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Abstract

The organization and intricacy of the central and peripheral nervous systems pose special
criteria for the selection of a suitable scaffold to aid in regeneration. The scaffold must have
sufficient mechanical strength while providing an intricate network of passageways for axons,
Schwann cells, oligodendrocytes, and other neuroglia to populate. If neural regeneration is to
occur, these intricate passageways must not be impeded by macrophages, neutrophils, or other
inflammatory cells. Therefore it is imperative that the scaffold does not illicit a severe immune
response. Biodegradable electrospun fibers are an appealing material for tissue engineering
scaffolds, as they strongly resemble the morphology of extracellular matrix. In this study,
electrospun fibers composed of poly(L-lactic acid) (PLLA) and polycaprolactone (PCL) were
prepared with and without the steroid anti-inflammatory drug, dexamethasone, encapsulated.
Histological analysis of harvested subcutaneous implants demonstrated the PLLA fibers
encapsulating dexamethasone (PLLA/dex fibers) evoked a much less severe immune response
than any other fiber. These findings were supported by in vitro drug release data showing a
controlled release of dexamethasone from the PLLA/dex fibers and a burst release from the
PCL/dex fibers. The ability of the PLLA/dex fibers to evade an immune response provides a
very powerful tool for fabricating tissue engineering scaffolds, especially when the stringent
demands of a neural tissue engineering scaffold are considered.

Structural support and contact guidance are crucial for promoting peripheral nerve
regeneration. A method to fabricate peripheral nerve guide conduits with luminal, axially
aligned, electrospun fibers is described and implemented in this study. The method includes the
functionalization of the fibers with the axonal outgrowth promoting protein, laminin, to further
enhance regeneration.

The implantation of stem cells at the. site of a spinal cord or peripheral nerve lesion has
been shown to promote nerve regeneration. Preliminary work to isolate and culture pluripotent,
adult neural stem cells for seeding on the above mentioned scaffold is also described here.
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1. Back2round:

1.1 Basic Nervous System Organization and Anatomy

1.1.1 Overview of Nervous System Organization and Anatomy

Neurons are the basic functional unit of the nervous system. They relay information

about the external environment from sensory organs to the brain, they allow control over skeletal

muscles, and they ensure necessary actions such as the heart beat and bowel movements continue

without any conscious effort. Neurolgia, or supporting cells, such as Schwann cells and

oligodendrocytes, act to line and protect neurons and increase the speed and efficiency of

information transmissionD1 .

Neurons contain a cell body, where. the nucleus is located, small processes called

dendrites, and a long process called an axon (some neurons have multiple axons). An electrical

signal, or action potential, is detected by the dendrites and transmitted down the axon, to an

effector. The effector may be another neuron, a smooth muscle, a skeletal muscle, or one of

many other possibilities"'.

The central nervous system (CNS) consists of the brain and spinal cord. Many neurons in

the brain synapse (connect) with those in the spinal cord, allowing sensory information to enter

and motor commands to exit. The sensory information and motor commands an organism is

aware of are transmitted via somatic motor and somatic sensory neurons. Those which an

organism has no conscious awareness of, such as information about slight changes in body

temperature or motor commands to the heart, are transmitted via visceral sensory and visceral

motor neurons"'.

Somatic motor commands travel down the spinal cord in bundles of axons known as

descending tracts. These axons synapse with neurons at the appropriate location in the spinal



cord. The neurons in the spinal cord then send action potentials through their axons, which

synapse with skeletal muscles in the periphery. The majority of the axon is outside of the spinal

cord and is part of the peripheral nervous system (PNS), which consists of all neural tissue

outside of the brain and spinal cord.

A very similar sequence of events occurs when a visceral motor command is relayed,

except the axon exiting the spinal cord synapses with another neuron located in the periphery,

which then sends an action potential towards the visceral effectorul.

Both somatic and visceral sensory neurons carry information to clusters of neuron cell

bodies known as dorsal root ganglia, located in the periphery, near the spinal cord. This

information is transmitted, via action potentials, to the spinal cord, and then to the brain through

bundles of axons in the spinal column known as ascending tracts"1 .



1.1.2 The Synaptic Junction

The point where a neuron actually passes a signal to an effector is known as a synapse. A

synapse between neurons is formed by a knob-like extension from an axon (a synaptic knob)

meeting the membrane of the cell body of another neuron. Signals are sent from the synaptic

knob of the presynaptic neuron to the membrane of the postsynaptic neuron. When an action

potential propagates the length of the presynaptic axon, the release of neurotransmitters by the

synaptic knob is triggered. These neurotransmitters diffuse across the small space separating the

presynaptic knob and postsynaptic membrane known as the synaptic cleft. These

neurotransmitters meet receptors on the postsynaptic membrane and trigger a response. This

response may be the propagation of an action potential through the axon of the postsynaptic

[1]neuron

The point where a signal is passed from a neuron to an effector other than another

neuron, such as a muscle fiber, is also called a synapse. The anatomy is a little different, but the

concept the same. A propagating action potential in the presynaptic neuron leads to a receptor

mediated response, such as muscle fiber contraction, in the postsynaptic cell.11.



1.1.3 Propagation of Action Potentials

Contrary to popular belief, the membranes of neurons do not actually conduct electricity.

Electrical signals are propagated by the movement of charge carrying ions along the inner and

outer walls of the membrane. This ion movement is orchestrated by a series of well timed

openings and closings of ion specific channels, which allow the cell to take advantage of local

concentration and charge gradients"1 .

The cytosol of a neuron and extracellular fluid differ greatly in their ion compositions.

The cytosol contains many positively charged potassium ions (K*) and negatively charged

proteins, while the extracellular fluid is rich in positively charged sodium ions (Na*) and

negatively charged chloride ions (Cl~). An equal distribution of chemical species is prevented by

the presence of the cell membrane because ions cannot freely diffuse through the lipid bilayer.

However, the membrane contains Na* and K* leak channels which allow these ions to pass, with

Na* encountering more resistance than K*. Furthermore, these membranes have sodium-

potassium exchange pumps which require an energetic contribution in the form of adenosine

triphosphate (ATP) to pump K* into and Na* out of the cell against the concentration gradients.

When all ion fluxes, due to concentration and charge gradients and active pumping, reach steady-

state, a potential of -70-mV is established across the membrane. This voltage is known as the

resting potential"'1 .

Neuron cell membranes also contain gated ion channels which open in response to

specific stimuli. At a synaptic junction, neurotransmitter receptors control gated channels on the

membrane of the post synaptic cell. Receipt of a neurotransmitter by a receptor results in the

opening of gated Na* channels. Na* ions rush down the charge and concentration gradient into

the cell, depolarizing the membrane potential in the proximity of the open channels. Depending



on the strength of the stimulus (i.e., how many and how often neurotransmitter receptors are

activated), enough Na* channels could open up to depolarize the membrane potential in the

region adjacent to the axon, the axon hillock, to -60-mV, the threshold potential. At the

threshold potential, voltage gated Na* ion channels open on the membrane of the initial segment

of the axon. Na* ions rush in and cause depolarization to the threshold potential in the next

segment, and the process is repeated all the way down the axon. This movement of the threshold

potential down an axon is known as the propagation of an action potential. Once the action

potential reaches the synaptic knobs at the end of the axon, neurotransmitters are released into

the synaptic cleft, and the process begins in the postsynaptic cellU'.

After a region of the axon has depolarized beyond the threshold level to +30-mV, voltage

gated K* channels open. K* ions rush out of the cell, hyperpolarizing the membrane to about -

90-mV before the resting potential of -70-mV is restored and the action potential has ended.

Membranes capable of propagating action potentials are known as excitable membranesU].

Some axons are coated by the protein, myelin, so the excitable membranes are only

exposed to extracellular fluid at specific points, or nodes, along the axis. This coating, provided

by Schwann cells in the PNS and oligodendrocytes in the CNS, greatly increases the rate at

which action potentials are propagated'].



1.1.4 Spinal Cord Organization

A cross section of the spinal cord has several levels of organization. The highest level is

the distinction between gray matter and white matter. Nerve cell bodies which receive sensory

information from, and send motor commands to the periphery are located in the medial gray

matter, while bundles of axons which relay motor commands and sensory information between

different locals of the spinal cord, or between the spinal cord and the brain, are located in the

lateral white matter.

A cross section of the gray matter takes the shape of a butterfly, where each wing is

divided into a posterior and anterior gray horn, see Figure 1.3-1. Within the gray matter, the

neuron cell bodies are divided into groups known as nuclei. Each cell in a nucleus has a similar

function. Sensory nuclei are located in the posterior gray horn, where somatic sensory nuclei are

posterior to visceral sensory nuclei. Motor nuclei are located in the anterior gray horn, where

visceral motor nuclei are posterior to somatic motor nuclei. An even deeper level of organization

exists within these nuclei. Neuron cell bodies are further grouped by the location of their

effectors.

The lateral white matter is divided into columns by location, and these columns are

divided into tracts. Tracts are bundles of axons which relay the same type of information

(sensory or motor) at similar speeds. See Figure 1.3-1 for an overview of tract organization

within the white matter.



1.2 Impact of Peripheral Nerve Injuries

A peripheral nerve refers to a bundle of axons which carries motor commands or relays

sensory information in the peripheral nervous system. A severed peripheral nerve disrupts the

propagation of action potentials and results in an inability of the brain to send motor commands

to, or receive sensory information from all points distal to the site of injury. All portions of the

axons distal to the injury are cut off from the neuron's nucleus, thus they are no longer

maintained, and degrade. However Schwann cells, which provide the myelin coating and

extracellular matrix, remain.

In order for nerve function to be restored, the proximal portions of the severed axons

must grow to span the gap created by the injury, and then continue growing into their former

paths marked by the remaining Schwann cells and extracellular matrix. Once the axons have

grown into their former path, synaptic junctions must be reformed with effectors, such as muscle

fibers. Refer to Figure 1.2-1 for an illustration of the effects of a severed peripheral nerve.

Regenerating an axon requires the formation of a membrane lipid bilayer, ion channels,

mitochondria, and transport organelles, and the re-establishment of a resting potential.

Regenerating a peripheral nerve requires the regeneration of thousands of axons. Amazingly,

peripheral nerves do regenerate without treatment, however the extending proximal ends of the

axons rarely bridge the gap to find their former paths and reestablish synaptic junctions. Most of

the axons extend out in the wrong direction and stop growing2 .

Current efforts to treat peripheral nerve lesions are aimed at providing directional

guidance and support in hope that this will enhance the natural regeneration which occurs. These

techniques are discussed further in the Introduction section.



Figure 1.2-1: Impact of a Peripheral Nerve Injury: Nerve function is lost at all points distal to
the site of injury. Image taken and editedfrom [ 1 ].



1.3 Impact of Spinal Cord Injuries

If the spinal cord is severed completely, all motor and sensory tracts lose the ability to

relay information to and from points inferior to the site of injury. Furthermore, neuron cell

bodies in the gray matter, near the site of injury, are damaged and lose the ability to

communicate with their effectors in the periphery. These consequences result in a loss of neural

control over all effectors serviced by neurons at, or inferior to, the injury location.

Many spinal injuries do not result in a complete loss of function. The consequences of an

injury are completely dependent on which tracts and neurons sustain the brunt of the damage.

The complex organization of the spinal cord (Figure 1.3-1) presents an enormous

challenge to those attempting to regenerate it. Multiple sensory and motor tracts in the white

matter must align and regenerate, damaged neurons must be replaced, gray matter organization

must be reestablished, sensory synaptic junctions must be reformed, and motor axonal outgrowth

must occur. Current efforts to meet these challenges are discussed in the Introduction section.

Figure 1.3-1: Cross Section of the Spinal Cord, Image taken directly from [3].



2. Introduction:

2.1 Overview of Neural Tissue Engineering Scaffolds

Synthetic scaffolds play a crucial role in many applications of regenerative medicine.

Their presence provides the necessary structure and support for proliferating cells in the absence

of extracellular matrix, they can be seeded with trophic factors or stem cells to enhance

regeneration, and their degradation profiles can be tailored for specific applications"3.

An ideal synthetic scaffold should mimic the form of extracellular matrix. It should be

biocompatible, meaning it will not elicit a strong immune response upon implantation into the

site of injury. It should be very porous, with a high surface area to volume ratio. The surface

area provides cells plenty of room to attach, and the void volume allows for angiogenesis, thus

supplying cells with oxygen and nutrients as they proliferate. Finally it should be biodegradable,

with a degradation rate similar to the rate of growth of native tissue. This eliminates the need to

disturb regenerated tissue with a second surgery intended to remove the scaffold"3.

The popularity of electrospinning has increased greatly over the last ten years due to the

great potential electrospun fibers have as tissue engineering scaffolds. Biodegradable materials,

such as polycaprolactone (PCL) and poly (lactic-co-glycolic acid) (PLGA), can be electrospun

into porous, nano-sized, fibrous networks with plenty of surface area available for cell adhesion.

Biocompatible, electrospun, fibrous scaffolds such as these have been used to regenerate bone,

cartilage, and even neural tissue[5 3161.

No matter how biocompatible a synthetic material may be, the body will still mount an

immune response to it. The severity of this response is dependent on the material, while the

consequences are dependent on the application.



The organization and intricacy of the central and peripheral nervous systems pose special

criteria for the selection of a suitable scaffold to aid in regeneration. The scaffold must have

sufficient mechanical strength while providing an intricate network of passageways for axons,

Schwann cells (PNS), oligodendrocytes (CNS), and other neuroglia to populate. If neural

regeneration is to occur, these intricate passageways must not be impeded by macrophages,

neutrophils, or other inflammatory cells. Therefore it is imperative that the scaffold does not

illicit a severe immune response.

In this study, electrospun fibers composed of poly(L-lactic acid) (PLLA) and

polycaprolactone (PCL) were prepared with and without the steroid anti-inflammatory drug,

dexamethasone, encapsulated. Chemical structures can be seen in Figure 2.1-1. Histological

analysis of harvested subcutaneous implants demonstrated the PLLA fibers encapsulating

dexamethasone (PLLA/dex fibers) evoked a much less severe immune response than any other

fiber. These findings were supported by in vitro drug release data showing a controlled release

of dexamethasone from the PLLA/dex fibers and a burst release from the PCL/dex fibers. The

ability of the PLLA/dex fibers to evade an immune response provides a very powerful tool for

synthesizing tissue engineering scaffolds, especially when the stringent demands of a neural

tissue engineering scaffold are considered.
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2.2 Treatment of Peripheral Nerve Injuries

2.2.1 Mechanism of Regeneration

As mentioned previously, axons do regenerate without treatment, but they rarely extend

in the direction necessary to bridge the lesion created by injury. Treatments are aimed at

exploiting this natural outgrowth and guiding the growing axon towards the distal stump. In

order to more effectively do so, the molecular mechanism of regeneration and the micro-

environment of the extending nerve must be examined.

Schwann cell infiltration has been closely linked to axonal outgrowth and regeneration.

After a section of peripheral nerve is transected, Schwann cells populate the void and line up in

tubular aggregates. They secrete extracellular proteins to provide support, and growth factors to

cue axonal regeneration. The regenerating axons also secrete signal molecules which influence

the behavior of Schwann cells. One such molecule, neuregulin, signals Schwann cells to migrate

to, and proliferate at the site of injury. Neuregulin is also believed to play a role in Wallerian

degeneration, or the demyelination of axons distal to the lesion. The Shcwann cells distal to the

site of injury lose their myelin sheaths and return to a more proliferative state, capable of

secreting growth promoting factors to aid in axonal regeneration. The extracellular matrix

proteins, laminin and fibronectin, have also been shown to enhance axonal outgrowth7 3.

As a means to respond to peripheral nerve injuries, nature has a mechanism in place to

recruit cells which secrete supportive proteins and growth factors, and to sacrifice the

infrastructure of functionless axons to enhance this effort. However, this mechanism alone

rarely succeeds in restoring function to effectors distal to the injury. Intervention is required to

obtain a substantial degree of recovery.



2.2.2 Overview of Peripheral Nerve Injury Treatments

Currently, the golden standard for treating a peripheral nerve injury, where a tension free

end to end neurorrhaphy is not possible, is harvesting a section of the patient's sural nerve for

use as an autograft. This autograft provides the optimal scaffold for the regenerating axons as it

is immunogenically inert, contains neurotrophic factors to cue regeneration, and has an

abundance of viable Schwann cells to provide intricate guidance 8 3. The obvious drawback to

this technique is the patient is left without a functioning sural nerve. Furthermore, this treatment

is limited by the availability of autologous nerve tissue.

Ideally, peripheral nerve damage could be repaired without yielding a secondary injury.

Cadaveric nerve allografts are used to treat extensive nerve damage; however their use requires

prolonged systemic immunosuppression E83. Recipient rejection can be avoided by using various

techniques to decellularize allografts before implantation. Although the remaining scaffold is

lacking Schwann cells, myelin, and other neurotrophic factors, much of the extracellular matrix

and structural organization remains. Several groups have demonstrated varying degrees of

regeneration using decellularized allografts[9 1101, however a more readily available alternative is

desired.

There has been much research dedicated to the use of synthetic scaffolds to bridge

peripheral nerve injuries E2 . Designs include hollow conduits fabricated from biodegradable

polyesters such as poly(L-lactic acid) (PLLA)1"3 and poly(lacic-co-glycolic acid) (PLGA)1 . In

addition, an FDA approved conduit (NeuraGen@ Nerve Guide), made of naturally derived

bovine collagen, has been shown to aid in the regeneration of the median nerve of monkeys[131,

and has shown promising clinical results in the treatment of brachial plexus birth injuries.



Although the use of hollow conduits as synthetic nerve scaffolds has demonstrated a

marked ability to aid in peripheral nerve regeneration, they still leave much to be desired.

Regenerated sections of the nerve distal to the site of injury do not have the same axon density as

a native nerve, and there has been very little success reported in repairing gap defects greater

than 2-cm[2J. It has been hypothesized that these failures are due to a lack of three-dimensional

support, contact guidance, and biochemical signalsE2 ]E151. To address these issues, researchers

have begun investigating various luminal fillers for the conduits.

The high biocompatibility and similar morphology to extracellular matrix of the

PLLA/dex fibers fabricated in this study render them a strong candidate for the luminal filling of

peripheral nerve guide conduits. They can provide the necessary contact guidance and structural

support while inhibiting a possibly detrimental immune response.



2.2.3 Conduit Luminal Fillers

Conduit luminal fillers are intended to improve the efficacy of the conduit scaffold by

providing additional structure and guidance. The macro-sized conduit can only support and

guide axons on the periphery of the nerve, but a conduit with luminal filler can provide this

support throughout the entire interior. It is believed that the additional contact guidance will

enable the scaffold to better exploit the outgrowth of axons after injury, thus enabling larger

lesions to be traversed, and function distal to the site of injury to be more completely restored.

The luminal filler acts as a substitute for extracellular matrix, and should degrade after Schwann

cells have created a natural network of structural support.

It has been shown in vitro that axons will grow along the axis of aligned fibers["]l. This

trait makes aligned fibers a very attractive option as luminal filler for nerve guide conduits.

Current efforts to regenerate peripheral nerve lesions using aligned fibers are described below.

A novel design based on the principal of guidance by aligned fibers is then presented.

Aligned PLLA microfilaments used as the luminal filler of PLLA and collagen nerve

guide conduits have been shown to improve axonal outgrowth towards the distal stump in 18-

mm and 14-mm rat sciatic nerve injury models. In this particular study, each conduit was packed

with 16 filaments, 60-pim to 80-pm in diameter. However statistically significant improvement

in axonal outgrowth mediated by the presence of fibers was only demonstrated for the PLLA

conduits spanning the 18-mm nerve defect model, and no functional recovery assessment was

performed .

The use of scaffolds composed of two-thousand axial aligned collagen microfilaments,

about 20-pm in diameter each, has demonstrated a remarkable improvement in regeneration

compared to an empty collagen conduit over a 30-mm rat sciatic nerve gap. This study shows an



average of 330 axons present at the distal portion of the fibrous scaffold and 0 present at the

distal portion of the control empty collagen conduit. Although this is a fairly small number of

axons compared to the cross section of a native sciatic nerve, having consistent regeneration over

a 30-mm lesion is very promisingf'8 l.

Thin films composed of axially aligned, 400-nm to 600-nm diameter, electrospun,

poly(acrylonitrile-co-methylacrylate) fibers packed in a polysulfone conduit were shown to

induce axonal outgrowth as effectively as implanted autografts on a 17-mm rat peripheral nerve

injury model. The co-occurrence of a-Bung (neurotransmitter receptor marker) and NF160

(axonal filament marker) positively stained regions established that -30% of the effected

neuromuscular junctions were reformed in the group treated with conduits packed with films

composed of aligned fibers compared to -40% reformation for groups treated with autografts

and -0% reformation for groups treated with conduits packed with films composed of randomly

aligned fibers. Electrophysiological tests showed compound action potential profiles for the

group treated with films composed of aligned fibers very similar to those treated with autografts.

Finally, a grid walking assessment showed a reduction in the number of slips in the aligned

fibrous film group compared to the randomly aligned fibrous film groupf19 3.

It has also been shown that the presence of axial aligned, electrospun poly(e-

caprolactone-co-ethyl ethylene phosphate) (PCLEEP) fibers on the walls of synthetic PCLEEP

conduits aided in the outgrowth of axons 8-mm to 10-mm away from the proximal stump of a

severed rat sciatic nerve. Although, it is unclear from this study whether directional alignment of

the fibers had an impact because the experimental group with fibers aligned perpendicular to the

axis had very similar histological and functional results as the group with fibers aligned parallel

to it. Fibers of the same material were also made to encapsulate glial cell-derived neurotrophic



factor (GDNF), which has been shown to be up-regulated in rats following a peripheral nerve

injury. The group of conduits with these fibers aligned axially on the wall displayed the greatest

improvement of axonal outgrowth and functional recovery. The fibers in this study were

reported as having diameters in the 4-mm to 5-mm range, however this was probably a misprint

where the authors meant to report diameters in the 4-pm to 5-pim range15 .

Aligned nano/micro-fibers have shown to direct the proliferation of axons in vitro[163, and

histological and functional analysis of peripheral nerve injury models treated with scaffolds

consisting of aligned fibers have shown great improvement over empty conduits

Based on these results, it was proposed that a nerve guide conduit be fabricated with a dense

mesh of axially aligned, electrospun, micro/nano-fibers as the luminal filler.

To accomplish this geometrical configuration, a hollow conduit will be placed on a thin

metal rod. An identical metal rod will be fixed adjacent to the one holding the conduit, with

about 1.5-cm of separation, such that both rods share the same axis. These fixed metal rods will

be set up in the electrospinning chamber and connected to the point of low potential. The high

potential polymeric jet (see section 3.1) will be attracted to the aligned rods, forming a bridge of

aligned fibers across the gap. Once the desired number of fibers has deposited, the conduit will

be slid over them, and the exposed fibers flanking the conduit cut free from the rod, leaving a

conduit filled with a dense mesh of electrospun fibers. See Figure 2.2-1 for an illustration of this

process. The conduit with luminal fibers will then be placed in a strong vacuum to ensure all of

the solvent has evaporated before it is sterilized and implanted.
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Figure 2.2-1: Electrospinning Coaxial Aligned Fibers. Image taken and editedfrom [20].
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2.2.4 Commercially Available Products for Peripheral Nerve Repair

Currently, there are an extremely limited number of commercially available products for

treatment of peripheral nerve injuries. Of those which are available, some are fabricated from

different materials, but their designs are essentially identical.

One design is a hollow conduit with an inner diameter similar to that of an intact nerve,

intended to span the gap of a severed nerve. This design, fabricated from collagen, is available

from both IntegraTM and Stryker@ as the NeuraGen@ Nerve Guide2 1 ] and the Stryker@

Neuroflex 2 2 ], respectively. AxoGen@ also makes this design out of extracellular matrix as the

AxoGuardTM Nerve Connector 23 ]

Another design is a conduit slightly larger than an intact nerve, intended to provide

protection for damaged, but not severed nerves. Claims are made that this design protects

against compression from neighboring tissues and helps prevent neuromas from forming2 4 ]. It is

fabricated from collagen (IntegraTm NeuraWrap TM Nerve Protector2 43) and extracellular matrix

(AxoGen@ AxoGuardTM Nerve Protector[233

There is also a commercially available decellularized human peripheral nerve for use as a

nerve guide scaffold (AxoGen@ Avance@ Nerve Graft[25 ]).

There is very little publicly available data on the efficacies of the above mentioned

products. However, many studies have been performed on scaffolds of similar designs, some of

which are discussed in section 2.2.2.



2.3 Treatment of Spinal Cord Injuries

While physical trauma can have devastating consequences on the spinal cord, studies

suggest the body's immune response further compounds the injury and reduces the chances and

degree of recovery. The activation of microglia, recruitment of T-lymphocytes, disruption of the

blood-brain barrier, and influx of macrophages are believed to play a role in the secondary

damages which occur inferior and superior to the initial site of injury[26][27][28]. However, it is

also believed that growth factors and protease inhibitors released by macrophages and T-

lymphocytes promote regeneration[27]. The contradicting roles of the immune system suggest the

response to trauma can be optimized. Further evidence supporting this notion is supplied by

studies showing greater degrees of recovery when the immune response is retarded128

Studies suggest a physical barrier can protect intact spinal tissue from the immune system

following an injury. One such study shows the implantation of a biocompatible scaffold results

in an enhanced degree of tissue preservation following the removal of a hemi-section of a rat

spinal cord[293. Furthermore, neural tract regeneration following the removal of a complete

section of a rat spinal cord has been observed after implantation of a biocompatible scaffold

seeded with adult neural progenitor cells[3oj

The PLLA/dex fibers fabricated in this study were shown to elicit a much less severe

immune response compared to widely used biomaterials. Furthermore, fibers such as these,

which are several-fold smaller in diameter than neural stem cells, have been shown to be the

ideal size for adhered neural stem cells to proliferate and differentiate on["]. The ability of these

fibers to fend off an immune attack minimizes the risk of secondary CNS injury upon

implantation, while their size maximizes the chance of successful, stem cell aided, regeneration.



3. Fiber Fabrication:

3.1 Electrospinning Process

Electrospinning is a technique used to create nanometer or micron sized (in diameter)

fibers from a polymeric solution. The desired polymer is dissolved in a sufficiently polar solvent

and loaded into a syringe with a metallic needle, or spinneret. A high voltage, on the order of

tens of kilovolts, is then applied across the spinneret and a collection plate. The presence of the

electric field induces charges on the surface of the polymeric solution. Like charges on the

surface of the solution repel, and at a critical voltage, the electrostatic force created by the

repulsion overcomes the force of surface tension holding the solution at the tip of the needle in

place. When this voltage is reached, a jet of polymeric solution is ejected from the syringe. This

jet whips around violently in a tortuous path to the collection plate. During this "whipping"

process, most of the solvent is evaporated, leaving very thin fibers of the formally dissolved

polymerI53. See Figure 3.1-1 for a schematic illustration of this process.

As the solution is ejected from the needle, more solution must take its place to ensure the

process continues. For this reason, the solution must be pumped through the syringe at a

carefully chosen rate. This ensures that the balance of forces is maintained at the tip of the

needle, allowing one to collect uniform fibers.

Several other parameters must be optimized in order to obtain uniform fibers of the

desired diameter, including: solution viscosity/concentration, applied voltage, and solvent

polarity. Solution viscosity and concentration (a polymer solution becomes more viscous as the

concentration is increased) have been found to be the most important factors in determining the

diameter of electrospun fibers. Generally, more viscous/concentrated solutions yield fibers with



larger diameters, while less viscous/concentrated solutions yield thinner fibers. Furthermore,

very dilute solutions result in defects, such as beads or droplets5 .

The conductivity of the solution is also an important parameter in determining

electrospun fiber size and morphology. It has been demonstrated that a more conductive solution

can lead to greater uniformity among collected fibers. An increase in conductivity is often

achieved by adding salt to the solution, or modifying the solvent by adding a conductive

component. Solution conductivity has also been linked to fiber size. Generally, an increase in

solution conductivity yields smaller fibers, however this is dependent on the identity of the

solvent and polymer. The opposite relationship has been observed for some solvent/polymer

combinations 1.

The magnitude of the applied voltage can also affect the properties of the collected fibers.

At the lowest voltage necessary for the formation of a jet, a conical drop, known as a Taylor

cone, is present at the end of the spinneret. As the voltage is increased, this cone recedes, and an

increase in the number of beads formed is usually observed 1.

The distance between the tip of the spinneret and the collector does not appear to play a

significant role in fiber size or morphology. There is a minimum distance required to attain

sufficient solvent evaporation during the whipping process. Also, too small or too great of a

distance may result in beaded fibers5 1.

Currently, there is no absolute method to determine the result of a set of parameters.

Much of this optimization process is empirical, and it is best to consult the literature for a starting

point.



High Voltage

Figure 3.1-1: Electrospinning Process, Image taken directly from [32].



3.2 Parameter Optimization Process

As mentioned in the previous section, several parameters affect the size and morphology

of electrospun fibers. In this study, it was desired to fabricate nano/micro-fibers, free of defects.

In order to do so, several important parameters had to be adjusted by trial and error. The

literature was searched for solvent identities and solution compositions used to fabricate fibers

from PCL and PLLA. The numerous trials performed, and the resulting fiber traits, can be seen

in the Appendix as Table 8.1-1 and Table 8.1-2. An illustration of the possible fiber defects can

be seen in Figure 3.2-1.

A mixture of tetrahydrofuran (THF) and n,n-dimethyformamide (DMF) was selected as a

possible solvent to dissolve PCL because this solution has been shown to yield uniform fibers of

the desired diameter 33 . A combination of DMF and chloroform was also explored as a

candidate solvent. A mixture of dichloromethane (DCM) and DMF was selected as the solvent

for PLLA because this solution has also been shown to produce fibers of the desired diameterf'6 l.

Figure 3.2-1: Optical Micrograph of Fiber Defects



3.3 Fabrication of Uniform Fibers

PCL and PLLA exhibit reasonable biocompatibility and are widely used in vivo as

scaffolding materials 2 3. For these reasons, PLLA, PLLA encapsulating dexamethasone, PCL,

and PCL encapsulating dexamethasone electrospun fibers (referred to as PLLA, PLLA/dex, PCL,

and PCL/dex fibers) were fabricated in this study.

A mixture of dichloromethane (Sigma-650463) (DCM) and n,n-dimethylformamide

(Sigma 319937) (DMF) was chosen as the solvent to dissolve PLLA, MW 300,000-g/mol

(Polysciences 18582), since this mixture has been shown to produce electrospun PLLA fibers of

the desired diameter 16 3. After optimization, it was found that a 4.0 mass percent solution of

PLLA in a 70/30 mass ratio of DCM/DMF pumped (Harvard PHD 2000 syringe pump) through

a 0.04-in inner diameter needle at a flow-rate of 4.75-ml/hr, with an applied voltage (Gamma

high voltage power supply - ES50P-5W/DAM) of 20-kV yielded fairly uniform, micron-sized

PLLA fibers. The collection plate was held 35-cm from the tip of the needle.

Dexamethasone (Sigma D9184) was added to the solution used to electrospin the PLLA

fibers in order to fabricate the PLLA/dex fibers. The amount added was 6.0% of the polymer

mass; making dexamethasone 5.7% of the total solute mass. A flow-rate of 4.OmL/hr and an

applied voltage of 22kV were used. The collection plate was held 35-cm from the tip of the

needle.

In preparing the PLLA and PLLA/dex solutions, the PLLA was first dissolved in DCM.

The DMF was not added until immediately before spinning because it was found that the high

molecular weight PLLA slowly precipitated out of 70/30 w/w DCM/DMF.

A 10.0% by mass solution of PCL, MW 70,000-g/mol to 90,000-g/mol (Sigma 440744),

in a solvent of 75/25 v/v mixture of DMF/chloroform (Sigma C2432) was used to electrospin the



PCL fibers. A voltage of 20kV was applied, the syringe pump set to a flow-rate of 3.2-mL/hr,

and the collection plate was placed 35-cm from the tip of the needle.

Dexamethasone was added to the solution used to electrospin the PCL fibers in order to

fabricate the PCL/dex fibers. The amount added was 6.0% of the polymer mass; making

dexamethasone 5.7% of the total solute mass. All parameters were set identical to those used to

spin the PCL fibers.

Membranes composed of all four fibers were fabricated by using a flat, aluminum

collection plate during the electrospinning process. Fibers were allowed to deposit until a film,

about 100-pm thick, had formed. The film was then peeled off of the collection plate and placed

under strong vacuum overnight to evaporate any residual solvent.

The PLLA/dex and PCL/dex fibers were fabricated to have a composition of 5.7%

dexamethasone so that a 250-g rat would receive a total dose of about 1-mg/kg to 2-mg/kg of

dexamethasone if about 5-mg of the fibers were implanted. This range is widely used as an

intraperitoneal injection dose of dexamethasone administered to rodents[34][35 , and it was

estimated that a finctioning rat neural scaffold would contain about 5-mg of PLLA/dex or

PCL/dex fibers.



3.4 Inserting Electrospun Fibers into Nerve Guide Conduits

As mentioned in section 2.2.3, it was desired to insert a tightly packed bundle of axially

aligned, electrospun fibers into nerve guide conduits. An aligned fiber collection apparatus with

fixed, axially aligned, metal rods, as conceptually depicted in Figure 2.2-1, was prepared in a

550-mm petri dish. PDMS (sylgard 184 silicone elastomer kit) constructs were used to suspend

metal rods over a shallow well. This apparatus can be seen in Figure 3.4-1 below.

Figure 3.4-1: Axially Aligned Electrospun Fiber Collection Apparatus

Electrospun PLLA, MW 300,000-g/mol (Polysciences 18582), fibers were collected to

span the gap between the rods, and residual fibers were removed with a pair of tweezers coated

in the solution. The entire apparatus was then placed under strong vacuum overnight to remove

any remaining solvent. Next, the fibers were treated with atmospheric gas, glow discharge

plasma for 2-min (Harrick Plasma Cleaner). The well was then slowly filled with cell culture

medium, containing serum, until the fibers were immersed. The conduit was then slid over the

fibrous bridge, spanning the gap between the two metal rods. See Figure 3.4-2.



Figure 3.4-2: Conduit Packed with Axially Aligned Electrospun PLLA Fibers

The conduit could not be placed over the fibers in an air medium because any disturbance

to the fibers resulted in the formation of a very dense fibrous bundle (much more dense than

desired). It is believed this behavior was due to an energetically unfavorable fiber/air interface,

compared to a fiber/fiber interface. The fibers were treated with atmospheric gas, glow

discharge plasma to induce the formation of reactive ionic groups along the polymer chains.

Once submerged in the aqueous cell culture medium, the ionic groups interacted favorably with

polar regions of the culture medium proteins. This induced a protein coating, thus lowering the

fiber/liquid interfacial energy. The conduit could then be slid over the fibers without inducing

the formation of a very dense bundle.

The adjacent cylindrical rods did allow axially aligned fibers to be inserted into a conduit;

however the fibers collected in a film around the circumference of the cylinders, resulting in a

two dimensional fibrous scaffold. In order to obtain a three dimensional arrangement of axially

aligned fibers; adjacent, cylindrical rods with tapered ends were employed. See Figure 3.4-3 for

a conceptual illustration.



A.)

B.)

Figure 3.4-3: Electrospun Fibers Collecting on Adjacent Rods. A.) Two-dimensional
Arrangement B.) Three-dimensional Arrangement

PCL, MW 70,000-g/mol to 90,000-g/mol (Sigma 440744), fibers were collected on

tapered metal rods, as in Figure 3.4-3B, on an apparatus like that in Figure 3.4-1. They were

then vacuum dried overnight, treated with atmospheric gas, glow discharge plasma for 2-min,

and immersed in a 50-pg/mL laminin (Invitrogen 23017) in phosphate buffered saline (GIBCO

10010) (PBS) solution for 20-min. The laminin solution was removed and replaced with a 60%

by mass solution of sucrose (Sigma 84097) in water. The water was allowed to evaporate,

leaving behind sucrose and laminin coated PCL fibers. A month later, the sucrose covered,

laminin coated, PCL fibers were immersed in water, dissolving the sucrose.

The laminin protein coating prevented the fibers from collapsing into a dense mesh, just

as the cell media protein coating did for PLLA fibers. Laminin was selected for this trial because

it has been shown to induce axonal outgrowth , thus a laminin coating on the fibers will also

serve to functionalize the nerve regeneration scaffold. The sucrose coating provided rigidity to

the scaffold, and held the fibers in place. This will be useful for storage and shipping of the final



product. Images of the laminin coated, PCL fibers with the sucrose coating, and after the sucrose

was dissolved can be seen in Figure 3.4-4.

Figure 3.4-4: Stereoscopic Micrographs ofLaminin Coated, Coaxially Aligned, PCL Fibers. A.)
with sucrose coating, original magnification 3.2x B.) after sucrose was dissolved, point of

attachment to tapered metal rod, original magnification 0.8x C.) after sucrose was dissolved,
middle of scaffold, original magnification 1.25x



3.5 Fiber Size and Morphology

SEM (JEOL JSM 6060) micrographs at low and high resolution of the PCL, PLLA,

PCL/dex, and PLLA/dex fibers can be seen in Figure 3.5-1 and Figure 3.5-2. The software,

ImageJ (National Institute of Health), was used to measure the fiber diameter distributions.

These distributions can be seen in the Appendix as Figure 8.2-1. The number average diameter

values can be seen in Table 3.5-1.

Table 3.5-1: Number Average Diameters of Fabricated Fibers (± one standard deviation)

Fiber PCLI PLLA PCL/dex PLLA/dex

Average Diameter (pm) 1.22 ± 0.87 0.72 ± 0.27 2.19 ± 0.70 1.84 ± 0.42

Figure 3.5-1: SEM Micrographs of Eleictrospun Fibers, original magnification I00x. A.) PCL
Fibers B.) PLLA Fibers C.) PCL/dex Fibers D.) PLLA/dex Fibers
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Figure 3.5-2: SEMMicrographs of Electrospun Fibers, original magnification 550x. A) PCL
Fibers B) PLLA Fibers C.) PCL/dex Fibers D) PLLA/dex Fibers



4. In Vitro Dexamethasone Release:

4.1 Ultraviolet-visual Spectroscopy

Dexamethasone absorbs light at a characteristic wavelength of 241-nm. For values of

absorbance between 0 and 1 at this wavelength, it can be assumed that molecules of

dexamethasone affect passing light independently, yielding a linear relationship between

absorbance and concentration 36 . This allows the dexamethasone concentration of a solution to

be determined by measuring the absorbance of the solution at 241-nm, and reading the

concentration from a calibration curve. The calibration curve is created by plotting measured

absorbances versus known solution concentrations. By convention, the "background"

absorbance of the pure solvent, phosphate buffered saline (PBS) in this case, is subtracted off.



4.2 In Vitro Release Measurement Procedure

5-mg to 10-mg samples of PLLA/dex and PCL/dex fibrous membranes, prepared as

described in section 3.3, were submerged in 10-mL of phosphate buffered saline (GIBCO

10010). The 15-mL vials containing the PBS and fibrous membranes were fixed in a rotisserie

(Bernstead Thermodyne) and placed in an incubator (VWR) at 37*C. At designated time

intervals, the PBS medium was replaced, and an ultraviolet-visual spectrophotometer (Cary 100)

used to measure the former medium's absorbance at 241-nm. The concentration of

dexamethasone was then read off of the calibration curve (Appendix Figure 8.3-1) created for

this experiment. The time intervals were selected so that the dexamethasone concentration

would never exceed 21-pg/mL (15% of its saturation value in PBS1371) thus allowing any

transport limitations to the drug's release to be neglected.

The dexamethasone concentration versus time data in the PBS medium allowed for easy

calculation of the mass of dexamethasone released versus of time. This data was then

normalized by dividing all data points by the amount of dexamethasone released at the final time

point. Assuming the entire amount of drug had been released at the final time point, this gave

the fraction of dexamethasone released from the fibers as a function of time.

It was believed that all, or nearly all, of the dexamethasone had been released at the final

time point because no dexamethasone was detected in the PBS medium surrounding the PCL/dex

fibers, and the PLLA/dex fibers were almost completely degraded. This method was used as a

means to determine the total drug loading of the samples because it did not require knowledge of

their initial masses. The fibrous membranes had strong, possibly electrostatic, interactions with

their surroundings (they were pulled toward, and adhered to any surface they came near), which

made accurate mass measurements very difficult to perform.



4.3 In Vitro Release Results

The in vitro release measurements of dexamethasone from the PCL/dex and PLLA/dex

fibers can be seen in Figure 4.3-1. Note the different units on the time axes.

In Vitro Dexamethasone Release from In Vitro Dexamethasone Release from
PCL/dex Fibers PLLA/dex Fibers

1.00 , 1.00
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Figure 4.3-1: In Vitro Dexamethasone Release from PCL/dex Fibers (left) and PLLA/dex Fibers
(right). Each point represents three measurements. Error bars indicate one sample standard

deviation.

In Figure 4.3-1 it can be seen that over half of the dexamethasone was released from the

PCL/dex fibers in the first 20 minutes, almost 90% after 40 minutes, and nearly all of the

dexamethasone was released after an hour and a half. In stark contrast, Figure 4.3-1 displays a

sustained release of dexamethasone for over two months from the PLLA/dex fibers. This

sustained release followed a much less severe burst release of 25% of the encapsulated drug.



4.4 Discussion of In Vitro Release Study

The sustained in vitro release of dexamethasone from the PLLA/dex fibers suggests they

may be able to curb an innate immune response for extended periods of time, and thus be useful

as an anti-inflammatory scaffold in vivo. However the in vitro burst release from the PCL/dex

fibers indicates they may not effectively reduce inflammation long after they are implanted.

It is believed that a large majority of the dexamethasone deposited on the surface of the

PCL/dex fibers due to the high percent crystallinity of PCL at room temperature[381, while a more

homogenous distribution was achieved in fabricating the PLLA/dex fibers. Furthermore, high

resolution SEM micrographs (Figure 4.4-1) of the PCL/dex fibers show aberrations on the

surface not present on the PCL fibers. This may indicate the presence of dexamethasone on the

surface of these fibers. Dexamethasone contains the atom fluorine, which can be detected on a

solid surface using ultra x-ray photoelectron spectrometry (XPS). Therefore the XPS spectra of

the PLLA/dex and PCL/dex fibers should be examined to determine if the PCL/dex fibers have a

higher surface concentration of dexamethasone.

Figure 4.4-1: PCL/dex Fibers, original magnfication 14,000x



4.5 Controlled Release of Dexamethasone from PCL/PLLA Blended Fibers

In a separate experiment, electrospun fibers composed of PCL, PLLA, and

dexamethasone were fabricated to determine if the release kinetics of dexamethasone could be

controlled by varying the polymer composition of the fibers. Fibers with polymer compositions

of 0%, 20%, 50%, and 100% PLLA, with the balance PCL, were fabricated using the solutions

shown in Table 4.5-1. Dexamethasone was included in each solution to compose 6.7% of the

combined polymer and drug mass.

Table 4.5-1: Electrospinning Parameter Values Used to Fabricate PCL/PLLA Blended Fibers

PCL Polymer PLLA Polymer PCit PLLA
Composition Composition Dexamethasone Composition Composition Flow-

in Fibers in Fibers Composition in inSolution- in Solution- Solvent rate Voltage
(mass (mass Fibers drug (mass drug (mass (mL/hr) (k)

fraction) fraction) fraction) fraction)

1.000 0.000 0.067 0.120 0.000 THF:DMF 1.20 201:1 W:W

0.800 0.200 0.067 0.040 0.010 DCM:DMF 1.00 2070:30 v:v

0.500 0.500 0.067 0.010 0.010 70:0 v 1.50 20

0.000 1.000 0.067 0.000 0.050 70 0 MF 1.00 3070:30 v:v

The in vitro release of dexamethasone from the blended fibers was measured in a similar

fashion as described in section 4.2, except the PBS medium concentration of dexamethasone did

exceed 20% of the saturation concentration during the burst release from the 100%, and 80%

PCL fibers. It is believed this had very little effect on the experimental results because, as

mentioned in section 4.4, the burst release is thought to have occurred as a result of a

disproportionate deposition of dexamethasone on the surface of the PCL fibers, not as a result of

diffusion.



The dexamethasone release profiles of the blended PCL/PLLA fibers can be seen in

Figure 4.5-1. As the PCL composition of the fibers increased, the burst release became more

severe. It is believed that a higher composition of PCL lead to a greater deposition of

dexamethasone on the fiber surfaces, which in turn lead to a more severe burst release. See

section 4.4 for evidence to support this claim.

In Vitro Controlled Release of Dexamethaosne
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Figure 4.5-1: In Vitro Controlled Release of Dexamethasone from PCL/PLLA Blended Fibers.
Each point represents three measurements. Error bars indicate one sample standard deviation.

Note that the 100% PLLA fibers in Figure 4.5-1 display a much more severe burst release

of dexamethasone than those in Figure 4.3-1. Although the fibers are nearly the same

composition (6.7% dexamethasone in Figure 4.5-1 and 5.7% dexamethasone in Figure 4.3-1),

they were electrospun under different conditions. Those in Figure 4.5-1 were fabricated using a

5.0% solution of PLLA in a solvent of 70:30 DCM:DMF v:v (~76:24 w:w), a flow-rate of 1.0-

mL/hr, and an applied voltage of 30-kV, while those in Figure 4.3-1 were electrospun using a

4.0% solution of PLLA in 70:30 DCM:DMF w:w, a flow-rate of 4.75-mL/hr, and an applied

voltage of 20-kV. This difference illustrates the strong influence of parameter values on fiber

properties, and the importance of the optimization process as a means of generating fibers with
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desired characteristics. In this instance, the varying parameter values may have led to

differences in the initial drug distributions, thus resulting in different release profiles.

Figure 4.5-1 suggests the release kinetics of dexamethasone from the electrospun

PCL/PLLA blended fibers can be controlled by varying the relative compositions of PCL and

PLLA in the solution mixture. This could prove to be a very useful tool in applications where a

very specific drug release profile is desired.

The concept of blending materials to control the release kinetics of encapsulated

molecules from electrospun fibers is not necessarily specific to the materials and drug used in

this experiment. If it is determined a molecule has a sustained release from fibers of one

material, and a burst release from another, it may be possible to fine-tune the release kinetics by

blending the two materials.



4.6 Core-Shell Fiber Structure

It has been shown that solutions of block copolymers can be electrospun into fibers

containing lamellar, concentric domains of each monomer unit. These domains are formed by

using coaxial needles, and exploiting the self assembly of the monomer units into energetically

favorable arrangements39 . It was thought this idea could be extended to the encapsulation of

dexamethasone in a central concentric domain of PCL fibers (referred to as "core-shell" PCL

fibers) as a means of eliminating the observed in vitro burst release.

A solution consisting of 0.8% dexamethasone, 11.9% PCL, 43.6% THF, and 43.6% DMF

by mass was pumped through the inner coaxial needle at a flow-rate of 0.27-mL/hr, while a

solution of 12.0% PCL, 44% THF, and 44% DMF by mass was pumped through the outer

coaxial needle at a flow-rate of 1.8-mL/hr. The applied potential difference was set to 50-kV,

and collected fibers, containing 6.7% dexamethasone, were placed under strong vacuum

overnight to remove any residual solvent.

The in vitro release of dexamethasone was measured as described in Section 4.2, except

the concentration did exceed 20% of its saturation value at the first time point. This was not

thought to affect the results, as a burst release was still observed. The release profile can be seen

in Figure 4.6-1.

It is believed that concentric layers did not form because the solution did not contain a

block copolymer which could self assemble into energetically favorable domains. The coaxial

needle arrangement, where the drug containing solution is pumped through the inner needle, is

not sufficient to prevent the deposition of dexamethasone almost exclusively on the PCL fiber

surfaces.
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Figure 4.6-1: In Vitro Release of Dexamethasone from Core-Shell PCL Fibers. Each point
represents three measurements. Error bars indicate one sample standard deviation.



4.7 Ketoprofen Release from Electrospun PLGA Fibers

Initially, the non-steroid, ketoprofen, was selected as the anti-inflammatory drug to

encapsulate in electrospun fibers. 10% of the polymer mass in ketoprofen was added to a 35%

by mass solution of PLGA, inherent viscosity 0.95-dL/g to 1.20-dL/g (Lactel B6010-4), in DMF.

The flow-rate was set to 1.8-mL/hr and the voltage to 20-kV. The fibers were collected and

placed in a strong vacuum overnight to evaporate any residual solvent. SEM micrographs can be

seen in Figure 4.7-1.

Figure 4.7-1: SEMMicrographs of Electrospun PLGA Fibers Encapsulating Ketoprofen. A)
original magnification 200x B.) original magnification 1500x

A similar method to that described in section 4.2, for dexamethasone, was used to detect

the in vitro release of ketoprofen, except a 0.9-m/v% (gram solute per 100-mL solution) of

sodium chloride in water (saline) was used as the medium, and absorbances were measured at

260-nm for ketoprofen. The ketoprofen release profile for these fibers can be seen in Figure

4.7-2. The calibration curve for ketoprofen in saline can be seen in the Appendix as Figure

8.3-2.



The data in Figure 4.7-2 is normalized by the total mass of ketoprofen in each sample.

This amount was determined by multiplying the ketoprofen solute composition in the electrospun

solution by the total mass of each sample. The experiment was not carried out to completion

because preliminary data of a colleague suggested ketoprofen does not effectively reduce

inflammation when administered locallyS40 .

Fraction of Ketoprofen Released vs. Time
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Figure 4.7-2: In Vitro Release of Ketoprofen from PLGA Electrospun Fibers. Each point
represents three measurements. Error bars indicate one sample standard deviation.



4.8 Analytical Release Model

The release of dexamethasone from the PLLA/dex fibers was modeled as a one

dimensional, transient diffusion problem by approximating the fibers as infinite cylinders. The

conservation of species formula in cylindrical coordinates was used to derive a release curve.

The model release curve was then fit to the collected release data by adjusting the effective

diffusivity of dexamethasone in the PLLA/dex fibers, D. The result of this fit can be seen in

Figure 4.8-1. The derivation follows.

Dexamethasone Release Model
1.00 -

0.80 -

W 0.60 -Model

.0 D = 2.57 x 10-19 m2/s . Data
ta 0.40 -
to

L 0.20

0.00

0 20 40 60 80
Time (Days)

Figure 4.8-1: Analytical Release Model ofDexamethasone from PLLA/dex Fibers. Each point
represents three measurements. Error bars indicate one sample standard deviation.

The conservation of species equation for transient diffusion in cylindrical coordinates can

be seen as Equation 1, with boundary conditions given in Equation 2.

ac DI a C9_
t rD-r - (1)



C(t=or) =Co C(t,r=R) =0 c -o (2)

where C is the concentration of dexamethasone in the fibers, D is the effective diffusivity of

dexamethasone in the PLLA/dex fibers, t is time, R is the radius of the fibers, and r is radial

position. The conservation equation and boundary condition were non-dimensionalized using

the variables defined in Equation 3. The resulting partial differential equation (PDE) and

boundary conditions are given as Equation 4 and Equation 5.

C r
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at R 2qa {7 a (4
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a 777=0

Finite Fourier transforms were used to solve Equation 4. The use of finite Fourier

transforms requires a basis set expansion function. These functions are specific to the form of

the PDE and the boundary conditions [411. The basis set expansion function used to solve this

PDE can be seen in Equation 6.

n( =V 0(2i, n = nth root of Jo (6)
1(An)

where Jo and J, are Bessel functions of order zero and one, of the first kind, respectively. The

solution to the PDE will take the form of Equation 7, where On(t), the transformed variable, is

defined in Equation 8.



0~q (7)
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J (tD )fn(q)W(,)d7 , W(q) = 17 in cylindrical coordinates (8)
0

Each term in the PDE, Equation 4, must be transformed according to Equation 8. The

first term is straight forward and is transformed in Equation 9. The second term requires

integration by parts, or comparison of the operator to the integrated Sturm-Liouville operatorE41 .

The latter was done here, and the result can be seen in Equation 10. The transformed differential

equation is given as Equation 11.

_0(''') h ydy d 0 (9)
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D 2

R2 n n(t)

dO2dn(t) D (11)0
dt R 2n n(t)

The boundary condition in time must also be transformed according to Equation 8. This

can be seen in Equation 12. The identity in Equation 1341] was used in the integration.
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The ordinary differential equation, Equation 11, can now be solved with the boundary

condition, Equation 12. The solution is given as Equation 14.

0-n(t)-
- R (14)

All of the pieces are now in place to assemble a solution of the form given in Equation 7.

This solution is given as Equation 15.

0(t,7)

0JO - DA2t

I ____R2_

n=OE (2,)e
(15)

Now that the concentration profile is known, the amount of dexamethasone which has

diffused out of the fibers can be determined by solving Equation 16. Equation 17 through

Equation 20 are intermediate steps and definitions which lead to the solution, given as Equation

21.
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where Mis the total moles which have diffused out of the fibers, A is the cross sectional area of a

fiber, mfiber is the mass of the sample, and Pfiber is the density of the fibers.

Equation 21 can be divided by the total moles of dexamethasone initially present to yield

an expression for the fraction of dexamethasone released as a function of time. This expression

is given as Equation 22.

2Nf=4L 2 1 _ R2 (22)
n=1 L n\

wheref is the fraction of dexamethasone, which was initially present, that has been released.

This model was fit to the data by varying the effective diffusivity of dexamethasone in

the PLLA/dex fibers, D, and minimizing a weighted sum of squared differences. Each squared

difference was multiplied by the fraction of the duration of the experiment occurring between the



data point of interest and the previous data point. This ensured the model was not fit primarily to

the early time points of the release, where most of the data points lie. The value of D found to

minimize this weighted sum is 2.57x10- 19-m2/s. Equation 22, with this value of D, is the model

plotted in Figure 4.8-1. The infinite sum was approximated by the first 1,000 terms. A user

defined MatLab@ function was used to calculate the first 1,000 roots of Jot421.

The goodness of fit of the model to the data was determined by performing a chi squared

test. A value of chi squared, X2, was calculated using Equation 23. The first and last data points

were not included in this calculation because the first data point, at time zero, was not actually

measured, and all of the last data points were set to one by normalization.

2
i=N g )

x2 =(P (23)

where N is the number of data points measured, , is the experimental average for a measurement,

o is the value predicted by the model, p is the state variable (in this case, time), and G is the

sample standard deviation of a measurement.

The number of degrees of freedom, v, is equal to the number of measurements, 6, minus

the number of adjustable parameters, 1. Therefore, there are 5 degrees of freedom in this

experiment. The values of X2 and v were passed to the function in Equation 24 to obtain a

measure of the goodness of fit.

vX 2

Pr = (24)
(X2,v)

The value of Pr represents a probability that the data will be as deviant as it is, or less

from the model, given the model is correct. Therefore, a value of Pr close to 1.00 indicates a
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good fit of the model to the data. The model in Equation 22 fit the experimental data with a Pr

value of 0.88. This suggests radial diffusion may have played a significant role in the release of

dexamethasone from the fibers. However, there may have also been other mechanisms involved,

which were neglected in this model, such as fiber degradation, that also contributed to the

release.



5. In Vivo Inflammatory Response

5.1 Inflammatory Response Background Information

The implantation and presence of a synthetic scaffold will evoke an inflammatory

response43 . Inflammation is the innate immune system's first line of defense, intended to

eliminate or segregate the foreign material from the rest of the bodyE443. The innate immune

system responds by the same mechanism regardless of the nature of the infection, unlike the

adaptive immune system, which learns to recognize specific pathogenic agents and provides long

term protectionE45 .

The initial stage of the inflammatory response is known as acute inflammation. During

this stage, fluids, proteins, and leukocytes escape the vascular system and surround the foreign

material in a process known as exudation. The presence of adhesion molecules on the surfaces

of leukocytes helps to recruit more leukocytes, specifically neutrophils, to the implant/tissue

interface. Neutrophils attempt to phagocytose the implant, but this is usually prevented by its

sheer size. In this event, neutrophils release reactive species, such as oxygen radicals and

lysosomal proteases, in an effort to further break the implant down43 .

If the inflammatory stimuli persists, the second stage of the inflammatory response,

chronic inflammation, ensues. Monocytes migrate to the area and differentiate into

macrophagesE443, which further break down and engulf foreign debris. Macrophages also secrete

growth factors and other chemicals which recruit fibroblasts and promote angiogenesis. With an

available blood supply, fibroblasts can synthesize a collagenous matrix which forms a fibrous

capsule separating the foreign body from its surroundings 43 3.



5.2 Subcutaneous Implant Study Procedure

In order to assess the inflammatory response to the neural scaffold candidate fibers, a

subcutaneous implant study was performed. Membranes composed of PCL, PLLA, PCL/dex,

and PLLA/dex fibers were electrospun, sterilized under strong vacuum for 20 minutes, and

implanted subcutaneously in 250-g female Lewis rats. All rats were anesthetized with isoflurane

during surgery and administered a 7.5-pg injection of the analgesic, buprenorphine (Reckitt &

Colman) immediately following, and every 8-12 hours thereafter for 24 hours. After three days,

two weeks, and four weeks, animals were euthanized, and three samples of each implant were

harvested. The harvested implants were fixed in a 10% formalin solution (Richard-Allan

Scientific 5705) overnight, and stored in a 70/30 v/v ethanol/water mixture until they could be

sectioned in paraffin, stained with hematoxylin and eosin (H&E), and mounted on 3-in

microscope slides.

The "biocompatibility" of each sample was quantitatively assessed after two and four

weeks by measuring the thickness of the inflammatory capsule formed around a cross section of

the implant. The formation of thicker capsules was taken as an indication of poorer

biocompatibility. Measurements were made at eight evenly separated points around the

circumference of the harvested implant cross section using the ImageJ software.

A different method was employed to assess the biocompatibility of each sample after

three days, since it was too early for an inflammatory capsule to be present. Cell infiltration was

quantified by counting the cells present per unit area within the circumference of each cross

section. Higher infiltrating cell densities were taken as an indication of poorer biocompatibility.

Measurements were made, using the ImageJ software, at two evenly spaced areas on each

sample, which, combined, accounted for at least 15% of the total cross sectional area.



5.3 Subcutaneous Implant Study Results

The PLLA/dex fibrous membranes induced the formation of a much thinner

inflammatory capsule than the PLLA membranes after two and four weeks implanted

subcutaneously. Statistical significance was shown using a two-tailed, equal variance, Student's

t-Test and obtaining p values of less than 0.001 for both time points. No significant difference

was observed between the PCL and PCL/dex fibrous implants. This data is illustrated in Figure

5.3-1. Representative images of the H&E stained cross sections of the PLLA and PLLA/dex

fibrous implants harvested after three days, two weeks, and four weeks can be seen in Figure

5.3-3. Analogous images for the harvested PCL and PCL/dex fibrous implants can be seen in the

Appendix as Figure 8.4-1.

Cell infiltration into the PLLA/dex fibrous membrane was, on average, an order of

magnitude less than that into the PLLA fibrous membrane. Very little difference in cell

infiltration was observed between the PCL and PCL/dex fibrous membranes. This data can be

seen in Figure 5.3-2.
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Figure 5.3-1: Inflammatory Capsule Thickness at Two and Four Weeks. Error bars indicate
sample standard deviations and each bar represents three measurements. The score of a two

tailed, equal variance Student's t-Test is indicated by p.
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Figure 5.3-2: Cell Infiltration at Three Days. Error bars indicate sample standard deviations
and each bar represents three measurements.
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Figure 5.3-3: H&E Stained Cross Sections of PLLA and PLLA/dex Fibrous Membranes after
Subcutaneous Harvest, original magnification 200x. A.) PLLA three days B.) PLLA/dex three
days C.) PLLA two weeks D.) PLLA/dex two weeks E.) PLLA four weeks F.) PLLA/dex four

weeks



5.4 Discussion of Subcutaneous Implant Study

The in vitro drug release measurements appear to support the data collected from the

subcutaneous implant study. The controlled, sustained release of dexamethasone from the

PLLA/dex fibers drastically reduced inflammation in vivo after three days, two weeks and four

weeks when compared to the PLLA fibers. Furthermore, the PCL/dex fibers displayed no

observable ability to reduce inflammation in vivo after three days, two weeks, and four weeks

when compared to the PCL fibers, consistent with the observed in vitro burst release of

dexamethasone from theses fibers.

The significant reduction of inflammatory capsule formation and cell infiltration

mediated by the sustained release of dexamethasone from the PLLA/dex fibers could prove to be

extremely useful for successful regeneration of neural tissue. An intricate scaffold fabricated

from these fibers would provide ample contact guidance for neuronal outgrowth, but would also

present a large synthetic surface area open to attack from the innate immune system. An influx

of neutrophils, monocytes, and macrophages could physically block regeneration through the

intricate scaffold, or cause further damage to functioning neural tissue in the vicinity of the

implant. The reduction of inflammation achieved by implanting the PLLA/dex fibers fabricated

in this study may help to alleviate the potentially harmful effects of an innate immune response.

Furthermore, the PLLA/dex fibers resemble the morphology of extracellular matrix, thus giving

them the ability to mimic the structure and support necessary for natural growth and

development. Considering the physical characteristics, the in vitro data demonstrating a

sustained release of dexamethasone, and the in vivo data showing a significant reduction in the

inflammatory response, the PLLA/dex fibers appear to have great potential as a neural tissue

engineering scaffold material.



6. Stem Cells in Peripheral Nerve Re2eneration

The presence of stem cells on peripheral nerve guide scaffolds has been shown to

significantly enhance the degree of axonal regeneration across peripheral nerve lesions 46 3.

However, the exact mechanism of this enhancement is not completely understood. It is known

that the microenvironment of axons plays a crucial role in their capacity to regenerate, and stem

cells have been shown to secrete factors known to cue axonal outgrowth 471 . Stem have also

demonstrated an ability to differentiate into Schwann cells[48], whose presence are known to

enhance nerve regeneration through signaling to axons and providing structural supportE71 .

Although fetal stem cells have shown great promise in stimulating axonal outgrowth in

rat sciatic nerve injury models[4 61, the problem of immune rejection renders them less appealing

for clinical applications. Ideally, easily accessible, autologous sources of pluripotent stem cells

could be harvested, expanded in culture, and seeded on peripheral nerve guide scaffolds for

implantation.

Acellular nerve grafts seeded with skin derived stem cells have demonstrated efficacies

rivaling that of autografts when implanted to span rat sciatic nerve defects. Histological data

shows a significant increase in the number of regenerated axons at the distal site of the defects

when scaffolds seeded with skin derived stem cells were implanted, and electrophysiological

tests confirm greater degrees of functional recovery 47 3.

The inclusion of hair follicle stem cells at nerve defect sites, without implanted scaffolds,

has been shown to significantly enhance recovery in rat sciatic nerve injury models. Green

florescent protein labeled stem cells were shown to be incorporated into regenerated nerve tissue,

and greater functional recovery was demonstrated through larger muscle contractions upon

electrical stimulationf481 .



As a proof of concept, it is desired to isolate adult neural stem cells from rat spinal cords,

expand them in culture, seed them on the fibrous scaffolds described in section 2.2.3, and

implant the scaffolds to span the lesions of rat sciatic nerve injury models. Once the concept is

proven, a more accessible source of adult stem cells will be explored, as these stem cells have

been shown to be present in many tissues of the body[49 3.

In collaboration with the Vacanti Laboratory at Brigham and Women's Hospital in

Boston, MA, neural stem cells were isolated from the spinal cords of mice (Jackson

Laboratories, strain 000664=C57BL/6J). The procedure is described below"50 .

Two mice were euthanized with an overdose of avertine, mortality was confirmed by

cervical dislocation. The spinal columns were removed, intact, and placed in a pitri dish

containing PBS and 1% penicillin/streptomycin (pen/strep). The spinal tissue was separated

from the columns, and rinsed in a separate pitri dish containing PBS and 1% pen/strep three

times. The spinal tissue was then placed in neural medium (Table 5.4-1) and centrifuged at 600-

rpm for 5.0-min. The supernatant was removed, and the pellet resuspended in 2.0-mL 0.05%

trypsin-EDTA. The resuspended tissue was placed in a pitri dish and minced with scissors for 3-

min. 8.0-mL of Hank's Balanced Salt Solution (GIBCO 14025) was added to the dish, and the

contents transferred to a 50-mL vial. The vial was allowed to incubate at 370C on a shaker for

20-min. The contents of the vial were then triturated with progressively smaller-tipped, fire-

polished, Pasteur pipettes for 25-min to 30-min. The vial contents were then filtered through

100-pm, 70-pm, and 40-jim cell strainers (Falcon). Hank's Balanced Salt Solution was added to

the filtrate to a final volume of 20-mL, and the mixture was centrifuged at 600-rpm for 5.0-min.

The supernatant was removed, and the pellet resuspended in 5.0-mL of neural medium. The cell

suspension was placed in a 60-mm cell culture dish along with 6-pL of 0.2% heparin solution



(Stem Cell Technology 07980), 10-pL of a 10-ng/pL human fibroblast growth factor (FGF)

(Peprotech 100-18B) solution, and 10-jL of a 100-ng/pL solution of human epidermal growth

factor (EGF) (Peprotech 100-15). The same quantity of growth factors and heparin were added

every 2 to 3 days. After 15 to 20 days, large (>100-ptm) neurospheres were observed (Figure

5.4-lA). These neurospheres could be dissociated and differentiated by adding fetal bovine

serum (FBS) to the neural medium to a final concentration of 1%. After a week of incubating

with the neural medium/FBS, triangular nuclei with prominent axon-like extensions were

observed (Figure 5.4-1B).

10bpm

Figure 5.4-1: Neurospheres and Differentiated Stem Cells from Mouse Spinal Tissue. A)
Neurospheres, original magnification 200x B) Differentiated Cells with Neural Morphology,

original magnification 400x

Table 5.4-1: Neural Medium Components
98% by volume 1:1 DMEM:F12 (Invitrogen 11965-092) containing 1% pen/strep

2% B27 Supplement (Invitrogen 12587-010)

The Vacanti Laboratory has a well established protocol for the isolation technique and

culture of neurospheres from mouse derived stem cells[501. A similar protocol is currently being

explored for rats.
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7. Recommendations and Future Work:

As mentioned in the Introduction, the immune response to injury can play contradicting

roles with regard to nerve regeneration. Therefore it is critical that the innate immune system

only be subdued to the point where it will not compound an existing injury or interfere with

regeneration. If the PLLA/dex fibers fabricated in this study are to be used as a scaffolding

material to treat CNS or PNS injuries, then it is crucial that the drug loading be optimized to

ensure an effective dose is delivered. This optimization should be executed by varying the

dexamethasone composition of the PLLA/dex fibers while performing neural stem cell adhesion

and proliferation tests in vitro before selecting the best candidates for experimentation on in vivo

CNS and PNS injury models.

In vivo trials on CNS and PNS injury models to optimize the dexamethasone drug loading

should include controls of PLLA fibers without dexamethasone. The seeding of neural stem

cells should also be a variable tested. If the hypothesis that an optimal loading of dexamethasone

exists is true, then these experiments will help identify what that loading is. If the

dexamethasone appears to hinder regeneration at all doses, then the role of the innate immune

system in nerve regeneration will need to be reexamined.

The ability of an electrospun supporting scaffold to release therapeutic molecules has

enormous implications in tissue engineering. Theoretically, the identity of the material and

encapsulated molecule can be tailored to the requirements of many regenerating tissues.

However, release kinetics and in vivo efficacy will need to be evaluated for each

material/molecule combination.

One particular drug, etifoxine, has shown tremendous promise both as an anti-

inflammatory agent, and as a promoter of axonal outgrowth. In local freeze rat sciatic nerve



injury models, the number of OX-42-immunoreactive macrophages was shown to be

dramatically reduced, the quantity of regenerated, myelinated axons was shown (by histological

evidence and diamidino yellow retrograde tracing) to increase significantly, expression of

proteins associated with axonal outgrowth (stathmin-like 2 protein and peripherin) was increased

in the injured lesions, and a greater functional recovery was demonstrated by walking track tests

in the group treated with etifoxine [5 1. The bifunctionality (reducing inflammation and

promoting regeneration) of etifoxine renders it a desirable drug for encapsulating in electrospun,

fibrous, peripheral nerve regeneration scaffolds. Methods for controlled delivery should be

investigated, and further tests of in vivo efficacy should be performed.

Although PCL and PLLA are widely used for in vivo applications and accepted as being

"biocompatible" synthetic polymersE21, other, naturally occurring, materials should not be

overlooked. Scaffolds composed of collagen fibers have been shown to guide axons across 3-cm

lesions in rat sciatic nerve injury models 18 1, and the presence of alginate (a naturally occurring

polysaccharide) gel has been shown to improve axonal outgrowth and functional recovery in 7-

mm rat sciatic nerve injury models52 .

Much of the work described in this document is in the early stages. The collection

technique for placement of aligned fibers inside nerve guide conduits needs to be adjusted.

Specific details in the protocol for coating the collected fibers with bio-active molecules, such as

the identity of the molecules and their concentrations, must be worked out. Different

fiber/conduit materials need to be assessed. The technique to culture neurospheres from rat

derived neural stem cells must be reformed. Finally, the effectiveness of the neural stem cells at

regenerating peripheral nerve tissue must be examined.



As with most scientific inquiries, each experiment seems to bring forth more questions

than answers it provides. The interdisciplinary nature of tissue engineering often results in a

multitude of avenues to be explored for every idea proposed. Those avenues often lead to new

ideas, and the process continues.

Peripheral nerve tissue engineering embodies this interdisciplinary theme. The necessity

for axonal guidance and support, cellular signaling, and tissue regeneration requires a

fundamental understanding of pertinent materials science, transport phenomena, and cellular

biology. Furthermore, the problem must be investigated at the molecular level (e.g., how drugs

such as dexamethasone, or proteins such as laminin affect axonal outgrowth), the cellular level

(e.g., how the presence of Schwann cells or stem cells influences axon behavior), and the

systems level (e.g., how the innate immune system responds to and affects the outcome of

treatments).

There are an infinite number of paths to follow in pursuit of a solution. However, it is

often best to let nature be the guide. Through mimicking extracellular matrix with functionalized

electrospun fibers, and harnessing the power of autologous stem cells, it is hoped that we will

soon be able to provide the aid necessary for our bodies to heal their own damaged nerves.



8. Appendix:

8.1 Appendix 1

Table 8.1-1: PCL Electrospun Fiber Parameter Optimization Trials

PCL Electrospun Fiber Parameter Optimization Trials

Mass % PCL Solvent Flowrate (mL/hr) Voltage (kV) Defects
In solution

8.5 5/2 CHCI 3/DMF 0.4 20 irregular
v/v and beads

8.5 5/2 CHCI3/DMF 4 20 beads
v/v

12 1/1 DMF/THF 6 20 beads and
w/w droplets

12 1/1 DMF/THF 3 20 beads and
w/w droplets

10 1/1 DMF/THF 4 20 beads and
w/w droplets

10 3/1 CHCl3/DMF 3.5 20 none
v/v

Table 8.1-2: PLLA Electrospun Fiber Parameter Optimization Trials

PLLA Electrospun Fiber Parameter Optimization Trials

n so t io Solvent Flowrate (mL/hr) Voltage (kV) Defects

1 DCM/D F v/v 1 20 beads

1 DCM/DMF v/v 2 20 beads

1 70/30 3 20 beads
________DCM/DMF v/v

1 DC70F v/v 4 20 beads

1 DCM/DMF v/v 5 20 beads

1 DCM/DMF v/v 6 20 beads

1 70/30 7 20 beads
________DCM/DMF v/v_____ __________



70/30
DCM/DMF v/v

beads

2 70/30 4 20 beads
2______DCM/DMF v/v

2 70/30 5 20 beads
2______DCM/DMF v/v

2 70/30 5 25 beads
2______DCM/DMF v/v

2 70/30 5.5 20 beads
3______DCM/DMF v/v

2 70/30 6 20 beads
DCM/DMF v/v

2 70/30 7 20 beads
DCM/DMF v/v

2 70/30 8 20 beads
DCM/DMF v/v 4._0_ed

3 50/50 4.5 20 beads
DCM/DMF v/v droplets

2 70/30 w2 beads and
2 DCM/DMF v/v 1 2 droplets

2 70/30 1 20 beads
DCM/DMF v/v beads

2 70/30 6 20 beads
DCM/DMF v/v ________________

1 70/30 53 20 beads

DCM/DMF w/w dolt

2 57/43 4.5 20 beads
DCM/DMF v/v 5.8_20 none

3 50/50 /5 20 beads and
2 DCM/DMF v/v 4. 0 droplets

2 70/30 4.5 20 beads
DCM/DMF w/w __________ ___

2270/30 5. 0small
22 DCM/DMF w/w 5. 0 beads

2.4 70/30 5 20 beads
DCM/DMF w/w

370/30 5. 0 beads and
DCM/DMF w/w 5. 0 droplets

4 70/30 5.8 20 none
____ ___DCM/DMF w/w _ _ _ _ _ __ _ _ _ ___

3.5 70/30 5 20 droplets
________DCM/DMF w/w ________________



5 DCM 4.5 30 irregular

3.8 70/30 5.5 20 droplets
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CL Fiber Diameter Distribution
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Standard Deviation = 0.
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Dexamethasone Absorbance at 241-nm in
PBS
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Figure 8.3-1: Absorbance at 241-nm vs. Concentration for Dexamethasone in PBS
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w'

0
4A

1.20

0.90

0.60

0.30

0.00

0.0

y = 0.0605x

5.0 10.0 15.0

Concentration (pg/mL)

20.0

Figure 8.3-2: Absorbance at 260-nm vs. Concentration for Ketoprofen in Saline



8.4 Appendix 4

p

100 0

II

100 Jim 1100 ism
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