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Abstract

Mid-way through the 2007 DARPA Urban Challenge, MIT’s autonomous Land
Rover LR3 ‘Talos’ and Team Cornell’s autonomous Chevrolet Tahoe ‘Skynet’ col-
lided in a low-speed accident, one of the first well-documented collisions between
two full-size autonomous vehicles. This collaborative study between MIT and Cor-
nell examines the root causes of the collision, which are identified in both teams’
system designs. Systems-level descriptions of both autonomous vehicles are given,
and additional detail is provided on sub-systems and algorithms implicated in the
collision. A brief summary of robot–robot interactions during the race is presented,
followed by an in-depth analysis of both robots’ behaviors leading up to and dur-
ing the Skynet–Talos collision. Data logs from the vehicles are used to show the
gulf between autonomous and human-driven vehicle behavior at low speeds and
close proximities. Contributing factors are shown to be: (1) difficulties in sensor
data association leading to phantom obstacles and an inability to detect slow mov-
ing vehicles, (2) failure to anticipate vehicle intent, and (3) an over emphasis on
lane constraints versus vehicle proximity in motion planning. Eye contact between
human road users is a crucial communications channel for slow-moving close en-
counters between vehicles. Inter-vehicle communication may play a similar role for
autonomous vehicles; however, there are availability and denial-of-service issues to
be addressed.

1 Introduction

On November 3rd, 2007, the Defense Advanced Research Projects Agency (DARPA) Urban
Challenge Event (UCE) was held in Victorville, California. This event set loose, simultaneously,
for the first time, 11 full-size autonomous vehicles on a closed course. The aim of the contest was
to test the vehicles’ ability to drive between checkpoints while obeying the California traffic code.
This required exhibiting behaviors including lane keeping, intersection precedence, queuing,
parking, merging and passing.



Figure 1: The collision. (left): Skynet. (right): Talos.

On the whole, the robots drove predictably and safely through the urban road network. None of the
robots stressed the (understandably) conservative safety measures taken by DARPA. There were,
however, a number of low-speed incidents during the challenge. This paper takes an in-depth look
at one incident, the collision between Team Cornell’s vehicle ‘Skynet’ and MIT’s ‘Talos’. This
paper scrutinizes why the collision occurred and attempts to draw some lessons applicable to the
future development of autonomous vehicles.

The UCE was held on a closed course within the decommissioned George Air-force base. The
course was predominantly the street network of the residential zone of the former base with several
graded dirt roads added for the competition. The contest was cast as a race against time to complete
3 missions. The missions were different for each team but were designed to require each team to
drive 60 miles to finish the race. Penalties for erroneous or dangerous behavior were converted into
time penalties. DARPA provided all teams with a single Route Network Definition File (RNDF)
24 hours before the race. The RNDF is very similar to a digital street map used by an in-car GPS
navigation system. The file defined the road positions, number of lanes, intersections, and even
parking-space locations in GPS coordinates. A plot of the route network for the race is shown
in Figure 2. On the day of the race, each team was provided with a second unique file called a
Mission Definition File (MDF). This file consisted solely of list of checkpoints within the RNDF
which the vehicle was required to cross.

To mark progress through each mission, DARPA arranged the checkpoints in the mission files
to require the autonomous vehicle to return to complete a lap of the oval shaped “Main Circuit”
(visible in bottom left corner of Figure 2) at the end of each sub-mission. Each mission was
subdivided into 6 or 7 ‘sub-missions’. At the end of each mission, the vehicles returned to the
finishing area, where the team could recover and reposition the vehicle for the next mission. Most
roads were paved with a single lane in each direction, similar to an urban road. Several roads had
two lanes of traffic in each direction, like an arterial road or highway. One road, in the southeastern
corner of the network, was a raised dirt road constructed especially for the event.



All 11 qualifying robots were allowed to interact in the UCE course simultaneously, with additional
traffic supplied by human-driven Ford Tauruses. To prevent serious crashes during the competition,
all autonomous vehicles were followed by an assigned DARPA chase vehicle. The chase-vehicle
driver supervised the robot and could ‘Pause’ or, in extreme cases, ‘Disable’ the robot via radio
link. ‘Paused’ robots could then be ‘Un-Paused’ to continue a mission when safe. ‘Disabling’ a
vehicle would kill the engine, requiring the vehicle’s team to recover it.

The qualifiers and the race provided ample opportunity for damage to the robots on parked cars,
concrete barriers, DARPA traffic vehicles and buildings. The fact that the two vehicles were not
damaged, other than minor scrapes in the collision, despite hours of driving emphasizes the fact that
the circumstances leading to the collision were the product of confounding assumptions across the
two vehicle architectures. The robots negotiated many similarly complex situations successfully.

This paper begins with a brief summary in Section 2 of the robot–robot interactions during the
6-hour race. Then, to aid in the collision analysis, summaries of the MIT and Cornell vehicle
software architectures are given in Sections 3 and 4 respectively. Section 5 describes the Skynet–
Talos collision in detail, before branching in Sections 7 and 6 to provide detailed accounts of the
robots’ software state during the incident. The apparent causes of the incidents are studied here to
shed light on the deeper design issues involved. In Section 8, we draw together the insights from
the software architecture analysis to summarize the common themes, the lessons learned, and the
impediments to using these robots on the real urban roads.
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Figure 2: The UCE road network. Waypoints are designated as blue dots, with traversable lanes
and zone boundaries represented as blue lines. Stop lines are designated as red circles. The Skynet–
Talos collision happened entering the Main Circuit on the bottom left.



2 Chronology of Robot–Robot interactions

The following table is a list of robot–robot collisions or close calls during the UCE. The list has
been compiled from the race day web-cast and vehicle data logs. The locations of the incidents
are marked in Figure 2.

Time (Approx) Location Description Reference
1h00m Utah and Washing-

ton
Cornell’s Skynet passing with IVS’
XAV-250 and Ben Franklin Racing
Team’s Ben oncoming

Section 2.1

1h30m George Boulevard Ben and Team UCF’s Knight Rider Section 2.2

2h00m North Nevada and
Red Zone

CarOLO’s Caroline turns across
MIT’s Talos

Section 2.3

3h00m White Zone Caroline and Talos collide. Section 2.4

4h00m Carolina Avenue
and Texas Avenue

Talos swerves to avoid Victor Tango’s
Odin

Section 2.5

4h30m George Boulevard
and Main Circuit

Skynet and Talos collide Section 5

5h20m Utah and Montana Talos turns across Ben Section 2.6

Teams with vehicles actively involved the incidents (CarOLO, IVS and Ben Franklin Racing Team)
were invited to co-author/comment on the interactions. Any comments received are included in
the descriptions that follow.
A full discussion of the Skynet– Talos collision is given Section 5.

Diagrams have been drawn describing each incident. In the drawings, a solid line shows the path
of the vehicle, and a dashed line shows the intended/future path of the vehicle. A lateral line across
the path indicates that the vehicle came to a stop in this location. DARPA vehicles are driven by
DARPA personnel in the roles of either traffic or chase vehicles.

Videos of the log visualization for incidents involving Talos can be found in Section 9).

2.1 Skynet passing with XAV-250 and Ben oncoming at Utah and Washington

The first near-miss occurred at the intersection of Utah and Washington. Knight Rider was at the
intersection. Skynet pulled up behind a traffic vehicle, which was queued behind Knight Rider’s
chase vehicle (the chase vehicle is queued behind Knight Rider). The relative positions of the
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Figure 3: After queuing behind the stationary Knight Rider, Skynet passes. (a) Visualization of
XAV-250 log when approaching Skynet (Image courtesy of Team IVS).(b) Diagram of incident.
(1): Vehicle positions when XAV-250 approaches. (2): Vehicle positions when Ben approaches.
(c) XAV-250 Camera view (Image courtesy of Team IVS). (d) Skynet(26) once XAV-250(15) had
passed.



vehicles are shown in Figure 3(b). Knight Rider was making no apparent progress through the
intersection, so after waiting, Skynet elected to pass. Skynet was behind three cars, which put it
beyond the safety zone in which passing was prohibited. (DARPA, 2007). The rules also stated
that vehicles should enter a traffic-jam mode after a prolonged lack of progress at an intersection.
Skynet began to pass. Shortly into the maneuver, the Intelligent Vehicle Systems vehicle XAV-250
turned right from Washington onto Utah and into the on-coming path of Skynet. Skynet and XAV-
250 were Paused. XAV-250 was Un-paused and permitted to drive past Skynet, clearing the area.
Skynet was then also permitted to continue. Skynet determined that it could not get back into the
correct lane and was too near the intersection, so it pulled over to the curb side of the lane and
waited. Next Ben also turned onto Utah from Washington, and again, was on-coming to Skynet.
Skynet and Ben were Paused . Ben was Un-paused and permitted to drive past. Interestingly, Ben’s
chase vehicle drove onto the curb around to the right to pass the Skynet vehicle. This provides
an example of the assessment made by a human driver in this scenario. Faced with Skynet in the
on-coming lane, the chase vehicle driver elected to drive far right onto the curb to accommodate
the potential behavior of the Skynet vehicle. The passage of Ben shows that mounting the curb was
not necessary to physically pass the vehicle. Given a clear intersection, the Skynet vehicle was able
to negotiate the intersection and continue the mission. A more detailed account of this event from
Skynet’s point of view is given in (Miller et al., 2008).

2.2 Ben and Knight Rider on George Boulevard
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Figure 4: (a) Diagram of incident. (b) Knight Rider(13) and Ben(74) near miss.

Figure 4 shows a near-miss featured in the webcast in which Ben appeared to be merging into
Knight Rider on George Boulevard. In this case, Ben had been following Knight Rider. Ben had
been traveling faster than Knight Rider so DARPA decided to Pause Knight Rider once the vehicles
were on George Boulevard, a dual lane road, to permit Ben to pass. With Knight Rider stopped in
the right lane, DARPA expected Ben to continue in the left lane and then merge into the right lane
after passing Knight Rider. At the far end of George Boulevard, the vehicles were required to be
in the right lane. Because it involved a lane change at the start of a dual-lane road and the stopped
vehicle was in the destination lane, the scenario was different from standard passing maneuvers and
hence was not handled in Ben’s software. Consequently Ben performed the lane change without
accounting for Knight Rider. Ben was Paused and stopped in time to prevent a collision.



2.3 Caroline and Talos at North Nevada and Red Zone
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Figure 5: (a) Diagram of incident. (b) Talos’ view of the final pose Caroline-Talos turning near-
miss. (c) Visualization from Talos’ log.

Figure 5 shows the first of two close encounters between Caroline and Talos. The figure shows
the diagram of the incident and how it appeared in the Talos software. In this incident Talos was
driving straight down North Nevada. Caroline was approaching in the oncoming direction down
Carolina Avenue, then turns left into the Red Zone across the path of Talos.

Talos detects the moving object of Caroline and finds the closest intersection exit to project the
assumed trajectory. Talos’ intended motion plans are then severed by Caroline’s predicted trajec-
tory, so the vehicle commences an emergency stop. DARPA Pauses both vehicles. A full account
of this event from Talos’ view is given in (Leonard et al., 2008).

2.4 Caroline and Talos in White Zone

The second incident between Caroline and Talos ended in a collision. The Caroline vehicle was
retired from the race shortly after this event. Figure 6 shows the diagram of the incident and
collision between Caroline and Talos in the White Zone. Caroline was near the Indiana Lane exit
of the White Zone. Talos entered the Kentucky Lane entrance to the White Zone and was en-
route to the Indiana Lane exit. Initially, Talos planned a route around Caroline’s chase vehicle to
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Figure 6: (a) Diagram of incident. (b) Final pose of Caroline and Talos collision from Talos’ front
right camera. (c) Visualization from Talos’ log.



get to the Zone exit on the left. Caroline’s chase vehicle then drove away from Talos. Talos then
replanned a more direct route to the left, to the zone exit. As Talos drove toward the zone exit, Talos
also approached Caroline. Initially Caroline was stationary, then Caroline drove slowly forward
toward Talos. Talos, with the zone fence to the left and what it perceived as a static obstacle (that
was actually Caroline) to the right, attempted to negotiate a path in between. Caroline advances
toward Talos. Talos keeps adjusting its planned path to drive around to the left of what appears
to the Talos software as a stationary object. Just before the collision Talos’ motion plans are
severed causing a “planner emergency stop”. Due to Talos’ momentum and Caroline’s forward
movement, the braking failed to prevent physical contact. DARPA then Paused the vehicles. A
detailed account of this chain of events from Talos’ view is given in (Leonard et al., 2008).

2.5 Odin and Talos at Carolina and Texas
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Figure 7: (a) Diagram of incident. (b) View from Talos’ front camera. (c) Talos’ log visualization.
Odin is turns right. Talos brakes and turns hard left to avoid Odin’s projected motion direction.

This incident featured a close call negotiated by the robots without intervention from DARPA.
Figure 7 shows the diagram and view from the Talos log. Talos arrives at a stop line at the inter-
section of Carolina and Texas. Talos is intending to go from Oregon to Texas (from bottom to top
in Figure 7(a)). Talos yields to Odin approaching. Odin arrives at the intersection intending to turn
left into Texas Avenue. Odin comes to a stop entering the intersection. Talos detects the time to



contact for approaching vehicles has gone to infinity so proceeds across the intersection. Odin also
proceeds from Carolina Avenue into Texas Avenue. Odin, much quicker off the mark, is ahead of
Talos. Talos reacts to Odin approaching by braking and replanning an evasive maneuver, turning
hard to the left. Odin and Odin’s chase vehicle complete the turn and clear the intersection. Talos
then resumes course down Texas Avenue behind the vehicles.

2.6 Ben and Talos at Utah and Montana

  

Utah St

M
on

ta
na

  
S

t

Ben

Talos

(a)

(b) (c)

Figure 8: (a) Diagram of incident. (b) View from Talos’ right front camera. Talos’ view of the
Little Ben-Talos turning near-miss. Talos yields to the velocity track of oncoming Ben(74). Ben
comes to a stop at the intersection. Talos begins motion. Ben begins to go through the intersection.
Talos sees Ben as a creeping “static obstacle” and continues. Talos completes the turn. Ben stops.
(c) Talos’ log visualization. Ben approaching on the right of Talos.

The final incident, a close call, is illustrated in Figure 8. Log data shows Talos turning left from
Montana onto Utah. Talos arrives at the intersection, and yields to oncoming traffic. Ben is ap-
proaching, so Talos remains stopped. At the intersection Ben also comes to a stop. Again, Talos
detects that the time to contact for approaching vehicles has now gone to infinity, so commences
the left-hand turn. As Talos crosses in front of Ben, Ben then also enters the intersection. At this
point, Ben is quite far to the right of Talos, so Talos’ forward path collision checking is not altered
by the vehicle approaching to the side. Talos exits the intersection while Ben comes to a stop. Once



the intersection is clear, Ben continues the mission.

3 Team MIT’s ‘Talos’

This section is a summary of the Talos software architecture. The purpose of this section is to
describe the vehicle software in sufficient detail to understand the vehicle behavior and contributing
factors to the collision. A thorough description of the robot architecture is given in (Leonard et al.,
2008).

Velodyne Lidar

Delphi ACC3 Radar

SICK Lidar (Hazards)

Firewire Camera

SICK Lidar (Obstacles)

Figure 9: MIT’s ‘Talos’, a Land Rover LR3 featuring five Point Grey FireFly cameras, 15 Dephi
ACC3 radars, 12 Sick LMS-291 lidars and a Velodyne HDL-64 lidar.

Talos is a Land Rover LR3 fitted with cameras, radar and lidar sensors (shown in Figure 9). For-
ward, side and rear-facing cameras are used for lane marking detection. The Velodyne HDL-64
lidar is used for obstacle detection supplemented in the near-field with 7 horizontal Sick LMS-291
lidars. Five additional downward-facing Sick LMS-291 lidars are used for road-surface hazard
detection including curb cuts. 15 Delphi ACC3 millimeter-wave radars are used to detect fast-
approaching vehicles.

The system architecture developed for the vehicle is shown in Figure 10. All software modules
run on a 40-core Quanta blade server. The general data flow of the system consists of raw sensor
data processed by a set of perception software modules: the Position Estimator, Obstacle Detector,
Hazard Detector, Fast [approaching] Vehicle Detector and Lane Tracker.
The Navigator process decomposed mission-level decisions into a series of short term (1m−60m)
motion goals and behavioral constraints. The output from the perception modules is combined
with the behavioral constraints to generate a Drivability Map of the environment. The motion
planning to the next short-term goal is done in the Motion Planner module with paths vetted against



Figure 10: MIT’s Talos system architecture.

the Drivability Map. The trajectory created by the Motion Planner is executed by the Controller
module. Each module is now discussed in detail.

During the Urban Challenge, the Navigator tracked the mission state and developed a high-level
plan to accomplish the mission based on the map (RNDF) and the mission data (MDF). The pri-
mary output was the next short-term goal to provide to the Motion Planner. As progress was made
the short-term goal was moved, like a carrot in front of a donkey, to achieve the mission. In de-
signing this subsystem, the aim was to create a resilient planning architecture that ensures that
the autonomous vehicle can respond reasonably and make progress under unforeseen conditions.
To prevent stalled progress, a cascade of events was triggered by a prolonged lack of progress.
For example, after 10 seconds of no progress queuing behind a stationary vehicle, the Navigator
would trigger the passing mode if permitted by the DARPA rules. In this mode the lane center-line
constraint is relaxed, permitting the vehicle to pass. The Drivability Map would then carve out the
current and oncoming lanes as drivable. After checking for oncoming traffic, the Navigator would
then permit the vehicle to plan a passing trajectory around the stopped vehicle.

The Obstacle Detector used lidar to identify stationary and moving obstacles. Instead of attempt-
ing to classify obstacles as vehicles, the detector was designed to avoid vehicle classification using
two abstract categories: “static obstacles” and moving obstacle “tracks”. The output of the Obsta-
cle Detector is a list of static obstacles, each with a location and size, as well as a list of moving
obstacle “tracks”, each containing position, size and an instantaneous velocity vector. The obstacle
tracker integrated non-ground detections over relatively short periods of time in an accumulator. In
our implementation, the tracker ran at 15Hz (matching the Velodyne frame rate). At each time step,
the collection of accumulated returns were clustered into spatially-nearby “chunks”. These chunks
were then matched against the set of chunks from the previous time step, producing velocity es-
timates. Over time, the velocity estimates were fused to provide better estimates. The tracking
system was able to provide velocity estimates with very low latency, increasing the safety of the
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Figure 11: Sensor fields of view on 20m grid. (a) Our vehicle used a total of seven horizontally-
mounted 180o planar lidars with overlapping fields of view. Front and rear Lidars are drawn
separately so that the overlap can more easily be seen. For ground plane rejection two lidars were
required to “see” the same obstacle to register the detection (except in the very near field). (b) 15
radars with 18o-FOV each were fanned to yield a wide (255o) total field of view.

system. The reliable detection range (with no false negatives) is about 30m, with good detections
out to about 60m (but with occasional false negatives). The system was tuned to minimize false
positives.

For detecting moving objects, an initial implementation simply classified any object that was ap-
proximately the size of a car, as a car. In cluttered urban settings, however, this led to many
false positives. The object classification strategy was changed from a car/not-car distinction to a
moving/not-moving distinction. Detecting whether something was moving was substantially easier
than detecting whether an object was a car. Although this approach worked much better in general,
even in cluttered environments, a new failure mode arose. In particular circumstances, stationary
objects could appear to be moving, due to the changing viewpoint of our vehicle combined with
aperture/occlusion effects. A high velocity threshold (3.0m/s in our implementation) was required
to reduce the frequency at which stationary objects were reported to be moving.

Vehicles were also detected using the radar-based Fast-Vehicle Detector. The narrow 18o field of
view radars were fanned to provide a 255o coverage in front of the vehicle. The raw radar detec-
tions were compensated for vehicle ego-motion then data association, and position tracking over
time was used to distill the raw returns into a second set of obstacle “tracks”. The instantaneous
Doppler velocity measurement from the radar returns was particularly useful for detecting distant
but fast-approaching vehicles. The information was used explicitly by the Navigator module to
determine when it was safe to enter an intersection, or initiate merging and passing behaviors.
Figure 11 shows the sensor coverage provided by Sick lidar and radar sensors.

The low-lying Hazard Detector used downward-looking planar Lidars mounted on the roof to
assess the drivability of the road ahead and to detect curb cuts. The module consists of two parts:
a hazard map, and a road-edge detector. The “hazard map” was designed to detect hazardous
road surfaces by discontinuities in the lidar data that are too small to be detected by the Obstacle
Detector. High values in the hazard map are rendered as high penalty areas in the Drivability Map.



The road-edge detector looked for long strips of hazardous terrain in the hazard map. If strips of
sufficiently long and straight hazardous terrain were detected, some poly lines were explicitly fitted
to these regions and identified as a curb-cut or berm. These road edges were treated as obstacles:
if no road paint was detected, the lane estimate would widen, and the road-edge obstacles (curbs)
would guide the vehicle.

The Lane tracker reconciled RNDF data with lanes detected by vision and lidar. Two different
road paint detectors were developed, each as a separate, stand-alone process. The first detector
used a matched “Top Hat” filter scaled to the projected ground plane line width. Strong filter re-
sponses and the local gradient direction in the image were then used to fit a series of cubic Hermite
splines. The second road-paint detector fitted lines to image contours bordering bright pixel re-
gions. Both road-paint detectors produced sets of poly lines describing detected road paint in the
local coordinate frame. A lane centerline estimator combined the curb and road paint detections to
estimate the presence of nearby lanes. The lane centerline estimator didn’t use the RNDF map to
produce its estimates; it relied solely on detected features. The final stage of the lane tracking sys-
tem produced the actual lane estimates by reconciling the RNDF data with the detected lane center
lines. The map data was used to construct an a-priori estimate of the physical lanes of travel.
The map estimates were then matched to the centerline estimates and a minimization problem was
solved to snap the RNDF lanes to the detected lane centerlines.

The Drivability Map was constructed using perceptual data filtered by the current constraints
specified by the Navigator. This module provides an efficient interface to perceptual data for
motion planning. Queries from the Motion Planner about future routes were validated by the
Drivability Map. The Drivability Map consisted of:

• “Infeasible regions” which were no-go areas due to proximity to obstacles or just undesir-
able locations (such as in the path of a moving vehicle or across an empty field when the
road is traversable).

• “High-cost regions” which would be avoided if possible by the motion planning and

• “Restricted regions” which were regions that could only be entered if the vehicle was able
to stop in an unrestricted area further ahead.

Restricted regions were used to permit minor violations of the lane boundaries if progress could
be made down the road. Restricted regions were also used behind vehicles to enforce the requisite
number of car lengths’ stand-off distance behind a traffic vehicle. If there was enough room to pass
a vehicle without crossing the lane boundary (for instance if the vehicle was parked on the side of a
wide road), then Talos would traverse the Restricted region and pass the vehicle, continuing to the
unrestricted region in front. If the traffic vehicle blocked the lane, then the vehicle could not enter
the restricted region because there was no unrestricted place to stop. Instead, Talos would queue
behind the restricted region until the traffic vehicle moved or a passing maneuver was commenced.
No explicit vehicle detection was done. Instead, moving obstacles were rendered in the Drivability
Map with an infeasible region projected in front of the moving obstacles in proportion to the
instantaneous vehicle velocity. As shown in Figure 12(c), if the moving obstacle was in a lane
the infeasible region was projected along the lane direction. If the moving obstacle was in a zone
(where there was no obvious convention for the intended direction) the region was projected in
the velocity direction only. In an intersection the obstacle velocity direction was compared with
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Figure 12: (a) RRT Motion planning. Each leaf on the tree represents a stopping location. (b) Driv-
ability map explanation. White arrow on green background: Short-term goal location. Red: In-
feasible regions are off-limits to the vehicle. Blue: Restricted regions may only be entered if the
vehicle can stop in an unrestricted region further on. White or Gray: High-cost regions accessible
to the vehicle. Dark areas represent low-cost drivable regions. (c) An infeasible region is projected
in the moving obstacle velocity direction down lane excluding maneuvers into oncoming vehicle.
In this case lane constraints have been rendered as [White] High cost instead of [Red] Infeasible
due to a recovery mode triggered by the lack of progress through the intersection). (d) Within
an intersection an infeasible region is created between a moving obstacle and the intersection exit
matching the velocity direction.



the intersection exits. If a good exit candidate was found, a second region was projected from the
obstacle toward the exit waypoint as a prediction of the traffic vehicle’s intended route (Shown
in Figure 12(d)). The Motion Planner identified, then optimized, a kino-dynamically feasible
vehicle trajectory, that would move the robot toward the goal point. The module was based on
the Rapidly-exploring Random Tree (RRT) algorithm (Frazzoli et al., 2002), where the tree of
trajectories is grown by sampling numerous configurations randomly. A sampling-based approach
was chosen due to its suitability for planning in many different driving scenarios. Uncertainty in
local situational awareness was handled through rapid replanning. By design, the motion planner
contains a measure of safety as the leaves on the tree of potential trajectories are always stopping
locations (Figure 12(a)). Shorter trees permit lower top speeds as the vehicle must come to a stop
by the end of the trajectory. In this way, if for some reason the selected trajectory from the tree
became infeasible, another branch of the tree could be selected to achieve a controlled stop. The
tree of trajectories was grown towards the goal by adding branches that connect to the randomly
sampled points, which were then checked for feasibility and performance. This module then sends
the current best vehicle trajectory, specified as an ordered list of waypoints (position, velocity,
headings), to the low-level motion Controller at a rate of 10 Hz.

The Controller was a pure pursuit steering controller paired with a PID speed controller. It exe-
cuted the low-level control necessary to track the desired path and velocity profile from the Motion
Planner.

4 Team Cornell’s ‘Skynet’

Team Cornell’s ‘Skynet,’ shown in Figure 13, is an autonomous 2007 Chevrolet Tahoe. Skynet was
built and developed at Cornell University, primarily by team members returning with experience
from the 2005 DARPA Grand Challenge. The team consisted of 12 core members supported by
9 part-time contributors, with experience levels including professors, doctoral and master’s candi-
dates, undergraduates, and Cornell alumni. The team was selected from a grant proposal as one of
11 research-oriented teams to receive funding from DARPA to compete in the Urban Challenge.
Additional support was gained through corporate sponsors, including Singapore Technologies Ki-
netics, Moog, Septentrio, Trimble, Ibeo, Sick, MobilEye, The Mathworks, Delphi, and Alpha
Wire.

The high-level system architecture for Team Cornell’s Skynet is shown in Figure 14 in the form
of key system blocks and data flow. These blocks form the multi-layer perception and planning /
control solution chosen by Team Cornell to successfully drive in an urban environment. General
descriptions of each of these blocks are given below. Detailed descriptions of the obstacle detection
and tracking algorithm and the intelligent planning algorithm, both root causes of Skynet’s behavior
during the Cornell / MIT collision, are given in sections 4.2 and 4.3.

4.1 General System Architecture

Skynet observes the world with two groups of sensors. Skynet’s position, velocity, and attitude
are sensed with raw measurements collected from Global Positioning System (GPS) receivers, an
Inertial Measurement Unit (IMU), and wheel encoders. These raw measurements are fused in the
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pose estimator, an Extended Square Root Information Filter, to produce robust pose estimates in
an Earth-fixed coordinate frame. Skynet’s external environment, defined in the Urban Challenge as
parked and moving cars, small and large static obstacles, and attributes of the road itself, is sensed
using a combination of laser rangefinders, radar, and optical cameras.

Skynet uses two levels of probabilistic data fusion to understand its external environment. The Lo-
cal Map fuses laser, radar, and optical data with Skynet’s motion estimates to initialize, locate, and
track static and dynamic obstacles over time. The Scene Estimator then uses the local map’s track-
ing estimates, pose estimates, and road cues from processed optical measurements to develop key
statistics about Skynet and nearby obstacles. Two sets of statistics are generated: those concerning
Skynet, including location with respect to the road and lane occupancy, and those concerning other
obstacles, including position / velocity, an identification number, lane occupancy, car likeness, and
whether each obstacle is currently occluded or not.

Planning over DARPA’s Route Network Definition File (RNDF) and Mission Definition File
(MDF) occurred in three layers. The topmost Behavioral Layer combined the RNDF and MDF
with obstacle and position information from the Scene Estimator to reason about the environment
and plan routes to achieve mission progress. The Behavioral Layer then selected which of four be-
haviors would best achieve the goal: road, intersection, zone, or blockage. The selected behavior
was executed in the Tactical Layer, where maneuver-based reasoning and planning occur. The
Operational Layer, the lowest level of planning, produced a target path by adjusting an initial
coarse

path to respect speed, lane, obstacle, and physical vehicle constraints. Skynet drives the target
path by converting it to a series of desired speeds and curvatures, which are tracked by feedback
linearization controllers wrapped around Skynet’s steering wheel, brake, transmission, and throttle
actuators.

4.2 Obstacle Detection and Tracking

Team Cornell’s obstacle detection and tracking system, called the Local Map, fuses the output
of all obstacle detection sensors into one vehicle-centric map of Skynet’s environment. The Lo-
cal Map fuses information from three sensing modalities: laser rangefinders, radars, and optical
cameras, with mounting positions shown in Figure 13. Table 1 summarizes Skynet’s obstacle de-
tection sensors, and Figure 15 gives a top-down view of Skynet’s sensor coverage. All sensor
measurements are fused in the local map at the object level, with each sensor measurement treated
as a measurement of a single object. Skynet’s Delphi radars and MobilEye SeeQ software (run
on Skynet’s rear-facing Unibrain optical camera) fit easily into this framework, as their proprietary
algorithms transmit lists of tracked obstacles. Data from the laser rangefinders is clustered to fit
into this object level framework.

The Local Map formulates obstacle detection and tracking as the task of simultaneously track-
ing multiple obstacles and determining which sensor measurements correspond to those obstacles
(Miller and Campbell, 2007), (Miller et al., 2008). The problem is cast in the Bayesian framework
of estimating a joint probability density:

p(N (1 : k) ,X (1 : k) |Z (1 : k)) (1)



Table 1: Skynet’s obstacle detection sensors

Sensor Location Type Rate FoV Resolution
Ibeo ALASCA XT front bumper left laser 12.5 Hz 150◦ 1◦

front bumper center laser 12.5 Hz 150◦ 1◦

front bumper right laser 12.5 Hz 150◦ 1◦

Sick LMS 291 left back door laser 75 Hz 90◦ 0.5◦

right back door laser 75 Hz 90◦ 0.5◦

Sick LMS 220 back bumper center laser 37.5 Hz 180◦ 1◦

Velodyne HDL-64E roof center laser 15 Hz 360◦ 0.7◦

Delphi FLR front bumper left (2x) radar 10 Hz 15◦ 20 tracks
front bumper center radar 10 Hz 15◦ 20 tracks

front bumper right (2x) radar 10 Hz 15◦ 20 tracks
back bumper left radar 10 Hz 15◦ 20 tracks

back bumper center radar 10 Hz 15◦ 20 tracks
back bumper right radar 10 Hz 15◦ 20 tracks

Unibrain Fire-i 520b back roof center optical 15 Hz 20◦−30◦ N / A

where N (1 : k) are a set of discrete variables assigning sensor measurements to tracked obstacles
at time indices 1 through k, X (1 : k) are the continuous states of all obstacles being tracked at time
indices 1 through k, and Z (1 : k) are the full set of sensor measurements at time indices 1 through
k. The number of obstacles being tracked is also implicitly represented in the cardinality of the
measurement assignments and obstacle states, and must be estimated by the local map. To do so,
equation 1 is factorized to yield two manageable components:

p(N (1 : k) |Z (1 : k)) · p(X (1 : k) |N (1 : k) ,Z (1 : k)) (2)

where, intuitively, p(N (1 : k) |Z (1 : k)) describes the task of determining the number of obstacles
and assigning measurements to those obstacles, and p(X (1 : k) |N (1 : k) ,Z (1 : k)) describes the
task of tracking a known set of obstacles with known measurement correspondences. In the local
map, these two densities are estimated separately using a particle filter to make Monte Carlo mea-
surement assignments and banks of extended Kalman Filters (EKFs) to track obstacles given those
assignments (Miller and Campbell, 2007), (Miller et al., 2008). The obstacles are then broadcast
at 10 Hz on Skynet’s data network. A second layer, called the Track Generator, combines these
obstacles with Skynet’s position estimates to generate high level obstacle metadata for the planner,
including a stable identification number, whether each obstacle is stopped or shaped like a car, and
whether each obstacle occupies any nearby lanes.

4.3 Intelligent Planning

Team Cornell’s intelligent planning system uses Skynet’s probabilistic interpretation of the envi-
ronment to plan mission paths within the context of the rule-based road network. The planner’s top
level behavioral layer combined offline mission information with sensed vehicle and environment
information to choose a high level behavioral state given Skynet’s current situation. The middle
level tactical layer then chose contextually-appropriate maneuvers based on the selected behavior



Figure 15: (left) Laser rangefinder azimuthal coverage diagram for Team Cornell’s Skynet. (right)
Radar azimuthal coverage diagram. Skynet faces right in both coverage diagrams. A rear-facing
optical camera is not shown, nor are two laser rangefinders with vertical scan planes that detect
obstacles immediately to the left and right of Skynet.

and the states of other nearby agents. The low-level operational layer translated these abstract ma-
neuvers into actuator commands, taking into account road constraints and nearby obstacles. The
following sections describe each of the three primary layers of the planner.

4.3.1 Behavioral Layer

The Behavioral Layer is the most abstract layer in Team Cornell’s planner. Its job is to plan the
fastest route to the next mission checkpoint, and then to select one of four high-level behavior states
to achieve the planned route. The first part of that task, route planning, is solved using a modified
version of the A* graph search algorithm (Russell and Norvig, 2003), (Ferguson et al., 2004).
First, the DARPA road network was converted from the RNDF format to a graphical hierarchy
of segments (Willemsen et al., 2003). The Behavioral Layer planned routes on this graphical
hierarchy using dynamically calculated traversal times as costs for road partitions, lane changes,
turns, and other maneuvers. After planning a route, the Behavioral Layer selected a high-level
behavior state to make progress along the desired path. Four behavioral states were defined for the
Urban Challenge: road, intersection, zone, and blockage, each deliberately defined as broadly as
possible to promote planner stability. Each of these high -level behaviors executed a corresponding
tactical component that drove Skynet’s actions until the next behavior change.



4.3.2 Tactical Layer

When Skynet transitions to a new behavior state, a corresponding tactical component is executed.
All components divided the area surrounding Skynet into regions and created monitors to detect
events that might influence Skynet’s actions. All components also accessed a common list of
intelligent agents, whose behavior was monitored in the planner using estimates from the track
generator. Differences between tactical components lie in the types of region monitors they use
and in the actions they take in response to nearby events.

The first tactical component is the Road Tactical, which controls Skynet when it drives down an
unblocked road. This component is responsible for maintaining a desired lane, evaluating possi-
ble passing maneuvers, and monitoring nearby agents. At each planning cycle, the road tactical
checked agents in front of Skynet for speed adjustment, adjacent to Skynet for lane changes, and
behind Skynet for impending collisions and reverse maneuvers (Sukthankar, 1997). Using these
checks, the road tactical selected a desired speed and lane to keep. These were passed to the
operational layer as a reference path.

The second tactical component is the Intersection Tactical, which controls Skynet in intersections.
This component was responsible for achieving proper intersection queuing behavior and safe merg-
ing. It accomplished these goals by monitoring agent arrival times and speeds at each intersection
entry, maintaining a queue of agents with precedence over Skynet. When the intersection monitors
determine that Skynet is allowed to proceed, a target speed, goal point, and a polygon defining the
intersection are passed along to the operational layer as a reference path.

The third tactical component is the Zone Tactical, which controls Skynet after it enters a zone. This
component was responsible for basic navigation in unconstrained zones, including obstacle avoid-
ance and alignment for parking maneuvers. The zone tactical planned over a human-annotated
graph drawn on the zone during RNDF preprocessing. The graph imposed wide artificial lanes and
directions of travel onto portions of the zone, allowing Skynet to treat zones as if they were roads.
The zone tactical generated the same type of local lane geometry information as the road tactical
to send to the operational layer as a reference path.

The final tactical component is the Blockage Tactical, which controls Skynet when obstacles block
forward progress on the current route. This component is responsible for detecting and recovering
from road blocks to ensure continued mission progress. Team Cornell’s blockage detection and
recovery relied on the Operational Layer’s constrained nonlinear optimization strategy, described
in section 4.3.3, to detect the location of the blockage and any possible paths through it. After initial
blockage detection, the blockage tactical component proceeded through an escalation scheme to
attempt recovery. First, the blockage was confirmed over multiple planning cycles, to ensure that
it was not a short-lived tracking error. Second, a reverse or reroute maneuver was executed to
find an alternate route on the RNDF, if one was available. If no alternate route existed, Skynet
reset the local map and scene estimator to remove long-lived mistakes in obstacle detection. If this
step fails, planning constraints are relaxed: first the admissible lane boundaries are widened, then
obstacles are progressively ignored in order of increasing size. Skynet’s recovery process escalates
over several minutes in a gradual attempt to return to normal driving.



4.3.3 Operational Layer

The Operational Layer converts the Tactical Layer’s reference path and speed into steering, trans-
mission, throttle, and brake commands to drive Skynet along the desired path while avoiding ob-
stacles. To accomplish this task, the Operational Layer first processes each obstacle into a planar
convex hull. The obstacles are then intersected with lane boundaries to form a vehicle-fixed occu-
pancy grid (Martin and Moravec, 1996). The A* search algorithm is used to plan an initial path
through the free portion of the occupancy grid (Russell and Norvig, 2003). This initial path is then
used to seed a nonlinear trajectory optimization algorithm for path smoothing.

Skynet’s nonlinear trajectory optimization algorithm attempts to smooth the initial path to one
that is physically drivable, subject to actuator constraints and obstacle avoidance. The algorithm
discretizes the initial path into a set of n equally-spaced base points pi, i ∈ {1,n}. A set of n unit-
length ‘search vectors’ ui, i ∈ {1,n} perpendicular to the base path are also created, one for each
base point. The trajectory optimizer then attempts to find a set of achievable smoothed path points
zi = pi +wi ·ui, i ∈ {1,n} by adjusting search weights wi, i ∈ {1,n}. Target velocities vi, i ∈ {1,n}
are also considered for each point, as well as a set of variables ql

i and qr
i , i ∈ {1,n} indicating the

distance by which each smoothed path point zi violates desired spacings on the left and right of
Skynet created from the list of polygonal obstacles. Search weights, velocities, and final obstacle
spacings are chosen to minimize the cost function J:
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where αc, αd , αw, αq, αa, and αv are tuning weights, ci is the approximated curvature at the ith

path point, wt
i is the target search weight at the ith path point, and ai is the approximated forward

vehicle acceleration at the ith path point. This cost function is optimized subject to a set of 6 rigid
path constraints:

1. Each search weight wi cannot push the smoothed path outside the boundary polygon sup-
plied by the tactical layer.

2. Each obstacle spacing variable ql
i and qr

i cannot exceed any obstacle’s minimum spacing
requirement.

3. Curvature at each path point cannot exceed Skynet’s maximum turning curvature.

4. Total forward and lateral vehicle acceleration at each path point cannot exceed assigned
limits.

5. Each search weight wi and set of slack variables ql
i and qr

i must never bring Skynet closer
to any obstacle than its minimum allowed spacing.

6. The difference between consecutive path weights wi and wi+1 must not exceed a minimum
and maximum.

Additional constraints on initial and final path heading are also occasionally included to restrict



the smoothed path to a particular end orientation, such as remaining parallel to a lane or a parking
spot.

The constrained optimization problem is solved using LOQO, an off-the-shelf nonlinear non-
convex optimization library. Two optimization passes are made through each base path to reach a
final smoothed path. The first step of the smoothed path is then handed to two independent low-
level tracking controllers, one for desired speed and one for desired curvature. The optimization is
restarted from scratch at each planning cycle, and is run at 10 Hz.

5 The Collision

Undoubtedly the most observed incident between robots during the Urban Challenge was the low-
speed collision of Talos with Skynet. The location of the incident and a diagram of the accident
progression are shown in Figure 16.
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Figure 16: (a) Diagram of the incident. (b) The collision took place while the vehicles traversed
the intersection from waypoint (6.4.7) to (3.1.2).

The collision between Skynet and Talos occurred during the second mission for both teams. Both
vehicles had driven down Washington Boulevard and were attempting to merge on to Main Circuit
to complete their latest sub-mission. Skynet drove down George Boulevard and was the first to
arrive at the intersection. The vehicle paused, moved forward on to Main Circuit (around two car
lengths), and then came to a stop. It backed up about three car lengths, stopped, drove forward
a car length, stopped again before finally moving forward just as Talos was approaching Main
Circuit. Talos was behind Skynet and Skynet’s chase vehicle on approach to the intersection. Talos
then passed the queuing Skynet chase vehicle on the left. Talos then stopped beside the chase
vehicle while Skynet was backing up back over the stop line. When Skynet moved forward again,
Talos drove up and came to a stop at the stop line of the intersection. Talos then drove out to
the left of Skynet as if to pass. Talos was along side Skynet in what was looking to be a successful
passing maneuver, when Talos turned right, pulling close in front of Skynet, which was now moving



forward.

Next, in Sections 6 and 7, we will branch off and look at the collision from inside the Skynet and
Talos software.

6 The Collision from inside Skynet

UCE spectators characterized Skynet as having three erratic maneuvers in the seconds leading up
to its collision with Talos. First, Skynet stuttered through its turn into the south entrance of the
traffic circle, coming to several abrupt stops. Second, Skynet drove backward after its second stop,
returning almost fully to the stop line from which it had just departed. Finally, Skynet stuttered
through the turn once again, ignoring Talos as it approached from behind, around to Skynet’s
driver side, and finally into a collision near Skynet’s front left headlight. Sections 6.1, 6.2, and 6.3
describe, from a systems-level perspective, the sequence of events causing each erratic maneuver.

6.1 Stuttering Through the Turn

Although it did not directly cause the collision, Skynet’s stuttering through its turn into the traffic
circle was one of the first erratic behaviors to contribute in the collision. At its core, Skynet’s
stuttering was caused by a complex interaction between the geometry of the UCE course and its
GPS waypoints near the turn, the probabilistic obstacle detection system discussed in section 4.2,
and the constraint-based planner discussed in section 4.3.3. First, Team Cornell defined initial lane
boundaries by growing polygonal admissible driving regions from the GPS waypoints defining the
UCE course. This piecewise-linear interpretation of the lane works best when the lane is straight
or has shallow curves: sharp turns can yield polygons that exclude significant portions of the lane.
The turn at the southern entrance to the traffic circle suffered from this problem acutely, as the
turn is closely bounded on the right by concrete barriers and a spectator area. Figure 17 shows
that these concrete barriers occupied a large region of the lane polygon implied by the DARPA
waypoints. The resulting crowded lane polygon made the turn difficult: Skynet’s constraint-based
Operational Layer, described in section 4.3.3, would

not generate paths that drive outside the lane polygon. With space already constrained by Skynet’s
internal lane polygon, small errors in absolute position or obstacle estimates might make the path
appear infeasible.

Path infeasibility caused by these types of errors resulted in Skynet’s stuttering through the south
entrance to the traffic circle. At the time leading up to the collision, small variations in clusters
of laser rangefinder returns and Monte Carlo measurement assignments in the local map caused
Skynet’s path constraints to change slightly from one planning cycle to the next. In several cases,
such as the one shown in Figure 18, the constraints changed to make Skynet’s current path infeasi-
ble. At that point Skynet hit the brakes, as the Operational Layer was unable to find a feasible path
along which it could make forward progress.

In most cases, variations in the shapes of obstacle clusters and Monte Carlo measurement assign-
ments, like the one shown in Figure 18, clear in one or two planning cycles: for these, Skynet taps



Figure 17: (left) The lane polygon implied by piecewise-linear interpolation of DARPA waypoints
in the turn near the south entrance to the traffic circle. Obstacle constraints from nearby concrete
barriers occupy a significant portion of the lane polygon. (right) Skynet camera view of the concrete
barriers generating the constraints.

Figure 18: Small variations in Skynet’s perception of a concrete barrier cause its planned path to
become infeasible.



the brakes before recovering to its normal driving mode. These brake taps were generally isolated,
but were more deleterious near the traffic circle for two reasons. First, the implied lane polygons
forced Skynet to drive close to the concrete barriers, making it more likely for small mistakes to
result in path infeasibility. Second, Skynet’s close proximity to the concrete barriers actually made
clustering and local map mistakes more likely: Ibeo laser rangefinders and Delphi radars tended to
produce more false detections when within 1.5 m of an obstacle. The interaction of these factors
produced the stuttering behavior, which happened several times at that corner during the UCE.

6.2 Reversing Toward the Stop Line

Occasionally, variations in obstacle clusters and poor Monte Carlo measurement assignments in
the local map are more persistent: in these cases phantom obstacles may appear in the lane, block-
ing forward progress for several seconds. In these failures the local map typically does not have
enough supporting sensor evidence to delete the phantom obstacle immediately, and allows it to
persist until that evidence is accumulated. When this happens, Skynet considers the path blocked,
executing the blockage recovery tactical component to deal with the situation. Blockage recovery
was activated 10 times over the 6 hours of the UCE.

Figure 19: A measurement assignment mistake causes a phantom obstacle to appear, momentarily
blocking Skynet’s path.

One of the 10 blockage recovery executions occurred immediately prior to Skynet’s collision with
Talos. In this scenario, a measurement assignment mistake caused a phantom obstacle to appear
part-way into Skynet’s lane. The phantom obstacle, shown in Figure 19, caused Skynet to exe-
cute an emergency braking maneuver. The phantom obstacle was deleted after approximately 2
seconds, but the adjustments to the Operational Layer’s constraints persisted long enough for the
Operational Layer to declare the path infeasible and the lane blocked. The mistake sent Skynet
into blockage recovery. In blockage recovery, the Operational Layer recommended the Tactical
Layer reverse to reposition itself for the turn. The Tactical Layer accepted the recommendation,
and Skynet reversed one vehicle length to reposition itself.



6.3 Ignoring Talos

After the reverse maneuver described in section 6.2, Skynet still had not completed the turn neces-
sary to continue with its mission. The planner therefore remained in its blockage recovery state,
though recommendation and completion of the reverse maneuver left it in an escalated state of
blockage recovery. In this state the Tactical Layer and Operational Layer once again evaluated the
turn into the traffic circle, this time ignoring small obstacles according to the blockage recovery
protocol described in section 4.3.2. The Operational Layer decided the turn was feasible, and re-
sumed forward progress. Although the Local Map produced no more phantom obstacles for the
duration of the turn, small errors in laser rangefinder returns once again forced the Operational
Layer to conclude that the path was infeasible. At this point, the Tactical Layer escalated to its
highest state of blockage recovery, removing constraints associated with lane boundaries. Figure
20 shows this escalation from Skynet’s normal turn behavior to its decision to ignore lane bound-
aries.

Figure 20: (left) Skynet resumes its turn after a reverse maneuver. (right) Perceiving the turn
infeasible a second time, Skynet drops constraints associated with lane boundaries.

Unfortunately, Skynet still perceived its goal state as unreachable due to the nearby concrete bar-
riers. At the highest level of blockage recovery, however, Skynet was deliberately forbidden to
execute a second reverse maneuver to prevent an infinite planer loop. Instead, it started a timer to
wait for the error to correct itself, or barring forward progress for several minutes, to reset the local
map and eventually the planner itself. Neither of these soft resets would be realized, however, as
Talos was already weaving its way behind as Skynet started its timer.

While Talos passed behind and then to the left of Skynet, the Operational Layer continued to
believe the forward path infeasible. Coincidentally, the path was perceived as feasible just as
Talos pulled out to pass Skynet on the left. With the path momentarily feasible, Skynet began to
drive forward as Talos passed on its left. Here Skynet’s Tactical Layer ignored Talos, because
Talos drove outside the piecewise-linear polygonal lane boundary, as shown in Figure 21. Skynet’s



Figure 21: Skynet ignores Talos as it drives outside Skynet’s polygonal lane boundary.

Operational Layer also ignored Talos, as Talos did not constrain the target path in front of Skynet
in any way. Once Talos passed to Skynet’s left, Talos was no longer detected as a moving obstacle;
Skynet’s sideways-facing Sick LMS-291s are mounted with a vertical scan plane and provide only
weak position information and no velocity information. The Local Map began tracking Talos
as a moving obstacle only 1 second before the collision, when it entered into view of Skynet’s
forward-mounted Ibeo ALASCA XTs. Unfortunately, with concrete barriers on Skynet’s right and
Talos approaching on its left, no evasive maneuver was available. At that point the collision was
inevitable, and the collision occurred.

Figure 22 shows the speed and heading, as estimated on Skynet, for both the Skynet and Talos
vehicles. Approximately 0.5 sec before collision, the speed and heading estimates for Talos remain
constant, which is the time that they are stopped being tracked. Skynet did not change its heading
or velocity before the collision, indicating that no adjustments were made to the Talos movements.
Finally, after impact, there is a fast change in Skynet’s heading, indicating the collision, and its
velocity decreases quickly to zero soon after.

7 The Collision from inside Talos

The incident from the Talos’ viewpoint is shown in Figures 23, 24 and 25. Figure 23 shows that
earlier along George Boulevard, the road was dual-lane. Talos was going faster along the straight
road than the Skynet chase vehicle, so Talos passed to the left of the chase vehicle (Figure 23(a)).
At the end of Washington Boulevard, the road merged (via cones on the left) into a single lane on
the right. Talos did not have room to merge right in front of the chase vehicle, so Talos slowed to a
stop while the Skynet chase vehicle moved ahead. When space was available, Talos merged behind
the Skynet chase vehicle (Figure 23(b)). Skynet and the chase vehicle then come to a stop at the
intersection (Figure 23(c)).
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Figure 22: From Skynet logs: Speed (left) and heading (right) for both Skynet and Talos just before
and after collision. Flat line in Talos’ plot indicates where Skynet stopped tracking Talos.

In Figure 24 we see that at first, Talos stops behind the chase vehicle. However, the lane width is
sufficient that Talos soon finds a path to the left of the chase vehicle (Figure 24(a)). In this case
Talos is not in a passing mode; it has simply found room on the left-hand side of the current lane
to squeeze past the DARPA chase vehicle.

7.1 Wide lane bug

The lane is significantly wider to the left because of a Drivability Map construction bug. As de-
scribed in Section 3, lanes are carved out of the lane-cost map like valleys through a plateau.
Adjacent lanes carved out often caused small islands remaining between the valleys. These is-
lands were addressed by explicitly planing down the region between adjacent lanes. This strategy
worked well in general however in this case the road merges down to one lane shortly before the
intersection. The adjacent lane is not rendered after the merge, which is correct. However, the
planing operation was done all the way along the right lane past the merge point. The effect of the
planing alone makes the road 3 meters wider on the left than it would otherwise be. Without the
extra width, Talos would have been forced to queue behind the DARPA chase vehicle.

7.2 At the intersection

Figures 24(b) & (c) show how Talos pulled out and drove around to the left of the chase vehicle.
The robot had a motion plan which was attempting to reach a goal point on the stop line of the
intersection. Talos was beside the chase vehicle when Skynet backed up and occupied Talos’ goal
position. Talos came to a stop, unable to drive through the restricted region to get to the goal.
In the visualization, Skynet did not have a restricted region in front and behind the vehicle. This
was because Skynet was within the intersection. Obstacles detected inside the intersection did not
have restricted regions because the heuristic was that obstacles inside intersections were things
like sign posts, traffic islands and encroaching trees. Skynet then moved forward again, making
Talos’ goal position clear. Talos drove to the stop line. Although now adjacent to Skynet’s chase



(a)
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Figure 23: Talos’ view of the lead-up to the Skynet-Talos incident. (a) Talos starting to pass Skynet’s
chase vehicle. (b) Talos is forced to slow down and merge behind the Skynet chase vehicle. (c)
Talos queues behind the Skynet chase vehicle.
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Figure 24: Lead-up to the Skynet-Talos incident. (a) Talos finds a route around the chase vehicle.
(b) Skynet backs up onto Talos’ goal position, Talos brakes. (c) Skynet advances again. Talos
passes the chase vehicle. (d) Talos yields at the intersection. There are no moving vehicles nearby,
so it proceeds.



vehicle, Talos wasn’t in a failsafe mode. The artificially widened lane permitted Talos to drive
up to the intersection as it would a passing parked car or any other object on the side of the
road not blocking the path. At the intersection Talos followed the standard procedure of giving
precedence to obstacle/vehicles approaching on the left. There was no moving or static obstacles
in the intersection to the left of Talos on Main Circuit, so the software moved the short term goal
point to the exit of the intersection (waypoint 3.1.2) and Talos proceeded.

7.3 The collision

Finally, Figures 24(d) and 25(a) show Talos planning a path out to the left through a region that had
a low cost by avoiding Skynet (which Talos perceived as a static obstacle). Talos’ goal point moved
further down Main Circuit, requiring the robot to find a trajectory that would have an approach
angle to the lane shallow enough to drive within the lane boundaries of Main Circuit. Talos was
now inside the intersection bounding box. Talos planned a path around the “Skynet static object”
and down Main Circuit within the lane boundaries. The path was close to Skynet so the route had
a high cost but was physically feasible. Talos drove between Skynet (on the right) and the lane
boundary constraint (on the left). Talos then pulled to the right so that it could make the required
approach angle to enter the lane. Had Skynet remained stationary at this point Talos would have
completed the passing maneuver successfully. In Figure 25(b), we can see that Skynet starts moving
forward. Had Skynet been moving faster (i.e., > 3m/s instead of 1.5m/s), a moving obstacle track
would have been initiated in the Talos software and a “no-go” region would have been extruded
in front of the vehicle. This region would have caused Talos to yield to Skynet (similar to what
occurred with Odin and Talos in Section 2.5). Instead Talos turns to the right to get the correct
approach angle to drive down the lane; Skynet moves forward; the robots collide (Figure 25(c)).

7.4 Clusters of static objects

Talos perceived Skynet as a cluster of static objects. The positions of the static objects evolved
over time. This may sound strange, however it is not uncommon for a cluster of static obstacles
to change shape as the ego-vehicle position moves. It could be due to, for instance, more of an
object becoming visible to the sensors. For example, the extent of the concrete barrier detected
on the right of Talos in Figures 23(a),(b)& (c) varied due to sensor range and aspect in relation
to the ego-vehicle. Because the software treated Skynet as a collection of static objects instead
of a moving obstacle and no forward prediction was made on Skynet’s motion. Talos was driving
between a lane constraint on the left and a collection of static objects on the right. If Skynet had not
moved Talos would have negotiated the gap just as it had to avoid K-rails and other static objects
adjacent to the lanes throughout the day. Instead, unexpectedly for Talos, Skynet moved forward
into the planned path of Talos. Without a forward-motion prediction of Skynet, by the time Skynet
was in Talos’ path, Talos was unable to come to a stop before colliding.

Figure 26 shows the vehicle state during the collision. Talos had straightened it’s wheels to around
9o to the right, was traveling around 2m/s. The vehicle detected that the motion planning tree had
been severed 550msec before the collision, it was replanning, no evasive maneuver was performed
yet. The vehicle was coasting 150msec later the DARPA Paused the vehicle. At the collision Talos
was moving at 1.5m/s dropping to zero 750msec after the initial collision. In the log visualization



(a)

(b)

(c)

Figure 25: Skynet-Talos incident. (a) Talos plans a route around Skynet, which appears as a static
object. (b) While Talos is passing, Skynet begins to move. (c) While applying emergency braking,
Talos turns into Skynet.



Figure 26: Talos’ speed, wheel angle and pedal gas and brake positions during collision. Time 0.0
is the initial collision. Motion Planner E-Stop was at−550msec. DARPA Pause at−400msec. The
vehicle came to rest after 750msec.

Talos is pushed slightly forward and to the left of it’s heading by the impact (about 0.3m).

The contributing factors of Talos’ behavior can be decomposed as: the inability to track slow-
moving objects, the use of an moving-obstacle model versus explicit vehicle classification and the
dominant influence of lane constraints on motion planning & emergency path diversity. The other
contributing factor, the Drivability Map rendering bug which widened the lane to allow Talos to
attempt to drive around instead of queue, is a test-coverage issue and holds little to analyze further.

7.5 Inability to track slow-moving objects

In the obstacle detection system all tracked objects had a velocity component. Obstacles with
small velocities were considered static and the velocity information was assumed to be noise. In
addition to sensor noise there was also noise injected by vehicle-object pose changes, causing more
of the object to be revealed. The new returns would be clustered with the existing obstacle cluster,
moving the center of mass of the obstacle and making it appear to have moved. An intelligent
clustering technique to handle new obstacle-hits or just new hits helps in this case, but in some
cases there is no information to detect this case. The lidar aperture problem is an acute case of this
issue. Figure 27 illustrates the sensor aperture problem in this case for a horizontally mounted lidar
in the detection of an approaching vehicle. As the robot moves forward or the traffic vehicles move,
the building on the right produces returns consistent with a rapidly approaching vehicle. Several
groups have attempted to counter this problem using algorithms to determine the shadowing of
distant objects by near-field returns (Thrun et al., 2006). However, with more complex sensor
characteristics, such as the 64 laser Velodyne sensor, and more complex scene geometries for
urban environments, these techniques become difficult to compute as a flat obstacle occlusion map
is no longer sufficient, since obstacle height must be considered.



Figure 27: (a) Illustration of lidar aperture problem. The building on right generates a lidar return
indistinguishable from the fast-approaching vehicle on the left. (a) Aperture problem inducing
phantom moving obstacles. (b) walls entering the White Zone generate phantom moving vehicles
from building returns.

7.6 Moving Obstacles versus Explicit Vehicle Classification

As described in Section 3, the MIT vehicle did not explicitly detect vehicles. Instead, objects in the
scene were classified either as static or moving obstacles. Moving obstacles were rendered with
exclusion regions in the direction of travel along the lane. The decision to use moving obstacles
was taken to avoid the limitations of attempting to classify the sensing data into “vehicle” or “non-
vehicle” classes. The integrated system was fragile however as classification errors or outages
caused failures in down stream modules blindly relying on the classifications and their persistence
over time. Up until and including the MIT site visit in June 2007, the software did attempt to
classify vehicles based on size and lane proximity. During one mission lane precedence failed
due to sensor noise, causing a vehicle to be lost momentarily and then reacquired. The reacquired
vehicle had a different ID number, making it appear as a new arrival to the intersection, so Talos
incorrectly went next. In reaction to this failure mode, Team MIT migrated to use the concept
of static and moving obstacles instead. Sensor data classification schemes, by requiring a choice
to be made, introduce the potential for false positive and false negative classifications. Much
care can be placed in reducing the likelihood of mis-classifications, however the classification
errors can almost always still occur. Developers often design down-stream applications to be over-



confident in the classes assigned to objects. Avoiding the assignment of “vehicle”/“non-vehicle”
classes to detected objects was an attempt to cut down assumptions made by the down-stream
applications interpreting the detected obstacle data. The assumptions were made in relation to the
strict definition of “static” and “moving” obstacles instead. On the whole this approach scaled well
with the additional complexity of the final race. The apparent gap was in the correct treatment of
active yet stationary vehicles. The posture of Skynet is not very different from the stationary cars
parked in the Gauntlet of Area B during the qualifiers.

7.7 Lane Constraints and Emergency Path Diversity

In the nominal situation, the tree of trajectories end in stopped states, so that Talos always knows
how to come to a safe stop. When Talos is moving and the planner cannot find any feasible safe path
from the current configuration (possibly due to a change in the perceived environment caused by
sensing noise or dynamic obstacles that change the constraints) the planner generates a emergency
braking plan. This emergency plan consists of the steering profile of the last feasible path and a
speed profile with the maximum allowable deceleration. Before the collision (Figure 25(b)), the
tree of trajectories was going towards the target further down the road. When the gap between the
left lane boundary and Skynet was narrowed as the Skynet moved forward, no feasible plan was
found that stopped Talos safely.When no feasible solution is found, a better approach would be to
prioritize the constraints. In an emergency situation, satisfying lane constraints is not as important
as avoiding a collision. Therefore, when generating an emergency plan, the planner could soften
the lane constraints (still using a relatively high cost) and focus on ensuring collision avoidance
with the maximum possible braking.

8 Discussion

Neither vehicle drove in a manner “sensible” to a human driver. On a day of fine weather and good
visibility Skynet backed up in a clear intersection and started to accelerate when another vehicle
was closing in. Talos passed a vehicle instead of queuing in a single-lane approach, then pulled in
much too close to an active vehicle in an intersection.

To summarize, contributing factors identified in the two vehicles’ software were:

• Talos’ lane-rendering bug permitting Talos to pass the DARPA chase vehicle;
• Talos’ inability to track slow-moving objects, and
• Skynet’s sensor data associations inducing phantom objects;
• Talos’ failure to anticipate potential motion of an active stationary vehicle;
• Skynet’s failure to accommodate the motion of an adjacent vehicle in an intersection;
• Talos’ overly constrainted motion due to target lane constraints.
• Skynet’s lane representation narrowing the drivable corridor;

Apart from the lane-rendering problem, these factors are more than just bugs: they reflect hard
trade-offs in road environment perception and motion planning.



8.1 Sensor data clustering

Skynet’s phantom obstacles and Talos’ inability to track slow-moving objects represent the down-
sides of two different approaches to address the same problem of sensor data clustering. Team
Cornell chose to estimate the joint probability density across obstacles using Monte Carlo mea-
surement assignments to associate sensor data with objects (Section 4.2). The consequence was
that sometimes the associations would be wrong, creating false positives. Team MIT found lidar
data clustering too noisy to use for static objects. Instead, relying on its sensor-rich vehicle, the
accumulator array with a high entropy presented static objects to motion planning directly. Once
the velocity signal was sufficiently strong the clustered features robustly tracked moving objects. A
high threshold was set before moving obstacle tracks were reported to suppress false positives. The
consequence was until the threshold was passed, there was no motion prediction for slow moving
objects.

8.2 Implicit and Explicit Vehicle Detection

The treatment of vehicles in the road environment must extend past the physics-based justification
of obstacle avoidance due to closing rate. For example, humans prefer never to drive into the
longitudinal path of an occupied vehicle, even if it is stationary. In Section 2 we mentioned how
the DARPA chase vehicle driver preferred to drive on the curb than in front of the Paused Skynet
vehicle.

Many teams in the contest performed implicit vehicle detection using the object position in the
lane and size to identify vehicles(Leonard et al., 2008; Miller et al., 2008; Stanford Racing Team,
2007). Moving objects detected with lidar or using radar Doppler velocity were also often assumed
to be vehicles. To prevent identified vehicles being lost, several teams had a “was moving” flag
associated with stationary tracked objects, such as queuing vehicles, that had once been observed
moving(Tartan Racing, 2007). It is not difficult to imagine a case where a vehicle would not have
been observed moving and the vehicle size and position rules of thumb would fail. Some teams
also used explicit vehicle detectors such as the Mobileye SeeQ system. However, explicit vehicle
detectors struggle to detect all vehicles presented at all aspects. The reconciliation of the two
approaches – explicit vehicle detection/classification and the location/moving-obstacle approach –
seems a promising solution.

Figure 28 shows the result of explicit vehicle detection run on Talos’ logged data. Both the Skynet
and the DARPA chase vehicle are detected, though only in a fraction of the frames in the sequence.
There were also a number of false detections that would need to be handled. Explicit vehicle
detection could have possibly bootstrapped Talos’ data association and tracking, permitting stand-
off regions to be placed in front and behind Skynet. There still is an apparent gap in the correct
treatment of active yet stationary vehicles. The posture of Skynet was not very different from the
stationary cars parked along the side of a road (such as in “the Gauntlet” of Area B during the
national qualifying event). Even with perfect vehicle detection, sensor data and modelling can
only recover the current vehicle trajectory. Non-linear motions like the stop-start behaviors require
conservative exclusion regions or an additional data source.



(a) (b)

Figure 28: Results of explicit vehicle detection in the collision. (a) DARPA chase vehicle detected.
(b) Last frame Skynet is detected. Trees and clutter in the background also generate false positives
during the sequence. In the intersection there are no lane markings so lane estimate confidence
cannot be used to exclude the false detections.

8.3 Communicating intent

Drivers on the road constantly anticipate the potential actions of fellow drivers. For close maneu-
vering in car parks and intersections, for example, eye contact is made to ensure a shared under-
standing. In a debriefing after the contest, DARPA stated that traffic vehicle drivers, unnerved by
being unable to make eye-contact with the robots, had resorted to watching the front wheels of
the robots for an indication of their intent. As inter-vehicle communication becomes ubiquitous,
autonomous vehicles will be able to transmit their intent to neighboring vehicles to implement the
level of coordination beyond what human drivers currently achieve using eye-contact. This would
not help in uncollaborative environments such as defense. There are also many issues such as how
to handle incomplete market penetration of the communications system or inaccurate data from
equipped vehicles. However, a system where very conservative assumptions regarding other vehi-
cle behavior can be refined using the intent of other vehicles, where available, seems a reachable
objective. We look forward to these synchronized robot vehicle interactions.

8.4 Placing lane constraints in context

Leading up to the collision both Talos and Skynet substantially constrained their behavior based on
the lane boundaries, even though the physical world was substantially more open. Skynet lingered
in the intersection because the lane was narrowed due to an interaction between the lane modeling
and the intersection geometry. Then the vehicles collided due to a funneling effect induced by both
vehicles attempting to get the optimum approach into the outgoing lane. The vehicles were tuned
to get inside the lane constraints quickly; this behavior was tuned for cases such as the Area A test
during the national qualifying event, in which the vehicles needed to merge into their travel lane
quickly to avoid oncoming traffic. In test Area A, the robots needed to drive assertively to get into
the travel lane to avoid the heavy traffic and concrete barriers lining the course. In the collision
scenario, however, the road was one-way, so the imperative to avoid oncoming traffic did not exist,
yet the imperative to meet the lane constraints remained. For future urban vehicles, in addition



to perception, strong cues for behavior tuning are likely to come from digital map data. Meta
data in digital maps is likely to include not only the lane position and number of lanes but also
shoulder drivability, proximity to oncoming traffic and partition type. This a-priori information
vetted against perception can then be used to weigh up the imperative to maximize clearance from
detected obstacles with the preference to be within the lane boundaries. A key question is how the
quality of this map data will be lifted to a level of assured accuracy which is sound enough to base
life-critical motion planning decisions on.

9 Conclusion

The fact that the robots, despite the crash, negotiated many similarly complex situations success-
fully and completed the race after 6 hours of driving implied that the circumstances leading to
the collision were the product of confounding assumptions across the two vehicles. Investigating
the collision, we have found that bugs, the algorithms in the two vehicles architectures as well
as unfortunate features of the road leading up to the intersection and the intersection topology all
contributed to the collision.

Despite separate development of the two vehicle architectures, common issues can be identified.
These issues reveal hard cases that extend beyond a particular software bug, vehicle design or
obstacle detection algorithm. They reflect complex trade-offs and challenges: (1) Sensor data
association in the face of scene complexity, noise and sensing “aperture” problems. (2) The im-
portance of the human ability to anticipate the expected behavior of other road users. This re-
quires an estimation of intent beyond the observable physics. Inter-vehicle communication has
a good chance of surpassing driver eye-contact communication of intent, which is often used to
mitigate low speed collisions. However, incomplete system penetration and denial of service for
defense applications are significant impediments. (3) The competing trade-offs of conforming to
lane boundary constraints (crucial for avoiding escalating problems with oncoming traffic) verses
conservative obstacle avoidance in an online algorithm. Map data and meta data in maps about on-
coming traffic and road shoulder drivability would be an invaluable data source for this equation.
However, map data would need to be accurate enough to support safety-critical decisions.

Multimedia Appendices

Talos’ race logs, log visualization software as well as videos of the incidents made from the logs
are available at: http://grandchallenge.mit.edu/public/
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