6.6±0.1
Sample a2 1.04±0.005 5.7±0.3 9.1±0.3 10.2±0.3 6.9±0.3
Sample ci 0.55±0.005 4.0±0.1 4.9±0.1 4.0±0.1 3.1±0.1
Sample b2 0.57±0.005 3.5±0.1 4.6±0.1 4.5±0.1 3.4±0.1
Sample al 0.57±0.005 4.4±0.1 5.4±0.1 3.6±0.1 2.6±0.1
Sample d 0.45±0.005 3.5±0.1 4.4±0.1 4.5±0.1 3.6±0.1

(b) Dimensions of Triangular Etch Pits on wet etched flat

Quartz Flat sides of triangular etch pits (pm) depth (pm)

Sample 5 35±10 60±10 60 10 1±0.2

Table B.1: Surface structure on fabricated samples.

Pt Ct

10

Cb Pb

Figure B-1: Profile of fabricated island-channel structure
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