MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Secure and Robust Error Correction
for Physical Unclonable Functions

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Meng-Day Yu, and S. Devadas. “Secure and Robust Error Correction for Physical
Unclonable Functions.” Design & Test of Computers, IEEE 27.1 (2010): 48-65. ©2010 Institute of
Electrical and Electronics Engineers.

As Published: http://dx.doi.org/10.1109/MDT.2010.25
Publisher: Institute of Electrical and Electronics Engineers
Persistent URL: http://hdl.handle.net/1721.1/59809

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be
subject to US copyright law. Please refer to the publisher’s site for terms of use.

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59809

Secure and

Verifying Physical Trustworthiness of ICs and Systems

Robust

—1or

Correction for Physical
Unclonable Functions

Meng-Day (Mandel) Yu

Verayo

Srinivas Devadas

Massachusetts Institute of Technology

Editor’s note:

Physical unclonable functions (PUFs) offer a promising mechanism that can be
used in many security, protection, and digital rights management applications.
One key issue is the stability of PUF responses that is often addressed by error
correction codes. The authors propose a new syndrome coding scheme that
limits the amount of leaked information by the PUF error-correcting codes.

— Farinaz Koushanfar, Rice University

48

Il AN IMPORTANT ASPECT of improving the trustworthi-
ness level of semiconductor devices, semiconductor
based systems, and the semiconductor supply chain
is enhancing physical security We want semiconduc-
tor devices to be resistant not only to computational
attacks but also to physical attacks. Gassend et al.
described the use of silicon-based physical random
functions,"? also called physical unclonable functions
(PUFs), to generate signatures based on device man-
ufacturing variations that are difficult to control or re-
produce. Given a fixed challenge as input, a PUF
outputs a response that is unique to the manufactur
ing instance of the PUF circuit. These responses are
similar, but not necessarily bit exact, when regener-
ated on a given device using a given challenge, and
are expected to deviate more in Hamming distance
from a reference response to the extent that environ-
mental parameters (e.g., temperature and voltage)
vary between provisioning and regeneration. This de-
viation occurs because circuit delays do not vary uni-
formly with temperature and voltage.

PUFs have two broad classes of applications.
certain classes of authentication applications, the sil-
icon device is authenticated if the regenerated re-
sponse is close enough in Hamming distance to the
provisioned response. To prevent replay attacks, chal-
lenges are never repeated. This means the PUF must

1,35 In

0740-7475/10/$26.00 © 2010 IEEE

Copublished by the IEEE CS and the IEEE CASS

be resistant to software model-building
attacks (e.g., learning attacks like
those Lim described®) to be secure.
Otherwise, an adversary can create a
software model or clone of a particu-
lar PUE

If, instead of Hamming-based au-
thentication as we've described, the
PUF is to serve as a secret-key genera-
tor, only a fixed number of secret bits need to be gen-
erated from the PUE These bits can serve as
symmetric key bits or as a random seed to generate
a public-private key pair in a secure processor.3 How-
ever, in order for the PUF outputs to be usable in
cryptographic applications, the noisy bits must be
error corrected, with the aid of helper bits; these
helper bits are commonly referred to as a syndrome.
The greater the environmental variation a PUF is sub-
ject to, the greater the possible difference (noise) be-
tween a provisioned PUF response and a regenerated
response.

Software model-building attacks are not a concern
when a fixed number of independent secret bits are
generated from the PUE These bits, if noise-free,
need not be exposed (for example, these bits may
be one-way hashed prior to being exposed; in this
case, model building of the PUF requires inverting
the one-way hash), and therefore an adversary can-
not construct a model of the PUE

In perhaps the earliest reference to error correc-
tion in silicon PUFs, Gassend cited the use of 2D
Hamming codes for error correction.! (For more in-
formation on PUFs and error correction, see the
“Related Work” sidebar.) Suh et al. had a more realis-
tic view of noisy properties of PUFs and suggested the
use of Bose-Chaudhuri-Hochquenghen (BCH) code,

IEEE Design & Test of Computers

specifically BCH (255, 63, t = 30) code for error cor
rection,® where the PUF generates 255 bits, but be-
cause 192 syndrome bits are exposed in public
storage, the actual key size is no more than 63 bits.
This code can be used to correct 30 errors out of
255 bits but is expensive to implement. Maximum
error rates for PUFs across environmental variations
reflecting variations from real-life deployments can
be as high as 25%, making straightforward use of
BCH impractical—the codeword sizes required
would be too large for practical realizations. For
these high error rates, error reduction techniques
must be applied prior to error correction. For exam-
ple, PUF bits that are less likely to be noisy can be
selected, and/or repetition coding can be used.
Error reduction requires additional helper or syn-
drome bits to be publicly stored. These bits could
leak information. For example, by using these syn-
drome bits, the adversary might obtain bias informa-
tion that can be used to reduce the search space
required to obtain the secret key. Information leakage
via syndrome coding has not received much atten-
tion in practical PUF-based key generation systems.

Accordingly, in this article, which focuses on the
use of a PUF and error correction techniques to gen-
erate cryptographic keys, we propose a new syn-
drome coding scheme called index-based syndrome
coding. IBS differs from conventional syndrome cod-
ing methods, such as the code-offset construction
using linear codes,’ in two main respects. First, by
its very nature it leaks less information than conven-
tional methods or other variants that use bitwise
XOR masking. The key idea is to generate pointers
to values in a PUF output sequence so that the syn-
drome bits no longer need to be a direct linear math-
ematical function of PUF output bits and parity bits.
Under the assumption that PUF outputs are indepen-
dent and identically distributed (IID), IBS can be
shown to be what is known as information-theoretically
secure (i.e., security can be derived entirely from infor
mation theory) from the standpoint that IBS does not
contribute to additional min-entropy loss. In applying
National Institute for Science and Technology (NIST)
statistical tests for randomness, experimental results of
a Xilinx FPGA-based implementation show that IBS
has a high pass rate that is consistent with pass rates
of NISTFrecommended reference random bits, validat-
ing the IID assumption.

The second way in which IBS differs from con-
ventional syndrome coding is that IBS coding,

January/February 2010

when used with certain classes of PUFs (specifically,
those with real-valued outputs), has a coding gain
associated with the soft-decision encoding and
decoding native to IBS. Soft-decision coding yields
a higher coding gain than its hard-decision counter-
part because the coder takes advantage of the con-
fidence information of the bits presented at its input
to make better coding decisions. Experimental
results with a Xilinx FPGA-based implementation
show that IBS reduces error-correcting code (ECC)
complexity by approximately 16x to 64x, given cer-
tain design assumptions, while preserving the ability
to correct errors across varied environmental condi-
tions. A Xilinx Virtex-5 implementation showed no
error correction failures when provisioned at 25°C
and 1.0 V, and regenerated at -55°C and 1.1 V.
Based on the number of tests run, the error rate is
bounded well below 1 ppm (parts per million).
We ran other conditions from -55°C to 125°C, at
1.0 V. + 10% as well, showing consistent results
pointing to an error rate below 1 ppm.

Index-based syndrome coding

Consider a noisy pseudorandom source (one in
which, for a given seed, the bitstream generated is
predictable). Here, “noisy” means that the predict-
able bit stream could have some bit corruptions
when regenerated. Examples of noisy pseudorandom
sources include PUFs and biometric sources.

PUF with real-valued output

Now consider a noisy pseudorandom source with
real-valued outputs. Each output value, rather than
being a single bit (of 1 or 0), is instead real valued
in the sense that the output value contains both polar-
ity information (1 or 0) as well as confidence informa-
tion (strength or confidence level of 1 or 0). One way
to represent a real-valued output is to have each out-
put value in 2s-complement representation. A + sign
bit (1'b0) represents a 1-bit PUF output, and a — sign
bit (1’'b1) represents a 0-bit PUF output. The strength
(or confidence level) of the 1 or 0 PUF output is rep-
resented by the remaining non-most-significant bits.
Another representation of real-valued output is to
show the PUF output bit in its native form (0 for a
PUF output 0, 1 for a PUF output 1), and have a
unary number of 1s representing output strength.
Examples of PUFs with real-valued outputs include
PUFs producing outputs resulting from oscillator com-
parisons with possibly selectable paths through each

49

Verifying Physical Trustworthiness of ICs and Systems

Related Work

Several recent papers have cited the use of error
correction with physical unclonable functions to generate
cryptographic keys.'®

Physical unclonable functions (PUFs)

Physical one-way functions were implemented using
microstructures and coherent radiation, and an authenti-
cation application has been described.! Gassend et al.
coined the term physical unclonable function and
showed how PUFs could be implemented in silicon
and used for authentication and cryptographic applica-
tions.? Many other silicon realizations of PUFs have
been proposed.®® It has been shown that some pro-
posed PUFs can be modeled or reverse-engineered,®
precluding their use in unlimited authentication applica-
tions. However, the focus of our work is on generating
a fixed number of independent bits from a PUF, which
are kept secret, and therefore these modeling attacks
are not relevant. The security of the error correction
scheme that ensures reliability of these bits is the impor-
tant consideration and focus of our work.

Efficient and robust error correction
Bosch et al. suggested using two-stage coding to
reduce error correction complexity through heavy

use of repetition coding and conventional syndrome
generation using XOR masking.* However, this work
didn’t directly address the case in which a PUF has
DC bias and how that affects information leakage
through repeat XOR masking of the same bit across
multiple PUF output bits, nor do the error correction
calculations directly account for voltage effects. In
contrast, our work includes characterizing information
leakage through repetition coding, ways to mitigate
that via indexing, subjecting the syndrome through
NIST tests and other correlation tests, and establishing
a formal proof to show why index-based syndrome
(IBS) does not contribute to additional min-entropy
leakage. Additional contributions of our work include
an IBS-only codec without the complexity of a conven-
tional decoder; characterization across voltage varia-
tion and wider temperature variation; and empirical
results showing no error correction failures across a
wide range of temperature and voltage conditions,
with an IBS-ECC (BCH (63, 30, t = 6)) configura-
tion (IBS used in addition to Bose-Chaudhuri-
Hochquenghen code BCH (63, 30, t= 6)) empirically
producing error-free results.

Maes et al. also described soft-decision decoding
with respect to PUFs using conventional soft-decision

50

oscillator ring (see Figure 1 for an example of PUF
using an oscillator/arbiter hybrid approach).

Alternative approaches include synthesizing real-
valued outputs from a PUF that outputs single-bit val-
ues. An example would be to take multiple readings
of single-bit PUF output to obtain confidence informa-
tion for that output value. The use of IBS with a real-
valued PUF (RV-PUF) allows IBS to minimize informa-
tion leak while increasing coding gain. If an RV-PUF is
not used, information leak is still minimized, but cod-
ing gain benefits might be more limited.

Soft decision IBS encoder

Now consider a soft-decision encoder as Figure 2
shows. For each secret bit B, the encoder takes RV-
PUF outputs R;, 0 <=i <= g—1 and represents B
as an s-bit index (pointer) E which points to an R;.
Each R; is a w-bit value that contains both polarity
and confidence information—for example, a w-bit 2s
complement number. Ry, ..., R, forms a response
segment R. So each response segment R consists

of g R; values, and each R; value is w-bits wide.
An index P that is s-bits wide points to one of these
R; values in the response segment to represent B.

For discussion purposes, each B bit is enmapped
using nonoverlapping sets of Ry, ..., R,. Output of
the IBS enmapper P¥(\) depends on RV-PUF out-
puts Ry, ..., R4, as well as on B. The enmapper
applies one of a family of functions, P*®(.)—which
is indexed by the value B being encoded—to the
sequence of device-specific values. For example, a
1-bit input for B has two functions, P‘°(.) and
PY(). Each function takes as input the sequence
of pseudorandom values, R = (Ry, ..., R;4), and
provides an s-bit index as an output—for instance,
where g <= 2°.

One example of an index-based enmapping func-
tion is based on the indices of the extreme values in
the sequence:

ifB=0
fB=1

= arg min; R;

P(B)(RO, e ,qul){: arg max; R;

IEEE Design & Test of Computers

decoders.® Contributions of the work described in the
main text include performing soft-decision decoding
without explicit use (and added complexity) of a conven-
tional soft-decision decoder, and characterizing results
across voltage variation and a wider temperature
variation.

Information leakage

The work we describe in this article is among the first
to explicitly construct syndrome that leaks no information
(specifically, syndrome that does not contribute to addi-
tional min-entropy loss) from an information-theoretic
viewpoint. This work complements the work done by
Dodis.™ In particular, when IBS is used as a replace-
ment for the code-offset method using XOR masking, it
can be shown formally that the syndrome does not
leak additional min-entropy. This result, for example,
can be used to derive m' in a secure sketch (see
Dodis’ work for definition of m’ and secure sketch).

References
1. P.S. Ravikanth, “Physical One-Way Functions,” PhD thesis,
Department of Media Arts and Sciences, Massachusetts Inst.
of Tech., 2001.
2. B. Gassend et al., “Silicon Physical Random Functions,” Proc.
ACM Computer Communication Security Conf., ACM Press,
2002, pp. 148-160.

G.E. Suh, “AEGIS: A Single-Chip Secure Processor,” PhD
thesis, Electrical Eng. and Computer Science Dept., Massa-
chusetts Inst. of Tech., 2005.

C. Bosch et al., “Efficient Helper Data Key Extractor on
FPGAs,” Proc. Workshop Cryptographic Hardware and
Embedded Systems (CHES 08), LNCS 5154, Springer,
pp. 181-197.

R. Maes, P. Tuyls, and |. Verbauwhede, “A Soft Decision
Helper Data Algorithm for SRAM PUFs,” [EEE Int'| Symp. Infor-
mation Theory (ISIT 09), IEEE Press, 2009.

R. Maes, P. Tuyls, and |. Verbauwhede, “Intrinsic PUFs from
Flip-flops on Reconfigurable Devices,” Benelux Workshop
Information and System Security (WISSec 08), 2008.

D.E. Holcomb, W.P. Burleson, and K. Fu, “Initial SRAM State
as a Fingerprint and Source of True Random Numbers for
RFID Tags,” Conf. Radio Frequency Identification Security
(RFID 07), 2007.

M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight
Secure PUFs,” Proc. Intl Conf. Computer-Aided Design
(ICCAD 08), IEEE CS Press, 2008, pp. 670-673.

M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing Tech-
niques for Hardware Security,” Proc. Int| Test Conf. (ITC 08),
IEEE CS Press, 2008, pp. 1-10.

Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy
Data,” Proc. Eurocrypt 2004, LNCS 3027, Springer, 2004,
pp. 523-540.

As an example of IBS encoding, let g = 8, B =1,
Ry, ..., Ry =-3,-10, 25, 80,94, -3, 8, —2. In this ex-
ample, P = 3 (pointing to 80), if the max/min criteria
as we've described is used for P().

B is generated in a manner such that it is indepen-
dent of Ry, ..., R;. For example, B can be derived
from

m the same distribution that generates Ry, ..., Ry,
with each response values IID. For example, B = 1
if R >= 0, else B = 0, with R; generated independ-
ently from Ry, ..., R4y (e.g., j = —1, or another
value wherej#0, ..., g—1).

m a random number generator (RNG).

m any source independent of the source generating
Ry, ..., Rg.

We conducted some use cases using the PUF to
generate k& output values. The polarity bits of these
values are used (and magnitudes ignored) to form a
k-bit secret. This k-bit secret is then fed into a

January/February 2010

conventional ECC encoder to produce n — k bits of
parity, where n is the ECC block size.

In one use case, the n — k parity bits serve as the
B bits, and additional PUF output bits (treated as
real values) along with these B bits are fed into an
IBS encoder to generate the indices to represent
these n — k parity bits. In a second case, the & bits
serve as the B bits, and conventional ECC is not
used. Again, additional PUF output bits (treated as
real values) along with these B bits are fed into an
IBS encoder to generate the indices to represent
k bits from the PUE In a third use case, both the
k bits and n — k bits serve as B, and additional PUF
output bits (treated as real values) along with B are
fed into an IBS encoder to generate the indices to rep-
resent the entire n bits, of which the first & bits are
from the PUF and the last n—k bits are from the parity
encoder. [The second and third use cases are
described later in “IBS standalone (IBS-S)” and “IBS
with additional ECC (IBS-ECC)”] The point is that B
can be any value, as long as it is independent of

51

52

Verifying Physical Trustworthiness of ICs and Systems

Linear feedback
shift register

e

Fixed challenge —»

_ Selects path through
" oscillator ring

Instantaneous challenge
(dashed lines = challenge bits)

...... Oscillator selection and
" other parameters

Processing logic,
including mux
. and accumulator

. ;ooo;

Real-valued output

Subtract (polarity + confidence)

Processing logic,
; cee ; : including mux —
. and accumulator

Figure 1. Real-valued physical unclonable function (RV-PUF) using an oscillator and arbiter hybrid

approach.

the additional PUF outputs generated that serve as
Ro, ..., Ryy. In fact, B can be derived from an RNG
or any other source completely independently of
the PUF generating Ry, ..., R,, if an application
can benefit from such an arrangement.

Real-valued physical
unclonable function
(RV-PUF)

Ro -+ Ryt W

i PEY) ’

Figure 2. Soft-decision index-based syndrome
encoder, where each PUF output response value
is w-bits wide, and each index (pointer) value is

s-bits wide.

Soft-decision IBS decoder

Now consider the soft-decision IBS decoder shown
in Figure 3. The RV-PUF regenerates the device-specific
values as R = (R'y, ..., R';-1). The values are not
exactly equal, but it is expected that the values R;
and R'; are at least approximately equal. As a result,
the ordering by value is approximately the same,
but not necessarily identical, as used in the encoder.

B -’ —

Figure 3. Soft-decision index-based syndrome

decoder.

IEEE Design & Test of Computers

Syndrome encoder
By, ... B4 1 ;
IBS Fo, -y Pra
Rowg = Rox g+op - Roxg+q-1 i’r(wg)wapper
Rows = R xgrop - Rixg+g-1) 0
. w
Rowy 1 = Riktyx g+ 0p - Flktyxg + g-1)
Syndrome decoder
Bo ... Bis 1 >
IBS Py ... Pes
Row'o = A0 x g0y - Aloxg +g-1) g(e;?(a)pper
Row's = Rt xgrop - Al g +g-1) w
Row's1 = R'(k-1) x g+ 0) -+ A1) x g + - 1)

Figure 4. IBS-S (index-based syndrome-standalone) configuration.

The IBS decoder includes an IBS demapper B”(),
which accepts the index value P and outputs an esti-
mate B’, which in normal operation is expected to
regenerate the original value B. This regeneration is
done by first applying a function B’()) to the se-
quence of values, R’ = (R'y, ..., R'41), to produce
a reconstruction of the value B.

One example of the demapping function B”(.) that
is compatible with the maximum and minimum
encoding function is as follows:

B'=B"(R,...,Ry 1) = sign of (R'))
and
. (=0 ifR,<0
sign of (K'p) .
=1 ifR,>0

In some examples, the decoding function is

B® (Ro,...,R41)=Pr(B=1|P,Ro,..., Ry 1)

based on a probabilistic model of the encoding
process, thereby generating a soft-bit regeneration of
the original data.

Continuing with the example from the soft-decision
IBS encoder, let g =8, P=3, R, ..., R oy =—4,—-11,
77, 84,-92, -8, 2, —1. In this example, B’ = sign of
(84) = + = 1, which equals the original encoded
Bof 1.

Note that these encoding and decoding functions
can be understood to be compatible on the basis of

January/February 2010

the observation that in encoding, the device-specific
maximum value is almost always the most positive
(and in some rare cases, if all values are negative,
the least negative), and therefore, that value’s regener
ation is expected to at least remain positive, even if
it's not the maximum of the regenerated sequence.
Similarly, the minimum value in encoding is expected
to remain negative when it is regenerated. If further
error correction is required, a conventional error
correction codec can be instantiated with the IBS
enmapper and demapper. In other applications,
errors might be ignored, and comparisons based on
a Hamming threshold could be used.

Two IBS configurations

We evaluate two IBS configurations here: IBS in a
standalone mode (IBS-S), without other forms of
error correction, and IBS with additional error correc-
tion (IBS-ECC).

IBS standalone (IBS-S). In this use case, the IBS
enmapper/demapper is used without other forms of
error correction. Secret bits are broken into By, ...,
Br1 where k is the total length of secret bits, each
of which is encoded respectively using Py, ..., Py,
by finding the max or min value [assuming max/
min criteria is used for P2()] in each of the & rows
of R; values, as shown in Figure 4. If the PUF does
not output confidence information (e.g., RV-PUF is

53

Verifying Physical Trustworthiness of ICs and Systems

ROW’l = ng, ey Rlls
Syndrome encoder = 1—6i31,2i;42,58’1—, 11’5
1 n val1ues s
B Kvalues ECC IBS P n indices The output of the decoder will
encoder enmapper b
’—‘ P ¢
R; nx g values w B) =sign(84) = + =1
B| =sign(—24) = - =0
Syndrome decoder .
nvalues thus recovering By, B; = 1, 0.
1 1 3
k values P
ECC fomapper Pnindices | 1BS with additional ECC (IBS-
decoder BP() ECC). If additional error cor
R, nxqgvalues ¥ rection is required, IBS can be
instantiated with one (or

more) stages of other ECC (see

Figure 5. IBS-ECC (index-based syndrome error-correcting code) configuration.

not used), a random selection among matching bits in
the row of R; values is then made, and if none of the
bits match, a random selection among all the (non-
matching) bits in the row is made. In a simple
decoder example, P, ..., P is used to reconstruct
By, ..., B by using each index P to select the ap-
propriate R; in each row, and analyzing its sign bit.

As we will explain, IBS in standalone configura-
tion (without additional error correction mecha-
nisms), has error correction and error reduction
capabilities that might be sufficient for certain
classes of applications.

As an example, assume g = 8, k = 2, use of max/min
criteria, and a simple decoder that looks at the sign
bit of a PUF output value being pointed to by P to
extract B'. Suppose that at the encoder input we have

By,B1 = 1,0
ROW():R(),...,R7

=-3,—10, 25, 80, =94, -3, 8, —2
ROWl ZRS,...,R15

=12, 8,-21, -3, -9, —30, 85, 34

The output of the encoder will be as follows:

Py = 3 (looks up max value of 80)
P; =5 (looks up min value of —30)

Now, suppose that at the decoder input we have

Py, Pr=3,5

ROWI() :Rlo,...,Rl7
=—4,-11,77,84,-92, -8, 2, —1

Figure 5 for an example). A
total of n x g PUF outputs are
generated, to derive n indices.
Note that the configuration in Figure 5 results in a
soft-decision syndrome encoder/decoder system,
even if we use a conventional hard-decision ECC
encoder/decoder. IBS therefore produces coding
gain associated with soft-decision decoders without
explicit use (and added complexity) of conven-
tional soft-decision ECC, as Maes et al. proposed.®
As an example, let us assume g =8, k=4,n =17,
the use of max/min criteria, and a simple decoder
that looks at the sign bit of the PUF output value
being pointed to by P to extract B'. The BCH (7, 4,
t = 1) ECC used has the following generator matrix:

1000101
0100111
0010110
0001011

G =

Suppose that at the ECC encoder input we have
By, By, B2, B3 =1,0,0,0

At the ECC encoder output, we then have
1,0,0,0,1,0,1

This result is input to the IBS enmapper, along with

ROW() ZR(),...,R7
= -3, 10, 25, 80, =94, -3, 8, -2
ROW] = Rg, ey R15

=12,8,0,-2,-1,-3,85, 34

IEEE Design & Test of Computers

ROW6 :R43,...,R55
=3,5,8, —15, =31, 45, —15, 102

The output of the IBS enmapper will be

Py =3 (looks up max value of 80)
Py =5 (looks up min value of —3)

Ps = 7 (looks up max value of 102)

Now, suppose that at the IBS demapper input we
have the following:

PO,Pl,...,PGZS, 5, ey 7
Row'o = Ry, ...,R’;
= —4,—11,77,84,-92,-8,2,—1
Row't =R's,...,R'15=16,12,1, -1, 2,3, 81,45

ROWIG = Rl48, - ,R/55
=-1,1,2,-12,-38, 43, —13, 99

The output of the IBS demapper will be (note the
intentional bit error for B'y):

B, =sign(84) = + =1
B| =sign(3) =+ =1

By, =sign(99) = + =1

The output of the ECC decoder will be (as a result of
error correction):

1,0,0,0
thus recovering By, By, Bo, B3 =1, 0, 0, 0.

Design implementation

We implemented a design using IBS to derive se-
cure and robust keys from PUFs in Xilinx Virtex-4
LX25/LX60 and Xilinx Virtex-5 LX50 FPGAs. The de-
sign consisted of three major components. First was
a programmable IBS enmapper/demapper supporting
Oth-order to 5th-order indices and built-in repetition-
coder supporting 1x, 3x, and 5x repetition coding.
The second component was a programmable BCH
(63) encoder/decoder supporting BCH codes from
t = 1to t = 6. The third component was a physical
unclonable function circuit (Figure 1) with 64 chal-
lenge bits.

Also included in the design were various debug
facilities, including the ability to obtain raw oscillator

January/February 2010

frequencies. We used these to collect error statistics at
various points in the processing pipeline, and to pro-
vide a direct user-chosen stimulus in various parts of
the processing pipeline and to observe downstream
behavior. The design complexity was dominated by
the BCH (63) ECC decoding core, which had on
the order of 400 registers plus supporting combinato-
rial logic. In one fully programmable and fully instru-
mented version of the design, the combined PUF-
based key generator consisting of all three major
components and debug facilities used approximately
1,000 slices in a Xilinx-5 LX50 device, or roughly 14%
of the slice count.

This design has a large error correction margin. A
design that does not require as large an error correc-
tion margin, and having fewer debug facilities and
less programmability, will be smaller.

Security analysis

Here, we first show the shortcomings of conven-
tional syndrome generation methods. Then we dem-
onstrate how index-based syndrome is superior
using information theoretic arguments. The theoretic
results are then affirmed by empirical test results
using a FPGA implementation and NIST statistical
tests for randomness.

Conventional methods using XOR masking

Consider conventional syndrome generation meth-
ods, which typically perform logical bitwise XOR of
parity information with PUF outputs. Assume the
PUF generates n bits of information. The first & bits
are fed into a conventional ECC encoder to produce
n — k bits of parity Syndrome bits are then formed by
performing a bitwise XOR operation of the n—k parity
bits output by the ECC encoder with the last n— & bits
from the n PUF bits. If a PUF systematic bias exists, in-
formation is leaked via the syndrome. This is espe-
cially true if repetition code is used. Published
experimental systematic bias values include 46.15%
for a ring oscillator PUE 23% for an early version of
an arbiter PUE® 49.97% for an SRAM-based PUE’
and approximately 10% for a flip-flop PUE® The per-
centage represents bias toward 1. The ideal bias
value is 50%, meaning 1s and Os are statistically
equally likely.

The simplest example of repetition code is a bi-
nary repetition (3, 1, 3) code. It repeats each bit
three times, so that a 0 is encoded onto the vector

95

56

Verifying Physical Trustworthiness of ICs and Systems

(000) and a 1 onto the vector (111), using a genera-
tor matrix:

G=[111]

To produce a syndrome using XOR masking, a
syndrome encoder performs logical bitwise XOR of
these three bits with three PUF output bits.

Consider the case in which the PUF has a bias of
51%, meaning that out of 100 PUF output bits, an aver
age of 51 bits are 1s. If a syndrome encoder performs
logical bitwise XOR of a secret bit with a single bit of
PUF output, and the result is 0, there is a 51% chance
that the secret bit is 1 and a 49% chance that the se-
cret bit is 0, and vice versa if the result is 1. Now if
a syndrome encoder performs logical bitwise XOR
of that same secret bit with a single bit of a PUF out-
put, and generates additional syndrome bits by per-
forming logical bitwise XOR of the same secret bit
with an additional 99 PUF output bits, then if the se-
cret bit is 1, the mask would statistically have 49 1s
and 51 0s. Alternatively, if the secret bit is 0, the
mask would statistically have 51 1s and 49 0s. Clearly,
with repetition coding, in which the repetition
encoder repeats the secret bit, bitwise XOR masking
of the repeated bits with PUF output bits reveals an ad-
ditive increase in information the longer the repetition
code. In a binary repetition (33, 1, 33) code, where a
secret bit is repeated 33 times, the resulting 33-bit syn-
drome produced using bitwise XOR with 33 PUF out-
put bits would statistically leak information every
time if, out of 33 bits produced by the PUE 17 bits
are 1s and 16 bits are Os (51.52% bias) or vice versa.

In general, if a binary repetition (r, 1, r) code is
used, a PUF bias of more than [ceiling(/2)]/r or a
PUF bias of less than [floor(r/2)]/r would cause the
syndrome (XOR mask) to leak a secret bit each
time, statistically speaking. Bits leaked can be calcu-
lated as follows, as a function of PUF bias and the rep-
etition code used:

bits leaked per secret bit =
abs (PUF bias — 0.5) /abs{]ceiling(r/2)]/r — 0.5}

where abs is the absolute value operator.

For example, if a PUF has a bias of 0.51 (or a bias of
0.49), a binary repetition (9, 1, 9) code would leak
1 bit out of 5.6 bits encoded. In other words, more
than 1/6 of the information would be leaked though
the syndrome.

IBS approach, theoretical result

Looking again at the IBS enmapper, we want to
know whether P leaks any information about B. P is
assumed to be public information, and B is a secret
bit (which, along with other secret B bits, is used to
derive keys or seeds to generate keys).

Ry, ..., Ry is assumed to be private information
(for example, a biometric reading, or outputs of a sil-
icon PUF inside a chip). We assume that although the
reading itself is not known to the adversary, he or she
has possible access to other readings from other bio-
metric hosts or other devices (his or her fingerprints
and those of his or her cohorts, for instance, or
reverse-engineered PUF devices obtained from, say,
eBay). Accordingly, systematic (population) statistics
(such as systematic DC bias), but not the statistical
properties of a particular individual biometric reading
or PUF silicon device, can be inferred.

Based on prior research, PUFs have interchip or
interclass variations in that cross correlation of out-
puts from different PUFs are quite different, but possi-
bly with some systematic bias. Therefore, PUF output
response bits are often modeled as an IID normal dis-
tribution with mean u and standard deviation . Use
of an IID normal distribution to model PUF responses
based on empirical data can be found for the arbiter
based PUF® and for the SRAM PUE" It is assumed, for
the purpose of proof, that each of the n x g R; values
generated is independent of one another. For exam-
ple, each R; could be derived from disjoint oscillator
pairs, with no oscillator reuse in deriving different R;
values. We also assume that each chip provisions
only one secret key or secret seed, and provisioning
is disabled once the secret has been provisioned. Al-
ternately; the chip can be built with a fixed challenge
to generate only one or a few secrets.

Now; consider the case in which IBS is used. It can
be proved mathematically, under certain assumptions,
that there is no reduction in min-entropy, even if a pro-
gressive application of an otherwise leaky code such
as repetition code is used. Similar arguments can be
made when IBS coding is applied with other forms
of error correction. In this sense, IBS is superior in se-
curity compared to conventional XOR masking.

According to results in the “Mathematical Model
for IBS Enmapper and Proofs” sidebar, revealing
index P does not lead to a reduction in min-entropy
in B. This was proven without any assumptions about
the distribution for PUF outputs, except that it is IID,
meaning that even if there is a DC bias (or for that

IEEE Design & Test of Computers

matter, any higherorder bias), the proof still holds
true. Furthermore, no assumption about B is made
except that it is independent from Ry, .. ., R,, imply-
ing that B values can be correlated with one another
(as is the case when repetition code or other forms of
conventional error correction are used), and the
proof still holds true.

IBS approach, empirical data

Experimental results derived from a Xilinx Virtex-4
implementation affirm the formal mathematical
results. We used NIST statistical tests for randomness
to analyze the randomness of syndrome encoder out-
puts (P) given certain sequences of input bits (B).
Three-bit indices were used. For each input sequence,
we analyzed 100 million syndrome bits (from 100/3 =
34 million indices). These syndrome bits were formed
by serializing concatenated 3-bit syndrome indices.
Four test sequences, each containing 34 million bits,
were injected into the B input of an IBS encoder.

Specifically, the Oth-order DC sequences of all 0s
and all 1s, and the 1st-order AC sequences of alternat-
ing 1010s and 0101s were used for B. For each
sequence, 34 million indices (P values) were gener-
ated. Each P chose either the maximum value from
the PUF output values if B was 1, or the minimum
value from the PUF output if B was 0. In all, 367 mil-
lion PUF output bits (33 x 8 million) were generated
for each test sequence, all from the same starting
64-bit challenge seed. So, each bit B was encoded
as a 3-bit index F choosing the best of nonoverlapping
8 PUF output values.

We performed the analysis explained here before
we had completely built the IBS hardware in the
FPGAs, as a part of the design derivation and refining
process. So, a large part of the design was emulated in
software but using PUF information derived across
four Xilinx Virtex-4 LX25 FPGAs. Each FPGA was
used to derive a single RV-PUE corresponding to
Figure 1. Success rates for each of the 15 NIST tests
across the four LX25 chips were comparable with
the success rates derived from a NISTrecommended
set of random numbers as input (see Table 1).

Results showed that syndrome bits are tested to be
random, and thus it is difficult to infer input bits B
from indices P More specifically, take note of the
results of the Oth-order (DC) sequences:

m an input sequence of B consisting of all Os produces
random syndrome bits, implying Pr(P| B = 0) = 1/8.

January/February 2010

m an input sequence of B consisting of all 1s produces
random syndrome bits, implying Pr(P1B=1) = 1/8.

Furthermore,

Pr(P) =
Pr(P|B=0)xPr(B=0)+Pr(P|B=1)x Pr(B=1)
—1/8x(Pr(B=0)+Pr(B=1))=1/8

Therefore,
Pr(P|B) = Pr(P)

showing from empirical results that indices P and
input bits B are statistically independent.

From the empirical results, we could also gain a
level of confidence in the belief that the PUF output
bits can be treated as IID. If they were not, it’s highly
unlikely that the syndrome produced (e.g., by apply-
ing B consisting of all 0s) would be random unless
somehow the silicon-based PUF could arrive at a
strange distribution to make that the case. The empir
ical results therefore affirm the assumption (held by,
for example, Lim® and Maes!®) that the PUF output
can be treated as IID.

Custom-constructed correlation tests analyzing
syndrome encoder input B versus output P confirm
results from the standardized NIST randomness tests.
More than 95% of the correlation results were within
two standard errors of the ideal uncorrelated value,
and the few outliers that were present did not stray
far from two standard errors away from the ideal.

Coding gain associated with IBS

Here we present empirical results in applying
index-based syndrome coding to PUFs in devices rep-
resenting two process geometries. Specifically, 90-nm
Xilinx Virtex-4 and 65-nm Xilinx Virtex-5 devices were
used. The results show that coding gain associated
with IBS is significant. This has the effect of reducing
total error correcting code logic complexity, and
increases stability of regenerated PUF-derived secret
bits across varied environmental conditions.

Results on Xilinx Virtex-4

Figure 6 shows the coding gain associated with
using 3-bit indices and 3x repetition coding. The
PUF was provisioned under a nominal temperature
of 20°C but under voltage variations of 1.2 V + 10%.
The left plot shows the error curve, black represent-
ing regeneration under nominal voltage and tem-
perature (20°C, 1.2 V), and other curves showing
regeneration under the four corners (voltage and

o7

Verifying Physical Trustworthiness of ICs and Systems

Mathematical Model for IBS Enmapper and Proofs

We can define several random variables to mathemat-
ically represent elementary operations of the IBS enmap-
per. The mathematical properties for random variables
are as follows.

For secret bit B (underlining denotes a random
variable):

B e {0, 1} is generated such that it is independent of
BO; sy qu-

Note: The case where B takes on the sign of (or is
otherwise derived from and therefore not independent
from) one of Ry, ..., Rg values (e.g., one pointed to
by P) can also be proved to be information theoretically
secure. For brevity, we do not include this case.

For response segment (R):

R e {signed integer}9 consists of g signed integers R,
0 <= i< g, where R;is independent and identically
distributed (lID).

For pointer (P):

Pe{0, 1...g—1},

IfB=1, P=indexof fi (By =10, ..., Bg_1 =rq-1)
If B=0, P=indexoffo (Bg=ro, ---, Bg_1="rq-1)

f1(.), 1o(.) are functions that output one of the following

values: ro, ..., lg.
fy, fo are such that fi(.) # fo(.), except in the trivial case
whenrp=r=...=rgq.
fy, fy are such that
f(Bo=ro, ..., Bgo1 = rq-1) = fi(ro, , Tg—1)
= (@) -+ > Tn(g-1))
= f(Bo = In(0) -~ Bg1
= I'n(g—1)), and similarly
fo(Bo=ro, -y Bg_1 =rq-1) = folro, -+ rg-1)
= fo(ra(0)s -+ Fm(g=1))
= fo(Ro = Ix()s ---» Bg-t
= I'n(g=1))s

where 7 is an index permutation function.
Examples of f; and fy include

max and min functions;

2nd-most max and 2nd-most min functions;

max deviation from mean and min deviation from
mean; and

max deviation from 0 and min deviation from O.

For “index of” operator, if multiple indices produce the
same f; result, a random index among those indices
is chosen; likewise, for f;.

Now, consider an adversary who has possession of a
certain pointer P. The claim, stated simply, is that P leaks
no information about B. That is, H(B) = H(B | P), where H
is a Shannon entropy measure. However, to be conser-
vative and to allow results to be more readily adapted
to the research by Dodis et al. in constructing secure
sketches and fuzzy extractors,’ we also express our
results using min-entropy:

Huo(.) = —10go(Prmax(.))

(where = means definition), since we want to account for
a worst-case “guessing” probability.

We also define average min-entropy per the work of
Dodis et al." as

(X|Y=y

AL (1Y) = g (B2 65

Theorem 1: P and B are independent, assuming the
PUF has IID outputs and B is independent of R = R,
O0<=i<aq.

Proof: To prove that B and P are independent, it is
equivalent to proving that the probability of P = p re-
mains the same regardless of the value of B:

Pr(P=p|B=0b)=Pr(P=p|B="0), (A)

since Equation A implies that B and P are independent.

Pr(e=p)=) Pr(P=p,B=Db)

allb
=Y Pr(P=p|B=b)Pr(B=0b)
allb
=Pr(P=p|B=1b)Y_Pr(B=0b)

alb
(using Equation A)
=Pr(P=p|B=1)

We first note that

Pr(P=p|B=b)=Y Pr(P=p, R=r|B=0b)
allr (B)
=S "Pr(p=1(b, r), B=r|B=0b)
allr
Here, funifies f; and f; into a single function, with an ad-
ditional input b to direct fto select either f; or f,.

58

IEEE Design & Test of Computers

As stated in Theorem 1, B is independent of R; there-
fore, Equation B becomes

> Pr(p=f(b, r),R=r|B=0b)

allr
=S Pr(p=f(b, r),R=r)

allr
= Y P(R=r)
rs.t. p=f(b,r)

- 3

1oy ..y fq—1 s.t. p=£f(b, o, ...,

Pr(R=ro, ..., rq-1)

rg-1)

(expressing r explicitly as g values) (C)

We have now transformed the problem into proving that
Equation C is independent of b.

Now, let's create a permutation function =, where the
indexed entries for f; and fy are swapped. For example, if
f; = max and fy = min, the max and min entries are
swapped. If there are multiple max entries, for example,
a random one is chosen to be swapped; this is true also
if there are multiple min entries. In the unlikely event that
all values in ro, ..., rq1 are equal, a random swap is
performed.

Therefore,

p=f(b,r, ...

) rq—1):f(b/7 rTr(O)7 OROR) r’TT(qf1))7 (D)

where the substitution of b by b’ corresponds to the
permutation 7.

Now let © be the inverse of permutation z (to reverse
the index swap).

Recall that Equation B = Equation C. Adding results
from Equation D, we get

Pr(E=p|B="b)

= > Pr(R=ro, ..., Iq-1)
10, ooy Fg—1 8.t p=f(b, 10, .oy Tg-1)

= > Pr(R=ro, ..., Ig-1)
10, .oy fg—1 8.1 p=f(b/, Ta(0)s s In(g=1))

= Z PI’(BZ fT(o), coog I’T(q_1))
10, -y fg—1 8.t p=F(Y', 10, ...y F(g-1))

= > Pr(R=ro, ..., Ig-1)

o, «ey fg—1 8.t p=f(b', 1o, ..., r(q,”)
(since individual response r; are 1ID)
=Pr(P=p|B="b)

thus proving Equation A and the independence of P and
B. Note that the result also holds for B representing a
code word, and P representing the sequence of helper
information (indices) for each code word bit. In this
case, R represents all the PUF output bits necessary to
generate all the indices, and = and t represent fi/fy
swaps corresponding to each code word bit.

Theorem 1 implies the following:

First, additional knowledge of index P does not leak
additional information about B (that is, H(B | P) = H(B)).
This is true even when the adversary is given the knowl-
edge of statistical distribution for PUF output R and input
bit B. It's also true when B values are correlated with one
another (e.g., as k and parity values in the context of tra-
ditional error correction). Finally, this is true even if the
PUF output distribution is not perfectly normal (or not nor-
mal at all), as long as IID still holds.

Second, given a population of PUFs, and an adversary
who has broken those PUFs and gathered systematic (pop-
ulation) information, additional information of 2 = p on a
new PUF does not aid the adversary, from an information-
theoretic standpoint, in recovering B on that new PUF.

Third, P does not induce min-entropy loss on B:

":/oc(5|B) = HDO(B)
Proof:

Hw(B|P = p) = —logs(Prmax(B| P = p))
= —log,(max{Pr(B=1|P = p),
Pr(B=0|P =p)})
= —log,(max{Pr(B = 1), Pr(B=10)})
= Hx(B) (due to Theorem 1) (E)

Now, consider how much information about B in terms
of min-entropy is revealed when P is revealed, when P is
taken all possible values of p. We use average min-
entropy measure as defined by Dodis et al.:"

~ (X|Y=y)

Hoo(X | Y) = —log,(Eyy[2~"

In our example, X = B, Y = P, and y = p. Now, we com-
pute the expected value over P:

2-H=(BI2=0) — 2-H<(B) gince P is independent of B, as
shown in Equation E.

The same would apply for all other values of P, (e.g.,
P=1,P=2 ..., P=qg-1).

Therefore,

Hx(B| P) = —logy(Ep_p[2BI1E=P))

= —log,([q x 2™®)/q)
= —logy([2 ") = He.(B)

Reference
1. Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data,”
Proc. Eurocrypt 2004, LNCS 3027, Springer, 2004, pp. 523-540.

January/February 2010

59

Verifying Physical Trustworthiness of ICs and Systems

__|
Table 1. National Institute for Science and Technology (NIST) statistical tests for randomness: success ratio for PUF
syndrome indices.
Reference random
bits from George
Success Success Success Success Marsaglia’s
NIST input ratio (%)* ratio (%) ratio (%) ratio (%) Random Number
Statistical test parameters (Chip A) (Chip B) (Chip C) (Chip D) CDROM** (%)
Frequency - 98 100 98 99 98
97 97 99 97
99 98 98 97
98 98 97 99
BlockFrequency 128 99 98 100 98 97
99 100 100 100
98 100 100 100
98 96 99 100
CumulativeSums — 98—99 99-100 98—-99 97-99 98—-99
97-98 9798 99-99 97-97
98-98 98-98 99-99 98—99
97-98 99-99 98—-99 99-99
Runs — 98 100 99 98 100
97 98 98 99
98 99 100 88
98 99 100 97
LongestRun — 100 100 97 96 97
99 100 99 100
99 97 100 100
98 100 98 98
Rank — 100 97 96 99 100
99 99 100 100
99 99 98 99
99 100 98 100
FFT — 100 100 100 100 100
100 99 100 100
100 100 100 100
100 100 100 100
NonOverlappingTemplate 9 95—-100 94—100 95—-100 95—-100 95—-100
97—-100 97—-100 97—-100 95-100
97—-100 97—-100 97—-100 97—-100
97—-100 97—-100 95-100 97—-100
OverlappingTemplate 9 98 99 98 99 97
99 98 99 98
99 98 98 100
100 100 100 99
(Continued)

60 IEEE Design & Test of Computers

|
Table 1. (Continued)
Reference random
bits from George
Success Success Success Success Marsaglia’s
NIST input ratio (%)* ratio (%) ratio (%) ratio (%) Random Number
Statistical test parameters (Chip A) (Chip B) (Chip C) (Chip D) CDROM** (%)
Universal — 99 100 100 100 100
98 99 100 96
99 99 97 98
99 98 99 99
ApproximateEntropy 10 99 99 98 100 100
100 100 98 98
97 99 100 99
99 100 99 99
RandomExcursions — 96—-100 94—-100 96—100 98-100 98—100
97-100 98-100 99-100 97-100
100—100 97-100 96—100 96—-100
98-100 98—-100 96—100 100—100
RandomExcusionVariant - 96—100 97—100 98-100 98—100 93—-100
98-100 96—-100 97—100 97—100
97—100 95—-100 96—100 95—-100
95—-100 94—100 95—-100 96-100
Serial 16 99-99 97-100 98-100 98—99 98—-100
98-99 97-97 98-99 98-99
98-100 97-98 100-100 98-100
99-100 98—-100 98—99 98-98
LinearComplexity 500 100 100 97 98 100
99 98 100 100
98 97 96 99
99 99 99 100
Cumulative p-values 100 100 100 99 100
(752/752) (752/752) (752/752) (750/752) (188/188)
pass pass pass pass pass
Cumulative proportions 99 99 99 99 98
(748/752) (747/752) (749/752) (747/752) (184/188)
pass pass pass pass pass
*The first line is for the DC all 1s case; the second line is for the DC all 0s case; the third line is for the AC 1010s case; and the last line
is for the AC 0101s case.
**http://www.stat.fsu.edu/pub/diehard/

temperature extremes). It's possible to infer from generation at four corners. Over 2 million autocor-
the data that for a block size of 63, application of relation runs were used to compile the right
IBS with simple 3x repetition coding reduces the curve, indicating that the probability of seven or
errors to correct from 23 bits (35.9%) to 6 bits more bit errors is less than 0.5 ppm. This means
(9.4%) for provisioning at 1.2 V 4+ 10%, 20°C, that a BCH (63, 30, t = 6) corrects errors across

January/February 2010 6 1

Verifying Physical Trustworthiness of ICs and Systems

PUF CDF (prov@20° C,+/-10%V; regen@4corners+nominal)
100
—-——-- -20°C,1.08 V
120°C,1.08 V
20°C,1.20 V
-20°C,1.32V
4 120°C,1.32 V
107 fo
1072 o]
(0]
[&]
5]
5 1073
(@]
[&]
O
107
107
1076
0 10 20 30 40 50 60
Code distance
(a)

PUF CDF (prov@20° C,+/-10%V; regen@4corners+nominal)

100 :
] ————_20°C,1.08V |
\ ————120°C,1.08V |
'l 20°C,1.20 V
i -20°C,1.32V
L 120°C,1.32 V
107k
\
\
)
1
|
|
|
1072 |
!
\‘
I
1
) |
o |
S S |
2 108
3 10 |
O i
|
-
1
\I
1074 oh
)
107
1076
0 10 20 30 40 50 60

Code distance
(b)

Figure 6. Coding gain of IBS. Number of errors before index-based syndrome decoding is 23 bits for a block size

of 63 (a), and after applying IBS, the number of bit errors is reduced to 6 (b). This results in a significant reduction

in total error correcting code logic complexity, and greatly improves the stability of PUF-derived secret bits across
wide environmental conditions.

62

these environmental conditions at an error rate less
than 0.5 ppm.
We performed the analysis described here before
we completely built the IBS hardware in FPGA as a
part of the design derivation and refining process;
consequently, much of the design was emulated in
software but using PUF information derived across
12 Xilinx Virtex-4 LX25 FPGAs, each with a single
PUE An all-hardware design was then derived, after
this analysis, to confirm the results of data obtained
from partial software emulation. This (early) all-
hardware design contained an IBS enmapper/
demapper with fixed 3-bit indices and 3x repetition

coding, a BCH (63) decoder hardwired to t = 6 bits
of error correction, and a PUF circuit.

This design was tested in extreme temperature
conditions and never failed over tens of millions of
error correction blocks. We performed more extreme
temperature and voltage stressing tests using an even
more mature hardware design on Virtex-5 FPGAs.

This scheme, by using IBS with simple 3x repeti-
tion coding and 3x majority decoding, reduces the
BCH complexity requirement. Instead of using a
BCH (255) code, for example (as Suh suggested®),
we used a BCH (63) code, which has a 16 x reduction
in complexity. (BCH decoder complexity grows

IEEE Design & Test of Computers

|
Table 2. IBS test results for Xilinx Virtex-5.
1(3)* 1(3) 1(3) 1(3) 1(3R3) 1(3R3)
P(25°C, 1.0 V)** P(25°C,1.0V) P(25°C,1.0V) P(25°C,1.0V) P(25°C,1.0V) P(25°C,1.0V)
R(25°C, 1.0 V)*** R(-55°C,1.0V) R(-55°C,1.1V) R(125°C,0.9V) R(25°C,1.0V) R(-55°C,1.0V)
Bit errors (Nominal) (Fast, Fast) (Slow, Slow) (Nominal)
0 54.0% 59.5% 47.0% 55.5% 93.3% 94.8%
1 37.0% 23.9% 40.0% 35.6% 6.7% 5.2%
2 8.9% 16.6% 13.0% 53% <=0.27 ppm <= 172 ppm
3 133 ppm <= 6.24 ppm 4.8 ppm 3.6%
4 <= 33.3 ppm <= 0.6 ppm <= 21.2 ppm
5
6
Total 30,015 160,185 1,650,060 47,160 3,668,205 5,820
samples
Block None None None None None None
failures (< 33.3 ppm) (< 6.24 ppm) (< 0.6 ppm) (< 21.2 ppm) (< 0.27 ppm) (< 172 ppm)
with BCH
(63,30, t=6)
*1(3) = 3-bit Index ; I(3R3) adds 3 x Repetition Coding.
**P(.) = Provisioning conditions
***R(.) = Regeneration conditions

approximately with the square of the block size.)
However, as Suh’s research showed,® the code does
not correct across as extreme temperature condi-
tions, and corrects across smaller voltage variations.
If a BCH (511) code is required to produce an equiv-
alent environmental robustness, there’s a 64x reduc-
tion in complexity using IBS with simple repetition
coding.

Results on Xilinx Virtex-5

IBS also reduces error correction requirements in
designs implemented for Virtex-5 FPGAs. The design
used was more mature than the one used with
Virtex-4. Specifically, the Virtex-5 version had a higher
degree of programmability and more sophisticated
debug and data-gathering facilities.

Table 2 shows representative results obtained from
one Virtex-5 device for a 63-bit block size. We per-
formed provisioning at 25°C, at a nominal core volt-
age of 1.0 V. When regeneration was done at the
fast corner (-55°C, 1.1 V), three bit errors occurred
at 4.8 ppm, and four bit errors were not observed
for more than 1.65 million blocks, indicating that
the probability of four bit errors was less than

January/February 2010

0.6 ppm. An ECC to correct three bit errors out of
63, based on this data, has a block failure rate less
than or equal to 0.6 ppm. Alternatively, retry mecha-
nisms can be used, or errors can be forgiven, depend-
ing on the application. Regeneration at the slow
corner (125°C, 0.90 V) showed comparable results,
but only 47,160 sample blocks were taken, so our
results lacked resolution. We can safely say that if a
t = 6 corrector is used, block error rates are likely
to be well below 1-ppm levels. Note that the result
of applying 3 x repetition coding with IBS is even
more dramatic, with a maximum of a 1-bit error in
the data set (see the two rightmost columns in
Table 2).

IBS HAs Two major advantages. First, the technique
can be shown formally (and affirmed by NIST test
results) to be information-theoretically secure in that
the syndrome does not leak additional min-entropy
on the hidden secret bits. Second, the index-based
coding technique, by its very nature, is robust. Error
correction block failure rates can be easily driven
below 1 ppm, which was empirically demonstrated
in Xilinx Virtex-4 and Virtex-5 FPGAs. Future work

63

64

Verifying Physical Trustworthiness of ICs and Systems

includes characterizing the stability of PUF-derived se-
cret bits across a wider range of environmental para-
metrics, for example, to account for aging and
radiation effects, as well as adapting IBS to a wider
range of PUF and biometric sources. u

Acknowledgment

We thank Marten van Dijk of the Massachusetts
Inst. of Tech. for his valuable input to the draft, espe-
cially for his contribution to the proofs in the “Mathe-
matical Model for IBS Enmapper and Proofs” sidebar.

B References

1. B. Gassend, “Physical Random Functions,” master’s thesis,
Department of EECS, Massachusetts Inst. of Tech., 2003.

2. B. Gassend et al., “Silicon Physical Random Functions,”
Proc. ACM Computer Communication Security Conf.,
ACM Press, 2002, pp. 148-160.

3. G.E. Suh, “AEGIS: A Single-Chip Secure Processor,”
PhD thesis, Electrical Eng. and Computer Science Dept.,
Massachusetts Inst. of Tech., 2005.

4. M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Light-
weight Secure PUFs,” Proc. Int| Conf. Computer-Aided
Design (ICCAD 08), IEEE CS Press, 2008, pp. 670-673.

5. M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing
Techniques for Hardware Security,” Proc. Int'l Test Conf.
(ITC 08), IEEE CS Press, 2008, pp. 1-10.

6. D. Lim, “Extracting Secret Keys from Integrated Circuits,”
master’s thesis, Department of EECS, Massachusetts
Inst. of Tech., 2004.

7.Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy Extractors:
How to Generate Strong Keys from Biometrics and
Other Noisy Data,” Proc. Eurocrypt 2004, LNCS 3027,
Springer, 2004, pp. 523-540.

8. R. Maes, P. Tuyls, and |. Verbauwhede, “Intrinsic PUFs
from Flip-flops on Reconfigurable Devices,” Proc. Benelux

Workshop Information and System Security (WISSec 08),
2008.

9. D.E. Holcomb, W.P. Burleson, and K. Fu, “Initial SRAM
State as a Fingerprint and Source of True Random
Numbers for RFID Tags,” Proc. Conf. Radio Frequency
Identification Security (RFID 07), 2007; http:/rfidsec07.
etsit.uma.es/slides/slides.htm.

10. R. Maes, P. Tuyls, and |. Verbauwhede, “A Soft Decision
Helper Data Algorithm for SRAM PUFs,” IEEE Int'
Symp. Information Theory (ISIT 09), IEEE Press, 2009.

Meng-Day (Mandel) Yu is a senior design engineer
at Verayo, and is a technical lead in the development
of PUF-based IP for ASICs and FPGAs. His research
interests include coding theory, signal processing,
and computer security. He has an MS in electrical
engineering from Stanford University.

Srinivas Devadas is a professor and associate
head of the Electrical Engineering and Computer
Science Department at the Massachusetts Institute of
Technology. His research interests include CAD, com-
puter architecture, and computer security. He has a
PhD in electrical engineering from the University of
California, Berkeley. He is a Fellow of the IEEE.

M Direct questions and comments about this article to
Meng-Day (Mandel) Yu, 1054 S. De Anza Blvd., Ste.
201, San Jose, CA 95129; myu@verayo.com, and to
Srinivas Devadas, Rm. 32-G844, Massachusetts
Institute of Technology, Cambridge, MA 02139;
devadas@mit.edu.

Selected CS articles and columns are also available
C n for free at http://ComputingNow.computer.org.

IEEE Design & Test of Computers

EEE@computer society

PURPOSE: The IEEE Computer Society is the world’s largest
association of computing professionals and is the leading
provider of technical information in the field.

MEMBERSHIP: Members receive the monthly magazine
Computer, discounts, and opportunities to serve (all activities

are led by volunteer members). Membership is open to all IEEE
members, affiliate society members, and others interested in the
computer field.

COMPUTER SOCIETY WEB SITE: www.computer.org
OMBUDSMAN: To check membership status or report a change
of address, call the IEEE Member Services toll-free number,

+1 800 678 4333 (US) or +1 732 981 0060 (international). Direct
all other Computer Society-related questions—magazine delivery
or unresolved complaints—to help@computer.org.

CHAPTERS: Regular and student chapters worldwide provide the
opportunity to interact with colleagues, hear technical experts,
and serve the local professional community.

AVAILABLE INFORMATION: To obtain more information on any
of the following, contact Customer Service at +1 714 821 8380 or
+1 800 272 6657:

e Membership applications

* Publications catalog

e Draft standards and order forms

e Technical committee list

e Technical committee application

e Chapter start-up procedures

e Student scholarship information

* Volunteer leaders/staff directory

* |EEE senior member grade application (requires 10 years
practice and significant performance in five of those 10)

PUBLICATIONS AND ACTIVITIES

Computer: The flagship publication of the IEEE Computer Society,
Computer, publishes peer-reviewed technical content that
covers all aspects of computer science, computer engineering,
technology, and applications.

Periodicals: The society publishes 13 magazines, 18 transactions,
and one letters. Refer to membership application or request
information as noted above.

Conference Proceedings & Books: Conference Publishing
Services publishes more than 175 titles every year. CS Press
publishes books in partnership with John Wiley & Sons.
Standards Working Groups: More than 150 groups produce
IEEE standards used throughout the world.

Technical Committees: TCs provide professional interaction in
more than 45 technical areas and directly influence computer
engineering conferences and publications.
Conferences/Education: The society holds about 200
conferences each year and sponsors many educational activities,
including computing science accreditation.

Certifications: The society offers two software developer
credentials.

For more information, visit www.computer.org/certification.

<IEEE

revised 30 Nov. 2009

EXECUTIVE COMMITTEE

President: James D. Isaak*

President-Elect: Sorel Reisman*

Past President: Susan K. (Kathy) Land, CSDP*

VP, Standards Activities: Roger U. Fujii (1st VP)*

Secretary: |effrey M. Voas (2nd VP)*

VP, Educational Activities: Elizabeth L. Burd*

VP, Member & Geographic Activities: Sattupathu V. Sankarant
VP, Publications: David Alan Grier*

VP, Professional Activities: James W. Moore*

VP, Technical & Conference Activities: John W. Walz*
Treasurer: Frank E. Ferrante*

2010-2011 IEEE Division V Director: Michael R. Williams¥
2009-2010 IEEE Division VIl Director: Stephen L. Diamondf
2010 IEEE Division VIII Director-Elect: Susan K. (Kathy) Land, CSDP*
Computer Editor in Chief: Carl K. Changf

* voting member of the Board of Governors nonvoting member of the Board of Governors

BOARD OF GOVERNORS

Term Expiring 2010: Piere Bourque; André Ivanov; Phillip A. Laplante;
Itaru Mimura; Jon G. Rokne; Christina M. Schober; Ann E.K. Sobel
Term Expiring 2011: Elisa Bertino, George V. Cybenko, Ann DeMarle,
David S. Ebert, David A. Grier, Hironori Kasahara, Steven L. Tanimoto
Term Expiring 2012: Elizabeth L. Burd, Thomas M. Conte, Frank E.
Ferrante, Jean-Luc Gaudiot, Luis Kun, James W. Moore, John W. Walz

EXECUTIVE STAFF

Executive Director: Angela R. Burgess

Associate Executive Director; Director, Governance: Anne Marie Kelly
Director, Finance & Accounting: John Miller

Director, Information Technology & Services: Carl Scott

Director, Membership Development: Violet S. Doan

Director, Products & Services: Evan Butterfield

Director, Sales & Marketing: Dick Price

COMPUTER SOCIETY OFFICES

Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036
Phone: +1 202 371 0101 o Fax: +1 202 728 9614

Email: hg.ofc@computer.org

Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314
Phone: +1 714 821 8380

Email: hel[p@computer.org

Membership & Publication Orders:

Phone: +1 800 272 6657 ¢ Fax: +1 714 821 4641

Email: hel[p@computer.org

Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama,
Minato-ku, Tokyo 107-0062, Japan

Phone: +81 3 3408 3118 Fax: +81 3 3408 3553

Email: tokyo.ofc@computer.org

IEEE OFFICERS

President: Pedro A. Ray

President-Elect: Moshe Kam

Past President: John R. Vig

Secretary: David G. Green

Treasurer: Peter W. Staecker

President, Standards Association Board of Governors:
W. Charlston Adams

VP, Educational Activities: Tariq S. Durrani

VP, Membership & Geographic Activities: Barry L. Shoop
VP, Publication Services & Products: Jon G. Rokne

VP, Technical Activities: Roger D. Pollard

IEEE Division V Director: Michael R. Williams

IEEE Division VIII Director: Stephen L. Diamond
President, IEEE-USA: Evelyn H. Hirt

Next Board Meeting:
5 Feb. 2010, Anaheim, CA, USA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

