
MIT Open Access Articles

Sampling-Based Threat Assessment Algorithms
for Intersection Collisions Involving Errant Drivers

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Aoude, et al. "Sampling-based assessment algorithms for intersection collisions
involving errant drivers," IFAC Symposium on Intelligent Autonomous Vehicles, 2010.

As Published: http://iav2010.unile.it/CMSystem/modules/request.php?
module=oc_program&action=summary.php&id=150

Persistent URL: http://hdl.handle.net/1721.1/60041

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Attribution-Noncommercial-Share Alike 3.0 Unported

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/60041
http://creativecommons.org/licenses/by-nc-sa/3.0/

Sampling-Based Threat Assessment
Algorithms for Intersection Collisions

Involving Errant Drivers

Georges S. Aoude ∗ Brandon D. Luders ∗∗

Jonathan P. How ∗∗∗ Tom E. Pilutti ∗∗∗∗

∗Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA 02139,
USA, (e-mail: gaoude@mit.edu).

∗∗Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA
02139, USA, (e-mail: luders@mit.edu).

∗∗∗Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA
02139, USA, (e-mail: jhow@mit.edu).

∗∗∗∗ Ford Research and Advanced Engr, Dearborn, MI 48121, USA,
(email: tpilutti@ford.com).

Abstract: This paper considers the decision-making problem for a vehicle crossing a road
intersection in the presence of other, potentially errant, drivers. This problem is considered in
a game-theoretic framework, where the errant drivers are assumed to be capable of causing
intentional collisions. Our approach is to simulate the possible behaviors of errant drivers using
RRT-Reach, a modified application of rapidly-exploring random trees. A novelty in RRT-Reach
is the use of a dual exploration-pursuit mode, which allows for efficient approximation of the
errant reachability set for some fixed time horizon. Through simulation and experimental results
with a small autonomous vehicle, we demonstrate that this threat assessment algorithm can be
used in real-time to minimize the risk of collision.

Keywords: obstacle avoidance, driver assistance systems, autonomous vehicles.

1. INTRODUCTION

The field of road safety and safe driving has witnessed
rapid advances due to improvements in sensing and com-
putation technologies. Efforts are currently underway to
use more advanced concepts like car-to-car (C2C) commu-
nications and intelligent vehicle highway systems (IVHS)
for improving the safety and efficiency of human-driven
ground transportation systems. Negotiating a traffic inter-
section safely is one of the most challenging driving tasks.
An estimated 45 percent of injury crashes in the United
States are intersection-related, and result in approximately
22 percent of roadway fatalities in the US. Most of them
happen at intersections with stop signs or traffic signals
(Fat, 2008). A main cause of these accidents is the driver’s
inability to correctly assess and/or observe the danger in-
volved in such situations (Bougler et al., 2008). These facts
suggest that driver assistance or warning systems may
have an opportunity in reducing the number of accidents.

The Intersection Decision Support (IDS) project (in the
US) and the InterSafe project (in Europe) partner with
several universities to try to explore the requirements,
tradeoffs, and technologies required to create an intersec-
tion collision avoidance system, and demonstrate its ap-
plicability on selected dangerous scenarios (Bougler et al.,
2008; Fuerstenberg et al., 2005). Improving safety at inter-
sections is also relevant for motion planning of autonomous
? Research funded by Ford Motor Company and Le Fonds Québécois
de la Recherche sur la Nature et les Technologies (FQRNT) Graduate
Award.

vehicles. Talos, the MIT autonomous Land Rover LR3
that participated in in the 2007 DARPA Grand Challenge
(DGC), faced a challenge common to most contestants:
negotiating intersection traffic (Leonard et al., 2008). A
threat assessment module embedded in the motion planner
of autonomous systems could improve its safety by consid-
ering, during trajectory generation, the risks incurred by
the different behaviors of the other vehicles.

To characterize the threat level of dynamic road situations,
several measures have been proposed. These approaches
typically measure collision risk by time-to-collision (TTC)
and its variants, headway time (th), or required decelera-
tion (areq)(Karlsson et al., 2004). However, these measures
are mainly tailored to frontal collision warning systems
where the unpredictable dangerous driver is leading the
host driver, and cannot typically be applied to intersec-
tion scenarios where the dangerous driver can approach
from various angles. Ref. (Hillenbrand and Kroschel, 2006)
investigated a collision mitigation system for intersection-
like scenarios using a time-to-react (TTR) measure. How-
ever, it is assumed that a prediction model of the other
vehicle’s future motion is available, which is unlikely for a
driver behaving erratically and thus unpredictably.

In this paper, we are interested in the problem of assisting
human drivers or autonomous vehicles in negotiating busy
intersections in the presence of possibly erring drivers. The
proposed approach is based on a threat assessment algo-
rithm that models the intersection problem as a pursuit-

evasion game, and solves it on-line using a modified form
of rapidly-exploring random trees (LaValle, 1998; Kuwata
et al., 2009). A key advantage of the RRT algorithm is
its natural bias toward exploring the reachable space. It is
applied here to achieve computationally efficient, real-time
construction of a vehicle’s reachability set for a fixed time
horizon in a dynamic and possibly complex environment
involving several vehicles and obstacles, at the expense of
completeness guarantees. The approach is demonstrated
through both simulation results and experiments in the
RAVEN facilities (How et al., 2008).

2. PROBLEM STATEMENT

Given a “host” vehicle approaching a road intersection
involving one or more errant vehicles, the objective of
this work is to evaluate the threat level that the host
vehicle incurs by following each of its possible escape
maneuvers. We define the threat level as the remaining
time to earliest possible collision of the host vehicle with
any errant vehicle.

To bound the number of vehicles affecting the decision
making, the region of interest is localized to a finite
volume around the intersection, called the active region.
We assume that every vehicle in the active region has been
classified as either predictable or errant by a classification
algorithm (Aoude and How, 2009), part of the onboard
threat assessment module. To simplify the problem, we
further assume that only two agents are involved: an errant
vehicle, modeled as a hostile agent which may not be
following the rules of the road; and a host vehicle, assisted
by the threat assessment algorithm to minimize the threat
of an intersection collision.

Vehicle Model: Each vehicle is modeled using the stan-
dard nonlinear bicycle model,

ẋ = v cos (θ), ẏ = v sin (θ), θ̇ =
v

L
tan (δ), v̇ = a,

(1)
where x and y refer to the rear axle position, v is the
forward speed, θ is the vehicle heading, L is the wheelbase
of the vehicle, a is the forward acceleration, and δ is the
steering angle (positive counter-clockwise). The state of
the vehicle is (x, y, θ, v) ∈ S, and the input is (δ, a) ∈ U ,
subject to the constraints amin ≤ a ≤ amax and |δ| ≤
δmax. Each admissible control function u(t) is a piecewise
constant function u : [0, Th] 7→ U , where Th is a finite and
fixed time horizon.

Game theoretic formulation of IP: The intersection
threat assessment problem (hereafter referred to as IP)
can be formulated as a perfect information zero-sum
differential game G with state constraints and free final
time (Isaacs, 1999). The formulation is similar to the
one presented in Ref. (Ehtamo and Raivio, 2001). Let
subscripts 1 and 2 denote the errant vehicle and host
vehicle, respectively. If we let si(t) and ui(t) refer to the
state and control of vehicle i at time t, where i ∈ {1, 2},
then (1) can be represented as

ṡ(t) =

[
ṡ1(t)
ṡ2(t)

]
=

[
f(s1(t), u1(t))
f(s2(t), u2(t))

]
,

s(0) = s0, t ∈ [0,∞).

(2)

The controls and states are assumed to satisfy the con-
straints

Ci(si(t), ui(t)) ≤ 0, i ∈ {1, 2}, (3)

The game terminates with a collision if the state of the
game s(t) enters the closed target set Ω, expressed as

‖(x1(tf), y1(tf))− (x2(tf), y2(tf))‖ ≤ ε, (4)

where ε represents the collision distance between the two
vehicles, and the free final time tf of G represents the time
to collision

tf = inf{t|(s(t)) ∈ Ω}. (5)

The value tf = +∞ indicates the game terminated
without a collision. The objective of the host vehicle is
to maximize the final time tf , while the objective of the
errant vehicle is to minimize it. Thus the payoff function
of G is simply

J(s(t), u(t), t) = tf . (6)

Suppose that G admits a saddle point (γ∗1 , γ
∗
2) ∈ Γ1×Γ2 in

feedback strategies. If both players execute their feedback
saddle-point strategies, the value of the game is

V (s(t), t) = min
γ1∈Γ1

max
γ2∈Γ2

J(s(t), u(t), t) (7)

= max
γ2∈Γ2

min
γ1∈Γ1

J(s(t), u(t), t). (8)

Computing the feedback solutions requires solving the
Hamilton-Jacobi-Isaacs equation (Isaacs, 1999). Except
for some simple cases, the solution quickly becomes in-
tractable (Isler et al., 2005). Instead, open-loop represen-
tations of the feedback saddle-point strategies are typi-
cally solved. This paper proposes an approximate open-
loop solution using sampling-based algorithms, which can
efficiently identify feasible solutions for complex motion
planning or reachability problems (Lavalle, 2006; Bhatia
and Frazzoli, 2004; Isler et al., 2005).

Sampling-based relaxation of IP game: To find an ap-
proximate solution of G using sampling-based algorithms,
we introduce the following two assumptions: 1) The num-
ber of control functions (i.e., policies) of the host vehicle is
finite. Since the host vehicle typically follows the rules of
the road, it is reasonable to predefine some typical escape
paths of a “good” host driver facing a dangerous situation;
and 2) The game G has a fixed time horizon Th (typically
in the order of few seconds). The value of Th should be
long enough to ensure that the host vehicle has enough
time to execute its escape maneuver in the active region.
It also limits the size of the problem by neglecting capture
solutions outside the active region.

Then the sampling-based relaxation of the IP game will
approximate the lower value (8) of the open loop repre-
sentation of the IP by solving

Ṽ (s(t), t) = max
u2∈Ũ2

min
u1∈Ũ1

J(s(t), u(t), t) (9)

≈ max
u2∈U2

min
u1∈U1

J(s(t), u(t), t), (10)

where Ui, i ∈ {1, 2} represents the set of admissible control

functions for each vehicle, and Ũ1 and Ũ2 are subsets of U1

and U2 respectively. Here Ũ1 is computed using a sampling-
based algorithm (Section 3.1) that is probabilistically

complete, while Ũ2 is a user-defined approximation of U2

that consists of a finite number of typical control functions
of an evader at an intersection.

3. OVERVIEW OF THE APPROACH

This section details the threat assessment algorithm, which
computes the approximate sampling-based solution to the
IP game (Section 2) for the host vehicle to safely avoid an
erratic driver. Central to this algorithm is the RRT-Reach
subroutine (Section 3.1), which efficiently approximates
the reachability set for the errant vehicle via time pa-
rameterization (Section 3.2). The tree uses biases for both
exploration and pursuit of the host vehicle, representing
the errant vehicle’s “objective” to minimize the collision
time tf . The threat assessment algorithm then uses the
RRT-Reach tree to evaluate the safety of each available
escape path (Section 3.3).

3.1 RRT-Reach Algorithm

The RRT-Reach algorithm extends the rapidly-exploring
random tree (RRT) (LaValle, 1998; Lavalle, 2006) algo-
rithm, which grows a tree by randomly sampling points
toward which dynamically feasible trajectories are simu-
lated. In particular, we use the closed-loop RRT (CL-RRT)
algorithm of Ref. (Kuwata et al., 2009), which samples
inputs to a controller rather than the vehicle itself. The
algorithm thus maintains the exploration bias of tradi-
tional RRT algorithms, while allowing for generation of
smooth trajectories more efficiently. To approximate the
solution to the IP game, the RRT-Reach algorithm adds a
game-theoretical component to the RRT approach. The
approach is called RRT-Reach because it uses RRT to
create trajectories for the pursuer to reach the evader
escape paths in minimum time. We assume that both the
pursuer (errant driver) and evader (host driver) have full
knowledge of each other’s policies. The approach utilizes
this perfect information assumption through efficient, bi-
ased sampling in the RRT-algorithm.

RRT-Reach operates in two modes, exploration mode
and pursuit mode. It chooses the exploration mode with
probability pmode, and the pursuit mode with probability
1 − pmode. The more the environment is constrained, the
higher the value pmode should be set. Algorithm 1 describes
the flow of the RRT algorithm.

In the exploration mode (Algorithm 2), the algorithm
explores the state space by approximating the reachability
set of the pursuer. As with the traditional RRT algorithm,
it generates a sample (line 1), uses some heuristic to sort
the nodes (line 5), attempts to propagate a trajectory from
each node to the sample (line 7), and checks for constraint
violation (line 8).

In the pursuit mode (Algorithm 3), the algorithm uses the
knowledge of the escape paths of the evader (host vehicle)
to bias the sampling towards the position of the evader.
This step starts by updating the position of the evader
using the escape timestamp (line 3), which increases every
time the pursuit step is called. It then uses this position as
a sample for the pursuer tree to grow toward. In order to
increase its efficiency in capturing the evader, it checks if
the pursuer has a chance to arrive “on time” to the sample
by computing the unconstrained minimum time from the
root to the sample using Dubins distance (line 4). If on-
time arrival is not possible, it throws the sample away,
and moves to the next escape path sample. Otherwise,

it performs a propagation step (line 7–17) similar to the
one of Algorithm 2, but with an additional condition in
the neighbor selection process: neighbors must have a
timestamp smaller than the current escape timestamp to
be selected, as capture is otherwise impossible.

To incorporate these time-based decisions, a “timestamp”
has been explicitly added to the state of the vehicle to track
the time along each generated trajectory. While propa-
gating (Algorithm 4), if the timestamp reaches Th, the
propagation is interrupted and the current portion of the
trajectory is checked for feasibility. Also, when searching
for nearest neighbours, the algorithm skips any node with
a timestamp already equal to Th. Unlike traditional RRT
approaches, the RRT-Reach tree is not used to identify
some path which reaches a goal location. Rather, the entire
tree is analyzed to find the maximum threat along each of
the trajectories (Section 3.3). Thus in this case the “goal”
is not some location, but in fact the vehicles being in
a state of collision. Finally, note that RRT-Reach does
not include a completeness guarantee on the reachability
set; there may be some feasible trajectories which are not
included when work on constructing the reachability set
is completed. However, the problem of computing the full
reachability set in real-time is computationally intensive
when subject to complex dynamics and complex, dynamic
environments. The RRT-Reach algorithm is designed to
rapidly approximate the reachability set and improve the
approximation with more available time, regardless of the
current problem complexity.

Algorithm 1 RRT-Reach Algorithm
1: Measure current vehicle state and environment
2: repeat
3: Sample pmode uniformly from [0,1]
4: if pmode is less or equal to exploration bias then
5: Perform an exploration step (Algorithm 2)
6: else
7: Perform a pursuit step (Algorithm 3)
8: end if
9: until time limit for growing tree is reached

Algorithm 2 Exploration Step
1: Take sample for input to controller
2: repeat
3: Update time range in time heuristics
4: Find list of nearest neighbors using time range
5: Sort list using distance heuristics
6: for each sorted node do
7: Call propagation function using simulation of controller
8: if propagated portion is collision free then
9: Add sample to tree break

10: end if
11: end for
12: until timestamp reaches time horizon and no collision free

portion was found

3.2 Time Parametrization

Simulation results (Section 4) have suggested that the
use of time-parametrized heuristics in the nearest node
selection process (line 5 of Algorithm 2; line 10 of Algo-
rithm 3) can result in shorter paths and a more efficient
approximation of the IP minimization component. The

Algorithm 3 Pursuit Step
1: Update escape timestamp
2: for each escape path do
3: Set sample equal to escape path at current path time
4: if minimum unconstrained time to reach sample from root is

less than escape timestamp then
5: continue {continue to next escape path}
6: else
7: repeat
8: Update time range in time heuristics
9: Find list of nearest neighbors using time range and

escape timestamp
10: Sort list using distance heuristics
11: for each sorted node do
12: Call propagation function using simulation of con-

troller
13: if propagated portion is collision free then
14: Add sample to tree break
15: end if
16: end for
17: until timestamp reaches time horizon and no collision free

portion was found
18: end if
19: end for

heuristic acts as a suboptimal strategy for identifying time-
minimal paths in the tree to new samples, resulting in a
more realistic reachability set for the errant vehicle.

The time heuristic consists of partitioning the nodes into
incremental time ranges, where the time of each node
is measured from the root, and using only one range
at a time in the nearest node search. The time ranges
are considered in order from shortest time from root to
longest time from root (line 4 in Algorithm 2; line 9 in
Algorithm 3). Using the list of nodes whose timestamp lies
inside the current time range, the nearest node function
then uses the Dubins distance metric to compute the
k nearest neighbors (line 5 in Algorithm 2; line 10 in
Algorithm 3). If none of the k neighbors generate a feasible
trajectory, and the time range has not yet reached the time
horizon Th, the algorithm moves to the next-furthest time
range and repeats the cycle (line 12 in Algorithm 2; line
17 in Algorithm 3). Each nearest node search is limited
to a subset of the tree nodes, significantly reducing the
complexity of this calculation.

3.3 Threat Assessment Algorithm

This section introduces the threat assessment (TA) algo-
rithm used to solve the sampling-based relaxation of the
IP (See Algorithm 5). The inputs to the TA algorithm
are the reachability tree of the errant vehicle computed
by RRT-Reach (Algorithm 1), and a list of escape paths
that the host driver could follow. These escape paths can
be learnt from statistical traffic data. For each escape
path and for each timestamp, the algorithm checks the
distance between the escape path and each node of the
reachability tree with the same timestamp. If it finds that
an escape path is within a distance smaller than some
safety threshold distance of the other vehicle, it flags that
escape path as unsafe, and stores the time of collision.

The TA algorithm generates a list of times of collision
for each escape path, and return the path(s) with the
highest time. By doing so, the TA algorithm performs
the maximization operation in the IP value function (10).

Note that since the algorithm stops checking times beyond
the time horizon, we tacitly assume that the escape paths
flagged “safe” have a time of collision equal to infinity.

Algorithm 4 Threat Assessment Algorithm
1: Compute reachability tree of errant vehicle using RRT-Reach

(Algorithm 1)
2: Obtain list of escape paths of host vehicle
3: repeat
4: for each escape path Ej flagged as safe do
5: for each node nk in the reachability tree with time stamp

equal to ti do
6: if ‖nk − Ej(ti)‖ ≤ safety threshold then
7: Set collision time of Ej to ti and flag Ej as unsafe
8: break
9: end if

10: end for
11: end for
12: Increment time ti by ∆ti
13: until time ti equals Th or no more safe escape paths
14: return escape path(s) with highest collision time

4. SIMULATION RESULTS

In this section, the TA algorithm is demonstrated in
simulation for a rural stop-controlled intersection scenario,
known to have a high risk of collisions. Consider the
problem of helping a driver on a major road (e.g. a
highway) avoid a collision with an errant driver on a
minor road (e.g. a rural road). As the errant driver
approaches the major road, he/she misses the STOP sign
or (equivalently here) loses control of the vehicle. It thus
does not decelerate as expected, creating an unpredictable
and dangerous behavior for other drivers. The host vehicle
is equipped with a classifier (Aoude and How, 2009) which
would quickly flag the other vehicle as dangerous, and then
launches the TA algorithm to compute the risk of available
escape maneuvers. This scenario deals with two main
classes of intersection accidents, straight crossing paths
(SCP) and right-turn into path (RTIP), which together
account for more than 40% of light vehicle intersection
accidents (Fat, 2008).

The initial position and heading of each vehicle are shown
in Figure 1. The initial velocity is v1(0) = 1.5m/s for
the errant vehicle and v2(0) = 2.0m/s for the host
vehicle, whose velocity is assumed constant. The RRT-
Reach algorithm uses a tree size of 2000 nodes with a time
horizon of Th = 3s, and relies on a pure-pursuit controller
(Kuwata et al., 2008) to control the steering motion of
the errant vehicle in its propagation step. To make the
problem even more constrained, a small obstacle is added
to the minor road around location (x,y) = (2.5, 0.5). It
may represent some object (e.g., tree) that is obstructing
part of the errant driver’s road.

Figure 1 shows the output of the reachability tree gener-
ated by RRT-Reach along with the four possible escape
maneuvers for the host vehicle: 1) decelerate with acceler-

ation a = −2.5m/s
2

until full stop, 2) keep moving straight
with same initial velocity, 3) turn right with same initial
velocity, and 4) turn left with same initial velocity. All four
paths are dynamically feasible, and represent a subset of
maneuvers that the host driver would typically follow to
minimize the risk of collision at an intersection. Table 1

Fig. 1. TA Algorithm applied to the stop-controlled inter-
section. The tree generated for the errant vehicle using
RRT-Reach is shown, as well as four escape maneu-
vers for the host vehicle. For each escape maneuver,
the location of earliest possible collision is marked ×.

Table 1. Summary of TA simulation results

Escape Description Time of Collision

1 Decelerate until stop 1.14s
2 Keep going straight 0.88s
3 Turn right 0.78s
4 Turn left ∞

shows the results of the TA algorithm. Since Maneuver
4 has the highest time of collision, it is chosen as the
recommended maneuver, and the value of the game G is
set to infinity.

5. EXPERIMENTAL RESULTS

A hardware testing platform is critical to analyzing and
validating the performance of a threat assessment algo-
rithm. Such a platform allows the incorporation of real-
world uncertainty, such as uneven terrain or modelling er-
rors, and provides meaningful data for learning algorithms.
In these experimental results, an autonomous vehicle uses
the TA algorithm to successfully avoid an errant, human-
driven vehicle in a basic intersection scenario.

5.1 The RAVEN Testbed

Hardware demonstrations were performed within the
Real-time indoor Autonomous Vehicle test ENvironment
(RAVEN), a testbed designed for the rapid prototyping
of control algorithms for unmanned aerial and ground
vehicles (How et al., 2008). Both vehicles used in the
experiment are commercial-off-the-shelf remote-controlled
trucks (Figure 2). The errant vehicle is driven remotely by
a human operator, to emulate erratic driving behavior.

The autonomous host vehicle is controlled using an ex-
ternal Java planner which includes the real-time RRT-
Reach algorithm. The host vehicle’s waypoint path is
determined using an extension of the real-time CL-RRT
algorithm (Kuwata et al., 2009). This algorithm shares
much of the same code and parameters as the RRT-Reach

Fig. 2. Hardware setup in RAVEN.

algorithm, reflecting the similarities of the two game-
theoretic “players,” and includes a closed-loop prediction
model for the remote-controlled trucks. Unlike RRT-Reach
(Section 3.1), the host vehicle does have a desired goal
location and requires waypoint commands. Thus the exter-
nal planner includes an execution loop which periodically
identifies the best path in its RRT tree and sends it to the
truck wrapper for execution (Kuwata et al., 2009). Finally,
a safety constraint is added to each node, requiring that
the vehicle can safely decelerate to a stop from each node
before it is added to the tree.

The RRT-Reach algorithm is embedded in the external
planner as a separate thread which runs asynchronously
with the host planner thread. Over fixed time intervals
(2s), the algorithm grows a new reachability tree based on
the current errant vehicle position in RAVEN. At the end
of each time interval, the reachability tree is relayed to the
host RRT thread, which then relays it to the TA algorithm
(Section 3.3). Any path in the host vehicle’s tree can be
an escape maneuver; even if no path is feasible, the vehicle
will safely come to a stop due to the safety constraints.

5.2 Results

We have tested several dangerous intersection scenarios
in the RAVEN testbed; here we focus on the Left Turn
Across Path/Opposite Direction (LTAP/OD) scenario,
known to be one of the riskiest intersection encounters. In
these experiments, the RRT-Reach algorithm uses a time
horizon of Th = 5s and a tree capacity of 2000 nodes, while
the host vehicle RRT uses a tree capacity of 1000 nodes.
The reference speed for both vehicles is vi = 0.5 m/s.

In this scenario, the host vehicle is approaching an in-
tersection when the errant driver arrives in the opposing
direction and cuts off the host vehicle by turning left
without stopping (Figure 2). The host vehicle’s objective
is to go straight through the intersection. Figure 3 shows
the planner view of the host and errant vehicles, and their
RRT trees, at various points in the experiment. As both
vehicles approach the intersection, the host vehicle has a
feasible path through the intersection (Figure 3(a)). How-
ever, as the errant vehicle enters the intersection, the TA
algorithm indicates that the only safe action for the host
vehicle is to stop, and it does so (Figure 3(b)). Once the
errant driver cannot feasibly collide with the host, the host
continues its path toward its goal (Figure 3(c)). (Because
the RRT-Reach tree is initialized at the errant vehicle’s
present position and requires finite time to be computed,
the errant vehicle is not at the current RRT-Reach tree
root. This is accounted for in the TA algorithm.)

(a) t = 6s (b) t = 9s (c) t = 12s

Fig. 3. Results for a slow-moving errant driver (bottom chevron) turning left from an opposing direction to the host
vehicle (top chevron).

6. CONCLUSION AND FUTURE WORK

This paper has presented a novel threat assessment algo-
rithm which provides real-time assistance for a human or
autonomous driver navigating through an intersection in
the presence of potentially errant drivers. The planning
problem can be formulated as a pursuit-evasion game.
The centerpiece of the TA algorithm is the RRT-Reach
algorithm, which applies RRTs with a dual exploration-
pursuit mode to efficiently approximate the errant vehi-
cle’s reachability set. Given possible escape maneuvers,
the TA algorithm can then identify the maneuver which
minimizes the risk of collision. Hardware demonstrations
in RAVEN have validated that this algorithm can be
executed in real-time to successfully avoid errant drivers.

7. ACKNOWLEDGEMENTS

The authors would like to thank Daniel Levine, Vishnu
Desaraju, and Amit Bhatia for their contributions to this
research effort.

REFERENCES

(2008). Fatality analysis reporting system ency-
clopedia. URL http://www-fars.nhtsa.dot.gov/
Crashes/CrashesLocation.aspx.

Aoude, G.S. and How, J.P. (2009). Using Support Vector
Machines and Bayesian Filtering for Classifying Agent
Intentions at Road Intersections. Technical Report
ACL09-02, Massachusetts Institute of Technology. URL
http://hdl.handle.net/1721.1/46720.

Bhatia, A. and Frazzoli, E. (2004). Incremental search
methods for reachability analysis of continuous and
hybrid systems. In R. Alur and G.J. Pappas (eds.),
Hybrid Systems: Computation and Control, volume 2993
of LNCS, 142–156. Springer.

Bougler, B., Cody, D., and Nowakowski, C. (2008). Cali-
fornia Intersection Decision Support: A Driver-Centered
Approach to Left-Turn Collision Avoidance System De-
sign. Technical report, Univ. of California, Berkeley.

Ehtamo, H. and Raivio, T. (2001). On Applied Non-
linear and Bilevel Programming or Pursuit-Evasion

Games. Journal of Optimization Theory and Applica-
tions, 108(1), 65–96.

Fuerstenberg, K., GmbH, I., and Hamburg, G. (2005).
A new European approach for intersection safety-the
EC-Project INTERSAFE. In Proceedings of IEEE
Intelligent Transportation Systems, 432–436.

Hillenbrand, J. and Kroschel, K. (2006). A Study on
the Performance of Uncooperative Collision Mitigation
Systems at Intersection-like Traffic Situations. In Pro-
ceedings of the IEEE Conference on Cybernetics and
Intelligent Systems, 1–6.

How, J., Bethke, B., Frank, A., Dale, D., and Vian,
J. (2008). Real-time indoor autonomous vehicle test
environment. IEEE Control Systems Magazine, 28(2),
51–64.

Isaacs, R. (1999). Differential games: a mathematical
theory with applications to warfare and pursuit, control
and optimization. Courier Dover Publications.

Isler, V., Sun, D., and Sastry, S. (2005). Roadmap based
pursuit-evasion and collision avoidance. Proc. Robotics,
Systems, & Science.

Karlsson, R., Jansson, J., and Gustafsson, F. (2004).
Model-based statistical tracking and decision making for
collision avoidance application. In Proceedings of the
IEEE American Control Conference, volume 4.

Kuwata, Y., Teo, J., Fiore, G., Karaman, S., Frazzoli,
E., and How, J.P. (2009). Real-time motion planning
with applications to autonomous urban driving. IEEE
Transactions on Control Systems Technology, 17(5),
1105–1118.

Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli,
E., and How, J. (2008). Motion Planning in Complex
Environments using Closed-loop Prediction. In Pro-
ceedings of the AIAA Guidance, Navigation and Control
Conference and Exhibit. Honolulu, Hawaii.

LaValle, S.M. (1998). Rapidly-exploring random trees: A
new tool for path planning. Technical Report 98-11,
Iowa State University, Ames, IA.

Lavalle, S.M. (2006). Planning Algorithms. Cambridge
University Press.

Leonard, J., How, J., Teller, S., et al. (2008). A Perception-
Driven Autonomous Urban Vehicle. Journal of Field
Robotics, 25(10), 727 – 774.

