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,ABSTRACT
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Science

We give the asymptotic forms of the amplitudes (up to the eighth order)

for both fermion-fermion scattering and vector-meson-vector-meson scattering

in the Yang-Mills theory with an iso-spin-1/2 Higgs boson in the limit S--o

with t fixed.

We discuss the physical meaning of our results. We also suggest

methods which will facilitate calculations in high-orders.
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Chapter I Introduction

The study of various renormalizable field theories in the past few

years has led to the abstraction of some general features applicable to

high-energy hadron physics. Of particular interest in this area is the

work of Cheng and Wu1 ) in quantum electro-dynamics (Q.E.D.). In their

work, they predicted a rising total cross section, which was in turn

supported by a recent Pisa-Stony experiment at CERN . Since Q.E.D. is

a gauge theory, the question of whether the salient features of Q.E.D.

3)
are also possessed by non-abelian gauge theories, the Yang-Mills theories,

immediately comes to mind. Moreover, the possibility of constructing re-

4)
normalizable Yang-Mills theories for weak and electro-magnetic interaction

and the discovery that non-abelian gauge theories are asymptotically free5)

make the study of the high-energy behaviors of Yang-Mills theories even

more interesting.

In this thesis, we consider two-body elastic scatterings in terms of

the usual Mandelstam invariant S (the square of the center of mass energy)

and t ( where E is the momentum transfer). We study the high energy

limits ( S -100 with t . 0 fixed) of non-abelian gauge fields.

Before we proceed, let us recall the work by Cheng and Wu1) in Q.E.D.

They found the following: 1) In each perturbative order, all integrals

over the transverse momenta converge. Therefore, all lnS factors arise from

integrations over longitudinal momenta. 2) All the leading terms come

from ladder-like diagrams and the sum of these leading terms violates the

Froissart6) bound. 3) To restore the Froissart bound, one needs to take

into account of the exchange of two or more ladders.

The first published result of the high energy limit of non-abelian

7)
gauge field was given by Nieh and Yao . They stated that in the sixth
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order perturbation theory the amplitude behaves as Sln 3S, whereas in

the eighth order the amplitude behaves as Sln 5S. They also states that

integrations in longitudinal and transverse phase space both contribute

InS factors.

They speculated that the amplitude is a power series in ln 2S with

alternating signs. They believed that the high energy behaviour of non-

abelian theories can be drastically different from that of Q.E.D.

In this thesis, we use the approach of Cheng and Wu and go over the

sixth order and eighth order calculations of Nieh and Yao. We find that

our conclusions are totally in disagreement with those of Nieh and Yao.

In particular, we find that high-energy scattering in Yang-Mills theory

exhibits the same features as those found by Cheng and Wu in Q.E.D.

Both the amplitude of fermion-fermion scattering and the amplitude of

vector-meson-vector-meson scattering have been calculated. Our sixth

order amplitude for fermion-fermion scattering agrees with that obtained

by McCoy and Wu8) somewhat earlier.

Finally, we discuss the physical meaning of our results. We also

suggest methods which will facilitate calculations in high-orders.



Chapter II Method of Calculation and Notation

§2.1 General Consideration

To be explicit, we shall restrict ourselves to the SU (2) Yang-Mills

theory with an iso-spin-1/2 Higgs boson. Higgs mechanism is invoked

so that there is no infrared divergence. The relevant Feynman rules for

this theory have been given explicitly by t' Hoof t. and Veltman , using

10)
the procedure of Popov and Faddeev . We operate exdusively in the

Feynman gauge where there are no k k terms in the propagator for the

Yang-Mills field. The Feynman rules are listed in Appendix A. We point

out here that generalization toSU (N)1 1) is simple because the mechanism

for the cancellation of many integrals is simply the Jacobi identity.

We will study the high energy scattering amplitude by means of

the momentum space techniques, which were developed by Cheng and Wul2)

and which have been proven useful in studies of massive quantum electro-

dynamics. For detailed discussion of these methods, please refer to

reference 12.

The essence of the momentum space method is that in the S -- o

limit a coordinate system is chosen such that large components of the

momenta of the incoming and outgoing particles are along the z-axis.

Let r2+r and r3-r be the momenta of the incoming particles, and

r 2-r 1 and r3+r1  be those of the outgoing particles as shown below:

(2.1.1)

YL 3  f,--3-tr

then we have approximately

r2 -- (w,w,o) and r3-'-' (w,-wo) (2.1.2)



where w = 1/2 f. In such a coordinate system,

r = (0,0,$ ) (2.1.3)

We can take advantage (2.1.2) and (2.1.3) by introducing the variablesl2)

k+ = k0 + k3 and k~ = k0 - k 3  (2.1.4)

so that
0d3 = +dk dk. =(l/2)dk dk,

Thus

(2.1.5)

r2+ = 2w + 0 (1/2w), r2 = 0(1/2w)

r3 + = 0(1/2w), r3 = 2w + 0(1/2w)

r = 0. (2.1.6)

and the basic approximation is to drop r2 ,r +r and terms of 0(1/2w)

whenever they occur in the Feynman integral.

As an example, we calculate the second and fourth order amplitudes

of fermion-fermion scattering (the iso-spin of the fermion is 1/2). In

the second order case there is only one dominant diagram

(2.1.7)

31- e,,I

a to st t< - 474 (2.1.8)

Using the identity of the Gordon decomposition of current,

'(%Il(i (a )1 4 0w ' A (2.1.9)9(t)-AIA~s) % k M2. M
and the equations in (3.1.6). We can approximate (2.1.8) such that

CZ < a 1 4 1Z I S(2.1.10)

Notice that there is no spin flip in (2.1.10).

For the second order vector-meson-vector-meson scattering the

dominant diagram is

(2.1.11)



with

8 + 3r(-N~JofO (2.1.12)

The high energy amplitude of vector-meson-vector-meson scattering is also

non-spin-flip. It is easy to see that for non-zero helicity, the above

expression can be simplified as the following:

Y (V. -Oad (4) y G

For each zero helicity incoming particle, an additional factor of 1/213)

should be added to the scattering amplitude. We shall not show this case

separately. From now on, we shall show the case of non-zero helicity only.

For fermion-fermion scattering the dominant fourth diagrams are

and . Let us now calculate the first diagram

1+ 9 bt

!X 4  b ?4 
(2.1.14)

(2.1.15)

Now we integrate w.r.t. q and denote q by Q. If Q>P 2  2w, then the

integration would be zero, since all the poles from the denominator lie

in the lower half of the complex plane of q . If Q (-P1 , then the

integration would also be zero since all the poles from the denominator lie

in the upper half of the complex plane of q. Using the relation f_2e-f6

(2.1.10) and (2.1.6),we have



fl() -- '-<

If we close the integral in the upper (half) plane, then for the region

-P1 Q<O there are three poles, q

and q+ - 4 t ; and for

is only one pole q+ + ...

4t 56 . Ng- +; 6

the region 0(Q(2w, there

For the region -P (<(O

the contribution from the first two poles are too small, so the net result

will be that of the region -P /Q<2w with the pole 9 P-

Now (2.1.16) becomes

-Y -a L i'T3

~) (~.~)J 5(~zL1 A 0

2L4 J

where .

Now considering P 1 ,tO(Z), P2 ...2w, we have

+ A - J
It thus follows that

7- 71 -

WLAV

The next diagram

k( )

(4.)

YkL44

... '.

(2.1.19)

(2.1.20)

(2.1.21)

Calculations similar to those used in the previous case will reduce (2.1.21)

into

(2.1.17)

(2.1.18)

Qwffy ( P 49. S-M P tA
Tz9 a- (21.16

(%) =- ( 4, ) ( - 3 P &

d t.

f el < ? ) r *i to,(
( 2-d4



N? 4 4

f([(B) v -+- 
(-) 5

(2.1.22)

For vector-meson-vector-meson scattering the dominant diagrams are

and . We calculate the first diagram

P b (2.1.23)~x

Here we number each internal line and use the same number for time-spatial

and iso-spin factor index since these indices will be summed up in different

contexts. The amplitude is

JA d _ 4-2) ___

(2.1.24)

By (2.1.6) we have approximately

(L ()". (-; )9 4 ~ 11fo I'1 T(b( AII (6e36pa44664,A 6oft4)

et (2,P, ).Z?2.) C(2f, 1'2pZ) 41.

(2.1.25)

We notice that (2.1.25) and (2.1.16) have almost the same integral except

that all the particles have mass in (2.1.25). Simple substitution leads to

4 Y o

-4 J(2.1.26).
Now we calculate the second diagram

- (2.1.27)

Comparing (2.1.27) with (2.1.23), .(2.1.20) and (2.1.14), we get



(14) 4 r Vt ~S .)f L

VLf(t"- A-, ~) a E1)ec4)6 pCi) ) 61 1 ;4,41 ;6444t)

U J (t.U it ti (2.1.28)

Up to the fourth order, the transverse momentum integrations converge.

However, starting from the sixth order, the transverse momentum integrals

contributed by some individual Feynman diagrams diverge. But we find that

after all contributing diagrams of the same order are added together, the

final integrals are convergent. This situation is entirely similar to

the case of quantum electrodynamics. The mechanism for such drastic

cancelations of divergent integrals is simply the Jacobi-identity. This

point will be shown in Chapter III for the case of eighth order.

From the second to fourth order calculation the scattering amplitudes

are non-spin-flip. This fact is also generally true for all orders

(see §2.3) and is entirely similar to the case of Q.E.D.

For SU(2) we can express the non-spin-flip amplitude for fermion-

fermion scattering as

=M F (2.1.29)

and the non-spin-flip amplitude for vector-meson-vector-meson scattering

as

.. ( . S 4 -$e (2.1.30)

In the above, M is the mass of the fermion, S is the center-of-mass

energy squared. , ,2 are the Pauli matrices for the isotopic spin

of the fermion, and a and c (b and d) are the iso-spin indrices of the

incoming (outgoing) vector mesons. The invariant amplitudes F and G are
n n

so chosen that they are of I (iso-spin) = n in the t-channel, where
.2 -36

t = -, A being the momentum transfer. It turns out that we have

F G



and

F0 =(3/8)Go (2.1.31)

§2.2 Iso-spin factor of a Feynman diagram and a diagrammatic representa-

tion of an iso-spin factor.

From the modified Feynman rules in Appendix A, we know that a

Feynman diagram of 2n th order can be written in the following way.

1X Ne (2.2.1)

where I is the product of all the iso-spin factors of thee vertices and the

propagators and will be called the iso-spin factor of the diagram, and

where g2n N is the product of the time-space parts and D is the product of

the denominators from the propagators. Let us denote

=4-wr~ (V/p(2.2.2)

Then we have

- T( dN/ I (2.23)

where Q. denotes q. to simplify notation andq, is the transverse momentum
J J -

of gg .

We remark here that the sign of the iso-spin factor I depends not

only on the diagram but also on the way it is drawn. For example, the

iso-spin factors of and .are different in sign. We use the Feynman

diagram drawn to represent the iso-spin factor of the same Feynman diagram. Such

representation enables us to do iso-spin calculation without referring to

a particular group since the Jacobi-identity can be represented diagram-

matically as follows:

(A C' C

A h c t rn (2.2.4)

Also, the commutation relation can be represented by



(2.2.5)

Obviously the assignment of iso-spin factor can be altered by a multi-

plicative constant. However, this is restricted by the following

requirement that

(2.2.6)

The normalization requirement can be satisfied by changing the multi-

plicative constant such that we have

(2.2.7)

Relation (2.2.7) implies also

c7 = (2.2.8)
Of course, our iso-spin factors are normalized. We shall give a simple

example of the power of Jacobi-identity in cancelling the divergent integrals

in §2.7.

§2.3 Comparison of fermion-fermion scattering and vector-meson-vector-meson

scattering. We shall point out here that the calculations of the

fermion-fermion scattering and the calculations of vector-meson-vector-

meson scattering are essentially the same except for some difference in

iso-spin factors. In section 2.1, we have given examples in the second

and the fourth order. Let 1 and 2 be the incoming particles and 3 and 4

be the outgoing particles. Then a general 2n th order Feynman diagram

can be represented in the following manner.



The corresponding amplitude is

(2 WrL.LJ 4%4q

Relations (2.1.6),

(I'V))

3.2)
( )x (2.

(2.1.9) and y=2P"- yI~ give the approximation,
Tk~i y

#'1-- 

Tr
.)M .

3)

Now if we change all the fermion lines into vector meson lines, then

the corresponding amplitude is approximately

6,~

x(I Ca " &c 6 ,h')5' 6 ''4MC A 6,1.'

C-))
"I'.-'

2 I

Tr2? 2 .2 )
) x (2.3.4)

(2.3.1)

(2 T ( -I)

I'," , -L 't 'I I. z-t M ?4, (Arf M ) W"'-L I e4i

-4 -4 to Z>

xz

H+%6 I - M+( a (4= 1 - - -t t (2.3.

VI) r rod'u X- e 'I
O!V V C- (3)4t ?ao( 6



We know that in the high energy approximation in the above integrals, the

difference between masses W and M is insignificant. It follows that the

time-space parts of the two scattering are identical except for a con-

stant factor. In order for a Feynman diagram to contribute to the

leading lnS power, it is necessary that the lines attached to the top

or the bottom line must be vector meson lines. It follows that there is

a one-to-one correspondence between contributing diagram of fermion-

fermion scattering and contributing diagram of vector-meson-vector-meson

scattering. By comparing the identity (2.2.4), (2.2.5), (2.2.6) and (2.2.8)

we conclude that it is sufficient to calculate one type of scattering and

obtain the results for the other type by some simple iso-spin factor

calculations. In this thesis we shall present the case of vector-meson-

vector-meson scattering since this scattering has one more iso-spin

channel.

§2.4 Symmetry consideration

The horizontal mirror image, or the vertical mirror image, of a

diagram gives the same contribution as the original diagram. For the

horizontal mirror image case, it is so simply because we get the same

results when we integrate q first instead of q +. For the vertical

mirror image case, it is so because if we change the direction of each

momentum we get the same results.

Two diagrams are said to be mutually s-u symmetric if we obtain one

of the diagrams when we rotate the top line of the other diagram w.r.t.

a vertical axis, while keeping the rest of the vertices fixed. The ampli-

tudeSof two mutually s-u symmetic diagrams usually have very simple relations.

This point can be seen very easily by comparing (2.1.19) and (2.1.26) with

(2.1.22) and (2.1.28), respectively. Now let us define



-(2.4.1)

and denote an iso-spin factor by I(a,c;b,d). If the amplitude of a diagram

is I(a,c;bd)(A,B), then the amplitude of its s-u symmetric diagram is

usually I(c,a;b,d)(-B, -A). However, there are exceptions to this rule.

We shall explain this in (2.7. A set of diagrams is said to be independent

if any two of them are not related by the above symmetric operations.

§ 2.5 Associate diagrams and iso-structure diagrams

According to the modified Feynman rules in Appendix A, any four-line

vertex is denoted by two connecting three-line vertex with a bar on the

connecting line. It follows that we can generate all the Feynman diagrams

with four-line vertices by putting bars on Feynman diagrams with only

three-line vertices in various fashions. However, this operation is sub-

ject to the following rules:

1) No two barred lines can join in a vertex.

2) No new vertex can be created other than those which appear in

Appendix A.

Diagrams so generated are called associate diagrams of the original

diagram. The advantage of such classification is that all associate

diagrams have the same iso-spin factor as the original diagram. In the

eighth order calculation, many diagrams contribute to terms higher than

S(lnS) 3, but these terms disappear if we add this diagram t o its associate

diagrams. This point will be explained in ChapterIII.

Two diagrams are said to be iso-structure if they are identical

when we change all lines into vector-meson lines. The advantage of such a

classification is that the calculations of their time-space part are very

similar.



§ 2.6 Two-dimensional transverse momentum diagrams

It is convenient to represent multiple integrals over two-dimensional

transverse momenta by diagrams which we shall call transverse momentum

diagrams. These diagrams have vertices arranged in different vertical posi-

tions; they also have two outgoing lines (representing particles 1 and 3)

on top and two incoming lines (representing particles 2 and 4) on the

bottom, each pair carrying a transverse momentum A. An internal line of

these diagrams represents a propagator (4 A) where 1.p

is the transverse momentum carried by the line. There is momentum con-

servation at each vertex, with the phase space factor dj. /V(loo

The lines converging on a vertex from below (above) will be called in-

coming (outgoing) lines, and the sum of momentum directed toward a

vertex carried by the incoming lines will be called the total momentum

flow of the vertex. A horizontal bar on a vertex represents a factor (q+)

where is the total momentum flow of the point where the bar is

located. Obviously, a bar on a line cancels the propagator. To clarify

these points, we give the following examples:

0 (2.6.1)

(2.6.2)

(2.6.3)

11 C 1  ((2.6.5)

2.2-

7 (2.6.5)8 ID



2.

~ =Sh~Ak L

( 3( .6.7)

@ (2.6.8)

§2.7 The magic of transforming a complicated integration into simple

algebraic operations and illustrations of the sixth order calculations.

The Cheng-Wu method in calculating fourth order

essentially algebraic. We shall show here that

is also true for higher order calculations.

The dominant independent diagrams are

We shall calculate them one by one.

~~4 --

diagrams (see § 2.1)

the algebraic nature

V[E~RKL

(2.7.1)

(2.7.2)

where

a7 A. (W(2.7.3)

where (3; and is the transverse momentum of the i th propa-

gator,

and

fy I4F (IZ L* ) ~(-2 =A4'3 ),raU4 (PtL

4~Jit'.t ~,I- ZJY 71 0 + ( , ),t-)

(2.7.4)



The integral over q, ,q2  is zero unless

- -P~ 4. & ,.<( Q -. (2.7.5)

We will then carry out the g,+ and q2+ integrals by closing on the poles.

-t #0E and ... - -+ ' (2.7.6)

It follows that

Lail '~ -e ( -~ (2.7.7)

Before we go on, let us consider the following integrals

d ( (2.7.8a)

4 W ,2. S ( 2 .7 .8 b )

(2.7.8c)

We note that for the above integral

d d ( y)en' - x, (2.7.9c)

unless a<.<l or b41. It follows that the integration effective region is

just

<X< (2.7.10)

We know that

- - ' - l S(X (2.7.11)

It follows that in our calculation we have

N4d_. £ .(2.7.12)

Now we approximate (2.7.4) by dropping at the terms with coefficient

0(1/2w), then we have

--pr t N (a and (2.7.13)

We approximate N, and D, and get

N~ ~- %s. - (7, , za ,e r/ae2 (2.7.14)



Now we separate the effective regions and consider them one by one.

There are only two regions:

Y < <, <2 w/ (2.7.16)

and

V&,- G < i << 2.v (2.7.17)

In region (2.7.16) we have

- 61 4 /,tL24~a

D, S ($,.+Z 6 4) 44 6r4

It follows that in region (2.7.16)

In region (2.7.17) we have

;L

It follows that in region (2.7.17)

ArA4rA7 LICCCA

This contribution is very small compared with (2.7.18).

Therefore, the non-spin-flip amplitude for diagram (2.7.1) is

(-'% f.)(1o) S-57 J'7 (2.7.19)

After some simplification, we have

(0, o ('2(2.7.20)

The calculation of 2n order diagrams can be summarized as follows:

1) Draw the flow diagrams (as if P = P3 = 0) and pick up the poles.1 3

2) Write down D and N by the Feynman rules, calculate D and N with

the approximation Q ( 2w (i = 1, . . . , n-1).

3) List all the region of 0 Cx n-l1 , X, * * (( 2w, where x1(i =1,..,, n-1)



is a set of linearly independent linear combination of Q s. Then we

calculate N/D in each region. Add all the contributions which are of

order (lnS)n-1 or higher; simplify the integrals and represent them by

two-dimensional transverse momentum diagrams.

Now we can see that all the calculations are algebraic. We shall

illustrate these steps in the following calculations.

The diagram and diagram are iso-structure. Their

denominators are almost the same (the mass A and/A are different). They

have the same flow diagram and the same set of poles but different

numerator. Similar calculations show that the contribution is

S(I , 0 ) rA ) (2.7.21)

The next diagram has only one flow diagram

3

(2.7.22)

Comparing with (2.7.1), the number 3 propagator is different

S(4d1 N Pa- (2.7.23)

We pick up the poles at line 2 and line 7.

-+ - (2.7.25)

The denominator is

- )-- 7 (2.7.26)

N, ~ is'(z.-.,) (2.7.27)

Substituting ((,-%)(P-&)---t. +z 3 and (t e]

by ( d'Z-- A ) and ( respectively and using relation (2.7.24)



(2.7.25), we transform D2 into

----vs(&ti6)Art') Yj &r 44 (--h) (2.7.28)

For Q2(<9Q1 , we have

It follows that the integration of N 2/D w.r.t. QPQ2 in this region is

.4 S (&S )/ 04 .4 C,(2.7.29)

For Q2 - 1 we have

Now it is obvious that this region does not contribute. It follows that

r6 - IlL ). (2.7.30)

The next diagram has only one flow diagram.

4 - (2.7.31)

We either have the poles at line 2 and line 7 or the poles at line2 and

line 3. If we draw (2.7.31) differently by lifting lines 7 and 4 to the

top, and lowering lines 3 and 1 we have

P, (2.7.31a)

Mathmatically (2.7.31) and (2.7.31a) are equal. But a pole at the top

line of (2.7.31) shall make q2 +, -2w and the standard approximation in-

valid. If we wish to retain the standard approximation, we just switch

to (2.7.31a) when we consider the poles at line 3 and line 2. In the case



fermion-fermion scattering the poles at the top (i.e. fermion line) are

always suppressed, but then (2.7.31) and (2.7.31a) would be different

Feynman diagrams, w hen we change the top and bottom lines into fermion

lines. So there is still a one-to-one correspondence between diagrams

of fermion-fermion scattering and vector-meson-vector meson scattering

if we ignore the poles on the top line.

We pick the poles at line 2 and 7. Then we have

O0 and ~ - (2.7.32)

It follows that

WVr 2 -Zc -a&i (2.7.33)

For Q2<SQ 1, we have

( S(2.7.34)

For Q - Q2 1 we have

The total contribution from the set of poles at lines 2 and 7 (by (2.23 ), is

H -1 (2.7.36)

Now let us consider the poles at lines 2 and 3. We still have the same values,

oV and

since a3 of (2.7.31a) is equal to a7 of (2.7.31).

It is easy to see that

N =N (2.7.37)
3a 3

The denominator is the same except la '--, --. 6 for the propagator at the



top. The contribution can be obtained from (2.7.36) by first exchanging

2 _ilw 2
the coefficients of (lnS) and (lnSe ) and then changing the sign.

The net result is that (2.7.36) remains the same and the total contribution

of Feynman diagram is

k6) (1, -1 ) (-2) (2.7.38)

The multi-vector-meson exchange diagram K has two flow diagrams

PP -_.._(2.7.39)

(B) 71r6 
1

From flow diagram (A) we have poles at line 5 and line 7,

and

The only contributing region is Q. (Q, then we have

It follows that

4_/_ _ 
(2.7.40)

We have two sets of poles in flow diagram (B). However, the set with

poles on lines 1 and 6 do not contribute, the remaining set is

+ and (2.7.41)

The numerator is also

3

and

The only contributing region is Q2 1, and we have



1- 1\. &,1 Ckci4 07

Hence,

D t (2.7.42)

Adding (2.7.40) and (2.7.41) we get the total contribution

(2.7.43)

Since all the smallest Q are from a propagator on the top line s-u

symmetry implies that the time-space part change from (A,B) to (BA)(-1)m-1

and iso-spin factor change from I(a,c;b,d) to I(c,a;b,d) (-1)m, when m is

the number of vertices at the top line. The net result is

I(a,c;b,d)(A,B) -- -I(c,a;b,d)(B,A) (2.7.44)

However, there are cases such that the contribution is not from a region

where the smallest Q is not on the top line. Hence, (2.7.44) is not

always true, although it is true for the sixth order diagrams. Counting

all the symmetry, the total contribution from the sixth order diagrams

i s -

By Jacobi-identity (2.2.4),w can easily see that the iso-spin factor

of the last term of (2.7.45) is zero.

Now we can see that in the sixth order the mechanism which keeps the

transverse momentum integration convergent is the Jacobi-identity which

is independent of the particular group used.



Chapter III Calculations of the eighth order diagrams

The calculations of the eighth order diagrams can easily exceed a

thousand pages. It would be tedious to present to our readers the

prohibitive wealth of details. We will, therefore, present here only

those novel features of the calculations. Many straight forward simple

calculations are omitted but the non-zero contribution of each diagram

is listed. In order to explain that our result is not restricted to

the particular group used, we use diagrams to represent iso-spin

factors and show explicitly how the Jacobi-identity leads to cancellation

of divergent transverse integrals. The eighth order amplitude is of

order S(lnS) 3, but for individual diagrams terms of order S2 S lns

or S do occur. By calculating a diagram and its associate diagrams

together, such terms never appear in our calculation. But if we calcu-

late these diagrams individually, errors are not easy to avoid since

3
the highest order term is not S(lnS)3. Writing the contributions of

each diagram into a sum of convergent integrals and divergent integrals

where the numerator of the integrand is a constant, will help us to

locate errors and thus eliminate them.

We shall see that in the eighth order, integration over the trans-

verse momentum is also convergent although the cancellation of divergent

integrals takes a much more complicated form. Let us define a diagram

constructed by vector-meson lines with or without P-F ghost loops to be

Yang-Mills diagram of first kind and the others to be Yang-Mills dia-

gram of the second kind. In the eighth order, the total contribution

from diagrams of the first kind, calculated with only the help of the

Jacob-identity, is a sum of convergent integrals and a logarithmic

2
divergent term with a coefficient proportional to N . The total



contribution from diagrams of the second kind is a sum of convergent

integrals and a logarithmic divergent term with the coefficients of

2 2
terms proportional to X . The logarithmic divergent X terms from

diagrams of the first kind and diagrams of the second kind cancel each

other.

§3.1 The ladder diagram

The following are its associate diagrams

Diagrams which have a bar in one of the lines associated with the

top line or the bottom line are not presented here because such diagrams

as a rule do not give contribution.

The ladder diagram has only'one flow diagram as given below:

(3.1.1)



We label the vertices which are not on the top or bottom lines.

We number the internal lines; and use a to denote k2 + 7%2 where

is the transverse momentum of the ith line and use a. to denote

-2 2
(' +U ). In this flow diagram we have a single pole( a pole is

denoted by an x) at lines 7, 8 and 10. Diagrams with a bar on the

line which has a pole will not contribute in our momenta space approxi-

mation technique. They actually give S2 terms which are cancelled by

the S2 terms in the ladder diagram, which have been suppressed by

momenta space approximation technique. In other words, we can ignore

diagrams which have a bar on a pole. Hence, we have only three as-

s ociate diagrams to consider.

Using (2.1.6) to approximate the denominator D for the ladder

diagrams, we have

.44

y4 -Q %(&t-&3 (3.1.2)

Using (2.1.6) to approximate the numerator N of the ladder diagram and

its associate diagrams, we have

+(cf r)-(2)



where A(A)-=(j-t .,--.A ).j. A( =-Z2)+$ id)

S)-(3.1.3)

The only regions of Q1, Q2 Q3 space which can contribute to the

maximum number of logarithms (i.e., in S and i ln 2S) are

- ~-) &~ 7' (7O >> '? > (3.1.4)

and

,v -> and -.. 7 (3.1.5)

In region (3.1.4) we have the approximation

NV -I ~ c7 -t4o~?~ CA6 t~oO(

(4AU 3) 8(v 41-t b~o ") -t 2- 4 j 1(3.1.6)
In region (3.1.5) we have the approximation

& 6. y /. (3 .1 .7)

Integration with respect to Q, Q2 ' Q3 region (3.1.4) gives

+' .;4 44 1 qt4 -t, 412%44 (3.1.8)

and region (3.1.5) gives

/0 (Id ) )47.44 dy d (3.1.9)

After a lengthy calculation we find the total contribution of the ladder

diagram and its associates are

(3.1.10)

Straight forward calculation shows that

46 G C- (3.1.11)

which we represent by the vector notation (5,1,0).



The related diagrams of the ladder diagram are the following:

j1 .

(3.1.12)

Their associate diagrams are:

(3.1.13)

Simple calculations show that the contribution of the above diagrams are

respectively

and 2i~~)i



The last five diagrams do not contribute.

§ 3.2 The diagram

The associate diagrams are listed below:

There are two flow diagrams

,

Using (2.1.6)
Pri, _-I :1, (3.2.1)

to approximate the denominator D for flow diagram (a), we

have

)~i~Q3 M1~
c~~dd 61-)( L -I, CA _ _Ai -

The important regions are

and

(3.2.4)

The contribution from region (3.2.3) is

*< ol..)(0)
CA )X)-t , o(bt, ( a (4)- 2 )

3
-+ a (a]

(3.2.2)

(3.2.3)

(3.2.5)

&3 ( - ,-F

aLk-A -L,

A

6L>- 1>2 3

X t/ as IajL4. ar f-a1 4 1



where (~ 3~~ ) -L I- 3)~

o(C.) (1, ' ). and (C ) = (f.S.- 2 f' ).

The contribution from region (3.2.4) is the same as (3.2.5). Symmet

between flow diagrams (a) and (b) shows that the contribution from f

diagram (b) is equal to the contribution from flow diagram (a) after

make the substitution S -- -S.

The total contribution from diagram and its associates,

some simplification, is

The d a t f in(3.

The related diagrams are th e following:

IT l £3~

ry

Low

we

af ter

2.6)

3.2.7)

Their associate diagrams are:

(3.2.8)

Only eight of the above diagrams give contributions. They are as

follows:

(3.2.9)



§ 3.3 The diagram

The associate diagrams are listed below:

There are two flow diagrams.

1%)

(3.3.1)

(3.3.2)

In flow diagram (a) we have two sets of poles to consider. For the

set of poles at lines 4,7,8 our approximation gives

0~r -iW (rt0&[3a~ t-c Lit &3Q~j-t CA

-1 4 q1

(3.3.3)

The important regions are:

(3.3.4)

and

& JA- . (3.3.5)

The contribution from region (3.3.4) is

77 . ~ i. eljj/e , eC q I
(3.3.6)

I N

rw (- (i -I I
Olu-16's

74 C 7 -t CA 6 + CA 116 + ?1 -2 A

-+ (Ij -t ?,1 3 1 j -fL, - 2-ji -4A )-L -f



The contribution from region (3.3.5) is

C1bo),x a / q t 0,y- (3.3.7)

For the set of poles at lines 4,7,10 our approximation gives

(3.3.8)

The important region is

(I ^J (3.3.9)

and

t ^(3.3.10)

The contribution from region (3.3.9) is

(1, 0 )(3.3.11)

The contribution from region (3.3.10) is

(3.3.12)

We would like to point out here that the contribution of this region is not

subject to the s-u symmetry rule. The reason is that in region (3.3.10)

the smallest variable Q -Q2 is not on the top line. The bar on top of

the bracket is a notation to indicate such property.

In flow diagram (b) we have only one set of poles at lines 4,9,10.

Our approximation gives

0t9 -~(3.3.13)

The important region is

& %)' &-? -1 - t (3.3.14)

It gives a contribution

(t,-)$/ cMA;3 Cry h A4(3.3.15)

After simplification the total contribution from the above diagrams is



~41Q t (3.3.16)
The related diagrams are:

(3.3.17)

Their associate diagrams are:

(3.3.18)

Similar calculations show that they give the following contributions.

C1, 0



INN~ C1 0,)~I

(3.3.19)

Now we can see that the contribution of diagram

cancels the bar term in the contribution of diagram . If we

have considered these two diagrams together at the beginning, there

would not be bar term contribution. In other words when considering a

diagram, we always, at the same time, consider related diagrams with

all the possible F-P ghost loops.

§3.4 The diagram F

The associate diagrams are listed below:

(3.4.1)

There is one F-p ghost loop diagram J4
The above diagram gives the following contribution

(3.4.2)

The related diagrams are:



(3.4.3)

Their associate diagrams are

%p

(3.4.4)

The contribution from diagram Fs
(3.4.5)

The contribution from diagram is

(3.4.6)

The first three related diagrams and their associates together with dia-

gram and diagram give the following contribution

(3.4.7)

§3.5 The diagram

The associate diagrams are listed below:

(3.5.1)

They give the following contribution

(3.5.2)



The related diagram

| I T .
gives the following contribution

§3.6 The diagram

The associate diagrams are

They give a contribution

The related diagram giveS the f

§3.7 The diagram and the diagram

The associate diagrams are

(3.5.3)

(3.6.1)

(3.6.2)

llowing contribution

(3.6.3)

7~.
(3.7.1)

It has two flow diagrams



I3-PS

Ifl- 1d

In flow diagram (a) we have polesat lines 4,7 and 8.

tion gives

5t%..~~6L -4)( -~)

Ls *
The important regions are

-t 4 4 3

Our approxima-

CA K\

(3.7.3)

(3.7.4)

(3.7.5)

and

(3.7.6)

When integrating N/ w.r.tjQ1 ,Q2'Q 3 these regions give

following contributions:

y / a s-y a4 &1

where

Q ()--(- t - I - 3 .6)-Lj

d o(CK- (f-rbz.)JL..

respectively the

(3.7.7)

(3.7.8)

(3.7.9)

d i'72 ->a 3

0 2 /K 3

-2dtW)]

OP C 9) = ( q -2a)j_,

and



In flow diagram (b) we have polesat lines4,9,2. The important regions are

Q 7(3.7.10)

and

& >' $3 (3.7.11)

These two regions give the same contribution as region (3.7.4) and (3.7.6)

if we make a S .-3 -S substitution

Total contribution after some simplication is

+ (6,(3.7.12)

The related diagrams are:

(3.7.13)

They give the following contributions

(3.7.14)

and

(3.7.15)
Diagram has the topological structure as diagram_

and give the following contribution

0)

3.8 The diagram and the diagram

It has one associate diagram but four flow diagrams.



a) b)

c) d)

(3.8.1)

It can be shown that flow diagrams(a) and (b) give the same contribution

as (c) and (d).

ffl and its associate give the following contribution

(3.8.2)

The associate diagram gives the following contribution

A ~(3.8.3)

Diagram has the same topological structure as diagram

and gives the following contribution

(3.8.4)

§3.9 Diagrams with only contribution

We shall list all the other independent diagrams that give only

logarithmic divergent integral and a three-line-bubble.



(3.9.1)
Now we want to demonstrate that this type of divergent integral,

ie., , vanishes upon summation. This task can be accomplished

by using only Jacobi-identity. In other words we want to show that

--Q L4 - 0 (3.9.2)
It is easy to see that

(3.9.3)

The above iso-spin identities are a simple result of Jacobi-identity

and normalization of the three-vector-meson-line vertex. Applying these

identities in sequence, we get

-- s O(3.9.4)



§3.10 Diagrams with only

We shall list all the other independent diagrams that give only double loga-

ritlmicdivergent integrals and a bubble, i.e.,

convenience we omit the integrals.

For the sake of

They are:

(i ( o, -io)L j)(3.10.1)
We would like to point out that by virtue of the Jacobi-identity, this

type of divergent integral also vanishes. The sum of all double logarithmic

divergent integral is

4(i),I -4 s-u symmetry terms

(3.10.2)

We shall use the following identities:

~LI,

7) -
(3.10.3)

Substitute (3.10.3) into (3.10.2) we have

contribution.

X-4.)Ito 7-

4- k_4E



*(,-\[ 7- 7+j s-u symmetry terms

-7jR -41 _t ziElI -t s-u symmetry terms

-t (1, -) 4t f4-7IMI i jj j. i

That is to say, the sum of all terms vanishes.

§3.11 The multi-vector meson exchange diagrams.

In the eighth order, there are 24 multi-vector meson exchange

diagrams but only four of them give contributions. They are

XX
There are three flow diagrams for diagram

(3.11.1)

The contribution from diagram is

There are four flow diagrams for diagram



The contribution from diagram is

(3.11.3)

Using Jacobi-identity we have

j.IXI .-- :- (3.11.4)

The total contribution from all the multi-vector-meson exchange, there-

fore, is

( I, -1 (- ) C (3.11.5)

For t he tenth order multi-vector meson exchange diagrams, the iso-spin

factor of the sum of their contribution is

For the next higher order, we just add one more bar parallel to the last

bar added and so on. Now it is easy to see multi-vector meson ex-

change diagrams of order larger than f o ur do not contribute to I=1

channel,

§3.12 The cancellation of terms

Let us add first all the contributions from diagrams of the first kind.

The sum of the coefficients is

-+(--2- ( -1t S-u symmetric terms

(3.12.1)

The Jacobi-identity reduces (3.12.1) to

( ) (o )I(3.12.2)
Now we sum up the rest of the terms. The sum of the coefficients is

,o) [L-. -+ 2 ' s-u symmetry terms.
(3.12.3)



The Jacobi-identity reduces (3.12.3) to

(o), & { + 2. + s-u symmetry terms. (3.12.4)

Adding (3.12.2) and (3.12.4) together we get

(. [ ) -+ -1 (3.12.5)

which is zero.

§3.13 The cancellation of terms

Let us first add all the contributions from diagrams which have only

vector-meson propagators and F-P ghost propagators. The sum of coefficients

of such terms is

() 0)- + s-u symmetry term

-+ (0,-0) R(3-) (3.13.1)

We can easily see that (3.13.1) is zero by virtue of Jacobi-identity.

The sum of coefficients of from the rest of the diagrams is also

zero. We thus show that all divergent integrals vanish after summing

up all the diagrams in the eighth order

3
§3.14 Terms of order greater than S(lnS)

We have mentioned in the beginning of this chapter that the terms

of order greater thanS(lnS) , such as S2 S lnS and S 3, do not appear

in our calculation. Here we point out that if one calculates Feynman

diagrams individually, instead of grouping each Feynman diagram with

its associate diagrams, such terms do occur. The reader can easily see

such terms in the following diagrams:

I~iI~~I~I(3.14.1)
§ 3.15 Conclusion and Discussion

In the last section, we have shown that all the divergent integrals

cancel. The convergent integrals, after adding up, take the following



form:

Yv

(3.15.1)

The results of 2nd - 8th order calculations indicate that

F, = G (3.15.2)

and

F = 3/8 G (3.15.3)

The amplitude G is the simplest one. Up to the 8th order, the leading

terms of G form the first four terms in the perturbation series of a

Regge pole term

...e ( a )(3.15.4)

where g is the coupling constant, \ is the mass of the vector meson, and

a .;: I- -t (3.15.5)

Notice that the 2egge pole &t which passes through the vector meson

pole (o(i = 1 and the coefficient of S in (4) blows up at t,'--2) is of

I = 1,and has an odd signature. This suggests that o41 is the Reggerization

of the vector meson.

The other invariant amplitudes are more complex:

(3.15.6)



.- (3.15.7)

in the above

and

(3.15.8)

We now compare the high-energy behavior in Yang-Mills theory with that

in Q. E. D. (1) Just like in Q.E.D., all integrals over the transverse

momenta are convergent, and all lnS factors come from integrations over

the phase space of the longitudinal momenta. This means that the

energy dependence of cross sections is a consequence of the creation

of pionization products; (2) first like in Q. E. D. the convergence of

integrations over transverse momenta is a result of spectacular

cancellations among sets of diagrams. Such cancellations appear to

depend on only the groupproperties of gauge theories, and are not

restricted to the SU(2) group treated here. (3) Unlike in Q. E. D.

the largest term in each perturbation order is real. It is also true

of I = 1 in the t - channel. In the eighth order, for example, F1

3 2
is of the order of S(lnS) , while F is of the order of S(lnS) ;

(4) This means that, in each perturbation order, Re YV'./Im lit. approaches

infinity asS - o , and the cross-section for a charge exchange

reaction is equal to the elastic cross-section. Such a behavior is

It)contradictory to the well-found experimental facts. It is therefore



gratifying to see that such large terms in F appear to cancel one

another as we s u m over all perturbation orders. More precisely,

the 2nd - 8th order results suggest that these terms add up to the

Regge pole term in (3.15.4) with o1h4 I in the physical region

of the s - channel. This is to be compared with the situation in

Q. E. D. where the real part of the elastic scattering amplitude due

to the exchange of a photon does not reggeize.

Finally, we want to point out that our method of expressing both

the iso-spin factors and the transverse momentum intergrals in diagram-

matic forms has the following advantages:

1) A complicated transverse momentum integral is represented by

a linear sum of simple diagrams.

2) The iso-spin factor associated with a Feynman diagram is

represented by this same Feynman diagram. This helps to remind us of

the origins of a particular transverse momentum integral.

3) It enables us to demonstrate explicitly the role that the

Jacobi-identity plays in the cancellation of divergent integrals. It

also makes it trivial to extend the result to arbitrary non-abelian gauge

field theories.

4) The decomposition of an integral into a sum of convergent

integrals and divergent integrals (which will be cancelled out upon

summing up all of the contributions of the same order) provides us with

a much faster method to obtain the final results by simply ignoring all

divergent integrals after the decomposition:



Chapter IV Higher order diagrams

§4.1 The necessity of calculating higher order diagrams

The eighth order calculation and its results have not given us

sufficient information to predict what higher order terms will be.

For the I = 1 channel although we conjecture that it is a kegge pole,

we are not certain. For I = 0,2 channels, the situation is even more so.

We note that the number of diagrams increases very rapidly, as a

result of the three line Yang-Mills vertex. In the second order we have

only one diagram to calculate; in the fourth order we have 2; in the

sixth order we have about 20; and in the eighth order we have over 200.

It would not be surprising that in the tenth order we have over 2,000

diagrams to calculate. Even if we could calculate them all, how about

the twelfth order and higher order diagrams. We also notice that in

(3.7.45) and (3.15.1) only those diagrams with convergent integral con-

tributions enter these final results. It appears that we are doing a

lot of unnecessary calculations.

§4.2 Convergent part of an integral and convergent diagram

As we have mentioned before we should find a way to obtain the final

result directly. If we believe that the final answer of each order is

a sum of convergent transverse integrals, we can calculate just those

diagrams which give convergent integral contributions and get the final

results very quickly. Since we are concerned only with convergent

integrals, regions which give divergent integrals can be ignored. We

notice that the possibility of convergence of a transverse momentum

integral can be determined by the structure of the diagram considered.

We define a diagram is convergent if its structure gives convergent

integral contributions. So the calculation of higher order diagrams is

reduced basically to finding a fast way to eliminate divergent diagrams.
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Appendix A Feynman Rules

The Feynman rules have been given explicitly by t'Hooft and Veltman9).

We list only the case of Feynman gauge where there are no k k terms in the

propagator for the Yang-Mills field.

-- -t
Fermion propagator

Vector-meson propagator
(Yang-Mills field)

F-P ghost propagator
(-1 for every closed loop)
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We note that any propagator or any three-line vertex is a product of

an isospin factor (before the sign x) and a time space factor. But some

four-line vertices have somewhat different structure. However, we could

think of such four-line vertex as a sum of four-line vertices which can be

factorized into a product of an isospin factor and a time-space factor.
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A factorizable four-line vertex is denoted by two connecting three-line-

vertices with a bar on the connecting line. The notations are assigned

in such a way that the unbarred connecting two three-line vertices and

the barred connecting two three-line-vertices have exactly the same iso-spin

factor.



Appendix B The Eighth order contributing diagrams

We list the independent structures (see §2.4 and

the contributing diagrams below:

ME I000, IHo0""0P
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I~eI'0II.
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