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Abstract— Complex event processing has become increasingly
important in modern applications, ranging from RFID tracking
for supply chain management to real-time intrusion detection. A
key aspect of complex event processing is to extract patterns
from event streams to make informed decisions in real-time.
However, network latencies and machine failures may cause
events to arrive out-of-order at the event processing engine.
State-of-the-art event stream processing technology experiences
significant challenges when faced with out-of-order data arrival
including output blocking, huge system latencies, memory re-
source overflow, and incorrect result generation. To address these
problems, we propose two alternate solutions: aggressive and
conservative strategies respectively to process sequence pattern
queries on out-of-order event streams. The aggressive strategy
produces maximal output under the optimistic assumption that
out-of-order event arrival is rare. In contrast, to tackle the
unexpected occurrence of an out-of-order event and with it
any premature erroneous result generation, appropriate error
compensation methods are designed for the aggressive strategy.
The conservative method works under the assumption that out-
of-order data may be common, and thus produces output only
when its correctness can be guaranteed. A partial order guar-
antee (POG) model is proposed under which such correctness
can be guaranteed. For robustness under spiky workloads, both
strategies are supplemented with persistent storage support and
customized access policies. Our experimental study evaluates the
robustness of each method, and compares their respective scope
of applicability with state-of-art methods.

I. INTRODUCTION

Radio frequency identification (RFID) technology has over
the years been widely adopted as technology for monitoring
and tracking artifacts. A networked RFID system typically
is comprised of three layers. One, identity tags attached to
items provide a unique identifier for each item and electron-
ically transmit that identifier. Two, networked RFID readers
typically have two subsystems, reader and event generator.
The reader collects signals from multiple tags at high rates
(100s per second) and pre-processes the data to eliminate
duplicates, redundancies, and bogus data from misreads. The
event generator then transmits an event stream of RFID reads
or aggregated RFID reads to the event processing system
(EPS) via either its built-in RFID transmission capabilities or
with additional transmitters over wired or Wi-Fi networks [1].
Lastly, monitoring and tracking applications collate event
streams from multiple distributed RFID readers to enable a
wide range of services from transportation payments, enter-
prise chain management to product tracking and management.

This pervasive use of RFIDs has fueled the need for better
solutions for the processing of streaming events generated
from these RFID tags. The real-time processing in time order
of event streams generated from distributed RFID readers

is a primary challenge for today’s monitoring and tracking
applications. To outline some of these challenges, consider
a networked RFID system where RFID reader R1 transmits
its events to the event processing system EPS over a Wi-Fi
network, while reader R2 transmits over a wireless network,
and reader R3 transmits its events over a local area network.
The variance in the network latencies, from milliseconds in
wired LANs to 100s of seconds for a congested Wi-Fi network,
often cause events to arrive out-of-sync with the order in which
they were tracked by the RFID readers. Furthermore, machine
or partial network failure or intermediate services such as
filters, routers, or translators may introduce additional delays.
Intermediate query processing servers also may introduce
disorder [2], e.g., when a window is defined on an attribute
other than the natural ordering attribute [3], or due to data
prioritization [4]. This variance in the arrival of events makes
it imperative that the EPS can deal with both in-order as well
as out-of-order arrivals efficiently and in real-time.

Several solutions for processing event sequence queries
that track RFID tags across an ordered set of RFID readers
have been proposed in the recent literature [5], [6], [7]. Such
customized EPS have been shown to be superior to generic
stream processing solutions [8]. However, these solutions
mostly assume homogeneity for the underlying RFID reader
network and hence provide solutions for processing only in-
order arrival of events from distributed RFID readers.

Out-of-order arrival of events1, when not handled correctly,
can result in significant issues as illustrated by the motivating
example below. Let us consider a popular application for
tracking books in a bookstore [6] where RFID tags are attached
to each book and RFID readers are placed at strategic locations
throughout the store, such as book shelves, checkout counters
and the store exit. The path of the book from the book shelf
to store exit can be tracked as it passes the different RFID
readers, and the events generated from the RFID readers can
be analyzed to detect theft. For example, if a book shelf and a
store exit register the RFID tag for a book, but the RFID tag
is not read at any of the checkout counters prior to the store
exit, then a natural conclusion may be that the book is being
shoplifted. Such a query can be expressed by the pattern query
SEQ(S, !C, E) which aims to find sequences of types SHELF-
READING (S) and EXIT-READING (E) with no events of type
COUNTER-READING (C) between them. If events of type C
(negative query components) arrive out-of-order, we cannot

1If an event instance never arrives at our system, our model assumes that
it never actually happened. Event detection and transmission reliability in a
network are not the focus of our paper. Instead please refer to [9].
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ever output any results if we want to assure correctness of
results. This holds true even if the query has an associated
window. So no shoplifting will be detected. Also, operators
cannot purge any event instances which may match with future
out-of-order event instances. In the example above, no events
of types SHELF-READING(S), COUNTER-READING(C) and
EXIT-READING(E) can be purged. This causes unbounded
stateful operators which are impractical for processing long-
running and infinite data streams. Customized mechanisms are
needed for event sequence query evaluation to tackle these
problems caused by out-of-order streams.

The only available method for dealing with out-of-order
arrival of events, called K-slack [10], buffers the arriving data
for K time units. A sort operator is applied on the K-unit
buffered input as a pre-cursor to in-order processing of events.
The biggest drawback of K-slack is rigidity of the K that
cannot adapt to the variance in the network latencies that exists
in a heterogenous RFID reader network. For example, one
reasonable setting of K may be the maximum of the average
latencies in the network. However, as the average latencies
change, K may become either too large, thereby buffering un-
needed data and introducing unnecessary inefficiencies and
delays for the processing, or too small, thereby becoming
inadequate for handling the out-of-order processing of the
arriving events and resulting in inaccurate results.

To address the above shortcomings, we propose two strate-
gies positioned on the two ends of the spectrum where out-
of-order events are the norm on one end and the exception
in the other. In contrast to K-slack type solutions [5], [11],
our proposed solutions can process out-of-order tuples as
they arrive without being forced to first sort them into a
globally “correct” order. The conservative method designed for
the scenario where out-of-order events are the norm exploits
runtime streaming metadata in the form of partial order guar-
antee (POG) thereby permitting the use of unbounded stateful
operators and maximally unblocking operators. Memory is
effectively utilized to maintain potentially useful data. The
aggressive solution designed to handle mostly in-order events
outputs sequence results immediately without waiting for any
potentially out-of-order events. For the unexpected scenario
that out-of-order events do arise, a compensation technique
is utilized to correct any erroneous results. This targets ap-
plications that require up-to-date results even at the risk of
temporally imperfect results to assure delayed correctness.
Contributions of this work include:

• Analysis of the issues when state-of-the-art event stream
processing technology needs to handle out-of-order data.

• Classification of levels of correctness for out-of-order
processing considering latency, output order, result cor-
rectness and result completeness.

• Two solution frameworks: the aggressive strategy when
out of order event arrival is an exception and the conser-
vative strategy when out of order is prevalent. The former
outputs sequence results immediately without waiting for
out-of-order events, but guarantees only delayed cor-
rectness. The later exploits partial order guarantees to
produce permanently correct results.

• Persistent storage support for the proposed strategies to
allow for customized access policies and to handle huge
windows and spiky streams.

• An event processing prototype that includes the proposed
strategies and the K-slack strategy. We demonstrate the
relative scope of effectiveness of the proposed approaches
compared to one another and also the state-of-art method
K-slack to aid applications with selection of the most
appropriate method.

In Section II we give background on event sequence pro-
cessing. Problems caused by out-of-order data arrival are
analyzed in Section III. In Section IV we define the correctness
classification lattice. Sections V, VI and VII discuss the K-
slack, conservative and aggressive strategies respectively. Sec-
tion VIII introduced disk-based extensions. Our experimental
analysis is given in Section IX, while related work is discussed
in Section X. Section XI concludes this work.

II. PRELIMINARIES

A. Event Streams and Pattern Queries

Event Instances and Types. An event instance is an instan-
taneous occurrence of interest at a point in time. It can be
a primitive or a composite event [12]. We use lower-case
letters (e.g., a, b, c) for event instances. Each event instance
has two time-stamps, an occurrence and an arrival timestamp,
both assigned from a discrete time domain. The occurrence
timestamp a.ts reflects the time when the event was generated
while the arrival timestamp a.ats reflects the time when the
event was received by the system.

Similar event instances can be grouped into an event type.
Event types are distinguished by event type names. We use
capitalized letters (e.g., A, B, C) for event types. An event
type A has an associated event schema that defines a set of
attributes A1, ..., An. We use a ∈ A to indicate an instance a
is of event type A.
Event Streams. The input to the query system is a potentially
infinite event stream that contains all events of interest [6],
[12]. The event stream is heterogeneous, being populated with
event instances of different event types. For example, in the
RFID-based retail scenario [6], all RFID readings are merged
into a single stream sorted by their timestamps. The stream
contains SHELF-READING, COUNTER-READING and EXIT-
READING events.
Out-of-Order Event. Consider an event stream S: e1, e2,
..., en, where e1.ats < e2.ats < ... < en.ats. For any two
events ei and ej (1 ≤ i, j ≤ n) from S if ei.ts < ej .ts and
ei.ats < ej.ats, we say the stream is an ordered event stream.
If however ej .ts < ei.ts and ej .ats > ei.ats, then ej is flagged
as an out-of-order event. Stream S in Figure 3(a) lists events
in their arrival order, thus event c9 received after d17 is an
out-of-order event.
Pattern Queries. We focus on sequential pattern queries,
a core feature for most event processing systems [5]. The
theft query in Section I is an example of such a query.
Pattern queries specify how individual events are filtered
and multiple events are correlated via time-based and value-
based constraints. For illustration purposes we utilize a query
language syntax similar to SASE [6]. However our solution
is general and compatible with existing algebraic-based event
processing systems [5], [6].

In the EVENT clause, SEQ specifies a particular order in
which the events of interest must occur. We say an event ei is
a positive (resp. negative) event if there is no ‘!’ (resp. with
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<Query>::=EVENT <event pattern>

[WHERE <qualification>]

[WITHIN <window>]

<event pattern>::=SEQ((Ei, (Ei|!Ei)
+)|((Ei|!Ei)

+, Ei)) (1≤ i ≤ n))

<window>::= Window length W

‘!’) symbol used before its respective event type in the SEQ
construct. Positive events appear in the final query result while
negative events do not. The WHERE clause corresponds to a
boolean combination using logical connectives ∧ and ∨ of
predicates that use one of the six comparison operators (=,
6=, >, <, ≤, ≥). The WITHIN clause checks if the temporal
difference between the first and last events within a result tuple
is less than the specified window length W (time range). Our
above shoplifting query is specified as:

EVENT SEQ(SHELF s, !(CHECKOUT c), EXIT e)

WHERE s.id = c.id AND c.id = e.id

WITHIN 5 hs

B. Event Stream Logical Algebra

A query expressed by the above language is translated into a
query plan composed of the following operators: Window Se-
quence (WinSeq), Window Negation (WinNeg), and Selection
(Sel) [6]. The WinSeq operator denoted WinSeq (E1, E2, ...,
En, window) extracts all matches to the positive event pattern
specified in the query and constructs positive event sequences.
WinSeq also checks whether all matched event sequences occur
within the specified sliding window. The WinNeg operator
specified by WinNeg(!E1, (time constraint);
...; !Em, (time constraint)) checks whether no negative
events as specified in the query exist within the indicated
time constraint in a matched positive event sequence. The
Sel operator, expressed as Sel(P), where P denotes a set of
predicates on event attributes, further filters event sequences by
applying the predicates specified in the query. The qualification
in the WHERE clause provides the parameters for the Sel
operator.

Figure 1 shows an example algebra plan for the pattern
query Q, with predicates in the Sel operator pushed down
into the WinSeq and WinNeg operators as appropriate. [6]
discusses several methods for placing Sel within the query
plan, including pushing Sel inside sequence operators.

WinSeq: (A, B, D, 10)

Input Event Stream

Q:

EVENT SEQ (A a, B b, !(C c), D d)

WHERE      a.id = b.id and b.id =d.id and c.id = a.id

WITHIN     10  seconds

WinNeq(!C, (B.time<C.time<D.time))

a.id = b.id and b.id = d.id

c.id = a.id

Fig. 1. One Possible Algebraic Query Plan

C. Event Stream Physical Algebra

Window Sequence Operator (WinSeq) WinSeq as the
bottom-most operator employs a non-deterministic finite au-
tomaton (NFA) for pattern retrieval [6]. We push Window

<a3 b6 d10 >

<a7 b11 d15>

WinNeg

(c) P roducing R esult Tuples

WinSeq
Input Event

Stream

0 1 2 3
A B D

* *
[ ] a3

[ ] a7

[a3] b6

[a7] b11

[b6] d10

[b11] d15

S1 S2 S3

(b ) State in  W inSeq
(a) Automata

a c b a d f c d f

3 5 6 7 10 12 13 15 16 Receiving Order

b 

1

b 

11

(d ) Input Event Stream

…

…

f

17

<a3 b6 d10 >

Fig. 2. Example Query Evaluation Steps

filtering into WinSeq. Let N denote the number of positive
event types. Then the number of states in the NFA equals N+1
(including the starting state). A data structure named SeqState
associates a stack with each state of the NFA storing the events
that trigger the NFA transition to this state (Figure 2(a)). For
each instance ei in the stack, an extra field named PreEve
records the nearest instance in terms of time sequence in
the stack of the previous state to facilitate sequence result
construction. Figure 2(d) shows a partial input event stream.
All retrieved events of type A, B and D are extracted by WinSeq
and kept in SeqState. Figure 2(b) shows the stacks of SeqState
after receiving the given portion of stream S. In each stack, its
instances are naturally sorted from top to bottom in the order
of their arrival timestamps ei.ats. The most recent instance in
stack S1 of type A before b11 is a7. The PreEve field of b11

is set to a7, as shown in the parenthesis preceding b11.

WinSeq has three core functionalities as stated below:
Insert. With the assumption that events come in order, each
received positive event instance is simply appended to the end
of the corresponding stack and its PreEve field is set to the
last event in the previous stack. Each received negative event
instance is passed to WinNeg.

Compute. When the newly inserted event en is an instance
of the final stack then WinSeq computes sequence results.
With SeqState, the construction is simply done by a depth
first search in the DAG that is rooted at this instance en and
contains all the virtual edges reachable from this root. Each
root-to-leaf path in the DAG corresponds to one matched event
sequence to be returned. This event sequence <e1, e2, ..., en>
for the query SEQ(E1, E2, ..., En) guarantees that (1) ei is
an event instance of type Ei, ∀ i (16 i 6n) and (2) the
sequence ordering constraint e1.ts 6 e2.ts 6...6 en.ts. After
receiving the events in Figure 2(d), WinSeq outputs the two
event sequences in Figure 2(c).

Purge. Purge of the WinSeq state removes all outdated events
from SeqState based on window constraints. Any event in-
stance ei kept in SeqState can be safely purged from the top
of its stack once an event ek with (ek.ts − ei.ts) > W is
received by the query engine.
Window Negation Operator (WinNeg) A data structure
similar to SeqState, called NegState, is utilized for the WinNeg
operator. NegState associates a stack with each negative event
type. WinNeg has the following three functionalities.
Insert. Events of the negative types are appended to the
corresponding NegState, e.g., the events ci ∈ C for the above
example are inserted into the NegState of type C.

Compute. For each intermediate event sequence sent from
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WinSeq, WinNeg checks whether any negative instances cor-
responding to the query exist. The event sequence will not
be output if any exist. In the above example, when d15 is
received there are two C events in NegState (namely, c5 and
c13. The second intermediate result sequence <a7, b11, d15>
constructed by WinSeq will be removed by WinNeg because a
negative C event (namely, c13) exists between b11 and d15.

Purge. Window-based purging proceeds as for SeqState.

III. PROBLEMS CAUSED BY OUT-OF-ORDER DATA
ARRIVAL

A. Problems for WinSeq Operator

a c b a d f c d d

3 5 6 7 10 12 13 15 16

b 

1

b 

11

a c b a d f c d d

3 5 6 7 10 12 13 15 16 Received 

Order

b 

1

b

11

(a ) Out-of-O rder Event A rrival Example 1

a c b a d f c d d 

3 5 6 7 10 12 13 15 16

b 

1

b

11

(b ) Out-of-O rder Event A rrival Example 2

(c) Out-of-O rder Event A rrival Example 3

c

9

a

0

d

2

d  (or b)

8

d

17

d

17

d

17

Received 

Order

Received 

Order

a c b a d f c f f 

3 5 6 7 10 12 13 15 16

b 

1

b

11

(d ) Out-of-O rder Event A rrival Example 4

b

4

f

17 Received 

Order

Fig. 3. Out-of-Order Event Arrival Example

Current event stream processing systems [6], [13] rely on
purging of the WinSeq operator to efficiently and correctly
handle in-order event arrivals. An event instance ei is purged
when it falls out of the window W, i.e., when a new event
instance ek with ek.ts - ei.ts > W is received. This purging
is considered “safe” when all events arrive in-order. However,
with out-of-order event arrivals such a “safe” purge of events
is no longer possible. Consider that an out-of-order event
instance ej (ej .ts < ek.ts) arrives after ek. In this scenario, if
ek is purged before the arrival of ej , potential result sequences
wherein ej is matched with some event ek are lost.

While this loss of results can be countered by not purging
WinSeq state, in practice this is not feasible as it results in
storing infinite state for the WinSeq operator.

Example 1: For the stream in Figure 3(c), suppose the out-
of-order event d8 arrives after d17 (d8.ats > d17.ats), d8

should form a sequence output <a3, b6, d8> with a3 and b6.
However WinSeq state purging would have already removed
a3 thus destroying the possibility for this result generation.

Observation 1: A purge of the WinSeq state (SeqState) is
“unsafe” for out-of-order event arrivals resulting in loss of
results. Not applying purge to SeqState results in unbounded
memory usage for the WinSeq operator.

B. Problems for WinNeg Operator

With out-of-order data arrival, window-based purge of
NegState is also not “safe”, because it may cause the gen-
eration of wrong results. A negative event instance ei will be
purged once an event ek with (ek.ts−ei.ts) > W is received.
When an out-of-order positive event instance ej (ej.ts < ek.ts)
arrives after the purge of a negative event instance ei, this
may cause the WinSeq operator to generate some incorrect
sequence results that should have been filtered out by the
negative instance ei. Similarly, an out-of-order negative event
instance ei may be responsible for filtering out some sequence
results generated by WinSeq previously. In short, this negation
state purge is unsafe, because it may cause unqualified out-
of-order event sequences to not be filtered out by WinNeg.

Example 2: For the stream in Figure 3(d), assume out-of-
order event instance b4 comes after f17. Suppose WinSeq
sends up the out-of-order sequence <a3, b4, d10> to WinNeg.
WinNeg should determine that <a3, b4, d10> is not a qualified
sequence because of the negative event c5 between b6 and d8.
However, if NegState purge would already have removed c5,
then this sequence would now wrongly be output.
Observation 2. We observe the dilemma that on the one hand
purging is essential to assure that the state size of NegState
does not grow unboundedly. On the other hand, any purge on
NegState is unsafe for out-of-order input event streams because
wrong sequence results may be generated.
Observation 3. WinNeg can never safely output any sequence
results for out-of-order input streams, because future out-of-
order negative events may render any earlier result incorrect.
Hence, WinNeg is a blocking operator causing the queries to
never produce any results.

IV. LEVELS OF CORRECTNESS

We define criteria of output “correctness” for event sequence
processing.
Ordered output. The ordered output property holds if and
only if for any sequence result t = <e1, e2, ..., en> from the
system, we can guarantee that for every future sequence result
t’ = <e1’, e2’, ..., en’>, en.ts 6 e′n.ts. We refer to sequence
results that don’t satisfy the property as out-of-order output.
Immediate output. The immediate property holds if and only
if every sequence result will be output as soon as it can be
determined that no current negative event instance filters it out.
Permanently Valid. The property permanently valid holds if
and only if at any given time point tcur, all output result
sequences from the system so far satisfy the query semantics
given full knowledge of the complete input sequence. That
is, for any sequence result t = <e1, e2, ..., en>, it should
satisfy (1) the sequence constraint e1.ts ≤ e2.ts ≤ e3.ts ... ≤
en.ts; (2) the window constraint (if any) as en.ts - e1.ts ≤
W ; (3) the predicate constraints (if any) and (4) the restriction
on the negation filtering (if there is a negative type Eneg

between positive event type Ei and Ej then no current or
future received event instance eneg of type Eneg satisfies ei.ts
≤ eneg .ts ≤ ej .ts).
Eventually Valid. We define eventually valid property to be
weaker than permanently valid. At any time tcur, all output
results meet conditions (1) to (3) from above. Condition (4)
is relaxed as follows: if in the query between event type Ei

and Ej there is a negation pattern Eneg then (4.1’) no eneg of
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type Eneg exists in the current NegState with ei.ts ≤ eneg.ts
≤ ej .ts and (4.2’) if in the future eneg of type Eneg with
eneg .ats > tcur satisfies ei.ts ≤ eneg .ts ≤ ej .ts, then results
involving ei and ej become invalid.

The permanently and eventually valid defined above are two
different forms of valid result output.
Complete output. If at time tcur a sequence result t = <e1, e2,
..., en> is known to satisfy the query semantics defined in (1)
to (4) in the permanently valid category above or those defined
in the eventually valid category then the sequence result t =
<e1, e2, ..., en> will also be output at time tcur by the system.

Based on this categorization, we now define several notions
of output correctness. Some combination of these categories
can never arise. For example, it is not possible that an
execution strategy produces permanently correct un-ordered
results immediately. The reason is that with out-of-order
event arrivals, if sequence results are output immediately then
they cannot be guaranteed to remain correct in the future.
Similarly, it is not possible that output tuples produced are
only eventually correct and at the same time are in order. The
reason is that we cannot assure that sequences sent by some
later compensation computation do not lead to out-of-order
output. Also, it is not possible that out-of-order tuples can be
output in order yet immediately. The reason is that out-of-
order event arrivals can lead to out-of-order output. We now
introduce four combinations as levels of output correctness
that query execution can satisfy:

• Full Correctness: ordered, immediate output, perma-
nently valid and complete output.

• Delayed Correctness: ordered, permanently valid and
eventually complete output.

• Delayed Unsorted Correctness: unordered, permanently
valid, and complete output.

• Convergent Unsorted Correctness: immediate output,
eventually valid and complete output.

Although full correctness is a nice output property, it is
too strong a requirement and unnecessary in most practical
scenarios. In fact, if events come out-of-order, full correctness
cannot be achieved and we must live with delayed correctness.

In some applications delayed unsorted correctness may be
equally accepted as strict delayed but ordered correctness.
Sequence results may correspond to independent activities
in most scenarios and the ordering of different outputs is
thus typically not important. For instance, if book1 or book2
was stolen first is not critical to a theft detection application.
Sorting the sequence results will cause increased even possibly
prohibitively large response time. Delayed Unsorted Correct-
ness is thus a practical requirement. For example, in the RFID-
based medicine transportation scenario, between the medicine
cabinet and usage in the hospital, the medical tools cannot pass
any area exposed to heat nor can they be near any unsanitary
location. In this scenario, correctness is of utmost importance
while some delay can be tolerated.

On the other hand, in applications where correctness is not
as important as system response time, then the convergence
unsorted correctness may be a more appropriate category. The
detection of shoplifting of a high price RFID tagged jewelry
would require a quick response instead of a guaranteed valid
one. Actions can be taken to confront the suspected thief and
in the worst case, an apology can be given later if a false alarm

is confirmed. In the rest of the paper, we design a solution for
each of the identified categories.

V. NAIVE APPROACH: K-SLACK

K-slack is a well-known approach for processing unordered
data streams [10]. We now classify K-slack approach into the
delayed correctness category. As described in the introduction,
the K-slack assumption holds in situations when predictions
about network delay can be reliably assessed. Large K as
required to assure correction will add significant latency. We
briefly review K-slack which can be applied for situations
when the strict K-slack assumption indeed holds. Our slack
factor is based on time units, which means the maximum
out of orderness in event arrivals is guaranteed to be K time
units. With K so defined, proper ordering can be achieved
by buffering events in an input queue until they are at least K
time units old before allowing them to be dequeued. We set up
a clock value which equals the largest occurrence timestamp
seen so far for the received events. A dequeue operation is
blocked until the smallest occurrence timestamp ts of any event
in the buffer is less than c - K, where c is the clock value.

The functionalities of WinSeq and WinNeq in the K-slack
solution are the same as those in the ordered input case
(Section II-C) because data from the input buffer would only
be passed in sorted order to the actual query system.

VI. CONSERVATIVE QUERY EVALUATION

A. Overview of Partial Order Guarantee Model

We now propose a solution, called conservative query evalu-
ation, for the category of delayed unsorted correctness. The
general idea is to use meta-knowledge to safely purge WinSeq
and WinNeg states and to unblock WinNeg (addressing the
problems in Section III). Permanent valid is achieved because
results are only reported when they are known to be final.
Relative small memory consumption is achieved by employing
purging as early as possible.
To safely purge data, we need meta-knowledge that gives
us some guarantee about the nonoccurrence of future out-of-
order data. A general method for meta-knowledge in streaming
is to interleave dynamic constraints into the data streams,
sometimes called punctuation [14].

Partial Order Guarantee Definition. Here we now pro-
pose special time-oriented metadata, which we call Partial
Order Guarantee (POG). POGs guarantee the future non-
occurrence of a specified event type. POG has associated a
special metadata schema POG = <type, ts, ats> where type
is an event type Ei, ts is an occurrence timestamp and ats is
an arrival timestamp. POG pj indicates that no more event ei

of type pj .type with an occurrence timestamp ei.ts less than
pj .ts will come in the stream after pj , i.e., (ei.ats > pj .ats
implies ei.ts > pj .ts).

Many possibilities for generating POGs exist, ranging from
source or sensor intelligence, knowledge of access order such
as an index, to knowledge of stream or application semantics
[15]. In fact, it is easy to see that due to the monotonicity
of the time domain, such assertions about time stamps tend
to be more realistic to establish compared to guarantees
about the nonoccurrence of certain content values throughout
the remainder of the possibly infinite stream. We note that
network protocols can for instance facilitate generation of this
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knowledge about timestamp occurrence. Note that the TCP/IP
network protocol guarantees in-order arrival of packets from
a single host. Further, TCP/IP’s handshake will acknowledge
that certain events have indeed been received by the receiver
based upon which we then can safely release the next POG
into the stream. Henceforth, we assume a logical operator,
called punctuate operator [15], that embeds POGs placed at
each stream source. Also the punctuate operator can be placed
in the appropriate servers to synchronize the POGs of the
same event type generated from each source, thus guaranteeing
validity of POGs across different TCP/IP connections in a
network.

Using POGs is a simple and extremely flexible mecha-
nism. If network latency were to fluctuate over time, this
can naturally be captured by adjusting the POG generation
without requiring any change of the query engine. Also,
the query engine design can be agnostic to particularities of
the domain or the environment. While it is conceivable that
POGs themselves can arrive out-of-order, a punctuate operator
could conservatively determine when POGs are released into
the stream based on acknowledged receival of the events in
question. Hence, in practice, out-of-order POG may be delayed
but would not arrive prematurely. Clearly, such delay or even
complete loss of a POG would not cause any errors (such
as incorrect purge of the operator state), rather it would in
the worst case cause increased output latency. Fortunately, no
wrong results will be generated because the WinNeg operator
would simply keep blocking until the subsequent POG arrives.

B. POG-Based Solution for WinSeq

POGSeq State. We add an array called POGSeq State to store
the POGs received so far with one array position for each
positive event type in the query. For each event type, we store
the largest timestamp which is sufficient due to our assumption
of POG ordering (see Section VI-A).

Tuple Processing

Insert. In-order events are inserted as before. The simple
append semantics is no longer applicable for the insertion of
out-of-order positive event instances into the state. Instead out-
of-order event ei ∈ Ei will be placed into the corresponding
stack of type Ei in SeqState sorted by occurrence timestamp.
The PreEve field of the event instance ek in the adjacent stack
with ek.ts > ei.ts will be adjusted to ei if (ek.PreEve).ts is
less than ei.ts.

Compute. In-order event insertion triggers computation as
usual. The insertion of an out-of-order positive event ei

triggers an out-of-order sequence computation. This is done
by a backward and forward depth first search in the DAG.
The forward search is rooted at this instance ei and contains
all the virtual edges reachable from ei. The backward search
is rooted at event instances of the accepting state and contains
paths leading to and thus containing the event ei. One final
root-to-leaf path containing the new ei corresponds to one
matched event sequence. If ei belongs to the accepting (resp.
starting) state, the computation is done by a backward (resp.
forward) search only.

Purge. Tuple processing will not cause any state purging.

POGs Processing

Purge. The arrival of a POG pk on a positive event type
triggers the safe purge of the WinSeq State, as explained below.

Insert. If WinSeq receives a POG pk on a positive event
type, we update the corresponding POGSeq state POGSeq[i]
:= pk.ts if pk.ts is greater than the current POG time for
pk.type. If the positive event type is listed just before one
negative event type in a query, we pass pk to WinNeg. If
WinSeq receives a POG pk on a negative event type, we also
pass pk to WinNeg.

Definition 1: A positive event ei is purge-able henceforth
no valid sequence result <e1, ..., ei, ..., en> involving ei can
be formed.
POG-Triggered Purge. Upon arrival of a POG pk, we need
to determine whether some event ei with ei.type 6= pk.type can
be purged by pk. By Definition 1, we can purge ei if it can’t
be combined with either current active events or potential out-
of-order future events of type pk.type to form valid sequence
results.

Algorithm 1 Singleton-POG-Purge

Input: (1) Event ei ∈ Ei (2) pk ∈ POG

Output: Boolean (indicating whether event ei was purged by pk

1 if (pk .ts<ei.ts) || (pk .type==ei.type)

2 then return false;

3 else

4 if (Ek = pk .type listed after Ei in query Q)

5 if (ei .ts is within [pk .ts - W, pk .ts])

6 then return false;

7 else

8 if (current events of type pk .type exist

9 within [ei.ts, ei.ts + W ] in WinSeq)

10 then return false;

11 else purge event ei; return true; endif endif

12 else // Ek is listed before Ei in query Q

13 if (no events of pk .type exist within [ei .ts - W, ei .ts] in WinSeq)

14 then purge event ei ∈ Ei; return true;

15 else return false; endif endif

16 endif

Algorithm 1 depicts the purge logic for handling out-of-
order events using POG semantics. In lines 1 and 2, we cannot
purge ei because an event instance ek of pk.type with ek.ts
> pk.ts can still be combined with ei to form results. In lines
4, 5 and 6, we cannot purge ei if ei.ts is within [pk.ts - W,
pk.ts] for ei could be composed with an event instance ek of
pk.type with occurrence timestamp ek.ts > pk.ts and ek.ats >
pk.ats. In lines 8, 9, 10, we cannot purge ei for even though
pk can guarantee no out-of-order events of type pk.type can
be combined with ei. Some current event instance ek can still
be combined with ei. To understand Algorithm 1, let us look
at the following example.

Example 3: Consider purging when evaluating sequence
query SEQ(A, B, !C, D) within 7 mins on the data in Figure
3(b). Assume after receiving events a0 and d2 (both shaded),
we receive a POG pk = <A, 1> indicating that no more
events of type A with timestamp less than or equal to 1 will
occur. For there are no events of type A before b1 in window
W, we can safely purge b1.
Optimized POG-Triggered Purge. By examining only one
POG pk at a time, Algorithm 1 can guarantee an event ei can
be purged successfully if no event instance ek of type pk.type
(ei. type 6= pk.type) exists within window W. However, even
though events of different POG types exist, they may not
satisfy the sequence constraint as specified in one query. We
need to make use of the knowledge provided by a set of POGs
as together they may prevent construction of sequence results.
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In Algorithm 2 from line 1 to 7, we check whether ei

can form results with event instances of type listed before Ei

in Query Q. We update the checking value once we find an
instance of pk.type. We need to continue the instance search
after timestamp checking for the next type in the POGSeq
state. The checking order guarantees the sequential ordering
constraint among existing event instances of POG types.
Similarly from line 8 to 15, the algorithm checks whether
ei can form results with event instances of type listed after Ei

in Query Q. Example 4 illustrates this.

Example 4: Given the data in Figure 3(d), let’s consider
purging a7 for query SEQ(B, A, B, D, F) within 10 mins.
Assume after receiving b4, we receive two POGs (p1 =
<B,17>, p2 = <D,17>). b6 of type B exists before a7. b11 of
type B exists after a7. However, no existing event instances
of type D exist in the time interval [11, 7+10]. Due to p2, we
know no future events of type D will fall into [11, 7+10]. So
a7 is purge-able.

Algorithm 2 POG-Set-Purge
Query Q: “SEQ(E1 , E2 ,..., En) within W”;

Input: Event ei ∈ Ei

Output: Boolean (whether ei was purged by the existing POG Set.)

1 int checking = ei .ts - W;

2 for (each POG pk in POGSeq that pk .type is before ei .type in Q)

3 if (pk .ts > ei .ts)

4 if (no current event ek of pk .type in [checking, ei .ts])

5 then purge event ei ∈ Ei; return true;

6 else checking = min(ek .ts); endif endif

7 endfor

8 checking = ei .ts;

9 for (each POG pk in POGSeq that pk .type is after ei .type in Q)

10 if (pk .ts ≥ ei .ts + W)

11 if (no event ek of type pk .type in [checking, ei .ts + W])

12 then purge event ei ∈ Ei; return true;

13 else checking = min(ek .ts); endif endif

14 endfor

15 return false

C. POG-Based Solution for WinNeg

POGNeg State. An in-memory array called POGNeg State
is used to store POGs of negative event types sent to
WinNeg. The length of POGNeg corresponds to the number
of negative event types in the query. For each negative event
type, we only store one POG with its largest timestamp so
far. POGNeg[i] := pk.ts if pk.ts is greater than the current
POG time for pk.type.

Holding Set. A set named holding set is maintained in WinNeg
to keep the candidate event sequences which cannot yet be
safely output by WinNeg.

Tuple Processing Additional functionalities beyond WinNeg
as introduced in Section II-C are:

Insert. If WinNeg receives output sequence results from Win-
Seq, it stores them in the holding set. If WinNeg receives a
negative event, WinNeg stores it in the negative stack.

Compute. When WinNeg receives sequence results, after the
computation as introduced in Section II-C, WinNeg will put
candidate results in the holding set. When WinNeg receives an
out-of-order negative event, the negative event will remove
some candidate results from the holding set per the query
semantics. No results are directly output in either case.

POGs Processing

Insert. Once WinNeg receives a POG pk on a negative (resp.
positive) event type, it updates the POGNeg[i] = pk.ts.
Compute. Let us assume the sequence query SEQ(E1, E2,
..., Ei, !NE, Ej , ..., En) where NE is a negation event type.
When we receive a POG pk = <NE, ts>, an event sequence
“e1, e2 ..., ei, ej , ... en” maintained in WinNeg can be output
from the holding set if ej.ts < pk.ts.

Now assume the negation type is at an end point of the query
such as SEQ(E1, E2,..., En, !NE). Then any output sequence
<e1, e2, e3, ..., en> from WinSeq will be put into the holding
set of WinNeg if no NE event exists in NegState with a time
stamp within the range of [en.ts, e1.ts + W]. When we receive
a POG pk = <NE, ts> which satisfies pk.ts > e1.ts + W,
this sequence can be safely output by WinNeg.

Example 5: Given query SEQ(A, B, !C, D) and the data
in Figure 3(c), when d10 is seen, WinSeq produces <a3, b6,
d10> as output and sends it up to WinNeg. At this moment,
the NegState of WinNeg holds the event instance c5. c5.ts is
not in the range of [6,10]. However WinNeg cannot output
this tuple because potential out-of-order events may still arrive
later. Assume after receiving event d17, we then receive POG
pi = <C,10>. So future out-of-order events of type C, if any,
will never have a timestamp less than 10. WinNeg can thus
safely output sequence result <a3, b6, d10>.
Purging. For the negative events kept in the WinNeg state,
Algorithms 1 can be utilized to safely purge WinNeg.

For illustration purposes, we discussed the processing of
one negative event in the query. Algorithms can be naturally
extended to also handle queries with more than one negation
pattern.

VII. AGGRESSIVE QUERY EVALUATION

A. Overview

We now propose the aggressive method to achieve convergent
unsorted correctness category. The goal is to send out results
with as small latency as possible based on the assumption
that most data arrives in time and in order. In the case when
out-of-order data arrival occurs, we provide a mechanism
to correct the results that have already been erroneously
output. Two requirements arise. One, traditionally streams
are append-only [16], [17], [18], [19], meaning that data
cannot be updated once it is placed on a stream. A traditional
append-only event model is no longer adequate. So a new
model must be designed. Two, to enable correction at any
time, we need access to historical operator states until safe
purging is possible. The upper bounds of K-slack could be
used for periodic safe purging of the states of WinSeq and
WinNeg operators when event instances are out of Window
size + K. This ensures that data is kept so that any prior
computation can be re-computed from its original input as long
as still needed. Further, WinSeq and WinNeg operators must
be equipped to produce and consume compensation tuples.
Given that any new event affects a limited subset of the
output sequence results, we minimize run-time overhead and
message proliferation by generating only new results. That
is, we generate delta revisions rather than regenerating entire
results.
We extend the common append-only stream model to support
the correction of prior released data on a stream. Two kinds
of stream messages are used: Insertion tuple <+, t> is
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induced by an out-of-order positive event, where “t” is a new
sequence result. Deletion tuple <-, t> is induced by an out-of-
order negative event, such that “t” consists of the previously
processed sequence. Deletion tuples cancel sequence results
produced before which are invalidated by the appearance of an
out-of-order negative event. Applications can thus distinguish
between the types of tuples they receive.

B. Compensation-Based Solution for WinSeq

Insert. Same as the POG-based WinSeq Insert function.

Compute. In-order event insertion triggers computation as
usual. If a positive out-of-order event ei is received, ei will
trigger the construction of sequence results in WinSeq that
contain the positive event. The computation is the same as the
Compute function introduced in Section VI-B. If a negative
out-of-order event ei is received, the negative event will trigger
the construction of spurious sequence results in WinSeq that
have the occurrence of the negative instance between the
constituent positive instances as specified in a query. These
spurious sequence results will be sent up to the WinNeg
operator followed by the negative event ei. See Algorithm 3
for details.

Example 6: The query is SEQ(A, !C, B) within 10 mins.
For the stream in Figure 3(a), when an out-of-order negative
event c9 is received, new spurious sequence results <a3, b11>,
<a7, b11> are constructed in WinSeq for a3.ts < c9.ts < b11.ts
and a7.ts<c9.ts<b11.ts and sent to WinNeg.

Purge. If some maximal arrival delay K is known, then any
event instance ei kept in SeqState is safely purged once an
event ek with (ek.ts - ei.ts) > window W + K is received.

Algorithm 3 Out-of-order Processing in WinSeq

Query “EVENT SEQ(E1 , E2 , ..., Ei, !Ej , Ek , .., En)” within W

Input: Out-of-order Event et

Output: Results, Negative events

1 if (et .type==Ej)

2 then

3 WinSeq generates spurious results <e1 , e2 , ..., ei , ek , ..., en>

4 with ei .ts < et .ts < ek .ts and (en .ts - e1 .ts ≤ W)

5 and sends them to WinNeg along with ei

7 else //et .type 6= Ej

8 <+, e1 , e2 , ..., et , ..., en> with (en .ts - e1 .ts ≤ W)

9 is constructed by WinSeq and sent to WinNeg

10 endif

C. Compensation-Based Solution for WinNeg

Insert. When candidate results or negative instances are re-
ceived, WinNeg will insert them as usual.

Compute. If the WinNeg operator receives spurious results
from the WinSeq operator, WinNeg first checks whether these
spurious results would have been invalidated by the negative
event instances already in WinNeg before. If not, the WinNeg
operator will send out these spurious results as compensation
tuples of the deletion type.

Purge. Same as compensation-based WinSeq Purge.

Example 7: As in Example 6, <a3, b11> and <a7, b11>
are sent to WinNeg as marked spurious results. (a3, b11) was
filtered by c5 in WinNeg for a3.ts<c5.ts<b11.ts. So only <a7,
b11> is sent out as compensation tuple <-, a7, b11>.

Algorithm 4 Out-of-order Processing in WinNeg

Query “EVENT SEQ(E1, E2, ..., Ei, !Ej , Ek , .., En)” within W

Input: 1 Results sent from WinSeq; 2 Out-of-Order Negative Event et

Output: Compensation tuple

1 if marked spurious results are received from WinSeq

2 boolean output = true;

3 for each <e1 , e2 , ..., ei , ek , ..., en> sent from WinSeq

4 for each ej ∈ Ej stored in WinNeg

5 if(ei .ts < ej .ts < ek .ts)

6 then output = false; break; endif

7 endfor

8 if output == true

9 then <-, e1 , e2 , ..., ei , ek , ..., en> is output.

10 endif

11 output = true; endfor

12 endif

13 if results are regular (not marked spurious)

14 then

15 boolean output = true;

16 for each <e1 , e2 , ..., ei , ek , ..., en> or <+, e1 , e2 , ..., ei,

17 ek , ..., en> sent from WinSeq

18 Compute in WinNeg (Section II-C) endfor

27 endif

28 Insert et into the negative stack.

VIII. DISK-BASED EXTENSIONS

Thus far we have assumed that sufficient memory was avail-
able. However, large window sizes or bursty event streams
might cause memory resource shortage during query process-
ing. In such rare cases, we would employ a disk spilling
strategy, where a block of oldest memory-resident event in-
stances is chosen as victim and flushed to disk when the
memory utilization passes a set threshold. We store historical
information at the operator level, that is the states of WinSeq
and WinNeg are stored as frames indexed by time. To avoid
context switching, we use two separate buffers. One stores
newly incoming events, and the other is dedicated to load
temporarily events back from disk for out-of-order handling.

Whenever an event instance ei arrives out of order, and its
event instances within W are stored in disk, then we first need
to load the event window frame into SeqState and NegState.
This incurs overhead due to extra I/O costs for bringing the
needed slices of the historical event stream into the buffer.

There is a tradeoff between the aggressiveness with which
this process is run, and the benefits obtained. To address the
tradeoff, we design policies for mode selection. One criteria
we consider is the likelihood that many results would be
generated by this correction processing. Assuming uniformity
of query match selectivities, we use the number of out-of-order
events that fall into the same logical window (physical disk
page) as indicator of expected result generation productivity.
Further, we employ a task priority structure to record the yet
to be handled events and the correspondingly required pages.

For each page that is required to be used, we maintain the
out-of-order events yet to be processed. We also keep track of
the expected execution time for each page. If the total number
of required times for one page is greater than the activation
threshold α or the expected execution time is greater then
some threshold β, we load that page and trigger the execution
of tuples in this batch.
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TABLE I

PARAMETERS FOR EVENT GENERATION

term meaning

NumE Number of total events received so far

NumTi Number of events of type Ti received so far

NumT Number of event types

NumTio Number of out-of-order events of type Ti received

NumResult Number of permanent valid results

MDTi Maximum arrival delay of event type Ti

λTiO Out-of-order event percentage of event type Ti

λop Total Out-of-order positive event percentage

λon Total Out-of-order negative event percentage

λO Total Out-of-order event percentage

λPOGs POGs percentage.

TABLE II

SYMBOLS FOR PERFORMANCE METRIC

term meaning

Seqits The system time when ith sequence is

outputted from our system.

TLatency The total sequence result latency

TExecution Total Execution time

αp Activation page threshold

αt Expected time threshold

IX. EXPERIMENTAL EVALUATION

A. Experimental Setup

We have implemented our proposed techniques in a prototype
system using Java 1.4. Experiments are run on two Pentium
4 3.0Ghz machines with 512M RAM. One machine generates
and sends the event stream to the second machine, i.e., the
query engine. We develop an event generator that can be
configured with parameters as listed in Table I. Each source
sends out event instances of the same type. By setting the
number of sources, we can specify NumT. We also set the
maximum arrival delay MDTi

and out-of-order percentage
λTio for each event source. λop (resp. λon) is determined by
the total number of out-of-order positive (resp. negative) events
over the total number of instances received by our system.
POGs of each event type can be sent out after at most the
maximum time units MDTi

safely. λPOGs corresponds to the
total number of POGs over total number of event instances
received by our system. In our experiments, the input event
stream contains events of 10 different event types. The data
distributes among event types from A to J evenly.

Table II defines terms used in the performance evaluation.
The performance metric average application latency is the
average time difference between the sequence output time
and the maximum arrival time of event instances composed
into the sequence result. It can be measured by Σ(Seqits −
max(ei.ats))/NumResult. In WinSeq, if the result is trig-
gered by an in-order event, i.e., the last event type in the query
pattern, then the maximum event arrival time max(ei.ats) is
the system time when that in-order event ei arrived. If the
result is triggered by an out-of-order event, max(ei.ats) is
the system time when the out-of-order event arrives. We keep
track of ei.ats for two cases: (1) for in-order events, we only

maintain ei.ats if ei.type is the last type in a query pattern,
because other in-order events will not trigger the generation of
sequence results and (2) for out-of-order event instances, we
keep all their ei.ats because all out-of-order events will trigger
the generation of sequence results. The sequence output time
is the system time when WinNeg outputs the result.

B. Evaluating Aggressive Strategy

Varying Out-of-Order Event Percentage vs. Average Ap-
plication Latency. In this first experiment, we examine the
impact of out-of-order positive events on the performance
of the aggressive strategy. The out-of-order positive event
percentage λop is determined by Σ(NumTiO)/NumE with Ti

a positive event type. The window size is 20 time units, and
the maximum delay of out-of-order events is 10 time units.
λop is varied from 10% to 50% by increasing NumTiO of
each positive event type Ti. We also change the length of the
sequence queries from 3 to 7 (i.e., from SEQ(A, B, !C, D) to
SEQ(A, B, !C, D, E, F, G, H)).

Figure 4 shows the results. The trend lines correspond to the
different queries used in the experiment. Two observations can
be made from these results. First, the average latency increases
with the increase of the query length (Figure 4). Second, as
expected the increase in the percentage of positive out-of-order
events does not greatly impact the average application latency
for different query lengths. More out-of-order positive events
will only increase the event insertion time into the WinSeq
state which is logarithmic in the number of tuples in the
corresponding stack.

We also examine the impact of the out-of-order negative
events on average latency of the aggressive strategy. We vary
query length, and the out-of-order negative event percentage
λon (measured by NumCO /NumC is varied from 0% to
50%). In Figure 5, we observe that average application latency
increases as the percentage of out-of-order negative event
instances increases. This is because more out-of-order negative
events of a certain type will incur more re-computation for
the generation of compensation tuples. The impact of λon

on longer query lengths is greater than on shorter ones. One
reason is that more compensation tuples are generated by
WinSeq. Also the sequence construction time is longer for
queries of longer lengths as compared to shorter ones.

Varying Out-of-Order Event Percentage vs. Compensation
Tuple Number. We further conduct an experiment to investi-
gate the effect of increasing the out-of-order negative events on
the number of compensation tuples that are generated. We em-
ploy sequence queries of length from 3 to 7 (i.e., from SEQ(A,
B, !C, D) to SEQ(A, B, !C, D, E, F, G, H)). The window size is
20 time units. The percentage of out-of-order events is varied
for negative from 0% to 50% and for positive is set to 0%.
In Figure 6, we observe that with larger out-of-order negative
event percentage, the production of compensation tuples, being
triggered by out-of-order negative events, will increase. That
is out-of-order negative events will cause more compensation
tuples to be generated. Also, queries of longer length will have
more compensation tuples as compared to a shorter one for
the same out-of-order negative event percentage.

Varying Out-of-Order Event Percentage vs. Execution
Time. We also test the execution time for the aggressive strat-
egy. Average execution time is measured by TExecution/NumE,
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Fig. 4. Pos. Event Percent. vs. Aver-
age Latency
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Fig. 5. Neg. Event Percent. vs. Av-
erage Latency
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Fig. 6. Compensation Tuple Numbers
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Fig. 7. Positive Event Percentage vs
Average Execution Time
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Fig. 8. Negative Event Percentage vs
Average Execution Time
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Fig. 9. Memory of Aggressive
Strategy

with TExecution the summation of operator execution times.
It does not include idle time. In Figures 7 and 8, the x-axis
denotes the out-of-order positive and negative event percentage
respectively. The y-axis is the average execution time. We
observe that queries with longer length have longer average
execution time because more sequence results are constructed
with data of more types. Also the sequence construction
time for a sequence result is also larger as compared with
shorter ones. As we increase the out-of-order positive event
percentage, the average execution time doesn’t change much.
But the average execution time increases as the out-of-order
negative event percentage increases for more recomputing is
needed for compensation tuple generation.
Varying Window vs. Operator State Sizes. Next, we evaluate
the memory consumption, with operator state size measured
by the average number of event instances stored. We change
the window size from 20 to 60 time units. For the maximum
delay of event instances is 10 time units, we can purge event
instances if they are out of window size plus maximum arrival
delay. Figure 9 shows that operator state size is linear in the
window size.

C. Evaluating Conservative Strategy

We employ a sequence query of length 7 (i.e., SEQ(A, B,
!C, D, E, F, G, H)) with a window of size 20 time units.
The maximum delay of out-of-order events MDTi for each
event type Ti is set to 10 time units and the out-of-order
event percentage λO is 30%. POGs are generated on all event
types, both positive and negative ones, in random order. POGs
percentage is varied from 10%, 20%, 30% to 40%.
Varying POGs Percentage vs. Operator State Sizes. Figure
10 depicts our results concerning memory (operator state
sizes) for different POGs percentages. Memory consumption
is measured by the average number of event instances stored in
our system. We observe that a larger POGs percentage results
in larger savings in memory as POGs help the system to purge
event instances in time.

Overhead Evaluation. We employ a sequence query of length
7 with a window of size 20 time units. We compare the
average execution time of the conservative strategy with the
basic approach (Non-POGs Applied) using an in-order event
stream. The time difference is the overhead of the conservative
strategy as shown in Figure 11.
Varying Out-of-Order Event Percentage vs. Average Ap-
plication Latency. We also test the performance change of
the conservative strategy as the out-of-order event percentage
varies from 10% to 50%. We set POGs percentage to 20% as
this keeps operator state and the overhead of POGs relative
small. As shown in Figure 12, average application latency
increases as out-of-order event percentage increases because
POGs will be send out later and sequence results will be kept
longer in the WinNeq operator. Smaller POGs arrival rate will
increase the latency.

D. Evaluating K-Slack Strategy

We test behavior of K-slack as the out-of-order event per-
centage λO and query length vary. The window size is 20
time units. The maximum arrival delay is 10 time units. As
shown in Figure 13, more out-of-order events will incur larger
sorting costs in the buffer before events are dequeued. So the
average application latency increases. Memory consumption
for K-slack is close to the aggressive strategy. As shown in
Figure 14, the average execution time of K-slack increases
as the out-of-order percentage increases. The results confirm
our complexity analysis that out-of-order percentage is pro-
portional to application latency.

E. Comparison of Three Strategies

We now compare these methods concerning their average
application latency. The maximum arrival delay MDTi is 10
time units. The POGs are uniformly generated on all event
types. We conduct a sequence query of length 5. We change
the percentage of out-of-order events from 10% to 50% and
set POGs percentage to 20%.
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Fig. 10. Conservative Strat-
egy
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Fig. 11. Overhead of Conservative
Strategy

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50

Out-of-Order Event  Percentage

A
v
e
ra

g
e
 A

p
p

li
c
a
ti

o
n

 L
a
te

n
c
y
 (

m
s
)

Length 3 Length 5 Length 7

Fig. 12. Avg. Latency of Conserva-
tive Strategy
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Fig. 13. Avg. Latency of k-slack
Strategy
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Fig. 14. Avg. Execution Time of
k-slack
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Fig. 15. Disk-Based Extensions
with Changing Threshold Fig. 16. Avg. Latency of all Methods

The three strategies are compared in Figure 16. As we run
our system on event streams with different out-of-order event
percentages, the K-slack strategy has larger latency because
every event needs to wait for the maximum delay before pro-
cessing. When the out-of-order percentage of negative types
is relatively low, the aggressive solution wins over the con-
servative strategy. After a certain threshold (e.g., 40% in this
experiment), the aggressive solution yields higher latency for
it incurs extra processing time. That is when an out-of-order
negative event (i.e., C in our example) arrives, the aggressive
solution needs to recompute sequence results involving the
negative event and send out compensation tuples. The average
application latency increases as more compensation tuples
need to be generated and it will delay the generation of
sequence results. In contrast, the average application latency
for the conservative method is primarily determined by POGs
of the negative type.

F. Evaluating Disk-Based Extensions

In this experiment, the expected time threshold αt is again
set to 10 (Section VIII). Query length is 5, and out-of-order
rate is 80%. Figures 15 reports the results for the threshold
αp not greater than 5 and greater than 5 respectively. These
figures show that for the batch solution the average application
latency decreases greatly until some point. The reason is that
IO cost is saved with loading data in batch into our buffer.
However, the production of sequence results is delayed due to
first having to load data in a batch. So the average application
latency begins to increase for αp >= 9 in this experiment.

G. Summary

The conservative and aggressive strategies have different
scopes of applicability. When the negative event out-of-order
percentage is relatively high, we prefer to use the conserva-
tive strategy for it can guarantee permanent correctness with
less average sequence result latency. The total latency will

be further reduced by greater POGs percentages. Compared
to the conservative strategy, the aggressive strategy would
incur higher latency by more re-computation of compensation
tuples. When the negative event out-of-order percentage is
relatively low, the aggressive strategy is preferred because
applications can get acceptable results with less average se-
quence result latency. However, if POGs are not available
(thus conservative method is inapplicable) and applications
cannot tolerate temporarily wrong sequence results (making
aggressive method unacceptable), then K-slack would need to
be applied. In this case, for wrong results are intolerable, the
K would have to be set extremely high, causing huge latency
to avoid erroneous results.

X. RELATED WORK

Most stream query processing research has assumed complete
ordering of input data [10], [14], [20]. Thus they tend to
work with homogeneous streams (time-stamped relations),
meaning each stream contains only tuples of the same type.
The semantics of general stream processing which employs
set-based SQL-like queries is not sensitive to the ordering
of the data. While clearly ordering is core for the sequence
matching queries we are targeting here.

There has been some initial work in investigating the out-of-
order problem for generic (homogenous-input) stream systems,
with the most common model being K-slack [10], [18]. K-
slack assume the data may arrive out-of-order at most by some
constant K time units (or K tuples). Using K-slacks for state
purge has limitations in practical scenarios as real network
latencies tend to have a long-tailed distribution [21]. This
means for any K value, there exits a probability that the latency
can go beyond the threshold in the future (causing erroneous
results). Furthermore K-slack has the shortcoming that WinSeq
state would need to keep events while considering only the
worst case scenario (i.e., it must conservatively go with the
largest network delay). Our conservative solution could easily
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model such K-slack assumption, yet freeing the query system
from having to hard-code such knowledge.

[7] proposes a spectrum of consistency levels and per-
formance tradeoffs in response to out-of-order delivery. We
borrow their basic ideas for our problem analysis, though their
consistency levels are determined by the input stream blocking
time in an alignment buffer and state size.

Borealis [22] extends Aurora in numerous ways, including
revision processing. They introduce a data model to specify
the deletion and replacement of previously delivered results.
But their work is not designed for event systems, nor are
any concrete algorithms shown for revision processing. They
propose to store historical information in connection points.
To design efficient customized query processing with out-of-
order support, we instead store prior state information at the
operator level to assure minimal information as required for
compensation processing is maintained. The notion of negative
tuples in [17] and revision tuples in Borealis [22] both
correspond to models to communicate compensation. Though
[17] does not deal with out of order data.

[11] proposes heartbeats to deal with uncoordinated
streams. They focus on how heartbeats can be generated
when sources themselves do not provide any. Heartbeats are a
special kind of punctuation. The heartbeats generation methods
proposed in [11] could be covered by our punctuate operator.
But how heartbeats can be utilized in out-of-order event stream
processing is not discussed.

[14], [15] exploit punctuations to purge join operator state.
[20] leverages punctuations to unblock window aggregates in
data streams. We propose partial order guarantee (POG) based
on different namely occurrence related punctuation semantics
for event stream processing.

Our concept of classification of correctness has some re-
lationships with levels of correctness for warehouse view
maintenance categories defined in [23].

Lastly, our work adopts the algebraic query architecture
designed for handling sequence queries over event streams
[5], [24], [25], [6]. These systems do not focus on the out-of-
order data arrival problem.

XI. CONCLUSION AND FUTURE WORK

In this work, we address the problem of processing pattern
queries on event streams with out-of-order data arrival. We
analyze the problems state-of-the-art event processing tech-
nology experiences when faced with out-of-order data arrival
including blocking, resource overflow, and incorrect result
generation. We propose two complimentary solutions that
cover alternative ends of the spectrum from norm to exception
for out of orderness. Our experimental study demonstrates the
relative scope of effectiveness of our proposed approaches,
and also compares them against state-of-art K-slack based
methods. Most current event processing systems either assume
in order data arrivals or employ a simple yet inflexible
mechanism (K-slack) which as our experiments confirm will
induce high latency. Our work is complementary to existing
event systems, thus they can employ our proposed conservative
or aggressive solutions according to their targeted application
preferences.

The amount of out-of-order data may change over time.
Different negative event types in a query may experience

different frequencies and also time delays of out-of-order
data. Ongoing work is to design a hybrid solution positioned
between the two ends of the spectrum, where our system seam-
lessly switches from one level of output correctness to another
based on application requirements. We may control this trade-
off by selectively sending out possibly spurious results from
a holding buffer without waiting for the punctuation on the
negative event types based on observed levels of triggered
corrections and estimations of the reliability of different event
type behaviors.
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[17] L. Golab and M. T. Özsu, “Update-pattern-aware modeling and process-
ing of continuous queries.” in SIGMOD Conference, 2005, pp. 658–669.

[18] D. J. Abadi and et. al., “Aurora: a new model and architecture for data
stream management,” The VLDB Journal, vol. 12, no. 2, pp. 120–139,
August 2003.

[19] A. Arasu and et. al., “Stream: The stanford stream data manager.” IEEE
Data Engineering Bulletin, vol. 26, no. 1, 2003.

[20] J. Li and et. al., “Semantics and evaluation techniques for window
aggregates in data streams.” in SIGMOD Conference, 2005, pp. 311–
322.

[21] W. Willinger and et. al., “Self-similarity and Heavy Tails: Structural
Modeling of Network Traffic,” A Practical Guide to Heavy Tails:
Statistical Techniques and Applications, 1998.

[22] E. Ryvkina and et. al., “Revision processing in a stream processing
engine: A high-level design.” in ICDE, 2006, p. 141.

[23] Y. Zhuge and et. al., “View maintenance in a warehousing environment,”
in SIGMOD Conference, May 22-25, 1995, 1995, pp. 316–327.

[24] P. Seshadri and et. al., “Sequence query processing.” in SIGMOD
Conference, 1994, pp. 430–441.

[25] M. K. Aguilera, , and et. al., “Matching events in a content-based
subscription system.” in PODC, 1999, pp. 53–61.

795795


