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ABSTRACT

Underactuated robotics, though surrounded by an established body of work, has certain
limitations when nonlinear adaptive control principles are applied. This thesis applies a
nonlinear adaptative controller that avoids many of these limitations using alterations
inspired by the control of a similar underactuated system, the cart-pole. Due to the
complexity of the system, a sums-of-squares MATLAB toolbox is used to generate a
suitable Lyapunov Candidate used for proofs of stability, with claims of local stability
made using Barbalat's Lemma. This provides us with a local domain of attraction for the
altered classical nonlinear adaptive controller. In addition, the algorithm known as LQR
Trees is applied to the system in order to create a controller with a larger region of
attraction and lower torque requirements, though without an adaptive component. Both
control systems are implemented in simulations using MATLAB.
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Introduction

The control of underactuated systems, though often complex, has an established

body of work. As a first step, linearizations can be made, which allow for linear control

principles to be applied. These sorts of strategies can be effective, though they are limited

due to the fact that all linearizations are based on approximations. When applied to the

real system, these approximations only serve to limit the effectiveness of a controller and

region of stability of the controller.

Lyapunov analysis is particularly useful as it allows one to avoid this need for

linearization. The real dynamics can be used, and as such claims on the stability of the

real, nonlinear dynamics can be made. For example, a Lyapunov candidate, a function of

the state of a system, is defined as:

V(x) (1)

If this function is positive definite, and its time derivative is negative definite, then the

system is locally stable at the origin. If the function has the following property:

V(x) -> oo as x -> oo (2)

Then the system is globally stable. There is no need for linearization, and a rather strong

claim of stability is made [5].

In addition, adaptation follows quite simply as an extension of this stability

analysis (with related analysis using Barbalat's Lemma and the Invariant Set Theorem).

This is convenient, since, like linearizations, most models are simply approximations. As

is discussed in this thesis, canonical Lyapunov-based proofs of stability for adaptive

systems have a distinct reliance on full actuation. In addition, viable Lyapunov candidates

are often extremely difficult to determine to for complex systems.

This thesis studies a unique underactuated system as a tool in exploring what

claims can be made on the stability of an underactuated system. The system has certain

properties that make adaptation applicable, and as such is a suitable platform for study.



Numerical tools are used in order to generate a Lyapunov candidate for the system, and

this candidate allows us to detail the regions of local stability in state space.

However, the ultimate goal is to have a globally stable controller. Since we know

that claims of local stability can be made, this thesis uses a series of local, linear LQR

controllers which covers a larger area of the state space than a single local controller.

These controllers are connected in a "tree" in which trajectories are moved from one

region of stability to the next until they reach some desired point in state space. In this

way all trajectories are simply be "funneled" to the desired point.

Figure 1 - A basic representation of the controller designed for in the LQR trees algorithm. In the
algorithm, the "funnels" are not all stable about a point, but also are stable about trajectories. Notice
how a trajectory might cascade from one "funnel" to the next. [8]

The controller applied is simply a function of where in this tree the trajectory is (i.e. the

gain matrix is changed depending on where in state space the trajectory is). This is an

application of the LQR Trees Algorithm [8]. For simplicity, this task is done without

adaptation. Future work may seek to synthesize these two approaches; however that is

beyond the scope of this thesis.

Proposal of the Cylinder-Beam System

The underactuated system studied in this thesis is a somewhat complex "toy"

robotic system with a biological inspiration. Consider the real situation of a pen balancing



upon a human finger. The finger has a number of inputs which can control the position of

the pen on the top of the finger, most of which involve the finger moving in three-

dimensional space with six degrees of freedom (translation in three directions and

rotation about three axes). The robotic system attempts to emulate this biological

balancing system, with certain simplifications. The first is that the system must be

constrained to two dimensions. In addition, the control input is reduced to only one

control torque, resulting in one rotation. This system thesis called the cylinder-beam

system for the remainder of this thesis. It is named as such because it replaces the

"finger" with a cylinder forced to rotate about its center and it replaces the "pen" with a

beam, forced to only move in two dimensions. This beam is also constrained by a

"perfect" frictional contact in which there is no slipping between the beam and ball and

they always remain in contact with one another.

Desired Beam - Center of Mass
State

Control
Input g

Controlled
Cylinder "Touch" Sensing,

Perfect frictional Contact

Figure 2 - A basic schematic of the robotic system proposed for the purpose of studying
underactuation, non-linear control, adaptive control, and the LQR Trees Algorithm.

This system has several unique properties. The first of these is the fact that there exists

"touch" sensing. What this means is that the position and velocity of a contact point

between two rigid bodies in the system is measured. In this system the contact point

between the beam and cylinder is tracked in this way. The second is the rather

unconventional rolling contact between the two bodies, the cylinder and the beam. The

beam is able to roll about the cylinder, meaning it is rolling about the contact point.



However, the contact point moves with the beam, making the dynamics somewhat

complicated.

In order to derive the dynamics of the system, generalized coordinates must be

decided upon. For this system, two angles, 0 and a, are able to adequately describe the

state of the system (along with the time derivates of these angles). This gives us four

states for this clearly fourth-order system

Arbitrary Point

I0m, R

d

0 6Mb , L

Figure 3 - Choice of generalized coordinates for derivation of the dynamics of the system through
Lagrangian mechanics. The coordinate a is the angle of an arbitrary point on the cylinder to vertical.
The coordinate 0 is the angle from the contact point to the arbitrary point a is in reference to. For
complete explanations of the system parameters shown above, refer to Appendix 1.

As seen in Figure 3, a is defined as the angle between an arbitrary point on the cylinder

to vertical and 0 is defined as the angle between this arbitrary point and the contact

point. Other important parameters of the system include the distance of the center of mass

to the contact point, denoted as d , which is a function of 9 and a constant length do .

d =do +RO (3)



Once this has been done, the equations of motion can be solved for using the methods of

Lagrangian Dynamics. For numerical values of the constant parameters in these

equations, refer to Appendix 2.

12 d+ +)+mRd($-&)($+&)+mb gd cos(a+0) = 0

12 (d+N +Id+2mRd($+&)$+ m g (d cos(a+0)- R sin(a+0))=

Il=If+mbR2

L2=MPd2
I 2 =mb -+d2

12

This can be rearranged into the more classical form:

H (q)4 + C(q, 4)4 + G(q)=

q=

I I

H(q)=2 = 1212
CI2 11 +12 ]

C(q, 4) = mdRd.a d
120 2d

G(q)= m g

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)d cos(a +) 1
d cos(a+6)+ R sin(a+9)]

This verifies the conservation of energy condition [5].

4T(5 -2C) 4=0 (13)

The desired state of the system is to have the beam directly on top of the cylinder.

What this implies is that the center of mass must be directly vertical and in contact with



the cylinder. Incidentally, these conditions correspond to 9+ a =0 and d = 0,

respectively. Therefore, the following desired trajectories for the state variables are

found:

d (14)
R

d _ (15)
ad-

R

0d =0 (16)

ad = 0 (17)

One problem with these desired trajectories is that the overall objective of the

adaptive control used in the control system presented in this thesis is to stabilize the beam

using no prior knowledge about the beam. The constant do is not something that can be

directly sensed, and falls under the domain of information about the beam, more

specifically the way in which it first comes into contact with the beam. Therefore, as

thesis explored in much more depth later in this study, an observer is needed to determine

an estimate of the constant do .

The control system applied to this robotic system uses several principles of

nonlinear adaptive control. The following sections will detail how these principles are

applied to this system, as well as where they must be refined and altered in order to

accommodate for various complexities inherent in the system. The most notable of these

complexities, of course, is underactuation. In order to fully understand the approach to

underactuation, we must look at how adaptive control using a sliding variable controller

is implemented and how its stability is verified for a fully actuated system.

Background on Adaptive Control

Adaptive control in fully actuated, nonlinear systems has a well-established body

of work [5]. These tools are particularly useful, as stability can almost always be

guaranteed through Lyapunov and similar analysis (i.e. the Invariant Set Theorem and



Barbalat's Lemma). Fully actuated systems are common, as are error in parameters such

as mass, damping, etc. Without adaptive control, imperfect models would be used, which

lends itself to an imperfect controller. Therefore, this particular strategy of control is

important and is fortunate to have clear, established proofs of stability. A typical adaptive

controller begins with typical autonomous dynamics, written in the general form:

H(q)ij + C(q, 4)4 + G(q)= r (18)

In order to control this system, a sliding variable must be established. A typical sliding

variable is defined as such:

s = 4+24 (19)

Where 4 is defined as the error signal for the controlled variables. Sliding variables are

useful because by coercing the variable to a desired value (usually zero), the system

simply becomes a first order system defined as such:

S+24 =0 (20)

This system has clear global exponential stability. Therefore, by controlling the sliding

variable, both position and velocity of the system can be controlled. Further definitions

using this sliding variable will be particularly useful in establishing the basis for adaptive

control in this thesis.

s = q - (21)

4 4d -24 (22)

In these equations, 4,. is a reference of sorts for the sliding variable.

Returning to the adaptive controller, the analysis used to show the stability of the

controller is similar to Lyapunov Analysis, and involves a Lyapunov Candidate Function:



V =I (sTHs+5T -) >0 (23)
2

Where F-1 is a negative definite matrix and 5 is the error in the adaptation parameters,

defined as = a - a. This defines V as a positive definite function, which allows for

future claims on stability to be made. The variable a is a constant vector describing the

mass and other unknown parameters of the system. This constant vector is chosen such

that H (q), C(q, 4), G(q) all have the following linear relationship with a:

H (q)4i, +C(q,4)4, +G(q) = Y(q,4,4,,ij,)a (24)

The reason for this becomes more evident once the Lyapunov candidate is differentiated

with respect to time:

Y = sT(Z-_Hj, --C, - T-I (25)

After substituting equation (24) into (25), this becomes:

V= sT (r-Ya)+NT F-in (26)

This definition allows us to choose control and adaptation laws that, in the style of

Lyapunov analysis, make this negative definite. The choices for control and adaptations

laws are as such:

S=Y - Kds (27)

ii =- FYTs (28)

This leads to the following conclusion:



V =-s T Kds < 0 (29)

This is a negative definite function. Yet, since it is not a function of all states (a has its

own dynamics) it cannot be examined with traditional Lyapunov Analysis. However,

Barbalat's Lemma will prove a useful tool in proving the stability of the system [5].

Barbalat's Lemma

Barbalat's Lemma is used to prove the local stability of the classical nonlinear

adaptive controller detailed previously. In addition, its basic principles are used to show

stability in certain regions in the underactuated system studied in this thesis.

Barbalat's Lemma, in its simplest form, states the following:

If:

-The differentiable function f(t) has a finite limit as t ->

-f is uniformly continuous

Then f(t) ->ooas t ->oo

Applied to Lyapunov-like functions, the following corollary is made:

If:

-V(x, t) is lower bounded

- V(x, t) is negative semi-definite

- V(x, t) is uniformly continuous

Then V(x, t) ->0 as t -oo .



For the Lyapunov candidate in the previous section already has been shown to satisfy the

first and second criteria. For the third criterion, is verifies by examining the closed loop

dynamics:

H+(C + Kd)s =Y5 (30)

From this, if s and 5 are bounded (which comes from equation (29)), i is bounded.

This means that V is uniformly continuous, since V is defined as:

V = -s T Kdi (31)

This shows that V -+ oo, and therefore s ->0 as t -- oo. This in turn guarantees q

converges to the specified desired trajectory [5].

Expansion to the Underactuated Case

In the preceding discussion of adaptive control, certain conclusions are

consequences of the system being fully actuated. The most important concern is with the

definition of the control law, repeated below:

r =Ya - Kds (32)

For a system with dim(r )=m, this equality can only be enforced if Z is entirely non-zero

entries. However, this criterion directly correlates to the definition of an underactuated

system.

The definition is as follows [7]. For a system with following general definition:

ij= f1 (q, 4, t)+ f 2(q, 4, t)u (33)

The system is under actuated if the following inequality is true:



(34)

Returning to the adaptive case, an entry of zero directly corresponds to an f2 with

a rank of m-r, where r is the number of zero entries in the system. Since dim(q)=dim(r ),

a zero in r means that the system is underactuated. Therefore, if a system is

underactuated, the inputs needed for in the control law for the conventional adaptive

control can no longer be applied to the system (some of the inputs will always be zero).

This basic difference invalidates the control strategy stated in detail in previous sections.

The remainder of this thesis is spent finding a viable substitute for this control system.

To begin, Partial Feedback Linearization (PFL) is used on the cylinder-beam

system in order to minimize the effects of the dynamics of 9 on the dynamics of a [6].

This particular type of partial feedback linearization is called collocated PFL, since a is

the variable which is directly affected by the control input. This is done simply by

subtracting (4) from (5). This yields the following dynamics for a:

Ild+mbdOR(+ &)2 +mbR 29(#+ d) 2 -- m gR sin(9+a) = r (35)

This use of collocated PFL allows for the dynamics of the system to be reduced to a

linear relationship between some dynamical vector Y and a constant vector a.

Ic,+mbdoR($+&)2 +mbR 20 + d)2 -m gR sin(9+a) =Y (a,&, )a (36)

Where Y and a are defined as:

Y(a, &, ,)= d[a, (#+d)2  0(#+d) 2 sin(6 + a) (37)

a =[I, mbdOR mbR2 mbgR] (38)

=a -2&(39)
dr =d -Ar

rank(f2(q, q, t)) < dim(q)



Of course, non-collocated PFL is another option for simplifying the dynamics of the

system for use in adaptation. This would mean that the effects of the dynamics of a on

the dynamics of 0 are be minimized. When this is performed, the following dynamics for

9 are found:

,##+(9+)(mbRd(5-d)-2mRd5)+msg ((1-$3)dcos(9+a)+#,Rsin(9+a))=-$r (40)

1112 (41)
, +I2

This equation again indicates a linear relationship between a dynamic vector and constant

vector, though this relationship would be unnecessarily complex to detail in full in this

thesis. The collocated PFL found in equation (35) plays an identical role, and is much

simpler. Therefore, it is used as the stability characteristics of the controller proposed in

this thesis are explored.

Implementation of Adaptive Control

Equation (36), found through collocated PFL, allows for us to design an adaptive

controller exceedingly similar to classical controller detailed previously. This begins by

choosing a similar Lyapunov candidate function.

V = I(SHSa±+5T'-5 ) >0 (42)
2

In this the sliding variable is defined in terms of the error Cc.

s=a+2 ~ (43)

a a-ad (44)

Where ad is the desired trajectory for a. As was the case for the classical controller, the

adaptation and control laws take on the following form:



r =Y -KdSa (45)

a = -FYTSa (46)

Y is the vector of state-dependent dynamic terms detailed in full in equation (37). With

these definitions, the derivative of the Lyapunov function can be reduced to a negative

definite function.

Y=-SaT KdSaO (47)

Through Barbalat's Lemma, in an identical proof to that seen in equations (29) through

(31), it is shown that V -+ oo, and thus a tends towards the desired trajectory.

This is a perfectly valid controller, however it only stabilizes a, and makes no

claims on the stability of 9. In order to ensure that 9 is also stabilized, additional terms

must be added to the control law. The next section details one strategy for doing this, and

provides some background on another underactuated system which uses a similar strategy

to confront an equally similar problem.

Expanding the Adaptive Controller for Underactuation

The strategy for control of the non-collocated variable 9 is exceedingly similar to

the control of the collocated variable x seen in the cart-pole system shown in Figure 4.

The cart pole is a relatively simple system, though it is underactuated and has distinctly

nonlinear dynamics. In it, a force is applied to a cart which is constrained to move along a

line, parameterized by x. Attached is a mass that is fixed to rotate about some point on

the cart (the "pole"). The overall objective of the control system is to swing the pole to

the top of the cart, as well as to place the cart at some point in x (usually x=0 )



Objective of Swing-Up

g

F p

x

Figure 4 - Cart-Pole System. A control strategy used for this system is adapted to the cylinder-beam
system. In this system, a force can be exerting laterally on the cart.

Energy-shaping control is often used in order to swing the pole above the cart.

This is an effective tool for this situation, for if the energy of the system always

approaches the energy of the system when the pole is directly above the cart and all

velocities are zero, only two situations can exist. The first of these is that the pole will

eventually be directly above the cart and all velocities are zero. This occurs when the

initial energy is anything but the desired energy. The second is that, if the energy is

already the desired energy, the system will stay in its current state. This second situation

is unrealistic, but in either situation the pole is in the desired location. As such energy

shaping is an excellent choice for swing-up control.

As an aside, energy shaping control, as it is seen in the cart-pole system, may

seem like a suitable choice for controlling the cylinder-beam system. However, for

reasons that are not the focus of this thesis, the cylinder-beam system is unsuited to

energy shaping control since the system is not constrained in the vertical direction like

the cart-pole. What this means is that the cart pole is unable to move vertically beyond

simply rotation of the pole. The beam in the cylinder-beam system is only fixed by a

frictional constraint. This means that the potential energy of the system has no lower

boundary. As such, it can assume a trajectory that allows the energy to converge to a

desired point by simply having fallen off the side of the cylinder, with increasing kinetic

energy. The kinetic energy gained in speeding up during the fall is compensated by a loss



of gravitational potential energy. As such, a stable trajectory in terms of energy can be

highly unstable in terms of the parameters that the controller would seek to stabilize.

The dynamics of the cart-pole, for the purposes of this thesis, are inconsequential.

The most important aspect of the dynamics is the fact that with a suitable choice for a

control results in an exceedingly useful property of the energy of the system. Note that

this is done using collocated PFL [1].

Z = -Kf2 cosQy)2E (48)

Z= E-E (49)

K>O (50)

As can be seen in these "dynamics" for the energy, the error of the energy, defined by

some desired energy Ed, tends towards zero as t -> oo. Therefore, the pole is swung-up

to the vertical position.

However, there are no claims in this controller on the stability of the state x.

Therefore, some terms must be added in order to shape the behavior of this state. The

obvious choice for this is the simplest. A linear, PD (proportional and derivative) for x is

placed in the control input. Therefore, the force input (with unit masses, lengths, etc.)

becomes:

F = [(-sin ycos y- f2 sin r)+(2- cos(y)2v) (51)

v = k?cos yE - Kx - K2x (52)

This system has proven stability, despite the fact that the convergence of the energy seen

in equations (29) to (31) is no longer valid. This is shown using Floquet Theory, which

begins with linearizing the dynamics of the system about a periodic trajectory. The

stability of this is verified by checking the stability of the transverse dynamics along this

trajectory [3]. The full details of this particular stability verification are not the topic of

this thesis, as the transverse dynamics of the cylinder-beam system are entirely different.



Returning to the cylinder-beam system, this same philosophy is used in order to

stabilize 9 in the cylinder-beam system. Just like in the cart-pole example, we add PD

terms to the controller seen in equation (45) in order to stabilize 9. However, since

9= - is already a stable fixed point (upon examining the dynamics in equation (4)),
R

all that is required is a derivative term. The existence of this fixed point can be shown by

first setting all time derivatives in equation (4) equal to zero. When this is done, the

following fixed points are found:

a+= , ,...,(2n+1)- (53)
2' 2 2

_=-do 

(54)

R

However, the first of these is an unstable "fixed" point, while the second is a "stable"

fixed point. This is shown by linearizing the system about each of these points. In

addition, a is fixed in order to purely show the dynamics of 9. For the situation in

equation (53), the general solution of 9 indicates instability. For the situation in equation

(54), the general solution of 9 indicates marginal stability. This can be seen by

examining the general solution of these two modes (numerical answers are found using

the parameter values in Appendix 2).

8
general,unstable = c0.2009e4

_
7 5 3t - c0.2009e 4.8753t (55)

,generalstable = (coO.2e4.8999it -c 1 0.2e -4.8999i')i (56)

For a physical understanding of this, the first fixed point corresponds to the beam perched

on left or right edge of the cylinder, with a vertical orientation. This is intuitively unstable

(it is much like the vertical point in the cart pole).



a+O= (2n+1)-
2

Figure 5 - Unstable fixed point in which the beam is perched on the edge of the cylinder. This
situtation is intutively unstable, as it is similar to the vertival position on the cart pole.

The second of these fixed points consists of the beam having its center of mass at the

contact point. This is intuitively stable, as then there would no longer be a torque about

the center of mass, and as such 9 would not vary (though a can).

0=-d
R

Figure 6 - Stable fixed point in which the beam's center of mass is in contact with the cylinder.



Of course, intuition would also say that additional PD terms would not be detrimental.

However, further analysis in this thesis on numerically computing region attraction for

this controller has shown that the region shrinks considerably with this term, though the

causes are unknown.

Since a proportional term is no longer needed, the control and adaptation laws

take on the form:

=Y& - Kdsa -cKd (57)

a = -FYTSa (58)

This, like the cart-pole system, has dubious stability properties once the linear control

terms are added. Instead of verifying stability using Floquet Theory, this thesis uses local

stability verification using Lyapunov-like analysis with Barbalat's Lemma. In addition,

the gain scaling factor c must be tuned using checks for stability. For complete details of

the other control constants used in simulation (F, Kd , etc.) please refer to Appendix 3.

This system is fairly complex, and as such suitable Lyapunov candidates are

exceedingly difficult to find. Fortunately, many numerical tools are available in order to

compute Lyapunov functions. The most notable tools are sums-of-squares tools, which

are useful because they are able to reduce tests of positive definiteness of a function to a

test of positive definiteness of a matrix (something much easier and faster to compute).

Future sections of this thesis discuss the implications of the candidate Lyapunov function

generated using this method.

The Observer

The goal of the control system designed in this thesis, in a broad sense, is to

stabilize the beam on top of the cylinder with no knowledge of the beam altogether (other

than the fact that it can be modeled as a two-dimensional "line" of uniform mass

distribution). The adaptation implemented in this controller is the first step in achieving

this goal. The second and final step toward estimating the parameters of the beam is to



design an observer in order to determine the position of the center of mass of the beam,

do -

The necessity of the observer for this constant is apparent in the fact that the

desired points for both 9 and a are functions of this value. Therefore, if the beam is

ever to be stabilized atop the cylinder, this value must be estimated and fed back as a

reference for each of these states, 9 and a.

Fortunately, there is a rather simple choice for the observer, and has an equally

simple explanation of convergence. The observer is designed to have the following

dynamics:

d0 =-d0 -R (59)

In essence, this results in do being a first-order low-pass filtered version of -R9, with a

cutoff frequency of 1 rad / s . Upon examining these dynamics, several observations can

d
be made. The first is that when 9= 0 , do =0. This means that if the controller

R

detailed previously is able to control 9 to this value, the observer converges to some

constant value. Therefore, we replace the previous desired trajectories (seen in equations

(14) through (17)) with the following desired trajectories:

0 do(60)
R

(61)
ad

ad-R

(62)
9, 0 -0 +9

R R

(63)

R R



Therefore, do converges to a constant value if the controller succeeds in

stabilizing 9 to the desired value detailed above. However, this makes no claim on

exactly what constant value to which this observer converges. This constant value can be

determined by examining the dynamics (equation (4)). Once again the assumption is

made that the controller is stable (at least for some region) meaning that as t -> 00, a, 9,

d, d approach the desired trajectories detailed in equations (60) through (63). When this

occurs, the dynamics in equation (4) are reduced to a simple equality:

d0 -do =0 (64)

This shows that do -> do in the case of a stable controller. Therefore, if this observer is

implemented, there is a conditional convergence for do . If the controller is stable, then

do -> do . If it is not, no further claims can be made. In summary, if stability for the

controller can be verified, then the conclusion can be made that the observer converges to

the desired value.

Stability of the Linearized System

The first step in stability verification for the controller designed in this thesis is to

linearize the system about the fixed point of the system. This point is detailed as being

the point at which a and 0 each are at their ultimate desired points (i.e. the state at

which we seek to stabilize all trajectories towards).

-d0

,desired Ro (65)
R

d
adesired _ (66)

R

desired (67)

adesired =0 (68)



a =constant (69)

do =do (70)

Linearization begins by first taking the Jacobian of the nonlinear system, and

evaluating it at this desired point. However, since the controller adds four new state

variables from the adaptation law and the observer adds one new state variable due to the

dynamics of the observer, the order of the system increases. Before the controller and

observer were implemented, the system was fourth order. However after the controller

and observer are implemented, the system is ninth order. The linearized dynamics of the

system therefore can be reduced to:

f(x) =Ax (71)
ax X=Xdesired

x a a, a2 a3  a4  d0] (72)

When this is done for the closed loop system, the following A matrix is found:

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

2 I1, -mgR+(c-1)Kd Rg mL2 +12I, K cK± I _ Kd +I 0 0 0 0 2 1+cK

I L2 1I, ) I Id 10 RI

mgR 2 I1,+mbgR+(1-c)Kd K cK +I Kd 1, 0 0 0 0 21 +cKd
A =t I, II I it RII, 73

0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-R 0 0 0 0 0 0 0 -1

In order to examine the stability of the system, the eigenvalues must be calculated. For

this to be done, the system parameters found in Appendix 2 and the control parameters

found in Appendix 3 were substituted in. Using c =1, the following eigenvalues are

found:



2=[9.5564+35.2196i 9.5564-35.2196i -15.9595 -1.3118 0 0 0 0 -0.8415] (74)

One complex eigenvalue pair is unstable. However, this can be remedied by changing the

value of c. There are also four zero eigenvalues. These correspond to the four adaptation

states. This merely means that these states will be constants at this point. In addition, the

point at which the linearization is centered for the adaptation states does not affect these

eigenvalues.

In order to determine the stability as a function of c, the real parts of the

eigenvalues were calculated for the values 0 < c < 1. All values of c that resulted in all

negative (or zero) real parts of the eigenvalues were considered acceptable values, as this

denotes a stable system. A graphical representation of the results can be found in Figure

7.

0.55 0.6 0.65 0.7 0.75 0.8 0.85
Gain Scaling Factor c

0.9 0.95 1

Figure 7 - Range of c in which all eigenvalues of the A matrix are negative (or 0 in the case of the
adaptation dynamics). Note that this criteria is primarily dictated by on eigenvalue in particular, and
the dashed lines show the transition from stable eigenvalues to unstable eigenvalues.

Upon examining these results, it was found that the range of acceptable values of c

(those that resulted in a stable linearized system) was:

0.53 < c <0.97

Region Of Stability

- c=.53 c=.97 -

(75)



For the remainder of the study, c is picked to be 0.9. This results in the following stable

eigenvalues (real parts are negative):

2=[-3.1840 +15.1475i -3.1840 -15.1475i -90.2546 -0.8469 0 0 0 0 -1.2811] (76)

Therefore, the linearized system about the desired fixed point is stable, with the exception

of the adaptation variables. They are marginally so, but are fixed as constants in this

linear domain as seen in the zero entries in the eigenvalues seen above. The following

analysis is concerned with discovering when the controller is able to successfully move

the system state to the fixed point of this linearization.

Region of Attraction

With the case of fully actuated nonlinear control, a concise proof can be made on

the stability of the global stability of the controller. However, underactuation increases

the complexity of this proof immensely, and therefore this thesis uses numerical tools in

order to explain the stability of the controller. In addition, this controller is not globally

stable. There are certain sets of initial conditions that are stabilized, and certain initial

conditions that are not stabilized. To show this, the control system was applied to the

system in simulation for two sets of initial condition, one unstable, and one stable. For

this, the system and controller parameter values found in Appendix 2 and Appendix 3

were used (note especially that Kd was set to be lx 103 ). The first, the stable case, had

the following initial conditions:

x=[ 0 0 0 0 0 0 0 0 (77)
'4

do = 0.1m (78)

Note that the initial length, do , while like an initial condition, also characterizes the

dynamics. This means that different values of do will yield a different dynamical system,



which can be seen in the existence of this constant in the dynamics. The results of the

simulation showed stability:
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Figure 8 - Stable case of the controller. Position errors are in reference the desired trajectory (a
function of the observed parameter do ).

In comparison, the controller is unstable with slightly different initial conditions:

x= 0 2 0 0 0 0 0 0
14

(79)

(80)do =0.1m

When the exact same controller is acting, and these slightly different initial conditions are

applied, the following behavior is seen:
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Figure 9 - Unstable case of the controller. Position errors are in reference the desired trajectory (a
function of the observed parameter do ). Note the slight variation of initial conditions as compared to
the stable case.

It can be seen from these two cases that the controller is only locally stable, meaning that

it only stabilizes the system for a specific set of desired initial condition. As stated

previously, computational tools are well suited for this particularly complex case. Sums-

of-squares tools are applicable to this problem, as they are able to reduce tests of negative

and positive definiteness for functions to tests of positive definiteness of a matrix. For

example, take the simple polynomial:

1+2x 2 (81)

By examination, this is obviously a positive definite polynomial. That is not as easily

seen computationally. Yet, one observation that can be made is that this polynomial is

exactly equivalent to the following:



[ ]1 0][ X 1 Ax (82)
10 2 x

This product is always positive definite, if the matrix A is positive definite. This comes

directly from the definition of a positive definite matrix.

x T Ax >0 for any x (83)

In cases of much larger polynomials, this insight allows for rapid tests of positive

definiteness in a computational environment. There has been a toolbox written for

MATLAB which uses this for various goals. The toolbox is SOSTOOLS, and it is used in

this thesis to determine the region of attraction for the controller [4]. This is done by

simply solving for a Lyapunov candidate function which would satisfy Barbalat's Lemma

for a certain region. This is in turn done by ensuring that the candidate function is

negative definite for this region, which is the same as a test for positive definiteness,

except the A matrix used is -A.

One unfortunate aspect of this sums-of-squares method is that it requires tests of

positive definiteness to be done with polynomials. Therefore, the sinusoidal terms in the

dynamics cannot be used. Instead, they must be replaced by Taylor expansions about the

stable point, a+0=0

N (-1)" (84)
sin(a+ ) (a+ 9)2n+1

n= (2n + 1)!

N (-1)" (85)
cos(a+6)=Z (a+69) 2 .

n=1 (2n)!

N is chosen to be as large as possible such that computation is not unnecessarily slow

(N = 2 for the following analysis). This allows for a search to be made for a positive

definite function with a time derivative that is negative definite, using the dynamics of

the closed loop system. This was first done by doing searching for a function with these

properties globally for the whole of state space (for the case of do =0 ). Obviously, from



our results seen in Figure 8 and Figure 9, this is impossible, and the algorithm halts citing

potential "infeasibility" in the problem.

However, it does leave us with the current "best guess" for a function of this

nature (simply the last function solved for during the iterations of SOSTOOLS), which

will prove useful. The full function can be found in Appendix 4, which uses the system

and control parameter values found in Appendices 1 and 3. The meaning of this function

can be seen when it is evaluated for the same initial conditions used for the simulations

seen in Figure 8 and Figure 9.
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Figure 10 - Lyapunov candidate and its time derivatives plotted for the stable simulation. Note how
the first time derivative is always negative, and that V(x) tends towards a finite limit.
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Figure 11 - Lyapunov candidate and its time derivatives plotted for the unstable simulation. Note
how the time derivative of V(x) becomes positive at several points (one is marked in the figure).

As is shown in these plots, the stability of the system can be determined by

applying Barbalat's lemma to the Lyapunov candidate computed using SOSTOOLS. For

the stable case, V(x) is invariably positive definite, as the algorithm searches through

only positive definite functions for one with a negative definite time derivative. In

addition, since V(x) is always less than zero (as shown in Figure 10), V(x) tends

towards a finite limit. Lastly, V(x) is uniformly continuous, as seen in both the plot of

V(x), which is bounded. In addition, this can be seen in the fact that V(x) is merely a

function of the state, which is bounded because V(x) tends towards a finite limit, and is

a function of the state as well. V(x) can be shown to be bounded through this same logic,

and as such proves again the uniform continuity of V(x). Therefore, V(x) -+0 as

t -+ oo. This in turn implies that the state goes to its desired point, since V(x) =0 at this

point. The equation for V(x), shown in full in Appendix 4, verifies that V(x) =0 at the

desired point. However this is also seen in the fact that V(x) is defined as such:

. ..... . ................... ............................. . ........................................................................... ......... -.. .-.-.. .. ........... -, --

X 106 Lyapunov Candidate

10 7



) V . (86)
ax

In order for V(x) to equal zero, i must equal zero. This means that the system will

converge to the fixed point, which is the desired state. For the unstable case, V(x) does

not remain less than zero, and as such the system V(x) does not converge to zero.

Therefore, this function is an indicator of stability, as long as V(x) < 0.

Using this simple metric, the region of attraction of this controller was calculated.

By iterating through initial condition, and simulating the system, one can calculate the

values of V(x) for the simulation. If V(x) <0 for this finite time, it can be reasonably

concluded that the system is stable. This was done for initial conditions in a, 9, a, 9,

as well as for slightly different values for the constant do. The results follow. Note that

white regions correspond to the stable regions, and blacks regions correspond to unstable

regions.
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Figure 12 - Region of attraction based on analysis of a Lyapunov candidate function at varying initial
conditions for a and d. Note that the white region corresponds to the attractive region. In addition
the bounds on a are the initial conditions in which the beam starts contacting the left and right
edges of the cylinder.
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Figure 13 - Region of attraction based on analysis of a Lyapunov candidate function at varying initial

conditions for 0 and 9. Note that the white region corresponds to the attractive region. In addition,

the bounds on 9 are the initial conditions in which the beam starts contacting the left and right
edges of the cylinder.
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Figure 14 - Region of attraction based on analysis of a Lyapunov candidate function at varying initial

conditions for a and do. Note that the white region corresponds to the attractive region. In

addition, the bounds on a are the initial conditions in which the beam starts contacting the left and

right edges of the cylinder. In addition, be aware that varying values in do must use different

Lyapunov candidate function, since the dynamics are changed when do is varied



These regions are "slices" of state space, and the region of attraction has a ninth-

dimensional shape. The regions correspond to when the other states are at the desired

point, and the states displayed are varied. This allows for this region of attraction to be

more plainly seen.

As seen in these figures, the region of attraction is a relatively broad one.

Unfortunately, this is done with unrealistically high control inputs on the order of 5000

N-m (see Figure 8). The following section will be concerned with designing a controller

than not only reduces the required torque to stabilize the system, but also increases the

region of attraction as much as possible.

LQR Trees

The controller detailed previously is able to stabilize the system locally. It has a

relatively large region of attraction, yet this can be improved upon. This can be done by

applying the LQR Trees algorithm. This algorithm creates a controller that is in actuality

a series of locally stable LQR controllers. Each controller is able to coerce trajectories to

the region of attraction of the another controller, which passes the trajectory to another

region of attraction for another controller, and so on until the trajectory reaches the

desired point in state space. The controller exists in a "tree" of these controllers in which

any initial point in state space (within a certain range) will follow a chain of controllers to

the desired point. For simplicity, no adaptation principles were used when the LQR trees

algorithm was applied to the cylinder-beam system.

An additional advantage of using this algorithm is that the linear controllers will

require much lower control inputs. The nonlinear adaptive controller has somewhat

unrealistic torque requirements (on the order of approximately 5000 N-m). Therefore,

another advantage of applying this algorithm is to have much more reasonable torque

requirements.

The LQR trees algorithm begins with the controller that is applied last during

simulation of the controller. Specifically, this is the LQR controller about the desired

point. The tree of controllers terminates at this point, and for this reason it is the "final"



controller. To design the controller, the system was first linearized about the desired fixed

point:

dafx) afx) X+

Iax lx=xd,,i,,,u=0 au x=xd.,,,d ,u=0

u=Ax+Bu (87)

Using this linearization, the following LQR gain matrix was found using the cost

matrices Q and R in Appendix 5 (full state feedback was assumed):

K =[-1.9192 1.6036 -0.8977 2.1128] (88)

In order to determine the region of attraction for this controller, the invariant set theorem

can be applied. The invariant set theorem states [5]:

If:

-For I>0, V(x) is bounded in the region Q, defined by V(x) < 1

-V(x) <0 for all x in Q,

Then V(x) -> 0 as t -> oo.

Therefore, we must find a Lyapunov candidate for which in some region this is true. A

suitable candidate is the cost function associated with the LQR controller:

V=xTSx >O0

Y =2x T Si

(89)

(90)

A region must be found in which the invariant set theorem can be applied. Therefore, a

search for the level set 1 must be done. This can be carried out using an S-procedure,

which is done computationally using a sums-of-squares program. The S-procedure



essentially is a search for the maximum 1 with which the following polynomials are

positive definite[8]:

-#+A(x)(V -l) >0

A(x) >0

If this is true, then the conditions of the invariant set theorem are met for the region

(91)

(92)

defined by V(x) < 1 (i.e. V(x) <0 in the region). Therefore, an initial condition in this

region will be stabilized to the desired point. This computation was done for the

controller designed in (88), with the following result:

1=0.6738 (93)

This domain of attraction is shown visually in the following figures:
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Figure 15 - Region of attraction of the time invariant LQR controller seen in the a, d plane. The
bold ellipse shows the outline of the region, and the thin lines are sample trajectories initialized on
the edge of the region in order to demonstrate the stability of the system in this region.
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Figure 16 - Region of attraction of the time invariant LQR controller seen in the 9, 9 plane. The
bold ellipse shows the outline of the region, and the thin lines are sample trajectories initialized on
the edge of the region in order to demonstrate the stability of the system in this region.

This provides us with a region in which this controller can be stably applied.

Growing the Tree

The next step is to create some nominal trajectories leading to this region from

random points. Random points are chosen because of the fact that, much like a Rapidly

Expanding Random Tree (RRT) algorithm, guarantees can be made stating that as t -+ oo

the entire state space will be filled by the tree [8].

Of course, a choice must be made as to limits of these random points. Because of

the physical constraints of the system, this choice is relatively simple. Due to the fact that

the dynamics make little sense when the beam is on the bottom of the cylinder, the

random points must ensure that the beam begins in contact with the cylinder on some

point on top of the cylinder. In addition, 9 must be within a range such that the contact

point is on the length of the beam. These constraints were tightened slightly in order to

. ....................................... .............. .......... .. ................. .... ........ ...... .............................



prevent failures in the trajectory optimization algorithm. The final conditions correspond

to the following constraints:

(94)
-- <a+6<-

2 2

-4< 0 <0 (95)

The choice of the limits of the initial velocities of the system (a and d) is

somewhat arbitrary, though the limits chosen were chosen so that the trajectory

optimization algorithm used would produce reasonable solutions. The limits are:

-1<0<1 (96)

-1<a<1 (97)

The nominal trajectories from these random points to a point on the existing tree

represent new branches in the LQR tree. In order to add new branches to the tree, we

must stabilize the trajectories using time-varying LQR controllers, and then determine the

regions of stability of the controllers using similar analysis as that for the time invariant

case seen above. This allows us to determine exactly which regions in state space are

"covered" by the tree. As this "tree" grows, the trajectories may also terminate at points

in previous nominal trajectories, depending on what point is closer from a distance metric

based on the potential function seen in equation (89). This can be repeated until the

regions of stability for all of the controllers combine to cover a suitable large portion of

the state space.

In order to generate nominal trajectories, well established shooting methods were

used in order to minimize the cost function [1]:

J =(Xf Xdes )T Qf (Xf - Xdes) (98)



In this, xf is the final point in the trajectory, xde,, is the desired endpoint for the trajectory,

and Qf is a weighting cost matrix (set to be identity). Minimizing this cost function

places the end of the trajectory as close as possible to the desired endpoint. This

minimization was done using the Sequential Quadratic Programming (SQP) toolbox for

MATLAB, SNOPT [2]. Gradients of the cost function were calculated using Back

Propagation Through Time (BPTT). An example of this trajectory optimization for a

random state can be seen in the following figures:
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Figure 17 - Example of trajectory optimization for random initial conditions seen in the a, a plane
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Figure 18 - Example of trajectory optimization for random initial conditions seen in the 9, 9 plane

The Time-Varying LQR Controller

Once a nominal trajectory is found, it must be stabilized using a time-varying

LQR controller which coerces nearby trajectories to this trajectory. A time-varying LQR

controller can be made by first linearizing the dynamics about the nominal trajectory

generated previously:

X(t) = x(t) - x0 (t)

_i(t) = u(t) - u0 (t)

x ~ A(t)xY(t) + B(t)ii(t)

(99)

(100)

(101)

Where x0 (t) and u0 (t) are the nominal trajectories. As with the time invariant LQR

controller, a cost function must is used with the form:

Desired State

Random State

-1 I
-2.5

.............. . ...........

-0.5



J = Y(t f) QfX(tf )+

tf

f[ [(t) Q(t) + TRIPt
0

Where Qf , Q, and R are all positive definite symmetric matrices. By assuming that the

optimal cost function takes on the form:

J= X(t) TS(t)i (t) (103)

The following Riccati Equation is found, which S(t) is a solution for:

S(t) = -Q + SBR-1B T S -SA - AT S (104)

This can be solved by integrating backwards in time, in order to preserve the boundary

condition:

S(tf )= Qf (105)

The solution calculated for S(t) leads to the following optimal feedback control law:

(106)

This feedback law will stabilize trajectories to this nominal trajectory, given the

trajectory is initialized within the region of attraction of the controller. The values used

for the cost matrices Q , R, and Qf can be found in Appendix 6. The following section is

concerned with determining the limits of this region of attraction for the time-varying

case.

(102)

u *(t) = -R-IB(t) TS (t)X (t) = -K(t)x-(t)



Region of Attraction of a Branch

Once a controller is calculated to stabilize a trajectory, the computation of the

region of attraction is extremely similar to the procedure for the time-invariant LQR

controller. The reason for this is that the trajectory optimization algorithm outputs a

discrete array of states that represents the state of the system at each interval At in

discrete time. As such, the controller is also in discrete time, causing for discrete

instances of S(tk) and K(tk) for each of the states in the nominal trajectory. As such, the

invariant set theorem needs to be applied only to each one of these discrete states, and the

corresponding discrete control parameters (S(tk) and K(tk)). This is done by applying a

nearly identical search for a level set I that defines a region V(x, tk) <I in which

V(x, tk) <0 everywhere in that region. Once again an S-procedure is used, which is done

by ensuring that the polynomials in (91) and (92) are positive definite. The Lyapunov

candidate remains the same. Since the matrix S(tk) is time-varying, the time derivative

of the Lyapunov is slightly different.

V = 2x (t, )T S(tk)()± (tk )T S )(tk) (107)

Using this slightly altered S-procedure, a maximum value for 1 is computed for each state

in the nominal trajectory, which results in a varying I in discrete time, l(tk).

This entire procedure is repeated when a new nominal trajectory is added. The

resulting discrete nominal trajectory, defined as x,,,j[n] and control input u,,,,j [n], and

each points corresponding l[n], S[n], and K[n] values, are appended to the values found

previously (n is simply an index that allows us to easily relate each point in space to its

corresponding level set l[n], ut,,j[n], S[n], and K[n] values). As more branches are

made in this way, the space covered by the regions of attraction defined by xt,,,j [n], l[n],

and S[n] expands. A visual representation of the space covered after adding 2 branches

can be seen in the following figures.
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Figure 19 - Region of Attraction of Controller after adding 2 branches, projected onto the a, a
plane. Note that for the nominal trajectories, the region of attraction (an ellipse) is shown at every
third discrete point for clarity.
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Figure 20 - Region of Attraction of Controller after adding 2 branches, projected onto 0, 9 plane.
Note that for the nominal trajectories, the region of attraction (an ellipse) is shown at every third
discrete point for clarity.
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Application of the Controller

Once we have a suitable robust coverage of the state space, we can take the

discrete entries of x,,,,j[n], utraj[n], l[n], S[n], and K[n], and apply it to the real system.

The algorithm for applying the controller is relatively simple. Firstly, and initial point is

randomly selected. Then, the regions of attraction that this point falls into are found. A

point is considered inside a region of attraction if, given (108), the inequality in (109) is

true:

i)nit Xrandom -xtraj [fn (108)

-T S[n]z, i, < 1[n] (109)

Once this is done, any of the regions can be selected, and the corresponding gain

matrix K[n] is applied. Any of the applicable (i.e. the initial condition is in the region of

attraction) K[n] entries can be applied as such:

uin =uiraj [n] - K[n]( x -xtraj [n]) (110)

Where x is the current point in state space and uin is the control to be inputted into the

system.

For a robust application, at each discrete time step, this procedure is repeated, and

an appropriate gain matrix K[n] and nominal control input utraj[n] is applied depending

on what region of attraction the trajectory is in. In practice, it is much simpler to merely

increment K[n] , utraj [n], and xtraj [n] at each time step. Note that it is important that the

time step used in simulation is the same time step as the trajectory optimization, as

inconsistencies in this could cause for the trajectory to "leap" out the region of attraction

(for the simulations in this thesis, At =.005). If these time steps are matched, though, this

allows for a very simple implementation. Using a controller taken from an LQR tree with



110 branches, a simulation was run starting at some random initial condition within the

range of the system defined in (94) and (96). The resulting trajectory is shown.

Change Nominal Trajectory /

-11
1.8 1.9 2 2.1 2.2

Alpha [rad]
2.3 2.4 2.5 2.6

Figure 21 - Simulated trajectory starting from a random point within the bounds of the tree, seen in
the a , d plane. Note how the trajectory is "passed" from one nominal trajectory stabilization to the
next. This occurs at the sharp turns in the trajectory. The nominal trajectory is the dashed line.
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Figure 22 - Simulated trajectory starting from a random point within the bounds of the tree, seen in

the 9, 9 plane. Note how the trajectory is "passed" from one nominal trajectory stabilization to the
next. This occurs at the sharp turns in the trajectory. The nominal trajectory is the dashed line.
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Figure 23 - Control Input for the trajectory simulation seen in Figures 21 and 22.
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As can be seen, the trajectory is passed through the branches of the tree, eventually

arriving at the desired fixed point. This stability would occur for any initial condition

lying within the regions of attraction of the controller. In simulation, the tree was found

to cover approximately 80% of the region of state space described by equations (94)

through (97). This was calculated by running the controller on a large number of initial

conditions, and determining what percentage was stabilized. In addition, the stability is

achieved with much lower control inputs, as compared to the nonlinear adaptive

controller detailed previously.

Conclusion

This study applied an adaptive controller designed for dynamics discovered using

collocated PFL (Partial Feedback Linearization). In addition, using inspiration from work

surrounding the cart-pole system, we applied derivative control on the non-collocated

variable in order to grant stability to this state along with the collocated states. By using

numerical tools, we were able to find a Lyapunov candidate, which although without

global applicability, allowed us to determine the region of stability of the controller

locally (see Figure 13 through Figure 14).

However, in order to have a controller have a larger region of attraction, the goal

of adaptation was ignored, and the algorithm of LQR Trees was applied. This allowed for

a local controller (with a larger region of attraction) to be designed for, which was a

combination of multiple locally stable controllers. One difference however, is that these

were all linear LQR controller, unlike the other adaptive controller, which was nonlinear.

One advantage of using these linear controllers, though, is that they required much lower

torques in order to stabilize the system (compare Figure 8 to Figure 23).

This study has shown one strategy for nonlinear adaptive control, and explored

the stability limits by examining the domain of local stability of the controller. This is a

useful strategy, yet the computations for the region of stability are somewhat lengthy.

The other controller studied in this thesis, which was generated using the LQR Trees

algorithm, was able to cover a somewhat larger area in state space with lower torque

inputs, with the sacrifice of adaptive aspects of control. Therefore, the application of each



of these control strategies can be reduced to a decision between range of stability and

ability for adaptation. Whatever the outcome of this decision, this thesis has demonstrated

the methods and results of each of these control strategies so that they can be applied in

the future.



Appendix 1: System Parameter Definitions

Initial distance of contact point from
do center of mass of bar

g Acceleration of gravity

mb Mass of the beam

If Inertia of the cylinder

L Length of the beam

R Radius of the cylinder

r Control Input Torque (from motor)

Appendix 2 - System Parameter Values

do 0.lm

9 ~ 9.8 M
2

S

mb 1kg

if lkg m2

L 0.5m
R 0.05m

Appendix 3 - Control Parameters

0.5 0 0 0
0 0.5 0 0

0 0 0.5 0

L0 0 0 0.5j

Kd 1x10 3

c 0.9

2 1

Appendices



Appendix 4 - Full Lyapunov Candidate Function - As Outputted from SOSTOOLS

V(t)=0.88614.*al.^2 + 1387.1508.*al + 0.89512.*a2.^2 + 0.89512.*a3.^2 +

0.002631.*a3 + 0.89552.*a4.^2 - 95.5142.*a4 + 116.9974.*alpha.^2 +
0.88866.*alpha.*alphadot + 91.6767.*alpha.*theta + 0.44244.*alphadot.^2 +
3.5314.*alpha-dot.*theta + 49586.223.*dhat0.A2 + 1070.8251.*dhat0.*theta -
0.00053733.*d hat0.*theta dot + 44.8339.*theta.A2 + 2.6458.*theta.*theta-dot -
0.0064686.*theta dot.^2 + 3473456.2171

V(t) =theta dot.*(6451174249352449/70368744177664.*alpha +
17657/5000.*alpha dot + 588692324382199/549755813888.*dhatO +
13229/5000.*thetadot + 1577452619793485/17592186044416.*theta) +
alpha-dot.*(4116480055025913/17592186044416.*alpha + 44433/50000.*alphadot +
6451174249352449/70368744177664.*theta) - (44433/50000.*alpha +
11061/12500.*alphadot + 17657/5000.*theta).*(4000000/4001.*alpha - 4000/4001.*a4
+ 4000000/4001.*alphadot - 80000000/4001.*dhatO + 4000000/4001.*thetadot -
4000/4001.*a2.*(alphadot + theta dot).A2 + 2/4001.*thetadot.A2.*theta -
4000/4001.*al.*(alphadot + 40.*dhatO - thetadot + 2.*theta) +
2/4001.*alpha dot. *thetadot. *theta - 4000/4001. *a3. *theta. *(alpha-dot + theta-dot).A2
+ 1/400 1.*alpha-dot.*theta.*(alphadot - thetadot) +
1/4001.*thetadot.*theta.*(alphadot - theta-dot) - 196/4001) - (d hatO +
1/20.*theta).*(212971206117163/2147483648.*dhatO -
4955994496563177/9223372036854775808.*theta dot +
588692324382199/549755813888.*theta) +
(4955994496563177/9223372036854775808.*dhatO +
3728894022349925/288230376151711744.*theta dot -
13229/5000. *theta). *(4000/400 1. *a4 - 4000000/4001. *alpha - 4000000/4001.*alpha dot
+ 80000000/4001.*dhatO - 4000000/4001.*thetadot + 588/25.*theta.*(alpha + theta) +
4000/4001.*a2.*(alphadot + theta dot).A2 - 2/4001.*thetadot.A2.*theta +
4000/4001.*al.*(alphadot + 40.*dhatO - thetadot + 2.*theta) -
2/4001.*alpha-dot.*thetadot.*theta + 4000/4001.*a3.*theta.*(alphadot + theta-dot).^2
- 12028/100025.*alpha-dot.*theta.*(alphadot - theta dot) -
12028/100025.*thetadot.*theta.*(alphadot - thetadot) + 196/4001) - (5597/3125.*a4 -
6721214305134235/70368744177664).*(1/2.*alpha + 1/2.*alpha dot + 1/2.*theta) -
(44307/25000.*al + 3050376868157561/2199023255552).*(alpha + alpha-dot +
theta).*(1/2.*(alpha-dot) + 20.*(d hatO) - 1/2.*(theta dot) + (theta)) -
11189/12500.*a2.*((alpha-dot) + (theta-dot)).A2.*(alpha + alpha-dot + theta) -
1/2.*(theta).*(1 1 189/6250.*a3 +
6066672957241229/2305843009213693952).*((alpha dot) + (thetadot)).^2.*(alpha +
alpha-dot + theta)



Appendix 5 - Time Invariant LQR Cost Matrices

1 0 0 0

Q 0 1 0 0
0 0 1 0

0O 0 0 1

R 1

Appendix 6 - Time-Varying LQR Cost Matrices

300 0 0 0
0 300 0 0

r0 0 300 0
0 0 0 300

R 1

30 0 0 0
0 30 0 0

Qf 0 0 30 0
L0 0 0 30j
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