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ABSTRACT

Newly developed techniques for the computation of
non-planar vortex flow fields are presented. These
techniques are designed to track point vortices in an
incompressible, inviscid and irrotational fluid. In this
method, the point vortices are tracked by Lagrangian methods
while the flow field velocity, induced by the singularities,
is calculated on an Eulerian mesh. This technique is termed
the Eulerian-Lagrangian Method. Solutions to non-planar
vortex wake flow fields for conventional wings are obtained
by representing the flow field as a two-dimensional time
dependent problem. Calculations are conducted on the Trefftz
plane. Solutions to non-planar vortex wake flow fields for
rotating wings are obtained from a two-dimensional model of
the three-dimensional rotor wake. Calculations are conducted
on an Eulerian mesh for the rotating wing analysis. The
point vortices defining the vortex sheet are redistributed on
the Eulerian mesh by use of the "Cloud in Cell" technique.

Calculations representing conventional and rotating
wing load distributions are presented. In particular, the
rollup of the vortex wake generated by an elliptically loaded
wing and the wake for a load distribution simulating a wing
with a deflected flap are included. The rollup of the vortex
wake for a rotating wing in the hover condition is shown.
Results of computational experiments to determine the effects
of grid size, number of vortex points in the wake definition
and type of singularity representation (constant circulation
strength or constant incremental spacing along the span) are
presented.



Results indicate the ability of the method to calculate
vortex flow fields consisting of single vortex wakes with one
or several rolled up vortex cores and flow‘*'fields consisting
of numerous wake representations, each containing several
vortex cores. Predicted locations of the rolled up vortex
cores are compared with the theoretical results of Betz and
have been found to be in close agreement for an elliptical
load distribution. Predictions of the location and structure
of the wake for a rotating wing in hover are compared and
contrasted with the findings of Miller [19].
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SECTION 1

INTRODUCTION

1.1 Importance of Non-planar Vortex Wake Analysis

The design and analysis of conventional and rotating wing
vehicles are restricted by inadequate means of computing the
development of non-planar vortex wakes. The majority of
design codes developed to date utilize a linear wake model to
represent the vortex wake generated by a lifting wing. In
reality, the vortex wake rolls up into concentrated vortex
cores within a short distance downstream of the trailing edge.
For an isolated wing and body, the induced velocity
distribution at the wing plane, except perhaps at the wing
tip, varies insignificantly due to the redistribution'of the
vorticity in the rolled up wake. For this reason, the
development of wing-body codes has not been limited
significantly by the linear wake model. Unlike the wing-body
configuration, for many configurations, this is strictly not
so. Some important ones are.

1. Empennage: Vortex wakes shed from the wing propagate
downstream very near the empennage. For a transport
aircraft at cruise condition, the influence of the
non-planar vortex wake may not be significant due
to the location of the tip vortex core outboard
away from the horizontal tail. However, during

pitch-up and maneuver, when the wing is highly
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loaded, the wake quickly rolls up into concentrated
vortex cores which will be much closer to the
empennage. The non-planar vortex wake should be
modeled.

2, Canard-Wing: The vortex wake generated by a canard
wing will interact directly with the wing flow
field. The non-planar vortex wake should be
modeled to provide accurate‘loading distributions
on the wing.

3. Delta Wings: The flow at the leading edge of a delta
wing separates at moderate to high incidence and
develops into a vortex wake above the wing. The
non-planar wake model is essential in this
analysis.

4, Helicopter Rotors: Design of rotating wing vehicles
is significantly limited by accoustic and vibration
constraints. Blade-vortex wake interaction
contributes the major imnfluence on these constraints.
Non-planar vortex wake models are needed to
correctly predict this interaction.

Non-planar vortex wake models will enhance the analysis
of many aircraft configurations. For some configurations,
non-planar vortex wake models are a necessity. It is
therefore desirable to develop methodologies to treat
non-planar vortex wakes. This report presents such a method

for simplified problems and, hopefully, represents the first
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step in the development of a method for the above mentioned
configurations.

1.2 Previous Investigations

1.2.1 Vortex Flows and Conventional Wings

Analysis of the incompressible, inviscid interaction and
propagation of isolated singularities (point vortices) in an
otherwise irrotational flow field dates back to the early work
of Rosenhead [1] and has received considerable attention in the
past ten years. When the fluid is considered ideal, except
for isclated singularities, the theorems of Helmholtz and
Kelvin are applicable to a control surface convected with the
flow and encompassing the singularities. In accordance with
these theorems, the transport or convection of the vorticity
fhroughout the control surface is determined by the local fluid
velocity which, in turn, is induced in the flow field by the
point vortices. This approach was utilized by Rosenhead and
formed the foundation for a number of investigations that
followed. In this approach, with knowledge of the location and
circulation strengths of the point vortices, the velocity field
induced by the point singularities can be calculated by use of
the Biot-Savart relation. Since the flow is ideal and the
problem is linear, the solution of the flow field for any
number of vortex points may be determined through superimposing
the induced velocities of the individual singularities. A
point vortex does not induce a velocity on itself. The point

vortices are convected by the local flow field velocity. After
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which, at a short time interval later, a new induced flow
field emerges and the point vortices are convected again.
This point tracking or Langrangian method is applied to
convect the point vortices while the velocity field is
determined by summing the effects of the point vortices.

The work of Rosenhead and, more recently, Moore [2]
approximates a vortex wake by a finite number of point
vortices or vortex markers and determines the
three-dimensional rollup of the non-planar vortex wake
through a two-dimensional time dependent solution. This
two-dimensional plane, which is convected with the free
stream velocity, is called the Trefftz plane and remains
perpendicular to the free stream (see Figure 1.1). The
two-dimensional time dependent solution using the point
vortices and the Biot-Savart relation often resulted in
instabilities and chaotic vortex motion. The instabilities
stem from the singular nature of the vortex points. In a paper
by Chorin et al [3], the nature of the singularities was
investigated. 1In this paper, it was shown that if the point
vortices are smoothed out or given a finite radius, the
instabilitieé disappear and the vortex rollup is smooth.

The previously described full Lagrangian approach has
significant inherent computational burdens. In the above
method, for N point vortices, a number of operations of order
N2 are required to determine the flow field. This condition

puts a burden on the number of point vortices used to define
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the vortex sheet. 1Instead of isolating each point vortex,
increased computational efficiency can be achieved by grouping
a number of tﬂe point vortices together. After which, the
veiocity field is then calculated. This concept leads to the
concept of "Vortex in Cell" or "Cloud in Cell"” and suggests
the Eulerian-Lagrangian approach to the solution.

The Eulerian-Lagrangian gpproach, coupled with the
"Cloud in Cell" technique, has been employed by a number of
authors [see for example, [4,5,6]]. The solution to the
point vortex convection remains Lagrangian, but the velocity
field is determined from the stream function in an Eulerian
manner. The stream function is determined on the Eulerian
mesh as the solution to Poisson's equation. In this method,
the vorticity is redistributed to the mesh nodes using a
bilinear interpolation scheme. The Poisson equation for the
stream function can now be solved with the vorticity on the
right-hand side of the equation. The velocity field is
determined from the stream function and then bilinearly
interpolated to the point vortices. The point vortices can
now be convected. The redistribution scheme or "Cloud in
Cell" technique of this method accomplishes a result similar
to that of Chorin [3]. The point vortices are smoothed and
the instabilities are suppressed.

Baker [4] completed extensive investigations on the rollup
of vortex wakes generated by elliptically loaded wings and by

wing loadings simulating deflected flap configurations.
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Typically, in his investigations, Baker represented the
vortex wake by 2,000 point vortices. Instabilities are
shown in the tip vortex core and in some portions of the
vortex wake in some of the results. Christiansen [5]
demonstrated the utility of the technique through numerous
applications.

Three-dimensional calculations of the non-planar vortex
rollup problem are, for the most part, determined through the
use of panel methods. 1In general, the analysis is conducted to
more fully understand flow characteristics about wings and
wing-body combinations with leading edge vortex separation.
Johnson et al [7] used panel methods to model the development
of vortex structures shed from the leading edge of delta wings.
Here again, the vortex sheet is tracked in a Lagrangian fashion
and the influence of the vortex singularities is included in
the calculation of the velocity field. Owing to the
complexity of the three-dimensional problem, the shed vortex
wake is parameterized and the vortex wake singularity
strengths are determined as part of the singularity solution.
The findings of Johnson [7] indicate that if the real flow
deviates significantly from the single vortex structure
predicted by the flow model, the analysis will generally tend

to fail.



1.2.2 Rotating Wings

Applications of vortex methods to understand and,
consequently, alleviate the accoustical and vibratory patterns
associated with rotary wing vehicles have increased
significantly in the past five years. Extensive surveys of
numerical analysis’ applied to rotating wings are presented in
{8] and [9] and are highlighted here for completeness.

Emphasis on the distorted wake analysis is presented here.

The development of the "semi-rigid" wake concept was
initiated by Miller [10] and marked the inception of the
distorted wake analysis. Previously, the undistorted wake was
represented by a semi-infinite cylinder emerging from the tips
of the rotor blades. This cylindrical model implies an
infinite number of blades and, therefore, will yield no
information about the periodic vortex wake known to exist.
Accoustical and vibratory analysis is not possible for the
cylindrical wake model, but the "semi-rigid" wake would provide
a wake model needed for this analysis.

Several authors [11-13] investigated further the
"semi-rigid" wake concept to represent the structure of the
rolled up tip vortex and to estimate the influence of the
vortex on the rotor blade loading. This model has fallen short
of representing the real wake. Large discrepancies between the
calculated and measured wake geometries have been shown by Ham
[13]. More accurate wake models were needed. Simplified

methods using vortex rings of constant circulation to represent
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the wake geometry were developed by Brady and Crimi [14].
Extensions of the vortex ring model and a method to include the
rollup of the two concentrated tip vortices was developed by
Levinsky [15].

A more complex method used to calculate the effects of the
wake geometry, which is free to distort under the influence of
the flow field, was developed by Landgrebe [16, 17]. For this
method, the vortex wake is represented by a finite number of
vortex "filaments" which convect and interact under the
influence of the local velocity field. However, in this
analysis, the wake is allowed to distort only after the wake
has been predescribed. Landgrebe [17] predescribes the wake as
being grouped into a strong rolled up tip vortex filament and
several weaker filaments representing the inboard portion of
the vortex wake. Knowledge of the predescribed location of
the vortex filaments is gained from experimental results and
will limit the analysis owing to this empiricism. Summa and
Clark [18] have represented the blade lifting surface through
the use of vortex lattice techniques. The wake is described
with techniques reported by Landgrebe.

At present, the work of Miller [19] is the only
investigation devoted to the free wake analysis of rotating
wing devices which is not restricted by the empiricisms
associated with the wake geometry. In this analysis, the wake
geometry is divided into three sections: the near wake; the

intermediate wake; and a far wake. The near wake consists of
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straight semi-infinite vortex filaments extending from the
rotor blade trailing edge. Using the Betz [22]
approximation, this wake is rolled up into three concentrated
vortices for the three regions of the load distribution as
shown in Figure 1.2. These three vortices, whose initial
posifion is given by the Betz approximation, are used to
represent the intermediate wake. For the Betz
approximations, the tip vortex is represented by the wake
rollup from the tip to the maximum circulation and a second
vortex is represented by the rollup from this maximum to the
point where the slope of the loading tends to zero. The root
vortex is represented by the remaining portion of the load
distribution. The far wake is represented by a semi—infiniée
vortex cylinder for the three-dimensional analysis and by two
semi-infinite vortex wakes for the two-dimensional analysis
(see Figure 1.3).

A new distribution of the intermediate wake is
determined from the induced flow field velocities. Induced
flow field velocities at the rotor blade plane are then
calculated from the influence of the near wake, intermediate
wake and the far wake. The vortex wake shed from the blade
is then recalculated and the cycle repeats. The iterative
process continues until the induced velocities at the blade
location have reached convergence. In Miller's analysis [19]
and in predictions by Betz's theory, the emergence of a

mid-span vortex is shown. While experimental results clearly
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indicate a strong tip vortex, at present, the mid-span vortex
has not been measured. The effect of this vortex on the
blade loading at larce distances may be small, but when the
vortex is in close proximity of the blade, significant errors
in the predicted blade loading may appear. Analysis to
verify the existence of the mid-span vortex is needed.

This survey is intended to bring to light the current
status of rotating wing wake analysis and to motivate the
current analysis in order that a better model of the vortex
wake may be obtained.

1.3 Current Investigation

The two-dimensional time dependent solution for the rollup
of non-planar vortex wakes with use of the existing
Eulerian-Lagrangian method [4, 5] is restricted in that an
extension of the analysis to three-dimensions is not
possible. 1In order to investigate the development of
non-planar vortex wakes in three-dimensions, the flow field
must be described by use of the velocity potential rather
than the stream function. While this paper does not deal
directly with the three-dimensional problem, the first step
in the analysis (two-dimensional time dependent problem for
conventional wings or two-dimensional steady state problem

for rotating wings) is presented.
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1.3.1 Vortex Flows and Conventional Wings

In this section, an introduction is given for the
problem solved in the present investigation. Detailed
development of the theoretical and numerical treatment is
given in Sections 2 and 3.

1) Governing Equations, Boundary Conditions, Initial

Conditions and Jump Conditions

In order to specify the problem, the governing
equations and boundary conditions must be clearly stated.
The calculations of the flow field are performed on the
Trefftz plane for an ideal fluid. The vorticity is
qonsidered here to be scalar and corresponding to a
vorticity vector directed parallel to the free stream.
The vorticity vector is a doubly infinite line
vortex. The vortex wake is represented by distributing
point vortices along the width of the vortex wake on the
Trefftz plane. Everywhere in this investigation; a
vortex wake symmetric about the y=0 plane is modeled.
Owing to this symmetry, calculations are necessary on
the Trefftz Plane for y >0 only. The influence of the
reflected wake is modeled through the boundary
conditions. Laplace's equation for the velocity
potential governs the flow field. Boundary conditions
on the velocity potential are determined from the flow
field induced by line vortices (see for example,

Batchelor [21]). 1Initially, the vorticity is
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distributed along a z = constant line and has extent 0%
y £ 1.

In contrast to the flow field solution using the
stream function, solutions obtained using the velocity
potential will be multivalued. (See for example [20])
In order to retain a unique solution, it is necessary to
construct branch cuts extending from the singularities
to + o and to apply appropriate jump conditions at this
cut. To illustrate this condition, consider the figure

below.

%
-r +/7

dgp-0 [g)=2-2=1 (£]- - I-r=o
St £ T

As illustrated in this figure, the jump conditions are
needed between the reflected vortices only (the jump
conditions cancel identically to the right of the right
vortex for a reflected pair of vortices). (Appendix A)

The velocity field is determined from the gradient of
the potential and the motion of the point vortices is
calculated from the trajectory equations of motion.

These topics are discussed fully in Section 2.1.

2) Singularity Redistribution and Velocity

Determination

For the solution of the velocity field on the
Eulerian mesh, the vorticity must be redistributed if it

is to be accurately included in the analysis. An
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adaptation of the "Cloud in Cell" technique is used to
redistribute the vorticity. The vorticity is
redistributed to the centroids of the four nearest mesh

cells. See figure below.

CIC" Rrdistributron
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New branch cuts are constructed for each of the newly
redistributed points. After the potential field is
solved, the velocity at the location of the point
vortex markers is determined using bilinear
interpolation from the velocities of the four nearest
mesh centroids. Only information from mesh cells
affected during the vorticity redistribution is used in
the velocity determination (see Appendix B).
3) Method

Solutions to the non-dimensional forms of the
governing equations, the boundary conditions and the
initial conditions are determined through the use of
finite difference techniques.

Initially, the input vorticity is distributed along
the z=0 axis. The vorticity is redistributed to the
centroids of the mesh cells and the boundary conditions

determined from the new distribution of vorticity.
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The components of the flow field velocity are set
everywhere to zero at t=0. Laplace's equation for the
velocity potential is now replaced by a central
difference equation. Jump conditions for the new
distribution of vorticity are calculated and introduced
into the finite difference forms of the Laplace equation
and the w velocity equation. The difference equations
are solved using successive line over-relaxation (SLOR)
or a direct solver for elliptic partial differential
equations [24]. The flow field velocities are
determined from the gradient of the potential. The
motion of the point vortices are calculated according to
the equations of motion, after which, the vorticity is
convected and the Tréfftz plane is stepped forward
(downstream) in time. The new vortex wake is
redistributed and the cycle repeats. A flow chart is
shown in Figure 1.4.

1.3.2 Rotating Wings

The solution to the non-planar vortex wake flow field
for rotating wings is obtained on an Eulerian mesh. Unlike
the two-dimensional time dependent problem for conventional
wings, we week the steady state solution to the flow field
for the rotating wing problem. By steady state, we mean that
the helical rotor wake below the rotor blade is invariant

with blade rotation for a given blade loading.



-27-

In this analysis, as in the analysis for conventicnal
wings, the vortex wake or wakes on the eomputational plane
are represented by intersections of doubly infinite line
vortices with that plane. The time dependent solution for
conventional wing analysis (Trefftz plane representation) was
obtained by integrating along the vortex trajectories with
respect to time. In the steady state solution for rotating
wing flow fields, the wake geometry below the rotor blade is
obtained by integrating along the helical rotor wake with
respect to arc length. Consider a single point vortex

illustrated below.

Two = Ormmensional
Cbmvawflfﬁhwi%hmf

Helice L
wake

If the location of A is known, the position of B can be
determined by integrating the trajectory equation of motion
along the helical path. This will be-discussed further in
Section 2.1.2.

1) Governing Equations, Boundary Conditions, Initial

Conditions and Jump Conditions

Here, again, the flow of an ideal fluid is

investigated. The solution to the rotating wing flow
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field is obtained on a computational plane illustrated

in the figure below.

)

TTRotor Blade

Helrca! Wake
) ™

(omputatrional Mesh

Vortex wakes representing the rotor blade and the
intersections of the helical rotor blade wake with the
computational plane are distributed on this plane. The
computational plane extends from just above the vortex
wake representiné the rotor blade to negative infinity
below the rotor blade.

On this plane, three distinct regions representing
the helical rotor wake are modeled. The three regions
will be termed; the near wake, the intermediate wake and

the far wake. See figure below.
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The near wake represents the rotor blade and the
first four intersections of the helical rotor wake with
the computational plane. The computational mesh is
constructed on the computational plane and, in general,
will encompass the near wake only.

The intermediate wake is represented, initially, by
concentrated point vortices of strengths and locations
predicted by Betz [22] thecry. The intermediate wake
represents the next ten intersections of the helical
wake with the computational plane. The far wake is
similar to the intermediate wake, but extends to -02,
The intermediate wake will generally be outside the
computational mesh and the far wake will always lie
outside the mesh. Boundary conditions for the near and
intermediate wakes are calculated in the usual way and
represent the influence of line vortices. The influence
of the far wake on the boundary conditions is modeled
using an asymptotic expansion over the length of the far
wake. See Figures 1.5 and 1.6. Further development of
the intermediate and far wake models can be found in
Appendix C.

Initially, the input vorticity on the computational
mesh will be distributed along lines of constant z or
axial distance. These distributions represent the near
wake. The spacing of this tiered structure (see Figure

1.7) is determined from the flow velocity through the
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rotor. Miller [19] determined that the solution was not
sensitive to the number of input wakes beyond a minimum
of four plus the blade representation. The flow field

velocities and the potential are set similarly to values
described before. These topics are discussed further in

Section 2.1.

2) Singularity Redistribution and Velocity Determination

The singularity redistribution technique and methods
for determining the velocities of the point vortices are
directly extended to N vortices and are exactly those
described in the previous section (also see Appendix B).
3) Method

A) . Initially, the vorticity is input in the

previously described tier structure and represents

the shed wake for the rotor blade loading. The
vorticity in the wake is represented by point
vortices at the intersection points of the doubly
infinite line vortices with the computational
plane. The first or uppermost (z=0) wake
represents the blade. This first wake or blade
wake is considered fixed on the computational mesh
and does not rollup, but retains the signature of
the blade loading.

B) The vorticity is redistributed and the

boundary conditions calculated from the influence

of this and the intermediate and far wake
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vorticity. Jump conditions are calculated in the
usual way (Appendix A). Laplace's equation for the
velocity potential is again solved using SLOR or a
direct method [24] and the velocity field
calculated from the potential.

C) The induced velocities at the blade location,
z=0, are calculated and examined for convergence.
If the velocities have converged, the steady state
rotor wake flow field is known. If the induced
velocities have not converged, a new distribution
of vorticity is calculated and control returns to
B. The new distribution of vorticity in the near
wake below the rotor blade is determined by
integrating along the helical vortex trajectories
from the fixed rotor blade location td each vortex
wake. For a two-bladed rotor, the first wake below
the rotor blade would be obtained by integrating
from 0 to 77, the second wake by integrating from 0
to 277 and so forth. A flow chart is shown in

Figure 1.8.
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FORMULATION OF PROBLEM

The two-dimensional flow field for an incompressible,
inviscid and irrotational (except for isolated vortex
singularities) fluid can be répresented by a potential
function¢¢ . Here ¢ is the velocity potential and, for the
fluid described above, satisfies Laplace's equation
everywhere in the defined flow field. The velocity in the
flow field can be calculated directly as the gradient of the
potential.

When the problem is solved on a two-dimensional plane,
such as the Trefftz plane, the problem is thought of as a
boundary value problem. The boundary conditions are determined
uniquely from the vorticity distributed on the plane. The
continuous distribution of vorticity on the plane is often
represented by a finite number of point (line) vortices. This
representation creates a singularity problem which was not
present in the continuous definition of the vorticity. The
point vortices are branch points and branch cuts must be
extended from each singularity. Jump conditions are applied
across the cuts in order that the solution remain unique.

This section will present the development of the governing
equations, dimensionless forms of the equations and

restrictions on the potential to ensure a unique solution.
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2.1 Coverning Ecguations

2.1.1 Conventional Wings

For the two-dimensional, incompressible, inviscid fluid
flow under consideration, the governing equation can be

described by the Eulerian equations:
4 -
Vg = © (2.1)

?/: a¢/c)_'1 ) W = %é_‘-‘ (2.2 a, b)

together with the boundary condition:

H=_1_ AV -y (2.3)
zﬂ%

where /3 is the circulation of the ith point vortex and &, is
the angle from the positive y axis to the boundary point. (See
Figure 2.1) Here, the summation over N represents the
contributions of the point vortices on the computational
plane and the corresponding reflected image vortices.

The initial conditions for the vortex wake are
determined from the wing loading or circulation, rl)(y). If
we consider the wake vorticity to be given by f1(t,y,z), then
for the continuous (non-discretized) problem, the initial

wake vorticity is given by:

b
4", )
/’/0,3,0):‘50’_‘/ dy ocy¢

/7 /o/ g, ) = o i‘wgwézr( ele,
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For the numerical problem, this continuous vorticity
distribution is lumped into discrete vortex markers, each
designated by the index i where i=1,N and N is the number of

markers. The strength of each marker is:

Y2
/7 /0/%) 0)- _(%5’245 - —[C’/7‘J‘E‘,’(3‘)] L (2.4)
Y,

where f% = circulation of ith vortex in wake
ﬁL = load distribution on lifting surface
399 = limits on span increment defining
Y{ = position of ith vortex y = EL%;tZ

The solution to equations 2.1-2.4 is termed the Eulerian
problem. Instead of solving for the transport of vorticity
on the Eulerian mesh, a discrete point or Lagrangian method
is utilized. In the Lagrangian method, the trajectory
equations of motion are solved to determine the convection of
the point vortices. They have the form:

do - Vigz) , da- wily,e) #oeen P
7 77

where y,, z; are the coordinates representing the ith
point vortex location. The solution to equations 2.1-2.5 is
termed the Eulerian-Lagrangian method and is the foundation

for this investigation.
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2.1.2 Potatinag Wings

The solution to vortex wakes of rotating wings is
calculated on a computational plane (Figure 1.5) and is
governed by equations 2.1 and 2.2. The time dependent
trajectory equations of equation 2.5 are not applicable to
the steady state solution for rotating wing flow fields. The
trajectory equations used in this steady state solution are
defined later in this subsection. The boundary conditions
and initial conditions differ from those for conventional
wings.

For rotating wings in the hover condition, a helical
vortex wake structure extends. from the rotor disk to z==—=60 |
The wake near the rotor disk is represented by individual
vortex wakes, each composed of many vortex markers. The
remainder of the wake is approximated by the semi-infinite
vortex wake model (see Figure 1:6). The boundary condition
for the potential on the computational domain is calculated
by superimposing the effects of the individual wakes and the
semi-infinite vortex wake. The vortex wakes on the
computational mesh are represented by point vortices which
have the boundary condition of eguation 2.3. The boundary

condition for the intermediate vortex wake has the form:

¢-‘_z—§- Zm 1 e (2.6)

where NI is the total number of point vortices in the
intermediate wake and the corresponding reflected image

vortices.
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The boundary condition for the far wake is developed in
Appendix C and is given by equation C.9.

As with the conventional wing, the rotor loading
distribution is discretized to give the strength of the wake
vortex markers. However, markers must be initially placed
not only at the rotor trailing edge, but also in wakes spaced
apart below the rotor.

The initial vortex wake definition on the computational mesh

is then:

7oy, 0) = 17(49:,-43)
f{‘/d,y",—-bsz,)
)r‘ o dy = - 70l) t00) D
3

I
]

where the notation is that following equation 2.4 and Aﬂﬂis
determined from the flow through the rotor.

Miller [19] has determined that the solution is
insensitive to the number of input wakes beyond a minimum of
four. In this analysis, four input wakes plus the blade

representation are modeled.
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The trajectory equations of motion are now spatially
dependent rather than time dependent as was shown in equation
2.5. Here, the trajectory equations of motion define the
helical trajectory of each vortex marker in the near wake
definition. The spatially dependent trajectory equations of

motion are obtained from equation 2.5 as follows:

a/c':-l/(;?z _(,/_'—_z.f': W(l‘ Z
L' =l e, GE e wly @)

where dt represents the time for the next rotor blade

passage.

Then: le — y/_fl_

Wherex is the blade separation angle in radians and is equal
to 77~ for a two-bladed rotor, for instance.

The trajectory eguations become:

ﬂ./y; = X/?T V(g,'l 3,:)) J.ZL = Y/zn W{y"l?‘) (2.8)
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2.1.3 Betz Approximations

Theoretical methods to determine the location of fully
rolled up vortex structures generated by lifting wings were
derived by Betz [22] and elaborated on by Donaldson [23]. The
theory relates the loading on the wing to the fully developed
vortex structure by utilizing three conservation laws. The
conservation laws satisfied are: conservation of circulation;
invariant spanwise centroid of vorticity; and conservation of
the second moment of vorticity. Development of the theory is
outlined in Donaldson [23] and the results are shown here for
convenience.

Consider the load distribution shown in Figure 2.2. The
load distribution will generate three separate vortex cores.
We assume that all the vorticity shed outboard of point A
will roll up into the tip vortex, that the vorticity between
points A and B will roll up into the mid-span or flap vortex
~and all vorticity between B and the aircraft symmetry plane,
y=0, will roll up into the inboard vortex.

The centroid of the rolled up vorticity for region A-B

is defined by:

ya Cuﬂ Ya ArT
A LI Tak
Yg Ys

where f; is the circulation of the wing loading.

(2.9)
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The total circulation of the vortex is equal to:
? df
dg 4
Y

= = (Tu(a) - Tu(B))

- -

(2.10)

These results will be used later to compare the centroids of
vorticity with those predicted by the current investigation.

2.2 Dimensionless Forms of the Equations

The dimensionless forms of the governing equations are
developed in this section. The non-dimensionalization of the
conventional wing and rotating wing problems are slightly
different, corresponding to the different notations used in
the respective literatures.

2.2.1 Conventional Wings

Dimensionless forms of the equations of Section 2.1 may
be obtained by introducing the following dimensionless

parameters:

y*= Y% , 2%=%a Ve ﬂ‘//:,,

4

B Flooa | %=t Jajw,

V¥ = V/wo w¥s W/“o

J
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where, @ = semi-span

/Z; = circulation at wing root section

Wo

initial downwash at the semi-span location due
to a vortex of strength F,,,a at y=0.
Using the conventions of equation 2.11, the governing

equations take the form:

'VZ;D’* = o (2.12)
y¥= od* Wil o¢ * (2.13 a, b)
Jj* o C)'Z¥

On the boundary,
¥ (2.14)
*
& = Z /?-94'
N

where N is the sum over the point vortices and the
corresponding reflected images. The trajectory equations for

the vortex markers become:

* (¥ *) d ¥ ¥, ¥ *) (2.15)
dy” - VY 2 - wly :
df* 4 J ”Tﬁr_ /
Equations 2.12 and 2.13b will have different forms at

the branch cuts. See equations A.16 and A.l17, Appendix A.
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2.2.2 Rotating Wings

Dimensionless forms of the equations of Section 2.1 can be

obtained by introducing the following dimensionless parameters:
*_ ¥ _ / V4
y=yle =2k, /7: lifar

¥
v¥:- V/iw, w= W/, , W,= gk (216

J

B% B/ 4% n+

/
where ﬁz = rotary disk radius

L

angular velocity
We - tip speed.
With the convention of equation 2.16, the governing

equations become:

VZ¢ - O (2.17)
¥_
v ¥= &Q”F , W ¥ = cbﬁ* | (2.18 a, b)
2y % PEM
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On the boundary for the near and intermediate wakes.

(2.19)

gle_L ) It o

/
4
N +NI

where N+NI 1is the sum over the point vortices and the
corresponding reflected images in the near and intermediate
wakes.

On the boundary for the far wake.

Here, the summation represents the summation over the three
point vortices defining the far wake and a, b, ¢ are given in
equation C.10.

The trajectory equations of motion become:
¥ ¥ ¥
dy¥ =¥ V/_t/’f;ef), dz; = yw (94'7?.;*) (2.21)

where X is the blade separation angle (radians).
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The variation by a constant between the dimensionless
forms of the governing equations for ccnventional and
rotating wings results from the dimensionless conventions for
each configuration.

The description of the dimensionless forms of equations
2.17 and 2.18b at the singularity branch cut will be
discussed in Section 2.3 and later in Section 3.1. See
equations A.18 and A.19, Appendix A.

2.3 Single Value Restrictions on the Velocity Potential

The distributed point vortices representing the vortex
wake are branch point singularities. When the flow field is
described by use of the velocity potential, the solution will
be non-unique unless restrictions on the potential are imposed.
After each full cycle around a vortex singularity, the
potential will either be increased or decreased by the strength
of the vorfex singularity (the sign of the change depends on
the direction of the path and the direction of the circulatory
flow). For the potential to remain single valued, jump
conditions are included in the analysis to compensate for
this change in the potential. A summary of these conditions

follows. Full details are presented in Appendix A.
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#
The complex potential generated by a point vortex at z=0

can be written:

Flz’) = -
.

where /? is strength of the circulatory flow, the ‘flow is

24
/4

1
/7 ijfg’/ (2.22)
counterclockwise for/ZhQ‘

The extension of equation 2.22 to a pair of vortices of
/

equal and opposite strengths with positions € = # a is

represented by:

Fe) = LL Lylzta) £ b lyleta) g
277

27
then ZE }%((67‘/ # 277m) - (9: 7‘27/7'))

where e;,e_lare position angles from z'=2to point z' and
m,n are integer values.

It follows from equation 2.23 that the velocity
potential will be an infinitely many valued function. In
order to investigate this further, we construct branch cuts
from each point vortex to + ¢ along the real axis. Then, if
a simple closed contour is constructed around each point
vortex and the closed contour is traversed in the
counterclockwise direction starting at the branch cut, the

following is found (see figure below).
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+a

Vs

As the traverse approaches 2 77 (m=1, n=1), the velocity
poténtial is decreased byf, on the segment -a = y £ due to
the left vortex and increased on the segment a ¢ y €« due

to the right vortex. Then, the sum of these effects cancel
onay £ +e and are due to the left vortex only on -a £ y¥
a. In order that the velocity potential remains single
valued, the jump condition, ([¢1I=¢+—¢'-‘ ” , must be

< a.

-

applied on the section -a £y
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SECTION 3

NUMERICAL SCHEME

Solutions to the non-planar vortex wake flow fields are
obtainéd from the solutions of finite difference
approximations for the governing equétions. In this
section, finite difference forms of the governing equations,
method of solution and accuracy of the method will be
discussed.

3.1 Finite Difference Forms

Finite difference forms of the governing equations
are evaluated on an Eulerian mesh. The mesh is to be
rectanguiar and have constant incremental spacing along the y
and z axes (i.e., A y=constant, Az=constant). The analysis
considers the vortex wake solutions to wings of span 24 ang
evaluates one half of the wake with the influence of the’
mirror image wake included in the boundary conditions.

3.1.1 Governing Equations

To obtain the velocity potential, a five-point
centered difference approximation is made to equation 2.1.
The equation is generally Laplace in form due to localized
vorticity. However, at the singularity branch cuts, the
equation has a Poisson form due to the jump conditions.

Equation 2.1 has the forms:
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* ¥
& ) ¥ ¥ _
Ak - Wk +¢j"-l,t _ Gl - Ak - (3.1)

Ay*z Az%"’—
and
X *
Bne -2t . G- n + kel =
A,d*'z A%x7_
J *x s (3.2)
zég; /'Z%,E'H’z B {”"’ézkdfz
where/1 is theadimensionless circulation of the

14 kY

redistributed vorticity. The differencing is illustrated on

the figure below.

L4/

£ It ko, T = max(y)

L=/ B v

J-1 g JH
Equations 3.1 and 3.2 are dimensionless forms of

equation 2.1 and represent the flow field equations off and

on the branch cuts for non-rotating wings.
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For rotating wing flow fields, equation 3.1 is applied

off the branch cut and the form near the branch cut is now:

¥ X £ * “
Bont e 1OqE B e i ey —
X2

ay** £2
* X (3.3)
5 ) lan i - ek
J kL

The variation in the right-hand side of equations 3.2
and 3.3 originates from the dimensionless conventions of
equations 2.11 and 2.16.

The v and w components of the velocity at the mesh nodes
are determined using central difference approximations to the
gradient of the velocity potential. This central difference
is taken over two mesh cells. The caiculation of the v
component of velocity will be indifferent to the existence of
the branch cuts. However, jump conditions must be applied at
the cut when central differences of the velocity potential
with respect to z are calculated.

The difference equations for the flow field velocities
have the forms:

For conventional wings:

& X
\/5"(‘ - _Bik - G-,k (3.4)
Zny"
- 5
\A{,;g B ¢_i,l:‘l-\ = CZJ,F-l (3.5)
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At the branch cut, 3.5 becomes:

¥
% ‘ _ ¥ * %
WJ"L = ¢./), k+) ¢U} k- — W;-zlzg/kﬂéf¢£:k’&(3.6)
z2o2* a2

For rotating wing flow fields, eguations 3.4 and 3.5

are unchanged and equation 3.6 has the form:

. " * ¥ x
Whe s dpkh = o ke .__L§, Ty b+ g b4 (3.7)
2a2* 22

Development of the dimensionless forms of the equations
appropriate at the branch cut may be found in Appendix A.

The convection of the vortex markers throughout the flow
field is calculated from the trajectory equations of motion
2.15 and 2.21. The expressions are different for
conventional and rotating wing flow fields and will be

discussed separately.

Equation 2.15 may be written:

c/j‘.’v = l/*(yzg;y) fo (3.8)
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Equation 3.8 is then integrated over a small time
interval with the velocity held constant for this interval.
If the initial time is represented by n and the final time by

n+l, then:

X ntl

o LI

3&’”“—‘ 4" 4 at V*n[yzjz;*)

and

*ﬂf’

n
Z - 1_7‘-"‘" £ 4t w* (95&-*’) (3.9b)

where v .*, wc* are the velocities at the location of the

(4
A /
W",&

This forward Euler time integration scheme used by Baker has

point vortex

¥
and A‘t‘. < MAX[ Ay/v_,‘::

J

been adopted without investigating further any other schemes.
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Equation 2.21 may be written:

dy. T = Y V*(y‘-*’g‘-*) (3.10)

where X is the blade separation angle in radians. A similar
expression holds for z%
If equation 3.10 is integrated along the helical wake

over the blade separation angle, the following is found:

44 Y%
35* = yik + & \ZK (3.11)

\fk‘}yz., .
where ¢ is considered constant and equal to the average
velocity between k and k+1,

V'*k‘%‘ (Vc* lc+l+ \/,;*K)/Z-.

¢ -

The velocity of the point vortex is calculated from
information at only the nodes of mesh cells affected by the
redistribution of the point vortex. This is discussed
further in Sections 3.2 and 3.3.

Boundary conditions on the velocity potential are
calculated from the redistributed vorticity on the
computational mesh, plus, for rotating wing analysis, the
influence of the semi-infinite vortex wake represented by the
intermediate and far wake models. Baker [4] approximated the
boundary condition by lumping together neighboring point
vortices into local centroids and then calculating the boundary
condition using these centroids. This technique will greatly

reduce the computation time. However, in the present
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investigation, the boundary condition is calculated exactly
from the redistributed circulation in order to evaluate the
method.

The influence of the redistributed vorticity on the
boundary values of the potential is related to equations 2.14
and 2.19 for conventional and rotating wing flow fields,
respectively. The potential on the boundary is calculated
from the summed influence of the redistributed point (line)
vortices. The effect of the semi-infinite vortex wake is
represented by equations 2.19 and 2.20 or C.1 and C.10.

3.2 "Cloud in Cell" (CIC) Redistribution Scheme

In order to solve equations 3.1 and 3.3 with the
appropriate jump conditions across the branch cuts, the
point vortices representing the vortex wake must be
redistributed on the computational mesh. A modified version
of the method known as "CIC" is utilized to redistribute the
circulation of the point vortices.

In order to accurately model the branch cuts throughout
the computational mesh, the circulation of each point vortex
is redistributed to the centroid of the four nearest mesh
cells, rather than to the nearest mesh nodes [4, 5]. It
~would be equally accurate to redistribute the circulation to
the mesh nodes, but the redistribution of circulation to the
nearest mesh cell centroids was chosen in order to model the
branch cut at equal distances from mesh nodes above and below

the cut. The method "area weights" the region encompassed by
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the four centroids and determines the amount of circulation
to be applied at each centroid. Circulation is conserved
within a contour surrounding the four centroids.

The velocity at the point vortex is obtained in the
reverse of the circulation redistribution. See figure below.

3a 4a

Vyz 3(VatVae) |, 3 3¢ ¢

4
z
Ws= %(wfl tWar | 3 %) |A

gfc‘.' Aa | Ay

T

The velocity at the point vortex location is calculated from
information at only the nodes of mesh cells affected by the
redistribution of circulation. Because the circulation was
redistributed to the centroids of mesh cells, it is important
to first calculate the velocity at these centroids. The
velocity at the centroid can then be bilinearly interpolated
to the point vortex location.

The velocities at the center of each mesh cell edge are
calculated using central differences approximations of
equation 2.2a, b over one mesh cell. The velocities at the
centroids are taken to be the averages of the values at
opposing mesh edges. The centroid values are then bilinearly

interpolated to the point vortex location. See Appendix B.
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3.3 Numerical Solution

This subsection describes the methods and numerical

schemes used to solve the finite difference forms of the

governing equations. Flow charts describing the method of

solution for corventional and rotating wing flow fields

are shown in Figures 1.4 and 1.8, respectively.

Clarification between the methods for conventional wings and

rotating wings is presented when appropriate. The method is

summarized as follows:

1)

Consider an array of N point vortices located at
coordinates (yg, Zi) and distributed on the
computational mesh; the strength of each vortex
being ,E and representing the shed vorticity from
a lifting surface. This strength is given by
equation 2.4 or 2.7. The point vorticity is
initially along lines of constant z and distributed
along this line in one of two ways: a) the vortex
wake is represented by equally spaced point
vortices with varying strength; or b) a
distribution of constant vortex strength ( CT=
constént) and unequal spacing is used. 1In either
case, the contour integral around the shed wake
remains constant. For conventional wing analysis,

£y ¢ a.

a single vortex wake is input at z=0, O
In the analysis of rotating wings, a minimum of

four vortex wakes is input, excluding the blade
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representation. BAgain, each wake is located on &
line of constant z, with the wake spacing (in 2z)
determiged from the flow through the rotor
(momentum theory). For no variation in the

velocity across the wake, momentum theory provides:

4= zA° (3.12)

where 7\ = _’Z’_wfz and CT is the thrust
coefficient. See Figure 1.7. For both analyses,
the reflected vortex wake images (-a € y ¢ 0) are
excluded from the computational mesh and included
in the analysis mathematically. The point
vorticity contained in the vortex wake
representation is redistributed next.

The point vortex or circulation redistribution
scheme is obtained from a modified version of the
"Cloud in Cell" technique. Due to the singularity
branch cuts, the circulation is redistributed to
the mesh centroids, rather than the mesh nodes (as
in [4]). The jump conditions of the redistributed
circulation are represented by the right-hand side
of equations A.16-A.19. See Appendix A. The
influence of the redistributed vorticity on the
value of the velocity potential at the boundary can

then be calculated.
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The vorticity at the centroid of the mesh cells
affected by the redistribution is represented by
point vortices and the influence on the flow field
parameters calculated accordingly. The boundary
condition for the point vecrticity on the mesh and
that represented by the reflected images is
calculated directly from equations 2.14 and 2.19
for conventional and rotating wing flow fields,
respectively. This represents the total
contribution to the boundary condition for
conventional wing analysis. However, for rotating
wing flow fields, the effect of the semi-infinite
helical wake below the mesh must be taken into
account. See Appendix C. Superposition of these
effects determines the boundary condition on the
velocity potential. Solutions to equations 3.1 and
3.2 or 3.3 are now obtainable.

Solutions to equations 3.1 and 3.2 or 3.3 are
determined. Iterative and noniterative (direct)
methods are available for solving the equations.
Preliminary solutions were obtained using SLOR
(successive line over-relaxation). A direct method
of solution has been applied in order to increase
computational efficiency. This method is described

in reference [24]. After the velocity potential is

‘determined, the flow field velocity components are
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determined from egquations 3.4, 3.5 and 3.6 or 3.7
for conventional and rotating wing flow fields,
respectively.

Next, the distribution of vorticity at a later time
(t+At), for conventional wings, or at the next
iteration for rotating wings, is determined from
the local velocity components and the previous
vorticity distribution. Convection of the
vorticity is determined from the local induced
velocities and the equations of motion, equations
3.9 or 3.11. Equation 3.9 represents the time
dependent form of the trajectory equations of
motion and is applicablé to the conventional wing
problem. Eguation 3.11 is.the spatial dependent
form of the trajectory equations and is used in the
rotating wing analysis. The integration of
equation 3.11 was found to be generally unstable.
An under-relaxation scheme was applied during
integration as a stabilizing factor. The induced
velocity components at the ith point vortex
location are calculated from the values of the
velocity potential at nodes of mesh cells affected
by the redistribution of the ith point vortex
circulation. This method of determining the ith
point vortex velocity is essentially a reverse

application of the modified "Cloud in Cell"
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technigue described in step 2 above. The method of
this step is applicable to conventional as well as
rotating wing wake analysis.

6) For conventional wing analysis, the flow field
velocity components and the geometry and
orientation of the nonlinear vortex wake are now
known at t+at. If the solution is to advance to a
later time and, therefore, a greater distance
downstream, control will return to step 2 and the
cycle will repeat. Otherwise, the solution
terminates at this step. At this point in the
computation, the rotating wing wake is evaluated
for convergence by examining the induced velocities
at the rotor blade location. If the wake has not
yet converged, the iteration counter is advanced
and control returns to step 2.

3.4 Accuracy, Stability

In the solution of non-planar vortex wake flow fields on
an Eulerian mesh, finite difference approximations to the
governing equations were evaluated. Due to the finite limits
on the Eulerian mesh spacing | AUJAZ4’0) and the utilization
of finite difference approximations, the "modeled" flow field
will differ from the "real" flow field by a truncation error.
This truncation error is determined by expanding the finite
difference equations in Taylor series and is related to the

mesh spacing, as expected. There will also be errors
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associated with the redistribution scheme and these must be
assessed. In this subsection, the magnitude of these errors
will be discussed. In addition, the stability restriction on
the time step At will be stated. See Appendix D.

The accuracy of equations 3.1-3.3 and 3.4-3.7 can be
determiﬁed easily from Taylor series expansions of the
velocity potential. The equations are found to be second
order accurate in 8y, A z.

In order to investigate the accuracy of the
redistribution of vorticity, two errors were evaluated:
first, the error associated with the induced velocity at the
ith point vortex location ‘due to the redistributed point
vortices of the ith point vortex; and seéond, the error in
calculating the velocity of the ith point vortex from values
of velocity at the four nearest mesh cell centroids. See
Appendix D. The errors are found to have the following forms
for induced velocity at (yi, z;) due to redistributing the

vorticity:

V¢ = O<A> 5 Aj:A?.—': a

and velocity from mesh cell information:

L +AV, +4 Vs 1y Vs - Vi 4 olty) + ol87)
Ay A2

(see notation of Appendix D).
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/
The stability limitation on AT is determined from the
equations of motion which are related to the vorticity

transport equation:

2T oY 22 (3.12)

The equations of motion are a multistep representation
of equation 3.12 and have related stability limitations [4].

The step size is chosen to satisfy:

3 | 4
84 MJ (3.13)
at ¢ MAK[VJ'K > Wi
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SECTION 4

COMPUTATIONAL EXPERIMENTS

Computational experiments using the numerical scheme
and finite difference equations of Section 3 were conducted
to determine the ability of the scheme to predict the
development of non-planar vortex wakes. In this section,
descriptions and results of three numerical applications are
discussed. The three applications include vortex wakes shed
from: 1) conventional wings represented by elliptical load
distributions; 2) conventional wings having load
‘distributions representative of deflected flaps; and 3)
helicoptef rotor blades. Included in this section are
experiments to investigate the effects of mesh variation and
initial input wake definitions. Graphic representations of
the vortex wake geometry, velocity profiles through the wake
and variations in the centroids of vorticity with time will
be presented.

4,1 Conventional Wings - Elliptical Load Distribution

4.1.1 Input Description

Consider for the first application an elliptically
loaded wing of extent -a £y £ a located at the plane z=0.
The strength of the vortex wake shed at the trailing edge
is related directly to the lifting line representation of
the bound circulation. For an elliptical load

distribution, the wing circulation is represented by:
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%
el = 13, (1-(4/a) ) (4.1)

where /7 is the circulation at the symmetry plane y=0.

Wa

See Figure 4.1.

If the non-dimensional convention of equation 2.11 is

introduced, equation 4.1 takes the dimensionless form:

¥ 2|4
/% (j*) = //-7*) (4.2)

The initial vortex wake is defined by one of two
methods: 1) constant point vortex circulation; or 2)
constant spacing between the point vortices. In each
method, the point vortex is located at the center of the
span increment represented by the point vortex. The
strengths and locations of the point vortices are

determined directly from equation 4.2 and equation 2.4

which has the form:

/7 *(o,yf,o) s =l yr) + fl,%.)

gtz (35 +yd) /2

(4.3)
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The extent of the initial vortex wake is represented
on the interval 0 £y €a. The flow field to the left of the
plan y=0 is represented by a mirror image of the right-hand
plane.

4.1.2 Input and Mesh Variations

Variations in the input vortex wake description are
obtained by varying the number of point vortices in the wake
or by changing the representation of the wake vorticity. The
vorticity in the wake can be represented by constant strength
point vortices or by point vortices equally spaced along the
semi-span. This subsection is presented in three parts.
First, results of vortex wakes represented by point vortices
of constant strength and constant spacing are presented.
Secondly, the vortex wake defined by constant strength
vortices using a different number of input point vortices
will be shown. In the third part, the effects of varying the
mesh spacing for the velocity calculation will be presented.
In each part, graphs illustrating the vortex wake geometry
and velocity profiles through the vortex wake will be
presented.

In this first part, the vortex wake is defined by two
methods: a) constant strength point vortices; and b) point
vortices of constant semi-span spacing with varying strength.
For both definitions, 120 points are used to define the wake.
The computational grid is 31x31 with an equal mesh spacing of
.05 in y and z. In the development of the rolled up vortex

wake, the large scale characteristics of the wake emerge as
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the wake rolls up. First, a reverse "hook" at the tip region
develops and second, the emergence of small scale structures
in the vortex ccre can be seen at larger times (Figure 4.2e).

The reverse "hook" is generated due to the scheme used
to redistribute the vorticity. At the tip region, the

vorticity in the last mesh cell will be redistributed beyond

the wake definition. (See figure below.)
- - . A
; { ‘q‘“\ﬁ?dkﬁvéué%/
Zutyad Dusthrbetvom ' | '/¢ﬁrwuxthv7'
—ﬁ.‘v ' // ’/\r_.
| ol
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This new distribution of vorticity will tend to retard
the rollup from the tip and will create the "hook" shown in
the results. The "hook" does not appear in the results of
Baker [4], but with the wake defined by 2,000 points, it is
not clear from the figures if the "hook" exists.

The second small scale structures are the results of the
vortex sheet rolling up on itself. This effect is dependent
on the mesh spacing and becomes more predominant as the mesh
is refined.

The velocity profiles for the v and w components of
velocity are shown in Figures 4.3 and 4.4. The velocity
profiles are shown at locations of constant y.and z for the v

and w velocity components, respectively. Initially, the v

velocity represents the velocity through the undistorted
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wake (Figure 4.3a) and at a later time (Figure 4.3b), the v
velocity through the vortex core is shown. s Initially, the w
velocity represents the velocity along the undistorted wake
(Figure 4.4a), while Figure 4.4b presents the w velocity
through the rolled up vortex core. A small variation in the
downwash near y=0 is shown in Figure 4.4a and is the result
of the sparse distribution of vorticity in this region.

The roliup of the vortex wake defined by equally spaced
point vortices is shown in Figure 4.5. 1Initially (Figures
4.5a, b, c), there are virtually no differences in the vortex
wake geometry from the geometry shown in Figure 4.2. The
rollup schedule is similar and the emergence of the "hook" at
the tip region is shown. Unlike the vortex wake defined by
‘constant strength point vortices, the present definition
results in instabilities in the vortex core at later times
(Figures 4.54, e, f).

In Figures 4.5d4, e, £, the large scale structure of the
vortex wake remains stable and is virtually identical to the
constant strength case. However, it is not clear that this
condition will persist. In Figure 4.5f, the interior
structure of the vortex core is beginning‘to disturb the
outer portion of the vortex sheet defining the vortex core.
At large times (t* ~ 1), the large scale structure of the
vortex wake does indeed remain stable and is shown in Figure
4.5g. Numerous small scale structures in the vortex core can

be seen. The velocity profiles for the v and w velocity
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components are shown in Figures 4.6 and 4.7. At t* = 0, the
v velocity profile (Figure 4.6a) is unchanged from that of
Figure 4.3a, but the irregularity in the w‘velocity profile
of Figure 4.4a has been smoothea out and does not appear in
Figure 4.7a. This is the result of a more uniform point
vortex spacing near y=0. The results of Figures 4.6b and
4.7b are similar to those shown previously (4.3b, 4.4Db) w%th
the exception that the velocities in the core are irregqular
due to the vortex instabilities within the vortex core.

The effects of varying the number of point vortices in
the definition of the vortex wake are presented next. For
this case, the overall dimensions of the computational mesh
are unaltered from the prévious results. Here, the vortex
wake is defined by 60 point vortices of constant strength.
The results are compared with those of Figure 4.2. The
vortex wake geometry is presented in Figure 4.8 and the
velocity profiles are shown in Figures 4.9 and 4.10. No
significant differences in the vortex wake geometry from that
shown in Figure 4.2 appear. Irregularities in the w velocity
component near y=0 can be seen in Figure 4.10a. Again, this
is due to the sparse definition of the vortex wake in that
region.

Variations in the mesh definition are obtained by
refining the mesh spacing. For this case, the mesh spacing
is decreased by a factor of 2 with the computational

boundaries remaining unchanged. The computational grid is
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now 61x61. The development of the vortex wake modeled by 120
constant strength point vortices is shown in Figure 4.11.

The solution is stopped at a time less than that shown in the
previous examples due to the length of computation and
reduced time step for this case. The predominant change in
the vortex wake is the rollup schedule. As the computational
mesh is refined, velocities more representative of the vortex
core are modeled and the rollup adjusts accordingly. Small
scale structures in the vortex core can be seen in Figures
4.11d and 4.1le. The velocity profiles are shown in Figures
4.12 and 4.13 and are representative of the increased
velocity associated with the refined mesh. 1In Figure 4.13a,
the local velocity profile between point vortices near y=0
can be seen.

The variation in the centroid of vorticity with time is
shown in Figure 4.14. The y location of the centroid is
determined by equation 2.9 with a similar expression for the
z location. The calculated centroid of vorticity is shown to
be in close agreement with the Betz predictions. The
vertical variation of the vortex centroid with time is shown
in Figure 4.15.

4.2 Conventional Wings - Deflected Flap Load Distribution

4.2.1 Input Description

As a second application, consider a load distribution
representing a deflected trailing edge flap configuration.

The flap model [4] representing the load distribution is
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separated into three sections along the semi-span.

functions representing the circulation distribution are

chosen and constrained by equating circulation value and

derivative at the section end points.

Then, from [4]:

o<y A

g At Vo ()2 700 (1LY

for, A 4 y ¢ B, the form is chosen:

/[u/jl= dﬁ";’r‘ éyz /47 #d

and B¢y €1:

fly=(r-99)"%

See Figure 4.16.

where:
Q= ;;Z(fﬁzr‘ﬁ3) -
(a-8)° (.4—5)2(5
R - | _ 3a (874)
ze (8-A)
e —3aAf - 244
Ly, 4 zad’ 4 bA°
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\
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(4.5)

(4.6)
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The expression for b in reference [4] has the form:

5 - 34 (B1A)

- A _
ze (8-4) z

which is a misprint. The expression should be of the form
shown previously.

Equations 4.4-4.6 are non-dimensionalized, using the
value of circulation /Zo . The constraints are chosen to be
A=.3, B=.7,’;°=1.4, ﬂ%=2.0. Equations 4.4-4.6, together with
equation 2.4, determine directly the circulation of the
vortex wake.

4.2.2 Input and Mesh Variations

Results obtained by varying the input description and
the mesh spacing for the simulated flap loading are'presented
in this subsection. The variations in the input description
are identical to those of Section 4.1.2 and are related to
the type of point vortex (constant strength or equally
spaced) and the number of point vortices used to define the
vortex wake. This subsection is presented in three parts.
First, the results of varying the point vortex description
are presented. Next, the results obtained from varying the
number of input point vortices will be shown and, finally,
results obtained by varying the mesh spacing will be

presented.
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Results obtained by varying the input point vortex
description are shown in Figures 4.17 through 4.22. In these
results 120 input point vortices are used to define the
vortex wake. The computational grid is 31x31 with equal mesh
spaéing of .05 in y and z. Figure 4.17 illustrates the
development of the vortex wake geﬁerated by the simulated
flap loading. 1In this figure, the vortex wake is represented
by three symbols with each symbol corresponding to a
different section of the input lcad distribution of Figure
4.16. The vortex wake quickly rolls up into three distinct
vortex cores (Figures 4.17a-4.17c). The development of the
reverse "hook" in the tip vortex core is shown in Figures
4.17b.and 4.17c. Here again, as in the results for the
elliptical loading, the "hook" is the result of smearing the
highly loaded tip region of the wake by the bilinear
interpolation scheme. See figure in text of section 4.1.2,
At later times, Figures 4.17d and 4.17e, the vortex cores
become more distinctive and the tip vortex begins to rotate
about the mid-span vortex. It is clear that the demarcation
point between the inboard and the mid-span vortex is
accurately represented in Figure 4.16. The demarcation point
between the mid-span vortex and the tip vortex varies from
that of Figure 4.16 insignificantly. Baker [4] has shown
similar results, but care must be taken in comparing the

results. It is not clear how Baker non-dimensionalized his

problem.
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Velocity profiles through the vortex wake are shown in
Figures 4.18 and 4.19. The components of velocity v and w
are shown at centroids of local vorticity defined by equation
2.9 for the y location and a similar expression for the z
location. The velocity profiles are shown for the initial
and final times of Figure 4.17.

The velocity profiles for the v component of velocity
are shown in Figure 4.18 and represent the velocity along
lines of constant y. Initially (Figure 4.18a), the velocity
through the undistorted vortex wake is shown and represents
the strength and sign of velocity in the three regions of the
wake. At a later time (Figuge 4.18b), the velocity profiles
through the vortex cores can be seen. The velocity profiles
for the w component of velocity are shown in Figures 4.19a
and 4.19b, and represent the downwash at positions of
constant z. The centroids of vorticity are represented in
the legend of each figure.

Development of the vortex wake defined by equally spaced
point vortices is shown in Figure 4.20. Here again, the wake
is represented by 130 point vortices and the grid is 31x31.
The overall structure shown varies only slightly from that
shown in Figure 4.17 and only in regions of the vortex cores
or on the wake between the large séale structures.

Variations in the position of the demarcation points are
shown. Velocity profiles are shown in Figures 4.21 and 4.22

and indicate insignificant variations from those shown in
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Figures 4.18 and 4.19. In comparing the predicted centroids
of vorticity (shown in the legend of each figure), only small
changes are shown.

The development of the vortex wake defined by 60
constant strength point vortices is shown in Figure 4.23.

The grid is 31x31. The large scale structures remain
invariant from the previous results and the positions of the
demarcation points are in closer agreement with the results
of Figure 4.17 than those shown in Figure 4.20. The
cross-over of the lines in the figures do not represent
instabilities, but are rather the result of the sparse
definition of the curved portions of the vortex wake.
Velocity profiles are shown in Figures 4.24 and 4.25 and
indicate insignificant variations from the results showﬂ
previously.

Results of the vortex wake development on a refined mesh
are shown in Figure 4.26. Here, the vortex wake is defined
by 130 constant strength point vortices on a grid equal to
61x61. The development of the wake is not shown for the
later times of the previous figures. The large scale
structure of the vortex wake is similar to that shown in the
previous results with the exception that the vortex cores are
more highly concentrated in Figure 4.26. This results from
the ability of the refined mesh to resolve the larger
velocities near the vortex core. Small scale structures can

be seen within the large scale structures of Figures 4.26c
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and 4.26d. Similar structures are presented in [4]. The
velocity profiles are shown in Figures 4.27 and 4.28, and
indicate the increased velocities associated with the smaller
point vortex core (on the order of the mesh spacing).

The variation in the spanwise position of the vortex
centroids with time for the simulated flap loading are shown
in Figure 4.29. 1Initially, the positions of the centroids
are in close agreement with those predicted by Donaldson
[23], but disagree significantly at later times. This trend
results from the inability of the Betz theory to predict the
interaction of several vortex structures within the wake.
The Betz theory only predicts the spanwise location of the
vortex centroids. The vertical variation of the vortex
centroids with time are shown in Figure 4.30.

4.3 Rotating Wings

4.3.1 Input Description

Consider the rotating wing load distribution illustrated
in Figure 4.31. This load distribution was taken from
Figure 2 in [19]. The load distribution is represented by
three distinct regions and will generate three concentrated
vortex cores [23]. The three regions of Figure 4.31 are
modeled mathematically as:

1 £ y*x £ A
RAICUE /z,*/a)// - @*—A)}Z‘ (.7

(A=1)

where nL(A) is chosen to be .0152.
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On the interval A € y* & B, a cubic equation is used to
describe the load distribution and has the form:
OVE s #2 5

[yl = 4 t4 oyt
y ,7 4 77 - (4.8)
where a, b, c, d are determined by matching value the of
circulation EL and the slope of the load distribution at

points A and B. The values become:

2(/i-1L) (A-B)

a
DET A
.. -3 (A+B)a
2
c = FAB a

d = /? 7L {;; £32(15-x3%{)
DET=  48(9A% £ 98%-8AB) — (8% 74%)

for B ¢y* £ 1, the form chosen is:
*

fulyy = (1-979)5
(4.9)
Here, the values are chosen to be: A =.8, B=.9, ﬂ:(A) =,0152
and fu (B)=.022.

The equations 4.7 through 4.9 are in dimensionless

forms. The shed vorticity for this load distribution can be

calculated directly from equation 2.4.
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4,3.2 Results

Preliminary results representing the non-planar vortex
wake generated by a rotating wing lqad distribution are
presented. The results are termed preliminary because the
locations of the point vortices in the wake have not fully
converged. However, in the results presented, the predicted
locations of the vortex wakes are in close agreement with
those of Miller [19]. The results represent two methods of
defining the near wake model. First, the near wake is
modeled by concentrated point vortices (similar to Miller's
method) and second, the near wake 1is represented by many
point vortices distributed on each vortex wake.

In both definitions, the computational grid is equal to
61x81 with equal mesh spacing of .025 in y and z. The
initial wake spacing in the near wake is determined from
equation 3.12 with C7.= 4,42x10~3 (Miller [19]) for both near
wake definitions.

Results obtained by modeling the near wake as point
vortices are shown in Figure 4.32. The relaxation
coefficient used in the numerical integration of equation 2.8
was chosen to be .1. The initial locations of the point
vortices are determined from the method of Section 2.1.3 and
the initial wake spacing (Figure 4.32a). The wake geometry
after ten and twenty iterations are shown in Figures 4.32b
and 4.32c, respectively. The figures indicate the rapid

contraction of the rotor wake and the increased flow through
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the rotor near the tip vortex location. The results for wake
iterations thirty and forty are shown in Figures 4.32d and
4,32e, respectively, and indicate further contraction of the
rotor wake. Results in Figure 4.32e are compared with the
results in Figure 2.0 of [19]. The results of this
investigation are in close agreement with those of Miller
[19], but are not considered fully converged.

Results obtained for a near wake model consisting of
many point vortices are shown in Figure 4.33. Here, the
relaxation ccefficient in the numerical integration of
equation 2.8 was chosen to be .2. This value was chosen to
reduce the computation time. Each vortex wake in the near
wake model is represented by thirty constant strength point
vortices. The initial wake spacing is equal to that
described above. 1Initially, the vortex wakes in the near
wake model are planar and undistorted (Figure 4.33a).
Development of the vortex wake geometries are shown in
Figures 4.33b through 4.33e and indicate the rapid rollup of
the tip and root vortices. The core definition of the vortex
just inboard of the tip vortex is not clearly defined, but
the circulatory flow associated with this vortex is clearly

shown.
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SECTION 5

SUMMARY

This report presents a computational method for the
prediction of non-planar vortex wake flow fields generated by
conventional and rotating wings. Results are shown for the
non-planar vortex wake geometry and the velocity fields
induced by the vortex wakes.

The numerical scheme has demonstrated the ability to
predict the vortex wake geometry for an elliptical load
distribution, a load distribution representing a deflected
flap configuration and a load distribution representative of
rotating wings.

Results for conventional wing indicate that, for a givén
load distribution, the large scale structures (the rolled up
vortex) are relatively insensitive to input variations
(constant strength or constant spaced point vortices) and
mesh refinement. The small scale structures are sensitive to
both input definitions and mesh refinement.

Preliminary results for the rotating wing wake show
promise, but further study is needed to provide a fully
converged wake.

Recommendations for further investigations include:

1) Evaluate alternative circulation redistribution

schemes.
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Utilize far field approximations to the bhoundary
condition in order to increase computational

efficiency.

Evaluate alternative integration schemes for the
spatially dependent forms of the trajectory

equations of motion.

Investigate the time dependent solution for the

rotating wing vortex wake.
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FIGURE 4.24a - SIMULATED FLAP LOADING --V VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 65 POINTS, GRID = 31x31,
t* = 0
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VU VELOCITY THROUGH UORTEX SHEET
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FIGURE 4.24b - SIMULATED FLAP LOADING -~ V VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 65 POINTS, GRID = 31x31,
t* = ,20659 :
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FIGURE 4.25a - SIMULATED FLAP LOADING - W VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 65 POINTS, GRID = 31x31,
t* = 0
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W VELOCITY
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FIGURE 4.25b - SIMULATED FLAP LOADING - W VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 65 POINTS, GRID = 31x31,
t* = ,20659
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VORTEX ROLLUP
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FIGURE 4,26 - SIMULATED FLAP LOADING - VORTEX WAKE GEOMETRY,
CONSTANT STRENGTH POINT VORTICES, 130 POINTS, GRID 61x61
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FIGURE 4.26 CONTINUED
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U VELOCITY THROUGH UORTEX SHEET
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FIGURE 4.,27a - SIMULATED FLAP LOADING - V VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 130 POINTS, GRID = 61x61,
t* = 0 :
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FIGURE 4.27b - SIMULATED FLAP LOADING - V VELOCITY PROFILE,
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t* = ,07749
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FIGURE 4.,28a - SIMULATED FLAP LOADING - W VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 130 POINTS, GRID = 61x61,
t* = 0
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FIGURE 4.28b - SIMULATED FLAP LOADING - W VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 130 POINTS, GRID = 61x61,
t* = ,07749
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LOAD DISTRIBUTION
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FIGURE 4.31 - WING LOADING AND SHED WAKE STRENGTH -
ROTATING WING LOADING
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FIGURE C.2 - FAR WAKE MODEL
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APPENDIX A

SINGLE VALUE RESTRICTIONS CN THE VELCCITY POTENTIAL

A.1 Jump Conditions

Development of the jump conditions across branch cuts for
a single vortex and a reflected pair of vortices will be
presented. The outlined procedure is directly applicable to N
vortex points.

In the complex plane (see Figure A), consider a point
vortex at the origin. Here z'=x+iy and is not to be confused
with the use of the variable z in the Trefftz plane.

If, then, the complex potential is written for the single

point vortex located at z'=0 in the form:

2= -/ /05 e, (A.1)
277
where /7is real and represents the strength of the vortex.

The flow is counterclockwise for /77 0.

‘
The representation of log (z) is written:

/aJ/ZQ: /.?j /Z’/ %z‘/elo /Z/fm) (A.2)
ms= 0, +/¢t2 .-
Here,‘/%yés the magnitude of the position vector and.é% is

the principal angle measured from the positive real axis.
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The complex potential can be expressed in terms of the

stream function and velocity potential in the form:
fz)= &L £ c# (A.3)

Then, from equations A.l1-A.3, the stream function and velocity

potential become:

9”:: jg;’ Jsz /f’,/

g = Al (é/o /ZFMJ/ m=QTt(fz... (n.4)
2
The stream function is included here for completeness and
will not be discussed further.

There follows from equation A.4:

95=: e é&p _ =0
= /7S 2T ) m/
& =  ép )

_ 7 =2 2t

Here, the value of the potential is increased by the strength
of the vortex after each cycle around a path encircling the
vortex. In order to keep 95 single valued each time,. 6}
passes through zero, a branch cut must be introduced and /r7
must be subtracted from the potential as é?p

passes from Gp: O 9p~'0+.
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The jump condition across the branch cut for this flow

becomes:
Uﬁ-ﬂ; @/f— g = =/ (A.5)
and is enforced all along the branch cut O£ g £ o0

Here, ¢+, gS' represent the values of the potential above and
below the branch cut, respectively.

The extension to a reflected pair of vortices at z'=ta
has the following form (see Figure A.2). Equation A.l for the

complex potential has the form:

Hz)= =L =z L7 fog (7 d)f /j/amj (2.6)

then for l, = z'-a (position vector from a to z')
/
rz = z'+a (position vector from -a to z')

and with the notation of equation A.2, the stream function and

velocity potential take on the form:

Ve 2 g (M//r/l)
= ;é’[(e,fzzfm)— (6, %Z/fn)] (B.7)
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Here,e,jéz are the position angles of the vortices and are
measured from the positive real axis. Again, the form for the
stream function is included for completeness.

Then, for the right vortex (z'=a), equation A.7 takes on

the values: , ¢,: ’g 6/ ) M =O
o7
4 z77) , M=/
¢5" 277 (29/7‘ /) 7
etc.

Here, again, after each cycle, the velocity potential is
increased by the vortex strength. However, this jump is only
applied on the branch cut extending from z'=a to + infinity

along the real axis. The jump condition becomes:

[#] = Qf’L—Qf“ ==/ Afyiw  (A.8)

7

For the left vortex, equation A.7 has the form:

B = ‘%é;: 4922 , M=o
I = —éé;_(/é§ f527z;) Y n</
etc.

After each cycle, the velocity potential is decreased by
the value of the vortex strength. The jump condition for the

.left vortex becomes:
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The jump conditions cancel identically on the ray ﬂfyfba
and vanish to the left of the left vortex. Between the
vortices, the jump conditions are determined by the left vortex
only and have the form of equation A.9.

The next section will discuss the application of the jump
conditions to the finite difference forms of the governing
equation.

A.2 Finite Difference and Non-dimensional Forms

Keeping in mind the results of the previous section and
writing equation 2.1 and 2.2b in finite difference forms, the
following can be found.

Because the jump condition is normal to the branch cut,
this condition will appear in the derivatives normal fo the
cut only, i.e., derivatives with respect to y are unchanged
by the jump conditions.

Consider two reflected vortex pairs, the strengths of
these pairs being /7 and /Z . Figure A.3 will help to
visualize the representation. The jump conditions for the four
vortices from equations A.8 and A.9 are represented by the step
functions on the figure. Again, notice that the jump
conditions cancel to the right of the right vortex. For the
positions indicated, k, k+1 and k-1, the second partial
derivative of the potential with respect to z in finite

.

difference form, becomes:

aez)h‘ = 5;) ktly, — 53) k-
Az |

gaa)n = Pusy -2k +&r~]
Az
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The bar is used here to indicate that the finite
differences are not taken along a reference line, i.e., a line
on which the values of the potential are unique. If, instead,
the finite differences are evaluated along the dashed line of

Figure A.3, a neﬁ form for Cézais obtained.

¢L+I—/z‘f;. "Z(Q("’H) * ¢K’—}
¢EZ')L: A?.z’

(A.10)

B, = Brv) — Chue PP~ +(”;-/z’)
e Azt att

In a similar way, the results at k+1 and k-1 are

obtained and have the forms:

@&)H‘: B2 -Zda:I tde 4 FZL (3.11)
42 At

(A.12)

Tuz) , = B ~2Pk-t +Pe-2 /7,
£Z)L { AiﬁL szz

The finite difference forms of the w velocity are found

similarly and have the forms:

w)h= —g——gh‘- Beri — S
2AR

(A.13)

W = _devt =7 -2 —Fey
2A €
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N

wWlert = _Friz - Iy

-— (A.14)
242 2a%
and
W) = dl( - dK"Z _ f7,
)tl Zaz '?5;—- (A.15)

Using the convention of eguation 2.11, the
non-dimensional forms of equation 2.12 and 2.13b, in finite

difference form, applicable at the branch cut becomej @J,&

¥ % v %
e - Zg?f'n +&r ke 4+ @ieh - 2é v + in;{b\
Agi A?‘L
277

¥ ¥*
r,-r,
Az*‘[ )

(A.16)

and

* ¥ ¥ X
w¥ = E it - e _ 77 (77777)

(A.17)
202¢ AN

For the rotating wing calculations, with the conventions
of equation 2.16, the non-dimensional forms of equations 2.17
and 2.18b, in finite difference form, applicable at the

branch cut becomej @J’,K
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¢ = ¥ + % ¥
I, & - 24/ 4 _ Dktr — 2 /Q/‘A—/ 3
ay** JEES =
x *
(A.18)
_L(r-1, )
AZ

and

X ¥
w¥ = dikh - giken _ (/475)
AL - (A.19)

Equations A.17 and A.19 are applicable to central
differencing over two mesh spaces. The forms of A.17 and
A.19 for differencing over one mesh cell become,

respectively.

¥ * *
w,jf&-‘ Bret! —Zk 277(//’7‘_/}3
azt az*

(A.20)

Wa,o _Kbtr- e _ A(F/f/;) (A.21)
ARX Az™*
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APPEITDIX B

REDISTRIBUTION OF POINT SINGULARITIES

The method outlined here is similar to the "CIC" method.
However, the singularity is redistributed to the centroid of
the four nearest cells ‘and not the node points (as developed
in {4] and [5]). 1In addition, the velocities of the vortex
markers are determined from only the mesh cells affected by
the singularity redistribution. The discussion of these two
techniques follows.

As outlined in Appendix A, the jump conditions for any
point vortex are applied to the mesh nodes adjacent to the
branch cut of the singularity. In order to accurately model
the branch cut, the point vortex must ;eside at the centroid
of the mesh cell. However, in reality, the point vortex will
rarely reside at the centroid of the mesh cell and,
therefore, must be redistributed to the centroids of the four
nearest mesh cells using bilinear interpolation. The branch
cuts are now extended from the newly redistributed vortex
markers and the appropriate jump conditions applied across
each branch cut. To illustrate this, consider a point vortex

X
2% E ]
of strength ,Z located at position (YC' zi). See Figure B.1.
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¥ o
Let.55)5{ be the normalized distances from the vortex

marker to the mesh node connecting the four nearest mesh
X

cells. Then, if the coordinates of this mesh point are (Xj,

<
ZK)’

5;= (g -y;)/ Ayk
5,5.:' ({?: - Z:L) /le;

¥ o
where Aﬁ’l A2 represent the mesh spacing.

Then,
Al = (45-531)(,'5 -52)
z‘z (.551L§9,><r:5T-<52)
As (45'5_'7)'( 5 #52) (B.1)

b4a = (.Sf@)(.ﬁ‘@)
*

and

The jump conditions of Appendix A can now be applied to the

four vortex markers.

The velocity of the point vortex is determined from the
velocity potential at the corner nodes of the four nearest
mesh cells. The v velocity is determined at the midpoints of

the horizontal (z = constant) sides of the mesh cells and the
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w velocity at the midpoints of the vertical (y = constant)
sides. 1In determining the velocity components, central
difference approximations (over one mesh spacing) to the
gradient of the velocity potential are evaluated. When
calculating the w velocity component, jump conditions must be
applied where appropriate (see equations A.20 and A.21).

The value of the velocity at the centroid is determined by

averaging the velocities on opposite sides.

Then, *

Vi = s [(dixr -diye-) 2 (0 'QZ’—:B] (.2)
Ay =

x
and similar expressions for V2, V3 and V4.

With the notation of equation A.20, the following forms

are found:

* x % ¥ X
Ws = G- Ghk-l 2z (r/7%)
az* az*
% * X * B.3
Ws = Liv— b~/ 2773 (8-3)
az* 42"

¥ % ®
with similar expressions for W7, W8, W9 and W10, see Figure
B.1l. Similar expressions hold for rotating wing analysis and

are determined from equation A.21.
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The results of equaticn B.3 yield:
le* = ,SW( A’?'fLLd$g)

v by
Wz_ﬁ. = S( L‘/; + W7") (B.4)
etc.

The velocities at the vortex marker are determined from

equations B.1l, B.2 and B.4 and become for this case:

*

Vi = A5 E Al 1 Vs At e

WL'¥ = A,w,x + AZU/Z* 7‘143 w5¥1/;04 {;4.)4¥ (B.6)

This method of singularity distribution and determination
of the vortex marker velocity is readily extended to N

singularities.
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APPENDIX C

ROTATING WING - NEAR ANMD FAR WAKE MODELS

In hover, a rotating wing generates a semi-infinite
helical wake originating at the rotor plane and extending
to negative infinity. The wake is divided into three parts:
1) the near wake or wakes inside the computational domain; 2)
the intermediate wake; and 3) the far wake. The effects of
the intermediate and far wakes on the velocity potential at
the computational boundaries will be discussed here. The
wake representation is illustrated in Figure C.1.

Intermediate Wake - The intermediate wake is modeled by

only a few.discrete point vortices instead of the many vortex
markers used in the near wake. The intermediate wake
consists of ten wakes separated by a wake spacing A'waith
each wake represented by three concentrated point vortices
with strength predicted by Betz's theory (Section 2.1.3).
Here, A%wrepresents the z spacing between similar vortex
centroids (tip vortices for instance) on the last two wakes
in the near wake representation. These three vortices in
each wake have the same y location as the corresponding
centroid at the last near wake. Using this representation,
the boundary condition for the velocity potential due to the

intermediate wake can be written (from equation 2.19):
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/@/#: er 77 4-9‘, (C.1)
NI

where NI is the sum of the concentrated point vortices and
the image vortices in the intermediate wake.

Far Wake - Beyond the intermediate wake, the influence
of each wake vortex is less dominant and an asymptotic
summation may be made. If the far wake was modeled as an
infinite number of terms similar to those of the intermediate
wake model, the velocity potential calculated by summing the
terms would be unbounded. While the velocity potential tends
to infinity for an infinite number of terms, the induced flow
field velocities for an infinite number of terms would tend
to a constant. Therefore, the far wake effects are modeled
using relations for the induced velocities. The velocity
potential can then be calculated by integrating from the
values of the induced velocities along the sides of the
computational domain.

Consider the model represented by Figure C.2. This
figure illustrates the far wake model and the corresponding
reflected images. The method that follows is for the tip
vortex and the reflected tip vortex. Extensions to the two
remaining pairs of vortices would follow directly.

Then,

&= 77/5“@ , Er= Tz-0Or

(C.2a, b)
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(C.3a, b)

wherelyé is the y coordinate of the tip vortex centroid in
the far wake and é% is the z coordinate of the nth shed wake
measured from the rotor plane.

The arguments of equations C.3a, b can be expanded to

4t «j?ge[/ i fé ,L/,ofj

" yhue s Sl 4 2oy )ty 2P et

Z- Zn =Zn €n

read:

When 6? is sufficiently small and the expansions of
equations C.3a, b are inserted into equations C.2a, b, the

following forms are found:

R =N +(,_f-)2+(,n_2’3]
+f (L [/f %én/;fé-f] .10

e F - 210 E 1
b (B )i £ ) 1)) e
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The potential of the nth vortex is represented by the

equation: ¢ = ____ (Q 6r~>
m['*{ﬁ" Zge? 22 — Zu?

Zn 2 Zn’ 2Zn?

T Sy ye? ¢ Zu f.._ﬁ‘—--J (c.5)

Here, terms less than /Aa"have been neglected

3

or

The velocity components are determined from equation C.5

as:

Ve od - _A [ 4yys /2y yn &
Y zﬂ[’g,;j?%—‘g‘,%t"

(C.6)
W= .é_-___/;, - 2 ﬁ __61222
<7

f’_i__i 4 _z,%:.] (C.7)

2n?

The most general expression for the velocity potential is
obtained from integrating equations C.6 and C.7 and has the

form:

2n? &*
- 2}!322, %&3 ,;_z%{_if_J-} Cr (c.9)
n

where CT. is an arbitrary constant of integration.
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Let Zn be measured from the blade such that z,=(NF . az.
Where fzyis the wake spacing and NF is the wake index. With

this convention, equation C.8 can be written in the form:

Al [ L Nkt it D - u2 5 L

A ‘Zn NF N

e
A%S w3 45%4 ANW 4 N
NFP NF Af'” .
The semi-infinite summations of equation C.9 are readily

available (see for example, [25]). Using the convention of

equation 2.16, equation C.9 has the dimensionless form:

4
¢Af fr Z ][_5_&*2*36 *z?‘__az*

2
42 _ p2% + -}+Cz (C.10)
a2y az¥” A-z*
£
where a = 7Vi
pA
oé
- ) e
/5
e |
c= 2w
75
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The velocity potential on the computational boundary due
to the far wake is then obtained by picking the constant of
integration at one point and applying formuia C.10. Eguation
C.10 represents the contribution to the boundary condition
for the tip vortex only. Similar forms of equation C.10 are
used to define the influence of the remaining two vortices in

the far wake model.
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APPENDIX D

NUMERICAL ERRORS

In this appendix, numerical errors introduced by the
bilinear interpolation scheme are evaluated. Two errors are
discussed. First, the induced velocity at the ith point
vortex location due to the circulation redistribution is
evaluated and second, the errors introduced in the
determination of the point vortex velocities using the
bilinear interpolation scheme are examined. In addition, the
stability restriction on t is presented.

Induced Velocity Due to Circulation Redistribution

Consider a single point vortex positioned within the

-area of four mesh cells. See figure below.

s 94
It
\
T -
rc' N
/ 4

The mesh cells are represented on the x-y plane and have
equal dimensions in x and y (A x=Ay= 8 ). The circulation
of the point vortex f? is redistributed to the centroids of
the four mesh cells using a bilinear interpolation scheme.
Let the coordinates of the point vortex from point 1 be § x,dy

in the x and y directions, respective.
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Then, from Appendix B.

/3:14//3' 1
[y =Az/C (D.1)
etc.
where 3y = ( 4 -8x)(4a-8y)
A, = Sx(A-53)
By = (8-8x) 8y
Re = dxby

If the previous figure is represented on the complex

’
plane (z=x+iy) with the origin at the point vortex location

(see figure below), Zm ‘

3| 4

— FBeo.

the coordinates of the mesh centroids become,

Point 1 (-38x,-8y)

Point 2 (A-SX, —Bg) (D.2)

Point 3 (-3x, A-ég)

Point 4 (A-5XJ 0‘53)

The flow field described in the above figure with point
vortices defined by equations D.1 and D.2 is represented by
the complex potential, F(Z). The complex potential has the

form:

(D.3)

/-729 = Z /j (‘Z —;w/»//) /7/} /Z—-/onr/z)
/Dj [2 /0/»7‘3) "_,_9 /o9 (2 /o/»/@
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The derivative of equation D.3 d%Z;E—defines the

velocity field and has the form:

46+ [ (o), M@)] 4/ Qam) [yt

aZ 77

— 4 [ (xfby) ~(y-a f,é_g)] _ /Z /,(X-Aﬁx)-t' [ y-ai'{y}t}
rst7 277 % p

277

then, for J&Qe_ u-iv and

(x+5x) + (y #53)

r, 2 = ()(—A+5x) '/-(5/-59) (D.4)
2 = téy)°

52 = (xtex)" #(y-41%

rp? = Lx-aq‘é'x) 74(9_4,4[]J

u and v become:

o= £ Q——{’) % (LJ) 5 L@J) (D.5)

T 2T T[T 27 (3
- L (g é'yJ
Y, (x;‘JU,L /% /X—A)rfo?,) . 6)
VT rm T2 7 y
— 11 [ xtsx) _ /_)_r_—_d_té'x)

277 G
where u,v are the velocity components in the x and y

directions, respectively.
We introduce, here, dimensionless space variables with
respect to A for equations D.5 and D.6. Dimensionless

variables are represented by an overbar.
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For eqguation D.1l:

. atA T
no. ad
etc
where 2, = ( /- 5-)‘)("5:3)
A, = &x (1-5y)
etc.

Terms of equation D.4 take the forms:
T = a2 (FFEx)E 4835 +y)
2 7-1 #86)°F 2 §48y)°

etc.

2

a2

Eﬁuations D.5 and D.6 become:

q = [ﬂ:.("‘.A._L(Q\"S_\;)—AAz(gf’S:jJ
2r ain? AR

424y (-1 + 8y) -AA4(51+5)J (B.7)

Az
cooa _,&(,4_25 (245 4 2T ( 51-5)
T\ p2e® Pl
+ 42""3 (7+8%) 4 4t 44 (%I~ JX)J (D.8)
VANEN 4t T

Equations D.7 and D.8 are used to evaluate the error in
the induced velocity. Ideally, the induced velocity at the
ith point vortex location should be identically zero (a point

vortex will induce zero velocity at its origin).
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Consider the figure below: 3 9, "
Porirts /—¢ are
mash c2]] teniroids Ps 7, 2,

Py

{ 2
If the mesh cell centroids are again represented by

points 1-4, then the following is found from equations D.7

and D.S8.
1) If the ith point vortex is at P,, the u and v
velocities are zero and no error is introduced.
2) If the ith point vortex is at P,or Py , theu

velocity is zero and the v velocity has error 0(d).
3) If the ith point vortex is at P4 or Pg , the v
velocity is zero and the u velocity has error 0(4).
4) Elsewhere in the mesh, the error on the u and v is
0(4).

Velocity at a Point Vortex

The velocity at a point vortex on the computational mesh
is determined by the velocities at the centroids of the four
nearest mesh cells. A bilinear interpolation scheme is used
to determine the point vortex velocity.

Consider, again, a point vortex on the xy plane and
located inside a region formed by the centroids of the four

nearest mesh cells. See figure below.
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3 4
T
l
A b A,
' —_— X
| hal 6y _
Ax 1K) A3
/ 2

Points 1-4 represent these centroids. The velocity at the

ith point vortex has the form:

AV, +A2 Vo 773 V3 +Aq Vg
Ay aE

The velocity components V1 thréugh V4 are the velocities
at points 1 through 4 and can be represented by Taylor
expansions for two variables (see for example, [25]). The
expansion for V1 is shown here:

Vs Ve -4, IV /<aV L/ IV 44’;/ bk é"/k’)
/] L 22_.;. 2 f / b axy Z*J‘y’z 2

3 2 52
iy M Fhi by D L Ghk'IY ;J”m
3 b “edy * T dg T oy ol

Similar expressions hold for V2, V3 and V4.
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After expansion and collecting terms, the following is

found:

ALv) 4 Aoty 4ty A4y Vy = Vi # % loxh-ht) S
ax ay IxX*

._Z a k:‘ k 2 ZV ,‘- V
7"2 /5’ ) )-Jé-y—l, fgL/Zé’AZ A/‘zb\’)aé_;_z

7‘5(2'42'&'2" v k'kz)

Therefore,

o3V
‘537

Alvy +halVs H05U, +Aa Uy = Vi +o(axt) olay)
A&Vog




