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Abstract

In recent work of Baas-Dundas-Richter-Rognes, the authors introduce the notion of the K-
theory of a bimonoidal category R, and show that it is equivalent to the algebraic K-theory
space of the ring spectrum KR. In this thesis we show that KpRq is the group completion of
the classifying space of the 2-category ModR of modules over R, and show that ModR is a
symmetric monoidal 2-category. We explain how to use this symmetric monoidal structure
to produce a Γ-(2-category), which gives an infinite loop space structure on KpRq. We show
that the equivalence mentioned above is an equivalence of infinite loop spaces.
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Chapter 1

Introduction

Different cohomology theories detect different information about spaces. One way of dis-

tinguishing among some of them is by their chromatic level. This level depends on the

ability of the cohomology to detect certain periodic phenomena. Rational cohomology has

chromatic level 0, K-theory has chromatic level 1 and complex cobordism has chromatic

level 8.

For some time, topologists have been searching for a cohomology that is both geomet-

rically flavored and has chromatic level 2. N. Baas, B. Dundas and J. Rognes introduce in

[BDR] the notion of a complex 2-vector bundle over a topological space and construct a

classifying space for these bundles, KpV ectCq.

The space KpV ectCq is a particular case of KpRq, the K-theory of a strict bimonoidal

category pR,`,bq. A strict bimonoidal category is one that roughly behaves as a semi-ring.

The authors conjecture in [BDR], and then (with B. Richter) prove in [BDRR2], that there

is a weak equivalence of spaces

KpRq �
ÝÑ KpKRq, (1.1)

where KR denotes the K-theory spectrum of R (see [EM] for details). This is a ring

spectrum, and KpKRq denotes its algebraic K-theory.

In the case of R � V ectC, the statement implies that the classifying space of virtual

2-vector bundles is equivalent to Kpkuq, where ku is the connective complex K-theory

spectrum. C. Ausoni and J. Rognes prove in [AR] that Kpku^p q has (at least) chromatic

level 2.

As the right hand side of equation (1.1) is the algebraic K-theory of a ring spectrum,
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it is an infinite loop space. The authors use this structure to show that KpRq defines a

cohomology theory.

The two-stage construction of KpKRq makes the infinite loop space structure hard to

handle or understand. On the other hand, KpRq is constructed in one step using both

monoidal structures at once. Hence the following questions arise naturally:

1. Is there an infinite loop space structure on KpRq induced directly by the structure of

R?

2. If there is such a structure, is the map of equation (1.1) an infinite loop space map?

The purpose of this thesis is to answer these questions.

In order to answer the first question we construct ModR, the 2-category of finitely

generated free modules over R. It turns out that the K-theory space of R is closely related

to the classifying space of this 2-category. Moreover, we show that ModR is a symmetric

monoidal 2-category.

We then adapt the techniques of [Seg] and [May1] to construct a special Γ-(2-category)

{ModR, whose classifying space |S{ModR| is an infinite loop space. This results in an infinite

delooping of the classifying space |SModR| and hence of KpRq.

To answer question (2) we would like to construct a map of Γ-spaces |S{ModR| Ñ

|N {ModKR|, where ModKR is the category of modules over the ring spectrum KR. Al-

though we cannot build this map directly, we build an alternative construction for the

Γ-category rD of a simplicial symmetric monoidal category D. We then show that we get a

zigzag of maps

|S{ModR| ÝÑ |N �ModKR|
�
ÐÝ |N {ModKR|,

where the right-hand map is a levelwise equivalence of Γ-spaces. At level 1, the right-hand

map is the identity, and the left-hand map corresponds to the equivalence in equation (1.1).

1.1 Organization and general conventions

In Chapter 2, we recall the definitions of 2-category as well other related notions, and set

the notation that will be used in subsequent chapters. We also give the construction of

the classifying space of a 2-category. In Chapter 3 we recall the construction of the K-

theory of a bimonoidal category from [BDR] and show how it is related to the 2-category
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ModR. In Chapter 4 we show that the 2-category ModR is symmetric monoidal. Chapter

5 contains the construction of the special Γ-(2-category) {ModR and the result about the

infinite delooping of the space KpRq. Finally, in Chapter 6 we show that the map in equation

(1.1) is an infinite loop map by showing an alternative construction of the infinite loop space

structure on KpKRq.

Throughout the document we will assume categories and 2-categories are enriched over

simplicial sets without explicitly saying it. Whenever we worked with a non-enriched cate-

gory we will indicate it explicitly. We sometimes use the term space to refer to a simplicial

set.

11
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Chapter 2

2-categories and their classifying

spaces

In this thesis we will use the term 2-category to refer to the non-strict version, that is, what

other authors -in particular category theorists- call bicategories. Since some of the notation

is non-standard, in this chapter we will review the definitions and theorems that will be

used in subsequent chapters. We will omit the proofs of the theorems and refer the reader

to the earlier papers on 2-categories [Bén, Str] and some more recent accounts [Lei, SP].

In Section 2.1 we review the definitions of 2-categories, functors, natural transformations

and modifications. In Section 2.2 we give the definition of an equivalence of 2-categories,

and give an equivalent characterization. Section 2.3 is devoted to pasting diagrams, which

are a way of representing 2-morphisms in 2-categories. We end the chapter with Section

2.4, where we give the construction of the classifying space of a 2-category and establish

some of its properties.

2.1 Basic definitions and conventions

Definition 2.1. A 2-category C consists of the following data:

1. A class of objects ObpCq;

2. for any A,B P ObpCq, a category CpA,Bq. The objects of this category are called

1-morphisms and are denoted by 1HomCpA,Bq. The morphisms of the category are

called 2-morphisms, and given 1-morphisms f, g, the space of 2-morphisms between
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them is denoted by 2HomCpf, gq.

The composition in the category CpA,Bq will be denoted by �.

3. for any objects A,B,C, a composition functor

CpB,Cq � CpA,Bq �
Ñ CpA,Cq;

4. for all objects A,B,C,D, a natural associativity isomorphism

CpC,Dq � CpB,Cq � CpA,Bq 1�� //

��1
��

mmmmrz
α

CpC,Dq � CpA,Cq

�
��

CpB,Dq � CpA,Bq
�

// CpA,Dq,

that gives 2-isomorphisms

αh,g,f : h � pg � fq ñ ph � gq � f ;

5. for any object A of C, a 1-automorphism IA, called the identity, and natural isomor-

phisms

CpA,Bq � 1

�

!!DDDDDDDDDDDDDDDDDDD

1�IA

��

CpA,Bq � 1

�

!!DDDDDDDDDDDDDDDDDDD

IB�1

��

and

CpA,Bq � CpA,Aq
�
// CpA,Bq

����
>Fρ

CpB,Bq � CpA,Bq
�
// CpA,Bq

����
>Fλ

These transformations are given by 2-isomorphisms

ρf : f � IA ñ f and λf : IB � f ñ f.
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For all composable 1-morphisms f, g, h, k, the following diagrams must commute:

k � ph � pg � fqq
α +3

1�α
��

pk � hq � pg � fq

α

��
k � pph � gq � fq α

+3 pk � ph � gqq � f
α�1
+3 ppk � hq � gq � f

g � pIB � fq
α +3

1�λ �&
EEEEEEEE

EEEEEEEE
pg � IBq � f

ρ�1x� yyyyyyyy

yyyyyyyy

g � f

If the natural transformations α, ρ, λ are the identity, then we say the 2-category is

strict.

Example 2.2. Let Cat be the 2-category of small categories, functors and natural transfor-

mations. This 2-category is strict.

Example 2.3. A monoidal category M can be viewed as a 2-category ΣM with one object

�, and the category of morphisms

ΣMp�, �q �M,

with the composition given by the monoidal product.

Theorem 2.4 (Coherence Theorem for 2-categories, [MLP]). Given a string of n compos-

able 1-morphisms fi and two bracketings b, b1 (which might also insert identity 1-morphisms),

there is a unique 2-isomorphism σ : bpfiq ñ b1pfiq that is a composition of instances of

α, ρ, λ.

This theorem shows that the axioms required on the definition of 2-category imply the

commutativity of any other diagram whose vertices are given by different bracketings of the

same string of composable 1-morphisms and whose edges are given by instances of α, ρ, λ.

Let f : AÑ B be a 1-morphism in C, we can define functors

f� : CpB,Cq Ñ CpA,Cq,

f� : CpC,Aq Ñ CpC,Bq

15



given by pre- and post-composition with f .

Definition 2.5. Let C be a 2-category. A 1-equivalence (or internal equivalence) is a 1-

morphism f : A Ñ B such that there exists a 1-morphism g : B Ñ A and 2-isomorphisms

η : IA ñ g � f and ε : f � g ñ IB. We say that the objects A and B are equivalent.

Definition 2.6. Let C,D be 2-categories. A functor F : C Ñ D consists of the following

data:

1. An assignment of objects F : ObpCq Ñ ObpDq;

2. for all A,B P ObpCq, a functor

FA,B : CpA,Bq Ñ DpFA,FBq;

3. for all objects A,B,C, a natural isomorphism

CpB,Cq � CpA,Bq
FB,C�FA,B //

�
��

mmmmrz F2
A,B,C

DpFB,FCq �DpFA,FBq

�
��

CpA,Cq
FA,C

// DpFA,FCq,

that is represented by 2-isomorphisms

F2pg, fq : Fpgq � Fpfq ñ Fpg � fq;

4. for every object A, a natural isomorphism

1

IFA

%%JJJJJJJJJJJJJJJ

IA

��




�	 F0

A

CpA,Aq
FA,A

// DpFA,FAq,

that gives a 2-isomorphism

F0 : IFA ñ FpIAq.

The data above must satisfy the commutativity of the following diagrams for composable

1-morphisms f, g, h:

16



Fh � pFg � Ffq α +3

1�F2

��

pFh � Fgq � Ff

F2�1
��

Fh � Fpg � fq

F2

��

Fph � gq � Ff

F2

��
Fph � pg � hqq

Fpαq
+3 Fpph � gq � fq;

Ff � IFA 1�F0
+3

ρ

��

Ff � FIA

F2

��
Ff Fpf � IAqFρ
ks

and IFB � Ff F0�1 +3

λ
��

FIB � Ff

F2

��
Ff FpIB � fq.Fλ
ks

When the natural isomorphisms F2 and F0 are identities we say the functor is strict.

If only F0 is the identity, then the functor is called normal.

Remark 2.7. There does not seem to be a standard convention for the terminology of these

different morphisms between 2-categories. Other authors use the terminology “functor”

and “pseudo-functor” to refer to what we have called here “strict functor” and “functor”,

respectively. There is also the notion of lax functor, where one does not require F2 and F0

to be invertible.

Let F : C Ñ D, G : D Ñ E be functors. We can define the composition GF as usual

composition of functions at the level of objects and usual composition of functors at the

level of categories of morphisms. The natural isomorphisms pGFq2 and pGFq0 are given on

1-morphisms by the following compositions, respectively:

GFg � GFf
G2
Fg,Ff +3 GpFg � Ffq

GpF2
g,f q +3 GFpg � fq;

IGFA
G0
FA +3 GpIFAq

GpF0
Aq +3 GFpIAq.

We will denote by 2Cat, 2Catu the categories whose objects are small 2-categories and

whose morphisms are functors, normal functors, respectively.

Definition 2.8. Let F,G : C Ñ D be functors between 2-categories. A natural transfor-

mation η : F Ñ G consists of the following data:

17



1. For every A P ObpCq, a 1-morphism

ηA : FAÑ GA;

2. for every pair A,B, a natural isomorphism

CpA,Bq
GA,B //

FA,B

��
������ η2A,B

DpGA,GBq

pηAq
�

��
DpFA,FBq

pηBq�
// DpFA,GBq,

given by 2-isomorphisms:

η2
f : Gf � ηA ñ ηB � Ff.

For all A
f
Ñ B

g
Ñ C, the following diagrams must commute:

Gg � pGf � ηAq
1�η2f +3

α

��

Gg � pηB � Ffq

α

��
pGg � Gfq � ηA

G2�1
��

pGg � ηBq � Ff

η2g�1

��
Gpg � fq � ηA
η2g�f

��

pηC � Fgq � Ff

α�1

��
ηC � Fpg � fq ηC � pFg � Ffq

1�F2
ks

(2.9)

IGA � ηA
λ +3

G0�1
��

ηA
ρ�1
+3 ηA � IFA

1�F0

��
GpIAq � ηA

η2IA

+3 ηA � FpIAq

(2.10)

Natural transformations can be composed. Let F ,G,H : C Ñ D be functors between

2-categories, and η : F Ñ G, ε : G Ñ H be natural transformations. There is a natural

transformation ε � η : F Ñ H with

pε � ηqA � εA � ηA,

18



and the natural transformation pε � ηq2 given by the composition

Hf � pεA � ηAq α +3 pHf � εAq � ηA ε2�1 +3 pεB � Gfq � ηA
α�1

rz lllllllllllll

lllllllllllll

εB � pGf � ηAq
1�η2

+3 εB � pηB � Ffq α
+3 pεB � ηBq � Ff.

Definition 2.11. Let F ,G : C Ñ D be functors between 2-categories, and η, ε : F Ñ G

natural transformations. A modification Γ : η Ñ ε consists of a 2-morphism ΓA : ηA ñ εA

for every A P ObpCq, such that for all F : AÑ B, the diagram below commutes

Gf � ηA
η2 +3

1�ΓA

��

ηB � Ff

ΓB�1
��

Gf � εA ε2 +3 εB � Ff.

We can compose modifications by composing the corresponding 2-morphisms. We will

denote this composition by juxtaposition.

Remark 2.12. A modification Γ : η Ñ ε is called invertible if there exists a modification

Γ�1 : ε Ñ η such that Γ�1Γ � idη. Note that this also implies that ΓΓ�1 � idε. It is

straightforward to prove that Γ is invertible if an only if the 2-morphism ΓA is invertible

for all A. The transformations η and ε are then said to be isomorphic.

Definition 2.13. A natural transformation η : F Ñ G is called a natural equivalence if

there exists a natural transformation ε : G Ñ F such that

idF � ε � η and idG � η � ε.

The functors F and G are then called equivalent.

Proposition 2.14. The natural transformation η is an equivalence if and only if for all

A P ObpCq, the 1-morphism ηA is a 1-equivalence.
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2.2 Equivalence of 2-categories

Definition 2.15. A functor F : C Ñ D is an equivalence of 2-categories if there exists a

functor G : D Ñ C and natural equivalences

idC � G � F and idD � G � F .

The 2-categories C and D are said to be equivalent.

Remark 2.16. Some authors use the term biequivalence for the definition above.

Theorem 2.17. A functor F : C Ñ D is an equivalence of 2-categories if and only if

1. F is essentially surjective on objects, that is, every D P ObpDq is equivalent to FC

for some C P ObpCq;

2. for all objects A,B in C, the functor FA,B : CpA,CBq Ñ DpFA,FBq is an equivalence

of categories.

2.3 Pasting diagrams

Since 2-categories inherently have a 2-dimensional structure, we use 2-dimensional diagrams

to represent them.

Let C be a 2-category, A,B objects, f, f 1 : A Ñ B 1-morphisms and ϕ : f ñ f 1 a

2-morphism. We depict this 2-morphism as

A

f

��

f 1

@@
�� ��
�� ϕ B.

Horizontal and vertical composition are, respectively represented by the pasting dia-

grams

A

f
&&

f 1
88

�� ��
�� ϕ B

g
&&

g1
88

�� ��
�� ψ C and A

f

��
�� ��
�� ϕ

CC

f2

�� ��
�� ϕ
1

f 1 // B.

20



The functoriality of composition implies the interchange law:

pψ1 � ψq � pϕ1 � ϕq � pψ1 � ϕ1q � pψ � ϕq.

This law gives then a unique meaning to the diagram

A

f

��
�� ��
�� ϕ

DD

f2

�� ��
�� ϕ
1

f 1 // B

g

��
�� ��
�� ψ
CC

g2

�� ��
�� ψ
1

g1 // C.

In particular, the law implies that we can read the diagram first vertically and then hori-

zontally, or vice-versa.

A pasting diagram is a polygonal arrangement on the plane, that is a generalization of the

diagrams shown above. The vertices correspond to objects, the directed edges correspond

to 1-morphisms and the faces are usually filled with double arrows corresponding to 2-

morphisms. For example, the diagram

g

""EEEEEEE�� ��
�� σ

f
<<yyyyyyy
h

//

indicates that σ is a 2-morphism from g � f to h.

The pasting

A

f
((

f

66
�� ��
�� idf B

g
((

h

66
�� ��
�� σ C

will be represented by

A
f // B

g
&&

h

88
�� ��
�� σ C

and denoted σ � f . We use a similar convention for post-composition.

The two pasting operations described above can be combined to give the general notion

of pasting. All instances of pasting diagrams can be obtained from the following two:

f //

g ""EEEEEEE
k

""EEEEEEE�� ��
�� ϕ

�� ��
�� ψh

<<yyyyyyy
l

//

l //
g

""EEEEEEE�� ��
�� σ

�� ��
�� τ

f
<<yyyyyyy
h

// k

<<yyyyyyy
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The first diagram indicates the 2-morphism given by the composition

k � f
k�ϕ
ùñ k � ph � gq

α
ùñ pk � hq � g

ψ�g
ùñ l � g,

while the second diagram is representing the composition

l � f
τ�f
ùñ pk � gq � f

α�1

ùñ k � pg � fq
k�σ
ùñ k � h.

We note here, in the simplest examples, that the 2-morphisms are not actually compos-

able; we need to use the associativity isomorphism. We can use these basic situations to

make sense of larger diagrams. In these larger diagrams we will find that the sources and

targets of 2-morphisms differ by their bracketing. By the Coherence Theorem (Theorem

2.4) we know that there is a unique canonical associativity isomorphism, so we use this to

make sense of the diagram.

Furthermore, a diagram does not make sense unless we specify a bracketing of the outside

1-morphisms. Once we do that, the diagram has a unique meaning, no matter what order

we use to compose the 2-morphisms. This can be proved by induction using polygonal

decompositions of the disk and the interchange law. For more information, we refer the

reader to [KS]. As an example, below we show equation (2.9) as a pasting diagram:

FA
ηA //

Ff

""EEEEEEEE

Fpg�fq

��

____ks
F2

����~� η2f

GA
Gf

""DDDDDDDD FA
ηA //

Fpg�fq

��

����{� η2g�f

GA
Gf

""DDDDDDDD

Gpg�fq

��

____ks
G2FB

ηB //

Fg||yyyyyyyy
����~� η2g

GB

Gg||zzzzzzzz
� GB

Gg||zzzzzzzz

FC
ηC

// GC FC
ηC

// GC

When we say “pasting diagram A is equal to pasting diagram B” we mean that with a

given bracketing of the outside 1-morphisms, the given 2-morphisms that they both define

are equal. Note that if this is true for a given bracketing, it is true for all bracketings.

2.4 Classifying spaces of 2-categories

Categories are closely related to spaces through the classifying space construction. To every

category we can assign a space. This assignment gives a functor that is part of a Quillen
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equivalence between a given model structure on the category of small categories and the

usual model structure in the category of topological spaces.

The same can be done with 2-categories. In fact, there are many distinct constructions

of the classifying space of a 2-category ([CCG]). All these constructions give equivalent

spaces, in the non-enriched case. Here we will describe the version of the nerve we will be

using in subsequent chapters.

Lack and Paoli introduce a version of a nerve of 2-categories that gives rise to a simplicial

object in Cat. This construction is closely related to the bar construction for monoidal

categories defined in [BDR], as we will point out. This nerve is called 2-nerve in [LP] and

Segal nerve in [CCG]. We will use the notation of the latter.

Definition 2.18. Let C be a 2-category. The Segal nerve SC is the simplicial object in Cat

given by normal functors, that is,

SnC � NorFuncprns, Cq,

where the objects are normal functors and the morphisms are oplax natural transformations

relative to objects.

Oplax natural transformations are similar to the natural transformations described

above, but instead of requiring the 2-morphism η2 to be an invertible, we require it to be a

map in the opposite direction. Being relative to objects means that the map ηA : FAÑ GA

is the identity, so in particular, we require that FA � GA.

An object of SnC is given then by a collection of diagrams

Cj
fjk

  BBBBBBBB

Ci

fij
>>~~~~~~~~

fik
//

�� ��
�� ϕijk

Ck,

for all 0 ¤ i   j   k ¤ n, (2.19)

where ϕijk is an invertible 2-morphism. This collection must satisfy the following coherence

condition for all 0 ¤ i   j   k   l ¤ n:
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Cj

  AAAAAA
Cj

!!BBBBBB

��

ppppt| ϕikl

����|� ϕijl
____ks

ϕjkl
Ci

>>}}}}}}

  AAAAAA
//

�� ��
�� ϕijk

Ck

~~||||||
� Ci

>>}}}}}}

  AAAAAA Ck.

}}{{{{{{

Cl Cl

(2.20)

Given objects tCi, fij , ϕijku and tCi, f
1
ij , ϕ

1
ijku (note that the collections of objects are

equal), a morphism between them is given by a collection of 2-morphisms ηij : fij ñ f 1ij for

i ¤ j, such that some coherence conditions ([CCG, Eq. (44)]) are satisfied.

Remark 2.21. We note that the bar construction for monoidal categories of [BDR] is equal

to the Segal nerve. More precisely, ifM is a monoidal category, then the simplicial category

BM of [BDR] is equal to SΣM (with a possible reordering of the indices).

The Segal nerve is functorial with respect to normal functors. It is the case that any

functor can be normalized ([LP, Prop. 5.2]). More precisely, there is a functor

2CatÑ 2Catu

from the category of 2-categories to the category of 2-categories and normal functors that

is an equivalence.

The Segal nerve is then a functor

S : 2CatÑ r∆op, Cats.

It is important to note that this functor preserves products.

Definition 2.22. Let C be a 2-category. The classifying space of C is the realization |SC|.

Let F ,G : C Ñ D be functors, and η : F Ñ G a natural transformation. As pointed out

in the proof of [CCG, Prop. 7.1], these data gives rise to a functor

H : C � 1 Ñ D

that restricts to F and G at 0 and 1. This functor can be normalized, yielding the following

result:
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Proposition 2.23. A natural transformation between functors F ,G : C Ñ D gives rise to

a homotopy between the maps

|SF |, |SG| : |SC| Ñ |SD|.
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Chapter 3

K-theory of bimonoidal categories

In [BDR], N. Baas, B. Dundas and J. Rognes introduce the notions of 2K-theory and 2-

vector bundles as a way to categorify topological K-theory and vector bundles. One of their

objectives is to define a cohomology theory of a geometric nature that has chromatic level

2.

In general they define the K-theory of (symmetric) bimonoidal categories. In Section

3.1 we recall the definition of bimonoidal and symmetric bimonoidal categories, and their

stricter analogues. This is again a topic in the literature where authors have used the

same name to refer to different concepts, and also have given different names to the same

concept. We refer the reader to [May2, Section 12] for a discussion on the different accounts

on this topic. It is important to note that we will require the distributivity maps to be

isomorphisms.

In Section 3.2, we defineK-theory of a bimonoidal category, following [BDR]. We explain

in Section 3.3 how the K-theory of a bimonoidal category R is related to the algebraic K-

theory of the ring spectrum KR. In Section 3.4, we identify the K-theory space of R with

an appropriate group completion of the classifying space of the 2-category of modules over

R.

3.1 Bimonoidal and Symmetric Bimonoidal Categories

Definition 3.1. A bimonoidal category pR,`,bq is a category R endowed with a sym-

metric monoidal structure (`, 0) and a monoidal structure (b, 1), together with natural
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isomorphisms

δr : pa` bq b cÑ pab cq ` pbb cq,

δl : ab pb` cq Ñ pab bq ` pab cq,

0b aÑ 0 Ð ab 0, (3.2)

that are subject to certain coherence axioms.

These coherence axioms are partially spelled out in [EM, Def. 3.3], although there the

isomorphisms in (3.2) are required to be identities. The axioms are also packed in the

definition of SMC-category in [Gui]. We note that our definition of bimonoidal category

coincides with that of an SMC-category with a single object.

In [EM] these categories are called ring categories, although the authors do not require

δr and δl to be isomorphisms. In [BDRR1, BDRR2] the term used is rig categories, in order

to emphasize the possible lack of negatives, that is, additive inverses.

Definition 3.3. A strict bimonoidal category (R,`, 0, γ`,b, 1, δ) is a permutative category

(R,`, 0, γ`), together with a strict monoidal structure (b, 1), such that right distributivity

and nullity of zero hold strictly, and there is a left distributivity natural isomorphism

δ : ab pb` cq Ñ pab bq ` pab cq.

These satisfy the coherence axioms spelled out in [Gui, Definition 3.1].

A strict bimonoidal category is the same as a PC-category with a single object, as

defined in [Gui]. By [Gui, Thm. 1.2] we know that any bimonoidal category is equivalent

to a strict bimonoidal category, via a map of bimonoidal categories. Thus, without loss of

generality we can work with strict bimonoidal categories. The definition of K-theory below

would also work for the non-strict case, with a few changes.

One can also require the multiplication to be commutative up to coherent isomoprhism.

We call these categories symmetric bimonoidal. The symmetry requires extra coherence

conditions relating the left and right distributivity isomorphisms. Laplaza [Lap] made a

careful study of these conditions.

May [May3] introduces the notion of bipermutative category, which corresponds to the

strict version of symmetric bimonoidal. We refer the reader to his work for the much
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shorter list of coherence diagrams. By [May3, Prop. 3.5] we know that any symmetric

bimonoidal category is a equivalent to a bipermutative category, so again, we can work

with bipermutative categories instead.

It is important to note that bipermutative categories are examples of strict bimonoidal

categories.

3.2 Definition of K-theory of a bimonoidal category

Let pR,`, 0, c`,b, 1, δq be a strict bimonoidal category. Then, as in [BDR], we can define

MnpRq, the category of n � n matrices over R. Its objects are matrices V � pVi,jq
n
i,j�1

whose entries are objects of R. The morphisms are matrices φ � pφi,jq
n
i,j�1 of isomorphisms

in R, such that the source (resp, target) of φi,j is the pi, jq�entry of the source (target) of

φ. As a category, MnpRq is isomorphic to Rn�n.

Moreover, MnpRq is a monoidal category, with multiplication

MnpRq �MnpRq
�
ÑMnpRq

given by sending the pair pU, V q to

Wik �
nà
j�1

Uij b Vjk.

Since ` is strictly associative, there is no ambiguity.

This multiplication has a unit object In, given by the matrix with 1 in the diagonal and

0 elsewhere. Both 0 and 1 are strict units for ` and b respectively, and the nullity of 0

holds strictly, so In is a strict unit as well.

Proposition 3.4. [BDR, 3.3] Matrix multiplication makes pMnpRq, �, Inq into a monoidal

category.

The natural associativity isomorphism

α : U � pV �W q Ñ pU � V q �W

is given by entry-wise use of c` and δ.

29



Recall that if R is a semi-ring, GLnpRq is the subgroup of MnpRq that contains all the

matrices whose determinant is a unit in Gr�pRq. The following definition is also taken from

[BDR].

Definition 3.5. Let GLnpRq �MnpRq be the full subcategory of matrices V � pVi,jq
n
i,j�1

whose matrix of path components lies in GLnpπ0pRqq. We call GLnpRq the category of

weakly invertible matrices. By convention we will let GL0pRq � 1 be the unit category,

with one object and one morphism.

Note that GLnpRq inherits the monoidal structure from MnpRq.

Given a monoidal category M, the authors in [BDR] define a bar construction for

monoidal categories, BM, which is a simplicial object in Cat. As pointed out in Remark

2.21, this definition coincides with SΣM.

We note that block sum of matrices in R makes

º
n¥0

|BGLnpRq|

into an H-space, and hence we define the K-theory of R, as the group completion

KpRq :� ΩB
�º
n¥0

|BGLnpRq|
�
.

The motivation behind the definition of K-theory for bimonoidal categories comes from

the categorification of complex K-theory. As we know well, the complex K-theory space

classifies virtual vector bundles.

A 2-vector space, as defined in [KV], is a category equivalent to pV ectCq
n for some n.

Heuristically, this should be thought of as a module category over V ectC. In [BDR], the

authors introduce the notion of a complex 2-vector bundle over a topological space and

construct a classifying space for these bundles. A 2-vector bundle is roughly a bundle of

2-vector spaces over X, defined in terms of transition functions, i.e., matrices of vector

spaces. For the precise definition we refer the reader to [BDR, Section 2].

One of the main results in [BDR] is that the stable equivalence classes of virtual 2-vector

bundles over a space X are in one-to-one correspondence with homotopy classes of maps

from X to KpV ectCq, where V ectC is a considered as a bipermutative category using direct

sum and tensor product.
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3.3 Relationship with algebraic K-theory

The relevance of the definition of K-theory of bimonoidal categories, aside from the clas-

sification of 2-vector bundles, comes from its relationship with algebraic K-theory of ring

spectra.

Given a strict bimonoidal category R, by forgetting the multiplicative structure we can

construct the K-theory spectrum KR corresponding to the permutative category pR,`q.

The results of [EM] and [May2] show that the multiplicative structure of R makes KR into

a ring spectrum, and furthermore, if R is bipermutative, KR is an E8 ring spectrum. Note

that in [BDR, BDRR2] the authors denote KR by HR, pointing out the analogy to the

Eilenberg-MacLane spectrum of a ring.

The natural inclusion BRÑ KR0 extends to a map

KpRq �
ÝÑ KpKRq, (3.6)

where the left-hand side corresponds to the algebraic K-theory of the ring spectrum KR.

The main result of [BDRR2] is that the map in equation (3.6) is an equivalence of spaces.

3.4 K-theory as a classifying space of a 2-category

Definition 3.7. Let ModR be the 2-category of finite dimensional free modules over R,

defined as follows. The objects are labeled by the natural numbers n ¥ 0. Given objects

n,m, the category of morphisms is

ModRpn,mq �

$'&
'%
GLnpRq if n � m

H if n � m.

and the composition is given by matrix multiplication. In other words,

ModR �
º
n¥0

ΣGLnpRq.

Example 3.8. Let V ectk be the bipermutative category of vector spaces over the field k.

Then ModV ectk is a sub-2-category of the 2-category of 2-vector spaces defined by Kapranov

and Voevodsky [KV]. The 1-morphisms are matrices of vector spaces such that their matrix
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of dimensions has determinant �1.

We can use the 2-category ModR to give an alternative definition of the K-theory of R.

We have that º
n¥0

SΣGLnpRq � S
�º
n¥0

ΣGLnpRq
�
� SModR.

Hence, we can describe K-theory as ΩB|SModR|.

This is the definition we will use in the following chapters. Furthermore, we will show

that the H-space structure comes from a functor

ModR �ModR ÑModR,

which will give ModR the structure of a symmetric monoidal 2-category.
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Chapter 4

Symmetric monoidal structure on

ModR

In this chapter we will show that the 2-category ModR is symmetric monoidal. In Section

4.1 we give an overview of symmetric monoidal 2-categories. In Section 4.2 we show that

we can provide ModR with a symmetric monoidal structure.

4.1 Symmetric monoidal 2-categories

In broad terms, a symmetric monoidal 2-category is a 2-category with a product functor that

is associative, unitary, and commutative up to coherent natural equivalences. The precise

definition is quite involved, as one would imagine. To arrive to the current definition with the

appropriate axioms took several papers by several mathematicians. The main complication

comes from finding the correct minimal sets of coherence axioms. To be more precise,

the natural equivalences satisfy coherence diagrams only up to invertible modification, and

those modifications in turn have to be coherent.

In his Ph.D. dissertation [SP], Schommer-Pries gives a historical account and a concise

definition of symmetric monoidal 2-categories. The symmetric monoidal structure we will

place on ModR will be of a strict nature, in the sense that most of the natural equivalences

and invertible modifications will be identities. We will thus refrain from giving the full

definition and refer the reader to [SP, Chapter 3]. In what follows we will use the notation

there to identify the symmetric monoidal structure on ModR.
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4.2 Structure on ModR

Theorem 4.1. The 2-category ModR is symmetric monoidal with the monoidal operation

given by block sum of matrices:

` : ModR �ModR ÑModR

pn,mq ÞÑ n+m

pU, V q ÞÑ

�
� U 0

0 V

�
�

pϕ,ψq ÞÑ

�
� ϕ 0

0 ψ

�
� .

The matrix r0s is the matrix with all entries equal to 0, the unit of ` in R.

Proof. We first note that the operation described above gives a strict functor of 2-categories,

since it preserves the identity and the composition:

In ` Im � In�m,

�
� U 1 0

0 V 1

�
� �
�
� U 0

0 V

�
� �

�
� U 1 � U 0

0 V 1 � V

�
� .

The second equation holds because of the strict nullity and unity of 0 in R.

The unit of ` is 0. The natural equivalences α, l, and r of [SP] can be taken to be the

identity since for U P GLnpRq, V P GLmpRq, and W P GLppRq:

pU ` V q`W � U ` pV `W q,

I0 ` U � U � U ` I0.

The modifications π, µ, λ, ρ of [SP] are the identity modification. We can thus say that

the monoidal structure is strict.

The natural equivalence βn,m : n ` m Ñ m ` n is given by the block matrix

�
� 0 Im

In 0

�
� .
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Since 0 and 1 are strict units in R, for U P GLnpRq and V P GLmpRq,

βn,m � pU ` V q �

�
� 0 V

U 0

�
� � pV ` Uq � βn,m,

so β is a strict natural transformation.

We note that βm,n � βn,m � In�m which both implies that β is a natural isomorphism

and that we can take the modification σ to be the identity. Similar arguments can be used

to show that the modifications R and S can also be taken to be the identity.

Since all the modifications are the identity, all the coherence diagrams are satisfied. We

conclude that ModR is a symmetric monoidal 2-category.
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Chapter 5

Infinite loop space structure on

KpRq

In this chapter we will show that the symmetric monoidal structure on ModR endows KpRq

with an infinite loop space structure. To this end, we will use Segal’s Γ-space machinery

which we will explain in Section 5.1. In Section 5.2 we show that the symmetric monoidal

structure on ModR gives rise to a Γ-(2-category), thus giving an infinite delooping of the

space KpRq.

5.1 Γ-spaces

There is a close connection between cohomology theories and symmetric monoidal cate-

gories. This relationship can be made precise thanks to the work of G. Segal [Seg], J. P.

May [May1], and others. In [Seg], it is shown that a symmetric monoidal category C gives

rise to a connective spectrum, whose zero space is the group completion of the classifying

space of C. This in turn implies that any symmetric monoidal category gives rise to a

generalized cohomology theory. As examples of this, we have

• the category of finite sets under disjoint union, which gives the sphere spectrum S,

which in turn represents stable cohomotopy;

• the category of finite dimensional complex vector spaces under direct sum, which gives

the connective K-theory spectrum ku and represents (connective) K-theory
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• for any ring R, the category of finite rank projective modules over R under direct sum

which gives the algebraic K theory spectrum KpRq.

In order to produce spectra from symmetric monoidal categories, Segal constructs an

infinite loop space machine using Γ-spaces.

Let Fin� denote that (skeletal) category of finite pointed sets and pointed maps. The

skeletal version has as objects the sets n � t0, 1, . . . , nu, for n ¥ 0. Here 0 is the basepoint.

For 1 ¤ k ¤ n, we define ik : nÑ 1 as:

ikpjq �

$'&
'%

0 if j � k

1 if j � k.

Definition 5.1. A Γ-space X is a functor X : Fin� Ñ Top. We say X is special if the map

Pn : Xpnq Ñ Xp1q�n,

obtained by assembling the maps ik, is a weak equivalence for all n ¥ 0.

The conditions in the definition above roughly imply that the space Xp1q has a multipli-

cation that is associative and commutative up to coherent higher homotopies. The precise

statement in given by the following theorem:

Theorem 5.2. [Seg, Prop. 1.4] Let X be a special Γ-space. Then Xp1q is an H-space and

its group completion, ΩBXp1q is an infinite loop space.

Segal and May show how to construct a Γ-category from a symmetric monoidal category,

thus getting an infinite delooping of the classifying space of a symmetric monoidal category.

We will imitate this approach in the context of 2-categories.

5.2 Γ-(2-category) structure on ModR

Definition 5.3. A Γ-(2-category) A is a functor A : Fin� Ñ 2Cat. We say A is special if

the map

Pn : Apnq Ñ Ap1q�n

is an equivalence of 2-categories for all n ¥ 0.

38



This definition is analogous to that of a special Γ-space, with the connection made clear

by Lemma 5.5.

The main theorem of this chapter will give us the infinite delooping of KpRq.

Theorem 5.4. The symmetric monoidal structure on ModR gives rise to a special Γ-(2-

category) {ModR such that

{ModRp1q �ModR.

Lemma 5.5. Let A be a special Γ-(2-category). Then |SA| : Γ Ñ Top is a special Γ-space.

Proof. The classifying space functor |Sp�q| : 2Cat Ñ Top preserves products and sends

equivalences of 2-categories to homotopy equivalences of spaces (Proposition 2.23).

This lemma, together with Theorem 5.4 and Theorem 5.2 give us the main theorem of

this chapter.

Theorem 5.6. The K-theory of the bimonoidal category R inherits an infinite loop struc-

ture from the symmetric monoidal structure on ModR.

Proof of Theorem 5.4. We will first construct the 2-category {ModRpnq for n ¥ 0 as follows:

1. Objects are of the form tAS , aS,T uS,T , where S runs over all the subsets of n that

do not contain the basepoint 0; pS, T q runs over all pairs of such subsets such that

S X T � H; AS P ObpModRq and aS,T : ASYT Ñ AS ` AT is a 1-equivalence. We

require further

(a) AH � 0;

(b) aH,S � IAS
� aS,H;

(c) for every triple pS, T, Uq of subsets such that S X T � S X U � T X U � H, the

diagram

ASYTYU

aSYT,U

��

aS,TYU // AS `ATYU

IAS
`aT,U

��
ASYT `AU aS,T`IAU

// AS `AT `AU

(5.7)

strictly commutes;
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(d) for every pair of subsets pS, T q, the diagram

ASYT
aS,T // AS `AT

βAS,AT

��
ATYS aT,S

// AT `AS

(5.8)

strictly commutes.

2. A 1-morphism between tAS , aS,T u and tA1S , a
1
S,T u is given by a system tfS , φS,T uS,T ,

where S, T are as above; fS : AS Ñ A1S is a 1-morphism in ModR and φS,T is a

2-isomorphism:

ASYT
aS,T //

fSYT

��
�����
 φS,T

AS `AT

fS`fT
��

A1SYT a1S,T

// A1S `A1T .

We require:

(a) φH,S : fS � IAS
� fS ñ fS � IAS

� fS is the identity 2-morphism and similarly

for φS,H;

(b) for every pairwise disjoint S, T, U the following equation holds

ASYTYU
aS,TYU//

fSYTYU

��





�	 φS,TYU

AS `ATYU

fS`fTYU

��

IAS
`aT,U //

�
 id`φT,U

AS `AT `AU

fS`fT`fU

��
A1SYTYU a1S,TYU

// A1S `A1TYU

‖

IA1
S
`a1T,U

// A1S `A1T `A1U

ASYTYU
aSYT,U//

fSYTYU

��





�	 φSYT,U

ASYT `AU

fSYT`fU

��

aS,T`IAU //

�
 φS,T`id

AS `AT `AU

fS`fT`fU

��
A1SYTYU a1SYT,U

// A1SYT `A1U a1S,T`IA1
U

// A1S `A1T `A1U ;

(5.9)
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(c) for every S, T the following equation holds:

ASYT
aS,T //

fSYT

��
�����	 φS,T

AS `AT

fS`fT
��

β // AT `AS

fT`fS
��

�

ATYS
aT,S //

fTYS

��
�����
 φT,S

AT `AS

fT`fS
��

A1SYT a1S,T

// A1S `A1T β
// A1T `A1S A1TYS a1T,S

// A1T `A1S .

(5.10)

3. Given 1-morphisms tfS , φS,T u, tgS , γS,T u : tAS , aS,T u Ñ tA1S , a
1
S,T u, a 2-morphism

between them is given by a system tψSu of 2-morphisms in ModR, ψS : fS ñ gS ,

such that for all S, T as above the following equation holds:

ASYT
aS,T //

fSYT

��

gSYT

��

____ks
ψSYT

				�� φS,T

AS `AT

fS`fT

��

�

ASYT
aS,T //

gSYT

��

				��γS,T

AS `AT

fS`fT

��

gS`gT

��

____ks
ψS`ψT

A1SYT a1S,T

// A1S `A1T A1SYT a1S,T

// A1S `A1T

(5.11)

We now need to show that these data indeed defines a 2-category. We will first show that

given objects tAS , aS,T u, tA
1
S , a

1
S,T u, the 1-morphisms and 2-morphisms form a category

{ModRpnqptAS , aS,T u, tA
1
S , a

1
S,T uq.

Vertical composition of 2-morphisms tψSu, tψ
1
Su is defined componentwise. We show

that this composition satisfies equation (5.11). Given

tAS , aS,T u

tf,φu

��
�� ��
�� tψu

tg,γu
//
??

th,ηu

�� ��
�� tψ

1u

tA1S , a
1
S,T u
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we see that for all S, T :

ASYT
aS,T //

��

h ____ks
ψ1

f

��

____ks
ψ

g

��

����{� φ

AS `AT

f`f

��

�

ASYT
aS,T //

g

��

h

��

____ks
ψ1 				�� γ

AS `AT

f`f

��

g`g

��

____ks
ψ`ψ

�

A1SYT a1S,T

// A1S `A1T A1SYT a1S,T

// A1S `A1T

ASYT
aS,T //

h

��

				�� η

AS `AT

!!

h`h ____ks
ψ1`ψ1

g`g

��

f`f

}}

____ks
ψ`ψ

A1SYT a1S,T

// A1S `A1T

as wanted.

We also note that tidfSu is a well-defined automorphism for tfS , φS,T u and it is the

identity of the componentwise composition.

The composition functor � is given by:

ptgS , γS,T u, tfS , φS,T uq ÞÑ tgS � fS , pγ � φqS,T u

ptψ1Su, tψSuq ÞÑ tψ1S � ψSu,

where the 2-morphism pγ � φqS,T is defined by the pasting diagram:

ASYT

fSYT

��

aS,T //

�����
 φS,T

AS `AT

fS`fT
��

A1SYT

gSYT

��

a1S,T //

�����	 γS,T

A1S `A1T

gS`gT
��

A2SYT a2S,T

// A2S `A2T .

Showing that tgS � fS , pγ � φqS,T u is a well-defined 1-morphism (that is, it satisfies

equations (5.9) and (5.10)) can be done again using pasting diagrams and the fact that

both tfS , φS,T u and tgS , γS,T u satisfy those same equations. Analogously we can show that

tψ1S � ψSu is a well-defined 2-morphism.
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The natural associativity isomorphism in this 2-category is given by the component-

wise associativity isomorphisms in ModR. More precisely, given tfS , φS,T u, tgS , γS,T u, and

thS , ηS,T u composable 1-morphisms, we define the 2-morphism tαSu, where

αS : hS � pgS � fSq ñ phS � gSq � fS

is the associativity isomorphism in ModR.

The fact that

tphS � gSq � fS , ppη � γq � φqS,T u ñ thS � pgS � fSq, pη � pγ � φqqS,T u

is an allowed 2-morphism in {ModRpnq will follow from the uniqueness of pasting diagrams.

Naturality and the pentagonal axiom follow from those in ModR.

Given and object tAS , aS,T u, the identity 1-morphism is given by tIAS
, idaS,T u. It is

clear that this is an allowed 1-morphism in {ModRpnq and tIAS
, idaS,T u is a strict identity,

giving that IAS
is a strict identity in ModR. We conclude thus that {ModRpnq is indeed a

2-category.

We now need to prove that this construction extends to a functor {ModR : Fin� Ñ 2Cat.

Given a morphism θ : nÑ m in Fin� we will define a functor

θ� : {ModRpnq Ñ {ModRpmq

as follows:

tAS , aS,T u ÞÝÑ tAθU , a
θ
U,V u � tAθ�1pUq, aθ�1pUq,θ�1pV qu

tfS , φS,T u ÞÝÑ tfθU , φ
θ
U,V u � tfθ�1pUq, φθ�1pUq,θ�1pV qu

tψSu ÞÝÑ tψθUu � tψθ�1pUqu,

where U, V range over disjoint subsets of m that do not contain the basepoint. Since θ is

basepoint preserving, θ�1pUq does not contain the basepoint and it is an allowed indexing

subset of n. Also, since U and V are disjoint, their pre-images under θ are also disjoint.

This assignment commutes strictly with all the compositions and identities in {ModRpnq
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and {ModRpmq, giving a strict functor between these 2-categories.

It is clear from the construction that {ModRp1q is isomorphic to ModR.

We will end the proof by showing that for every n ¥ 0, the functor

pn : {ModRpnq ÑMod�nR

is an equivalence of 2-categories. This will show that the Γ-(2-category) is special. For ease

of notation we will denote the subset tiu P n as i. The functor pn takes

tAS , aS,T u ÞÝÑ tAiu
n
i�1

tfS , φS,T u ÞÝÑ tfiu
n
i�1

tψSu ÞÝÑ tψiu
n
i�1.

We will define an inverse functor in : Mod�nR Ñ {ModRpnq:

tAiu
n
i�1 ÞÝÑ t

ð
iPS

Ai, eS,T u

tfiu
n
i�1 ÞÝÑ t

ð
iPS

fi, idu

tψiu
n
i�1 ÞÝÑ t

ð
iPS

ψiu.

Here, `iPS denotes the iterated monoidal operation ` with the usual order of the indices

in S � n. Recall that ` is strictly associative.

The 1-morphism

eS,T :
ð

iPSYT

Ai ÝÑ
ð
iPS

Ai `
ð
iPT

Ai

is the unique composition of instances of the braiding β that reorders the summands. Note

that since 0 and 1 are strict units for ` and b in R, this composition is truly unique, not

just unique up to associativity isomorphisms. The matrix eS,T is a permutation matrix. It

is clear that t
Ð

iPS Ai, eS,T u satisfies equations (5.7) and (5.8).

We also have that p
Ð

iPS fi `
Ð

iPT fiq � eS,T � eS,T � p
Ð

iPSYT fiq, thus we can choose

the 2-isomorphism to be the identity. The collection t
Ð

iPS fi, idu satisfies automatically

equations (5.9) and (5.10). It is also automatic that for any tψiu : tfiu ñ tgiu, we get that

t
Ð

iPS ψiu is an allowed 2-morphism between t
Ð

iPS fi, idu and t
Ð

iPS gi, idu.
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This assignment gives a strict functor since

inptgi � fiuq � t
ð
iPS

pgi � fiq, idu � tp
ð
iPS

giq � p
ð
iPS

fiq, id � idu � inptgiuq � inptfiuq

inptIAiuq � t
ð
iPS

IAi , idu � tIÐ
iPS Ai

, idu � idinptAiuq.

Clearly pn � in � IdMod�n
R

. We now construct a natural equivalence

ξ : Id{ModRpnq
Ñ in � pn.

For every object tAS , aS,T u in {ModRpnq, we need a 1-morphism

ξtAS ,aS,T u : tAS , aS,T u Ñ t
ð
iPS

Ai, eS,T u.

Given the subset S, we define aS inductively as the composition:

AS
aj,S�j
ÝÝÝÝÑ Aj `AS�j

idAj
`aS�j

ÝÝÝÝÝÝÝÑ Aj `
ð
iPS�j

Ai �
ð
iPS

Ai,

where j is the smallest index in S.

Note that by conditions (5.7) and (5.8) on the aS,T , the two compositions in the diagram

below differ by a unique associativity 2-isomorphism:

ASYT
aS,T //

aSYT

��
������ ηS,T

AS `AT

aS`aT

��ð
iPSYT

Ai eS,T
//
ð
iPS

Ai `
ð
iPT

Ai.

Since associativity isomorphisms are unique, taS , ηS,T u is a well-defined 1-morphism in

{ModRpnq. This will be the corresponding 1-morphism of the natural transformation ξ.

To complete the data of the natural transformation, for every pair of objects tAS , aS,T u,

tA1S , a
1
S,T u in {ModRpnq we need to provide a natural isomorphism ξ2, which on the compo-

nent tfS , φS,T uis given by a 2-morphism

ξ2ptfS , φS,T uq : t
ð
iPS

fi, idu � ta
S , ηS,T u ñ ta1S , η1S,T u � tfS , φS,T u.
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Given S, we define a 2-isomorphism in ModR, φS : p
Ð

iPS fiq�a
S ñ a1S �fS , inductively

as the pasting diagram:

AS
aj,S�j //

fS

��

����}� φj,S�j

Aj `AS�j

fj`fS�j

��

IAj
`a1S�j

//

����~� id`φS�j

ð
iPS

Ai

Ð
iPS fi

��
A1S a1j,S�j

// A1j `A1S�j
IA1

j
`a1S�j

//
ð
iPS

A1i,

where j is the smallest index in S. We need to show that tφSuS gives a 2-morphism in

{ModRpnq, that is, it satisfies equation (5.11). This is done by induction on |S Y T | using

pasting diagrams. We let ξ2ptfS , φS,T uq � tφSu.

To show the naturality of ξ2, we need to show that

AS
aS //

fS

��

gS

��

____ks
ψS

����|� φS

ð
iPS

Ai

Ð
iPS fi

��

�

AS
aS //

gS

��

����|�γS

ð
iPS

Ai

Ð
iPS fi

��

Ð
iPS gi

��

____ksÐ
iPS ψi

A1S
a1S

//
ð
iPS

A1i A1S
�a1S

//
ð
iPS

A1i.

This follows by induction on |S|, using the inductive definition of φS and equation (5.11).

Since φS is invertible, we get a natural isomorphism as wanted.

For the axiom (2.9) of a natural transformation we need to show

AS

fS

��

aS //

~~~~{� φS

ð
iPS

Ai

Ð
iPS fi

��

AS

gS�fS

��

aS //

oooos{
pγ�φqS

ð
iPS

Ai

Ð
iPS gi�fi

��

A1S

gS

��

a1S //

~~~~{� γS

ð
iPS

A1i

Ð
iPS gi

��

�

A2S
a2S
//
ð
iPS

A2i A2S
a2S
//
ð
iPS

A2i .

This is straightforward using induction on |S| and the definition of γ � φ.
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Axiom (2.10) is true since all the 2-morphisms involved are the identity.

Hence we have a natural transformation between Id{ModRpnq
and in�pn. The 1-morphism

of this transformation, taS , ηS,T u is a 1-equivalence in {ModRpnq, thus by Proposition 2.14,

we get a natural equivalence between functors.

We conclude that the 2-categories {ModRpnq and Mod�nR are 2-equivalent, making {ModR

into a special Γ-(2-category).
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Chapter 6

Constructing the infinite loop

space map

The goal of the construction of two-vector bundles in [BDR] is to find a cohomology theory

that is geometrically defined and has chromatic level 2. In order to show that KpRq actually

defines a cohomology theory, the authors conjecture and later prove in [BDRR2] that the

map of equation (3.6) is an equivalence of spaces. Hence KpRq inherits an infinite loop

space structure from KpKRq.

In Chapter 5, we constructed an infinite loop space structure on KpRq that came directly

from the symmetric monoidal structure on ModR. We would like to know if these two

infinite loop space structures on KpRq are compatible. More precisely, we will show in this

chapter that the map in equation (3.6) is a map of infinite loop spaces. This is done in

Section 6.2, where we give an alternate construction of the Γ-space associated to a symmetric

monoidal 2-category. For this construction we use a special kind of bisimplicial sets, which

we call horizontally categorical. These are discussed in Section 6.1.

6.1 Preliminaries

In this chapter we will be working with bisimplicial sets that have a filling condition for

inner horns. This section contains some properties of these bisimplicial sets.

Definition 6.1. A bisimplicial set X is horizontally categorical if the horizontal simplicial

sets Xn � Xp�,nq have the unique filling condition with respect to all inner horns. That is,
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every map f has a unique extension as shown in the diagram:

Λmk
f //

� _

��

Xn

∆m

D!

z
z

z
z

for 0   k   m.

Remark 6.2. If C is a category enriched over simplicial sets, then NC is a horizontally

categorical bisimplicial set. Indeed, we can think of C as a simplicial object in categories.

Then the horizontal simplicial sets NC are nerves of categories and hence have the unique

filling condition with respect to inner horns.

Let ∆m,Λmk denote also the vertically constant bisimplicial sets given by ∆m,Λmk re-

spectively. The spine of ∆m will be denoted by Spinem. This is the simplicial set (and the

vertically constant bisimplicial set) given by the edges 0 Ñ 1, 1 Ñ 2, � � � , pm� 1q Ñ m.

Let HompX,Y q denote the internal hom in bisimplicial sets. If X is a horizontally

categorical bisimplicial set, then there is a unique composition of paths:

d : Homp∆1, Xq �
X
Homp∆1, Xq Ñ Homp∆1, Xq.

Lemma 6.3. Composition of paths is associative. In particular, there is a unique map

Homp∆1, Xq �
X
� � � �

X
Homp∆1, Xq Ñ Homp∆1, Xq.

Proof. Since X is horizontally categorical, any map Spinem Ñ Xn can be extended uniquely

to a map ∆m Ñ Xn and then projected onto the edge 0 Ñ m. This in turn implies the

uniqueness of the map above.

6.2 Proof of Main Result

The infinite loop space structure on KpKRq comes from the Γ-space construction on the

classifying space of the symmetric monoidal category ModKR of finitely generated free

modules over KR. In order to prove that the map in equation (3.6) is a map of infinite

loop spaces we will prove that the map extends to a map of Γ-spaces. In particular, we will

prove the following theorem.
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Theorem 6.4. There is a zigzag of maps of Γ-spaces

|S{ModR| ÝÑ |N �ModKR|
�
ÐÝ |N {ModKR|.

At level 1, the right-hand map is an equality, and the left-hand map corresponds to the map

in equation (3.6).

Corollary 6.5. There is a zigzag of equivalences of spectra

KpRq �
ÝÑ rKpKRq �

ÐÝ KpKRq,

which at the level of zeroth spaces gives the maps

KpRq ÝÑ
p3.6q

�K0pKRq ÐÝ
�

K0pKRq.

In the theorem above, ModKR refers to the category of modules over the ring spectrum

KR, {ModKR is the standard Γ-category construction on a symmetric monoidal category,

and �ModKR is an alternative construction which we will describe.

The model we are taking for KR is that of [EM]. We construct ModKR as follows.

Let GLnpKRq be the group-like monoid of weakly invertible matrices over KR. It is

defined by the pullback

GLnpKRq //

��

hocolimmPI ΩmMnpKRpmqq

��
GLnpπ0KRq //Mnpπ0KRq,

The category ModKR has as objects the natural numbers n. The space of morphisms

is given by

ModKRpn,mq �

$'&
'%
GLnpKRq if n � m

H if n � m.

Note that since KRp0q � NR, there is a map of spaces

NGLnpRq ÝÑ GLnpKRq,
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which extends to the equivalence of [BDRR2]

KpRq ÝÑ KpKRq.

Let pD,`, 0, τq be a permutative category enriched over bisimplicial sets. We further re-

quire that for every objects A and B, the bisimplicial set DpA,Bq is horizontally categorical.

To ease the notation, we will think of these bisimplicial sets as simplicial spaces.

We will build a Γ-category rD which will turn out to be equivalent to pD. For the

construction of rDpnq we mimic that of 2-categories in Chapter 5.

The objects are given by tAS , aS,T u, with S and T as above; AS P ObD and aS,T :

ASYT Ñ AS ` AT is an invertible morphism, that is, a 0-simplex in DpASYT , AS ` AT q.

We require conditions 1a-1d in the proof of Theorem 5.4 to hold. We note that the objects

in rDpnq are the same as the objects in the usual Γ-category construction pDpnq.
Given two objects tAS , aS,T u and tBS , bS,T u, the simplicial space of morphisms between

them is defined as a subspace of

¹
S

DpAS , BSq �
¹
S,T

Homp∆1,DpASYT , BS`BT qq.

Let X be defined by the pullback

X //

��

¹
S,T

Homp∆1,DpASYT , BS`BT qq

pd1�,d0�q
��¹

S

DpAS , BSq ±
S,T pa

�,b�q
//
¹
S,T

DpASYT , BS`BT q�2,

(6.6)

where the lower horizontal map corresponds to pa�S,T , pbS,T q�q for the S, T component.

Let Y be the equalizer

Y // X
p1 //

p2
//
¹
S,T

Homp∆1,DpASYT , BS`BT qq , (6.7)

where p1 is just the projection and p2 is the projection composed with τ�. This reproduces

condition (5.10) in this setting.
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Let Z be the equalizer

Z // Y
q1 //

q2
//
¹
S,T,U

Homp∆1,DpASYTYU , BS`BT`BU qq , (6.8)

where q1 and q2 are as defined below. This condition mimics that of equation (5.9).

Let f be the following composition

DpAU , BU q �Homp∆1,DpASYT , BS`BT qq

˜̀�id
��

HompDpASYT , BS`BT q,DpASYT`AU , BS`BT`BU qq�Homp∆1,DpASYT , BS`BT qq

�

��
Homp∆1,DpASYT`AU , BS`BT`BU qq

a�

��
Homp∆1,DpASYTYU , BS`BT`BU qq,

where ˜̀ , �, a denote the adjoint of `, composition of function spaces, aSYT,U , respectively.

We also have the map

Homp∆1,DpASYTYU , BSYT `BU qq

b�
��

Homp∆1,DpASYTYU , BS`BT`BU qq,

Note that the pullback conditions on X imply that d0�f is equal to d1�b�, thus, putting

the two maps f and b� together we get a map from Y to

Homp∆1,DpASYTYU , BS`BT`BU qq �
DpASYTYU ,BS B̀T B̀Uq

Homp∆1,DpASYTYU , BS`BT`BU qq.

We can further compose with d, getting a map to Homp∆1,DpASYTYU , BS`BT`BU qq.

Finally, we take the product over all pS, T, Uq to get

q1 : Y ÝÑ
¹
S,T,U

Homp∆1,DpASYTYU , BS`BT`BU qq.
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We define q2 similarly, starting with

DpAS , BSq �Homp∆1,DpATYU , BT`BU qq

instead.

We define rDpnqptAS , aS,T u, tBS , bS,T uq :� Z.

We now show that the collection of objects described above with the simplicial spaces

of morphisms rDpnq form a category enriched over simplicial spaces.

Given objects A � tAS , aS,T u, B � tBS , bS,T u, C � tCS , cS,T u, we define a composition

map

rDpnqpB,Cq � rDpnqpA,Bq Ñ rDpnqpA,Cq
as follows: On one hand, we have a map given by the composition maps in D:

¹
S

DpAS , BSq �
¹
S

DpBS , CSq

ÝÑ
¹
S

DpAS , CSq.

Given pS, T q, let g be the following composition

DpBS , CSq �DpBT , CT q �Homp∆1,DpASYT , BS`BT qq

`�id
��

DpBS`BT , CS`CT q �Homp∆1,DpASYT , BS`BT qq

̃�id
��

HompDpASYT , BS`BT q,DpASYT , CS`CT qq �Homp∆1,DpASYT , BS`BT qq

�

��
Homp∆1,DpASYT , CS`CT qq.

Similarly, we let h be

DpASYT , BSYT q �Homp∆1,DpBSYT , CS`CT qq

̃�id
��

HompDpBSYT , CS`CT q,DpASYT , CS`CT qq �Homp∆1,DpBSYT , CS`CT qq

�

��
Homp∆1,DpASYT , CS`CT qq.
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One can check that when we restrict the source of these maps to the pullback condition

(6.6), the condition d0�g � d1�h is satisfied. Hence we can put g and h together to get a

map to

Homp∆1,DpASYT , CS`CT qq �
DpASYT ,CS C̀T q

Homp∆1,DpASYT , CS`CT qq

that we can later compose with d we get a map to

Homp∆1,DpASYT , CS`CT qq.

Taking the product of these maps and the composition maps over S, T , we get a map

rDpnqpB,Cq � rDpnqpA,Bq k
ÝÑ
¹
S

DpAS , CSq �
¹
S,T

Homp∆1,DpASYT , CS`CT qq.

We want to show now that the image of k is contained in rDpnqpA,Cq.
On the Homp∆1,DpASYT , CS`CT qq-component, d1�k � d1�g, which is equal to a� on

DpAS , CSq�DpAT , CT q by the pullback condition (6.6) on the space rDpnqpA,Bq.
Similarly for d0�k, we show it is the same as cS,T�, thus showing we land in the pullback

(6.6) for rDpnqpA,Cq.
To show that conditions (6.7) and (6.8) hold we use the fact that they hold for rDpnqpA,Bq,

rDpnqpB,Cq and Lemma 6.3. We conclude that the composition is well defined. The fact that

composition in D is associative and Lemma 6.3 imply that the composition is associative.

The identity of tAS , aS,T u is the 0-simplex given by the collections of idAS
together with

the constant path at aS,T P DpASYT , AS `AT q.

We thus get a category rDpnq. We can extend this construction to a Γ-category in the

usual way. Let θ : nÑ m be a morphism in Γ. We construct the functor

θ� rDpnq ÝÑ rDpmq

as follows.

We send the object tAS , aS,T u of rDpnq to the object tAθS , a
θ
S,T u of rDpmq, where AθS �

Aθ�1S and aθS,T � aθ�1S,θ�1T .
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For morphisms we construct a map

rDpnqpA,Bq ÝÑ rDpmqpAθ, Bθq

taking the projections of the θ�1S, pθ�1S, θ�1T q-components to the S, pS, T q-components,

respectively.

Theorem 6.9. The Γ-space N rD is special.

This theorem is a consequence of the following proposition.

Consider the following diagram of functors

rDpnq q // D�n

jttpDpnq
i

bbEEEEEEEE

p
<<zzzzzzzzz

In the diagram above q and p are the projections onto the pt1u, � � � , tnuq-components. It

is clear that qi � p. On the other hand, j is the usual inverse equivalence for p, explained

for example in [SS, Lemma 2.2]. We recall from [SS] that pj � id and there is a natural

isomorphism from jp to the identity in pDpnq.
Proposition 6.10. The functors i and q are a weak equivalence of categories (that is, they

induce equivalence at the level of classifying spaces).

Corollary 6.11. The map i : pDpnq Ñ rDpnq induces a levelwise equivalence of Γ-spaces

N pD ÝÑ N rD.

Proof. It is clear that the functor i is compatible with the Γ-category structure. At the

nth level, Ni is a weak homotopy equivalence, thus giving a levelwise equivalence of Γ-

spaces.

Proof of Theorem 6.9. The result from Proposition 6.10 implies thatNq is a weak homotopy

equivalence, thus proving that N rD is special.

Proof of Proposition 6.10. The proof will proceed as follows. Since i is the identity on

objects and q is surjective on objects, it is enough to prove that both i and q induce weak

equivalences for the simplicial spaces of morphisms.
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We will first recall the definition of j in [SS, Lemma 2.2].

Given an object pA1, � � � , Anq in D�n, we let

jpA1, � � � , Anq � t
à
iPS

Ai, eS,T u

where the sum is taken in the order of the indices of S � n. The morphism eS,T is the

uniquely determined isomorphism from ASYT to AS`AT given by composition of instances

of τ .

For morphisms, we let

jpf1, � � � fnq � t
à
iPS

fiu.

We then have that pj � id and that there is a natural isomorphism λ : id Ñ jp given

on the object tAS , aS,T u by the composition

AS Ñ Ati1u `AS�i1 Ñ � � �Ati1u ` � � � `Atiku

of the corresponding a’s.

Given an object A � tAS , aS,T u in pDpnq (and thus, in rDpnq), let 9A � t
À

iPS Ai, e
A
S,T u

denote its image under jq.

Given a pair of objects in pDpnq, pA,Bq, consider the following diagram:

pDpnqpA,Bq i // rDpnqpA,Bq
q

��

pDpnqp 9A, 9Bq
λ �

OO

¹
i

DpAi, Biq
j

�oo

The map λ above is gotten by pre- and post-composition with the natural isomorphism λ

already defined. We note that λjqi � id and qiλj � id.

Thus, if we show that iλjq is homotopic to the identity we will have shown that λjq

and iλj are homotopy inverses for i and q respectively, giving us the result we want.

To build a homotopy from f � iλjq to the identity, we show that there exists a map φ

making the diagram below commute. For ease of notation we let Z � rDpnqpA,Bq.
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Z

Z

f

99ssssssssssss φ //_____

id
%%KKKKKKKKKKKK Homp∆1, Zq

d1�

OO

d0�

��
Z

We construct a map

¹
S

DpAS , BSq �
¹
S,T

Homp∆1,DpASYT , BS`BT qq

��¹
S

Homp∆1,DpAS , BSqq �
¹
S,T

Homp∆1 �∆1,DpASYT , BS`BT qq,

and show that when restricted to Z it lands on Homp∆1, Zq.

We will first construct the map φS to the component Homp∆1,DpAS , BSqq. Say S �

ti1   � � �   iku. Let Sj � tij , � � � , iku.

We consider the map gj

j�1¹
l�1

DpAil , Bilq �Homp∆1,DpASj , Bij `BSj�1qq

`

��

Dp
kà
l�1

Ail ,
kà
l�1

Bilq �Homp∆1,DpASj , Bij `BSj�1qq

˜̀

��
Homp∆1,DpAi1 ` � � � `Aij�1 `ASj , Bi1 ` � � � `Bij `BSj�1qq

pa�q�ppb�1q�q�
��

Homp∆1,DpAS , BSqq.

Here a is the composition of the instances of aS,T that take AS to Ai1`� � �`Aij�1`ASj ,

and similarly for b taking BS into Bi1 ` � � � `Bij `BSj�1 .

When we restrict to Z, d1gj � d0gj�1 and thus we get a map into

HompSpine|S|,DpAS , BSqq.
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By Lemma 6.3, this extends to Homp∆1,DpAS , BSqq. The result is the map φS

From the construction it is clear that d1φS � f and d0φS � id on this component.

Now, we look at the component Homp∆1 �∆1,DpASYT , BS`BT qq.

Let g be the composition

Z

φS�φT
��

Homp∆1,DpAS , BSqq �Homp∆1,DpAT , BT qq

`�
��

Homp∆1,DpAS `AT , BS`BT qq

pa�q�
��

Homp∆1,DpASYT , BS`BT qq.

Note that g the projection Z Ñ Homp∆1,DpASYT , BS`BT qq give composable paths.

By Lemma 6.3 and given the conditions on Z, this map is equal to the map h:

Z

φSYT
��

Homp∆1,DpASYT , BSYT qq

b�
��

Homp∆1,DpASYT , BS`BT qq.

Therefore, we can think then of these maps together as giving a map into Homp∆1 �

∆1,DpASYT , BS`BT qq, since the paths are equal:

 //
proj



 //
id

OOg



OO h

Using the conditions on Z, it is easy to check that this constructions yields a map

Z Ñ Homp∆1, Zq

that restricts to the identity and f at each end.
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We have thus constructed the desired homotopy.

We end this chapter with the proof of Theorem 6.4.

Proof of Theorem 6.4. We first note that we can take a model for ModKR that satisfies the

conditions imposed on D above. In the construction of KR in [EM], the spaces of the spec-

trum are nerves of simplicially enriched categories. Hence, the construction of GLnpKRq

involves taking the homotopy colimit of nerves of categories, and we can use Thomason’s

machinery [Tho] to do this, thus having a model of GLnpKRq that is horizontally categor-

ical. We can then apply the construction above to ModKR, and Corollary 6.11 gives the

right-hand equivalence of the theorem

N �ModKR
�
Ð |N {ModKR|.

To complete the proof we prove that there is a map of Γ-spaces

|S{ModR| ÝÑ |N �ModKR|

that extends the map at level 1 constructed in [BDRR2].

We will indeed build a map of bisimplicial spaces from the levelwise nerve of the sim-

plicial category S{ModRpnq to N �ModKRpnq. Recall that NGLmpRq maps into GLmpKRq,

hence we can think of 1-morphisms in ModR as morphisms in ModKR. Thus we can think

about objects in {ModRpnq as objects in �ModKRpnq.

The p0,�q simplicial spaces for NS{ModRpnq and N �ModKRpnq are given by the objects

of {ModRpnq and �ModKRpnq, respectively. The map desired is obtained by the identification

above.

Recall that a 1-morphism in {ModRpnq is given by a collection tfS , φS,T u of 1-morphisms

and 2-morphisms in ModR. When considering the maps NGLmpRq Ñ GLmpKRq, we

can then think of φS,T as a 0-simplex in Homp∆1,DpASYT , BS`BT qq. As noted above,

the conditions on the construction of �ModKRpnqpA,Bq reflect the coherence axioms for

tfS , φS,T u, so in general, we can think of a 1-morphism in {ModRpnq as a 0-simplex in

�ModKRpnqpA,Bq. Similarly, we can think of a 2-morphism in {ModRpnq as a 1-simplex.
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We can thus construct a map

NS{ModRpnqp,q Ñ N �ModKRpnqp,q

as follows.

Recall that a pp, qq-simplex in NS{ModRpnq is given by a collection tAiu
p
i�0 of objects

in {ModRpnq, together with diagrams of the form

Aj
f ljk

!!BBBBBBBB

Ai

f lij
>>~~~~~~~~

f lik

//

�� ��
�� ϕ

l
ijk

Ak,

for all 0 ¤ i   j   k ¤ p, 0 ¤ l ¤ q

subject to the coherence conditions in (2.20) and 2-morphisms f lij ñ f l�1
ij .

We can map this to

º
A0,...,Ap

�ModKRpnqpA0, A1q � � � � � �ModKRpnqpAp�1, Apq

by projecting the pi, i� 1q-entries and using the identification described above.

It is clear that this maps extends to a map of Γ-spaces, and that at level 0 it is the map

of equation 3.6.
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