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MCA: A Multichannel Approach to SAR Autofocus

Robert L. Morrison, Jr., Member, IEEE, Minh N. Do, Senior Member, IEEE, and David C. Munson, Jr., Fellow, IEEE

Abstract—We present a new noniterative approach to synthetic
aperture radar (SAR) autofocus, termed the multichannel auto-
focus (MCA) algorithm. The key in the approach is to exploit the
multichannel redundancy of the defocusing operation to create a
linear subspace, where the unknown perfectly focused image re-
sides, expressed in terms of a known basis formed from the given
defocused image. A unique solution for the perfectly focused image
is then directly determined through a linear algebraic formulation
by invoking an additional image support condition. The MCA ap-
proach is found to be computationally efficient and robust and does
not require prior assumptions about the SAR scene used in existing
methods. In addition, the vector-space formulation of MCA allows
sharpness metric optimization to be easily incorporated within the
restoration framework as a regularization term. We present exper-
imental results characterizing the performance of MCA in compar-
ison with conventional autofocus methods and discuss the practical
implementation of the technique.

Index Terms—Blind deconvolution, circular deconvolution,
image restoration, multichannel, sharpness optimization, signal
subspace methods, synthetic aperture radar (SAR) autofocus.

1. INTRODUCTION

N synthetic aperture radar (SAR) imaging, demodulation
I timing errors at the radar receiver, due to signal delays
resulting from error in the estimated trajectory of the radar
platform (i.e., line-of-sight motion perturbations within the
slant plane) or from error inserted by signal propagation
through the ionosphere, produce unknown phase errors in the
Fourier imaging data. As a consequence of the phase errors,
the resulting SAR images can be improperly focused. The SAR
Autofocus problem is concerned with the restoration of the
perfectly focused image given the phase-corrupted Fourier data
and assumptions about the underlying SAR scene.
In typical SAR data acquisitions, the phase error can be mod-
eled as varying only along one dimension in the Fourier do-
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main. The following mathematical model relates the phase-cor-
rupted Fourier imaging data G to the perfect data G through the
1-Dphase error function ¢, as [1]

Gk, n] = G[k, n]e?¢<F] (1)

where the row index k¥ = 0,1,...,M — 1 corresponds
to the cross-range frequency index and the column index
n=20,1,..., N — 1 corresponds to the range (spatial-domain)
coordinate. The SAR image g is formed by applying an inverse
1-D DFT to each column of G: §[m,n] = DFT, *{G[k,n]}.
Because the phase error ¢. is a 1-D function of k, each
column of g has been defocused by the same blurring kernel
blm] = DFT;*{e7¢<K} as

glm, n] = g[m,n] & b[m] 2

where @), denotes M -point circular convolution, and g is the
perfectly focused image.

The SAR autofocus problem has received much attention
(note references [2]-[11]). Most of the existing approaches to
autofocus create an estimate of the phase error function qASS,
and apply this estimate to the corrupt data to produce a focused
restoration. To accurately estimate the phase error, appropriate
prior assumptions about the underlying SAR scene are in-
voked. For example, the widely used Phase Gradient Autofocus
(PGA) technique is based on the model of a single target at
each range coordinate embedded in white complex Gaussian
clutter [1, p. 257], [3] (although, in practice PGA is used for a
broader class of imagery). Other autofocus techniques utilize
image sharpness metrics, where an optimization routine is
employed to determine the phase error estimate that minimizes
(or maximizes) a particular metric evaluated on the image
intensity [4]-[6]. Commonly utilized metrics include entropy
and various powers of the image intensity, which tend to favor
sparse images such as collections of point scatterers. While the
restoration results obtained using these approaches often are
outstanding, the techniques sometimes fail to produce correct
restorations [5], [12]. The restorations tend to be inaccurate
when the underlying scene is poorly described by the assumed
image model.

From the defocusing relationship in (2), we see that there is
a multichannel nature to the SAR autofocus problem. Fig. 1
presents this analogy: the columns gl of the perfectly focused
image g can be viewed as a bank of parallel filters that are ex-
cited by a common input signal, which is the blurring kernel b.
Thus, there is a similarity to blind multichannel deconvolution
(BMD) problems in that both the channel responses (i.e., per-
fectly focused image columns) and input (i.e., blurring kernel)
are unknown, and it is desired to reconstruct the channel re-
sponses given only the output signals (i.e., defocused image
columns) [13]. However, there are two main differences be-
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Fig. 1. Diagram illustrating the multichannel nature of the autofocus problem.
Hffere, b is the blurring kernel, {g!"1} are the perfectly focused image columns,
and {g[™1} are the defocused columns.

tween the SAR autofocus problem considered here and the setup
assumed in the BMD literature. First, the filtering operation in
the SAR autofocus problem is described by circular convolu-
tion, as opposed to standard discrete-time convolution. Second,
the channel responses g™, n = 0,1, ..., N—1, in the autofocus
problem are not short-support FIR filters, but instead have sup-
port over the entire signal length. Subspace-based techniques
for directly solving for the channel responses have been pro-
posed for the general BMD problem; here, under mild condi-
tions on the channel responses and input, the unknown channel
responses are determined exactly (up to a scaling constant) as
the solution of a system of linear equations [14], [15]. It is of
interest to apply a similar linear algebraic formulation to the
SAR autofocus problem, so that the implicit multichannel rela-
tionship can be captured explicitly.

In [16], we presented initial results in applying existing sub-
space-based BMD techniques to the SAR autofocus problem.
However, a more efficient and robust approach is to consider
the dual problem of directly solving for a common focusing
operator f (i.e., the inverse of the blurring kernel b), as op-
posed to solving for all of the channel responses gl™!, n =
0,1,..., N — 1[17]. To accomplish this, we explicitly charac-
terize the multichannel condition of the SAR autofocus problem
by constructing a low-dimensional subspace where the perfectly
focused image resides. The subspace characterization provides
a linear framework through which the focusing operator can
be directly determined. To determine a unique solution, we as-
sume that a small portion of the perfectly focused image is
zero-valued, or corresponds to a region of low return. This con-
strains the problem sufficiently so that the focusing operator can
be obtained as the solution of a known linear system of equa-
tions; thus, the solution is determined in a noniterative fashion.
We refer to this linear algebraic approach as the MultiChannel
Autofocus (MCA) algorithm. In practice, the constraint on the
underlying image may be enforced approximately by acquiring
Fourier-domain data that are sufficiently oversampled in the
cross-range dimension, so that the coverage of the image ex-
tends beyond the brightly illuminated portion of the scene de-
termined by the antenna pattern [1].

Existing SAR autofocus methods implicitly have relied upon
the multichannel condition to properly restore images [18]. In
the MCA approach, we have systematically exploited the multi-
channel condition using an elegant subspace framework. While
the success of existing autofocus approaches requires accurate
prior assumptions about the underlying scene, such as the suit-
ability of sharpness metrics or knowledge of point scatterers,
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MCA does not require prior assumptions about the scene char-
acteristics. The MCA approach is found to be computationally
efficient, and robust in the presence of noise and deviations from
the image support assumption. In addition, the performance of
the proposed technique does not depend on the nature of the
phase error; in previous SAR autofocus techniques that do not
explicitly exploit the linear structure of the problem, the perfor-
mance sometimes suffers considerably when the phase errors
are large and rapidly varying. MCA is simply expressed in a
vector-space framework, allowing sharpness metric optimiza-
tion to be easily incorporated as a regularization term, and en-
abling SAR autofocus to be cast into a more unified paradigm
with other image restoration problems.

The organization of the paper is as follows. Section II presents
the SAR autofocus problem statement, and establishes the nota-
tion used in this paper. In Section III, a linear algebraic frame-
work is derived for the problem, and the MCA image restoration
procedure is formulated. An analysis of the MCA technique,
and its computationally efficient implementation, are presented
in Section IV. Section V addresses incorporation of sharpness
metric optimization within the MCA restoration framework as a
regularization procedure. In Section VI, the application of MCA
in practical scenarios is discussed. Section VII presents simula-
tion results using synthetic and actual SAR images. The perfor-
mance of the proposed technique is compared with that of con-
ventional autofocus algorithms; MCA is found to offer restora-
tion quality on par with, or often superior to, the best existing
autofocus approaches.

II. PROBLEM SETUP

Notation

We introduce vector notation for discrete signals. The
column vector b € CM is composed of the values of b[m],
0,1,...,M — 1. Column n of g[m,n], representing
a particular range coordinate of a SAR image, is denoted
by the vector g[") € CM. We define vec{g} € CM" to
be the vector composed of the concatenated columns g["],
n = 0,1,..., N — 1. The notation {A}q refers to the matrix
formed from a subset of the rows of A, where (2 is a set of row
indices. Lastly, C{b} € CM*M g a circulant matrix formed
with the vector b

m =

b[0]
b[1]

BIM —1] ... b[1]
b[0] b[2]

clb) = 3)

M —1] b[M — 2] b[0]
A. Problem Description and Characterization of the Solution
Space

The aim of SAR autofocus is to restore the perfectly focused
image g given the defocused image g and assumptions about
the characteristics of the underlying scene. Using (1) and (2),
the defocusing relationship in the spatial-domain is expressed
as

g=FID(c/*)Fg
N————
Ciby

“
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where F' € CM*M ig the 1-D DFT unitary matrix with entries
Fypm = 1/\/Me_j27’km/M, FH is the Hermitian of F and rep-
resents the inverse DFT, D(e/%) € CM*M j5 a diagonal matrix
with the entries /?<[*] on the diagonal, and C{b} € CM*M
is a circulant matrix formed with the blurring kernel b, where
bim] = DFT; ' {e/%<[F]}. Thus, the defocusing effect can be
described as the multiplication of the perfectly focused image
by a circulant matrix with eigenvalues equal to the unknown
phase errors. Likewise, we define the solution space to be the
set of all images formed from g with different ¢

i(¢) = F'D(c77*)Fg (5)
~— ———
Cif.}

where f 4 is an all-pass correction filter. Note that §(¢,) = g.

Autofocus algorithms typically solve for the phase error esti-
mate ¢ directly, and apply this to the corrupt imaging data G to
restore the image

g[m,n] = DFT;{ Gk, n]e %]}, (6)

Most SAR autofocus methods are iterative, evaluating some
measure of quality in the spatial domain and then perturbing
the estimate of the Fourier phase error function in a manner
that increases the image focus. In this paper, we present a non-
iterative approach where a focusing operator f is directly de-
termined to restore the image; given f, it is straightforward to
obtain ¢ = ¢,_. Underlying the approach is a linear subspace
characterization for the problem, which allows the focusing op-
erator to be computed using a linear algebraic formulation. This
is addressed in the next section.

III. MCA RESTORATION FRAMEWORK

A. Explicit Multichannel Condition

Our goal is to create a subspace for the perfectly focused
image g, spanned by a basis constructed from the given defo-
cused image g. To accomplish this, we generalize the relation-
ship in (5) to include all correction filters f € CM that is, not
just the subset of allpass correction filters f 4. As a result, for
a given defocused image g, we obtain an M -dimensional sub-
space where the perfectly focused image g lives

9(f) =C{fis @)

where g(f) denotes the restoration formed by applying f. This
subspace characterization explicitly captures the multichannel
condition of SAR autofocus: the assumption that each column
of the image is defocused by the same blurring kernel.

To produce a basis expansion for the subspace in terms of g,
we select the standard basis {e},} 1" for CM, i.e., ex[m] = 1
if m = k and 0 otherwise, and express the correction filter as

M-1

F=> frex. ®)
k=0

Note that at this point we do not enforce the allpass condition;
the advantage of generalizing to all f € C™ is to create a linear
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framework. Using the linearity property of circular convolution,
we have

M-1

C{f} = Z fxC{er}.

k=0

From this, any image g in the subspace can be expressed in terms
of a basis expansion as

M—-1

af)=>_ heM(@) ©)

k=0
where
0l(g) = Cfer}d

are known basis functions (since g is given) for the M-di-
mensional subspace containing the unknown perfectly focused
image g. In matrix form, we can write (9) as

vec{g(f)} = @(9)f

(10)

(1)

where

®(g) ¥ [vec{p”(§)}, vec{p!(9)},

.. ,Vec{tp[M_l](g)}] (12)

is referred to as the basis matrix. Note that for there to be a
unique solution for f, ®(§) must have rank M. We explore con-
ditions on the rank of the defocused image g in more detail in
Section IV.

B. MCA Direct Solution Approach

To formulate the MCA approach, we express the unknown
perfectly focused image in terms of the basis expansion in (9)

vec(g) = (3)f*

where f* is the true correction filter satisfying g(f*) = g.
Here, the matrix ®(g) is known, but g and f* are unknown. By
imposing an image support constraint on the perfectly focused
image g, the linear system in (13) can be constrained sufficiently
so that the unknown correction filter f* can be directly solved
for. Specifically, we assume that g is approximately zero-valued
over a particular set of low-return pixels 2

(13)

_ [&[m,n], form,n e
glm.n] = {g'[m,nL for m, n & © (14
where {[m,n| are low-return pixels (|{[m,n]| ~ 0) and

g'[m,n] are unknown nonzero pixels. We define Q to be the
set of nonzero pixels (i.e., the complement of €2), and we say
that these pixels correspond to the region of support (ROS). In
practice, the desired image support condition can be achieved
by exploiting the spatially limited illumination of the antenna
beam, or by using prior knowledge of low-return regions in the
SAR image. We will elaborate more on the practical application
of the image support assumption in Section VI.
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Enforcing spatially limited constraint (14) directly into mul-
tichannel framework, (13) becomes

[ ¢ ]:[@@»ﬂf*
veelg'} | ~ [{®(9)}n

where £ = {vec{g}}q is a vector of the low-return constraints,
{®(g)}q are the rows of ®(§) that correspond to the low-return
constraints, and {®(g)} are the rows of ®(g) that correspond
to the unknown pixel values of g within the ROS. Given that £
has dimension M — 1 or greater (i.e., there are at least M — 1
zero constraints), when € = 0 the correction filter f* can be
uniquely determined up to a scaling constant by solving for f in

5)

{®(g)}af =0. (16)
We denote this direct linear solution method for determining
the correction filter as the MultiChannel Autofocus (MCA) ap-
proach, and define

~y def

P0(9) = {®(9)}o

to be the MCA matrix formed using the constraint set 2.

Given the assumption £ = 0, the MCA approach requires
that ®(g) is arank M — 1 matrix (note that ®(g) is a matrix
formed from a subset of the rows of the basis matrix ®(g) and,
thus, will have rank less than or equal to M). In Section IV, we
state the necessary conditions for which this rank condition is
satisfied. The solution f to (16) can be obtained by determining
the unique vector spanning the nullspace of ®q(§) as

f = Null(®,(5)) = of* (17)
where « is an arbitrary complex constant. To eliminate the mag-
nitude scaling o, we use the Fourier phase of f to correct the
defocused image according to (6)

8 = =2 (DT} ) (18)

In other words, we enforce the allpass condition of f to deter-
mine a unique solution from (17).

C. Restoration Using the SVD

When |{[m,n]| # 0 in (14), or when the defocused image
is contaminated by additive noise, the MCA matrix has full
column rank. In this case, we cannot obtain f as the null vector
of @ (§). However, by performing the singular value decompo-
sition (SVD) of ®(§), a unique vector that produces the min-
imum gain solution (in the ¢5-sense) can be determined. We ex-
press the SVD as

®o(g) = ULV (19)
where £ = diag(oy,09,...,0n0) is a diagonal matrix of the
singular values satisfying o1 > 02 > -+ > o > 0. Since f is
an allpass filter we have || f||2 = 1. Although we can no longer
assume the pixels in the low-return region to be exactly zero, it
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is reasonable to require the low-return region to have minimum
energy subject to || f||2 = 1. A solution f satisfying

fzmg?mlwmwﬂz (20)

1T ll2=
L p_ M S . .
is given by f = V', which is the right singular vector corre-
sponding to the smallest singular value of ®¢(g) [19].

IV. PERFORMANCE ANALYSIS

A. General Properties of ®,,(§)

A key observation underlying the success of the MCA ap-
proach is that the circulant blurring matrix C{b} is unitary. This
result is arrived at using (4), where all the eigenvalues of C{b}
are observed to have unit magnitude, and the fact that the DFT
matrix F' is unitary, as follows:

c{byC?{b} = FID(e'%)FFID(e 7% )F =1. (21)
We observe that the basis matrix ®(g) has a special structure by
rewriting (7) for a single column as

g"(f) = f e g = cfghs. (22)
Comparing with (11), where the left side of the equation is

formed by stacking the column vectors §™)(f), and using (22),
we have

C@ﬂ}
C ~[1
{5:1 } o3
o)

Analogous to (12), we define ®(g) to be the basis matrix formed
by the perfectly focused image g, i.e., ®(g) is formed by using
g instead of g in (12). Likewise, @ (g) = {®(g) } is the MCA
matrix formed from the perfectly focused image. From the uni-
tary property of C{b}, we establish the following result.
Proposition 1 (Equivalence of Singular Values): Suppose
that g = C{b}g. Then, ®,(g) = ®(g)C{b} and the singular
values of ®(g) and ®q(g) are identical.
Proof: From the assumption, g["] =b®y g[”]. Therefore,
c{g" = ¢{g"}C{b}, and from (23)

C{g"}C{b}
C{gM}C{b}

=®(g)C{b}. (24

®(g) = |
C{gN-1}C{b)

Note that (24) implies that {®(g)}o =
result

{®(9)}C{b}. As a

B0 (3)®]; (9) = Balg)C{b}CH (b} @] (g)
=0 (g)®, (9)

and, thus, ®q(g) and ®(g) have the same singular values. [
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Thus, from Proposition 1, we can write the SVD of the MCA
matrices for g and § as ®q(g) = ULV and @ (§) = ﬁEVH,
respectively. The following result demonstrates that the MCA
restoration obtained through ®¢(g) and g is the same as the
restoration obtained using ®q(g) and g.

Proposition 2 (Equivalance of Restorations): Suppose that
®,(g) (or equivalently @ (g)) has a distinct smallest singular

) - (M
value. Then applying the MCA correction filters VMl and V[ :
to g and g, respectively, produce the same restoration in absolute
values; i.e.,

c{v

‘ ] (25)

}g[ _ \C{V[M]}g\.

Proof: Expressing ®q(g) = ®(g)C{b} in terms of the
SVD of ®(g) and ®(g), we have
&,(g) = USV" = USVEC{b). (26)
Because of the assumption in the proposition, the right singular
vector corresponding to the smallest singular value of ®q(g)
is uniquely determined to within a constant scalar factor (3 of
absolute value one [19]

V[JM]H _

pVIMIE o p 27

where |G| = 1. Taking the transpose of both sides of (27) pro-
duces VI = B*CH (b VM, Using the unitary property of
C{b}

M]

v — g-1omv™, (28)

We then have

cviilg =g topov™g
=p'ev ol

—pret™

19

and, thus, C{V™1 g and C’{V[M] 1§ have the same absolute
value since |3*71| = 1. O

Proposition 2 is useful for two reasons. First, it demonstrates
that applying MCA to the perfectly focused image or any
defocused image described by (4) produces the same restored
image magnitude, and also produces the same restored phase
to within the phase offset /3*~! (which is constant over the
entire image). In other words, the restoration formed using the
MCA approach does not depend on the phase error function;
the MCA restoration depends only on g and the selection of
low-return constraints €2 (i.e., the pixels in g we are assuming
to be low-return). This finding is significant because existing
autofocus techniques tend to perform less well when the phase
errors are large and rapidly varying [1], [12]. We note that
while the MCA restoration is the same under any phase error
function, this result does not imply anything about the quality
of the restoration. Second, Proposition 2 shows that it is suffi-
cient to examine the perfectly focused image to determine the
conditions under which unique restorations are possible using
MCA.
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Low-Return Rows

N Low-Return Rows

Fig. 2. Tllustration of the spatially limited image support assumption in the
special case where there are low-return rows in the perfectly focused image.

B. Special Case: Low-Return Rows

A case of particular interest is where {2 corresponds to a set of
low-return rows. The consideration of row constraints matches
a practical case of interest where the attenuation due to the an-
tenna pattern is used to satisfy the low-return pixel assumption
(this is addressed in Section VI). In this case, ®q(g) has special
structure that can be exploited for efficient computation. This
form also allows the necessary conditions for a unique correc-
tion filter to be precisely determined.

Fig. 2 shows an illustration of the special case, where there
are L rows within the ROS, and the top and bottom rows are
low-return. We define the set £ = {l1,l2,...,lg} to be the set
of low-return row indices, where 2 = M — L is the number of
low-return rows and 0 < I; < M — 1, such that

glm,n] = {f[m,n],

gl[m7 n]:

form e L

form & L. (29)

To explicitly construct the MCA matrix in this case, we first use
(7) to express

gT _ ~TOT{f*} (30)

where 7' denotes transpose. We consider the transposed images
because this allows us to represent the low-return rows in g as
column vectors, which leads to an expression of the form (16)
where ®(g) is explicitly defined. Note that

CT{f} = [fFvC{el}fFv i

where C{e; } is the [-component circulant shift matrix, and

.,C{e]u_l}fF] (31)

frlm] = f[(=m)u] (32)

m=20,1,...,M — 1, is a flipped version of the true correction
filter ((n)as denotes n modulo M). Using (30) and (31), we
express the /th row of g as

(9" = g"Cle} fr-

Note that multiplication with the matrix C{e; } in the expression
above results in an /-component left circulant shift along each
row of g7 .

(33)
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The relationship in (33) is informative because it shows how
the MCA matrix ®q(g) can be constructed given the image
support constraint in (29). For the low-return rows satisfying

(g7)] ~ 0, we have the relation
(g" = g7 Cle, }fr =0 (34)
for 7 = 1,2,..., R. Enforcing (34) for all of the low-return
rows simultaneously produces
9 Cley}

~T
g Cles,}
. l I (35)

gTC{elR}
—_———
2.(9)

where (with abuse of notation) ®.(g) € CNE*M s the MCA
matrix for the row constraint set £. In this special case, ® - plays
the same role as ®¢, for the general case. Thus, we see that in
this case the MCA matrix is formed by stacking shifted versions
of the transposed defocused image, where the shifts correspond
to the locations of the low-return rows in the perfectly focused
image. Determining the null vector (or minimum right singular
vector) of ®,(g) as defined in (35) produces a flipped version
of the correction filter; the correction filter f can be obtained
by appropriately shifting the elements of f . according to (32).
The reason for considering the flipped form in (35) is that it
provides a special structure for efficiently computing f, as we
will demonstrate in the next subsection.

To determine necessary conditions for a unique and correct
solution of the MCA (16), we restrict our analysis to the model
in (29) where the low-return rows are identically zero: £[m, n] =
0. From Propositions 1 and 2, the conditions for a unique solu-
tion to (16) can be determined using ®~(g) in place of ®,(g).
This, in turn, is equivalent to requiring ® . (g) to be arank M —1
matrix.

Proposition 3 (Necessary Condition for Unique and Correct
Solution): Consider the image model g[m,n] = 0 form € L
and g[m,n] = ¢g'[m,n] for m ¢ L. Then a necessary condition
for MCA to produce a unique and correct solution to the auto-
focus problem is

M-1
T

rank(g’) > (36)

Proof: First notice that

rank(§” C{e;, }) =rank(g) = rank(C{b}g)
=rank(g) = rank(g’))

because C{e;;} and C{b} are unitary matrices, and the
zero-row assumption of the image g. Then from (35), we have

rank(®,(g)) < R rank(g’).

Therefore, a necessary condition for rank(®,(g)) = M — 1

is rank(g’) > (M — 1)/R. Furthermore, notice that the filter

fia et [1,0,...,0]T is always a solution to (16) for g as de-

fined in the proposition statement: ®,(g) f;, = 0. This is be-
cause applying f, to g returns the same image g, where all the
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pixels in the low-return region are zero by assumption. Thus,
the unique solution for (16) is also the correct solution to the
autofocus problem. O

Noting that M = R+ L, and using condition (36), we derive
the minimum number of zero-return rows R required to achieve
a unique solution as a function of the rank of ¢’

L-1

_ 37
~ rank(g’) — 1 7)
The condition rank(g’) = min(L, N) usually holds, with the
exception of degenerate cases where the rows or columns of
¢’ are linearly dependent. Since rank(g’) < min(L,N), (37)
implies

L-1

? min(L N~ 1 o

The condition in (38) provides a rule for determining the min-
imum R (the minimum number of low-return rows required)
as a function of the dimensions of the ROS in the general case
where &[n,m] # 0.

C. Efficient Restoration Procedure

Forming the MCA matrix according to (35) and performing
its full SVD can be computationally expensive in terms of both
memory and CPU time when there are many low-return rows,
since the dimensions of ®,(g) are N R rows by M columns. As
an example, for a 1000 by 1000 pixel image with 100 low-return
rows, ®,(g) is a 100000 x 1000 matrix; in this case, it is not
practical to construct and invert such a large matrix.

Due to the structure of @~ (g), itis possible to efficiently com-
pute the minimum right singular vector solution in (20). Note
that the right singular vectors of ®.(g) can be determined by
solving for the eigenvectors of

Bc(9) = O (9)®c(8)- (39)
Without exploiting the structure of the MCA matrix, forming
B.(§) € CMXM and computing its eigenvectors requires
O(N RM?) operations. Using (35), the matrix product (39) can
be expressed as

R
Be(g) =) C"{e,}g°g"Cley,} (40)

=1

where g* = (§7)" (i.e., all of the entries of g are conjugated).
Let H(g) Lef g*g" . The effect of CT{el].} in (40) is to cir-
cularly shift H(g) up by [, pixels along each column, while
C{ey,} circularly shifts H(g) to the left by [; pixels along
each row. Thus, H(g) can be computed once initially, and then
B.(g) can be formed by adding shifted versions of H(g),
which requires only O(N M?) operations. Thus, the computa-
tion has been reduced by a factor of R. In addition, the memory
requirements have also been reduced by R times (assuming
M =~ N), since only H(g) € CM*M needs to be stored, as
opposed to @7 (§) € CNEXM_ Ag a result, the total cost of
constructing B.(g) and performing its eigendecomposition is
O(NM?) (when M < N).
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V. APPLICATION OF SHARPNESS METRIC OPTIMIZATION
TO MCA

A. Bringing Metrics to the MCA Framework

The vector space framework of the MCA approach allows
sharpness metric optimization to be incorporated as a regular-
ization procedure. The use of sharpness metrics can improve
the solution when multiple singular values of ®¢(g) are close
to zero. In addition, metric optimization is beneficial in cases
where the low-return assumption |£[m, n]| = 0 holds weakly, or
where additive noise with large variance is present. In these non-
ideal scenarios, we show how the MCA framework provides an
approximate reduced-dimension solution subspace, where the
optimization may be performed over a small set of parameters.

Suppose that instead of knowing that the image pixels in the
low-return region are exactly zero, we can assume only that

{vec{g}}all} < c

for some specific constant c. Then, the MCA condition becomes

120(9)f115 < cllFI13-

Note that the true correction filter f* must satisfy (42).

The goal of using sharpness optimization is to determine
the best f (in the sense of producing an image with maximum
sharpness) satisfying (42). We now derive a reduced-dimension
subspace for performing the optimization where (42) holds for
all f in the subspace. To accomplish this, we first determine
onm—K+1, wWhich we define as the largest singular value of
®,(g) satisfying o7 < c. Then we express f in terms of the
basis formed from the right singular vectors of ®o(g) corre-
sponding to the K smallest singular values, i.e.,

(41)

(42)

M

>

k=M-K+1

o (K]

f= RV (43)

where vy, is a basis coefficient corresponding to the basis

vector V[k]. To demonstrate that every element of the
K -dimensional subspace in (43) satlsﬁes (42) we define

Sk = span{V[M i V[M K+2]7... } and note that

[20]

i 1®a(9)fI3

llo=1

fes
- H Lo
= max ||UXV" f||5

llo=1
fesi
= max
lvll2=1
vi=ve=--=vy k=0
M
= max E
lvllz=1

T k=M-K+1

12|13

21,12 2
o vk | =o0y_gy1 < ¢ (44

where v V J. In the second equality, the unitary property
of V is used to obtain || f|| = ||v||2. and also f = V', from
which it is observed that f € S implies v; = vy = --- =

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 4, APRIL 2009

vpm—k = 0. We note that the subspace S, does not contain all f
satisfying (42). However, it provides an optimal K -dimensional
subspace in the following sense: for any subspace Sk where

dim(Sgk) = K, we have [19]
Jpax 1®0(9)f1l3 > pax 1®a(9)fl3
fesk fesy,
:UZZW—K—',-l' (45)

Thus, S is the best K-dimensional subspace in the sense that
every element is feasible [i.e., satisfies (42)], and among all
K -dimensional subspaces S}, minimizes the maximum energy
in the low-return region.

Substituting the basis expansion (43) for f into (7) allows g
to be expressed in terms of an approximate reduced-dimension
basis

K
gg = dip" (46)
k=1
where
M—-K+k
M = o g (7)

dr = vp—K 4k, and 94 is the image parameterized by the basis
coefficients d = [dy,ds,...,dx]T. To obtain the best g that
satisfies the data consistency condition, we optimize a particular
sharpness metric over the coefficients d, where the number of
coefficients K < M.

B. Performing the Metric Optimization

We define the metric objective function C : CX — R as the
mapping from the basis coefficients d = [dy,ds, . ..,dx]T toa
sharpness cost

M—-1N-—
Z Z (48)
where Ig[m,n] = |gg[m,n]|* is the intensity of each pixel,
Lglm,n] = Ig[m,n]/vg d is the normalized intensity with
794 ~ ||gd||§, and S : R — R is an image sharpness
metric operating on the normalized intensity of each pixel.
An example of a commonly used sharpness metric in SAR is
the image entropy: Sg (Ig[m,n]) def —Ig[m,n]InIg[m,n]
[5], [6]. A gradient-based search can be used to determine a
local minimizer of C(d) [21]. The kth element of the gradient
VdC (d) is determined using

Id[m n])
Z dIglm, n])

—de[m,n] > gd[m’,n’]w*[k][m',nﬂ (49)
ry-qd m’ n’

o U sl

where * denotes the complex conjugate. Note that (49) can
be applied to a variety of sharpness metrics. Considering the
entropy example, the derivative of the sharpness metric is
dSu(Iglm,n])/0I4lm,n] = —(1 + InIg[m,n]).
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VI. SAR DATA ACQUISITION AND PROCESSING

In this section, we discuss the application of the MCA tech-
nique in practical scenarios. One way of satisfying the image
support assumption used in MCA is to exploit the SAR antenna
pattern. In spotlight-mode SAR, the area of terrain that can be
imaged depends on the antenna footprint, i.e., the illuminated
portion of the scene corresponding to the projection of the an-
tenna main-beam onto the ground plane [1]. There is low return
from features outside of the antenna footprint. The fact the SAR
image is essentially spatially limited, due to the profile of the an-
tenna beam pattern, suggests that the proposed autofocus tech-
nique can be applied in spotlight-mode SAR imaging given that
the SAR data are sampled at a sufficiently high rate [1], [22],
[23].

The amount of area represented in a SAR image, the image
field of view (FOV), is determined by how densely the analog
Fourier transform is sampled. As the density of the sampling
is increased, the FOV of the image increases. For a spatially
limited scene, there is a critical sampling density at which the
image coverage is equal to the support of the scene (determined
by the width of the antenna footprint). If the Fourier transform
is sampled above the critical rate, the FOV of the image extends
beyond the finite support of the scene, and the result resembles
a zero-padded or zero-extended image. Our goal is to select the
Fourier domain sampling density such that the FOV of the SAR
image extends beyond the brightly illuminated portion of the
scene. In doing so, we cause the perfectly focused digital image
to be (effectively) spatially limited, allowing the use of the pro-
posed autofocus approach.

Fig. 3 shows an illustration of the antenna pattern along the
x-axis. A length X’ region of the scene is brightly illuminated
in the x dimension. To use the MCA approach to autofocus, we
need the image coverage X to be greater than the illuminated re-
gion X’. To model the antenna pattern, we consider the case of
an unweighted uniformly radiating antenna aperture. Under this
scenario, both the transmit and receive patterns are described
by a sinc function [24]-[26]. Thus, the antenna footprint deter-
mined by the combined transmit-receive pattern is modeled as
(1], [24]

w(z) = sinc? (W, ) (50)
where
_ Mo Ro
W, = D (5D

sinc(x) ef (sinmz)/(wx), x is the cross-range coordinate, Ag
is the wavelength of the radar, R, is the range from the radar
platform to the center of the scene, and D is the length of the
antenna aperture. Near the nulls of the antenna pattern at x =
+W,, the attenuation will be very large, producing low-return
rows in the perfectly focused SAR image consistent with (29).

Using the model in (50), the Fourier-domain sampling den-
sity should be large enough so that the FOV of the SAR image
is equal to or greater than the width of the mainlobe of the sinc
window: & > 2W,. In spotlight-mode SAR, the Fourier-do-
main sampling density in the cross-range dimension is deter-
mined by the pulse repetition frequency (PRF) of the radar.
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Reflectivity Function

Fig. 3. Antenna pattern shown superimposed on the scene reflectivity function
for a single range (y) coordinate. The finite beamwidth of the antenna causes
the terrain to be illuminated only within a spatially limited window; the return
outside the window is near zero.

For a radar platform moving with constant velocity, increasing
the PRF decreases the angular interval between pulses (i.e., the
angular increment between successive look angles), thus in-
creasing the cross-range Fourier-domain sampling density and
FOV [1], [23], [24]. Alternatively, keeping the PRF constant and
decreasing the platform velocity also increases the cross-range
Fourier-domain sampling density; such is the case in airborne
SAR when the aircraft is flying into a headwind. In many cases,
the platform velocity and PRF are such that the image FOV is
approximately equal to the mainlobe width of (50); in these
cases, the final images are usually cropped to half the main-
lobe width of the sinc window [1], because it is realized that
the edge of the processed image will suffer from some amount
of aliasing. Our framework suggests that the additional infor-
mation from the disgarded portions of the image can be used
for SAR image autofocus.

Another instance where the image support assumption can
be exploited is when prior knowledge of low-return features in
the SAR image is available. Examples of such features include
smooth bodies of water, roads, and shadowy regions [5]. If the
image defocusing is not very severe, then low-return regions can
be estimated using the defocused image. Inverse SAR (ISAR)
provides a further application for MCA. In ISAR images, pixels
outside of the support of the imaged object (e.g., aircraft) corre-
spond to a region of zero return [5]. Thus, given an estimate of
the object support, MCA can be applied.

VII. EXPERIMENTAL RESULTS

Fig. 4 presents an experiment using an actual SAR image. To
form a ground truth perfectly focused image, an entropy-min-
imization autofocus routine [6] was applied to the given SAR
image. Fig. 4(a) shows the resulting image, where the sinc-
squared window in Fig. 4(b) has been applied to each column
to simulate the antenna footprint resulting from an unweighted
antenna aperture. The cross-range FOV equals 95 percent of the
mainlobe width of the squared-sinc function, i.e., the image is
cropped within the nulls of the antenna footprint, so that there
is very large (but not infinite) attenuation at the edges of the
image. Fig. 4(c) shows a defocused image produced by applying
a white phase error function (i.e., independent phase compo-
nents uniformly distributed between —7 and 7) ¢, to the per-
fectly focused image in Fig. 4(a) according to (1); the applica-
tion of white phase error functions has been considered previ-
ously in the autofocus literature as a particularly stressing case
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Fig. 4. Actual 2335 x 2027 pixel SAR image: (a) Perfectly focused image, where the simulated sinc-squared antenna footprint in (b) has been applied to each
column, (c) defocused image produced by applying a white phase error function, and (d) MCA restoration (SNR,..: = 10.52 dB).

to test the robustness of autofocus algorithms[4], [5], [27]. We
applied MCA to the defocused image assuming the top and
bottom rows of the perfectly focused image to be low-return.
The MCA restoration is displayed in Fig. 4(d). The restored
image is observed to be in good agreement with the ground truth
image. To quantitatively assess the performance of autofocus
techniques, we use the restoration quality metric SNRy¢ (i-e.,
output signal-to-noise ratio), which is defined as [28]

[veets}]l,
[(jvec{g}] — [vec{a}Dll,

here, the “noise” in SNR,t, refers to the error in the magnitude
of the reconstructed image g relative to the perfectly focused
image g, and should not be confused with additive noise (which
is considered later). For the restoration in Fig. 4(d), SNRoyt =
10.52 dB.

To evaluate the robustness of MCA with respect to the low-
return assumption, we performed a series of experiments using
the idealized window function in Fig. 5(a). The window has a

SNRout = 20log;q

flat response over most of the image; the tapering at the edges of
the window is described by a quarter-period of a sine function.
In each experiment, the gain at the edges of the window (i.e.,
the inverse of the attenuation) is increased such that the pixel
magnitudes in the low-return region (corresponding to the top
and bottom rows) become larger. In Fig. 5(a), a window gain of
0.1 is shown. For each value of the window gain, a defocused
image is formed and the MCA restoration is produced.

Fig. 5(b) shows a plot of the restoration quality metric
SNR, ¢ versus the gain at the edges of the window, where the
top two rows and bottom two rows are assumed to be low-re-
turn. The simulated SAR image in Fig. 5(c) was used as the
ground truth perfectly focused image in this set of experiments;
here, a processed SAR image! is used as a model for the image
magnitude, while the phase of each pixel is selected at random
(uniformly distributed between —m and 7 and uncorrelated)
to simulate the complex reflectivity associated with high

IThe processed SAR images in this paper were provided by Sandia National
Laboratories.
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Fig. 5. Experiments evaluating the robustness of MCA as a function of the attenuation in the low-return region: (a) Window function applied to each column of
the SAR image, where the gain at the edges of the window (corresponding to the low-return region) is varied with each experiment (a gain of 0.1 is shown); (b) plot
of the quality metric SNR,,, for the MCA restoration (measured with respect to the perfectly focused image) versus the window gain in the low-return region;
(c) simulated perfectly focused 309 by 226 pixel image, where the window in (a) has been applied; (d) defocused image produced by applying a white phase error

function; and (¢) MCA restoration (SNR,,; = 9.583 dB).

frequency SAR images of terrain [29]. The plot in Fig. 5(b)
demonstrates that the restoration quality decreases monoton-
ically as a function of increasing window gain. We observe
that for values of SNR,,¢ less than 3 dB, the restored images
do not resemble the perfectly focused image; this transition
occurs when gain in the low-return region increases above 0.14.
For gain values less than or equal to 0.14, the restorations are
faithful representations of the perfectly focused image. Thus,
we see that MCA is robust over a large range of attenuation
values, even when there is significant deviation from the ideal
zero-magnitude pixel assumption. As an example, the MCA
restoration in Fig. 5(e) corresponds to an experiment where
the window gain is 0.1. Fig. 5(c) and (d) shows the perfectly
focused and defocused images, respectively, associated with
this restoration. The image in Fig. 5(e) is almost perfectly
restored, with SNR,: = 9.583 dB.

In Fig. 6, the performance of MCA is compared with existing
autofocus approaches. Fig. 6(a) shows a perfectly focused
simulated SAR image, constructed in the same manner as
Fig. 5, where the window function in Fig. 5(b) has been applied
(the window gain is 1 x 10~* in this experiment). A defocused

image formed by applying a quadratic phase error function
(i.e., the phase error function varies as a quadratic function of
the cross-range frequencies) is displayed in Fig. 6(b); such a
function is used to model phase errors due to platform motion
[1]. The defocused image has been contaminated with additive
white complex-Gaussian noise in the range-compressed do-
main such that the input signal-to-noise ratio (input SNR) is 40
dB; here, the input SNR is defined to be the average per-pulse
SNR: SNR = 20log;o{1/M ¥, max, |G[k,n]|/o,}, where
o, is the noise standard deviation. Fig. 6(c) shows the MCA
restoration formed assuming the top two and bottom two rows
to be low-return; the image is observed to be well-restored, with
SNRout = 25.25 dB. To facilitate a meaningful comparison
with the perfectly focused image, the restorations are produced
by applying the phase error estimate to the noiseless defocused
image; in other words, the phase estimate is determined in
the presence of noise, but SNR,¢ is computed with the noise
removed. A restoration produced using PGA is displayed in
Fig. 6(d) (SNRout = 9.64 dB) [1]. Fig. 6(e) and (f) shows
the result of applying a metric-based autofocus technique [6]
using the entropy sharpness metric (SNRy,¢ = 3.60 dB) and
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®

Fig. 6. Comparison of MCA with existing autofocus approaches: (a) Simulated 341 by 341 pixel perfectly focused image, where the window function in Fig. 5(b)
has been applied; (b) noisy defocused image produced by applying a quadratic phase error, where the input SNR is 40 dB (measured in the range-compressed
domain); (c) MCA restoration (SNRo“t = 25.25 dB); (d) PGA restoration (SNRoue = 9.64 dB); (e) entropy-based restoration (SNR,¢ = 3.60 dB); and
(f) restoration using the intensity-squared sharpness metric (SNR,.« = 3.41 dB).

the intensity-squared sharpness metric (SNR,,; = 3.41 dB),
respectively. Of the four autofocus approaches, MCA is found
to produce the highest quality restoration in terms of both qual-
itative comparison and the quality metric SNR . In particular,
the metric-based restorations, while macroscopically similar to
the MCA and PGA restorations, have much lower SNR; this
is due to the metric-based techniques incorrectly accentuating
some of the point scatterers.

Fig. 7 presents the results of a Monte Carlo simulation
comparing the performance of MCA with existing autofocus
approaches under varying levels of additive noise. Ten trials
were conducted at each input SNR level, where in each trial a
noisy defocused image (using a deterministic quadratic phase
error function) was formed using different randomly generated
noise realizations with the same statistics. Four autofocus
approaches (MCA, PGA, entropy-minimization, and inten-
sity-squared minimization) were applied to each defocused
image, and the quality metric SNR,,; was evaluated on the
resulting restorations. Plots of the average SNR,,; (over the
ten trials) versus the input SNR are displayed in Fig. 7 for
the four autofocus methods. The plot shows that at high input
SNR (SNR > 20 dB), MCA provides the best restoration
performance. At very low SNR, metric-based methods produce
the highest SNR,; however, this performance is observed to
level out around 3.5 dB due to the limitation of the sharpness
criterion (several point scatterers are artificially accentuated).
PGA provides the best performance in the intermediate range
of low SNR starting around 13 dB. Likewise, we observe that
the MCA restorations start to resemble the perfectly focused

30
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Fig. 7. Plots of the restoration quality metric SNR,,¢ versus the input SNR
for MCA, PGA, entropy-minimization autofocus, and intensity-squared mini-
mization autofocus. In this experiment, we performed a Monte Carlo simulation
where MCA was applied to noisy versions of the defocused image in Fig. 6(b);
ten different white complex-Gaussian noise realizations were used for each ex-
periment at a particular input SNR.

image at 13 dB. PGA also approaches a constant SNR,,,¢ value
at high input SNR; the limitation in PGA is the inability to
extract completely isolated point scatterers free of surrounding
clutter.

On average, the MCA restorations in the experiment of
Fig. 7 required 3.85 s of computation time, where the algo-
rithm was implemented using MATLAB on an Intel Pentium 4
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(d)
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(@

Fig. 8. Experiment using entropy optimization as a regularization procedure to improve the MCA restoration when the input SNR is low. The optimization is
performed over a space of 15 basis functions determined by the smallest singular values of the MCA matrix. (a) Perfectly focused image where a sinc-squared
window is applied, (b) noisy defocused image with range-compressed domain SNR of 19 dB produced using a quadratic phase error, (c) MCA restoration, and

(d) regularized MCA restoration using the entropy metric.

CPU (2.66 GHz). In comparison, PGA, the intensity-squared
approach, and the entropy approach had average run-times of
5.34, 18.1, and 87.6 s, respectively. Thus, MCA is observed to
be computationally efficient in comparison with existing SAR
autofocus methods.

Fig. 8 presents an experiment using a sinc-squared antenna
pattern, where a significant amount of additive noise has been
applied to the defocused image. The perfectly focused and de-
focused images are displayed in Fig. 8(a) and (b), respectively,
where the input SNR of the defocused image is 19 dB. Due
to the gradual tapering of the sinc-squared antenna pattern,
the smallest singular values of the MCA matrix are distributed
closely together. As a result, the problem becomes poorly con-
ditioned in the sense that small perturbations to the defocused
image can produce large perturbations to the least-squares
solution of (20). In such cases, regularization can be used
to improve the solution, as described in Section V. Fig. 8(c)
shows the MCA restoration where a large number of low-return
constraints (45 low-return rows at the top and bottom of the
image) are enforced to improve the solution in the presence
of noise. In this restoration, much of the defocusing has been
corrected, revealing the structure of the underlying image.
However, residual blurring remains. Fig. 8(d) shows the result
of applying the regularization procedure in Section V. Here,

we form a subspace of 15 basis functions using the minimum
right singular vectors of the MCA matrix where the data consis-
tency relation (42) is satisfied. The optimal basis coefficients,
corresponding to a unique solution within this subspace, are
determined by minimizing the entropy metric. The regularized
restoration is shown in Fig. 8(d). The incorporation of the
entropy-based sharpness optimization is found to significantly
improve the quality of the restoration, producing a result that
agrees well with the perfectly focused image. Thus, by ex-
ploiting the linear algebraic structure of the SAR autofocus
problem and the low-return constraints in the perfectly focused
image, the dimension of the optimization space in metric-based
methods can be greatly reduced (from 341 to 15 parameters in
this example).

The simulations in this paper assume that the Fourier imaging
data lie on a Cartesian grid. Further work is needed to determine
how well MCA works for large data angles where the polar grid
deviates substantially from Cartesian. Recent work suggests that
the proposed MCA scheme should be modified for larger data
angles [30].

VIII. CONCLUSION

In this paper, we have proposed a new subspace-based ap-
proach to the synthetic aperture radar (SAR) autofocus problem,
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termed the MultiChannel Autofocus (MCA) algorithm. In this
approach, an image focusing operator is determined directly
using a linear algebraic formulation. Assuming that a small por-
tion of the perfectly focused image is zero-valued, or corre-
sponds to a region of low return, near-perfect restorations of
the focused image are possible without requiring prior assump-
tions about the underlying scene; the success of existing aut-
ofocus approaches tends to rely on the accuracy of such prior
assumptions, such as the suitability of image sharpness metrics
or the presence of isolated point scatterers. In practice, the de-
sired image support condition can be achieved by exploiting the
spatially limited nature of the illuminating antenna beam.

The MCA approach is computationally efficient, and robust
in the presence of noise and deviations from the ideal image
support assumption. The restoration quality of the proposed
method is independent of the severity of the phase error func-
tion; existing autofocus approaches sometimes perform poorly
when the phase errors are large and rapidly varying. In addition,
the vector-space formulation of MCA allows sharpness metric
optimization to be incorporated into the restoration framework
as a regularization term, enabling SAR autofocus to be cast
into a more unified paradigm with other image restoration
problems. Here, the parameter set over which the optimization
is performed is greatly reduced in comparison to the number
of unknown phase error components. We have presented ex-
perimental results, using actual and simulated SAR images,
demonstrating that the proposed technique can produce superior
restorations in comparison with existing autofocus approaches.
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