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ABSTRACT

Newly developed techniques for the computation of
non-planar vortex flow fields are presented. These
techniques are designed to track point vortices in an
incompressible, inviscid and irrotational fluid. In this
method, the point vortices are tracked by Lagrangian methods
while the flow field velocity, induced by the singularities,
is calculated on an Eulerian mesh. This technique is termed
the Eulerian-Lagrangian Method. Solutions to non-planar
vortex wake flow fields for conventional wings are obtained
by representing the flow field as a two-dimensional time
dependent problem. Calculations are conducted on the Trefftz
plane. Solutions to non-planar vortex wake flow fields for
rotating wings are obtained from a two-dimensional model of
the three-dimensional rotor wake. Calculations are conducted
on an Eulerian mesh for the rotating wing analysis. The
point vortices defining the vortex sheet are redistributed on
the Eulerian mesh by use of the "Cloud in Cell" technique.

Calculations representing conventional and rotating
wing load distributions are presented. In particular, the
rollup of the vortex wake generated by an elliptically loaded
wing and the wake for a load distribution simulating a wing
with a deflected flap are included. The rollup of the vortex
wake for a rotating wing in the hover condition is shown.
Results of computational experiments to determine the effects
of grid size, number of vortex points in the wake definition
and type of singularity representation (constant circulation
strength or constant incremental spacing along the span) are
presented.
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Results indicate the ability of the method to calculate
vortex flow fields consisting of single vortex wakes with one
or several rolled up vortex cores and flow fields consisting
of numerous wake representations, each containing several
vortex cores. Predicted locations of the rolled up vortex
cores are compared with the theoretical results of Betz and
have been found to be in close agreement for an elliptical
load distribution. Predictions of the location and structure
of the wake for a rotating wing in hover are compared and
contrasted with the findinas of Miller [19].

Thesis Supervisor: Dr. Earll M. Murman

Title: Professor of Aeronautical Engineering
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SECTION 1

INTRODUCTION

1.1 Importance of Non-planar Vortex Wake Analysis

The design and analysis of conventional and rotating wing

vehicles are restricted by inadequate means of computing the

development of non-planar vortex wakes. The majority of

design codes developed to date utilize a linear wake model to

represent the vortex wake generated by a lifting wing. In

reality, the vortex wake rolls up into concentrated vortex

cores within a short distance downstream of the trailing edge.

For an isolated wing and body, the induced velocity

distribution at the wing plane, except perhaps at the wing

tip, varies insignificantly due to the redistribution of the

vorticity in the rolled up wake. For this reason, the

development of wing-body codes has not been limited

significantly by the linear wake model. Unlike the wing-body

configuration, for many configurations, this is strictly not

so. Some important ones are.

1. Empennage: Vortex wakes shed from the wing propagate

downstream very near the empennage. For a transport

aircraft at cruise condition, the influence of the

non-planar vortex wake may not be significant due

to the location of the tip vortex core outboard

away from the horizontal tail. However, during

pitch-up and maneuver, when the wing is highly
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loaded, the wake quickly rolls up into concentrated

vortex cores which will be much closer to the

empennage. The non-planar vortex wake should be

modeled.

2. Canard-Wing: The vortex wake generated by a canard

wing will interact directly with the wing flow

field. The non-planar vortex wake should be

modeled to provide accurate loading distributions

on the wing.

3. Delta Wings: The flow at the leading edge of a delta

wing separates at moderate to high incidence and

develops into a vortex wake above the wing. The

non-planar wake model is essential in this

analysis.

4. Helicopter Rotors: Design of rotating wing vehicles

is significantly limited by accoustic and'vibration

constraints. Blade-vortex wake interaction

contributes the major influence on these constraints.

Non-planar vortex wake models are needed to

correctly predict this interaction.

Non-planar vortex wake models will enhance the analysis

of many aircraft configurations. For some configurations,

non-planar vortex wake models are a necessity. It is

therefore desirable to develop methodologies to treat

non-planar vortex wakes. This report presents such a method

for simplified problems and, hopefully, represents the first
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step in the development of a method for the above mentioned

configurations.

1.2 Previous Investigations

1.2.1 Vortex Flows and Conventional Wings

Analysis of the incompressible, inviscid interaction and

propagation of isolated singularities (point vortices) in an

otherwise irrotational flow field dates back to the early work

of Rosenhead [1] and has received considerable attention in the

past ten years. When the fluid is considered ideal, except

for isolated singularities, the theorems of Helmholtz and

Kelvin are applicable to a control surface convected with the

flow and encompassing the singularities. In accordance with

these theorems, the transport or convection of the vorticity

throughout the control surface is determined by the local fluid

velocity which, in turn, is induced in the flow field by the

point vortices. This approach was utilized by Rosenhead and

formed the foundation for a number of investigations that

followed. In this approach, with knowledge of the location and

circulation strengths of the point vortices, the velocity field

induced by the point singularities can be calculated by use of

the Biot-Savart relation. Since the flow is ideal and the

problem is linear, the solution of the flow field for any

number of vortex points may be determined through superimposing

the induced velo6ities of the individual singularities. A

point vortex does not induce a velocity on itself. The point

vortices are convected by the local flow field velocity. After
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which, at a short time interval later, a new induced flow

field emerges and the point vortices are convected again.

This point tracking or Langrangian method is applied to

convect the point vortices while the velocity field is

determined by summing the effects of the point vortices.

The work of Rosenhead and, more recently, Moore [2]

approximates a vortex wake by a finite number of point

vortices or vortex markers and determines the

three-dimensional rollup of the non-planar vortex wake

through a two-dimensional time dependent solution. This

two-dimensional plane, which is convected with the free

stream velocity, is called the Trefftz plane and remains

perpendicular to the free stream (see Figure 1.1). The

two-dimensional time dependent solution using the point

vortices and the Biot-Savart relation often resulted in

instabilities and chaotic vortex motion. The instabilities

stem from the singular nature of the vortex points. In a paper

by Chorin et al [3], the nature of the singularities was

investigated. In this paper, it was shown that if the point

vortices are smoothed out or given a finite radius, the

instabilities disappear and the vortex rollup is smooth.

The previously described full Lagrangian approach has

significant inherent computational burdens. In the above

method, for N point vortices, a number of operations of order

N2 are required to determine the flow field. This condition

puts a burden on the number of point vortices used to define
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the vortex sheet. Instead of isolating each point vortex,

increased computational efficiency can be achieved by grouping

a number of the point vortices together. After which, the

velocity field is then calculated. This concept leads to the

concept of "Vortex in Cell" or "Cloud in Cell" and suggests

the Eulerian-Lagrangian approach to the solution.

The Eulerian-Lagrangian approach, coupled with the

"Cloud in Cell" technique, has been employed by a number of

authors [see for example, [4,5,6]]. The solution to the

point vortex convection remains Lagrangian, but the velocity

field is determined from the stream function in an Eulerian

manner. The stream function is determined on the Eulerian

mesh as the solution to Poisson's equation. In this method,

the vorticity is redistributed to the mesh nodes using a

bilinear interpolation scheme. The Poisson equation for the

stream function can now be solved with the vorticity on the

right-hand side of the equation. The velocity field is

determined from the stream function and then bilinearly

interpolated to the point vortices. The point vortices can

now be convected. The redistribution scheme or "Cloud in

Cell" technique of this method accomplishes a result similar

to that of Chorin [3]. The point vortices are smoothed and

the instabilities are suppressed.

Baker [4] completed extensive investigations on the rollup

of vortex wakes generated by elliptically loaded wings and by

wing loadings simulating deflected flap configurations.
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Typically, in his investigations, Baker represented the

vortex wake by 2,000 point vortices. Instabilities are

shown in the tip vortex core and in some portions of the

vortex wake in some of the results. Christiansen [5]

demonstrated the utility of the technique through numerous

applications.

Three-dimensional calculations of the non-planar vortex

rollup problem are, for the most part, determined through the

use of panel methods. In general, the analysis is conducted to

more fully understand flow characteristics about wings and

wing-body combinations with leading edge vortex separation.

Johnson et al [71 used panel methods to model the development

of vortex structures shed from the leading edge of delta wings.

Here again, the vortex sheet is tracked in a Lagrangian fashion

and the influence of' the vortex singularities is included in

the calculation of the velocity field. Owing to the

complexity of the three-dimensional problem, the shed vortex

wake is parameterized and the vortex wake singularity

strengths are determined as part of the singularity solution.

The findings of Johnson [7] indicate that if the real flow

deviates significantly from the single vortex structure

predicted by the flow model, the analysis will generally tend

to fail.
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1.2.2 Rotating Wings

Applications of vortex methods to understand and,

consequently, alleviate the accoustical and vibratory patterns

associated with rotary wing vehicles have increased

significantly in the past five years. Extensive surveys of

numerical analysis'applied to rotating wings are presented in

[8] and [9] and are highlighted here for completeness.

Emphasis on the distorted wake analysis is presented here.

The development of the "semi-rigid" wake concept was

initiated by Miller [10] and marked the inception of the

distorted wake analysis. Previously, the undistorted wake was

represented by a semi-infinite cylinder emerging from the tips

of the rotor blades. This cylindrical model implies an

infinite number of blades and, therefore, will yield no

information about the periodic vortex wake known to exist.

Accoustical and vibratory analysis is not possible for the

cylindrical wake model, but the "semi-rigid" wake would provide

a wake model needed for this analysis.

Several authors [11-13] investigated further the

"semi-rigid" wake concept to represent the structure of the

rolled up tip vortex and to estimate the influence of the

vortex on the rotor blade loading. This model has fallen short

of representing the real wake. Large discrepancies between the

calculated and measured wake geometries have been shown by Ham

[13]. More accurate wake models were needed. Simplified

methods using vortex rings of constant circulation to represent
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the wake geometry were developed by Brady and Crimi [14].

Extensions of the vortex ring model and a method to include the

rollup of the two concentrated tip vortices was developed by

Levinsky [15].

A more complex method used to calculate the effects of the

wake geometry, which is free to distort under the influence of

the flow field, was developed by Landgrebe [16, 17]. For this

method, the vortex wake is represented by a finite number of

vortex "filaments" which convect and interact under the

influence of the local velocity field. However, in this

analysis, the wake is allowed to distort only after the wake

has been predescribed. Landgrebe [17] predescribes the wake as

being grouped into a strong rolled up tip vortex filament and

several weaker filaments representing the inboard portion of

the vortex wake. Knowledge of the predescribed location of

the vortex filaments is gained from experimental results and

will limit the analysis owing to this empiricism. Summa and

Clark [18] have represented the blade lifting surface through

the use of vortex lattice techniques. The wake is described

with techniques reported by Landgrebe.

At present, the work of Miller [19] is the only

investigation devoted to the free wake analysis of rotating

wing devices which is not restricted by the empiricisms

associated with the wake geometry. In this analysis, the wake

geometry is divided into three sections: the near wake; the

intermediate wake; and a far wake. The near wake consists of
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straight semi-infinite vortex filaments extending from the

rotor blade trailing edge. Using the Betz [22]

approximation, this wake is rolled up into three concentrated

vortices for the three regions of the load distribution as

shown in Figure 1.2. These three vortices, whose initial

position is given by the Betz approximation, are used to

represent the intermediate wake. For the Betz

approximations, the tip vortex is represented by the wake

rollup from the tip to the maximum circulation and a second

vortex is represented by the rollup from this maximum to the

point where the slope of the loading tends to zero. The root

vortex is represented by the remaining portion of the load

distribution. The far wake is represented by a semi-infinite

vortex cylinder for the three-dimensional analysis and by two

semi-infinite vortex wakes for the two-dimensional analysis

(see Figure 1.3).

A new distribution of the intermediate wake is

determined from the induced flow field velocities. Induced

flow field velocities at the rotor blade plane are then

calculated from the influence of the near wake, intermediate

wake and the far wake. The vortex wake shed from the blade

is then recalculated and the cycle repeats. The iterative

process continues until the induced velocities at the blade

location have reached convergence. In Miller's analysis [19]

and in predictions by Betz's theory, the emergence of a

mid-span vortex is shown. While experimental results clearly
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indicate a strong tip vortex, at present, the mid-span vortex

has not been measured. The effect of this vortex on the

blade loading at large distances may be small, but when the

vortex is in close proximity of the blade, significant errors

in the predicted blade loading may appear. Analysis to

verify the existence of the mid-span vortex is needed.

This survey is intended to bring to light the current

status of rotating wing wake analysis and to motivate the

current analysis in order that a better model of the vortex

wake may be obtained.

1.3 Current Investigation

The two-dimensional time dependent solution for the rollup

of non-planar vortex wakes with use of the existing

Eulerian-Lagrangian method [4, 5] is restricted in that an

extension of the analysis to three-dimensions is not

possible. In order to investigate the development of

non-planar vortex wakes in three-dimensions, the flow field

must be described by use of the velocity potential rather

than the stream function. While this paper does not deal

directly with the three-dimensional problem, the first step

in the analysis (two-dimensional time dependent problem for

conventional wings or two-dimensional steady state problem

for rotating wings) is presented.
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1.3.1 Vortex Flows and Conventional Wings

In this section, an introduction is given for the

problem solved in the pres.ent investigation. Detailed

development of the theoretical and numerical treatment is

given in Sections 2 and 3.

1) Governing Equations, Boundary Conditions, Initial

Conditions and Jump Conditions

In order to specify the problem, the governing

equations and boundary conditions must be clearly stated.

The calculations of the flow field are performed on the

Trefftz plane for an ideal fluid. The vorticity is

considered here to be scalar and corresponding to a

vorticity vector directed parallel to the free stream.

The vorticity vector is a doubly infinite line

vortex. The vortex wake is represented by distributing

point vortices along the width of the vortex wake on the

Trefftz plane. Everywhere in this investigation, a

vortex wake symmetric about the y=O plane is modeled.

Owing to this symmetry, calculations are necessary on

the Trefftz Plane for y> only. The influence of the

reflected wake is modeled through the boundary

conditions. Laplace's equation for the velocity

potential governs the flow field. Boundary conditions

on the velocity potential are determined from the flow

field induced by line vortices (see for example,

Batchelor [21]). Initially, the vorticity is
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distributed along a z = constant line and has extent 0±

y 4 1.

In contrast to the flow field solution using the

stream function, solutions obtained using the velocity

potential will be multivalued. (See for example [201)

In order to retain a unique solution, it is necessary to

construct branch cuts extending from the singularities

to + 00 and to apply appropriate jump conditions at this

cut. To illustrate this condition, consider the figure

below.

-Tv-

As illustrated in this figure, the jump conditions are

needed between the reflected vortices only (the jump

conditions cancel identically to the right of the right

vortex for a reflected pair of vortices). (Appendix A)

The velocity field is determined from the gradient of

the potential and the motion of the point vortices is

calculated from the trajectory equations of motion.

These topics are discussed fully in Section 2.1.

2) Singularity Redistribution and Velocity

Determination

For the solution of the velocity field on the

Eulerian mesh, the vorticity must be redistributed if it

is to be accurately included in the analysis. An



-25-

adaptation of the "Cloud in Cell" technique is used to

redistribute the vorticity. The vorticity is

redistributed to the centroids of the four nearest mesh

cells. See figure below.

A7 4 /7- 4  A3

174- 41~ # fit

New branch cuts are constructed for each of the newly

redistributed points. After the potential field is

solved, the velocity at the location of the point

vortex markers is determined using bilinear

interpolation from the velocities of the four nearest

mesh centroids. Only information from mesh cells

affected during the vorticity redistribution is used in

the velocity determination (see Appendix B).

3) Method

Solutions to the non-dimensional forms of the

governing equations, the boundary conditions and the

initial conditions are determined through the use of

finite difference techniques.

Initially, the input vorticity is distributed along

the z=O axis. The vorticity is redistributed to the

centroids of the mesh cells and the boundary conditions

determined from the new distribution of vorticity.
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The components of the flow field velocity are set

everywhere to zero at t=O. Laplace's equation for the

velocity potential is now replaced by a central

difference equation. Jump conditions for the new

distribution of vorticity are calculated and introduced

into the finite difference forms of the Laplace equation

and the w velocity equation. The difference equations

are solved using successive line.over-relaxation (SLOR)

or a direct solver for elliptic partial differential

equations [24]. The flow field velocities are

determined from the gradient of the potential. The

motion of the point vortices are calculated according to

the equations of motion, after which, the vorticity is

convected and the Trefftz plane is stepped forward

(downstream) in time. The new vortex wake is

redistributed and the cycle repeats. A flow chart is

shown in Figure 1.4.

1.3.2 Rotating Wings .

The solution to the non-planar vortex wake flow field

for rotating wings is obtained on an Eulerian mesh. Unlike

the two-dimensional time dependent problem for conventional

wings, we week the steady state solution to the flow field

for the rotating wing problem. By steady state, we mean that

the helical rotor wake below the rotor blade is invariant

with blade rotation for a given blade loading.
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In this analysis, as in the analysis for conventicnal

wings, the vortex wake or wakes on the computational plane

are represented by intersections of doubly infinite line

vortices with that plane. The time dependent solution for

conventional wing analysis (Trefftz plane representation) was

obtained by integrating along the vortex trajectories with

respect to time. In the steady state solution for rotating

wing flow fields, the wake geometry below the rotor blade is

obtained by integrating along the helical rotor wake with

respect to arc length. Consider a single point vortex

illustrated below.

WA-- Al---

If the location of A is known, the position of B can be

determined by integrating the trajectory equation of motion

along the helical path. This will be discussed further in

Section 2.1.2.

1) Governing Equations, Boundary Conditions, Initial

Conditions and Jump Conditions

Here, again, the flow of an ideal fluid is

investigated. The solution to the rotating wing flow
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field is obtained on a computational plane illustrated

in the figure below.

Vortex wakes representing the rotor blade and the

intersections of the helical rotor blade wake with the

computational plane are distributed on this plane. The

computational plane extends from just above the vortex

wake representing the rotor blade to negative infinity

below the rotor blade.

On this plane, three distinct regions representing

the helical rotor wake are modeled. The three regions

will be termed; the near wake, the intermediate wake and

the far wake. See figure below.

T k~rldok e'k
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The near wake represents the rotor blade and the

first four intersections of the helical rotor wake with

the computational plane. The computational mesh is

constructed on the computational plane and, in general,

will encompass the near wake only.

The intermediate wake is represented, initially, by

concentrated point vortices of strengths and locations

predicted by Betz [22] theory. The intermediate wake

represents the next ten intersections of the helical

wake with the computational plane. The far wake is

similar to the intermediate wake, but extends to -00.

The intermediate wake will generally be outside the

computational mesh and the far wake will always lie

outside the mesh. Boundary conditions for the near and

intermediate wakes are calculated in the usual way and

represent the influence of line vortices. The influence

of the far wake on the boundary conditions is modeled

using an asymptotic expansion over the length of the far

wake. See Figures 1.5 and 1.6. Further development of

the intermediate and far wake models can be found in

Appendix C.

Initially, the input vorticity on the computational

mesh will be distributed along lines of constant z or

axial distance. These distributions represent the near

wake. The spacing of this tiered structure (see Figure

1.7) is determined from the flow velocity through the
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rotor. Miller [19] determined that the solution was not

sensitive to the number of input wakes beyond a minimum

of four plus the blade representation. The flow field

velocities and the potential are set similarly to values

described before. These topics are discussed further in

Section 2.1.

2) Singularity Redistribution and Velocity Determination

The singularity redistribution technique and methods

for determining the velocities of the point vortices are

directly extended to N vortices and are exactly those

described in the previous section (also see Appendix B).

3) Method

A) Initially, the vorticity is input in the

previously described tier structure and represents

the shed wake for the rotor blade loading. The

vorticity in the wake is represented by point

vortices at the intersection points of the doubly

infinite line vortices with the computational

plane. The first or uppermost (z=0) wake

represents the blade. This first wake or blade

wake is considered fixed on the computational mesh

and does not rollup, but retains the signature of

the blade loading.

B) The vorticity is redistributed and the

boundary conditions calculated from the influence

of this and the intermediate and far wake
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vorticity. Jump conditions are calculated in the

usual way (Appendix A). Laplace's equation for the

velocity potential is again solved using SLOR or a

direct method [24] and the velocity field

calculated from the potential.

C) The induced velocities at the blade location,

z=O, are calculated and examined for convergence.

If the velocities have converged, the steady state

rotor wake flow field is known. If the induced

velocities have not converged, a new distribution

of vorticity is calculated and control returns to

B. The new distribution of vorticity in the near

wake below Ehe rotor blade is determined by

integrating along the helical vortex trajectories

from the fixed rotor blade location to each vortex

wake. For a two-bladed rotor, the first wake below

the rotor blade would be obtained by integrating

from 0 to 77, the second wake by integrating from 0

to Z17 and so forth. A flow chart is shown in

Figure 1.8.
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SECTION 2

FORMULATION OF PROBLEM

The two-dimensional flow field for an incompressible,

inviscid and irrotational (except for isolated vortex

singularities) fluid can be represented by a potential

function 9 . Here is the velocity potential and, for the

fluid described above, satisfies Laplace's equation

everywhere in the defined flow field. The velocity in the

flow field can be calculated directly as the gradient of the

potential.

When the problem is solved on a two-dimensional plane,

such as the Trefftz plane, the problem is thought of as a

boundary value problem. The boundary conditions are determined

uniquely from the vorticity distributed on the plane. The

continuous distribution of vorticity on the plane is often

represented by a finite number of point (line) vortices. This

representation creates a singularity problem which was not

present in the continuous definition of the vorticity. The

point vortices are branch points and branch cuts must be

extended from each singularity. Jump conditions are applied

across the cuts in order that the solution remain unique.

This section will present the development of the governing

equations, dimensionless forms of the equations and

restrictions on the potential to ensure a unique solution.



2.1 Coverning Eguations

2.1.1 Conventional Wings

For the two-dimensional, incompressible, inviscid fluid

flow under consideration, the governing equation can be

described by the Eulerian equations:

V O (2.1)

-~ c (2.2 a, b)

together with the boundary condition:

(2.3)

where I is the circulation of the ith point vortex and $. is

the angle from the positive y axis to the boundary point. (See

Figure 2.1) Here, the summation over N represents the

contributions of the point vortices on the computational

plane and the corresponding reflected image vortices.

The initial conditions for the vortex wake are

determined from the wing loading or circulation, / (y). If

we consider the wake vorticity to be given by P (t,y,z), then

for the continuous (non-discretized) problem, the initial

wake vorticity is given by:

Id

g(e I-r6
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For the numerical problem, this continuous vorticity

distribution is lumped into discrete vortex markers, each

designated by the index i where i=1,N and N is the number of

markers. The strength of each marker is:

S()--(2.4)

where = circulation of ith vortex in wake

= load distribution on lifting surface

= limits on span increment defining

= position of ith vortex y

The solution to equations 2.1-2.4 is termed the Eulerian

problem. Instead of solving for the transport of vorticity

on the Eulerian mesh, a discrete point or Lagrangian method

is utilized. In the Lagrangian method, the trajectory

equations of motion are solved to determine the convection of

the point vortices. They have the form:

V(J~f) WIy~ij (2.5a, b)

where yg, zg are the coordinates representing the ith

point vortex location. The solution to equations 2.1-2.5 is

termed the Eulerian-Lagrangian method and is the foundation

for this investigation.
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2.1.2 Potatineq Wings

The solution to vortex wakes of rotating wings is

calculated on a computational plane (Figure 1.5) and is

governed by equations 2.1 and 2.2. The time dependent

trajectory equations of equation 2.5 are not applicable to

the steady state solution for rotating wing flow fields. The

trajectory equations used in this steady state solution are

defined later in this subsection. The boundary conditions

and initial conditions differ from those for conventional

wings.

For rotating wings in the hover condition, a helical

vortex wake structure extends. from the rotor disk to z= -00 .

The wake near the rotor disk is represented by individual

vortex wakes, each composed of many vortex markers. The

remainder of the wake is approximated by the semi-infinite

vortex wake model (see Figure 1.6). The boundary condition

for the potential on the computational domain is calculated

by superimposing the effects of the individual wakes and the

semi-infinite vortex wake. The vortex wakes on the

computational mesh are represented by point vortices which

have the boundary condition of equation 2.3. The boundary

condition for the intermediate vortex wake has the form:

Z r 7(2.6)
where NI is the total number of point vortices in the

intermediate wake and the corresponding reflected image

vortices.
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The boundary condition for the far wake is developed in

Appendix C and is given by equation C.9.

As with the conventional wing, the rotor loading

distribution is discretized to give the strength of the wake

vortex markers. However, markers must be initially placed

not only at the rotor trailing edge, but also in wakes spaced

apart below the rotor.

The initial vortex wake definition on the computational mesh

is then:

J=

r1 )(2.7)

where the notation is that following equation 2.4 and At is

determined from the flow through the rotor.

Miller [19] has determined that the solution is

insensitive to the number of input wakes beyond a minimum of

four. In this analysis, four input wakes plus the blade

representation are modeled.
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The trajectory equations of motion are now spatially

dependent rather than time dependent as was shown in equation

2.5. Here, the trajectory equations of motion define the

helical trajectory of each vortex marker in the near wake

definition. The spatially dependent trajectory equations of

motion are obtained from equation 2.5 as follows:

Yet W ~

ddt
where dt represents the time for the next rotor blade

passage.

Then: y( YA"L

Where X is the blade separation angle in radians and is equal
to 7 for a two-bladed rotor, for instance.

The trajectory equations become:

(2.8)
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2.1.3 Betz Approximations

Theoretical methods to determine the location of fully

rolled up vortex structures generated by lifting wings were

derived by Betz [22] and elaborated on by Donaldson [23]. The

theory relates the loading on the wing to the fully developed

vortex structure by utilizing three conservation laws. The

conservation laws satisfied are: conservation of circulation;

invariant spanwise centroid of vorticity; and conservation of

the second moment of vorticity. Development of the theory is

outlined in Donaldson [23] and the results are shown here for

convenience.

Consider the load distribution shown in Figure 2.2. The

load distribution will generate three separate vortex cores.

We assume that all the vorticity shed outboard of point A

will roll up into the tip vortex, that the vorticity between

points A and B will roll up into the mid-span or flap vortex

and all vorticity between B and the aircraft symmetry plane,

y=O, will roll up into the inboard vortex.

The centroid of the rolled up vorticity for region A-B

is defined by:

w e 9 i s t e co o( 2 .9 )

where r.is the circulation of the wing loading.
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The total circulation of the vortex is equal to:

178A d%

(2.10)

These results will be used later to compare the centroids of

vorticity with those predicted by the current investigation.

2.2 Dimensionless Forms of the Equations

The dimensionless forms of the governing equations are

developed in this section. The non-dimensionalization of the

conventional wing and rotating wing problems are slightly

different, corresponding to the different notations used in

the respective literatures.

2.2.1 Conventional Wings

Dimensionless forms of the equations of Section 2.1 may

be obtained by introducing the following dimensionless

parameters:

(2.11)

V/W4 w'O T-
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where, a = semi-span

= circulation at wing root section

Wo = initial downwash at the semi-span location due

to a vortex of strength L at y=0.

Using the conventions of equation 2.11, the governing

equations take the form:

z 0(2.12)

J r.o (2.13 a, b)

On the boundary,

(2.14)

where N is the sum over the point vortices and the

corresponding reflected images. The trajectory equations for

the vortex markers become:

A~i:v%~/), q4.. W& *) (2.15)

Equations 2.12 and 2.13b will have different forms at

the branch cuts. See equations A.16 and A.17, Appendix A.
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2.2.2 Rotating Wings

Dimensionless forms of the equations of Section 2.1 can be

obtained by introducing the following dimensionless parameters:

j - (Z - O

*A 
JU W--s IZ

= rotary disk radius

y 4 e

= angular velocity

tA)O = tip speed.

With the convention of equation 2.16, the governing

equations become:

C (2.17)

(2.18 a, b)LAJ~e)0'

*K. xf/WO

where 9

(2.16)

it
-J* //.I,. z

* = )o 41C
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On the boundary for the near and intermediate wakes.

/
ZT17 z

(2.19)

g*~.
N f-Ni

where N+NI is the sum over the point vortices and the

corresponding reflected images in the near and intermediate

wakes.

On the boundary for the far wake.

- a - d 9
A_ 3eL

(2.20)

Here, the summation represents the summation over the three

point vortices defining the far wake and a, b, c are given in

equation C.10.

The trajectory equations of motion become:

t- -1 ' A (2.21)

where is the blade separation angle (radians).
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The variation by a constant between the dimensionless

forms of the governing equations for conventional and

rotating wings results from the dimensionless conventions for

each configuration.

The description of the dimensionless forms of equations

2.17 and 2.18b at the singularity branch cut will be

discussed in Section 2.3 and later in Section 3.1. See

equations A.18 and A.19, Appendix A.

2.3 Single Value Restrictions on the Velocity Potential

The distributed point vortices representing the vortex

wake are branch point singularities. When the flow field is

described by use of the velocity potential, the solution will

be non-unique unless restrictions on the potential are imposed.

After each full cycle around a vortex singularity, the

potential will either be increased or decreased by the strength

of the vortex singularity (the sign of the change depends on

the direction of the path and the direction of the circulatory

flow). For the potential to remain single valued, jump

conditions are included in the analysis to compensate for

this change in the potential. A summary of these conditions

follows. Full details are presented in Appendix A.
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The complex potential generated by a point vortex at z=O

can be written:

- ~ /~,(2.22)

where /' is strength of the circulatory flow, the "flow is

counterclockwise for gO.

The extension of equation 2.22 to a pair of vortices of

equal and opposite strengths with positions 2 = a is

represented by:

A< )Z (2.23)

then Z7= 2/fTp - 1 I7E/)

f /

where +70-are position angles from z '=t.to point z' and

m,n are integer values.

It follows from equation 2.23 that the velocity

potential will be an infinitely many valued function. In

order to investigate this further, we construct branch cuts

from each point vortex to + cO along the real axis. Then, if

a simple closed contour is constructed around each point

vortex and the closed contour is traversed in the

counterclockwise direction starting at the branch cut, the

following is found (see figure below).
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4-
~

As the traverse approaches 2 7T (m=l, n=l), the velocity

potential is decreased by on the segment -a y 0 due to

the left vortex and increased on the segment a S y f-v due

to the right vortex. Then, -the sum of these effects cancel

on a 1 y S +*0 and are due to the left vortex only on -a C y

a. In order that the velocity potential remains single

valued, the jump condition, ,9= o-- -~ must be

applied on the section -a y 5 a.

fall-:- e-)
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SECTION 3

NUMERICAL SCHEME

Solutions to the non-planar vortex wake flow fields are

obtained from the solutions of finite difference

approximations for the governing equations. In this

section, finite difference forms of the governing equations,

method of solution and accuracy of the method will be

discussed.

3.1 Finite Difference Forms

Finite difference forms of the governing equations

are evaluated on an Eulerian mesh. The mesh is to be

rectangular and have constant incremental spacing along the y

and z axes (i.e., A y=constant, &z=constant). The analysis

considers the vortex wake solutions to wings of span Z4 and

evaluates one half of the wake with the influence of the'

mirror image wake included in the boundary conditions.

3.1.1 Governing Equations

To obtain the velocity potential, a five-point

centered difference approximation is made to equation 2.1.

The equation is generally Laplace in form due to localized

vorticity. However, at the singularity branch cuts, the

equation has a Poisson form due to the jump conditions.

Equation 2.1 has the forms:
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7Z#A~J i'-e~i,~k. - fi-2~k.1g4-L-0 (3.4)

649-z

and

Ovi *
- ~4I j ffg..I

277
(3.2)Ft

wherer is the dimensionlessrei ktib
redistributed vorticity. The

the figure below.

/ 14

circulation of the

lifferencing is illustrated on

_ _ _ _ _ _ _ _ _ _ _ _ __ , AAo

A-/

Ji-/ JJ/
Equations 3.1 and 3.2 are dimensionless forms of

equation 2.1 and represent the flow field equations off and

on the branch cuts for non-rotating wings.

!!ws
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For rotatinq wing flow fields, equation 3.1 is applied

off the branch cut and the form near the branch cut is now:

7 (3.3)

The variation in the right-hand side of equations 3.2

and 3.3 originates from the dimensionless conventions of

equations 2.11 and 2.16.

The v and w components of the velocity at the mesh nodes

are determined using central difference approximations to the

gradient of the velocity potential. This central difference

is taken over two mesh cells. The calculation of the v

component of velocity will be indifferent to the existence of

the branch cuts. However, jump conditions must be applied at

the' cut when central differences of the velocity potential

with respect to z are calculated.

The difference equations for the flow field velocities

have the forms:

For conventional wings:

- (3.4)

(3.5)

z '
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At the branch cut, 3.5 becomes:

~j;k+1 ~ k-iwj.: r,, (3.6)

For rotating wing flow fields, equations 3.4 and 3.5

are unchanged and equation 3.6 has the form:

* 94 A-/ & ~-k

Development of the dimensionless forms of the equations

appropriate at the branch cut may be found in Appendix A.

The convection of the vortex markers throughout the flow

field is calculated from the trajectory equations of motion

2.15 and 2.21. The expressions are different for

conventional and rotating wing flow fields and will be

discussed separately.

Equation 2.15 may be written:

dy (3.8)

(3.7)-L 2t

(3.8)
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Equation 3.8 is then integrated over a small time

interval with the velocity held constant for this interval.

If the initial time is represented by n and the final time by

n+1, then:

!Ii 74

vi9iI

(3.9a)

and

7L 4~ w*h&J&~')

where v-*, w.* are the velocities

point vortex

(3.9b)

at the location of the

and g4 < MAX -I/V k

This forward Euler time integration scheme used by Baker has

been adopted without investigating further any other schemes.

V -VA Ir-f

14. *)If 
I

.7 -?g - V
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Equation 2.21 may be written:

dg - VX(3.10)
where I is the blade separation angle in radians. A similar

expression holds for z.

If equation 3.10 is integrated along the helical wake

over the blade separation angle, the following is found:

-+ 0(3.11)

where is considered constant and equal to the average

velocity between k and k+1,

V Wk4. Vi k-4- 4 V .\ /

The velocity of the point vortex is calculated from

information at only the nodes of mesh cells affected by the

redistribution of the point vortex. This is discussed

further in Sections 3.2 and 3.3.

Boundary conditions on the velocity potential are

calculated from the redistributed vorticity on the

computational mesh, plus, for rotating wing analysis, the

influence of the semi-infinite vortex wake represented by the

intermediate and far wake models. Baker [4] approximated the

boundary condition by lumping together neighboring point

vortices into local centroids and then calculating the boundary

condition using these centroids. This technique will greatly

reduce the computation time. However, in the present
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investigation, the boundary condition is calculated exactly

from the redistributed circulation in order to evaluate the

method.

The influence of the redistributed vorticity on the

boundary values of the potential is related to equations 2.14

and 2.19 for conventional and rotating wing flow fields,

respectively. The potential on the boundary is calculated

from the summed influence of the redistributed point (line)

vortices. The effect of the semi-infinite vortex wake is

represented by equations 2.19 and 2.20 or C.1 and C.10.

3.2 "Cloud in Cell" (CIC) Redistribution Scheme

In order to solve equations 3.1 and 3.3 with the

appropriate jump conditions across the branch cuts, the

point vortices representing the vortex wake must be

redistributed on the computational mesh. A modified version

of the method known as "CIC" is utilized to redistribute the

circulation of the point vortices.

In order to accurately model the branch cuts throughout

the computational mesh, the circulation of each point vortex

is redistributed to the centroid of the four nearest mesh

cells, rather than to the nearest mesh nodes [4, 5]. It

would be equally accurate to redistribute the circulation to

the mesh nodes, but the redistribution of circulation to the

nearest mesh cell centroids was chosen in order to model the

branch cut at equal distances from mesh nodes above and below

the cut. The method "area weights" the region encompassed by
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the four centroids and determines the amount of-circulation

to be applied at each centroid. Circulation is conserved

within a contour surrounding the four centroids.

The velocity at the point vortex is obtained in the

reverse of the circulation redistribution. See figure below.

344

/ Z

The velocity at the point vortex location is calculated from

information at only the nodes of mesh cells affected by the

redistribution of circulation. Because the circulation was

redistributed to the centroids of mesh cells, it is important

to first calculate the velocity at these centroids. The

velocity at the centroid can then be bilinearly interpolated

to the point vortex location.

The velocities at the center of each mesh cell edge are

calculated using central differences approximations of

equation 2.2a, b over one mesh cell. The velocities at the

centroids are taken to be the averages of the values at

opposing mesh edges. The centroid values are then bilinearly

interpolated to the'point vortex location. See Appendix B.
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3.3 Numerical Solution

This subsecti-on describes the methods and numerical

schemes used to solve the finite difference forms of the

governing equations. Flow charts describing the method of

solution for conventional and rotating wing flow fields

are shown in Figures 1.4 and 1.8, respectively.

Clarification between the methods for conventional wings and

rotating wings is presented when appropriate. The method is

summarized as follows:

1) Consider an array of N point vortices located at

coordinates (yg, zg) and distributed on the

computational mesh; the strength of each vortex

being f1 and representing the shed vorticity from

a lifting surface.. This strength is given by

equation 2.4 or 2.7. The point vorticity is

initially along lines of constant z and distributed

along this line in one of two ways: a) the vortex

wake is represented by equally spaced point

vortices with varying strength; or b) a

distribution of constant vortex strength (

constant) and unequal spacing is used. In either

case, the contour integral around the shed wake

remains constant. For conventional wing analysis,

a single vortex wake is input at z=O, 0 t y 5 a.

In the analysis of rotating wings, a minimum of

four vortex wakes is input, excluding the blade
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representation. Again, each wake is located on a

line of constant z, with the wake spacing (in z)

determined from the flow through the rotor

(momentum theory). For no variation in the

velocity across the wake, momentum theory provides:

7 (3.12)

where (i = and is the thrust

coefficient. See Figure 1.7. For both analyses,

the reflected vortex wake images (-a i y 5 0) are

excluded from the computational mesh and included

in the analysis mathematically. The point

vorticity contained in the vortex wake

representation is redistributed next.

2) The point vortex or circulation redistribution

scheme is obtained from a modified version of the

"Cloud in Cell" technique. Due to the singularity

branch cuts, the circulation is redistributed to

the mesh centroids, rather than the mesh nodes (as

in [4]). The jump conditions of the redistributed

circulation are represented by the right-hand side

of equations A.16-A.19. See Appendix A. The

influence of the redistributed vorticity on the

value of the velocity potential at the boundary can

then be calculated.
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3) The vorticity at the centroid of the mesh cells

affected by the redistribution is represented by

point vortices and the influence on the flow field

parameters calculated accordingly. The boundary

condition for the point vorticity on the mesh and

that represented by the reflected images is

calculated directly from equations 2.14 and 2.19

for conventional and rotating wing flow fields,

respectively. This represents the total

contribution to the boundary condition for

conventional wing analysis. However, for rotating

wing flow fields, the effect of the semi-infinite

helical wake below the mesh must be taken into

account. See Appendix C. Superposition of these

effects determines the boundary condition on the

velocity potential. Solutions to equations 3.1 and

3.2 or 3.3 are now obtainable.

4) Solutions to equations 3.1 and 3.2 or 3.3 are

determined. Iterative and noniterative (direct)

methods are available for solving the equations.

Preliminary solutions were obtained using SLOR

(successive line over-relaxation). A direct method

of solution has been applied in order to increase

computational efficiency. This method is described

in reference [24]. After the velocity potential is

determined, the flow field velocity components are
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determined from equations 3.4, 3.5 and 3.6 or 3.7

for conventional and rotating wing flow fields,

respectively.

5) Next, the distribution of vorticity at a later time

(t+At), for conventional wings, or at the next

iteration for rotating wings, is determined from

the local velocity components and the previous

vorticity distribution. Convection of the

vorticity is determined from the local induced

velocities and the equations of motion, equations

3.9 or 3.11. Equation 3.9 represents the time

dependent form of the trajectory equations of

motion and is applicable to the conventional wing

problem. Equation 3.11 is.the spatial dependent

form of the trajectory equations and is used in the

rotating wing analysis. The integration of

equation 3.11 was found to be generally unstable.

An under-relaxation scheme was applied during

integration as a stabilizing factor. The induced

velocity components at the ith point vortex

location are calculated from the values of the

velocity potential at nodes of mesh cells affected

by the redistribution of the ith point vortex

circulation. This method of determining the ith

point vortex velocity is essentially a reverse

application of the modified "Cloud in Cell"
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technique described in step 2 above. The method of

this step is applicable to conventional as well as

rotating wing wake analysis.

6) For conventional wing analysis, the flow field

velocity components and the geometry and

orientation of the nonlinear vortex wake are now

known at t+&t. If the solution is to advance to a

later time and, therefore, a greater distance

downstream, control will return to step 2 and the

cycle will repeat. Otherwise, the solution

terminates at this step. At this point in the

computation, the rotating wing wake is evaluated

for convergence by examining the induced velocities

at the rotor blade location. If the wake has not

yet converged, the iteration counter is advanced

and control returns to step 2.

3.4 Accuracy, Stability

In the solution of non-planar vortex wake flow fields on

an Eulerian mesh, finite difference approximations to the

governing equations were evaluated. Due to the finite limits

on the Eulerian mesh spacing ( AJj470) and the utilization

of finite difference approximations, the "modeled" flow field

will differ from the "real" flow field by a truncation error.

This truncation error is determined by expanding the finite

difference equations in Taylor series and is related to the

mesh spacing, as expected. There will also be errors
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associated with the redistribution scheme and these must be

assessed. In this subsection, the magnitude of these errors

will be discussed. In addition, the stability restriction on

the time step at will be stated. See Appendix D.

The accuracy of equations 3.1-3.3 and 3.4-3.7 can be

determined easily from Taylor series expansions of the

velocity potential. The equations are found to be second

order accurate in & y, 6 z.

In order to investigate the accuracy of the

redistribution of vorticity, two errors were evaluated:

first, the error associated with the induced velocity at the

ith point vortex location due to the redistributed point

vortices of the ith point vortex; and second, the error in

calculating the velocity of the ith point vortex from values

of velocity at the four nearest mesh cell centroids. See

Appendix D. The errors are fEound to have the following forms

for induced velocity at (yg, zg) due to redistributing the

vorticity:

and velocity from mesh cell information:

4 AV /4 43 J 11 Vi. IoAy) 1(9~

(see notation of Appendix D).
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The stability limitation on At is determined from the

equations of motion which are related to the vorticity

transport equation:

(3.12)

The equations of motion are a multistep representation

of equation 3.12 and have related stability limitations [4].

The step size is chosen to satisfy:

A

e iAK j(3.13)
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SECTION 4

COMPUTATIONAL EXPERIMENTS

Computational experiments using the numerical scheme

and finite difference equations of Section 3 were conducted

to determine the ability of the scheme to predict the

development of non-planar vortex wakes. In this section,

descriptions and results of three numerical applications are

discussed. The three applications include vortex wakes shed

from: 1) conventional wings represented by elliptical load

distributions; 2) conventional wings having load

distributions representative of deflected flaps; and 3)

helicopter rotor blades. Included in this section are

experiments to investigate the effects of mesh variation and

initial input wake definitions. Graphic representations of

the vortex wake geometry, velocity profiles through the wake

and variations in the centroids of vorticity with time will

be presented.

4.1 Conventional Wings - Elliptical Load Distribution

4.1.1 Input Description

Consider for the first application an elliptically

loaded wing of extent -a 5 y S a located at the plane z=O.

The strength of the vortex wake shed at the trailing edge

is related directly to the lifting line representation of

the bound circulation. For an elliptical load

distribution, the wing circulation is represented by:
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ro j- 'f"(t /. - (4.1)

where I is the circulation at the symmetry plane y=o.

See Figure 4.1.

If the non-dimensional convention of equation 2.11 is

introduced, equation 4.1 takes the dimensionless form:

(4.2)

The initial vortex wake is defined by one of two

methods: 1) constant point vortex circulation; or 2)

constant spacing between the point vortices. In each

method, the point vortex is located at the center of the

span increment represented by the point vortex. The

strengths and locations of the point vortices are

determined directly from equation 4.2 and equation 2.4

which has the form:

(4.3)
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The extent of the initial vortex wake is represented

on the interval 0 y .5a. The flow field to the left of the

plan y=O is represented by a mirror image of the right-hand

plane.

4.1.2 Input and Mesh Variations

Variations in the input vortex wake description are

obtained by varying the number of point vortices in the wake

or by changing the representation of the wake vorticity. The

vorticity in the wake can be represented by constant strength

point vortices or by point vortices equally spaced along the

semi-span. This subsection is presented in three parts.

First, results of vortex wakes represented by point vortices

of constant strength and constant spacing are presented.

Secondly, the vortex wake defined by constant strength

vortices using a different number of input point vortices

will be shown. In the third part, the effects of varying the

mesh spacing for the velocity calculation will be presented.

In each part, graphs illustrating the vortex wake geometry

and velocity profiles through the vortex wake will be

presented.

In this first part, the vortex wake is defined by two

methods: a) constant strength point vortices; and b) point

vortices of constant semi-span spacing with varying strength.

For both definitions, 120 points are used to define the wake.

The computational grid is 31x31 with an equal mesh spacing of

.05 in y and z. In the development of the rolled up vortex

wake, the large scale characteristics of the wake emerge as
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the wake rolls up. First, a reverse "hook" at the tip region

develops and second, the emergence of small scale structures

in the vortex core can be seen at larger times (Figure 4.2e).

The reverse "hook" is generated due to the scheme used

to redistribute the vorticity. At the tip region, the

vorticity in the last mesh cell will be redistributed beyond

the wake definition. (See figure below.)

This new distribution of vorticity will tend to retard

the rollup from the tip and will create the "hook" shown in

the results. The "hook" does not appear in the results of

Baker [4], but with the wake defined by 2,000 points, it is

not clear from the figures if the "hook" exists.

The second small scale structures are the results of the

vortex sheet rolling up on itself. This effect is dependent

on the mesh spacing and becomes more predominant as the mesh

is refined.

The velocity profiles for the v and w components of

velocity are shown in Figures 4.3 and 4.4. The velocity

profiles are shown at locations of constant y and z for the v

and w velocity components, respectively. Initially, the v

velocity represents the velocity through the undistorted
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wake (Figure 4.3a) and at a later time (Figure 4.3b), the v

velocity through the vortex core is shown. -Initially, the w

velocity represents the velocity along the undistorted wake

(Figure 4.4a), while Figure 4.4b presents the w velocity

through the rolled up vortex core. A small variation in the

downwash near y=O is shown in Figure 4.4a and is the result

of the sparse distribution of vorticity in this region.

The rollup of the vortex wake defined by equally spaced

point vortices is shown in Figure 4.5. Initially (Figures

4.5a, b, c), there are virtually no differences in the vortex

wake geometry from the geometry shown in Figure 4.2. The

rollup schedule is similar and the emergence of the "hook" at

the tip region is shown. Unlike the vortex wake defined by

constant strength point vortices, the present definition

results in instabilities in the vortex core at later times

(Figures 4.5d, e, f).

In Figures 4.5d, e, f, the large scale structure of the

vortex wake remains stable and is virtually identical to the

constant strength case. However, it is not clear that this

condition will persist. In Figure 4.5f, the interior

structure of the vortex core is beginning to disturb the

outer portion of the vortex sheet defining the vortex core.

At large times (t* ̂ 1), the large scale structure of the

vortex wake does indeed remain stable and is shown in Figure

4.5g. Numerous small scale structures in the vortex core can

be seen. The velocity profiles for the v and w velocity
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components are shown in Figures 4.6 and 4.'7. At t* = 0, the

v velocity profile (Figure 4.6a) is unchanged from that of

Figure 4.3a, but the irregularity in the w velocity profile

of Figure 4.4a has been smoothed out and does not appear in

Figure 4.7a. This is the result of a more uniform point

vortex spacing near y=O. The results of Figures 4.6b and

4.7b are similar to those shown previously (4.3b, 4.4b) with

the exception that the velocities in the core are irregular

due to the vortex instabilities within the vortex core.

The effects of varying the number of point vortices in

the definition of the vortex wake are presented next. For

this case, the overall dimensions of the computational mesh

are unaltered from the previous results. Here, the vortex

wake is defined by 60 point vortices of constant strength.

The results are compared with those of Figure 4.2. The

vortex wake geometry is presented in Figure 4.8 and the

velocity profiles are shown in Figures 4.9 and 4.10. No

significant differences in the vortex wake geometry from that

shown in Figure 4.2 appear. Irregularities in the w velocity

component near y=0 can be seen in Figure 4.10a. Again, this

is due to the sparse definition of the vortex wake in that

region.

Variations in the mesh definition are obtained by

refining the mesh spacing. For this case, the mesh spacing

is decreased by a factor of 2 with the computational

boundaries remaining unchanged. The computational grid is
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now 61x61. The development of the vortex wake modeled by 120

constant strength point vortices is shown in Figure 4.11.

The solution is stopped at a time less than that shown in the

previous examples due to the length of computation and

reduced time step for this case. The predominant change in

the vortex wake is the rollup schedule. As the computational

mesh is refined, velocities more representative of the vortex

core are modeled and the rollup adjusts accordingly. Small

scale structures in the vortex core can be seen in Figures

4.lld and 4.lle. The velocity profiles are shown in Figures

4.12 and 4.13 and are representative of the increased

velocity associated with the refined mesh. In Figure 4.13a,

the local velocity profile between point vortices near y=O

can be seen.

The variation in the centroid of vorticity iith time is

shown in Figure 4.14. The y location of the centroid is

determined by equation 2.9 with a similar expression for the

z location. The calculated centroid of vorticity is shown to

be in close agreement with the Betz predictions. The

vertical variation of the vortex centroid with time is shown

in Figure 4.15.

4.2 Conventional Wings - Deflected Flap Load Distribution

4.2.1 Input Description

As a second application, consider a load distribution

representing a deflected trailing edge flap configuration.

The flap model [4] representing the load distribution is
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separated into three sections along the semi-span. The

functions representing the circulation distribution are

chosen and constrained by equating circulation value and

derivative at the section end points. See Figure 4.16.

Then, from [4]:

G.) f 4a

17() /AZ ?1A-2./A -IW* (4.4)

for, A 4 y 4 B, the form is chosen:

and BSy -1:

(4.6)

where:

Zp =, -A

-/ 7zd44A)/

-- (
(a 46;F)

-/ 14 2

(4.5)

( / - 13 !) !/z
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The expression for b in reference [4] has the form:

6: 34(6*-A
ze(6&-;? z

which is a misprint. The expression should be of the form

shown previously.

Equations 4.4-4.6 are non-dimensionalized, using the

value of circulation Wo . The constraints are chosen to be

A=.3, B=.7, (W=1.4, 1o=2.0. Equations 4.4-4.6, together with

equation 2.4, determine directly the circulation of the

vortex wake.

4.2.2 Input and Mesh Variations

Results obtained by varying the input description and

the mesh spacing for the simulated flap loading are presented

in this subsection. The variations in the input description

are identical to those of Section 4.1.2 and are related to

the type of point vortex (constant strength or equally

spaced) and the number of point vortices used to define the

vortex wake. This subsection is presented in three parts.

First, the results of varying the point vortex description

are presented. Next, the results obtained from varying the

number of input point vortices will be shown and, finally,

results obtained by varying the mesh spacing will be

presented.
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Results obtained by varying the input point vortex

description are shown in Figures 4.17 through 4.22. In these

results 120 input point vortices are used to define the

vortex wake. The computational grid is 31x31 with equal mesh

spacing of .05 in y and z. Figure 4.17 illustrates the

development of the vortex wake generated by the simulated

flap loading. In this figure, the vortex wake is represented

by three symbols with each symbol corresponding to a

different section of the input load distribution of Figure

4.16. The vortex wake quickly rolls up into three distinct

vortex cores (Figures 4.17a-4.17c). The development of the

reverse "hook" in the tip vortex core is shown in Figures

4.17b and 4.17c. Here again, as in the results for the

elliptical loading, the "hook" is the result of smearing the

highly loaded tip region of the wake by the bilinear

interpolation scheme. See figure in text of section 4.1.2.

At later times, Figures 4.17d and 4.17e, the vortex cores

become more distinctive and the tip vortex begins to rotate

about the mid-span vortex. It is clear that the demarcation

point between the inboard and the mid-span vortex is

accurately represented in Figure 4.16. The demarcation point

between the mid-span vortex and the tip vortex varies from

that of Figure 4.16 insignificantly. Baker [4] has shown

similar results, but care must be taken in comparing the

results. It is not clear how Baker non-dimensionalized his

problem.
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Velocity profiles through the vortex wake are shown in

Figures 4.18 and 4.19. The components of velocity v and w

are shown at centroids of local vorticity defined by equation

2.9 for the y location and a similar expression for the z

location. The velocity profiles are shown for the initial

and final times of Figure 4.17.

The velocity profiles for the v component of velocity

are shown in Figure 4.18 and represent the velocity along

lines of constant y. Initially (Figure 4.18a), the velocity

through the undistorted vortex wake is shown and represents

the strength and sign of velocity in the three regions of the

wake. At a later time (Figure 4.18b), the velocity profiles

through the vortex cores can be seen. The velocity profiles

for the w component of velocity are shown in Figures 4.19a

and 4.19b, and represent the downwash at positions of

constant z. The centroids of vorticity are represented in

the legend of each figure.

Development of the vortex wake defined by equally spaced

point vortices is shown in Figure 4.20. Here again, the wake

is represented by 130 point vortices and the grid is 31x31.

The overall structure shown varies only slightly from that

shown in Figure 4.17 and only in regions of the vortex cores

or on the wake between the large scale structures.

Variations in the position of the demarcation points are

shown. Velocity profiles are shown in Figures 4.21 and 4.22

and indicate insignificant variations from those shown in
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Figrures 4.18 and 4.19. In comparing the predicted centroids

of vorticity (shown in the legend of each figure), only small

changes are shown.

The development of the vortex wake defined by 60

constant strength point vortices is shown in Figure 4.23.

The grid is 31x31. The large scale structures remain

invariant from the previous results and the positions of the

demarcation points are in closer agreement with the results

of Figure 4.17 than those shown in Figure 4.20. The

cross-over of the lines in the fiaures do not represent

instabilities, but are rather the result of the sparse

definition of the curved portions of the vortex wake.

Velocity profiles are shown in Figures 4.24 and 4.25 and

indicate insignificant variations from the results shown

previously.

Results of the vortex wake development on a refined mesh

are shown in Figure 4.26. Here, the vortex wake is defined

by 130 constant strength point vortices on a grid equal to

61x61. The development of the wake is not shown for the

later times of the previous figures. The large scale

structure of the vortex wake is similar to that shown in the

previous results with the exception that the vortex cores are

more highly concentrated in Figure 4.26. This results from

the ability of the refined mesh to resolve the larger

velocities near the vortex core. Small scale structures can

be seen within the large scale structures of Figures 4.26c
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and 4.26d. Similar structures are presented in [4]. The

velocity profiles are shown in Figures 4.27 and 4.28, and

indicate the increased velocities associated with the smaller

point vortex core (on the order of the mesh spacing).

The variation in the spanwise position of the vortex

centroids with time for the simulated flap loading are shown

in Figure 4.29. Initially, the positions of the centroids

are in close agreement with those predicted by Donaldson

[23], but disagree significantly at later times. This trend

results from the inability of the Betz theory to predict the

interaction of several vortex structures within the wake.

The Betz theory only predicts the spanwise location of the

vortex centroids. The vertical variation of the vortex

centroids with time are shown in Figure 4.30.

4.3 Rotating Wings

4.3.1 Input Description

Consider the rotating wing load distribution illustrated

in Figure 4.31. This load distribution was taken from

Figure 2 in [19]. The load distribution is represented by

three distinct regions and will generate three concentrated

vortex cores [23]. The three regions of Figure 4.31 are

modeled mathematically as:

.1 ( y* Z A
XL( A_ -, (4.7)

where fW(A) is chosen to be .0152.
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On the interval A Z y*4, B, a cubic equation is used to

describe the load distribution and has the form:

(4.8)

where a, b, c, d are determined by matching value the of

circulation W and the slope of the load distribution at

points A and B. The values become:

a z /E) (4
D ET A

b =1 - 3-- (A-~a~

JA0q 6aZ

J( -4 (6 A)
d =

for B 4-y* .45 1, the form chosen is:

(/ -f(4.9)

Here, the values are chosen to be: A =.8, B=.9, rZ (A) =.0152

and r (B)=.022.

The equations 4.7 through 4.9 are in dimensionless

forms. The shed vorticity for this load distribution can be

calculated directly from equation 2.4.
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4.3.2 Results

Preliminary results representing the non-planar vortex

wake generated by a rotating wing load distribution are

presented. The results are termed preliminary because the

locations of the point vortices in the wake have not fully

converged. However, in the results presented, the predicted

locations of the vortex wakes are in close agreement with

those of Miller [19]. The results represent two methods of

defining the near wake model. First, the near wake is

modeled by concentrated point vortices (similar to Miller's

method) and second, the near wake is represented by many

point vortices distributed on each vortex wake.

In both definitions, the computational grid is equal to

61x81 with equal mesh spacing of .025 in y and z. The

initial wake spacing in the near wake is determined from

equation 3.12 with C 4.42x10- 3 (Miller [19]) for both near

wake definitions.

Results obtained by modeling the near wake as point

vortices are shown in Figure 4.32. The relaxation

coefficient used in the numerical integration of equation 2.8

was chosen to be .1. The initial locations of the point

vortices are determined from the method of Section 2.1.3 and

the initial wake spacing (Figure 4.32a). The wake geometry

after ten and twenty iterations are shown in Figures 4.32b

and 4.32c, respectively. The figures indicate the rapid

contraction of the rotor wake and the increased flow through
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the rotor near the tip vortex location. The results for wake

iterations thirty and forty are shown in Figures 4.32d and

4.32e, respectively, and indicate further contraction of the

rotor wake. Results in Figure 4.32e are compared with the

results in Figure 2.0 of [19]. The results of this

investigation are in close agreement with those of Miller

[19], but are not considered fully converged.

Results obtained for a near wake model consisting of

many point vortices are shown in Figure 4.33. Here, the

relaxation coefficient in the numerical integration of

equation 2.8 was chosen to be .2. This value was chosen to

reduce the computation time. Each vortex wake in the near

wake model is represented by thirty constant strength point

vortices. The initial wake spacing is equal to that

described above. Initially, the vortex wakes in the near

wake model are planar and undistorted (Figure 4.33a).

Development of the vortex wake geometries are shown in

Figures 4.33b through 4.33e and indicate the rapid rollup of

the tip and root vortices. The core definition of the vortex

just inboard of the tip vortex is not clearly defined, but

the circulatory flow associated with this vortex is clearly

shown.
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SECTION 5

SUMMARY

This report presents a computational method for the

prediction of non-planar vortex wake flow fields generated by

conventional and rotating wings. Results are shown for the

non-planar vortex wake geometry and the velocity fields

induced by the vortex wakes.

The numerical scheme has demonstrated the ability to

predict the vortex wake geometry for an elliptical load

distribution, a load distribution representing a deflected

flap configuration and a load distribution representative of

rotating wings.

Results for conventional wing indicate that, for a given

load distribution, the large scale structures (the rolled up

vortex) are relatively insensitive to input variations

(constant strength or constant spaced point vortices) and

mesh refinement. The small scale structures are sensitive to

both input definitions and mesh refinement.

Preliminary results for the rotating wing wake show

promise, but further study is needed to provide a fully

converged wake.

Recommendations for further investigations include:

1) Evaluate alternative circulation redistribution

schemes.
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2) Utilize far field approximations to the boundary

condition in order to increase computational

efficiency.

3) Evaluate alternative integration schemes for the

spatially dependent forms of the trajectory

equations of motion.

4) Investigate the time dependent solution for the

rotating wing vortex wake.
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FIGURE 4.24a - SIMULATED FLAP LOADING -- V VELOCITY PROFILE,

CONSTANT STRENGTH POINT VORTICES, 65 POINTS, GRID = 31x31,
t* = 0
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FIGURE 4.24b - SIMULATED FLAP LOADING - V VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 65 POINTS, GRID = 31x31,
t* = .20659
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FIGURE 4.25a - SIMULATED FLAP LOADING - W VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 65 POINTS, GRID = 31x31,
t* = 0
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FIGURE 4.25b - SIMULATED FLAP LOADING - W VELOCITY PROFILE,

CONSTANT STRENGTH POINT VORTICES, 65 POINTS, GRID = 31x31,

t* = .20659
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V VELOCITY THROUGH VORTEX SHEET
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FIGURE 4.27a - SIMULATED FLAP LOADING - V VELOCITY PROFILE,
CONSTANT STRENGTH POINT VORTICES, 130 POINTS, GRID = 61x61,
t* = 0
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t* = 0
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FIGURE 4.31 - WING LOADING AND SHED WAKE STRENGTH -
ROTATING WING LOADING
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BRANCH CUT

FIGURE A.1 - COMPLEX PLANE REPRESENTATION FOR A

POINT VORTEX

BRANCH CUTS

- a

FIGURE A.2 - COMPLEX PLANE REPRESENTATION FOR A
PAIR OF REFLECTED VORTICES
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APPENDIX A

SINGLE VALUE RESTRICTIONS CN THE VELOCITY POTENTIAL

A.1 Jump Conditions

Development of the jump conditions across branch cuts for

a single vortex and a reflected pair of vortices will be

presented. The outlined procedure is directly applicable to N

vortex points.

In the complex plane (see Figure A), consider a point

vortex at the origin. Here z'=x+iy and is not to be confused

with the use of the variable z in the Trefftz plane.

If, then, the complex potential is written for the single

point vortex located at z'=0 in the form:

1/7

where P is real and represents the strength of the vortex.
The flow is counterclockwise for 0.

The representation of log (z) is written:

4~& = /~ /t6'),A' 70 0Z--7'l9 (A.2)

Here, /is the magnitude of the position vector and OP is

the principal angle measured from the positive real axis.
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The complex potential can be expressed in terms of the

stream function and velocity potential in the form:

Then, from equations A.1-A.3, the stream function and velocity

potential become:

The stream function is included here for completeness and

will not be discussed further.

There follows from equation A.4:

/7

Here, the value of the potential is increased by the strength

of the vortex after each cycle around a path encircling the

vortex. In order to keep 91 single valued each time,. O

passes through zero, a branch cut must be introduced and

must be subtracted from the potential as

passes from p-
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The jump condition across the branch cut for this flow

becomes:

(A.5)

and is enforced all along the branch cut O f J .

Here, , f represent the values of the potential above and

below the branch cut, respectively.

The extension to a reflected pair of vortices at z'=+a

has the following form (see Figure A.2). Equation A.1 for the

complex potential has the form:

(A.6)

then for

(/t77 -

= z'-a (position vector from a to z')

= z'+a (position vector from -a to z')

and with the notation of equation A.2, the stream function and

velocity potential take on the form:

Ye - g/ ,

m,n = 0, ±1, ±2, ±3 ....

Or7t_ 00' - -/-7T PI =
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Here,G,%792 are the position angles of the vortices and are

measured from the positive real axis. Again, the form for the

stream function is included for completeness.

Then, for the right vortex (z'=a), equation A.7 takes on

the values:

27l

etc.

Here, again, after each cycle, the velocity potential is

increased by the vortex strength. However, this jump is only

applied on the branch cut extending from z'=a to + infinity

along the real axis. The jump condition becomes:

(A.8)

For the left vortex, equation A.7 has the form:

7 rr
2P77-

etc.

After each cycle, the velocity potential is decreased by

the value of the vortex strength. The jump condition for the

.left vortex becomes:

o -/7 (A9
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The jump conditions cancel identically on the ray A

and vanish to the left of the left vortex. Between the

vortices, the jump conditions are determined by the left vortex

only and have the form of equation A.9.

The next section will discuss the application of the jump

conditions to the finite difference forms of the governing

equation.

A.2 Finite Difference and Non-dimensional Forms

Keeping in mind the results of the previous section and

writing equation 2.1 and 2.2b in finite difference forms, the

following can be found.

Because the jump condition is normal to the branch cut,

this condition will appear in the derivatives normal to the

cut only, i.e., derivatives with respect to y are unchanged

by the jump conditions.

Consider two reflected vortex pairs, the strengths of

these pairs being and 1 . Figure A.3 will help to

visualize the representation. The jump conditions for the four

vortices from equations A.8 and A.9 are represented by the step

functions on the figure. Again, notice that the jump

conditions cancel to the right of the right vortex. For the

positions indicated, k, k+1 and k-1, the second partial

derivative of the potential with respect to z in finite

difference form, becomes:

V. =

Z
---- ft

42(a .7 ) k- =
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The bar is used here to indicate that the finite

differences are noA taken along a reference line, i.e., a line

on which the values of the potential are unique. If, instead,

the finite differences are evaluated along the dashed line of

Figure A.3, a new form for O2Eis obtained.

-- z

- 2~de 7t~(A~f
(A.10)

In a similar way, the results at k+l and k-1 are

obtained and have the forms:

/7Z (A. 11)

g4z2r - - ~ ZO( ~ltz -I;
L~~Z

The finite difference forms of the w velocity are found

similarly and have the forms:

) 
.13I

2AZ (A. 13)

P-/'z -4-
Z4 Z-

(A.12)

q(zz) k- =

(A r
. .17-Oe4-1- =

z
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-Z

Za+

- _al - rz

(A. 14)

(A.15)

Using the convention of equation 2.11, the

non-dimensional forms of equation 2.12 and 2.13b, in finite

difference form, applicable at the branch cut become3

-o IC67~x ~- ~

z -77'

CO jK

)t-

(A.16)

and

') -- /
.. 7

7(4/

For the rotating wing calculations, with the conventions

of equation 2.16, the non-dimensional forms of equations 2.17

and 2.18b, in finite difference form, applicable at the

branch cut become 3 4'A.

and

(A.17)

4ix~~~z -
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z4~ /4:"

-I-

\A)

A-/

21 (A.18)

O4'k4 q ~jic~

(A.19)

Equations A.17 and A.19 are applicable to central

differencing over two mesh spaces. The forms of A.17 and

A.19 for differencing over one mesh cell become,

respectively.

(A.20)

(A.21)

(r / )

-1 '

and

WkA41L

,j4

-'k-
a"J'-A' 'k -

- Or ffz
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APPEUDIX B

REDISTRIBUTION OF POINT SINGULARITIES

The method outlined here is similar to the "CIC" method.

However, the singularity is redistributed to the centroid of

the four nearest cells'and not the node points (as developed

in [4] and [5]). In addition, the velocities of the vortex

markers are determined from only the mesh cells affected by

the singularity redistribution. The discussion of these two

techniques follows.

As outlined in Appendix A, the jump conditions for any

point vortex are applied to the mesh nodes adjacent to the

branch cut of the singularity. In order to accurately model

the branch cut, the point vortex must reside at the centroid

of the mesh cell. However, in reality, the point vortex will

rarely reside at the centroid of the mesh cell and,

therefore, must be redistributed to the centroids of the four

nearest mesh cells using bilinear interpolation. The branch

cuts are now extended from the newly redistributed vortex

markers and the appropriate jump conditions applied across

each branch cut. To illustrate this, consider a point vortex

of strength located at position (yg, zg). See Figure B.1.



-176-

Let be the normalized distances from the vortex

marker to the mesh node connecting the four nearest mesh

cells. Then, if the coordinates of this mesh point are (y-,

z ):

where d & represent the mesh spacing.

Then,

Al
-4.=(.5t p)#-c&

and

The jump conditions of Appendix A can now be applied to the

four vortex markers.

The velocity of the point vortex is determined from the

velocity potential at the corner nodes of the four nearest

mesh cells. The v velocity is determined at the midpoints of

the horizontal (z = constant) sides of the mesh cells and the
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w velocity at the midpoints of the vertical (y = constant)

sides. In determining the velocity components, central

difference approximations (over one mesh spacing) to the

gradient of the velocity potential are evaluated. When

calculating the w velocity component, jump conditions must be

applied where appropriate (see equations A.20 and A.21).

The value of the velocity at the centroid is determined by

averaging the velocities on opposite sides.

Then,

1 (B.2)

and similar expressions for V2, V3 and V4.

With the notation of equation A.20, the following forms

are found:

(B.3)
WA6 z(~ /7/,z

with similar expressions for W7, W8, W9 and W10, see Figure

B.1. Similar expressions hold for rotating wing analysis and

are determined from equation A.21.
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The results of equation B.3 yield:

Vil *1 1)e -t

, 4( 6' 4 '7) (B.4)

etc.

The velocities at the vortex marker are determined from

equations B.1, B.2 and B.4 and become for this case:

-I A0wz2 -43 V3 4

(We:A~,I A2Wz" +43s " 4 44 W4

(B.5)

(B.6)

This method of singularity distribution and determination

of the vortex marker velocity is readily extended to N

singularities.
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APPENDIX C

ROTATING WING - NEAR AND FAR WAKE MODELS

In hover, a rotating wing generates a semi-infinite

helical wake originating at the rotor plane and extending

to negative infinity. The wake is divided into three parts:

1) the near wake or wakes inside the computational domain; 2)

the intermediate wake; and 3) the far wake. The effects of

the intermediate and far wakes on the velocity potential at

the computational boundaries will be discussed here. The

wake representation is illustrated in Figure C.1.

Intermediate Wake - The intermediate wake is modeled by

only a few discrete point vortices instead of the many vortex

markers used in the near wake. The intermediate wake

consists of ten wakes separated by a wake spacing Aiwith

each wake represented by three concentrated point vortices

with strength predicted by Betz's theory (Section 2.1.3).

Here, 67.,represents the z spacing between similar vortex

centroids (tip vortices for instance) on the last two wakes

in the near wake representation. These three vortices in

each wake have the same y location as the corresponding

centroid at the last near wake. Using this representation,

the boundary condition for the velocity potential due to the

intermediate wake can be written (from equation 2.19):
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- =+(C.1)

where NI is the sum of the concentrated point vortices and

the image vortices in the intermediate wake.

Far Wake - Beyond the intermediate wake, the influence

of each wake vortex is less dominant and an asymptotic

summation may be made. If the far wake was modeled as an

infinite number of terms similar to those of the intermediate

wake model, the velocity potential calculated by summing the

terms would be unbounded. While the velocity potential tends

to infinity for an infinite number of terms, the induced flow

field velocities for an infinite number of terms would tend

to a constant. Therefore, the far wake effects are modeled

using relations for the induced velocities. The velocity

potential can then be calculated by integrating from the

values of the induced velocities along the sides of the

computational domain.

Consider the model represented by Figure C.2. This

figure illustrates the far wake model and the corresponding

reflected images. The method that follows is for the tip

vortex and the reflected tip vortex. Extensions to the two

remaining pairs of vortices would follow directly.

Then,

(C.2a, b)
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and

7i 7/(3

(C.3a, b)

where is the y coordinate of the tip vortex centroid in

the far wake and i; is the z coordinate of the nth shed wake

measured from the rotor plane.

The arguments of equations C.3a, b can be expanded to

read:

+ f - J .o.
and + 3_7 12 - A o0 j

4- PZ4i

When is sufficiently small and the expansions

equations C.3a, b are inserted into equations C.2a, b,

of

the

following forms are found:

t[L

~1 JZA

1~2

3

74& 6 /
4- -/ I?

39 20

~-ir
z

(C.4a)

(C. 4b)

+ -z-
:zn

,4
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The potential of the nth vortex is represented by the

equation:

or

zrr

2/ 2 2 z 3 2 4

_ _ Z(~

C.5)

Here, terms less than +have been neglected.

The velocity components are determined from equation C.5

as:

Z(/

(C.6)

(C.7)2 3

The most general expression for the velocity potential

obtained from integrating equations C.6 and C.7 and has the

form:

z

(C. 8)Ifl

where C- is an arbitrary constant of integration.

4777

Z ?e
4

j

Om



-183-

Let z be measured from the blade such that z =(NF &z.

Where Aztgis the wake spacing and NF is the wake index. With

this convention, equation C.8 can be written in the form:

4rfL9
Z7 -Ad--

NP

ZNN
3 ~ 3
3 Z.-A'

N C.9)

The semi-infinite summations of equation C.9 are readily

available (see for example, [25]). Using the convention of

equation 2.16, equation C.9 has the dimensionless form:

k 2

-4 ~7
:"*

t

(C. 10)

4? J

where a =

b=_
/C

'S

re 4e

Z/7 TZ
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The velocity potential on the computational boundary due

to the far wake is then obtained by picking the constant of

integration at one point and applying formula C.10. Equation

C.10 represents the contribution to the boundary condition

for the tip vortex only. Similar forms of equation C.10 are

used to define the influence of the remaining two vortices in

the far wake model.
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APPENDIX D

NUMERICAL ERRORS

In this appendix, numerical errors introduced by the

bilinear interpolation scheme are evaluated. Two errors are

discussed. First, the induced velocity at the ith point

vortex location due to the circulation redistribution is

evaluated and second, the errors introduced in the

determination of the point vortex velocities using the

bilinear interpolation scheme are examined. In addition, the

stability restriction on t is presented.

Induced Velocity.Due to Circulation Redistribution

Consider a single point vortex positioned within the

-area of four mesh cells. See figure below.

/

The mesh cells are represented on the x-y plane and have

equal dimensions in x and y (Ax= Ay= A ). The circulation

of the point vortex I is redistributed to the centroids of

the four mesh cells using a bilinear interpolation scheme.

Let the coordinates of the point vortex from point 1 be Sx,Sy

in the x and y directions, respective.
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Then, from Appendix B.

f: r. -

(D.1)

where A I

etc.

= ( A ~*IX

A 4 =SX 9

If the previous figure is represented on the complex

plane (z=x+iy) with the origin at the point vortex location

(see figure below),

e-

the coordinates of the mesh centroids become,

Point 1

Point 2

Point 3

Point 4

(- ~x, ~

(D.2)

The flow field described in the above figure with point

vortices defined by equations D.1 and D.2 is represented by

the complex potential, F(z). The complex potential has the

form:

R6)= -i l / (/ p) -P4 (pidd)
17 Zy 7 (D. 3)
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Thc derivative of equation D.3 4'/7gdefines the

velocity field and has the form:

dE- --EA' (X /Ex ) - E ( gf 6 E]
d2 z# pt

/
(1 eSX- I

27K

L5 (X-A EX) -=(-,a
z~r 17r

then, for Af= u-iv and

= (~+Sxi 2
~

rs2x

r2 4 ( Jx) 4 L 7

r4 2 4 -b4 (J
rn 2

u and v become:

ZTT r T Z71

z 7 r, z zar

/z1 ICY
zi (77-- .,L r4__ _

(D.4)

(D.5)

(D. 6)

where u,v are the velocity components in the x and y

directions, respectively.

We introduce, here, dimensionless space variables with

respect to Afor equations D.5 and D.6. Dimensionless

variables are represented by an overbar.

Ael6',v) -e"(;f -,d
2 77 r3 -I %of
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For equation D.1:

ZAjre

j1

where

oz4. ~

A

A=

etc.

Terms of equation D.4 take the forms:

r , 2 
- -=.

etc.

Equations D.5 and D.6 become:

v =z
27 92 Z

U~7 = :F.4
,a 3Z 4,

4 9A) +

(D.8)
- J

Equations D.7 and D.8 are used to evaluate the error in

the induced velocity. Ideally, the induced velocity at the

ith point vortex location should be identically zero (a point

vortex will induce zero velocity at its origin).

4 Z x~5X
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Consider the figure below:

r/ /

If the mesh cell centroids are again represented by

points 1-4, then the following is found from equations D.7

and D.8.

Veloc

1) If the ith point vortex is at P, , the u and v

velocities are zero and no error is introduced.

2) If the ith point vortex is at P. or P3 , the u

velocity is zero and the v velocity has error 0(b).

3) If the ith point vortex is at P4 or PS , the v

velocity is zero and the u velocity has error 0(d).

4) Elsewhere in the mesh, the error on the u and v is

0 ().

ity at a Point Vortex

The velocity at a point vortex on the computational mesh

is determined by the velocities at the centroids of the four

nearest mesh cells. A bilinear interpolation scheme is used

to determine the point vortex velocity.

Consider, again, a point vortex on the xy plane and

located inside a region formed by the centroids of the four

nearest mesh cells. See figure below.

~ T I 't I '
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1t
4

-*p. A~

1
Points 1-4 represent these centroids. The velocity at the

ith point vortex has the form:

T - _ A2 2 -/-~3 13 -A44I

The velocity components V1 through V4 are the velocities

at points 1 through 4 and can be represented by Taylor

expansions for two variables (see for example, [25]). The

expansion for V1 is shown here:

,/ VV 6dAt/ *z h k
d4; Y

3//fzy .. 3'Z4 34zY /)I IoVj (4i 4j

Similar expressions hold for V2, V3 and V4.

___ Z~ A,

r4K~4

_______________ _______A______
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After expansion and collecting terms, the following is

found:

Aw! // .4. A, 4 */ / t !4

7t 4 1y k,- k' 2)
746 (Z/14,2 A-AA42 4r)%&3

4XI

2'2 "' IkA 'DS V

Therefore,

Ve 4-o (AX)+ 01JALA v -4 v, + V4

14. ~' 5~


