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Abstract: Here we present an integrated isolator design based on nonreciprocal coupling into a magneto-
optic surface-plasmon waveguide that achieves an isolation > 30dB with an insertion < 3dB in a device 
length< 100μm.   
© 2009 Optical Society of America  
OCIS codes: (130.3120); (160.3820) ;(230.3240); (240.6680) 
 

Magneto-optic surface-plasmon devices show promise for integrated photonic applications.  Photonic devices such 
as isolators, modulators, and photonic switches could benefit from magneto-optic plasmonics.  Nonreciprocal phase 
shift isolators have been proposed using surface-plasmon magneto-optic slab waveguides [1,2]. The insertion loss in 
these devices is limited by the plasmon propagation loss.  Here we present an isolator design which exploits the 
surface-plasmon loss to achieve large isolation.   
 The coupling between modes in two adjacent waveguides is well described by coupled-mode theory.   In 
Figure 1a we consider the coupling between two waveguides consisting of the dielectric waveguide (WG1) and the 
surface plasmon waveguide (WG2).  Individually, the waveguides are described by propagation constants β1 and β2 
for the dielectric and surface plasmon waveguide respectively.  When the two waveguides are brought together they 
interact leading to a coupled mode solution for the total waveguide shown in Figure 1b.  The coupling strength 
between the two waveguides depends on their relative separation and the matching of their effective indices.  In 
Figure 1 the surface-plasmon metal consists of a 100nm thick iron film of length < 100µm.  An external magnetic 
field is applied in a direction transverse to the beam propagation. 
 

 
 

Fig. 1.  (a) Two waveguides used in coupled mode theory. (b) Nonreciprocal coupling between  
the two waveguides for use as an isolator. 

 
 The magnetic field induced nonreciprocity of the surface plasmon waveguide results in a different effective 
index in the forward and reverse directions denoted by neff,sp,fwd and neff,sp,rvs respectively.  For efficient coupling to 
occur in the reverse direction the real part of the effective index must match the effective index of the dielectric 
waveguide neff,d [3,4].  In the forward direction, the two indices must be sufficiently mismatched (neff,d ≠ neff,sp,fwd ) for 
weak coupling to result allowing for a low insertion loss.  Figure 2 illustrates the nonreciprocal behavior of the 
surface plasmon mode as a function of the iron film thickness with an applied saturated magnetic field in the 
transverse direction of propagation (Voigt geometry). 
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Fig. 2.  Magneto-optic properties of an iron film surface plasmon waveguide. 

 
 As shown in Figure 2, the effective index of the surface plasmon mode in the reverse direction can be matched to 
the effective index of the dielectric waveguide by varying the metal thickness.  For a 100nm thickness, the effective 
index of the surface plasmon mode matches the effective index of the dielectric mode (neff,sp,rvs=neff,d=3.25).  We 
define a detuning parameter (δβ/k0= neff,sp,fwd - nef,f,sp,rvs) which results from applying  a saturating magnetic field to 
the surface-plasmon magneto-optic metal.  By appropriately choosing the upper cladding thickness which separates 
the dielectric waveguide and the surface-plasmon waveguide device lengths smaller than 100µm are achievable.  
The imaginary index of the surface-plasmon mode is also illustrated in Figure 2.  The imaginary index illustrates 
that the surface plasmon mode undergoes rapid attenuation with a 1/e extinction length of 5.7µm providing greater 
than 30dB isolation in device lengths less than 100μm.   
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