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Abstract-A new technique is proposed for upper bounding the
error probability of fixed length block codes with feedback. Error
analysis is inspired by Gallager's error analysis for block codes
without feedback. Zigangirov-D'yachkov (2-D) encoding scheme
is analyzed with the technique on binary input channels and k
ary symmetric channels. A strict improvement is obtained for
k-ary symmetric channels.

I. INTRODUCTION

Shannon showed [8] that capacity of the discrete memoryless
channels (DMCs) does not increase with feedback. Later
Dobrushin [3] showed that the exponential decay rate of
the error probability of fixed length block codes can not
exceed sphere packing exponent in symmetric channels.' In
other words for the rates above the critical rate, at least for
symmetric channels, even the error exponent does not increase
with feedback, when we restrict ourselves to the fixed length
block codes. Characterizing the improvement in the error
exponent for the rates below the critical rate is the pressing
open question in this stream of research."
The first work on the error analysis of block codes with
feedback was by Berlekamp, [1]. He has obtained a closed
form expression of the error exponent at zero rate for binary
symmetric channels (BSCs). Later Zigangirov [9] proposed
an encoding scheme, for BSCs which reaches sphere packing
exponent for all rate larger than a critical rate RZcrit.3 Fur
thermore at zero rate Zigangirov's encoding scheme reaches
optimal error exponent, which is derived by Berlekamp in [1].
Later D'yachkov [4] proposed a generalization of the encoding
scheme of Zigangirov, and obtained a coding theorem for
general DMCs. However the optimization problem in his
coding theorem, is quite involved and does not allow for

1After that Haratounian [7] established an upper bound for the error
exponent for non-symmetric channels as a generalization of Dobrushin's
result, but his upper bound is strictly larger than the sphere packing exponent
for many non-symmetric channels.

2There are a number of closely related models in which error exponent
analysis has been successfully applied, like variable-length block codes, fixed
length block codes with errors-and-erasure decoding, block codes on additive
white Gaussian noise channels, fixed/variable delay code on DMCs. We are
refraining from discussing these variants because understanding those variants
will not help the reader much in understanding the work at hand.

3Evidently Rzcrit < Rcrit where Rcrit is the critical rate in the non
feedback case, i.e. the rate above which random coding exponent is equal to
the sphere packing exponent.
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simplifications that will lead us to conclusions about the
error exponents of general DMCs. In [4] after pointing out
this fact, D' yachkov focuses on binary input channels and
k-ary symmetric channels and derives the error exponent
expressions for these families of channels.
Our approach will be similar to D'yachkov's in the sense
that we will first prove a coding theorem for general DMCs
and then focus on particular cases and demonstrate its gains
over non-feedback encoding schemes. We will start with
introducing the channel model we have at hand and the
notation we use. After that we will consider the encoding
schemes that use feedback and make an error analysis which is
similar to that of Gallager in [5]. Then we will use our results
in different cases, to recover the results of Zigangirov [9]
and D'yachkov [4] for binary input channels and to improve
D'yachkov's results [4] for k-ary symmetric channels."

II. CHANNEL MODEL AND NOTATION

We have a discrete memoryless channel with input alphabet
X == {I, 2, ... , IXI}, output alphabet Y == {I, 2, ... , IYI}.
Channel transition probabilities are given by a IXI-by-IYI
matrix W(ylx). In addition we assume that a noiseless, delay
free feedback link exists from the receiver to the transmitter.
Thus the transmitter learns the channel output at time k before
the transmission of the symbol at time k + 1.
A length n block code with feedback for a message set
M == {I, 2, ... , renRl} is a feedback encoding scheme to
gether with a decoding rule. The feedback encoding scheme,"
W, is a mapping from the set of possible output sequences,
yj-1 E yj-1 for j E {I, 2, ... , n}, to the set of possible
input symbol assignment to the messages in the set M

n

W(·) : Uyj-1 ---* XIMI (1)
j=l

The input letter for the message m E M at time j given
yj-1 E yj-1 is the m'" element of W(yj-1), i.e. Wm(yj-1).
Note that when there is no feedback W(yj-1) == w(j),
Vyj-1 E yj-1.

4 Indeed same improvement can be obtained within framework of the
analysis introduced by Zigangirov and D'yachkov with some fairly minor
modifications.

5Note that this is the general setting we will focus on a particular mapping
to establish our results.
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where ~(p, TJ, yn-1, w) is given by,

{

0 if r p,'fJ,n-1 (yn-1) == 0
~ == '" r p 17 n(yn) if r ( n-1) -I- 0

LJYnEY rp,17,~~1(yn-l) 1 p,'fJ,n-1 Y I

Let us define aip, TJ, w) as

oip, TJ, w) == max . max. ~(p, TJ, yj-1, w) (4)
jE{l, ... n} yJ-1EyJ-l

The probability of observing a yi E yi conditioned on
message m E Mis,

P {yil () == m} == II W(YjIWm(yj-1))
j=l

A decoding rule is a mapping from the set of all length n
output sequences, yn, to the message set M.

<I>(.) : yn ~ M

We use a maximum likelihood (ML) decoder, which decodes
the message with the smaller index when there is tie. We
assume that messages are equally likely.

III. ERROR ANALYSIS

r ( n-l)
p,17,n-l Y a(p 'n w)

IMI ,."
yn-1Eyn-l

< r p,17,O(YO) a(p 'n w)n
- IMI ,."
::; 1M - IIPa(p, TJ, w)n
::; en(pR+ln a(p,'fJ,w)) (5)

(6)

<p(mlyj) == W(Yj IWm(yj-1) )'fJ<p(mlyj-1)

then we have

Now we find an encoding scheme, W, with small oip, TJ, w).
For that we will focus on the encoding schemes that are
repetitions of the same 'one step encoding function'.

IV. ONE STEP ENCODING FUNCTIONS

Let QIMI be the set of 1M I-dimensional vectors whose entries
are all non-negative. Let T be a parametric function,

Tp,'fJ(·'·) : QIMI x X IM I ~ R

If q has at least two non-zero entries then T is defined as

We can write ~ in terms of T as follows,

~(p, TJ, yj-1, w) == T p,'fJ (<p( ·lyj-1), W(yj-1)) (7)

Note that ~(p, TJ, yj-1, w) depends on the encoding in first
j - 1 time units only through the IMI dimensional vector
<p(·lyj-1). Thus if we can find a X« for each q E QIMI
such that T p,'fJ (q, Xq) is small, we can use these T p,'fJ (q, Xq)
to obtain an encoding scheme W, with small aip, TJ, w) and
consequently a block code with small error probability. These
mappings are what we call one step encoding function.
An 1M I-dimensional one step encoding function, X, is a
mapping from QIMI to the set X IM 1, i.e.,

X : QIMI ~ X IM I

else T P,'fJ(q, X) == o.
Let us introduce the short hand,

<p(mlyj) == P {yj I () == m } 'fJ

(2)

Pe,m == L P {ynl () == m}TI{<I>(yn) 1= m}
ynEyn

Since all the messages are equally likely Pe

Consequently,

Consequently

If r p,'fJ,n-1 (yn-1) 1= 0 we can divide and multiply by
r p,'fJ,n-1 (yn-1),

where TI{.} is the indicator function. Note that for a ML
decoder, for any p > 0, and TJ > 0 we have

If we introduce the short hand

The error probability of the message m E Mis,

Thus

(3)

With a slight abuse of notation let us extend the definition of
oip, TJ, X) to one step encoding functions as follows,

aip, TJ, X) == max T P,'fJ(q, X(q)) (8)
qEQIMI

2
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Lemma 1: For any p > 0, 'TJ > 0, IMI == enR dimensional
one step encoding function X, and for any n 2:: 1 there exists
a block code such that

Using equation (5) we get the claim of the lemma. •
When calculating the achievable error exponents the role of
the minimum of -In aip, 'TJ, X) will be very similar to that
of Eo(p) in the case without feedback, [5].

IO(x) == ° Vx E X
X. - argmin /'j-1(X)

J - xEsuPp(P) P(x)
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B. Z-D Encoding Scheme:

In this subsection we will describe the Z-D encoding scheme
and apply Lemma 1 to this encoding scheme on binary
input channels and k-ary symmetric channels. This encoding
scheme was first described by Zigangirov [9] for binary
symmetric channels then generalized by D'yachkov [4] to
general DMCs. Consider a probability distribution a P(·) on
input alphabet X and a q E QIMI. Without loss of generality
we can assume that? Vi, j E M, if i ::; j then qi 2:: qj. Now
we can define mapping X for a given q and P iteratively as
follows:

(9)

(10)

(11)oip, 'TJ, w) ::; oip, 'TJ, X)

Wm (yj -1) == Xm ( cp( .1 yj -1 ) )

Proof: Consider the encoding scheme, W such that,

As a result of equations (4), (7) and (8) we get,

V. MAIN RESULTS:

Thus for the one step encoding function X(q) == X« we have

-In ot p, l~P' X) 2:: Eo(p, P)

where Eo(p, P) == -In Ly(Lx W(ylx) l~p p(x))l+p Thus
for each q E QIMI there exist at least one X« E XIMI such
that

(16)qx - P(x)(m 2:: ° Vx E X Vm E M

61f this is not the case for a q, we can rearrange the messages m EM,
according to their 'lm. in decreasing order. If two or more messages have
same mass, q, we order them with respect to their indices.

L:kt=Tn li{Xk=X}qk _ (TnP(x) + L:xixTn li{Xk=X}(qx-(TnP(x»

L:kiTn qk - L: k i Tn qk L:kiTn qk

In other words, with Z-D encoding scheme, the mass of the q
is distributed over the input letters in such a way that; when
we consider all the mass distribution except an m E M, it is
a linear combination of P(x) and 6X ,xl's for x' #- Xm. Using
this decomposition of the input distribution together with the
convexity of the function zP for p 2:: 1 and Jensen's inequality

For assigning j E M we first calculate for each input letter,
x EX, the total mass of all of the messages that has already
been assigned to x, I j -1 ( X ). Then we divide I j -1 ( x) 's by the
corresponding P(x) values and assign the message j E M to
the x E X, for which P(x) > 0 and 'Yjp(~)) is the minimum.
If there is a tie we choose the input letter, x, with larger P(x).
If there is still a tie, we choose the input letter with smaller
index.
1) Properties of Z-D Encoding Scheme: A Z-D encoding
scheme with P(·), will satisfy,

Thus

;- - qXTn-qTn <.-!l..:L- Vx E X Vm E M (15)
~m - P(XTn) - P(x)

where qx == lIMI(x). In order to see this, simply consider
the last message assigned to each input letter x EX. They
will satisfy this property by construction. Since the messages
that are assigned to the same letter prior to the last message
have at least the same mass as the last one, they will satisfy
the property given in (15) too. Thus for any q E QIMI and
any input distribution P(x), the mapping created by a Z
D encoding scheme, satisfies

(14)

(13)

r; ::; en(-Eo(p,P)+pR)

Y _1_ (q X ) ::; e-Eo(p,P)
P'l+p , q

Note that above description is not constructive in the sense
that it proves the existence of a one-step-encoding scheme, X
with the desired properties but it does not tell which encoding
scheme it is or how to find it. Encoding scheme we will
investigate below however does specify an X with the desired
properties.

Using this together with the lemma 1 we can conclude that;
Corollary 1: For any input distribution P(·) on X, p E (0,1],
R 2:: °and n 2:: 1 there exists a length n block code of the
form given in equation (10) such that.

A. Achievability of Random Coding Exponent:

In this subsection we will, as a sanity check, rederive the
achievability of random coding exponent for all DMCs using
Lemma 1. Let 'TJ == l~P. For any IMI > 1, at each q E

Q consider the set of all possible mappings of messages to
the input letters, XIMI, and calculate the expected value of
Yp,l1(q, X), where the probability of each X E XIMI is simply
given by TIxEX p(x)r(x,x) where r(x, x) is the number of
messages assigned to input letter x EX. Then one can show
that, for p E (0,1]

E [Y _1 (q X)] ::; e-Eo(p,P) Vq E QIMI (12)
P'l+p ,

3
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(20)

we get,

[
I: x W(yIX)"7 I:k#rn IT{Xk=X}qk] P

I:k#rn qk

== [" W(ylx)TJ ((rnP(x) + I:x#xrn IT{Xk=x}(qx-(rnP(X)))] Pc: I:k#rn qk I:k#rn qk
X

< (rn[I:x W(yIX)"7P(X)]P + "(qx-(rn P(x))W(ylx)7JP (17)
- I:k#rn o» Z:: I:k#rn a«

X#-Xrn

Let us define f m as

1m = L W(Y!Xm)(1-PTJ) (Z=k"'I::~I:kk)"qk)P (18)
y

Using equation (17) we get,

1m -:::: Z=k~:qk ~W(YIXm)(l~PTJ) [~W(YIX)TJP(X)r

+ L (q£~~)q:=) L W(yIXm)(l~PTJ)W(ylx)PTJ

X#-Xrn Y

< (rn e(3xrn (P,P,TJ) + (1 _ (rn )eJ-Lxrn (pTJ)
- I:k#rn qk I:k#rn qk
~ e m a x { (3x rn (P,P,TJ),J-Lxrn (pTJ)}

where Vi E X, (3i(P,P,TJ) and JLi(PTJ) are defined as,

(3i(P,p, "I) = In ~W(Yli)(l~P'7) (~P(X)W(YIX)'7r

/-li(pTJ) == max In L W(yli)Cl-PTJ)W(ylx)PTJ
x=¥i,xEsuppCP)

y

Consequently for P 2: 1, TJ 2: 0,

l:=..e.:!l
_ I: rn qrn 77 (I:k#rn qk)P frn
- l:=..e.:!l

I: rn qrn 77 (I:k#rn qk)P
~ emaxxEsuPP pc·) max{(3x(P,P,TJ),J-Lx(PTJ)}

Thus for P 2: 1 for all input distributions P and for all TJ > 0,

In oip, TJ, X p ) ~ max max{{3x(P, P, TJ), JLx(PTJ)} (19)
xEsupp P(·)

For certain channels the property given in equation (19)
together with Lemma 1 implies that sphere packing exponent
is achievable on an interval of the form [RDcrit, R crit].
Corollary 2: If for a DMC,

maXJLx( l+P ) ~ -Eo(p)
xEX P

on an interval of the form P E [1, PDc]' Then

lna(p, l~P'X) == -Eo(p) Vp E [l,PDc]

Proof: In order to see this, first recall that for the P(·) that
maximizes Eo(p, P), satisfies, [6, page 144, Theorem 5.6.5],

Eo(p,P*) == (3x(P*, l~P'P) Vx E supp(P")

4
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Now the statement simply follows the equation (19) •
Recall that sphere packing exponent is given by

Esp(R) == max Eo(p) - pR
p~o

Thus for each R there is a corresponding PR, which is the
maximizer of the the expression above. As a result of Lemma1
and Corollary2 for the rates with PR E [1, PDc] sphere packing
exponent will be achievable as error exponent for the channels
satisfying condition given in equation (20). Two families
of channels that satisfy the condition (20) are Binary input
channels and k-ary symmetric channels.
2) Binary Input Channel: The binary input channel case has
already been addressed by D'yachkov. We simply rederive his
results here. DMCs for which \XI == 2 are called binary input
channels.
For P 2: 1, TJ 2: 0, using equation (19) we get,

aip, TJ, X) ~ emax{(3o(P,TJ,p),(31(P,TJ,p),J-Lo(PTJ),J-Ll(PTJ)} (21)

For the rates for which PRE [1, PDc] this will lead to sphere
packing exponent. For the rates for which PR > PDc we
will simply minimize the expression in equation (21) over
P,TJ and P to find the best possible error exponent achievable
with this scheme. For the rates such that PR E (0,1) using
the definition of f m given in equation (18) and certain
monotonicity argument one can also show that sphere packing
exponent is achievable. We do not present those arguments in
the interest of space.
3) K-ary Symmetric Channel: Let us consider k-ary sym
metric channel with °< E < KK1 , i.e.

Note that for any P > 0, TJ > °and x we have

Furthermore note that for any P > 0, TJ > 0, x E X and for
P(x) == 11K

(3(p, TJ) == {3x (P, P, TJ)

== In[(l - E)l- PTJ + (K - 1)( K~l )l-PTJ]

+pln[(l;)7J + KKl(K~l)TJ]

Thus as a result of equation (19), for P 2: 1

In oip, TJ, X) ~ max{{3(p, TJ), JL(pTJ)} (22)

For K == 2 case these expressions are equivalent to those
of Zigangirov in [9], which were specifically derived for
BSCs. For K 2: 3 case these expressions result in a strict
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1.2'

7Indeed D'yachkov 's expression for k -ary symmetric channel is strictly
worse than that of Zigangirov for k = 2 case too .

Fig . 1. Spherepacking exponent, error exponent obtained using the equation
(22) , D 'yachkov's exponent expression in [4] and random coding exponent
are plotted for a k-ary symmetric channel with k = 4 and E = .3/ 4.
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uses transmitter can specify the correct message among the
decoded list without any errors, if the correct message is in
the list. Since this extra time will become negligible as n
increases we can conclude that sphere packing exponent is
achievable for this channel, when there is feedback .
However when we consider the 2-D encoding scheme we can
not reach the same conclusion. Clearly we should choose the
P(x) to be the uniform distribution. Consider for example
the q, such that q = [0.5 0.5 0 0 . ..]. Any smart encoding
scheme would assign the first two messages into input letters
that are not consecutive. But 2-D encoding scheme will not
necessarily do so. Considering similar q's for low enough p's
one can show that 2-D encoding scheme leads to an aip, I~P)

such that Ino:(p, I~P) > - Eo(p). As a result this will imply
that 2-D encoding scheme will have an error exponent strictly
less than the sphere pacing exponent.
On the other hand for all such q's with this kind of anomalies
we observed, we were able to find a modification of 2-D en
coding scheme, which employs a smarter encoding scheme
for the first IXI messages and performs optimally . However
we have yet to find a general modification on 2-D encoding
scheme that works for all q E Q.

VI. CONCLUSIONS

In addition to the improvement in k-ary symteric channel,
maybe more importantly, simplicity of the analysis gives us a
better understanding of the 2-D encoding scheme in general
DMCs . 8

80n a separate note Bumashev [2] considered the binary symmetric
channels and showed that for all the rates between 0 and Rz crit one can
reach and an error exponent strictly higher than the ones given in [9]. A
similar modification is possible within our frame work too .
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W(y lx) = ~

The error exponent of this channel is equal to sphere packing
exponent at all rates. In order to see why recall, [6, page
538, exercise 5.20J, VR > 0 there is a fixed list size L R

such that for any n 2: 1 there is a length n block code with
with len R J messages and decoding list size L R with error
probability Pe :::; e -Esp(R)n. Using log2 L R extra channel

Note that

efJ(p "')_efJD(p ,'1) = ((I -Ke)" + (K-I)~6)")p
(K - 1)p'I ( I-e)''''

(
(I - cY" (K -I)(K=-I)P")

- --K- + K

For P > 1 as a result of Jensen 's inequality E [z]P< E [zP] .
Thus fJ(p, TJ) < fJD(P, TJ) for all p > 1 and TJ > O.
Consequently equation (22) leads to oip, TJ , X)'s that are
strictly smaller those in [4J for all p > 1. Using Lemma 1
one can convert this improvement into tighter bounds on error
exponent. Figure 1 shows the resulting error exponents for a
particular channel. 7

4) Remarks on 2-D Encoding Scheme: The two example
channels we have considered do not reveal the main weakness
of the 2-D encoding scheme . Consider the following four-by
four symmetric channel W(y lx),

improvement over [4J. Equivalent of equation (22), in [4J has
fJD(P, TJ) instead of fJ(p, TJ) where,

fJD(P, TJ) = In [(1 - E)I -Pl1( (I;)" + Kj(1 (K=-J')P

+(K - l ) ( K=- I ) I - pr, ( (I -~) '1P + Kj(I(K=-I)l1P)]

5
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