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ABSTRACT

We observe several characteristics of empirical image interpolating
algorithms and contribute four novel concepts and claims. First,
we interpret well-known classification-based filtering algorithms in
terms of their polyphase components. We examine the underlying
principles behind the various fixed-scale linear interpolating kernels.
Second, we conceptually extend the properties of the multiple fil-
ters to two dimensions to analyze frequency domain characteristics
common to all empirically-designed interpolating filters. Third, we
propose a general linear filter for image interpolation, which uses a
universal magnitude response and zero-phase. Finally, the proposed
filter is further generalized to support arbitrary scaling factors. We
claim that at any scaling factor, the proposed algorithm yields low-
complexity at a minimal loss of high image-quality with the ability
to interpolate diverse image content.

Index Terms— polyphase, interpolation, classification, IFIR

1. INTRODUCTION

Image interpolation relates to methods of placing new pixel val-
ues into a regularly sampled grid given a discrete subset of points
taken from a smaller grid. The smaller grid from which the inputs
are drawn compose the low-resolution image, and the larger grid of
points on which the processed points are placed compose the high-
resolution image. The quality of the resultant high-resolution image
is based on clarity of content, edge sharpness, and texture detail. The
metric of a good interpolating design concentrates on the trade off
between performance in terms of image quality and computational
complexity.

Design of such algorithms can often be divided into two groups:
analytical and empirical. We are concerned with empirical methods,
specifically the approaches in which the input space has been par-
titioned into several non-overlapping operating areas. Additionally,
high-resolution images are built locally, so the input spaces we ex-
amine consist of image patches. There are several techniques fitting
this description, the most effective being C.B. Atkins’ classification-
based filtering technique [1], which we analyze in subsequent sec-
tions.

Empirically designed local interpolation algorithms often use
linear equations to describe the interpolation process. This suggests
MMSE formulation where some form of y = Ax is involved, x and y
denoting low-resolution and high-resolution image content, respec-
tively. Such formulations involving the interpolation operator A are
not informative in an analytical sense, and without reorganizing A
into two-dimensions, there is little to conceptualize.

The purpose of this paper is to provide such analysis and from
it, draw conclusions and infer interesting developments. We devote
the remainder of our work to three issues.

This work is supported by NVIDIA. It was performed while the first
author was at UCSD.

1. We analyze current algorithms involving linear interpolating
filters from a polyphase perspective. The representation of
popular classification-based filtering algorithms provides in-
teresting insight.

2. We observe that all interpolating filters have a common mag-
nitude response, and we propose a single interpolating kernel
that is zero-phase to accommodate for directional filtering.

3. Using well-known techniques, we extend the interpolating
process to arbitrary interpolating factors, an idea that is made
possible through previously introduced concepts and without
which requires retraining, a costly process.

2. POLYPHASE REPRESENTATION OF
CLASSIFICATION-BASED FILTERING

Many classification-based algorithms including [1] make extensive
use of a modified

y = Ax (1)

formulation. In this section, we show that the structure of A makes
it easy to derive the underlying two-dimensional filter’s polyphase
components.

2.1. Polyphase Representation

Let d be the length and width of a low-resolution observation patch,
and u be the corresponding high-resolution dimension. The vector x
is vectorized from a d × d image patch, and likewise, y ∈ Ru2×1.

Then, for class j, A(j) ∈ Rd2×u2
, where j ∈ 1, 2, · · · , C. Inter-

polation by two (as observed by [1] and several other works) sets
d = 5 and u = 2 because the dimension of the center pixel of x
doubles in each direction. We can then build a two dimensional fil-
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Fig. 1. The ith row of matrix A(j) multiples x to create yi. Re-
versing vectorization, we obtain the two-dimensional ith polyphase
component.

ter by observing the organization of A(j). Each row of matrix A(j),
as seen by Fig. 1 interpolates a single element in y. Hence, we can
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find the high-resolution image by filtering the low-resolution image
with information from each row in A(j), the polyphase components,
and then interleaving the signal.

2.2. Filterbank Representation

Polyphase decomposition of signals [2] is the representation of sig-
nals as a regularly multiplexed, parallel set of subbands, where each
subband is called a polyphase component. In terms of filterbanks,
the aforementioned interpolation can be described as follows.

1. Classify the local image content,
2. Filter the low-resolution image by all polyphase components Ek ,
3. Upsample by u,
4. Shift each result by an appropriate offset,
5. Add the signals together

Let h[n] be a size N impulse response of a digital filter with

transfer function H(z) =

N−1∑
n=0

z−nh[n], then the kth polyphase

component Ek, of H(z) is defined as

Ek(z) =

�N/M�∑
n=0

z−nh[nM + k] (2)

Expressing the collective group of Ek as a single filter requires
a simple application of the second of two noble identities [3], where

First Noble Identity : G(z)(↓ M) = (↓ M)G(zM )

Second Noble Identity : (↑ M)G(z) = G(zM )(↑ M) (3)

The noble identities allow us to push the down/upsampling block
through the filter and reverse the order of blocks.

We can then express the transfer function as a sum of its
polyphase components as

H(z) =
M∑

k=0

z−mEk(zM ), (4)

After equating the four independent filters with polyphase compo-
nents, we now describe the interpolating process as the traditional
and simple three step process that follows.

1. Classify the image,
2. Upsample the image,
3. Filter using H(z).

3. ZERO-PHASE FILTER DESIGN

Our experimentation finds that the optimal number of classes1 varies
for each test image and is surprisingly low. Using filter responses
from Sec. 2, the findings over a broad sweep of total classes and a
fairly large training set are quite stunning. The magnitude responses
for all filter responses take on exactly the same form. Fig. 2 is just
a single example2, and the trend is consistent for different C and
across all j. We have some thoughts as to what is at work, but the
general idea is that image interpolation is somehow governed by a
single phenomena.

1We divide classes by the first principle component. PSNR is the metric
of “optimal”.

2We have zero-padded the impulse response, h(j)[nx, ny ], out to 2562

total samples (where before it was 102) to generate a smooth DFT curve. It
is unnecessary to do so.
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(b) Top-down View of Typical Fre-
quency Response

Fig. 2. Magnitude Responses for Four Classes, u = 2.

The remainder of this section describes a single filter with the
common magnitude response seen in Fig. 2. To accommodate differ-
ent orientations, such an encompassing filter would almost certainly
be zero-phase, and of course, given the symmetry of Fig. 2, real. We
also impose certain wavelet conditions for equal energy among sub-
bands. The assertion is that we can maintain near the performance
of [1] at a fraction of the computational cost.

Our association of each row of A as the polyphase components,
Ek(zx, zy), of H(zx, zy) defines four linear systems, which accord-
ing to symmetry constraints are algebraically dependent. Let Ak,
again, be the kth row of A defined in (5).

Ak = vectorize {Ek(zx, zy)} , m = 0, 1, 2, 3. (5)

Letting d = 5 and u = 2, H(zx, zy) is a Type II filter, so the impulse
response of the kth polyphase component is not symmetric. Instead,
the kth polyphase component must satisfy:

e0[nx, ny] = e3[N − nx − 1, N − ny − 1]

e1[nx, ny] = e2[N − nx − 1, N − ny − 1]. (6)

If we define the “vectorize” operation as the concatenation of
columns in an image patch into a one long column (MATLAB’s
im2col does the same thing), then

A0[n] = A3[d
2 − n − 1]

A1[n] = A2[d
2 − n − 1]. (7)

Equation (7) gives us an advantage since we only need to find

half as many parameters. Define Â with only two rows instead of
four such that

Â =

[ −A0−
−A1−

]
(8)

To take advantage of symmetry, define a “flip” operator that reverses
the order of elements inside a vector. Then, the training pairs as-

sociated with the new Â are derived from the original training pair,
(xi, yi), to give

x̂i =
[

xi xi + flip{xi}
]

ŷi =

[
ŷi[0]
ŷi[1]

]
=

[
yi[0] yi[0] + yi[3]
yi[1] yi[1] + yi[2]

]
. (9)

Here, x̂i has an extra column supplementing xi that enforces sym-
metry, and ŷi is half the height of yi, also with an additional column.
We wish to solve the new system of equations:

ŷ = Âx̂ (10)
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while simultaneously enforcing the wavelet constraint described by

H(π, π) =
∑

nx,ny

h[nx, ny]e−jπ(nx+ny) = 0

↔
∑

i

Am,i = 1. (11)

The solution considering (11) is similar to the original MMSE

equations, with an additional term. Let us denote Ŷ as a u×T matrix

and X̂ as a d2 × T (where T is the number of training pairs) of all
normalized training points. The optimization problem is written in
(12)

minÂ

∥∥∥ŷ − Âx̂
∥∥∥2

s.t. Â1 = 1, (12)

where 1 denotes a vector of ones of appropriate length. We have

written the constraint described by (11) as Â1 = 1 to regularize the
energy in the polyphase subbands.

The problem is convex, and we can determine the closed form
by writing the Lagrangian and taking its derivative. We have solved
for the d2-dimensional Lagrange optimization vector shown in (13).

λ =
RxyR−1

xx 1 − 1
1T R−1

xx 1
, (13)

where Rxx = X̂X̂T and Rxy = X̂Ŷ T . The final solution is given
as:

Â = RxyR−1
xx − 1T R−1

xx diag(λ), (14)

where diag(λ) is a square matrix with the entries of λ on the diago-
nal and zeros elsewhere.

4. EXTENSIONS TO RATIONAL SCALING FACTORS

Standalone learning algorithms by design can be rather inflexible.
Because the purpose is to learn the natural relationship between in-
put/output training pairs of fixed pixel dimensions, inferences can be
made only of that particular relationship. Unforeseen adjustments
such as added noise models require alterations to the training set,
without which place generalization beyond the intended scope of the
original algorithm. For interpolation, we expect data from a d×d im-
age patch to resolve a single pixel to u×u pixels. Any change to the
problem statement, i.e. resolving a single pixel to v×v pixels, where
u �= v, may exceed the intended purpose of the algorithm. Conse-
quently, to change u, the upsampling factor, algorithms such as [1]
must obtain an entirely new training set. With the new framework,
doing so is unnecessary, and this section addresses issues related to
rational scaling factors.

The shape of Fig. 2 simplifies our task considerably. We are not
concerned with the phase response, nor the bands in Fig. 2 that are
close to zero, i.e. the higher frequencies. With a scaling factor of u,
the interval of consequence ranges from ω = [−ωu, ωu], where we
have defined ωu = π

u
+δu. Therefore, resolving an image to resolu-

tion v given only the filter H(ω) (that interpolates by u), which cuts
off at ωu, the task is to find an Hv(ω) from Hu(ω)3, where v is the
desired interpolating factor.

Video postprocessing techniques almost universally advise
against zero padding a filter response in the frequency domain.

3Here, v ≥ u. When v < u, we must deal with aliasing conditions.

π/2 π ω

| H(ω) |

(a) Interpolation by 2× (Trained
Response, where u = 2)

π/u π ω

| Hu(ω) |

(b) Interpolation by v×

Fig. 3. Magnitude Responses for Factors of u = 2 and v

On the whole, we concur that induced ringing artifacts by a syntheti-
cally zeroed response may be noticeable, albeit our experimentation
suggests that the effect is not severe. A more reserved suggestion
is to interpolate the interpolating filter itself and obtaining an IFIR
filter [4]. Because we are most interested in the aliased copy on the
interval [−(π/u + δ), π/u + δ], we regularize our filter with an-
other filter that preserves the non-zero portion in that interval while
zeroing out higher, cutoff frequencies. Many references suggest
equiripple filters from the Parks-McClellan algorithm because of its
sharp transition at the cutoff frequency, a well-sustained passband,
and good point-wise approximation of zero in the stopband. Such
filters, however, require additional wavelet constraint enforcements.
We have chosen the G(z) to be the maximally flat (Daubechies)
filter because of its many zeros at π.

Rational scaling implies that we wish to interpolate by v =
H/L, where H and L are positive integers. Conventional ap-
proaches, most notably those concentrating on multiframe superres-
olution [5], use concepts of non-uniform sampling and exclusively
place the responsibility of generating values onto the high-resolution
grid in the co-domain. The analytical nature of such models requires
assumptions on their correlation matrices as they must be assumed4

Our correlation matrices are generated empirically, but we adopt the
idea of filtering on the desired high-resolution grid. Interpolation by
v = H

L
is as follows.

1. Generate IFIR filter HH(z) = G(z)H(z
H
u )

2. Downsample for the interpolating filter Hv(z) = HH(z
1
L )

3. Upsample low-resolution image by H
4. Apply Hv(z) to every Lth pixel and downsample by L.

5. RESULTS

The training set, Ω, consists of preprocessed (mean-shifted, vari-
ance normalized, and vectorized) low-resolution/high-resolution
pairs (xi, yi). When measuring the Peak Signal to Noise Ratios
(PSNR) values, we downsample by a fixed factor with MATLAB’s
imresize command (MATLAB applies an anti-aliasing filter that
defaults to 11 × 11 taps), upsample by the same factor, apply the
proposed filter H(zx, zy), and measure the differences between the
original image and the interpolated one. We numerically and visu-
ally compare to various methods that have been cited throughout the
body of this work, and we benchmark using MATLAB’s profile
function.

We have compared our zero-phase filter interpolation against
classification-based in the Mixture of Experts (MoE) and Tree-based
(TB) framework, both of which come from [1] along with edge di-
rected interpolation (NEDI) algorithms. Average function call times
and PSNR results for various interpolation methods are shown in Ta-
ble 1. Visual results against state of the art, shown in Fig. 4, yield
results that are comparable if not equal in quality. Additionally, like

4This is often done with common PSF’s and spectral density estimates.
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the classification-based algorithms, the zero-phase filter surpasses
conventional approaches, including edge-directed interpolation.

Table 1. 2× Interpolation Performance and Benchmarks

Interpolation Time (seconds)

Sequence MoE TB NEDI [6] Halfband 0-phase

Barbara 846.48 45.09 72.96 0.087 0.042
Bus 182.54 21.93 15.61 0.022 0.0101
Paris 182.61 21.62 15.41 0.022 0.0095
City 182.99 21.78 15.67 0.022 0.0096

Peak Signal to Noise Ratio (dB)

Barbara 28.30 26.56 28.64 26.44 28.32
Bus 23.78 24.26 24.80 23.00 24.72
Paris 21.40 21.62 22.06 20.22 21.54
City 27.70 27.40 27.46 25.04 26.90

For purposes of brevity in this paper, images and examples have
been shrunk. Non-integer scaling factors and additional images
along with detailed analysis can be found at the author’s website:

http://videoprocessing.ucsd.edu/˜karl/0phasefilt

6. CONCLUSIONS AND FUTURE WORK

We have shown that interpolation algorithms with MMSE formula-
tion can be expressed in terms of polyphase components. Addition-
ally, interpolation filters for natural images of any variety all have an
underlying magnitude response. Creating a filter with such a magni-
tude response and zero-phase yields excellent results.

In collaborating with other areas of research such as computer
vision and biomedical imaging, the nature of local image patches
appears to have some universal properties including observations ex-
amined in this paper. Depending on the application, further general-
ization of observed properties may lead to a better understanding of
images as a whole, including immediate extensions image deblurring
and other postprocessing techniques.
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(a) Original Image

(b) Edge-Directed Interpolation [6]

(c) 100-Class MoE (Pre-sharpening Filters Imple-
mented)

(d) Proposed Zero-phase Filtering Approach

Fig. 4. Comparisons to State of the Art
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