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Neighbors Algorithm for

MMSE Image Interpolation

Karl S. Ni, Member, IEEE, and Truong Q. Nguyen, Fellow, IEEE

Abstract—We propose an image interpolation algorithm that is
nonparametric and learning-based, primarily using an adaptive
k-nearest neighbor algorithm with global considerations through
Markov random fields. The empirical nature of the proposed
algorithm ensures image results that are data-driven and, hence,
reflect “real-world” images well, given enough training data. The
proposed algorithm operates on a local window using a dynamic
k-nearest neighbor algorithm, where k differs from pixel to pixel:
small for test points with highly relevant neighbors and large
otherwise. Based on the neighbors that the adaptable k& provides
and their corresponding relevance measures, a weighted min-
imum mean squared error solution determines implicitly defined
filters specific to low-resolution image content without yielding
to the limitations of insufficient training. Additionally, global
optimization via single pass Markov approximations, similar to
cited nearest neighbor algorithms, provides additional weighting
for filter generation. The approach is justified in using a sufficient
quantity of training per test point and takes advantage of image
properties. For in-depth analysis, we compare to existing methods
and draw parallels between intuitive concepts including classifi-
cation and ideas introduced by other nearest neighbor algorithms
by explaining manifolds in low and high dimensions.

Index Terms—Classification, embedding, interpolation, nearest
neighbor, superresolution.

I. INTRODUCTION

MAGE interpolation relates to methods of constructing new
I image detail from a discrete set of known points resulting
in a high-resolution image. The problem is ill-posed, and the
quality of the solution is usually considered subjectively, fo-
cusing on edges, texture, and clarity of content. Such properties
can be generated in a number of ways, but to obtain them, new
or assumed information must be introduced. The information
can come in many forms, including but not limited to assump-
tions on pixel properties [1]-[3], frequency properties [4], [5],
a set of low-resolution, shifted images [6]-[8], or a training set
in statistical and machine learning [9]-[13]. In our work, it is
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the final category in the list, and the proposed algorithm is con-
cerned with its application in a sliding-window approach.

A common interpolative technique (not particularly specific
to images) is static filtering [14]-[17]. The cited approaches op-
erate on the incorrect assumption (which is widely acknowl-
edged as such due to the diversity of image content) that rela-
tionships between local low and high-resolution content can be
described by a single convolutional kernel. Rather, their com-
plexity usually justifies their usage, and though numerical re-
sults are most likely incorrect, the visual quality does not overtly
reflect it. More generally, the human visual system (HVS) is for-
giving of estimation errors from reasonable linear, spatial do-
main filters, meaning that in terms of human perception, the
actual process is approximated fairly well. This observation is
fundamental to the proposed algorithm. In light of using con-
tent specific linear filtering devices, when errors do occur, the
damage of estimation errors due to insufficient training appears
perceptually mitigated.

Instead of a static interpolation process for all image content,
a logical improvement [1], [3], [9], [13], [18] would be to adapt
filters that are optimized for certain content. These algorithms
balance specificity with estimation error by benefitting from the
knowledge that for localized linear approximations, reasonable
solutions will not significantly distort the image. We are inter-
ested in adapting optimal filters that are chosen from a training
set by variants on the k-Nearest Neighbor (k-NN) algorithm.

Nearest neighbor algorithms are attractive because they are
easy to implement, nonparametric, and learning-based. Such at-
tributes contribute to image results that reflect natural images
very well should the training set be well-chosen. The use of
nearest neighbor algorithms [10], [11] for interpolation is not
new. Because [10] and [11] are limited to information from a
single neighbor, the details of which will be further reviewed
in Section II, we propose to use a combination of information
gathered from & neighbors. The hope is to build the capability
of adapting and scaling to different training sets while simulta-
neously improving image quality according to training set size.

k-NN determines k training points that are closely related
to an input vector through an appropriate similarity metric.
For image interpolation, once the relevant training samples are
found, filters are specially tailored to determine high-resolution
values after identifying low-resolution content. The crux is to
achieve specificity with regard to image content without any
loss of generalization of application. That is, how detailed can
we make an image look while still making it look good for any
other image?

The answer to this question is intimately related to the quan-
tity of training samples used per reconstruction filter. In images,
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more training points per filter, i.e., k large, equals more gen-
erality, meaning that errors and variations due to the training
set are diminished. Alternatively, fewer training points per filter,
i.e., k small, equals more specificity, meaning that the image re-
construction is clearer and more detailed. As will be explained
in later sections, these issues naturally depend on the size and
quality of the overall training set, but it is reasonable to conclude
that to accommodate all possible test points, k¥ must be variable.

This work proposes an adaptable & for the £-NN algorithm
with special application to image interpolation. The remainder
of this paper explores the potential of the algorithm and compar-
isons to related approaches. Section II reviews previously pro-
posed algorithms in superresolution, interpolation, and statistics
in Section II-A as well as basic concepts in Section II-B. Sec-
tion III provides the major details for the proposed algorithm,
describing a variable k in k-NN used for superresolution. Then,
Section IV describes a weighted, single-pass Markovian-like
network that considers neighboring patches. Finally, Section V
analyzes image results, compares to state of the art techniques,
and discusses implications of our use of k-NN in image inter-
polation.

II. RECENT WORK AND BACKGROUND

It is well known from image restoration theory that image
interpolation is an ill-posed problem. Aside from typical spline
methods, several approaches interpolate in other domains,
including the Discrete Cosine Transform (DCT) domain [4],
[5], Discrete Wavelet Transform (DWT) domain [19], [20], and
Fourier Domain [21], [22]. These methods perform some type
of zero-padding in higher frequency slots, which by taking the
inverse transform, results in a spatially larger image. However,
instead of interpolation the result contains more characteristics
of re-scaling, where higher resolution information is not added
and edges and texture are not elucidated.

Algorithms that concentrate on particular image attributes
often preserve some type of regularity [23]-[25] including a
measure that is tailored specifically to edges [1], [2]. In partic-
ular, [24] uses properties in the decay of wavelet coefficients
to predict unknown coefficients at higher resolution subbands.
Meanwhile, [1] uses a low-resolution correlation matrix as an
approximation to obtain a high-resolution image filter based
on an assumption of geometric duality. Although simple to
implement, the covariance matrix is still low-resolution, and
the value added is usually inadequate for complicated textures,
often causing an effect similar to aliasing. In fact, in terms
of generating resolution, all of these algorithms are inferior
to learning-based methods where the quantity of additional
information may be exceedingly large so that the method is
able to enhance all types of image content.

A. Statistical Learning Methods for Superresolution

In learning-based methods, high-resolution information is
provided a priori in the form of a training set, where rela-
tionships are inferred to generalize to unknown data points.
Previously submitted contributions in the area involve highly
nonlinear approaches [26]-[30]. Although results are very
good, the complexity involved in these papers cause interpo-
lation to be unwieldy, and it seems unnecessary to involve the
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(a) Segmented domain for 2-D low- (b) Representation of domain for 2-
res patch in classification D low-resolution patch in k-NN

Fig. 1. Classification-based image interpolation (a) divides the domain into
several sections, and builds a representative filter at the location of the filled
in circles for each of the classes. k-NN-based image interpolation (b) forgoes
the classification during training and grabs the &k nearest neighbors, in this case
k = 4. With a similarity metric shown in red and the test point depicted as x,
the black dot, or the mean/centroid of a cluster, in (a) is not as related to the test
point as the four nearest training points in (b). If image clusters are unknown,
which they typically are, then k-NN creates much better filters for test points
that border on boundaries.

heavy machinery associated with the support vector regression
(SVR), the central development in the approaches. Another
statistical learning algorithm involves outdated neural network
concepts [31], [32] with limited degrees of success in interpo-
lation in terms of visual quality.

The most successful algorithms! include classification-based
adaptive filtering in [9], globalized nearest neighbor in [10], and
k-NN regression with novel weighting vectors in [11]. In [9],
the problem is formulated by using filters, chosen with local
spatial information as the feature space. Such filters provide
content-based interpolation under the assumption that image
patches are distributed as Gaussian mixtures, the parameters of
which can be found through the expectation maximization (EM)
algorithm [33]. Classification-based reconstruction methods are
partitioned according to image content, and problem complexity
decreases per test point, which yields good performance. Be-
cause the domain is partitioned into several different classes, the
idea of content based filtering can be improved by using more
immediate points that are more relevant (seen in Fig. 1).

William Freeman’s example-based superresolution [10],
which draws from candidate nearest neighbors and chooses
the best neighbor by a Markov network, is a good instance
of nearest neighbor interpolation. Instead of a single nearest
neighbor, which depending on the training set may not be suf-
ficient, manifold learning through neighbor embedding in [11]
offers a way to consider k neighbors, incorporating more infor-
mation to the solution. The method tends to have an easier time
coming up with local representations, but recent developments
[34] show that the underlying assumption in [11] of isometry,
at least for Euclidean distances, between low-resolution neigh-
bors and high-resolution neighbors is inherently false. In other
words, the distance metric used by [11] in low-resolution does
not correspond equally to their high-resolution counterparts,
and so the weights used at low-resolution are inappropriate for
high-resolution construction.

Despite access to limited information in [10] and incorrect
assumptions of isometry in [11], the concepts are very relevant

!0ur implementations of statistical learning algorithms used inordinate
amounts of training data resulting high-quality image results. Therefore, the
information algorithm available to these algorithms is considerable.
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and are worthy of elaboration. Among the differences between
the proposed algorithm and [10], [11], besides using k neighbors
over a single neighbor, the proposed algorithm takes advantage
of the special properties of linear filtering for image interpola-
tion. As linear filtering has long been an image interpolating tool
in image and video processing, its use is appropriate for our ap-
plication.

B. Review of k-Nearest Neighbor for Regression

The k-nearest neighbor [35] rule is among the simplest sta-
tistical learning tools in density estimation, classification, and
regression. Trivial to train and easy to code, the nonparametric
algorithm is surprisingly competitive and fairly robust to errors
given good cross-validation procedures.

Let ) be a training set of N input-output pairs. Then

Q={(x1,y1),(x2,¥52)s-- -, (XN, ¥N)} - (1

For the problem specifically relating to image interpolation,
x; is comprised of the ¢th low-resolution image patch in the
training set. Likewise, y; defines the sth high-resolution image
patch. During runtime, where we denote runtime values with
subscript ¢, the adaptation of k-NN determines the high-resolu-
tion image patch y; from a single low-resolution image patch
x;. For mathematical reasons, it is easier to represent image
patches x and y as vectors instead of square patches. There-
fore, in subsequent derivations x and y are both vectors that
have been rearranged from image blocks into a single column.

The typical k-NN estimate for regression [36], [37] at the test
point x; is given as

)A’:g(xt):%z:

where W; € {0, 1} depending on whether or not x; is among the
k nearest neighbors of x;. (To be seen in later sections, instead
of g, alinear transformation GG performs the task of y; = Gx;.)

Naturally, the definition of (2) could be extended by not
necessarily limiting W; to 0 or 1, but rather the constraint
Zi\:l W; = k. In fact, there are several common weighting
schemes, ranging from posterior probability like expressions
[38] to iteratively determined convex solutions [39], all func-
tions of distances or weights that can used to minimize some
criterion as in [11].

An extensive study on error rates for regression-based k-NN
estimates was analyzed in [40], where it was conceded that for
(z,y) jointly normal,? under the squared-error loss case, the un-
conditional, large sample risk R as N — oo of the k-NN esti-
mate satisfies

2)
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Here, R* is the Bayes risk (minimum expected loss), z; € {2,
and parameters o and o9 are variance parameters in probability
distribution functions (PDF’s) f(y) and f(y|z). The tradeoff in
(3) would like to keep 1/k term to limit erroneous reconstruction

2[40] only treats the univariate case.
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while simultaneously favoring a larger k to keep the final term
in (3) small. This type of tradeoff is common in £-NN problems,
and provides much need for cross validation as will be seen even
for adaptable k values.

Of course, itis not always the case that N is large and for these
problems, the risk Ryn of nearest neighbor (where k£ = 1) is
usually smaller than the risk of £-NN [40], but overall, when N
is large, k-NN is invariably the rule of choice. Actually, when N
is large and the dimensionality of x;, d, is small, £-NN is almost
always preferable or at least competitive among other estimation
techniques such as SVR, where SVR performs well when N is
small and d is large. (SVR is more of a generalizing technique.)
This is fairly intuitive because we would like to blanket the en-
tire domain with samples, possible only with N large, and easier
if d were sufficiently small.

It is this last scenario that tends to be the case with the po-
tential of today’s computing power. As memory for computing
tasks increases and computing time for higher complexity rou-
tines decreases, motivation for various k-NN problems (obvi-
ously, not limited to interpolation and superresolution) is justi-
fied due to the capability of supporting large IV values. The fol-
lowing sections offer a basic but original £-NN algorithm while
referencing existing k-NN approaches.

III. ADAPTED k FOR UNKNOWN TEST POINTS

The traditional view of nearest neighbor algorithms [38] for
density estimation is mathematically expressed as

N

Z K (x - xi>
, o
where K represents a kernel that integrates to one, e.g.,
Gaussian or radial basis functions (RBF) kernels in our case.
Conceptually, (4) estimates f(x) by placing kernels around
every training point in order to describe a complete picture of
the probability density function (PDF).

The paradigm for our approach is just the opposite, though the
final results should remain exactly the same. Instead of thinking
that kernels extend around each training point, we can visualize
a kernel at the test point since conceptualizing a PDF at runtime
is unnecessary. Therefore, distances from the test point to the
surrounding training points are evaluated by kernel depending

on how far they are to the input rather than how far the input is
to each of them.

“

A. Building the Optimal Interpolation Mechanism

To reiterate, kernel function K used in the proposed algorithm
is the RBEF, stated in (5)

K,

1
F(Xi,X;) = mexp{—dF(xi:Xj)} <1

)
where di (x;,X;) is the Mahalanobis distance or weighted Eu-
clidean distance specified by 1/2 (x; — xj)T Y (xi — x5).
Unfortunately, in the absence of prior knowledge, most k-NN
algorithms determine proximity through un-weighted Eu-
clidean distances. Fortunately, we can calculate the X of the
entire training set and use a scaled version of it, which actually
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does not improve very much but is better than the un-weighted
case.

As alluded to in Section II-B, there are many weighting
schemes for W in (2). One family of solutions, which offers
more flexibility in application, known as locally weighted re-
gression (LWR) [41], [42] can replace W by a particular model
class g(x,8), in which y; is determined locally by functions
based on how similar point x; is to x; [43]. Then, the task of
k-NN for regression becomes estimating select parameters for
reconstruction in (6)

B =argmin Y dr(g(xi,B).y)Kr(xi,xt) (6)
COxEN(xy)

where dR is a distance metric in the range and feature space,
respectively, and NV (x;) is the neighborhood of x;.

On the principle that isometry is not a realistic scenario for
image superresolution [34], (6) becomes a viable alternative.
With LWR, the only required assumption is that linear filtering
yields an excellent approximation for local image construction
as opposed to assuming some kind of duality between low-reso-
lution and high-resolution manifolds in [11]. Hence, the g(x, B)
in (6) becomes the linear filter in question, which can be reduced
to an MMSE filter formulation, and we can find y; by

yi = Elyi|x:] = g(x¢,8) = Gx4 @)

where G is a u X d matrix, u being the upsizing factor, and is
constructed by probability parameters (3 and neighboring low-
resolution and high-resolution pairs.

The focus from (7) now becomes finding G, which is ac-
complished by slightly modifying traditional MMSE equations.
Eventually, preprocessing steps such as mean-shifting or vari-
ance normalization are implemented to determine the feature
space F for both k-NN neighbor identification and regression,
but for now, the filters are created in a manner similar to [9]. To
manage the data, let us assemble all neighboring low-resolution
vectors x; and high-resolution vectors y; of the test vector x;
into X and Y matrices, respectively. Hence, we define X and
Y matrices as a collection of x; and y; vertical vectors lined up
horizontally.

By defining (5), we can construct a matrix P for a given
neighborhood of x; such that if p is a vector of similarity mea-
sures whose ith entry is the value K (x;,x;), then

pP=1"p ®)

where k is the number of neighbors to use and 1 is a k-dimen-
sional vector of all ones. Hence, P has dimension d X k.

The purpose of P is to establish a proper weighting of point
x; € N(x¢). Since one of the arguments to the Kg(x;,x;) in
(5) is always x;, weighting schemes [39] usually observe the
similarity between x; given x; as a Gaussian PDF with mean
centered at x; and the elements in P as how probable that neigh-
borhood vector is relevant.

Recall that the sample autocorrelation matrix is traditionally
defined as Ryxy = XX7T and cross-correlation matrix as
Rxy = XY7T. The least squares filter formulation takes on
the same form in our for the optimal regression, GG in (9). The
result is is roughly equivalent to the derivations from [9]

1979
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B. Choosing the Correct k

There are certain properties in the image interpolation
problem that are especially attractive; top among them is the ro-
bustness to poorly designed filters. The explanation stems from
linear filters’ tendency to average out image data. Moreover,
weighted MMSE solutions can be interpreted as an averaging
of an overdetermined system. As such, when more and more
points are involved, or k is grown to be large, the sample size
of X grows as well, and GG will be able to accommodate a more
general base of x; vectors. On the other hand, maintaining large
k defeats the purpose of k-NN because using smaller k ensures
specialization of the resulting filter.

The idea of choosing an adaptable & compensates for nonuni-
formly distributed training data when the high-dimensional do-
main of low-resolution image patches are inconsistently scat-
tered across feature space. For the uniformly distributed case, &k
can be fixed because the variance in the distances from the sur-
rounding training points to any given input test point is limited
among all possible test points. In such cases, using a fixed & will
always yield roughly equivalent relevancy in training informa-
tion among any two test points. As it happens, in natural image
statistics, the entropy of image patches is difficult to describe
and cannot be modeled in any traditional linear sense. The in-
vestigation of image patch statistics has been extensively exam-
ined in several papers such as [44] and [45],3 where patches are
discovered to be sparsely distributed with the majority of points
clustered in high concentration on nonlinear manifolds.

The view of clustered high-dimensional manifolds are in-
grained in most image model descriptions in some form, and ad-
ditional work on the subject is abundant [44]-[47]. Literature on
high-resolution image manifolds is fairly involved, and we are
not concerned with their specific properties, merely exploiting
the fact that they exist. Thus, the proposed algorithm should be
tuned and adaptable to the distribution and where arbitrary test
inputs might land. The manifestation of such an endeavor is in-
timately connected to the number of nearest neighbors, or k,
given the input test point in a naturally distributed training set.

The goal is to find the right &k for a desired tradeoff. As one
may guess, k < k*, where £* is the ideal number of neighbors,
overfits the training set specializing G too much, and the man-
ifestation is a grainy and discontinuous image. Furthermore, if
k were exceedingly small, k¥ < k*, G could become singular.
This is intuitive because training points near x; could be very
close together causing (9) to be underdetermined. Analytically
speaking, vectors in X that are too similar can mean that Rx x
is rank deficient and thus noninvertible. This is a dilemma be-
cause while k-NN should find the most relevant data, it is de-
signed such that the collected vectors based on x; are similar to
each other. Hence, though it is counterintuitive, it is important
to choose a large enough neighborhood in F so that diversity in
the NV (x) exists.

3[45] assumes two manifolds termed “explicit” and “implicit”, but the two
types effectively describe the same behavior as [44]
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This type of built-in error is a consequence of uneven
training data collection in unsupervised learning. Similarly, un-
even training data also has implications that £* may potentially
be significantly different for any two given test points. To find
the optimal k*, we introduce 7 such that k*, a function of x;
and the training set 2, is determined by

N
k*(x,Q) = argmin,, Z Wi(x, Q, k) K (x;,%x) > 1
i=1
where W;(x,Q,k) € {0,1}. (10)
The expression in (10) obtains £* by finding the minimum
number of neighbors whose sum of similarity measures ex-
ceeds a threshold 77, which is obtained through cross validation.
Moreover, 7 is a minimum bound of % since K (x;,x;) < 1 for
all X;.

Analyzing (10) for a given x;, if there are only a few x; with
high probability of being related to it, that is >, K (x;,x;) is
small, then the proposed algorithm will need to consider more
points in hopes of generalizing well. Alternatively, if there are
many x; that are related to x, i.e., >, K(x;,x;) is large, it
is unnecessary to use other points where the similarity is low
because the specialized filter generated by the points within
>, K(xi,x¢) < nis very likely to be accurate. Conceptu-
ally, we can visualize a ring that extends further and further de-
pending on whether or not there are enough points inside the
ring.

C. Heuristics for Insufficient Training

k-NN algorithms assume there are enough points to blanket
the entire domain, providing a good density estimate of the input
space. Problems then arise from insufficient training because
the further the ring of values under consideration extends, the
smaller the similarity values, and the less suited any additional
training point is to complete the task of reaching 7. In extreme
cases, 71 may not even be reached before the entire training set
is exhausted of points. Thus, we require the incorporation of
a simple heuristic of limiting the maximum value of % that is
allowed to be used.

We can set a limit on k* by letting ¢ be a maximum limit on k.
After doing so, a generic technique, i.e., bicubic interpolation,
may be used for those x; that {2 does not represent well. Ad-
ditionally, the maximum number of neighbors will reduce both
complexity and errors. The complexity reduction should be ob-
vious, but to see that errors have been minimized by stopping
the algorithm prematurely with (, the algorithm effectively ac-
knowledges that, at least for the image patch at hand, the orig-
inal intention of the proposed algorithm cannot be carried out
due to a less than competent training set. Therefore, for any x;
that k-NN is ill-equipped to manage (i.e., k* > (), the errors are
bounded by whatever interpolation algorithm replaces k-NN.

The question now becomes finding what kind of interpola-
tion algorithm should replace £-NN. Is there a particular type
of image patch that the k-NN algorithm consistently disfavors?
Moreover, based on this bias, are there certain properties of
these patches that allow us to tailor a solution using this knowl-
edge? The answer is yes on both accounts. After running several
tests, we came across a peculiar reoccurring theme in generic
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(a) Original Interpolation

(b) Patches w/Insufficent Training

Fig. 2. With only 200 thousand data points, we cannot actively reconstruct
many edges on the lighthouse because training patches don’t occur frequently
enough and there aren’t close enough matches. Texture, however, can be, and
much of the texture interpolation occurs because k* < (.

training and testing images: texture patches never reached ¢ and
appeared at high quality, but edge patches often did and needed
attention.

Using 2 x 10° training points and observing similarity mea-
sures in (8) (which are based on Euclidean distances), the texture
matches usually retain similarity values of K (x;,x;) = 0.93
(out of 1.00), whereas edge matches usually satisfy K (x¢,x;) <
0.40. Furthermore, in viewing a single image,* only a small per-
centage of image patches are actually edges, so accumulating
relevant image patches in (10) to surpass 7 is even more im-
probable. The situation is best described in Fig. 2.

Though texture results in high peak signal to noise ratios
(PSNR), to be presented in Section V, the human visual system
(HVS) focuses on edges [48]. Fortunately, research into edge-
oriented image filtering has been well-studied [49], [50]. In our
framework, we can agglomerate a bank of edge-oriented filters
that do “well-enough” when the “best” filter through k-NN is
unavailable, effectively reducing the implementation to a spe-
cialized version of [9] with an added MRF improvement (see
the next section, Section IV) through [51].

With enough data points, however, replacing k-NN condi-
tioned on k* > ( should occur relatively few times. That is,
edges may and often are well-represented in the training set,
which indicates the algorithm is operating closer to capacity.
Studies such as these are reserved for current and ongoing work.

IV. USING THE SINGLE-PASS APPROXIMATION TO THE
MARKOV RANDOM FIELD

It is widely acknowledged that local interpolation could ben-
efit from global image information to predict high-resolution
pixel values. Construction of high-resolution image detail from
isolated, local low-resolution image patches (i.e., without infor-
mation from adjacent patches and the image as a whole) using
a single neighbor is shown in Fig. 3, where overall results are
described as looking “like oatmeal” from [10]. Without infor-
mation from adjacent patches, high-frequency components of
an image as a whole become patchy and discontinuous. The
most common remedy is to globalize the effort by using sur-
rounding window information, where many image processing
algorithms call upon Markov networks. What follows in the rest

4Unsupervised data collection means that the exact percentage values of
patches are not known.



NI AND NGUYEN: ADAPTABLE k-NEAREST NEIGHBORS ALGORITHM FOR MMSE IMAGE INTERPOLATION

(b) 2x Interpolation (c) High-Frequencies

Fig. 3. Image example follows implementation of Freeman et al. [10]. Super-
resolution results using a single neighbor with only local and individual patch
information with no spatial neighbor patches. On the bottom, the high-frequen-
cies of local reconstruction efforts look “like oatmeal.”

l'I}(Zi ) Zi)

Fig. 4. This diagram is very similar to the one in [10] (the difference being
terminology.) We use K (x:, x;), where x; is the observation and x; € 2 in
Section III to determine possible states, {z}. We can use a function similar to
K for ¥ to determine the compatibility between the states.

of the section is a description of a proposed implementation of a
single-pass approximation to the Markov Random Field to con-
sider neighboring areas surrounding a window and alleviate the
effect of Fig. 3.

In terms of nearest neighbor algorithms for image interpola-
tion, [10] is most like our algorithm. The differences between
the proposed algorithm and [10] are subtle but significant. [10]
chooses a single neighbor among a number of candidate neigh-
bors and applies the high-resolution differences. Our algorithm
chooses an “appropriate” quantity of candidate neighbors and
directly determines the high-resolution content. The philosophy
that leads to this arises from differences in the choice of feature
space, where [10] first uses an analytic interpolation scheme,
such as bicubic interpolation, and stores differences between the
initial interpolation and the true high resolution patch. In con-
trast, the preprocessing involved in our algorithm only consists
of DC subtraction and scaling. In essence, we trust the capacity
of the algorithm to perform the approximation rather than first
approximating outside the algorithm.

Despite the difference, [10] makes a good argument that glob-
alization in terms of relating neighboring patches is necessary.
Consequently, we have followed their lead by considering the
usage of Markov network in modeling spatial relationships be-
tween patches. Such modeling techniques require the use of
some brand of annealing process, which is usually computation-
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ENTIRE IMAGE

Superresolve

these pixels
} Single LR block

(Dx D)

Evaluation Window

(a)Descriptionofwindowsandblocks

Low Resolution Image

J Does LR block Yes -
need processing? Vectorize and Q
1 Preprocess

I Find & and k nearest neighbors

Determine P from
neighboring blocks

G =(Rxx*P)" (Rey* P)
| |

y =Gx

High Resolution Block

(b)Block diagram of algorithm

Fig. 5. Evaluation window (a) for the algorithm in which all k neighbors are
known or need to be found. The center block depicts the block that is to be
superresolved. The surrounding blocks supply ¢ values to weight the consider-
ation of individual neighbors. All LR blocks have or need to calculate &, and the
entire algorithm (b) uses these blocks in the evaluation window to determine G
and the high-resolution patch. In raster scans, for the majority of the time, the
only LR block for which neighbors have not been calculated is the lower right
block. Naturally, more of the blocks in the evaluation window require a search
for k neighbors at the borders of an image or if implementation restrictions de-
pendent on the available memory.

ally intractable for most interpolation purposes. Therefore, with
the aid of [51] and [10], we have implemented a simpler-than-
MREF, single-pass technique to enhance coherency from patch
to patch.

Single pass algorithms include extra arguments into the
decision making process that increase propensity towards
one neighbor over another. Obviously, because our algorithm
observes multiple neighbors per input patch, the structure of
the one pass algorithm must be modified somewhat.

Given the filter construction process in (9), we can take ad-
vantage of an expression that is already designed to penalize
or reward training points through a matrix P. To review con-
ceptually, elements within P denote the importance of a par-
ticular training point. After determining the k* values for all
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TABLE 1
MISCELLANEOUS PSNR COMPARISONS

METHOD PSNR Values
Pirates Lighthouse Bus,4

Bicubic 2839 dB 28.87dB 24.55dB
NEDI [1] 26.82dB 2744 dB 22.57 dB
SEL [2] 26.67dB 27.38dB 22.63 dB
128 Class RS [9] 2891 dB 2898 dB  26.48 dB
LLE [11] 2197dB 2270 dB 18.04 dB
Example-Based [10] | 27.28 dB  29.77dB  25.40 dB
Fixed k-NN 2923 dB 29.12dB 2542 dB
Proposed Algorithm | 30.27 dB  29.81 dB  26.38 dB

image patches (or realistically, just the ones surrounding the test
patch being evaluated), the logical course of action would be to
reward those states that contain high values for K (x;,x;) and
U (z(®191), z(*2:92)) Adding a scaling factor e, a very simple
conditioning scheme could be

Py = K(x¢, %) + Z Z v (z](»n),zi) .

neN j

an

Here, zg-") refers to the jth candidate state (see Fig. 4) of the

nth low-resolution (LR) block in A/, the neighborhood of the
input block. Referring to the entire algorithm in Fig. 5, blocks
in A/ are adjacent to the input test block.

V. RESULTS

We define our feature space as vectorized 5 x 5, centered and
normalized pixel patches. Hence, d = 5inx € ‘]Rd2 , and for
interpolation by u = 2, our algorithm follows RY -~ R* . We
have collected a diverse set of high-resolution training images at
an archive available at http://calphotos.berkeley.edu, and gener-
ated the low-resolution image through MATLAB’s imresize
command. Therefore, the low-resolution training patches are
generated from decimated and anti-aliasing filtered high-resolu-
tion images. With respect to Section IV, the proposed algorithm
uses a relatively small influence of « in a variation of (11), and
we define a kernel function, similar to K, for our choice of W.
The training set is chosen to have all types of textures and image
content so that the highest level of generalization can occur. In
addition, we have included several speedups for runtime con-
sideration in our experimental setup (see the webpage below for
specific details).

Given the occurrences of insufficient data in Fig. 2, the
assumption that a very large training set is at the proposed
algorithm’s disposal remains (common for any k-NN algo-
rithm). The issue is highlighted as the proposed algorithm fails
to yield meaningful results when the high-resolution image
to be superresolved is the only item in training. Hence, our
experiments mandate a minimum of 12 to 14 large images,
where resources consist of millions of image patches. (The
total number of training for the set of test runs in Table I is
N = 4,309,914 points.) The phenomenon returns to previous
explanations of determining filter coefficients and the proposed
algorithm’s choice of k. As it turns out, creating a nonsingular
matrix is surprisingly difficult, because very often insufficient
data plagues the construction effort.
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(¢) Minimum k, n = 5,000

Fig. 6. Pirate images for various cross-validation values of 7 = Emin.

A. Cross Validation and Local Content-Based Results

In terms of cross validation, there are two degrees of freedom
in our experiments, o, the bandwidth parameter of the Gaussian
used to extend around the test point, or 7, the minimum number
of training points necessary. Between the two, it is easier to
alter 1 because bandwidth o is a squared exponent term and is
difficult to control.

Fig. 6 depicts the role of 1, where the images are placed in
logarithmically increasing order of 7. While Fig. 6(a) appears
clearer and sharper, there appears to be quite a number of errors
that afflict the construction effort. Meanwhile, Fig. 6(c) appears
blurrier and more washed out, but there are fewer errors.
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(a) Original Image

(b) Adjustable k& (c) Non-adjustable k&
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Fig. 7. Comparisons to fixed k in k-NN of texture. The proposed algorithm is
consistent in superior quantitative performance for any texture that is tested.

Images are diverse entities, but for brevity and analysis pur-
poses, they are divided into two categories in Figs. 7 and 8: tex-
ture and edges. Both figures compare the performance of a vari-
able k versus a fixed k in nearest neighbor weighted filtering.
Adjustable £ PSNR results in Fig. 8(d) are somewhat lower
than fixed k results. Given the behavior of £-NN in edge image
patches, seen in Fig. 2, the performance is justified by some in-
tuition. For most edge content, the amount of training that is
“close” to x; is insufficient, which is manifested in some am-
bient noise in Fig. 8(c). Recalling Section III-C, the phenomena
makes sense as edges and sharp, uniform gradients in training
sets are generally not represented well in terms of Euclidean
Lo distances. With the same training set, the nonadjustable &
cannot pool from additional data though the neighbors it uses are
not very “relevant”. The adjustable £-NN algorithm will, on the
other hand, attempt to obtain more data for a general result, and
the image becomes softer with fewer errors in Fig. 8(b). Never-
theless, in obtaining a very general filter, the adjustable k-NN
sacrifices high PSNR values because it uses a very general and
broad filter that averages more than it specializes. Hence, the
fixed k-NN will have higher PSNR values.

In the opposite spectrum, texture, according to Fig. 2, has a
strong showing in most training sets. Therefore, the quantita-
tive values in Fig. 7(d) reflect specific filters that are specially
designed for the situation determining a quantitatively superior
result.

From descriptions in Section III, values of & are directly cor-
related with the amount of training, N. Increasing N usually
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Fig. 8. Comparisons to fixed k in k-NN of edges. The proposed algorithm sac-
rifices some numerical performance to ensure visually pleasing results.

(b) Edge Directed Interpolation [1]

(a) Bicubic Interpolation

(c) Subpixel Edge Localization [2] (d) Adaptive k-NN

Fig. 9. Comparisons to state of the art nonstatistical interpolation techniques.

results in decreasing k, and this is verified through experimen-
tation because k tended to stay around select values, kq.q, for
particular V. In Figs. 9 and 10, k had a standard deviation of
59.79 on average staying around 151.76. Often kp,.x = 106 was
reached, i.e., £* > (, but it was usually either hit or miss, where
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(a) Original Image

(b) Example-based Superresolution [10]

(d) Neighbor-Embedding [11]

(e) Adaptive k-NN

Fig. 10. Comparisons of the bus image for various statistical learning interpolation techniques. [11] (d) seems to work for select images only.

either k would be close to k.4 or ¢ was reached, in which case,
image values were created using bicubic interpolation.

B. Comparisons to Nonlearning-Based Algorithmic Results

The proposed algorithm naturally appears superior over state
of the art interpolation algorithms in Fig. 9. Numerical results in
Table I also highlight the proposed algorithm’s advantage over
nonlearning-based methods. These comparisons are probably
not very fair, because the amount of information available to
the proposed algorithm is greater than any of those compared to
it.

C. Comparison to Learning-Based Algorithmic Results

Fig. 10 shows the qualitative results of other nearest neighbor
and statistical classification algorithms alongside our own, and
Table I gives the quantitative results> for various images. Al-
though PSNR is a standard quantitative metric image assess-
ment, it has widely been acknowledged as a poor judge of image

SPeak signal-to-noise ratio (PSNR) is the widely accepted and commonly
used standard of quantitatively measuring image quality.

2552
Y MSE’
The value 255 is used because it is the maximum image value. MSE stands for
mean squared error, the standard definition.

PSNR = 10 - log
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(c) Classification-based Interpolation [9]

(d) Adaptive k-NN

Fig. 11. Comparing pirate images. [9] seems to be oversharp in the areas such as the face, the side of the hat. While [10] concentrates on edge-continuity, Adaptive
k-NN elucidates the texture of the image. Notice the barrel, the wooden pillar in the background, hat, etc.

quality in terms of the human visual system (HVS). It does, how-
ever, give us a good idea of the numerical accuracy or difference
between two images, and one can conclude that the proposed al-
gorithm estimates pixels much closer to their original high-res-
olution values than most other algorithms.

Figs. 10(b) and 11(b) show a decidedly edge-centric result,
which can be explained by the neighborhood regularization
done through Markov networks. The algorithm does especially
well in areas where the original image contains a disparity
between textures such as the border between the bus and the
background, but gives average performance where edges are
less well-defined [see the pole above the bus in Fig. 10(b)]. The
same phenomenon can be seen for involved textures (see the the
barrel and pillar in Fig. 11). This result is interesting, and could
be a byproduct of the particularly large emphasis that Freeman
places on texture regularity. More likely, Section III-C reasons
that the trend could be due to an incorrect choice of a single
neighbor from insufficient edge information. Figs. 10(e) and
11(d) follow this model, but here, the benefits of k£ rather than
a single neighbor becomes apparent, significantly reducing the
same artifacts that afflict [10].

Again, our algorithm does not have the luxury of an initial in-
terpolation stage, instead filtering from scratch, and when there

is insufficient training, cross validation for n and o is difficult
albeit possible. Owing to this fact, the proposed algorithm man-
ages smaller IV sizes at the lower end of & < 10 in o x 10°
worse than [10]. Yet, when N is large, it often outperforms all
statistical methods, the conclusion here being that the proposed
algorithm represents the inherent relationship well.
Interestingly enough, while [11] is the most similar in theory
to our algorithm, the results [Fig. 10(d) and in general] did not
reflect this. No experiment adjusting any parameter would yield
acceptable results. Experiments in [11] trained on single images,
but the feature space of [11] in those cases was an astonishing
100 dimensions, for which we would usually expect large N.
Surprisingly, even with large N, the algorithm still remains at
a disadvantage; our implementation® of [11] was never able to
achieve the generalization of any of the other statistical learning
algorithms. In fact, additional postprocessing was required to
rid the constructed image of speckle noise from erroneous es-
timation. The errors may be due in part to the fact that neigh-
boring patch information is not considered. Because the neigh-
borhood preservation rate of the output patch is on average less
than 10% [34], we can expect little continuity in the image re-

6This was later independently verified by the author of the original work, [34],
and code from the author of [11] through e-mail correspondences.
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sult. Another possible explanation attributes the errors to small
k values, usually less than 40, which prevents the contribution
of large amounts of information to offset estimation errors, i.e.,
k often did not scale proportionately with N. The proposed al-
gorithm with N ~ o x 10° found & on average in the high hun-
dreds, which oddly enough, applied to [11] gave even poorer
visual quality.

Figs. 10(c) and 11(c) from [9] give slightly clearer results than
the other statistical methods, but introduce sharpening errors in
many instances. This is due in part to the number of classes
involved (128) because the performance varies with different
class sizes. Intuitively, the two methods should converge when
the k in k-NN algorithms is excessively large and the number
of classes in classification-based algorithms” is large as well.
This is eventually true, but the way in which this happens is
unexpectedly nonmonotonic. Ultimately, the tradeoff pits the
number of data points per class against the number of classes,
where N plays an obvious role. Current results show that as N
increases (as well as the number of classes), the role of £-NN
plays less, and classification based algorithms inexplicably do
better. Barring this broad analysis, which composes the subject
of current work, the only relevant conjecture made here is that
conventional classification-based algorithms could stand to im-
prove due their deficiency of classes.

Additional comparisons and results can be found at http://
videoprocessing.ucsd.edu/~karl/k-NN/.

VI. CONCLUSIONS AND FUTURE WORK

A k-NN algorithm with optimal filters and a variable k, de-
termined by relevant training, has been proposed, tested, and
compared to the state of the art. The analysis of this algorithm
leads to several conclusions.

1) For small training sets, edges cannot be accurately depicted
with any nearest neighbor algorithm (if the metric used is
Euclidean distance).

For large training sets, k-NN performs especially well,
both quality and quantity-wise.

Fast neighboring-patch approximations of a Markov Net-
work elucidate edges and provide good continuity but
sometimes hinder texture synthesis in cases where the
training is limited.

Linear filtering is a good mask and covers up considerable
estimation errors.

The direct application of k-NN regression with slight mod-
ifications exhibits competitive image quality and offers de-
tailed texture.

The investigation of k-NN opens several avenues of design
and analysis, which in the end, could culminate into a grand
unifying theory for nonparametric statistical methods in image
interpolation. More immediately though, a need for a replace-
ment of Euclidean distance search seems pressing. [52] deals di-
rectly with this problem for image patches in one of the chapters.
Because k-NN algorithms rely on searches for points with the
closest distances, other solutions usually concentrate on com-
plexity reduction and quality of search. The manifestation is

2)

3)

4)

5)

7[9] grows a tree for training, but then prunes the tree. Comparisons for our
purposes deal with overfitting by throwing more data at the problem, rational-
izing the omission of the pruning process to the sheer quantity of training.
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some kind of feature space representation [27] or dimension-
ality reduction/manifold learning. The latter of the two can be
done in several ways, and the concept of semi-definite embed-
ding [53] is especially attractive.

Finally, as mentioned earlier, patch-based training images
have yielded interesting properties, among them differences
between large-class clustering and k-NN as well as local image
distribution. While empirically touched upon in Section III-C,
theoretical and statistical analysis of the domain representation
remains to be explored, the topic of work underway.
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