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Abstract

Competition between network providers is believed to be a necessary condition for an ef-

ficient functioning Internet industry. It spurs technology innovation as network providers

compete to provide better quality and enhanced services; improving consumers' welfare

in the process. Given the impact of competition, it is important for policy makers to

understand how the institutional structures, interconnection agreements, market and

regulatory environment in the Internet affect it. This will help in crafting of policies

that enhance investments and deployment of new technologies in networks, foster devel-

opment of new applications by content providers as well as safeguard consumer interests.
This thesis investigates how access charges and market regulations affect competition,
and consequently technological investments and welfare.

The first part of this thesis investigates competition between network providers under

an interconnection agreement in which networks charge each other a reciprocal access

charge (in the presence of congestion) using a two-sided market framework. Primarily,
we look at how the access charge, congestion costs and two-sidedness of the market

features in the strategic decision that the network providers take into account in setting

their prices. In addition, we study how the access charge affects consumer enrollment
and consequently its effect on social welfare. In particular, we investigate whether the
current "bill and keep" practice employed in the Internet is an efficient interconnection
agreement.

The second part of the thesis studies network neutrality and its effects on competition

and network quality investments. Defining a neutral network as one in which network
providers only charge content providers connected to them and a non-neutral network as

one in which network providers are allowed to charge all content providers that deliver

content to the network's consumers, we investigate the effect of these different pricing

structures on platform investment patterns and consequently social welfare. Current

debate is composed of two camps: On one hand are content and application providers

who would like to see the Internet regulated and on the other are network providers

who would like it to stay de-regulated. The former claim that the price differentiation
by network providers, which is allowed under a de-regulated market, would not only

erect barriers to new entrants but would also reduce innovation by current content and



application providers. In contrast, network providers oppose such regulation on the

grounds that it will hinder investment in network infrastructure because they will have

no incentive to invest. The implications of net neutrality regulation on network provider

investment incentives, social welfare and market structure is not well understood. We

develop a competition model that aims to investigate the above economic issues under

both a regulated(neutral) and de-regulated(non-neutral regime). Again the competition

framework is based on two-sided markets.
Our competition model also contributes to the literature on two-sided markets by

considering competition in interconnected platforms (network providers are abstractly

viewed as platforms). Classical two sided markets usually consider closed platforms,
i.e., platform end users only benefit from subscribers to that platform. However, in

both our competition models, participants of one platform benefit from the presence

of participants on their platforms as well as from the off-net platforms (because of the

interconnection). In addition, we also consider investment decisions by the platforms,
by showing the mechanism by which investment decisions in interconnected platforms

are made.

Thesis Supervisor: Asuman E. Ozdaglar
Title: Associate Professor
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Chapter 1

Introduction

From its origin more than quarter of a century ago as a military research project, the

Internet has become a core component of our society. Businesses have moved part or

whole of their commercial activities online, communication and dissemination of infor-

mation is, almost by default, carried out through the Internet, and Internet applications

such as viral videos have permeated facets of everyday life. A special feature of the

Internet that makes it appealing to consumers and content providers, is its universal

connectivity which gives it a global outreach. A computer anywhere in the world can

potentially communicate with a server or another computer connected to the Internet.

In particular, content providers (CPs)' on one network are able to distribute their con-

tent to other networks, and consumers on the same network are able to access content

on other networks.

Internet connectivity is provided by Internet (network) backbone providers. In

the current market these consist of firms such as MCI/Worldcom, Sprint, AT&T, and

UUNET. Competition between network providers is seen as a necessary condition for

the efficient functioning and growth of the Internet industry [34]. Moreover, it also spurs

technology innovation as network providers compete to provide better quality and en-

hanced services [60]; improving consumers' welfare in the process. Given the impact of

competition, it is important for policy makers to understand how the institutional struc-

tures, interconnection agreements, market and regulatory environment in the Internet

'We shall use the terms content providers and websites interchangeably.



affect it. This will help in crafting policies that enhance investments and deployment

of new technologies in networks, foster development of new applications by content

providers as well as safeguard consumer interests. This thesis investigates the effect of

net-neutrality regulation and reciprocal access charges on competition. In particular we

study the effect of network neutrality on ISPs investment incentives and the effect of

access charges on welfare.

The first part of this thesis investigates competition between network providers under

an interconnection agreement in which networks charge each other a reciprocal access

charge. Primarily, we look at how the access charge features in the strategic factors that

the network providers 2 take into account in setting their prices. Moreover, we study how

the access charge affects consumer enrollment and social welfare.

The second part of the thesis analyzes how network neutrality regulation affects

competition and network quality investments. Currently competition between network

providers is de-regulated. However, content and application providers prefer to see the

Internet regulated. They claim that the price differentiation by network providers, which

is allowed under a de-regulated market, would not only erect barriers to new entrants but

would also reduce innovation by current content and application providers. In contrast,

network providers oppose such regulation on the grounds that it will hinder investment

in network infrastructure because they will have no incentive to invest. With a few

exceptions current literature lacks systematic quantitative models for understanding the

implications of such regulation on network provider investment incentives, social welfare

and market structure. In the second part of the thesis we develop a competition model

that aims to investigate the above economic issues under both a regulated(neutral) and

de-regulated(non-neutral) regime.

2We use network providers, Internet backbone providers, ISPs, and broadband access providers
interchangeably.



1.1 Competition in Interconnected Internet Platforms

Since the commercialization of the Internet industry, network backbone operators have

been competing with each other to offer connection services to both consumers and

content providers. However, in order to provide universal Internet connectivity, backbone

providers usually enter into interconnection agreements with each other. There are

several types of such agreements, see Bailey [4], but a common pricing agreement that

is carried out between backbones is a type of interconnection agreement called Bill and

Keep peering. In this type of agreement the two participating backbones agree to handle

each others traffic at no cost, i.e., they do not charge each other access charges.

In the first part of this thesis we use a two-sided market framework to study price

competition between two interconnected Internet backbones in the presence of congestion

costs and an interconnection agreement that allows reciprocal access charges. A two-

sided market' is one where two groups of agents interact with each other through an

intermediary known as a platform [37, 50]. This type of market is characterized by

cross group externalities which can be positive or negative. More specifically, if value is

created when the two groups interact then the externality is positive and both groups

prefer there to be more of the other group. An example of a two-sided market, in which

value is created when the two groups interact, is the credit card market. The credit

card issuing company is the platform while the merchants and the customers form the

group of agents. The more customers that hold a particular card the more merchants

will want to serve that card and vice versa.

When there is value generated by a consumer and content provider interaction, more

usage of the Internet by consumers and more posting of content by content providers is

preferred by the society. Indeed, the Internet can be considered as a platform, through

which consumers and content providers interact; the utility of being connected to the

Internet increases for the consumers as the number of content providers increases and

vice versa. Thus, the Internet is subject to cross-group externalities and can be viewed

3Alternative definition: A market is two-sided if a platform can affect the volume of transactions

by charging more to one side of the market and reducing the price paid by the other side by an equal

amount, see Tirole and Rochet [48].



as a two-sided market. But increasing Internet usage means that congestion in the

networks increase.

The prices offered by network providers to both content providers and consumers

determines their subscriptions, the volume of traffic generated in the Internet, and con-

sequently the level of congestion. The different network providers would like to offer

services at prices that maximize their profits taking into account congestion effects and

access charges. Key questions that arise in this scenario are;

1. How do competing network providers set their prices in the presence of access

charges4 and congestion cost so as to maximize profits? What strategic factors do

they consider ?

2. How does competition affect consumer enrollment vis a vis enrollment at a social

optimum, where a social optimum is defined as the allocation to internet backbones

of consumers by a social planner?

3. What role do access charges play? More specifically does bill and keep peering

maximize social welfare?

To answer the above questions we develop a stylized game-theoretic model where net-

work providers are represented as profit maximizing two-sided interconnected platforms

which compete in prices for both websites and consumers. While there is much work

on competition models between two-sided platforms (see for example, [37, 45, 23, 50]),

existing work does not address interconnection between platforms, access charges and

congestion effects together. In this thesis we consider a model of platform competition

that addresses these three effects in tandem. Moreover, existing work on access charges

in interconnected networks in the telecommunications industry seem to advocate Bill

and Keep peering, see [9, 15, 61 as a suitable interconnection agreement. Our objective

is to provide an endogenous model of oligopoly competition that helps understand the

pricing strategy employed by the platforms, how this affects consumer enrollment as

4Access charges are also referred to as terminal fees in the literature. As the name suggests these are
charges levied by a terminating network upon a another network which tries to access its subscribers.



well as investigate the effects of the access charge on welfare; specifically we look into

whether Bill and Keep is welfare maximizing.

Our model consists of two interconnected platforms, a mass of websites, and a mass

of consumers. Platforms provide connection services to consumers and websites and

charge transaction prices to both. Moreover, they are interconnected and charge each

other a non-negative reciprocal access fee, a, per transaction. Consumers face convex

congestion costs in form of latency costs when they join a platform. Consumer demand

is elastic while each website has an inelastic demand with a reservation utility v. For

simplicity, we assume that v is high enough such that the website market is covered. In

our model, platforms play a two-stage game. Assuming an exogenously set access price,

a, they pick transaction prices for both consumers and websites in the first stage. In

the second stage, the websites and consumers simultaneously determine which platforms

to locate to according to a Hotelling and Wardrop Equilibria, which will be defined in

Chapter 2. Our framework is similar to the Laffont et al. [34] baseline model but it

incorporates a more realistic assumption of congestion costs faced by consumers which

the previous work does not consider.

1.2 Investments in Two-Sided Markets and the Net

Neutrality Debate

The second part of the thesis focuses on net neutrality and its concomitant issues. Since

2005, when the Federal Communications Commission (FCC) changed the classification

of Internet transmissions from "telecommunication services" to "information services,"

Internet Service Providers (ISPs) are no longer bound by the non-discrimination policies

in place for the telecommunications industry, see [13]. This has led to the so called

net neutrality debate. While there is no standard definition of what a net neutral

policy is, it is widely viewed as a policy that mandates broadband access providers 5 to

provide open-access, preventing them from any form of discrimination against Content

Providers (CPs) or traffic flowing across their links. Content and application providers

'Used interchangeably with ISPs.



have coalesced together to form a lobby whose aim is to maintain the non-discrimination

policy through net neutrality regulation. There are three main themes that net neutrality

regulation seeks to enforce, see [57, 20]. These are:

(a) Broadband access providers should transmit all Internet packets without discrim-

ination.

(b) Content and application providers should not have to pay off-net broadband access

providers termination (access) fees for delivering content to end users, i.e., they do

not have to pay any other network provider other than the one they are directly

connected to.

(c) Broadband access providers should not vertically integrate into applications and

contents.

To understand the effects of a net neutral policy demands a more precise clarification

of the theme that the policy addresses. In this work, we focus on the second theme, i.e.,

whether broadband access providers should be allowed to charge access fees to content

providers who are not directly connected to them. Under current practice, ISPs charge

only CPs who are directly connected to them. Looking at net neutrality from a pricing

perspective raises the question of what limits, if any, should be placed on ISPs pricing

policies. Explicitly, should ISPs be allowed to charge off-network' CPs who want to

deliver content to consumers or should the status quo remain (and be mandated by

law)?

Net neutrality proponents (who are mostly composed of content/application providers)

argue that the non-discrimination principle has been responsible for the explosive inno-

vation in Internet applications that is seen today. They argue that if network providers

were to charge content/application providers for accessing end users this would reduce

investment incentives for content providers, see [31, 57]. Moreover, they argue that net-

work access providers will have market power due their sole access to subscribers and

therefore the access fees will be high, increasing the barriers of entry and resulting in a

more concentrated content provider market, [20].

6These refers to CPs who are not directly connected to the ISP.



On the other hand the opponents (network providers) maintain that to meet the traf-

fic needs of the content/application providers they need to make substantial investments

in the network infrastructure which they cannot recover from consumers and/or content

providers who directly connect to them. In order to attract consumers and content

providers to their networks, network providers generally set low access fees which are

lower than the average communication costs [31]. Whilst content providers are able to

justify their investments from advertising sales, network providers argue that they have

no such revenue streams. This argument is perhaps best exemplified by the former CEO

of AT&T, Ed Whitacre, who made the following claim in a "Business Week" interview

regarding CPs: "Now what they would like to do is use my pipes free, but I ain't going to

let them do that because we have spent this capital and we have to have a return on it.

So there's going to have to be some mechanism for these people who use these pipes to

pay for the portion they're using", see [633. The upshot of the above argument is that

if network access providers cannot charge for the last-mile broadband they will not get

enough funds to invest in the network quality. This, they argue, causes network quality

to degrade leading to less user demand and consequently to less investments by both

content providers and network providers, [29, 30].

Unfortunately, the above debate has mostly been of a qualitative nature, see for

example [20, 57, 64, 66, 21, 25]: With some notable exceptions notwithstanding, see for

example [39, 16], not much formal economic analysis has been done to shed light on the

validity, or lack thereof, of these arguments. This work develops a game theoretic model

based on a two-sided market framework to investigate net neutrality as a pricing rule,

i.e, whether there should be a mandate to preserve the current pricing structure. In

order to understand the effects of such a policy on the internet, we study its effect on

investment incentives of ISPs and its effects on social welfare, consumer and CP surplus

and market coverage by CPs.

Our analysis involves two models; a neutral and a non-neutral model. In both, two

ISPs are represented as profit maximizing two-sided interconnected platforms that choose

quality investment levels and then compete in prices for both CPs and consumers. The

difference between the two models is the pricing structure employed. In a neutral model



CPs pay only once to access the Internet and thus all consumers who are subscribed

to the platforms, whilst in the non-neutral model they pay additional fees to reach off-

network subscribers. To illustrate, Comcast and Verizon, who are ISPs, will demand

that CPs such as Yahoo and Google, who are not on their network, pay them to reach

their subscribers in a non-neutral model. In contrast no such payments are demanded

in a neutral model. Our work complements, and in some cases challenges, current liter-

ature on net neutrality. At the same time it provides useful insight on how investment

incentives of ISPs, which are important drivers for innovation and deployment of new

technologies, differ under the two policies.

More specifically, our models consist of two interconnected ISPs (represented by plat-

forms), a mass of CPs that are heterogenous in content quality, and a mass of consumers.

Moreover, CPs make revenue from advertising. We model the interaction between ISPs

and end-users 7 as a six-stage game. In the first stage, platforms simultaneously invest

in a quality level. Second, they simultaneously compete in CP prices. Third, the CPs

decide which platforms, if any, to connect to. Fourth, the platforms simultaneously

compete in consumer prices. In the fifth stage, consumers decide what platforms to join.

In the last stage consumers decide which CPs to patronize.

1.3 Outline of Thesis and Contributions

We conclude the introduction with an outline of the rest of the thesis and a summary

of the results. In Chapter 2 we consider a model of oligopoly competition between two

interconnected network providers that are represented as platforms.

* We first define and characterize the Wardrop and Hotelling equilibria according to

which consumers and content providers locate to the different platforms given plat-

form prices. We then consider the price competition between the platforms. We

show that when congestion costs are linear the price competition game has a pure

strategy Oligopoly Equilibrium (OE). We characterize using system parameters

the prices that the platform charges to both consumers and content providers.

7The term end-users refers to both CPs and Consumers



" Our first major result shows that the transaction price charged to a consumer can

be decomposed into three parts;(i) the opportunity cost of servicing a marginal

consumer, (ii) a Pigovian tax which internalizes the congestion costs and (iii) a

switching cost markup due to the market power that the congestion externality

induces. This result shows that there are two competing effects on the price charged

to consumers as a result of the two-sidedness of the market, the interconnection

of the platforms, and the congestion costs. Due to the cross externality that a

marginal consumer exerts on the websites, his price is discounted by the revenue

he creates on the website side. Moreover, due to the cross net traffic he generates

from the other platform his price is further discounted by the revenue earned from

access fees levied on this traffic. On the other hand, a platform marks up the

price to a marginal consumer with both a switching cost and Pigovian tax. The

switching cost occurs because a consumer switching platforms incurs a congestion

cost on the link of the platform he moves to. Therefore, a platform can raise

its price by this congestion cost without losing market share. The Pigovian tax,

internalizes the congestion cost on its link. The price charged to a website can be

decomposed to the off-net-cost, see Laffont et al. [34] and a transport cost; the

transport cost is a standard result arising from the hotelling model, see Tirole [59].

" Our next result shows that the enrollment of consumers to platforms under the

Oligopoly Equilibrium (OE) is generally less than that under the social optimum.

Consequently we show that, in general, the social welfare at the OE is also less

than that at the social optimum. We give conditions under which the allocation

of consumers at the OE and the social optimum are equal.

* Our last result shows that under some mild conditions Bill and Keep peering is

not a welfare maximizing interconnection agreement. In particular, we show that

when there is no full coverage on the consumer market at the OE, and congestion

costs are linear, then a social planner would prefer a non zero access charge. This

is an important result because it suggests that under a particular market structure,

and for a certain class of demand and latency cost functions, regulation may have



a role in enforcing efficient reciprocal access charges. In the case where there is

full coverage, welfare is neutral to the access charge. In particular, the access

charge distributes communication costs between the consumers and websites. For

instance, high access charges result in higher prices for websites extracting website

surplus which is used to subsidize the consumers.

In Chapter 3, we develop a two-sided market model that employs vertical differentia-

tion on both sides of the market to investigate the effects of network neutrality regulation

on investments and welfare in a duopoly competition between broadband providers.

" We provide an explicit characterization of equilibrium investment levels, and mar-

ket coverage levels under both the neutral and non-neutral regime. We show how

these values depend on the average CP quality 7, the consumer mass f and CP

heterogeneity a; which refers to how diverse the CP market is in terms of quality.

" Under some mild assumptions on f, we show that the investment levels are driven

by the trade-offs platforms make in softening price competition on the consumer

side and increasing CP surplus on the-CP side from which they expropriate revenue.

This trade-off is determined by the regime and also by the mass of consumers f

in the market as explained in the next two bullets.

- In the neutral model platforms maximally differentiate to corner different

consumer and CP niches in the markets. More precisely, one platform opts

not to invest whilst the other picks the highest quality permitted by invest-

ment costs. We refer to former as a low-quality platform and the latter as a

high-quality platform. Essentially, by not investing, the low-quality platform

trades-off making revenue on the CP side to making revenue on the consumer

side. In contrast, the investment by the high-quality platform differentiates it

from the low quality platform enabling it to make revenue from the CP side

as well as consumers. This result is similar to the maximal differentiation re-

sult in Njoroge et al. [461: This paper investigates a competition model with

the same pricing structure but quality is considered costless and congestion



effects are also considered. In Section 3.3.7, we further discuss the relation-

ship between the investment level of the high-quality platform with both the

average CP quality and the heterogeneity of the CPs content.

- In the non-neutral model each platform has a monopoly over access to its

consumer base. As a result, the investment patterns at equilibrium differ

from those in the neutral regime. For a large consumer base and low values

of average CP quality we have maximal differentiation (for similar reasons

to those alluded to in the neutral model), in all other cases we have partial

differentiation. In particular, both platforms invest in positive qualities. We

refer to the one with a higher (lower) quality as a high-quality (low-quality)

platform. Moreover, in this regime the difference in levels of investment be-

tween the two platforms is a function of the consumer mass. Indeed, as the

consumer base decreases, the trade-off between softening price competition

on the consumer side and increasing CP revenue, for the low-quality platform,

shifts towards the latter; which leads to more investment in platform quality

and more revenue from the CP side.

* We establish, under the assumptions of our model, that the non-neutral regime is

superior for overall social welfare to the neutral regime. This result is primarily

driven by the fact that the low-quality platform has an incentive to invest in the

non-neutral regime increasing the aggregate level of investment in this regime.

Investment increases the overall social welfare value by increasing consumer and

CP gross8 surplus. In addition, we show that the difference in social welfare

between the two regimes increases with the average CP quality and decreases with

CP heterogeneity. This reflects the effect of these two factors on the investment

level of the low-quality platform and the linkage effect of this investment on gross

consumer and CP surplus.

* Third, contrary to popularly held opinion in the policy debate, we note that CPs

8The term gross refers to surpluses that include the payments to be made to the platforms. Equiv-
alently the total utility earned before the prices are deducted.



Table 1.1: Summary of Relationship of difference in social welfare with 7 and a

Relationship of difference in social welfare with 7 and a

Average CP quality 7 T Social Welfare difference= W, - W, t
Heterogeneity a T Social welfare difference= W,, - W, 4

and consumers' surplus are higher in the non-neutral regime. Again these results

are driven by the change in investment incentives of the low-quality platform. For

CPs the larger investment on the low-quality platform leads to more revenue from

advertisers. For consumers a larger investment on the low-quality platform has

two major effects:

- First, it increases price competition between platforms and thus lowers prices

which means consumers keep more of the value generated by their interaction

with CPs.

- Secondly, the higher investment results in a higher utility for consumers when

they interact with CPs since CP quality is enhanced by platform quality.

9 Finally, although the low-quality platform prefers a non-neutral policy, we find that

the high-quality platform prefers a neutral policy. For the high-quality platform

a neutral network involves maximal differentiation in quality. Therefore it makes

maximum revenue from both sides of the market, recall that platforms are viewed

as substitutes on both sides. On the other hand, for the low-quality platform,

the investment it makes in the non-neutral model enables it to gain CP revenue

due to its monopoly access over its consumer base. In spite of the loss on the

Table 1.2: Consumer, CP surplus and Platform profits: Preference Under both regimes

Surplus Platform profits
Regime Content Provider (CP) Consumer High-quality Low-quality
Non-Neutral / / /
Neutral /

consumer side, due to the increased competition caused by this investment, the



revenue gained on the CP side is much higher than this loss. These results are

summarized in table 1.2; the check mark shows which regime has a higher value

of the attribute on top of the columns

We conclude and give future directions for research in Chapter 4.





Chapter 2

Competition in Interconnected

Platforms

In this chapter we study price competition between two interconnected Internet back-

bones in the presence of congestion costs and access charges using a two-sided market

framework. We develop a game-theoretic model where Internet backbones are repre-

sented as profit maximizing two-sided-interconnected platforms which compete in prices

for both websites and consumers. We show that the transaction price charged to a

consumer can be decomposed into three parts;(i) the opportunity cost of servicing a

marginal consumer, (ii) a pigovian tax which internalizes the congestion costs and (iii) a

switching cost markup due to the market power that the congestion externality induces.

We further show that market penetration under the Oligopoly Equilibrium is strictly

less than that under the social optimum. Consequently we show that the welfare under

competition is also strictly less than that at the social optimum. Our last result shows

that if under the Oligopoly Equilibrium there is no full coverage on the consumer market

and consumers face a concave inverse demand and linear latencies then Bill and Keep

peering is not a welfare maximizing interconnection agreement.



2.1 Related Literature

Our work is most related to work by Shneorsen and Mendelson [55]. They adopt the

Laffont et. al. [34] model and add consumer delay costs to investigate congestion effects

on market structure using a queueing model. However, in their model, website prices

are given exogenously. In particular, they are set at the off-net cost given in [34].

This implies that platforms make no profit on the website side and the model effectively

considers only competition on the consumer side. Moreover, this competition is modeled

as a Cournot game where each network provider determines how many consumers to

acquire given the number of consumers acquired by its competitors. In our model,

the allocation of websites and their pricing are done endogenously. This leads to a

richer price characterization because platforms have to consider the effects of consumer

enrollment on website profits. In addition, Bertrand competition is used in our two stage

game because in practice network providers compete in prices. In a different piece of

work, Shrimali and Kumar [56] investigate situations in which networks having access

to transit providers decide to peer. Using a simple economic model they show that

bill and keep peering, where access charge is set to zero, is a fair and efficient outcome

under symmetric transit and peering costs. Their work focuses on the decision faced

by networks on whether to peer or not, and is not set on finding whether bill and keep

peering is efficient for already interconnected platforms. Issues of consumer and website

pricing do not arise in their work.

The remaining part of this chapter is organized as follows. Section 2.2 introduces the

model together with the notation and basic assumptions that will be used throughout

this chapter. The next section characterizes both the Wardrop equilibria which con-

sumers use to locate to the different platforms and the Hotelling equilibria by which

website shares on the platforms are determined. Section 2.4, introduces the notion of

Oligopoly equilibrium that results following price competition between platforms. It

also characterizes prices charged by the platforms to both sides of the market. The

final section, analyzes the effects of access charges on welfare. Section , contains our

concluding remarks.



2.2 Model

In this section we formulate the model that is used to investigate competition between

interconnected backbones '. The backbones are represented as two-sided interconnected

platforms with consumers and websites on different sides. We define the utility functions

of the consumers and websites together with our assumptions on those functions. We

also describe the costs incurred when a connection is made between a website and a

consumer. We finally provide the timing of events in the model.

We consider a duopoly of two-sided interconnected platforms. Let I= {1, 2} denote

the set of platforms. Each platform provides a connection service to both consumers

and websites who are on different sides of the platform. Let c, w represent these sides,

where c stands for the consumer side and w for the website side. As in Laffont et al.

[34], we assume a continuum of mass 1 of both consumers and websites on each side of

the platform.

We denote the unit transaction prices charged by a platform i E 1 to a consumer

and website, who connect (transact) through it, as p' and pw respectively. Let pi =

[Pj]mE{c,w} be the vector whose components are the connection prices that a platform i

charges to the two sides of the platform. We also define the vector pc = [ptfjEr to be the

connection prices offered by both platforms on side c to consumers. Similarly we define

the vector p' = [pF]iEr to represent the connection prices offered by both platforms

on side w to consumers. We denote the mass of consumers and websites on a platform

i C _T as x' and o' respectively. We define the vector of consumers xc = [Xc]iEr on side

c of the platform to represent the mass of consumers locating on the different platforms.

The total mass of consumers on side c is given by x' = > r x4 and the total mass of

websites is given by x = E z f.

Traffic is assumed to flow from websites to consumers. Each connection between a

consumer and a website generates a unit of traffic flow. We assume that consumers'

interests in a website are unrelated to the platform hosting it. A consumer on side

c is equally likely to access any web site on side w irrespective of the platform. We

'We use the term backbone operators and network providers interchangeably



Mass 1 of websites uniformly distributed on the unit interval

Websites
(Side w)
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(Side c) lw(xcxw) a

Figure 2-1: Two interconnected platforms with links to consumers and websites.

also assume that platforms are not allowed to price discriminate between on-platform

and off-platform connections: A platform charges a consumer the same for accessing a

website on its' platform as it does for accessing a website on the other platform. This

is a similar assumption to the balanced calling pattern referred to in Laffont et al. [34].

It implies that the fraction of traffic flow through a platform from the website side to a

platform's consumers, is proportional to the platform's mass of consumers and the mass

of websites on the other side, i.e., if a mass xw of websites is available, a mass xC of

consumers on platform i generates a traffic flow of xcxw from the website side.

Each platform has two links; one link connects it to the consumers and the other to

the websites, see Figure 2-1. A link to consumers, on side c of a platform i, has a flow

dependent latency function lic(zxw), which measures the travel time as a function of

the total traffic flow given by xcxw. In this model we assume the latency of links on the

website side are negligible. This assumption is a good approximation to communication

networks where most congestion happens at the connection between consumers and the

access providers; see Zehra and Moghe [67].

The platforms are assumed to be interconnected by high capacity access links, there-

fore we assume no congestion on these links either. In our interconnection model, each

platform charges the other for access. We denote the access fee for accessing one plat-

form from another as a and assume it to be non-negative. For example in Figure 2-1,



platform 2 delivering content to platform l's consumers has to pay platform 1 an access

fee of a for each unit of traffic. This fee is assumed to be exogenous and reciprocal. Cur-

rently most interconnection agreements set access charges at zero which is a reciprocal

arrangement. However, there have been calls to set positive reciprocal charges, see [24].

When a platform originates a unit of traffic it incurs a non-negative originating cost

co and when it terminates a unit of traffic it incurs a non-negative terminating cost ct.

We define the off-platform 2 consumer cost as cC = ct - a and the off-platform website

cost as cw = co + a. Referring to Figure 2-1, platform 2 delivering content to platform

1's consumers incurs an origination cost co and an access fee a for each unit of traffic.

Thus it ends up incurring an off-platform website cost cW. On the other hand platform 1

terminating traffic from platform 2 incurs a termination cost ct but gets paid an access

fee a for each unit of traffic. Thus it ends up incurring an off-platform consumer cost

cc = ct - a. These off-platform costs appear in the later sections of our work and we use

them to draw comparisons between the price characterizations of our model and that of

Laffontet al. [34]. Note that the cost of a unit of traffic between a unit consumer and

a unit website is given by c = c, + ct. Since a consumer generates a unit of traffic flow

from a website, this cost can be thought of as the marginal cost of traffic.

A unit consumer derives utility m drawn from a distribution FM(m) whose support

ranges from 0 to Th when connected to any unit website. Consumer preferences are

represented by an aggregate utility function V(x, xw) which represents the amount of

utility gained when a mass xc and xw of consumers and websites respectively, join each

side of the platform. Given a distribution FM(m), the aggregate gross utility of a mass

XC of consumers who are connected to xW websites is given by

VC(X, xw) = IF,(1--z) mxwdm,

= I - l X))2) W.

Defining u(xc) as 1 ((7)2 - (F'l(1 - Xc))
2 ), we have Vc(xz, xw) = u(xc)xw. We note

2These are the same costs that appear in the base model of Laffont et al. [34] but they are labeled
as Off-Net-Costs.



that u(ze)/xc represents for side c the gross utility of a representative user who connects

to a website. We make the following assumptions on the gross utility function u(xc).

Assumption 1.

" The utility function u : [0,1] -> [0, oc) is concave, continuously differentiable, and

increasing.

" The derivative of the utility function is concave, decreasing and continuously dif-

ferentiable.

The above assumptions on u(xc), for instance, will be satisfied under the assumption

3(Ffr (,M))2
< F "(m) for all m c [0,i).

F (m)

The conditions imposed on the derivative of u(xc) are similar to those adopted by Engel,

Fisher and Galetovic [17], Hayrapetyan, Tardos, Wexler [261 and Ozdaglar [43].

The gross utility of a marginal user on side c per transaction is determined by the

elastic inverse demand curve,

1 V(Xc"X) , c
= u(xc).

XW aXC

Thus a marginal consumer on side c has a marginal utility n'(Xc) and will only join as

long as the effective cost they experience is less than this amount. In the parlance of

two-sided platforms, a marginal consumer enjoys a benefit n'(xc) from interacting with

each user on side w. Given the assumptions on the utility function we see that this

benefit is platform independent and diminishes with the number of users on side c. This

is intended to capture the notion that earlier users place a higher value to transacting

with websites. Each unit website on side w gains utility v for each connection made

with a unit consumer on side c. The website preferences on side w of the platform can

therefore be represented by an aggregate utility function Vw(xc, xW) which is the amount

of utility gained when a mass xc and xw of consumers and websites join each side of

the platform respectively, i.e., the aggregate utility function is quadratic in the mass of

consumers and websites.



Assumption 2. For side w the gross utility of a representative website is given by,

V.(xc, "X) = vxCxW 0 <x", Xz K 1.

In this instance the gross utility of a marginal user per transaction is determined by

the inelastic inverse demand curve,

1 &V"(xc, Xw)_18V.(z= V.
Xc XW

The benefit per transaction enjoyed by each website is thus v and is also platform inde-

pendent. We make following assumption on the marginal benefit of marginal consumers

and websites.

Assumption 3. 0 < ct < u'(1) and 0 < c, < v.

This is a feasibility condition and ensures that a platform has the incentive to par-

ticipate in the market, i.e. u'(x) + v > c for all x E [0, 1].

We assume that consumers are delay sensitive and they do not consider their indi-

vidual decisions as having an effect on the prices charged by the platforms or congestion

on the links. Faced with the connection price vector pC offered by the platforms and a

vector of websites xW, we assume that consumers locate to different platforms according

to a Wardrop equilibrium which will be defined in Section 2.3. As discussed in Ace-

moglu and Ozdaglar [1], the Wardrop equilibrium is used extensively in modeling traffic

behavior in communications networks.

We assume that websites locate to different platforms under a standard Hotelling

model of user choice. The platforms are located at each end of a unit interval and the

websites are uniformly located along this unit interval. Given the vector of prices pw

for side w and a vector of consumers xc on side c of the platform users on side w locate

to the different platforms according to a Hotelling equilibrium which is also defined in

Section 2.3.

The payoff functions for the platforms are given by their profit functions. Given an

access charge a, platforms compete in prices where the objective of each platform is to



maximize his profit. The profit for a platform i C I charging a connection price p' and

pF" to a consumer and a website respectively is given by

I= zizi(p,+ p - c) + x'zw'(p' - (ct - a)) + xzj (pw - (c, + a)),

= (p! - cc)x ± (pi - c")x xc.

With an exogenously determined access charge, the model described above refers to a

two stage game. In the first stage, connection prices for both websites and consumers are

simultaneously set by the profit maximizing platforms. In the second stage, given the

platform prices, the websites and consumers simultaneously determine which platforms

to locate to according to the Wardrop and Hotelling equilibria which is defined in Section

2.3. The subgame-perfect equilibrium of the above game can be characterized using

backward induction.

2.3 Wardrop and Hotelling Location Equilibrium

In this section we consider the second stage of the game described in Section 2.2, i.e.,

consumer and website behavior on both sides of the platforms given platform prices.

We formally define the Wardrop and Hotelling equilibrium that determine the mass

of consumers and websites joining the two sides of the platforms which consequently

determines the flows allocated to the platforms. We characterize this equilibria and

establish their existence and properties.

We will restrict the strategy space of the prices offered by platforms as follows --o <

pC < U'(0) and -oo < pw < v for all i E I. The upper bounds can be justified by the

fact that offering prices higher than u'(0) on the consumer side will yield 0 consumers on

the platforms and offering prices higher than v on the website side will yield 0 websites

on the platforms; this can be directly inferred from Lemma 1 and 2 that follow shortly.

We are interested in how consumers and websites locate to the different platforms.

We first look at the problem of how consumers choose between the two platforms. We



assume, given the allocation of websites and the choice of consumer prices, they do so

according to Wardrop's principle, see [61]. Consumers join the platform that has the

least effective cost defined as the sum of the congestion cost they experience when the

join the platform and the price they pay for each unit of traffic. Formally we assume

that given a price vector pc and a vector of users xw on side w of the platform, users

on side c locate to the different platforms according to a Wardrop equilibrium defined

which will be defined shortly. Regarding notation, all vectors are viewed as column

vectors and inequalities are to be interpreted component wise. We denote by R' the set

of non-negative I-dimensional vectors.

Definition 1. For a given price vector pc and vector xw E RI , a vector x' C RI is a

Wardrop Equilibrium (WE) if

xcWE E & max U(X)Xw - (lic(XwXWE) +Pw) X XW
xc0E 1

We denote the set of Wardrop Equilibria at a given price vector pc

W(pcI XW). Using optimality conditions for problem (1) we see that if xc E

then we have,

(2.1)

and xw by

W(pC, XW),

UI(xc)Xw - lic(XwXWE)Xw - C w <c ifxCWE =0,

SAc if xWE>0.

We therefore have the following characterization of a WE.

Lemma 1. For a given price vector pc and a vector of users xw E RK and xw $ 0, a

vector Xc E RI is a Wardrop Equilibrium (WE) if and only if

lic (x' W) +PC u '(xc), V i with 4 > 0,

lic(zxw) +pc < min{lnc(x'xw) +p'}, V i with z4 > 0,n



iET

with E = 1 if min,{lnc(xc xw) + pC} < U'(xc).

Thus, for each interaction with a website, a consumer faces a disutility equivalent to

the congestion on his link and the price he pays to the platform. It is worth mentioning

that when xw = 0, any feasible solution is Wardrop equilibrium.

We next proceed to show the existence and continuity properties of a WE. The proof

relies on a standard argument in the traffic equilibrium literature based on establishing

the equivalence of a WE and the optimal solution of a convex optimization problem (see

[14], [1]). We adopt the following assumption on the latency functions.

Assumption 4. For each i E 1, the latency function lic : [0, 1] - [0, oo) is convex,

continuously differentiable, strictly increasing and has lic(0) = 0.

The strictly-increasing and convexity condition imposed on the latency functions

captures the congestion effect experienced by consumers when more traffic flows on a

platforms' link. The zero latency flow assumption is a good approximation to commu-

nication networks where queueing delays are more substantial than propagation delays.

Proposition 1. (Existence and continuity.) Let Assumptions 1 and 4 hold. For a price

vector pc and location vector xW E RI, the set W(pc, xw) is non-empty. Moreover, the

correspondence W(pc, Xw) : Ri - R+ is upper semicontinuous.

Proof. Given any price vector pc and vector xw, consider the following optimization

problem,

max yPc(xW, xc, p), (2.2)

xC>O, x<1

where p,(xw, x', pc) U(Xc)xw - ciEx Pcxx + f0i& lic(y)dy.

Whenever xw # 0, from Assumptions 1 and 4, we can deduce that the objective

function is strictly concave over a constraint set which is compact and convex; this

follows because we restrict ourselves to the set of vectors, XC = {XC I zE xs< 1, xz >



0 for all i E I}, which form a simplex. Therefore the first order optimality conditions are

also sufficient for optimality. Moreover due to the strict concavity there exists a unique

vector xc which achieves the maximum. Since, the first order optimality conditions are

identical to those of the Wardrop Equilibrium, a vector x' c W(pc, XW) if and only if it is

a solution to problem 2.2. Since problem 2.2 is continuous over a compact constraint set

a solution exists. Therefore the set W(pc, Xw) is also non-empty and unique whenever

XW $ 0. If we allow xw E [0, 1] x [0, 1] then W(pc, xw) is an upper semicontinuous

correspondence from the Theorem of the Maximum [58]. m

On the website side we assume a standard Hotelling model of user choice. This model

of horizontal differentiation enables us to assign website platform shares to the different

platforms. In this model platforms are located at each end of a unit interval and the

websites are uniformly located along this unit interval. Websites have a transportation

cost t per unit length. Given that platforms i and n charge prices p' and p' respectively,

the effective price of going to platform i for a website located at coordinate xf is pf + z't

and that of going to platform n is pw + (1 - xo)t . Since a connection with a consumer

yields a benefit of v, the net utility gained by a website located at a coordinate 4'
transacting with a unit consumer is given by

V - p - tzT if website joins platform i,

S-p - txz if website joins platform n.

Given the vector of prices pw for side w, websites locate to the different platforms

according to the Hotelling Equilibrium which is defined below. Lemma 2 shows that the

following definition of a Hotelling Equilibrium yields the standard characterization for

a Hotelling model [59].

Definition 2. For a given price vector pw, a vector xw E Ri is a Hotelling Equilibrium

HE if

xwHE E arg max (V - tx - Pw)dx} (2.3)
x;>0,x "; T <1



We denote the set of Hotelling Equilibria at a given price vector pw by H(pw).

Using optimality conditions for problem (2.3) we see that xw E R+ is a HE if and

only if there exists E1' x 1 and there exists some A, > 0 such that A,(E xw -1) = 0

and for all i,

v -- txw - pf < A,,, if x' 0,

= Aw if x' > 0.

In view of Assumption 2.2, we have the following characterization of a HE.

Lemma 2. For a given price vector pw, a vector xw C R+ is a Hotelling Equilibrium

(HE) if and only if,

pT + xft = minn{p" + x't} for all i with 4' > 0,

pT + xyt < V ,for all i with xT > 0,

XU K 1, (2.4)

with E1' = 1 if minn{pnW + x"'t} < V.

The existence and continuity properties of H(pw) are proved in a similar way to

those of W(xw, pc) by considering the optimization problem,

max p(P xW, p"), (2.5)

where pw(xw, pw) = E fJ (v - tx - p")dx. It can also be shown using similar ar-

guments to those in Proposition 1 that the Hotelling Equilibrium is unique given pw.

In particular, we note that, given pw, <pw(xw, pw) is a strictly concave function over a

convex and constraint set. Therefore a maximum exists and its unique.

In this section we have described the mechanism by which consumers and websites

locate to platforms given the price vectors pc and pw. We define the Location Equilib-

rium as a vector whose components consist of the allocations of consumers and websites

on both platforms given the price vectors pC and pw. This definition helps us use sim-



pler notation in the expressions that we develop in the next section. Given the vector

prices offered by the other platform, p-i = [pn]ngi, the Location Equilibrium is defined

as follows:

Definition 3. Given the vector of prices (pi, pi), a vector (xwLE xcLE) is a Location

Equilibrium (LE) if xcLE E W(pc, xwLE) and XwLE E H(pw). We denote the set of LE

at given price vectors (pi, p-i) by LE(pi, p-i).

Since, given pW, the set H(pw) is non-empty and a singleton, it is immediate from

Proposition 1 that the set W(pc, xW), where xw E H(pw), is also non-empty and a

singleton. Therefore the set LE(pi, p-i) is also non-empty and a singleton.

2.4 Price Competition and Nash Equilibrium

In this section we analyze the first stage of the game; platform competition in the

presence of congestion effects and the access (interconnection) charge. We show that a

Nash equilibrium exists for affine latency functions. We present price characterizations

for both sides of the platform in terms of the system parameters and give a qualitative

description of these prices. In particular we show how the platforms factor congestion

costs and access charges in their pricing strategies.

Given the vector prices offered by the other platforms and the access charge a,

p-i = [pn]>gi, the profit of platform i is defined as

T1i(pi, p-i) = (pc - cc)xcx' - axfxc + (p' - cw)x'xc + ax'x,,

it. U)

where r is the revenue from the consumer side of the platform, r' is the revenue from the

website side and x = (xC, xw) is the Location equilibrium at a price vector p = (pi, p).

The objective of each platform is to maximize its overall profits. Since the demand and

profit depends on prices set by the other platform, each platform conjectures about the

actions of other platform as well as behaviors of consumers and websites. We assume

that they do this according to the Nash equilibrium notion.



Definition 4. A vector (pOE x OE) is a pure strategy Oligopoly Equilibrium (OE) of

the price competition game if xOE E LE(pE, pOE) and for all i E I,

Ii(p E , OE E (p, x), pi, and x E LE(pi, POE

We refer to pOE as the OE price.

We will refer to the game described above as the price competition game. We proceed

to show that in the case of full coverage on the website side and for affine latency

functions this game has a pure strategy OE. We first prove a series of Lemmas, which

we use to show the existence of a pure strategy OE.

Assumption 5. There is full coverage on the website side, i.e. xW = 1.

The above Assumption ensures that the website side is covered. For instance, it will

be satisfied when all websites have a high enough reservation price that they participate

in the platforms. From Lemma 2, this condition is fulfilled whenever min, {p ±+x+'t} <

V.

Lemma 3. Let Assumption 1 and 4 hold. Consider a vector xW E R' such that xw # 0

and two price vectors pc and Pc such that 5n = p' and )j > p' for n f i and n, i E I.

Let xc E W(pc xw) and xc E W(p5, xw). If xz > 0 then T[ < x', T > x' and TE < xc.

Proof.

a) We first show that T2 < x'. We consider two cases, when xC < 1 and xc = 1.

Case 1: xc < 1.

Suppose that T7 > x'. By Lemma 1, the fact that lic(-) is strictly increasing and

pi > p', we have the following inequalities,

' (0) > nx(TC)

>- lic(i) +P(2,

>lic(x'x")+pi,

= '(x'). (2.6)



This implies, by the decreasing property of u'(.), that T' < xC. Consider now the

other link lnc(-) and assume it has positive flow at price pc; if it has no positive

flow we immediately obtain a contradiction. If it has positive flow it follows that,

ln(X x") +p = n'(xc),

= lic(xx")+pi

= lnc(T~XW) + Pc. (2.7)

We obtain the first two equalities from Lemma 1. The third inequality arises from

our assumption and the fact that pe > pc and the fourth from Lemma 1. Since

pl = pc for n / i it follows that T' > x'. Therefore, XC > xc implying that

U'(xc) > u'(Tc) which yields a contradiction.

Case 2: xc = 1.

Suppose that Ti > x4. We obtain the following set of inequalities,

lnc(xnxw)+pn = lic(xixw)+pC

< lic(ZCx")+Pi,

= Inc(Tx) + P. (2.8)

The first and third inequality follow from Lemma 1, the second arises from the

assumptions that Ti > x and Pic > pc. It follows that Tc > x'. This yields a

contradiction since 7c < 1 and Ti > xC imply that C < xC.

b) We next show that ic > xc. Suppose that Tc < xC. We first assume in < x.

Since Pn = pc for n # i, then by Lemma 1 and the fact that lc() is strictly

increasing,

n'(1 )= lnc(Tcxw) + e,



<" in(z' z) + pC,

K u'(xz). (2.9)

We next assume that Yt = xz. It follows, from the proof in part a), that T < xc.

Therefore we get the following set of inequalities,

n'(T ) = lic (Tiz" ) + Pc

= inc (Tncz") + Pnc,

= lnc(XX) + pC,

< u/(x ). (2.10)

The above inequalities follow from Lemma 1 and the fact that Tc < xK < 1. Thus

U'(xc) U'(Xc), which implies that Tc > xc yielding a contradiction.

c) We now show that c < x". This follows from directly applying the results from

part b). The following inequalities follow from Lemma 1 and the fact that Yn > xn,

u'(TC) -> inc (Tnz")+ Pn,

> inc(Xznz") + pc,

- u'(xc). (2.11)

We deduce that Tc < Xc since U'(XC) < U'(c).

We next define the best response vector p for a platform i E -7 given the price vector

p-i offered by the other platform. This definition will be used in Lemma 4 as well as in

the proof of Proposition 2.

Definition 5. A price vector p! is a best response to a price vector p-i if

(pt, x) E arg max (p - cc)w + (pi -- C")XiX. (2.12)

Pi, xELE(pi,p-i)



Lemma 4. Let Assumptions 1 through 5 hold; let p be a best response price vector to

a price vector p-i. If Hi(p!, p-j) = 0 then FiL(p-j, pi) < 0. Moreover, we have x* = 0

where x* E LE(pj, pi).

Proof. Let p' = (p- cW)x'x and pC = (p! - cC)x'xW then Hi(p!, p) = p i pf = 0.

We claim that pT = 0 and pq = 0. We then show that x* = 0. We first show that cases

(i) and (ii) are not possible.

i) pF > 0 and pc < 0,

ii) pf < 0 and pc > 0,

Assume to arrive at a contradiction that the first case holds. Consider setting price

p * to cc and leaving pw* unchanged. We denote this new price vector as f!. We claim

that zc is positive. For if zc = 0 then by Lemma 1, we have pc = cc > u'(0) which

violates Assumption 3. It follows that Ili(]P, p-j) is positive since, by Lemma 2, the

allocation xz is not affected by the price change. This contradicts the hypothesis that

p! is a best response.

Assume to arrive at a contradiction that case (ii) holds. Consider setting pw* to

cW. We denote the new price vector as 0N. Because of the full coverage condition, see

Assumption 5, setting pF* to cw and leaving p * unchanged does not affect xc*. This

implies that pc remains positive. Therefore Hi(pf, p-j) becomes positive contradicting

the hypothesis.

Therefore pw = 0 and pq = 0. We first show that xz* = 0 and xw* = 0. Assume to

arrive at a contradiction that xc* > 0. It follows that pC* = cc. Let ic = K - E > cc

where U'(xc) > K = cc + lic(xc*) for some small c > 0. It can be seen that, at the

price vector (pi, pc ), the corresponding WE consumer mass assignment on platform i,

, is positive. Therefore platform i has an incentive to deviate to price, pi, and make

positive profit contradicting that p is a best response . Similarly if xw*xC* > 0 then

p* = cw. Let pw = K - E > cw where K = ce + x*t for some small c > 0. At the

price vector (pw, pwi), the corresponding HE website mass assignment on platform i, 7,



is positive. Thus platform i has an incentive to deviate to price, p-7, and make positive

profit contradicting that p is a best response.

Therefore both xo* = 0 and xf*x'* = 0. This implies that either xo* = 0 or xz* = 0.

We show that xz* > 0. If x'* = 0 then pi* > u'(0) since x'* = 0. Let pi = K - e > cc

where K = u'(0) for some small E > 0. Note from Assumption 3 that K > cc. It can

be seen that at the price vector (PT,pc-) that the corresponding WE consumer mass

assignment on platform i, 2c, is positive. This contradicts the fact that p is a best

response. It follows that x'* = 0.

By Assumption 5, x = 1. Let K = p' + x't. We claim that K < c' for if

K > cw then platform i can set p-7 = K - e > cw for a small E > 0 which will result

in t', the corresponding HE website mass assignment on platform i, being positive as

previously seen above. Thus platform i will have an incentive to deviate to price, p-",

and make positive profit contradicting that p is a best response. Therefore pw < cw. In

a similar manner one can show that p' < cc. Therefore, it follows that II-i(pj, p ) =

(pc i - Cc)Xc jz" + (pwi - cW)x'ixc < 0 where p-i = p, , xci = xc and xW. = xz. *

In the following proposition we show we show that if the congestion costs are linear

then there exists a pure strategy Oligopoly Equilibrium (OE).

Proposition 2. Let Assumptions 1 through 5 hold. Assume further that the latency

functions are affine. Then the price competition game has a pure strategy Oligopoly

Equilibrium (OE).

Proof. We define B(p*) = [Bi(p*_L]iEi. Where Bi(p*j) is defined as the set of best

response vectors given p*j, i.e., the set of all vectors p* that meet definition (2.12).

By the Theorem of the Maximum [58], it follows that B(p*) is an upper semi-

continuous correspondence. We proceed to rewrite the profit of platform i as follows,

IIi(pi, p) = (pc - cC)XC + (p W - cW)X , (2.13)

where, pf* = (p' - cw)xxC and pc* = (p- cc)xz. We now show that this correspondence

is convex-valued. Let p E Bi(p-i*) and p E Bi(p*_) be two best response vectors and



Ili (.) and FIi(.) their respective profits. Suppose H(-) = = 0 then

(p - cc)xC + (p, - cw)xxc = - cc) + (p " - cW)zts = 0.

Consider a price p such that p = op! + (1 - 6)I* for J E [0, 1]. Let x6 E LE(p6, p*).

It follows that (p6C - cc)"+ (W - cW)xfWx 6 C = 0 which'implies that p E Bi (p*).

The equality follows from Lemma 4, in particular, the fact that xo* = zt* = 0 and

x* = V" = 0. It follows that p* 2 pc* + luc(xc*) = K and pc* > pc* + luc(x *) = K,

therefore any linear combination of the two prices also gives a price larger or equal to K

which implies zC = 0. In a similar way one can show that x6W = 0.

Next we consider the case when Ui(-) = Hi(-) > 0. We first show that pc* = pc*.

Without loss of generality, we assume to arrive at the contradiction that Pic* < pc*. It

follows that -* > pw* > 0 since Hi(-) = Hi(-). The second inequality follows from the

fact that if p'* < 0 then the platform could set its website price to cw and increase its

profit since there is full coverage and a change in the price of p'* does not affect x'*. It

is also the case that pc* f pi* since if they were equal pc* =pc*.

Since p""* > pw* > 0, it follows that (p"* - cw)2"* < (pW* - cw)x*. For if (pf* -

c)zt* > (pf* - cw)xF* then platform i can charge the same price p'* on the consumer

side and change the price on the website side to pw*. This would increase profit for

platform i on the website side since (pi"* - c')Xtw*xC* > (p W* - cw)xw*xc* contradicting

the fact that p is a best response vector. Since pi"* > pw* 2 0 and (pfi* - cw)xzw* <

(pW* - cw)xw* it follows that sc* > xc*

To help us with the characterization of best response prices we show that given our

assumptions I7i (-) = Hi (-) > 0 and pc* < p* the following hold 2w* > 0, xw* > 0, xc* > 0

and 2c* > 0. Note that xc* > 0 since we assume pc* < pc*. We next show that 2t* > 0.

Assume that tc* = 0 then the price Pi* > u'(0). If this price is lowered to Pc = u'(0) - E,

where E > 0, then by Lemma 1, * > 0. It then follows, by Lemma 3, that :C* > tc*.

This implies that Hi > Hi contradicting that pi is a best response. Therefore zt* > 0.

From our assumption, pw* > pw*, it is immediate that 2t* > 0.

Now we show that xw* > 0 is also positive. We have shown, given our assumptions



Ul(-) = Hi(-) > 0 and fC* < p'*, that the following hold 2'* > 0 and x'* > 0. Assume

i =0. Consider setting pw* to pw it follows that xw* = 2w* > 0. Since o* > 0 it

follows that Xc* > 0 and pT* > 0. The profit LHi(.) increases since p'* is unchanged which

contradicts that pi is a best response.

Therefore z[* > 0, 2w* > 0, xo* > 0 and xw* > 0 are positive and the first order

conditions for the following maximization problem

maximizepi, xELE(pi,p* j) {(pi - CX)zXf + (pi - c )XzXc.} (2.14)

yield the following price characterizations for the two prices p'* and p *(cf. proof of

Proposition 3)3,

CC* c+ [* (aic± 1 1 +(f* f )* \W 1__ *__1_* -1± +4,

anc (1(c.) Jae u(C*) J
PC*= c * aic + 1 +(p* c * i 1 -

anc uII(xc*) ) (\anc uT/(XC*)

Since tc* > 0, tc* > xc* we deduce from the contrapositive of Lemma 3 that pi* <

pc*. This also implies that tc* > z9*. Applying the following inequalities, 2c* > Xz*,

* - cW);tI* ; (pW* - cw)xw*, # > 0 and zt* > xc*, in the two price characterizations

above, yields PC* > pc*. This contradicts the assumption that pi* < p'*, therefore

pC* = PC*.

We now show that p'* = Pc*. Since p'* = Pf* and H7i(.) = UJi(.), it follows that p-f* =

pw* . Assume without loss of generality that p* > P*. By Assumption 5, the market is

covered and thus xw # 0. Therefore, we can apply Lemma 3 to conclude 2t* > xz* and

XC* > zc*. These inequalities, together with the following relation p"* = pw*, imply that

(p'* - CW);ti* < (p * - cw)xz*. Applying these inequalities to the price characterizations

derived previously for the two prices yields p5* > p*, a contradiction.

Having established that pC* = pc*, it follows that sc* = Xc*. The first order conditions

of problem (2.14) give us the following expressions for prices on the website side (cf proof

3The only modification is the addition of the constraints 2* +2t* < 1 which is assigned the lagrange
multiplier <.



of Proposition 3),

= 22t*t + cw",

pW* 2xw"*t + c".

Using the above price characterizations for the website side and the fact that p"* = pf*

we determine that ;"* = x", which in turn implies p-"* = pw*. This shows B(p*) is

convex valued. We can now use Kakutani's fixed point theorem [8] to assert the existence

of p* such that B(p*) = p*. *

We need the following two Lemmas for our price characterization. The first shows

in an OE all the platforms make positive profit. The subsequent Lemma shows that at

the OE consumers and websites join both platforms.

Lemma 5. Let Assumptions 1 through 5 hold; let (pOE, xoE) be a pure strategy

Oligopoly Equilibrium OE. Then HUE(-) > 0 for all i C I.

Proof. Since (pOEI OE) is an OE, the price vectors p9E and pOE are best responses to

each other. Assume there exists an i E I such that HE(-) = 0. Since the price vector

p9E is a best response to the price vector pOE, it follows that H OE(-) < 0 by Lemma

4. But platform n can set the following prices pc = cc and p" = cW increasing profits

for platform n from negative to zero. This contradicts that (pOE, XOE) is an Oligopoly

Equilibrium. m

Lemma 6. Let Assumption 1 through 5 hold. Let (pOE, OE) be a pure strategy

Oligopoly Equilibrium. Then for all i E I, x"OE and xOE are positive.

Proof. By Lemma 5, Ul(.)OE > 0 for all i E I, therefore xcoE > 0 and by Assumption

5, there's full coverage so that xwOE -1. If XcOE = 0 and xwOE = 0 then Ul E(.) = 0

contradicting Lemma 5. We will show that both x'OE and xO are p all

i C I. Assume to arrive at a contradiction that there exists an i such that x OE 0.

Then xcOE = XcOE > 0. From Lemma 1 and the fact that pOE is a pure OE we have,

pcOE + nc (xcOE) = K < u'(xcOE).



By Assumption 3, u'(xcOE > cc. Consider setting price p'OE to p = K - E > cc for

some small e>0. At the price vector ( O, pcOE) the corresponding WE results in Z > 0.

Therefore platform i has an incentive to deviate to price pfi contradicting that pOE is an

OE.

In a similar manner we show that xfOE > 0. Assume that x OE = 0, by the full

coverage assumption xzOE = 1. Let k = pwOE + XwOEt, it follows that k < cw. If it

were larger we can set pWOE to f" = k - c for some small E > 0. From Lemma 2 we

have zL > 0 which increases platform's i's profit implying pOE is not an OE. Therefore

pWOE < cw which implies pwOE < 0. But by setting the price pwOE to cw we have

pWOE = 0 and IJE(.) increases since pcOE doesn't change. This contradicts the fact

that pOE is an Oligopoly Equilibrium. m

We next provide an explicit characterization of the OE prices. This characterization

will help us in decomposing the pricing strategy of the platforms at the OE.

Proposition 3. Let (pOE xOE) be an OE. Let Assumptions 1 through 5 hold.

a) Assume that lc(xc) + pc = u'(xc), then the consumer side Oligopoly Equilibrium

price for a platform i E I is given by,

COE = c + OE COE)

\t nc(xnOE u// (XcOE)

t (xcOE)(p WOE _ w) WOE nO En (2.15)

(nc( nOE) U(cOE)

b) Assume that lic(xz) + pc < u'(xc), then the consumer side Oligopoly Equilibrium

price for a platform i E I is given by,

cOE c cOE (XcOE, 1 (2.16)
\i-c la(zOE)

c) The Oligopoly Equilibrium price for i on the website side is given by,

PiOE = t+ cw. (2.17)



Proof. For a platform i the vector (ppE, XOE) is an optimal solution to the maximization

problem (2.14). Note that since IIE > 0 we can rewrite the optimization problem as

follows,

maximize (pi - cc)xi + (pi - cW)xixc (2.18)
PI', pK, X;>0

subject to hi: lic(xc) + p = lac(xc) + pc* n # i , n E I,

h2 :lic (x') + pc u'(xc)

h3: xwt+pw =x't+p* n#i,nEI,

h4 : Ei xw = 1.

Note that by Lemma 6 we have xw OE > 0 and xcOE > 0 for all i E I. By Assumption 5

we have full coverage on the website side, i.e. xW = 1.

We first assume that lic(xc) +p = U'(Xc) and xc < 1. The prices p'OE POE and the

masses of consumers and websites xOE XcOE and 4 wOE X wOE form a regular feasible

vector f, i.e., Vhi(f),--- , Vh 4(f) are linearly independent. The linear independence

of the constraint vectors can be verified by considering the matrix H consisting of the

constraint gradient vectors evaluated at vector f. We define H as follows:

1 1 0 0

0 0 1 0

lic(xOE) c (XOE) - u//(cOE) 0 0
H = 1

-i' cxOE __Urii cOE)
n (Xio) ~ ~ (cE 0 0

0 0 t I

0 0 -t 1

Each column i represents the constraint gradient Vhi(f) where the differentiation

for each row has been done with respect to p', pw, xc, xc, xf, xz. It can be verified that

the above columns are linearly independent. This follows since there does not exist a

non-zero vector z such that Hz = 0. To see this note that z3 = 0 since this is the only



way the second row can sum to 0 in the system Hz. This further implies that z4 is

also 0 so that rows 5 and 6 sum to zero. This leaves us to verify that columns 1 and

2 are linearly independent. Since the entries of column 1 and 2 are the same these two

columns are linearly dependent if and only if all their entries are equal. But it is clear

from the matrix that this is not the case. Therefore H has linearly independent columns.

We can now use Karush Kuhn Tucker(KKT) conditions to derive the necessary con-

ditions for the above maximization problem, see [7]. We assign the Lagrange multipliers

A' to constraint hi, y to constraint h2 , Y, to constraint h3 and a to constraint h4. We

can write the Lagrangian of problem (2.18) as follows,

L(p c, p', x', xf, xc, x'", A"', p, 7n, oz, 0)=

(p - CC)zx + (p" - cW)X'xc - Ac(lic(xc) + pc - lnc(X4) -p*)

-p (lic(Xz) + pi - u'(X")) - Y (Xlt + pT - Xn"t - p"*)

-a(E -1).
i

We drop the arguments in the Lagrangian function and refer to it as simply L. The

KKT conditions are derived as follows,

aL : X*-A -p.=0, (2.19)

L : X"*z * -X y* =O, (2.20)

8 L
: (p * - c C) + (pW* - c")x* + (-I - A)lic(x*) + pu"(xc*) = 0, (2.21)

DL
: (pw* - cw)x* + Al' c(x*) + pu"(x"*) = 0, n f i, (2.22)

DL a L W * Wt(2 .2 3 )I9W: (pi* - cW)X'* - 7Yt - a = 0, 2.3

DL
: 7t - a = 0 n f i.

(2.24)



From Eq. (2.22) we obtain,

p * - C)X* - pu"(XC*)

n 1/'(c~z*)'

(2.25)

Using the above expression for Ac together with Eq. (2.19), we obtain the following,

U I(C*) ± (X*]

1 " 1

(2.26)

Plugging p- into Eq. (2.21) and then using Eq. (2.19) we derive p'*.

* =C + * if C*)+
\ c (

+ (pW* - cw)xW* (
nca*) u" (xc*)

If xc = 1 then it follows that pC* = u'(Xc*) - lic(z *).

We next assume that lc(zc) + pC < u'(xc). From Lemma 1 this implies that

x+ z"x = 1.

If we solve the maximization problem (2.18) with the above constraint added we get the

following price characterization,

*= C + *i(x*) 1
+ li

/'cx*
(2.27)

We next derive the expression for p'*. In this instance the expression follows directly

from Eq. (2.23), Eq. (2.24) and Eq. (2.20). By solving for p'* we find that the website

price is given by,

p* = 2xw*t + c".

11 c(xc*) U"/(ze*)



From Lemma 6, we have that xo* > 0 for all i E I. This implies via Lemma 2 that

2x"*t + c' + xz*t = 2xL*t + c' + xo*t. Therefore, xo* = xz*. By Assumption 5, the full

coverage condition we have that xuOE = 1/2 for all i E 1 and pw* = t + cw as presented

in the proposition. m

The analysis of the Karush Kuhn Tucker conditions for the oligopoly problem ana-

lyzed above yields the following price characterizations on the consumer side:

Corollary 1. Let (pOE, xOE) be an OE; let Assumptions 1 through 5 hold. Then for

all i E I the consumer side prices are given by,

CC + XzOE (ic (XOE) +

pcOE _ _ OE _ gwvOE 'n(X )cEi~O =W ) t'C - 17if ZiEI4 XOE < 1,

min u'(1) - li (XzOE), Cc + XcOE ( O(xcoE) _ I c if Zi OE _

We next show that we can interpret the constraint lic(xxw) + pc = u'(x) for all

i E 1 as defining x' E RI as a function of pc. In other words the inverse function xC as

a function of pc is well defined. We will use the inverse function and its differentiability

properties to rewrite the equilibrium price characterization.

Lemma 7. Let Assumptions 1 and 4 hold. Then lic(xxw) + pc = n'(xc) for all i E I

implicitly defines xc as a function of pC and this function is continuously differentiable.

Proof. Let p(xC) = (p(z7 o),pc(x, z4)) be a function of I variables from Ri to R,.

Where pc(zc, 4c) u'(xc) - llc(zx z) for all i E -T. By Assumption 1 and 4, p(xC) is

continuously differentiable. Therefore the Jacobian of p(xC) is given by matrix M defined

as follows, [u/i(XC) - IZC(X XW)XW U//XC
M

U /(XC) U"(Xc) - l'nc(xlxw)x

The determinant of M is given by,

det M = lC(XzX")l C(x x)(")2 - u"(xC)(l' ,(x xw)x + l (XZX)X).



The above determinant is positive because by Assumption 4 the latency functions are

strictly increasing and therefore their derivatives are positive and by Assumption 1, the

second derivative of the utility function is negative. Having shown that the Jacobian is

non-singular, we can now apply the Inverse Function Theorem [3] to conclude that the

inverse function is continuously differentiable. m

We now proceed to give a natural interpretation of the price characterization in

Proposition 3. After some calculations we can derive the following relations,

1 , x;/&py= -1/zi
1 _ 1 - nc(Xcn) 09CIOPC i

nc(nc iix,

where c ', = - x is the cross-elasticity of demand on link n with respect to the price
n/pc 1

on link i. Similarly sii = - is the own elasticity of demand of link i. It can also

be shown that,

n(xc )xc /pi
,1 - 1~, otoi

Using the above relations we can rewrite the price characterization on the consumer

side, when li(xOE XwOE + OE u(xcoE), as follows,

p cOE = Ct - w axnOE +cOE cOE cOE ccOE Ein

i~o n|8XCp C cn Est,

Pigovian tax .
Opportunity cost Switching cost

Opportunity Cost

The first three terms in the price characterization constitute the opportunity cost of

servicing a marginal unit consumer. The first term represents the cost saving to a

platform when a marginal unit mass leaves platform i; a platform no longer has to pay

the termination cost ct for all the traffic flow generated by that consumer. The second



term is the revenue lost from the cross traffic emanating from the other platform n; the

marginal unit consumer causes a traffic flow of xwuOE from platform n and each unit flow

earns a. The third term represents the loss of website profit. To see this note that a

price increase on platform i that causes a marginal unit consumer mass to leave causes a

marginal increase on platform n of n = f due to substitution effects, see Lemma 3.
ax~/Dp

Therefore the decrease in website profit can be written as follows,

(pwOE _ Cw)x OE _ (OE - cCo)OE _ (PwOE - CWxOE(f + 1) - axwOE

= -(p -cW) x ( + )-ax.IOE

_ iwOE - w\ wOE c - wOE

-x |pp *) axi

airw0/apc

The third term adjusts the consumer price downwards. It represents the additional loss

to platform i caused by a price change which causes a marginal unit consumer to leave the

platform. Thus the price charged to the consumer is discounted by the external benefit

or the marginal increase in website profit that they cause. Therefore the first three terms

summed together are the opportunity cost to platform i of lowering platform's i price

so that a marginal unit consumer connects to the platform.

Pigovian Tax

The fourth term in the characterization is the Pigovian tax which internalizes the con-

gestion cost. It corrects for the negative externality a consumer exerts on the link; the

consumer is charged for the loss of revenue its congestion causes on the platform's link.

Switching Costs

Each platform has market power on the consumer side because of the switching costs

induced on the consumer by the congestion externality. To see this, consider a consumer

switching from link i to n, he causes a negative externality on link n equivalent to

xcOE (XcOE) i Everything else held equal, the rational consumer will not switch to

the other platform if the markup is less than the switching cost. Thus the switching

cost term measures the extra revenue that a platform can extract on its users without



losing platform share. A platform, therefore, manages to lock-in consumers and raises

its prices by this congestion cost. The magnitude of the switching cost depends on the

latency function of the link on the other platform as well as the cross-elasticity and

own-elasticity of demand. For instance if link n has high latency, high cross-elasticity

of demand, and a low own-elasticity of demand then platform i will charge a higher

markup. This term is positive because the value of Eil/cii is negative. This follows

from the fact that the links are substitutes. In particular Eii is negative and this can be

inferred from Lemma 3. Similarly, ei, can be shown to be positive.

The interaction price of the website represents the standard hotelling result with the

off-net cost added to it, i.e., pgOE = t + c, see [59]. We can also see from Proposition 3

that if the latency functions tend to 0 we get the offnet pricing in [34] when there is

full coverage on both sides. We next define the social problem and the social optimum,

which is the consumer and website mass allocation that would be chosen by a social

planner that has full information and control over the two sided market structure to

maximize welfare. Welfare is defined as the total utility gained by the consumers added

to the total utility gained by the websites less congestion and communication costs.

Definition 6. A vector xS is a social optimum if it is an optimal solution of the social

problem

maximize. o u(xc)xw - Z lic(x'xw)x'x" - cxx" +-
iEI

-.. + v - xtdx x, (2.28)

iE1

Subject to xi <1
iET

iET

In view of Assumptions 1, 2 and 4, the above function is continuous over a compact

constraint set, therefore a maximum exists. A vector xcs that is a social optimum



satisfies the following necessary conditions,

u/(xcs)xws - 1 wS) 2 - l mQ)xws + Xwas - cxwS - I (xws)2 <gc if X = 0,

iGEl

= O', if x s > 0.

(2.29)

Similarly a vector xws that is a social optimum satisfies the following conditions,

u(xcs) _ >3(1.(.)(Xcs)2Xws + lic(-)xcS) + VXcS - cxcS - X stxcS <OW if s = 0,

iEI

= W if xTs > 0.

(2.30)

For future reference we denote the value of the objective function in the social problem,

W(x) = u(xc)x" - > lic(Xx")Xx" - cxx" + ( v - xtdx x , (2.31)
iE1 iE1

as social welfare.

We compare the mass of consumers that join the platforms at the social optimum

to those that join at the OE. We show that the total mass of consumers that enroll in

the two platforms under price competition is less than that at the social optimum if the

consumer market is not fully covered at the social optimum '. Consequently we show

that the duopoly competition is not always welfare maximizing. A similar effect is also

noticed by Engel et al in the context of toll competition on congested roads, see [17].

Proposition 4. Let (pOE, xOE) be an OE and xS be a social optimum. Let Assumptions

1 through 4 hold. In addition, assume that xc < 1. Then xcE <XcS.

Proof. Assume to arrive at a contradiction that xcOE > xS. This implies that there

exists some i E I such that x OE > xcS By concavity of u we have U'(xCOE) < U(XcS).

4 1f the consumer market is fully covered at the social optimum, it can also be fully covered at the

OE.



Using Lemma 1 and the necessary conditions for the social optimum we obtain,

t (xms)2
lc(x oE) + PcOE <c(sssS ± lic(ss) + c - c ± C S + Q (

iEt

Since from the proposition statement we have zcs < 1, it follows from the KKT

conditions that 9c = 0.

Assumption 3, l'c(-) > 0,

From Assumption 1, we know that c1o < 0 and from

for all i E I. These imply that,

1

-1 < 1 _t 1c<0

1ic', OE) uII(XcOE)

Moreover, as a consequence of Lemma 2, p wOE - C w < V _ Cw _ XwOEt. This implies

the following,

1

-(V - c - xOEt) < (pWOE - cw)x OE 1 WOE <0.
i (XcOE) ufl(xcOE)

From the OE price characterization in Proposition 3 and the above inequality we deduce

that,

COE > C - w + X OE cOEg (XcOE)pi >cvx t~i e11

Plugging this inequality in Eq. 2.32 yields,

c -v + xOEt + XcOElI cOE) + ic(XcOE

t
< le(xisxws )xsxws + lic(X SxwS) + c - V + iSl (2.33)

From Proposition 3, we have that xwOE = 1/2. We note that 1 Z Xiwj - t 0; we

therefore get the following inequality,

C - v + x'OEr c(xOE) + lic(XOE <cssc + +c -).

Via Assumption 4, the above implies szws > xOE

z s c X~s x"WS > XcOE yielding a contradiction. m

It immediately follows that,



We next compare welfare at the social optimum and at the OE. We show as a

consequence of Proposition 4 that social welfare at the social optimum is higher than

that at the OE under Assumption 5 and some mild conditions. We first show by example

that, it is possible for social welfare at the social optimum and the OE to be equal. Note

that for comparison purposes, we also assume that the social planner allocates websites

so that their is full coverage on the website side at the social optimum.

Example 1. Consider two competing interconnected platforms where the latency func-

tions to the consumers are given by, 1jc = x, and 1-c = x, the aggregate utility function

is u(x) = -x 3 /3 + 5x/2, the reservation price of each website be v = 2, the transport pa-

rameter t = 0.5 and the origination, termination costs and access charge are respectively

set to zero. By symmetry, the unique allocation of websites and consumers by the social

planner is xws = (1/2,1/2) and xcs = (1/2,1/2) respectively. The unique allocation at

the OE for websites and consumers is given by xwOE = (1/2, 1/2) and xcOE = (1/2,1/2)

respectively. Therefore the welfare is the same in both cases.

Corollary 2. Let Assumption 1 through 5 hold. Let (pOE, xOE) be an OE and xs

be a social optimum. In addition, assume either (i) xcs < 1 or (ii) xcOE = 1 and

lic(xcoE)/xcoE lnc (XnOE )cOE then W(xOE) < W(xs).

Proof. Assume that xcOE < 1. For a fixed value of the access charge, the social welfare

function is as defined in Eq. (2.31). From Assumption 5, the full coverage condition on

the website side, we have xW = 1. From proposition 3, we have x'OE - 1/2 for all i E I.

One also deduces from the optimality conditions in Eq. (2.29) that xzS = 1/2 for all

i E I. The Jacobian of W(x) is given by matrix M which is defined as follows,

u"(xc) - 2l c(xc) - l" (x )x U"(xc)
M = -cii(C

U"(xc) U"(xc) - 2l'c(xc) - i"c(x )xc

Since u"(xc) - 2l c(xc) - 1' (xc)xc < 0 and u"(xc) - 21'jc",(xc)x < 0 are less than 0

and UI(Xc) 2 > 0, M is negative definite which implies that W(x) is strictly concave. Since

W(x) is continuous over a compact and convex constraint set the maximization prob-

lem (2.28), where xW = 1, yields a unique maximum. Since xcOE : xcS, by Proposition



4, we deduce that W(xOE) < W(xs).

Assume that xcOE = 1 and lc(xcOE)/X OE 1nc(XcOE)/X cOE. From optimality con-

ditions in Eq. 2.29 and the fact that xcS > 0 for all i E I we have,

1 (xCS ) xCs + li, (xCS) = l 1 C(xCS)x~ + X's 4)

li(S ic( c( xc c cS cS n nc (XnS)

From the price characterization in Proposition 3 and Lemma 1, we have

(lic(XOE c cOE OE + l~c(XOE (XOE) + 1 c(XcOE cOE c(XcOE).

Since lc(XOE) XrOE # nc (XOE)/X cOE, the result follows. m

2.5 Access Charge

In this section we investigate the effect of the reciprocal access charge a on welfare. The

baseline model in [34] is incapable of analyzing the effect of the access charge on welfare

since demand is fixed on both sides of the market. In our model, consumers face an

elastic demand and respond to prices. We show that if the latency functions are linear

and there's no full coverage on the consumer side then the number of consumers that join

both platforms is increasing with the access charge. Consequently, we show that welfare

is also an increasing function of the access charge. This is important because it suggests

that 'Bill and Keep' peering in this setting is not a welfare maximizing interconnection

agreement. In the case where consumer market is covered at the OE, the access charge

is welfare neutral, i.e., increasing the access charge does not increase welfare.

We first show that we can express xcOE as a function of the access charge a. From

Lemma 1 and 6, if the consumer market is not covered, we have the following equation

satisfied at the Oligopoly Equilibrium for all i E I; we have explicitly put the dependency

on the access charge a in the equation,

aicz!OE 4pOE _ cOE).



For a fixed a, this equation implicitly defines xcOE as a function of pcOE, by Lemma 7.

Similarly we show that this equation implicitly defines xcOE as a function of a.

Lemma 8. Let Assumption 1, 4 and 5 hold. Then lic(x) +pc(a) = u'(xc) for all i E I

implicitly defines xc as a function of a and this function is continuously differentiable.

Proof. Let fi(a, x, xc) = aicxc + pc(a) - u'(xc) = 0 for all i E I be a function of

I + 1 variables from Ri1 to R,. f(a, xc) is continuously differentiable. Therefore, the

Jacobian of f(a, xc) is given by matrix M defined as follows,

M &fil/x afi/Dx1
M i

L fn|8xi ofn|8xn

We rewrite M as follows,

A +B B
M =

D C +D

where ,

A = 2aic - u/(xC) + 1 _ 1
anc U//(XC

-1 I'"(X C) (C t
B = (c x + 2 '

(anc 77"(xc -) )

C = 2anc- u//(xc) + 1 _ 1
ar u"(xc)

-1c t/ (N.
D = 2___ (x) k. + .

The determinant of M is given by

det M = AC + AD + BC.

The above determinant is positive because A, B, C and D are all positive. Having shown

that the Jacobian is non-singular, we can now apply the Implicit Function Theorem [7]



to conclude that xcOE is a continuously differentiable function of a. n

Lemma 9. Let (pOE, xOE) be an Oligopoly Equilibrium such that xcOE < 1. Let

Assumptions 1 through 5 hold. Assume further that the latency functions are linear

with 1jc = ac and 1,c = ac x'. Then xcOE(a) is an increasing function of a.

Proof. From Lemma 1 and 6 , we have the following equation satisfied at the Oligopoly

Equilibrium for all i E I; we have explicitly put the dependency on the access charge in

the equation,

acOE (a) = /(xcOE). (2.35)

From Lemma 8, this equation implicitly defines xcOE as a function of a. After implicitly

differentiating Eq. 2.35 with respect to the access charge, where p!OE(a) and pyFOE(a)

are given in Proposition 3, we have, for all i E I, the following equation,

cX OE (c E U cOE c
(2aic + Ac) - 1 = (u(xcoE)+ Ac 2nc cOE + ta a u (OE) 2 anc

where Amc(XcOE) 1 i for m E I. From Assumption 1, uII(xcOE) < 0 and

u"',(xcOE) < 0, and from Assumption 4, aic > 0 for all i E 1. These assumptions imply
. xcOE pgcOE XcOE

that bi < 0 and di > 0 for all i E I. Using the following relation, a + Dci a

we obtain the following inequality,

BOE
_____E di > 0.

D~a i i

Therefore xc(a) is an increasing function of a. m

We now show that welfare is an increasing function of the access charge. We re-

write the definition of social welfare explicitly showing the dependency of the consumer

allocations across the platforms to the access charge. Note that Assumption 5 holds for

this definition.

Definition 7. Welfare as a function of the access charge at the Oligopoly Equilibrium



is defined as follows;

W(a) = u(xcOE (a))Z- lic(XcOE (a))XcOE (a) - cOE (a) - xt dx xcOE (a).
iE1 iE1

Proposition 5. Let (pOE, xOE) be an Oligopoly Equilibrium such that xcOExcOE <1.

Let Assumption 1 through 5 hold. Assume further that the latency functions are linear.

Then W(a) is an increasing function of the access charge a.

Proof. We differentiate the welfare function with respect to the access charge and

obtain the following,

__ = __'(x_(a)) +_ ( cx'(a))xc(a) - lc(xc(a)))-c -(v-t/4)
a ia i) &a (Bxa &a

Let Ki = xcAnc and F = Anc/u"(Xc) for all i E I where n # i. Using these together

with the following relation u'(X') - lic(xc) = p we can rewrite the above differentiation

as follows,

OW(a) _( 1 &xf(a) 1Kt~ &xcn(a) ±(,/~W& 8x(a)=Wa Ki +-1tF) + (Kn+ -tFn) + (v - t/4 - cw) .~ca
a  2 &a 2 Da Da

One can establish that Ki is positive for all i E -E and similarly F is negative for all

i E 1. Moreover, I F j< 1, therefore it follows that,

a) > (min{K, Kn} + t min{F, F,} + (v - t/4 - c") Da , (2.36)

> (min{Ki, Kn} + (-1) + (v - t/4 - cw) a), (2.37)

> 0. (2.38)

The last inequality follows from the positivity of Ki and Kn, from Assumption 5 which

implies v -- - c ;> 0, and from Lemma 9 which shows that xc(a) is an increasing

function of a. Thus welfare is an increasing function of the access charge. N

From Proposition 3 we see how access charges feed into consumer prices. In par-



ticular, they decrease the prices charged to consumers. Higher access charges benefit

consumers because they lower the prices that platforms charge. This increases the en-

rollment. From Corollary 2 we infer that given any access charge, social welfare is higher

at the social optimum if the consumer market is not covered at the OE. Thus, so long

as the consumer market is not covered at the OE, increasing the access charge increases

welfare. In the instance where the market is covered demand is fixed. Lowering the ac-

cess charge does not change the allocation of consumers on both platforms. Therefore,

the access charge allocates costs between the websites and consumers.

2.6 Chapter summary

In this chapter, we have studied competition between interconnected platforms in pres-

ence of access prices and congestion effects on the consumer side. We have characterized,

using system parameters, the prices that a platform would charge to both consumers

and websites when there's full coverage on the website side. In particular, we note that

the price charged to consumers consists of the opportunity cost of attracting the con-

sumers to the platform and markups resulting from a pigovian tax and the switching

cost. We have also shown that under mild conditions less consumers join the platforms

under price competition than at the social optimum. We have also analyzed the effect

of access charges on welfare. In particular, if at the Oligopoly Equilibrium there's no

full coverage on the consumer side then welfare is increasing in the access charge in the

presence of linear latencies and concave inverse demand.



66



Chapter 3

Net Neutrality

3.1 Introduction

In this chapter we present and solve the two-sided market models that represent both

the neutral and non-neutral regime. Our principal context is competition between two

interconnected ISPs that serve both CPs and consumers who are heterogenous in their

tastes. We show that the different pricing structures between the regimes determines the

investment patterns. Moreover, we show the trade-offs platforms make in softening price

competition on the consumer side and increasing CP surplus on the CP side from which

they expropriate revenue, is the mechanism by which investment levels are determined.

Finally we show comparative statics of consumer, CP and social welfare in both models

and explain the role of investments.

3.1.1 Related Literature

As initially mentioned, much of the net neutrality debate has been qualitative; mostly

from the law and policy sphere. In addition to the papers cited in the introduction,

the following also discuss various policy aspects of the net neutrality debate [47, 28,

42, 18, 36, 41]. Recently, a few publications have formalized some of the issues around

net neutrality. Conceptually, it is useful to classify these emerging work into two broad

classes categorized by the working definition of net neutrality that they adopt. One



group views abandoning of net neutrality as a licence to introduce differentiated service

classes in the Internet, or establishment of priority lanes (see for example [13, 32, 27,

11, 51, 52]). In contrast, the other group views abandoning net neutrality as abolishing

the current pricing structure in the Internet, see Economides and Tag [16], Cai6n [10],

and Musacchio, Schwartz and Walrand [39].

This second group is more related to our work. Economides and Tag [16] use a two-

sided market framework to investigate the effect of net neutrality regulation (defined as

setting zero access fee to CPs) in both a monopoly and duopoly setting. In general they

find that total welfare is higher in the neutral regime under both scenarios. However,

their model does not include investment decisions by platforms, a key driver of our

results. Cafi6n [10] also investigates the effect of net-neutrality under various pricing

regulations in the presence of investment decisions. He finds that the neutral regime is

superior in terms of total welfare. Unlike our setup, though, his model considers only a

single monopoly ISP. Musacchio et al. [39] is the closest to our work. They develop a

two-sided market model and compare economic welfare under a neutral and non-neutral

regime. The former corresponds to "one-sided" pricing where only consumers are charged

and the latter corresponds to "two-sided" pricing where both consumers and CPs are

charged. The authors find that either regime can be superior for overall welfare and

even for each of the CPs and ISPs; a detailed summary can be found in [53]. Although

we use a similar definition of net neutrality, our models differ to theirs in a significant

number of ways. In particular, the novel features of our models are:

* CPs are not assumed to be homogenous and atomic, but are heterogeneous in

quality with a scaled standard deviation given by a and an average given by 77.

Moreover, advertising rates increase with CP and platform quality. In addition

the market coverage is also endogenously derived.

* Consumers are also heterogeneous in their tastes or income and distributed over

the interval [0,f], see [40]. Here f is a fraction representing the mass of consumers

in the market.

* We highlight the impact of quality difference between the platforms on consumer's



experienced QoS with a bottleneck effect. Specifically, if a consumer is on a low-

quality platform and accesses content on a higher quality platform he experiences

low quality. Similarly, if he is on a high-quality platform and accesses content on

a low-quality platform he experiences low quality.

Moreover, they assume that ISPs have local market power and that the consumer base is

split equally amongst the ISPs. This lack of competition on the consumer side coupled

with the above listed differences explains the dissemblance of our results from theirs.

Our work complements previous research by explicitly considering quality investment

by platforms in the two regimes. We do so by building on two main strands of literature in

Industrial Organization: Price competition and quality choice in vertically differentiated

markets, [22, 62, 12, 38, 54}, and two-sided markets [44, 2, 50, 23, 49]. These help us

model platform quality investment endogenously in the presence of a bottleneck.

Equally important, we are able to capture the effects of CP heterogeneity and average

quality on the investments made in both regimes. Moreover, we are also able to address

how CP market coverage, which is not addressed in most of the literature, and surplus

(both proxies for innovation) compare under the two regimes. This research adds to the

growing body of economic analysis that will help inform policy on the net neutrality

debate.

We also contribute to the two sided market literature by considering a model where

the participants of one platform benefit from the presence of participants of another

platform (because of the interconnection). This is in contrast to most two sided market

models in which platform end users only benefit from subscribers to that platform. In

addition, we also consider investment decisions by the platforms, an area that has re-

ceived little attention. Farhi and Hagiu [19] consider investment as a strategic variable in

a two-sided duopoly market model. However, their analysis investigates how investment

strategies of an incumbent platform may help it accommodate or deter entry of another

platform. In our models, both platforms simultaneously compete in the investment stage

and platform participation is an endogenous result of the game.

The rest of this Chapter is organized as follows. In Section 3.2, we present the

neutral model. In Section 3.3, we analyze the model solving for the subgame perfect



equilibrium (SPE) of this game as well as discussing our findings. Section 3.4 introduces

the non-neutral model. In Section 3.5, we analyze the model and discuss the results. In

Section 3.6, we perform a comparison of various welfare metrics between both regimes.

We conclude in Section 3.7 by summarizing our results and providing insight for policy

makers. To improve readability all proofs have been relegated to the Appendix.

3.2 Neutral Model

We consider two platforms denoted by a and #, and a continuum of consumers and

CPs with the former having a mass f, with f E [0,1], and the latter a mass of unit

volume. Let y, E R+ and yp E R+ be the quality-of-service chosen by platforms a and

#, respectively. Without loss of generality we assume y, > y3 > 0. Let 7, be the quality

of CP j where j E [0, 1]. Here, 7j is uniformly distributed. with support [7 - a,;7+ a]

and 0 < a < 7. We assume -yj are independent identically distributed random variables

across the population of CPs. Let # : [0, f] -4 {a, #} and # : [0, 1] -+ {a, #} be mappings

from the space of consumers and CPs respectively to the set of platforms. Let ra and rp

(q, and qB) be the masses of CPs (consumers) that join platform a and # respectively.

Platform z E {a, #} has its own services and content that enhance or complement those

of CPs that connect to it denoted by k,: a random variable whose average is the same

as that of -yj and support lies on the positive interval. This content and service is only

available to consumers who enroll on the platform.

Consumer Utility: A consumer i on a platform 0(i) E {a, 0} connecting to a CP

j on platform #(j) E {a, #} receives utility,

Uij(yo(i), y(j) y i), r (j)) = min{y+(i), Y9(} + k). (3.1)

The quality of a CP j is divided by the mass of the CPs that connect to #(j), denoted

by r (j), to model the congestion whose effect is to lower the quality of the CP content:

the more CPs that join a platform the higher the congestion on that platform lowering

the quality of CPs. k2 is not affected by the congestion because, unlike CPs content, it



does not have to traverse congested links to get to the ISP as it is hosted at the ISP's

servers.

Consumer utility gained both from the platform content and CP content is affected

by the minimum of the quality-of-service of the platforms on which the consumer and

CP are located. This implies that a consumer on a high-quality platform, connecting to

a content provider present on a high-quality platform, receives higher utility than if he

connected to a content provider of the same quality on the lower-quality platform. In

essence, consumer utility depends on the platform that acts as a bottleneck.

A consumer i on platform #(i) connects with any CP j subscribed to either platform

since uig > 0. Let Fi(yo(i), y4(-i), 7, a, rc, r,) be the quality perceived by a consumer i

when he joins platform #(i). Formally,

Fi(y4(i), y+(i),7, a, rc, ry) = j E [uij((y4(i), Y (j) 'y, ke(i), r (j))] dj. (3.2)

We assume that consumers have heterogenous preferences represented by parameter O6

which is uniformly distributed in the interval [0, f]. A consumer i perceives the quality

of platform #(i) as his expected utility, F(yo(i), -). In addition, each consumer has a

reservation utility R. The prices charged by the platforms to consumers a and # are

pa and p, for platforms o and 0 respectively. Each consumer connects to at most one

platform but once connected has access to all content due to the interconnection of the

platforms. Therefore, the net utility of a consumer i connecting to platform #(i) is given

by

Ui(#(i)) = max{R + 9iFi(ye(s), y (j), 7, a, r., ra) - Po(i), 0}. (3.3)

Consumers prefer the platform with the higher perceived quality, ceteris paribus.

Content Provider Utility: CPs make revenues by selling advertising and pay

platform a(#) a fixed connection fee w, (w,3) if they join it. The utility vj of a CP j is

defined to be his profit

vj = V (7yj, ya, yp, qa, qa) - ~w), (3.4)



where the gross revenue earned by a CP j is given by

Vj Y, yy31,qQq) = fO g(7yj, y0)qa + g(y, y,3)q,3 if (j) = a,

g(7j, yo)qa + g (7, yO)q'3 if #(j) = .

Here, g(-yj, y (j)) is a function that represents the advert price and is increasing in both

parameters; CP j gets a higher ad price for having a higher content quality and also for

locating on a platform with higher quality. Note that V(.) depends on which platform

the CP joins and the number of consumers on the other side of the market. In particular,

if a CP j joins the higher quality platform, it is able to charge a higher advert price for

connections arising from consumers on that platform. If a CP joins the lower quality

platform its advert price is constant across the two platforms, i.e, the advert price

depends on the platform that acts as the bottleneck. Figure 3-1 shows a depiction of

the model.

Platform Payoffs: Finally we consider the payoff functions of the platforms: we

assume that platforms incur a cost when investing in quality. The payoff of platform a,

which we denote by ir,, is given by

ra = paqa + wara - I(Ya). (3.5)

where q, is the mass of consumers attached to platform a and rc, is the mass of CPs

attached to platform a as mentioned earlier. There is a convex investment cost I(ya)

associated with quality ya resulting in a decreasing return to investment. The payoff for

platform / is similar. The model we have outlined corresponds to a dynamic game with

the following timing of events.

1) Quality Investment Stage: Platforms a and # simultaneously choose quality-of-

service from the interval [0, oc).

2) Pricing Decisions: Platforms simultaneously choose connection fees w, and w,3.

3) Connection Decisions: CPs decide which platform to join.

4) Pricing Decisions: Platforms simultaneously choose prices p, and pp.



5) Connection Decisions: Consumers decide which platform to join.

6) Consumption Decisions: Consumers decide which CPs to connect.

-Y E [7 - a, y + U]: j's CP qIality

v: CP j's iItility

o 1

ma.ss of CPs A

Platforms PaofraPyf~r
Oc Dk.,Ock

OP

mxass o~f Icauzir C.0Ia-0 10,31

o 1~kn~r f f~8 inldf ecd byi f

Oe e [0, f]: i's preference
Ui(.): i's total utility

Figure 3-1: An illustration of the model, where the red (dashed) lines show movement

of fees and prices from CPs and consumers respectively whilst the blue(solid) line shows

the movement of content. Oc refers to own content. The bubbles show dissipation of

CPs and consumers to the various platforms according to the mappings # and 4.

The timing of the extensive game is predicated on the view that prices adjust more

quickly than investments. The latter is viewed as a medium to long-term decision

whereas the former is a short run decision, see [5, 33]. Thus investment is the first stage

of the game. We solve this game by considering its subgame perfect Nash equilibrium

(SPE)', which we find using backward induction. Steps 4-7 are similar to a pricing game

with vertical differentiation; steps 1-3 are similar to a quality choice and pricing game

with vertical differentiation.

3.3 Model Analysis

Let I = {a, #, [0, 11, [0, f]j} denote the set of players in the multi-stage game, where a

and # are the platforms, [0,1]j and [0, f]i are the continuum of content providers and

'We focus on optimal actions/decisions along the equilibrium paths .



consumers respectively. We denote the information set at stage k of the game for a player

i E I by h'. Let the set of actions available to a player i at stage k and information set

h' be denoted as Ai(h'). The consumer price SPE, follows from the standard vertical

differentiation model, see [59]. The main challenges of our model arise from solving the

CP price and the platform investment SPE. For the former, we first identify the candidate

price CP price equilibrium pairs in all the market configurations that may arise. Then

by construction we show that these pairs are also best replies on the whole domain of

strategies, i.e., a candidate price pair not only consists of prices that are mutual best

responses in a particular market configuration but across all market configurations. For

the latter we identify sets in which the best response lie and consequently find candidate

SPE pairs; we then show that these pairs are indeed SPE.

3.3.1 Consumption Decisions

We begin by analyzing the last stage of the game, i.e, the consumption decisions of the

consumers. Only the consumers make a move in this stage. A consumer i on a platform

#(i) E {a, #} accessing content of a CP j on platform #(j) E {a, #} receives utility

represented in (3.2).

As previously discussed, this implies that a consumer connecting to a higher quality

platform gets more utility when he accesses CPs on that platform, compared to when he

connects to the same content providers while connected to the lower quality platform.

Consumer i on platform #(i) connects with CP j whenever uij 2 0 which implies that i

connects with CP j if 7y 2 -ky(i)r (j). Since 7y is positive for all j and the term on the

right hand is always non-positive, when a consumer joins any of the platforms he will

connect to all CPs on both platforms.

3.3.2 Consumer Platform Connection Decisions

In this stage the consumers are the only movers and they decide which platforms to

join. The choice set of a consumer i given any h is Ai(hk) = {a, #}. Through his

information set, a consumer has knowledge of the number of CPs on each platform, the



prices that the platforms charge and the quality level of each platform. Each consumer

i maximizes his net utility given by Eq. (3.3) to determine what platform to connect

to.We proceed next to give the demand functions addressed to each platform based on

consumer choices in this stage whenever y, > yo. We will show in the next stage that

if ya = y3 then any allocation of demand across platforms is possible at the resulting

price equilibrium. We first make the following assumption on the reserve price which

will apply throughout this paper.

Assumption 6. R is large enough that the consumer market is covered.

The above assumption results in a covered consumer market because for large val-

ues of R, O6 > (po(i) - R)/Fi(y4(i),.) which implies that every consumer derives pos-

itive utility upon joining one of the platforms [cf.Eq. (3.3)]. If ya, > y6, we con-

sider two cases in determining the demands: p, < pa and p, > pa. In the former

case, the consumers always join the platform with the highest perceived quality since

Ui(o(i) = a) > Ui(#(i) = #), this follows directly from applying Lemma 10, see Ap-

pendix A.1.1. Demand addressed to the platforms in this case is therefore given by

qa = 1 and q0 = 0. When p, > p3 the demand derivation is more involved. Let

O (P, - p'3)/(F(y, ) Fi(yp, -)) Consumers with a taste parameter 63 > 9 join the

platform with the higher perceived quality, F(yc, .), since 9iFi(ya, -)--pa ;> 9iFi(y,3, -)-p

if and only if 9i > b. Those whose taste parameter 9, < 9 will join platform 0.

One can show that the demands in the consumer market are characterized as follows

q,(pa, p3) = (y. ) F (y " and qapa, pp) = f F(y ) -F (yo,-

3.3.3 Platform Pricing Decisions on Consumer Side

In this stage of the game, the platforms are the only movers and they decide what prices

to charge to the consumers. The choice set of platform i E {a, }, given any h', is

Ai(h') = pi E R. Thus the platforms simultaneously decide what prices p, and pp to

charge to consumers. Through his information set, a platform has knowledge of the num-

ber of CPs on each platform and the quality level of each platform. Profit for platform z

is given by the expression in Eq. (3.5). The Nash equilibrium in this price subgame de-



pends on the information set hi. In particular, if hi is such that y, > yo it can be shown

that, p3 = f (Fi(ya, -)-F (y3, -))/3 and p, = 2f (F(ya, -) -F(y,3 , -))/3, and the consumer

demands addressed to the platforms at this equilibrium are q, = 2f/3 and qf3 = f/3. If

1h is such that y, = y3 then F(ya,-) = F(ya, -). A Bertrand competition ensues with

pa = pp = 0 the resulting subgame Nash equilibrium. The consumer demands addressed

to the platforms at this equilibrium price are indeterminate, i.e, any allocation such that

qa + q, = f is a solution. In this case we make the standard assumption that consumers

are evenly split between the platforms.

3.3.4 Content Provider Connection Decisions

Given the quality of service offered by platforms ya and yp and the prices wc and w,3,

the content providers decide on which platform to locate. The choice set of a CP j given

any h is Aj(hO) = {a, #1. As mentioned in Section 3.2, 7j is uniformly distributed with

a support [7+ a, 7- a] where 7 > a. The utility vj gained by a content provider when he

joins a platform is given by (3.4). A CP's utility is zero if he does not join any platform.

In this stage, CPs take the investment(choice) in quality as given. Moreover, they

anticipate the mass of consumers on each platform qa and qf3. Let g( y, Y(j)) = 93(2)'

a CP j perceives the quality of platform a to be yaqa + ypq3 and that of platform # to

be yoqa + y q.

A CP j maximizes the utility vj and is indifferent between the two platforms if and

only if 7j(yaq, + y8q) - wC = -yj (yqa + y3q) - w 3 . Let ' = w, - wp/qo(ya - y3), then

the CPs with quality exceeding j' join the high quality platform a. Those whose content

quality is lower than j', but larger than wp /(y3(q3 +q,)), join the lower quality platform

#. The others do not join any platform. If ya > y,3, there is a possibility of platform

a preempting the market with a limit price wa = wo + (7 - a) (qa(Ya - y'3)). It follows

that given the tuple (7, a, yo, y,3, w., w,3), there are four possible market configurations

that may arise reflecting the demands addressed to the platforms. We next describe the

market configurations and demand functions on the CP side that arise at different CP

prices. The mass of CPs r,(wa, wf) or rp(wa, w3) is defined by those CPs who maximize

vj when they join platform a or #).



1. Uncovered Market: r0 (w0 , w1p) < 1, ro (w0 , w,) = 0. We denote this configuration

as CI. It has only platform a participating in the market with only a fraction of

the content providers being served.

2. Uncovered Market: ra(wa, w,) + r,(wa, w,3) < 1, 0 < rQ(wQ, wp) < 1, 0 <

rfl(wa, wf3) < 1. We denote this configuration as CII. In this configuration,

both platforms participate in the market but there are CPs who are not served by

either platform.

3. Covered market: ra(w , w) + rf3(wa, w,3) = 1, ra(wa, w,3) > 0 and r, (wa, wp) > 0.

The third configuration is denoted as CIII. In this configuration, both platforms

participate in the market and all CPs are served.

4. Preempted covered market: ra(wa, w,3) + r(wa, w,) 1, (w, w,3) = 1, and-

rfl(wa, w3) = 0. The fourth configuration is denoted as region CIV; in this config-

uration only one platform participates in the market and all the CPs are served.

3.3.5 Platform Pricing Decision for the Content Provider Side

In this stage of the game the platforms are the only movers and they decide what prices to

charge to the CPs. The choice set of platform z E {a, #} given any h' is Ai(h') = wi E R.

Thus the platforms simultaneously decide what prices w, and wo to charge to CPs.

Before proceeding we make the following definition of a subgame price equilibrium. At

the price SPE each platform z maximizes its own profit, r, = pzq, + rzw, - I(yz), given

the other platform's price strategy and has no incentive to deviate to another price.

In this section, we provide results showing that given a tuple (-, a, f, ya, y,3) such

that y, > y, > 0, there exists a pure strategy price SPE pair (w*, w) 2 . In addition we

characterize the market configurations that result. Specifically, we show the conditions

under which particular market configurations arise depending on the parameters in the

tuple (7, a, f , y,,, yp3)

Our results show that the uncovered market configuration CI does not occur at a

2The actual price characterizations can be found in the appendix .



SPE. In this configuration no CPs join the low-quality platform even though it has

positive quality. We show that there exists a profitable price deviation by the low-

quality platform that involves CPs joining this platform. On the other hand, we show

that given a tuple (7, a, f, y yp) one of the other configurations, CII, CIII or CIV,

will emerge. In doing so, we determine the set of parametric values (7, a, f, y., y3) for

which these different configurations exist.

We prove the existence of the price SPE by a construction argument. The proofs,

which are in the appendix, involve first identifying candidate equilibrium price pairs in

each possible market configuration.3 We then check to see whether these price equi-

librium pairs are indeed Nash equilibria of the price subgame.' We do so by verifying

that the equilibrium price candidates are best replies on the whole domain of strategies:

That is, not only are they best responses in their respective market configurations but

that they are also best replies if the other market configurations are taken into account.

For ease of presenting our first theorem that summarizes the above results we define

the following sets of prices which we use in the theorem,

Rz = {(wa, w,)ra(wa, w,3) + rO(wa, w,3) < 1, r.(w., wo) > 0, ro3(w., w,) = 0

RZz1 = {(wa, W)|ra(wa, wO) + r (wa, w,) < 1, ra(wO, wp) > 0, r, (wa, w3) > 0},

R=z = {(wa, W,)|ra(wa, w,3) + r3 (w,, w3) = 1, re,(wa, w) > 0, rl(w,, w,) > 0},

Rzv = {(wa, w3)|r(wa, w,3) + r,3 (wa, w) = 1, ra(Wa, W,3 ) = 1, rfl(wa, w) = 0}.

The sets R_1, R1z, R 1z and RlZv consists of price pairs (Wa, wO) that result in con-

figuration CI , CII, CIII and CIV respectively. We next present a theorem showing

that for any tuple (7, a, f, ya, yO) a price subgame Nash equilibrium exists and only one

market configuration is feasible. In addition, for market configurations CII and CIII,

the price characterizations are unique.

Theorem 1. Let Assumption 6 hold and y, > y3 > 0. Given a tuple (7, a, f, ya, y,3)

there exists a Nash equilibrium pair (w*, w*) in the quality-subgame. Moreover, the

3This is done in appendix A.1.2.
4Computations for this are in Appendix A.1.3.



resulting market configuration is unique and the following hold:

1. If 1 < < -y)3y - 3y, then the equilibrium price pair is unique and
a 2f (y.-yO)+18yck+9yO'

(w*,, ws)E2 -

2f(ya-yp)+30ya - 3 yp a 2 2f(ya-yp)+18ya+9yp 4f(ya-yp)+18y+-9y9 t
- 2f(ya-yp)+18ya+ 9 yp - a f(ya-yp)+6ya+21yp 3 4f(y -yp)+6ya+3yp

equilibrium price pair is unique and (w*, w*) E lZzz.

3 .If 2f(ya-yp)+18ya+9yp < < 51+18 then the equilibrium price pair is unique
' 2f(y.-yp)+6yU+21ypa a 5f +6

(W* 7,w sE~r

and

.If max 5f+18 4f(ya-yp)+18ya--9y5 -1 E RIV -5f+6 I 4f(ya-yp)+6ya+
3yp I - a t)

vs I

0

(5f+1

E (5/+6

0

Investment Ratio I

Figure 3-2: Inverse of the scaled coefficient of variation 7/a, versus the investment ratio

ya/yp = 1, and resulting market configurations in a neutral regime.

Figure 3-2 shows the resulting market configurations for different values of the in-

vestment ratio, y./yp = I, the inverse of a scaled coefficient of variation, 57/a and a

fixed mass f of consumers. In particular, given an I, 7/a and f, Figure 3-2 shows the

distinct resulting market configurations. For a fixed I, as 77/a increases the covered

market is more likely. At the extreme, when 77/a is high, the coefficient of variation,

which measures the dispersion of the CP qualities, is low. Therefore CPs are relatively



close to each other and less distinguishable from each other; a decision made by a CP

will be mirrored by the other close CPs and a covered market is likely. On the other

hand, for a fixed value of low 7/a, as the investment ratio increases the two platforms

become more differentiated; price competition becomes less intense. This softening of

price competition results in an uncovered market because less CPs can afford to join the

platforms. However, for a fixed high 7/a, the relative closeness of the content providers

quality, dominates the differentiation effects of the platforms and a preempted covered

market is realized as all CPs flock to one platform.

So far the results from Subsection 3.3.5 have shown that given any tuple (7, a, f, ya, y,)

such that y, > y3 > 0 a pure strategy subgame equilibrium occurs. We now show that

any tuple (7, a, f, y, y3) where y, > y3 = 0 also has a SPE. Moreover we show that

in this case only configurations CI and CIV exist. Note that under this restriction

on platforms qualities, CPs do not join the low-quality platform since they make no

revenue, hence only configuration CI and CIV exist.

Theorem 2. Let y > yp = 0 hold. Given a tuple (7, a, f, y,) there exists a unique

Nash equilibrium pair (w*, w*) in the price subgame. Moreover, the resulting market

configuration is unique and the following hold:

1. If 1 < 2 < 9+2f, then the equilibrium price pair (w*, w*) E Z_.a 3+2f '1

2. If 9+2f < I < oo, then the equilibrium price pair (w* , w*) C R 2 v.

Theorems 1 and 2, give a complete characterization of the quality subgame given

any tuple (7, a, f, ya, yo) where ya > yp > 0. Results of Theorem 2 show we naturally

get a tipping equilibrium with all CPs locating to the platform with the highest quality

when the low-quality platform does not invest. This occurs for all values of 7/a.

3.3.6 Quality Choice

In this section, we consider quality investment by the platforms. We assume that the

cost of quality is increasing. Platforms are the only movers and they decide what quality

level to set. The choice set of platform j E {a, #} given any hk is Aj(h) = yj where



yj E [0, oo). Thus the platforms simultaneously decide what quality level to invest

in. We show that a subgame perfect Nash equilibrium exists. In addition, we show

that this equilibrium involves maximal differentiation subject to investment costs, i.e.,

one platform choosing the highest quality possible taking cognizance of investment cost

whilst the other chooses not to invest. Moreover, we characterize the investment levels

in terms of the system parameters and give an interpretation to these expressions. We

find the equilibrium quality choices by considering the best reply responses of the two

platforms. We find the set that contains platform O's best replies to platform a's choices

and vice versa. We then analyze the points where these sets intersect and show that they

indeed are the subgame perfect equilibria. We make the following standard assumption

on the investment cost to simplify the discussion and characterization of the investment

level.

Assumption 7. The investment cost function I : [0, oc) -+ [0, oo) is strictly convex,

differentiable, nondecreasing and satisfies I'(0) = 1(0) = 0.

The following Theorem shows the necessary conditions for a subgame perfect Nash

equilibrium to exist.

Theorem 3. Let Assumption 6 and 7 hold, and f > 1. If a subgame perfect Nash

equilibrium (SPE) exists in the quality investment game then one platform does not

invest any quality and the other invests in some positive quality y*(7, a). Moreover, the

following holds:

If 2 < 9+2f then I'(y*) = j(7, a, f) where,a 3+2f wee

j(77,a,f) = (4(7 - a)2f 3 + 12(7+ a)(7+ 3a)f 2 + 9(7+ a)2f)/108a,

If } 2 9 then I'(y*) = h(7, a, f) where,

h(7, a, f) = 2f(77(3 + 4f) - 3a)/9.

The above theorem enables us to identify candidate equilibrium investment pairs

given an investment cost function I(y) that satisfies Assumption 7 and a consumer mass



f > 3/5g. The next theorem shows that for quadratic investment functions of the form

I(y) = cy2 that the above characterization is indeed a SPE in the investment stage.

Theorem 4. Let Assumption 6and 7 hold. Further, let the investment cost function be

of the form I(y) = cy2 . Given a tuple (7, a, f, c) where f is sufficiently large, there exists

a SPE in the quality investment game.

In general, the above results suggest that the platforms differentiate in platform qual-

ity to soften price competition. If the platforms are undifferentiated both platforms earn

zero profits due to Bertrand price competition on both sides of the market. Therefore,

platforms have incentive to invest in different quality levels in equilibrium. In particular,

one platform invests in a positive quality whilst the other opts not to invest.

3.3.7 Investment and Market Coverage at the SPE

In this section we discuss the investment levels and market coverage at the SPE in the

neutral model. On both sides of the market the platforms are viewed as substitute

products by both consumers and CPs. Thus platforms make higher profits when they

are more differentiated. The high-quality platform gains by investing more and the low-

quality platform by investing less. For the low-quality platform the differentiation not

only gives it market power on the consumer side but also reduces its investment cost.

Even though investment in quality by the low-quality platform would generate revenue

on the CP side, this gain would be offset by the loss of revenue on the consumer side.

Indeed, investment by the low-quality platform increases competition on the consumer

side in addition to increasing investment cost, resulting in lower consumer prices and

consequently platform profit.

The investment level of the high-quality platform increases with CPs average quality.

This increases the revenues that CPs earn; recall that the advert price is increasing in

platform quality. Thus the surplus from which the high-quality platform can extract

revenue also increases. In contrast, the relationship between the investment level and the

5This consumer mass is lower than the percentage of consumers in the U.S. who use the internet,
which is around 74%. See http://www.internetworldstats.com/stats14.htm



heterogeneity is unimodal and convex. An increase in heterogeneity generally decreases

the price elasticity of demand of the CPs. Hence, the high-quality platform prefers to

make revenue directly by raising prices rather than through investment which is more

costly. However, as heterogeneity increases beyond a critical point the platform prefers

to invest in quality. This occurs for two reasons. First, due to the high prices the CP

market becomes progressively uncovered. To gain revenue from the diminishing CP base,

the high-quality platform invests to increase the surplus from which it can expropriate

revenue. Second, due to the two-sided nature of the market, an increase in investment

increases the value consumers gain when they interact with CPs. Consequently, it is able

to charge a higher price to consumers and thus extract some of the gain generated, see

Figure 3-3. We next present a corollary from theorem 3 that shows the market coverage

i40'QuI~y Platfomis Iivesment Level

6 .... -- 8

4 2 . 24 6

7 CP Average Quality 0 0 a Vaxiance Proxy

Figure 3-3: Investment level of the high-quality platform as a function of average CP
quality 7 and CP variance a.

by CPs at the SPE.

Corollary 3. Let Assumption 6and 7 hold, and f> . If a SPE exists then the following

hold:

(a) If < , then the market is uncovered and one platform has all the market share

in the content provider market. The market share is an increasing function of the

dispersion measure 7.a



(b) If > 92f, then the market is covered and one platform has all the market share

in the content provider market.

When 7/a is low, then an uncovered market with all CPs flocking to the high quality

platform results. Either a is high which implies that the price elasticity of demand is low

which leads to higher prices for the CPs and less enrollment or 7 is low which implies

that low quality CPs do not earn enough revenues to join the platform.For high values of

7/a a covered market results. In this case, either 7 is high or the variance, represented

by a, is low. In the former case CPs earn high advertising revenues, recall that the

advert price increases with 7, and thus all CPs can afford to join the platform. In the

case of a low variance, CPs price elasticity of demand is high. Therefore prices charged

to CPs are low encouraging high enrollment. Moreover, the high-quality platform prices

out the low-quality platform leading to a pre-empted market.

3.4 Non-Neutral Model

The model structure of the non neutral regime is the same as that in the neutral regime

except for the pricing rule on the CP side. Recall that, whilst CPs pay only once and have

access to all consumers in the neutral regime, they have to pay each platform separately

to access consumers on both platforms. Specifically, once a CP pays to be connected to

a platform he gains access to those consumers connected to the same platform. However,

should he also want to access consumers on the other platform he also has to pay access

fees to the other platform.

The connection service offered by a platform to CPs can be viewed as an indivisible

good that can be consumed separately (if a CP connects to consumers on one platform

only) or jointly (if a CP connects to consumers on both platforms). Platform a (#)

charges a fixed connection fee w,(wp) to CPs that connect to them regardless of what

platform they are located on. CPs make revenues by selling advertising as before. The

game's timing of events is same as that presented in the neutral model: We solve this

game by considering its subgame perfect equilibria (SPE), which we find using backward

induction.



3.5 Model Analysis

3.5.1 Consumption Decisions

We begin by analyzing the last stage of the game, i.e, the consumption decisions of

the consumers. Only the consumers make a move in this stage and their choice sets

are same as those defined in Section 3.3.1. A consumer i on a platform # (i) E {a, #}
connects to a CP j only if the CP has access to #(i). Due to the pricing structure,

CPs that access both platforms do so through the high-quality platform. This is shown

in Section 3.5.4. This implies that a consumer i on the high-quality platform does not

connect to CPs on the low-quality platform. Thus the utility gained by a consumer i con-

necting to CP j is given by uij (y4(i), ko(i), r4(i), 7yj) = Y4(i) (yj/r(i) + ke(i)) . The quality

perceived by a consumer i when he joins platform #(i) is given by F(y4p(i), r4(i), a, 7) =

Lf E [uij (y4(i),I k+(i) , r4(i), yj)]J dj.

3.5.2 Consumer Platform Connection Decisions

A consumer i has a choice set Ai(hk) = {a, #} and picks a platform which maximizes

his utility, Ui(#(i)) = max{R + OiFi(yg(i), re(i), a,7) - Po(i), 0}. Given an information

set h' one of the following three relations hold; (i)Fi(ya, ra, a,77) > F(yp, rl, a, 7),

(ii)F(ya,ra,a,7) < F(y,,ro,a,7), (iii)F(y,,re,a,7) = F(yg,r,3 ,a,7). Platforms de-

mands are derived in a similar manner to those in Section 3.3.2. They are based on

consumer choices in this stage which in turn depend on which of the above relations

holds and prices offered by platforms.

3.5.3 Platform Pricing Decisions On the Consumer Side

In this stage of the game the platforms simultaneously decide what prices to charge

to the consumers. The choice set of platform i given any h, is Ai(hk) = pi E R.

Information sets in this stage can be classified into three types depending on which of

the three relations in Section (3.5.2) holds. We characterize for each type prices along

the equilibrium path.



For information sets such that the first relation holds, the equilibrium prices and con-

sumer allocations on the platforms are given by qf3(F(y,, -) - Fi(y3, .)) and q,(F(y0 , -) -

Fi(yp, .)) and the consumer demands addressed to the platforms at this equilibrium are

qa = 2f /3 and qO = f/3. When the second relation holds a symmetric characterization

applies. If the third relation holds then pc, = pp = 0, and we make the standard assump-

tion that consumers are evenly split. The analysis is similar to that in Section 3.3.3.

3.5.4 Content Provider Connection Decisions

In this stage CPs simultaneously decide which platforms to join, and their aggregate

choices determine the mass of CPs connecting to each platform. The utility v gained

by a CP is characterized as follows:

g(-yj, ya)qa + g(-yj, min{yp, y,})ql - w, - wp if #(j) = a and CP also connects to #,

g(y, min{y,, ya})q& + g(7y, yo)qo - wa - wf3 if #(j) = # and CP also connects to a,

g(7j, yo)qO - w, if (j) =1a,

Similar to the neutral model, we focus on the special case where g(yj, y (j)) = ^6 )'

CPs decide on which platform to locate given the quality of service (y., y3) and prices

(we, wf3) offered by the platforms. To determine which platform(s) a CP joins, we can

view a CP as having an option to buy four types of connection services. In particular, a

CP j maximizes the utility function vj to determine whether to connect to both platforms

(joint consumption), a single platform (exclusive consumption) or no platform at all.

We first look at the joint consumption cases: A CP j is willing to join platform C

and also connect to platform # if 7j 2 (w, + wf)/(yaqa + min{yl, ya}qa). Similarly,

a CP j is willing to join platform 1 and also connect to platform a if 75 (w, +

wp)/(min{yp, ya}qa + ypqp). For the exclusive consumption cases, a CP j is willing to

join platform a if 7j wa/(yaqa) and to join platform # if yj > wO/(ypqfl). Given a

pair (ya, yo) the utility gained by joint consumption through platform a dominates that

gained through platform 1 if y, > y3. Thus, given a pair (ya, y,3), a CP is effectively



choosing between three connection options. Maximizing vj involves CP j picking the

connection service that gives it maximum surplus.

Given a price pair (we, wp), together with the tuple (7, a, f, y,, yp), the resulting CP

demand on each platform is an aggregate of the mass of CPs who choose to join that

platform. We refer to this demand as the CP allocation equilibrium. A CP allocation

equilibrium not only characterizes demand faced by each platform but also determines

which of the relations in section (3.5.2) will hold on the equilibrium path. In Appendix

B, we derive the sets of prices WR(i), WR(ii) and WR(iii) for which the CP allocation

equilibrium leads to relations (i), (ii) and (iii) holding on the equilibrium path. Note

that, if a price pair lies on the intersection of any of the sets WR(i), WR(ii), and WR(iii),

then more than one CP allocation equilibrium exists. Therefore, CP demand faced by

platform z E {a,#} is given by rz = max {min{1, 7+a-- },0}; where q

depends on which of the relations holds on the equilibrium path.

3.5.5 Platform Pricing Decisions On Content Provider Side

In this section we analyze the price competition on the CP side of the market. Platforms

are the only movers and they decide what prices to charge to CPs. Given a tuple

(7, a, f, ya, yo), there maybe more than one price game to analyze. Observe that if

y, C A U A, here A and A are as defined in A.2.1, some price pairs (w., wO) result

in multiple CP allocation equilibria. This implies that for y, E A U A more than one

reduced extensive form game exists and consequently more than one price game exists.

In the case y, ( A U A, only one price game exists since given any price pair (w", wf3)

only one CP allocation equilibrium exists. We first show in Appendix A.2.2 that if

a SPE exists in one of the CP price games then the CP allocation equilibrium on the

equilibrium path does not yield relation (ii). In the remaining sections, we focus only on

price games that result when the CP allocation equilibria selected (if multiple equilibria

exist in the price subgames) are such that either relation (i) or (iii) hold. We formalize

this in the following assumption.

Assumption 8. Given a tuple (;, a, f, ya, y',3w, wf3) such that multiple CP allocation



equilibria exist in the price subgame we select the equilibrium that yields relation (i) or

(iii).

We then show in Appendix A.2.3 that without loss of generality we can consider the

price game that results when the CP allocation equilibria chosen at the price subgames,

when multiple equilibria exists, are the ones that yields relation (i). We refer to this

game as the baseline CP price game. All other price games that have a SPE have the

same unique pure strategy subgame-perfect Nash equilibrium pair (w*, w*). This follows

because the CP games that arise from the reduced extensive form games are almost

identical. In particular, the payoffs for both platform a and # given a strategy profile

(wa, wfl) are the same everywhere for all the games except for a set of measure zero. To

prove that the baseline CP price game has a unique SPE we show that the best responses

have a unique intersection point. Finally, we show that the market configuration depends

only on the heterogeneity parameter a, the average CP quality 7 and consumer mass f.

We now present the Theorem showing that equilibrium CP prices exist given the tuple

(7, a, f, ya, y3) such that y, > y,8. The proof, price characterizations and conditions for

various market configurations to exist are given in Appendix A.2.3.

Theorem 5. Let Assumptions 6 and 8 hold. Given a tuple (7, a, f, ya, y3) such that

y0 > y there exists a unique subgame-perfect Nash equilibrium pair (w*, wo) in the

price-subgame. Moreover, the resulting market configuration is unique.

3.5.6 Quality Choice

In this stage of the game the platforms are the only movers and they decide what quality

to invest in. We assume quadratic investment costs of the form cy 2 and c > 1. The

choice set of platform i E {a, #} given any hk is Ai(hk) = yj where yj c [0, oc]. Thus

the platforms simultaneously decide what quality to choose. We find the equilibrium

quality choices by considering the best reply responses of the two platforms. We find the

set that contains platform #'s best replies to platform a's choices and vice versa. We

establish that the best reply functions intersect at a unique point proving the existence

of a unique subgame perfect equilibria (SPE) in the investment game. For ease of



presenting the Theorem that characterizes the SPE of the quality investment game,

and the corollaries that characterize the resulting market configurations, we make the

following classifications given the tuple (7, a, f):

R.1 1 < 7/a < min {(9 + 2f)/(3 + 2f), (f 2 + 12f - 9 + 4fV f 3)/(-6f + 9 + f2)

R.2 max {1, (f 2 + 12f - 9 + 4r/f f 3 )/(-6f + 9 + f2)} < 7/a < (9+ 2f)/(3 + 2f),

R.3 (9 + 2f)/(3 + 2f) < 7/a < (f 2 + 12f - 9 + 4v"3V'3)/(-6f + 9 + f 2)

R.4 max {(9 + 2f)/(3+ 2f), (f2 12f - 9 + 4v/3 f 3)/(-6f + 9 + f2)

< 7/a < (9 - f)/(3 - f),

R.5 (9 - f)/(3 - f) <;7/a < oo.

These regions are broadly classified according to the market configurations (as de-

fined in Appendix A.2.3) that arise at the SPE given the tuple (7, a, f). Qualitatively,

the partitions represent regions in which the dispersion of CP content quality is either

low (R.1,R.2), medium (R.3,R.4) or high (R.5). . We now present the theorem that

characterizes the investment levels followed by an exposition of this result. The proof is

given in Appendix A.2.5:

Theorem 6. Let Assumption 6 and 8 hold. Given a tuple (7, a, c) and f > 0.47 there

exists a subgame perfect Nash equilibrium (SPE) in the quality investment game. More-

over, the following hold:

1. If R.1 holds then the SPE entails one platform investing in positive quality y*(7, a, f, c) =

j(7, a, f )/2c and the other not investing in any quality.

2. If R.2 holds then the SPE entails both platform investing in positive qualities

where one invests in a higher quality y*(7,a, f,c) j(7,a, f)/2c and the other

investing in a lower quality y*(7, a, f, c) = ((7- a)2 f 3 - 6(7+ a)(7+3a)f2 + 9(7+

a)2 f)/(432ca).

3. If R.3 holds then the SPE entails one platform investing in positive quality y*(7, a, fc)

and the other not investing in any quality. In particular, y*(7, a, f, c) = h(7, a, f)/2c.

4. If R.4 holds then the SPE entails one platform choosing a higher positive quality,

y*(7, a, f, c) = h(7, a, f)/2c, and the other one choosing a lower positive quality

y*(7, a, f, c) = ((7 - a)2 f 3 - 6(7+ a)(7 + 3a)f 2 + 9(7+ a) 2 f)/(432ca).



5. If R. 5 holds then the SPE entails one platform choosing a higher positive quality,

y*(7,a, f,c) = h(77, a, f)/2c, and the other one choosing a lower positive quality

yj*(77, a, f, c) = f(3- - 2f7 - 3a)/18c.

Low-Qualty Platform investment Level
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Figure 3-4: Investment level of the low-quality platform as a function of average CP

quality 77 and CPs heterogeneity/Variance Proxy a.

We impose the condition f > 0.47 since a SPE in the quality investment game does

not exist in all the regions, for smaller values of f.

3.5.7 Investment and Market Coverage at the SPE

In the non-neutral regime the platforms are substitutes only on the consumer side of

the market. On the CP side of the market, a CP makes a decision to join one platform

independently from its decision to join the other. Hence there is no competition between

platforms to attract CPs. In this sense a platform acts as monopoly on the CP side since

its only through them that CPs can connect to consumers who subscribe to it. Thus

investment decisions observed in this regime are driven by the trade-off platforms make

between differentiating in quality to make revenue of the consumer side and exerting

their monopoly power to extract revenue from the CP side.

The level of investment of the high-quality platform is the same as that in the neutral

regime and varies with average CP quality, and variance in a similar way. Quality

investment in the low-quality platform also increases with the average CP quality. An



increase in average CP quality increases the advertising rate paid to CPs. Therefore, the

low-quality platform increases its investment to enhance that of the CPs which in turn

earns the CPs more advertising revenue enabling the platform to extract more revenue.

As the heterogeneity of CPs quality increases the value of investment decreases, this

is in contrast to the behavior exhibited by the high-quality platform. An increase in

heterogeneity leads to CPs becoming less price sensitive, hence the platform charges

more; it prefers to extract CP revenue through price than invest in quality which is

costly. Despite a shrinking CP base, the low-quality platform does not increase its

investment level as is the case for the high-quality platform. Even though the low-

quality platform can gain from increased CP surplus with more quality investments, the

increase in competition on the consumer side would offset this gain. The resulting higher

competition on the consumer side from this investment would lower prices significantly

limiting the only instrument via which the platform can extract these gains.

Market Coverage Phase Diagram J vs f

5,

0.47 3/4
Consumer mass f

Figure 3-5: Phase Diagram Showing Market Coverage as a function of 7/a and f

We now explore the investment patterns as a function of the consumer mass and the

dispersion measure, see Figure 3-5. When 77/a has a low value and f is high, i.e. in the

regions denoted by R.1 and R.3 the platforms differentiate as much as possible. One

platform invests in a positive quality whilst the other opts not to invest. Similar to the

neutral case, both platforms make more profit when they are more differentiated. A low



value of 77/a is primarily driven by low average CP quality. Therefore the advertising

revenue gained by CPs is also low. Consequently, profits expropriated from CPs if the

low-quality platform invested, are not enough to cover the loss of revenue due to the

resulting competition intensity and the costs of investment. Moreover, since f is large,

the mass of consumers joining the platforms is higher which further increases the revenue

made from the consumer side and dissuades the platform from investing.

In contrast when f and 77/a are both low, platforms invest albeit in different levels

of quality. This region is denoted by R.2. In this region, the mass of consumers joining

the low-quality platform is low. As before, the low-quality platform faces a trade-off

between investing in quality to increase CP surplus from which it extracts revenue or

not investing so as to gain more market power which enables it to gain more revenue from

consumers through higher prices. However, since f is small the platform gains more from

the CP side when it invests than it loses in revenue from competition on the consumer

side; the low f reduces the volume of subscribing consumers and in turn revenues that

the platform would make by maximally differentiating from the high quality platform.

Where 77/a has a medium to high value, the regions denoted by R.4 and R.5, the

platforms partially differentiate. As in the previous case, both platforms invest; one

invests in a larger quality than the other. If the high value of 77/a is primarily caused by

a high average CP quality, the investment choice can be explained in a similar manner

to the previous case, i.e. the lower quality platform trades-off maximal differentiation on

the consumer side for the opportunity to make profits on the CP side. If the coefficient of

variation is low due to low variance we also obtain similar results but through a different

mechanism. In particular, for low values of a, the CPs become less distinguishable and

the demand is highly elastic. Therefore, decisions made by one CP are mirrored by

the others. To be able to distinguish between these CPs, and take advantage of their

monopoly power, both platforms investment in quality. Note that CPs revenues increase

with platform quality since advert price depends on it. However, the increase in quality

is tempered down by the fact that the platforms would still like to differentiate and make

profits on the consumer side. So the differentiation is partial.

Corollary 4. If R.1 or R.3 holds CPs.exclusively serve the high quality platforms.



Moreover, if R. 1 (R. 3) holds then an uncovered (covered) market is the outcome.

Corollary 5. If R.2, R.4, or R.5 holds, then CPs multi-home. In particular,

1. If R.2 (R.4)holds then only the high quality CPs multi-home and market is uncov-

ered (covered).

2. If R.5 holds then all CPs multi-home.

In region R.1 CPs exclusively join the high quality platform and the market is un-

covered, i.e, they single-home. Observe that in this region the low-quality platform does

not invest. Therefore there is no value to be gained by a CP joining the lower quality

platform. Region R.2 also represents an uncovered market but CPs patronize both plat-

forms with the lower-quality CPs being exclusive to the high-quality platform and the

high-quality CPs joining both. Only the high-quality CPs multi-home since they earn

enough advertising revenue to cover the cost of connecting to both platforms.

In the remaining regions the market is covered by the high quality platform, i.e., all

the CPs in the market serve their content to the high-quality platform. This is because

for medium to high values of 77/a CPs earn higher advertising rates on the high-quality

platform which also happens to have a higher number of consumers (eyeballs). Lack

of investment, in region R.3, by the low-quality platform leads to CPs not joining it

since they will not make any advertising revenue. In contrast, high-quality CPs also

serve the low-quality platform in region R.4. Investments by the low-quality platform

are attractive to high-quality CPs who can command higher advertising prices to offset

costs of joining two platforms and still make revenue. Finally, in region R.5 all CPs

patronize both platforms, i.e, they all multi-home. The average CP quality is high

enough and the variation of CP quality low enough that the advertising prices the CPs

command enable them to gain more value when they connect to both than when they

connect to only one platform.



3.6 Comparative Statics

In this section we compare social welfare, consumer and CP surplus, and profits between

the two regimes at the SPE's. We first define social welfare and its constituent parts. We

then show that given a tuple (7, a, f) the non-neutral regime results in a larger social

welfare compared to the neutral model. Next, we show that gross CP and consumer

surplus in the non-neutral model are at least equal to, if not, superior to that in the

neutral model. Finally, we show a dichotomy of preferences for the two regimes by

platforms. Low-quality platforms prefers the non neutral regime whilst the higher quality

platform prefers the neutral regime.

3.6.1 Social Welfare, Consumer and CP surplus, Platform prof-

its

Social welfare is defined as the sum of consumer surplus, platform profits and content

provider surplus. We define each of these terms below:

1. Consumer surplus: A consumer i E [0, f]i subscribing to platform #(i) has an ex-

pected consumer surplus given by, E[Ui] = E[R + OiFi(yo(t), -) - pe()]. Aggregate

consumer surplus is given by f E[Ui]di = (R + E[9iI#(i)]Fi(y4(i),') - P4(i)) q+(j)-

2. Platform profits: Platform z E {a, #} has a profit function 7rz given in (3.5). The

total profit across both platforms is given by zEa,} 1z = ZzE,,3} pzqz + rzw2 -

2

cyz.

3. Content provider surplus: A CP j E [0, 1]j on platform #(j) has an expected sur-

plus given by E[vj]. The CP surplus depends on what regime is being considered.

In the neutral regime it is given by fo E[vj]dj = fo Z(j)Eao} E[vgj(j)]P[#(j)]dj.

The content provider surplus in the non-neutral regime is represented as follows

L E[vj]dj = f0 Z (j)EaI3,(ano)} E[vj|q(j)]P[#(j )]dj.,



3.6.2 Social Welfare Comparison

Comparison of social welfare at the SPE under both models shows that in general the

non-neutral model is superior, see Appendix A.3.1. Figure 3-6, shows the difference in

welfare between the non-neutral regime and the neutral regime when (f = 0.6, c = 1).

For a fixed variance, the difference in welfare is increasing as a function of 77. This follows

from the fact that the difference between the two regimes is the level of investment by

the low-quality platform. Indeed, an increase in 7 increases the investment level of the

low-quality platform (in the non-neutral regime) as discussed in Section 3.5.7. This in

turn results in an increase in CP surplus as well as consumer surplus for those CPs and

consumers on the low-quality platform in the non-neutral regime. Although investing is

costly the resulting increase in both CP and consumer surplus is higher. On the other

hand, an increase in heterogeneity a results in a lower welfare difference. This again

reflects the effects of heterogeneity on investments in the low-quality platform. Recall

from Section 3.5.5 that the low-quality platform prefers to make revenue from raising

prices rather than investing in quality as CP heterogeneity increases. Therefore CPs

that join the low-quality platform, in the non-neutral regime, receive a lower surplus for

an increasing a, and this is reflected by the welfare difference between the two models

being lower.

Social Welfare Difference
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Figure 3-6: Welfare difference between Non-neutral and neutral regime.



3.6.3 CP and Consumer surplus Comparison

CP surplus is generally higher in the non-neutral model compared to the neutral model,

see Appendix A.3.2. Investments by the low-quality platform increase the revenue earned

by CPs who multi-home since they command more advertising revenue from advertisers.

In contrast, since the low-quality platform does not invest in the neutral model the CP

surplus is less. Consumer surplus is also higher in the non-neutral regime because the

low-quality platform invests in quality, see Appendix A.3.3. This investment increases

the consumer surplus for two reasons. First, an increase in the low-quality platform

investment level intensifies price competition on the consumer side resulting in lower

prices. Therefore consumers are able to keep more of their surplus. Second, an increase

in platform quality increases the value gained by consumers who join the low-quality

platform due to the cross externality caused by CPs whose quality is enhanced.

3.6.4 Platform profits Comparison

Aggregate profit in the neutral regime is generally higher than that in the non-neutral

regime, see Appendix A.3.4. Competition induced by the investment of the low-quality

platform on the consumer side reduces the platforms profits in the non-neutral regime.

Even though there is a gain in CP revenue by the low-quality platform it is not large

enough to cover the loss of consumer profit due to the increased competition. Profits

of the high-quality platform are also higher in the neutral regime, see Appendix A.3.4.

In this regime the platforms are maximally differentiated and the high-quality plat-

form serves high-quality consumers and CPs. Thus it is able to extract more revenue

from both due to the resulting market power that arises from the differentiation. In

the non-neutral regime, the investment by the low-quality platform results in a higher

price competition on the consumer side that reduces the high-quality platform's overall

revenue. In contrast, the low-quality platform's profits are superior in the non-neutral

regime, see Appendix A.3.4. Note that the low-quality platform makes revenue only on

the consumer side in the neutral regime. In the non-neutral regime it makes revenue

from both sides of the market. Although the investment by the low-quality platform



intensifies competition on the consumer side reducing revenue, it enables the platform

to gain more CP revenue which offsets losses due to this competition.

3.7 Chapter Summary

We contribute to the net neutrality debate by analyzing investment decisions of ISPs,

under both a neutral and non-neutral model. In addition we explore their concomitant

effects on social welfare, consumer and CP surplus, and platform profits. First, we find

that the pricing structure in the non-neutral model leads to a higher aggregate level of

investment. This is because the low-quality platform invests in the non-neutral model

but not in the neutral model. More precisely, in the neutral model, an increase in invest-

ment by the low-quality platform makes it more attractive to CPs but at the same time

intensifies competition on the consumer side. The loss of consumer revenue due to this

competition is much higher than the gain of revenue from the CP side, hence it decides

not to invest. In contrast, due to the monopoly over access to consumers that platforms

have, the gain in revenue by low-quality platform, made from expropriating CP surplus

in the non-neutral model, is higher than the loss of revenue due to intensification of

competition on the consumer side; therefore it decides to invest. Contrary to qualitative

arguments, see for example [65, 35], our results suggest that access fees6 could positively

impact investment incentives leading to upgrades of existing network infrastructure.

Second, and in contrast to some results in the literature, e.g., [16, 10], we find social

welfare is generally superior in the non-neutral regime compared to the neutral regime.

This follows because the aggregate level of investment is higher in the former regime in-

creasing both CP and consumer surplus. CP surplus is higher in the non-neutral regime

because CPs that multi-home earn more revenue from advertising which increases ag-

gregate CP surplus. On the other hand, consumer surplus is higher because competition

is more fierce in the non-neutral regime reducing prices and enabling consumers to keep

more of their surplus.

Finally, we show that the platforms prefer different regimes; the low-quality platform

6Payments paid by off-net CPs to ISPs in order to access consumers.



prefers the non-neutral regime while the high-quality platform prefers the neutral regime.

In the non-neutral regime, despite the intense competition on the consumer side, the high

revenues gained on the CP side by the low-quality platform offset the losses due to the

competition. Conversely, the high-quality platform makes more revenue on the consumer

side in the neutral regime because the platform qualities are maximally differentiated.



Chapter 4

Conclusion

In this thesis we sought to understand the role of interconnection agreements and market

regulation on competition in the internet. In Chapter 2, we investigated the role of access

charges, in the presence of congestion, on pricing, consumer enrollment and social welfare

and established the following;

" There are two opposing effects on the price charged to consumers as a result of the

two-sidedness of the market, the interconnection of the platforms and the access

charge, and the congestion costs. Due to the cross externality that a marginal

consumer exerts on the websites, his price is discounted by the revenue he creates

on the website side. Moreover, due to the cross net traffic he generates from the

other platform his price is further discounted by the revenue earned from access

fees levied on this traffic. On the other hand, a platform marks up the price to

a marginal consumer with both a Pigovian tax, which internalizes the congestion

cost on its link, and a switching cost. A consumer switching platforms incurs a

congestion cost on the link of the platform he moves to. Therefore a platform can

raises its price by this congestion cost without losing market share.

" Consumer enrollment in an oligopoly equilibrium is lower than that at the social

optimum but it is increasing in the access charge. The access charge discounts the

price charged to consumers which increases the number of consumers that join the

platform.



* If the consumer market is uncovered, social welfare is increasing in the access

charge; this follows because the number of consumers also increases with the access

charge.

These results suggest that a zero access charge or the so called Bill and Keep peering

needs further scrutiny if it is to be accepted as a standard interconnection agreement

that enhances social welfare. We next briefly describe possible paths to pursue in this

research. Our model assumed a non-discriminatory pricing policy for consumers, i.e.,

consumers were priced the same for both on-net and off-net content. Interesting fol-

low up to this work would allow price discrimination depending on the origin of the

content. Secondly, we model websites as homogenous agents whose reservation price is

common. Introducing heterogeneity on the website side would present a more realistic

model of content providers' utilities. Another interesting direction would involve en-

dogenously determining the access charge as well as removing the reciprocal constraint.

These would help shed light on the bargaining process of the interconnection agreements.

Finally, the current model assumes full coverage assumption on the website side. An

important generalization would do away with this assumption and analyze a model that

endogenously determines market structure on both sides of the market.

In chapter 3 we investigated the net neutrality issue from a "pricing rule" perspective.

We added new insights to the mechanism via which broadband providers invest and

showed the effects of these investments on consumer, CP and social welfare. More

precisely we showed:

e Investment levels are driven by the trade-offs platforms make in softening price

competition on the consumer side and increasing CP surplus on the CP side from

which they expropriate revenue.

- In the neutral model the platforms are viewed as substitutes by both CPs

and consumers. Hence at the equilibrium, platforms maximally differentiate

to corner different consumer and CP niches in the markets.

- In the non-neutral model platforms are viewed as substitutes only by con-

sumers. Due to the pricing structure, each platform has a monopoly over
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access to its consumer base. Investment patterns at equilibrium differ from

those in the neutral regime. Even though for a large consumer base and low

values of average CP quality we have maximal differentiation, in all other

cases we have partial differentiation. Moreover, in this regime the difference

in levels of investment between the two platforms is a function of the consumer

mass.

" Social welfare is superior in the non-neutral regime compared to the neutral regime.

This result is primarily driven by the fact that the low-quality platform has an

incentive to invest in the non-neutral regime increasing the aggregate level of in-

vestment in this regime.

" We show that CPs and consumers' surplus are higher in the non-neutral regime.

This result runs counter to the popularly held opinions on net neutrality in the

policy debate. Again these results are driven by the increase in the aggregate

level of investment in the non-neutral regime. For CPs the larger investment on

the low-quality platform leads to more revenue from advertisers. For consumers

a larger investment on the low-quality platform has two major effects. First,

it increases price competition between platforms and thus lowers prices which

means consumers keep more of the value generated by their interaction with CPs.

Secondly, the higher investment results in a higher utility for consumers when they

interact with CPs since CP quality is enhanced by platform quality.

* Finally, we show that the low-quality platform prefers a non-neutral policy, whilst

the high-quality platform prefers a neutral policy. For the high-quality platform

a neutral network involves maximal differentiation in quality. Therefore it makes

maximum revenue from both sides of the market. On the other hand, for the

low-quality platform, the investment it makes in the non-neutral model enables it

to gain CP revenue due to its monopoly access over its consumer base. In spite

of the loss on the consumer side, due to the increased competition caused by this

investment, the revenue gained on the CP side is much higher than this loss.
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These results suggest that price regulation, mandating the current pricing structure,

could possibly be an inapt policy for increasing value in the internet because it would

limit the investment incentives of smaller ISPs or network providers. Low investments

by these ISPs would decrease CPs and consumer utility directly through low QoS and

indirectly through bottleneck effects. Therefore, if creating more value is desired, policies

that foster investments should be pursued as this would lead to higher social welfare

benefitting both consumers and CPs. However, a number of concluding remarks are

useful. One simplifying feature of our analysis is the lack of transaction costs in the

non-neutral regime. These present new analytical challenges but are an important area

to explore because they would reduce the revenue earned by the platforms and thus

likely temper (perhaps in a negative way) the investment incentives of ISPs. Another

direction of future research is the explicit modeling of quality investment by CPs. An

interesting modification would have CP quality determined endogenously and investigate

CP incentives under both models. Nevertheless, the results show that if average CP

quality is high a non-neutral regime is preferred by CPs due to the larger surpluses they

gain. This suggests that in a framework where CP quality is endogenously determined,

CPs are likely to prefer the non-neutral model if CP quality investment costs are not

large. We leave these ideas and extensions for future research.
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Appendix A

Appendix

A.1 Proofs

A.1.1

The following lemma shows that if a platform has a higher platform quality in the neutral

regime then consumers joining it perceive it to be of a higher value.

Lemma 10. Let y, > y3, then F(y, -) > Fi(y, -).

Proof. After some algebraic manipulations the explicit expression for F (ye(i), Y (j),77, rc, r')

in terms of average CP content quality, platform quality and the mass of content

providers on both platforms is as given below for both #(i) = a and #(i) = 3;

Fi(yo(i), Yg(j), 77, rc, rf) = j E [max{uij(yo(i), y (), yj, CO(i), r ()), 0}] dj,

= ya(7(ra + 1) + a(1 - ra)) + y(7(r,3 + 1) + a(1 - ra - ry)),

Fi(yo(i), Y (3 ),7 7, ra, rf3) = jE [max{uij (y(i), Y (j), ^1j, CO), r ), 0}J dj,

= y(7(rl + 1) + a(- r)) + y (7(r + 1) + a(1 - r, - r3)).

It immediately follows from above that Fi (y, -)> Fi (ya, -).
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A.1.2 Candidate Equilibrium Prices for Different Markets.

Uncovered Market - CI. In this case we suppose ex ante that the market is uncovered

with only the high quality platform serving the market. We identify the equilibrium

prices for this market configuration and the conditions on (7, a) for which this market

configuration is feasible. We first derive the best price responses of each platform to the

price set by its rival. The condition for an uncovered market where only the high-quality

platform participates in the market is given by,

> > 7- a. (A.1)
(q, + qa)yp3 - y13q3 + yaga

In this configuration, both platform's profit do not depend on wf3. Thus given w" that

satisfies We(a > 7-a, any w3 that satisfies the following condition
yoqo+yaqa

wa(qa + q,)

ypqo + yaga,

is a best response by platform #. This follows from condition (A.1). On the other hand

given w,3 > (7 - a)(qa + qa)yp8 the best response is given by the optimal solution of the

following problem

max 7rF (wa, WO) (A.2)

s.t. w" E (7 - a)(y3q3 + yaqa), (+a

From the first order conditions of Eq. (A.2) we infer that the best response is character-

ized as follows,

w* if wJ3 > " y(q. +qo)
(y,3+ykqc,)

Wa W (yo q0 +y. q.) if W y0(q,.+q,8)

yp(q,+qo) (y3qpe+y..q.)

where w* (5a+7)ya -(a - 77)y,3 and is the unrestricted solution to problem A.2.

Thus any price combination such that,

W _ yq3 + ya, (A.3)
- yI(qa+q)
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Ui<w~yO(q+qO) is
where (-- a)(qaya -+ ypq,) < wuj < w* and (5- a)(qa + qp)yp < w < (of,""± , is

an equilibrium price pair in this configuration. In addition, when w, = w* any price

combination such that,

w" = w* (A.4)a at

S w*y,3 (qa+qgl) (A.5)WO - ( yqp + yaqa)(A5

is an equilibrium price too. It remains to specify the necessary condition for this config-

uration to occur. From condition (A.1), configuration CI occurs only if (7 - a)(yaqa +

yoqo) - w"j < 0. This results in the following necessary condition,

-7< 4 f(ya -YO) + 18ya + 9,3 (A.6)
a 4 f(ya Yy) + 6ya + 3y3

X X X

x x X X X

x x x X X

x X X x x

S x x x

x x

(T - a)(q. + q)y, i

- a)(yaq3 + yaqa) W" W*

Figure A-1: The reaction correspondence of platform # given wa > (7- a)(yolql + yaqa)
and the reaction curve of platform a given wf > (57 - a). Their intersection points give

the equilibrium price pairs in this market configuration. These are depicted by the red

(dark) line.

Uncovered Market - CII. In this case we suppose ex ante that the market is un-

covered with both platforms serving the market. We first identify the equilibrium prices

and then the values of (57, a) for which this market configuration is feasible. The condi-
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tion for an uncovered market in which both the high-quality and low-quality platforms

serve the market is given by,

-_a < <O < O) + a. (A.7)

(q. + g3) y, ga (ya - y,3)

The best reply functions of the respective platforms are obtained from the first order

conditions of the platforms profit functions and are given below.

wa(wO) = 5f(ya - yO) + f(ya - y,3) + Iw, (A.8)

1 yo(f(7 - a)(ya - yo) + 9wa)
wp3(wa) = 6(a+f). (A.9)

6 (2y, + y,3)

Note that the above functions are linear. Solving the above two simultaneous equations

yields the following unique equilibrium prices,

f ((87 + 40a)y' - (237 + a)yy. - (17a + 7)y, (A.1)
a ~~9(yp3 + 8yc,)(A10

4f yp(7 + 2a)(ya - yo) (A.11)
3(yo + 8y,)

The reaction functions and their intersection point are shown in Figure A-2. Since

the market is not covered the lowest quality content provider does not join the lower

quality platform. Therefore a necessary condition for the above configuration to hold is

(7 - a) (q + qO)yo - wu < 0. Substituting for wu the above condition can be rewritten

as,

< 2f(ya - y3) + 30y, - 3y,3 (A.12)
a 2f (ya - y8) + 18ya + 9y3'

Covered market- CIII . We now suppose ex ante that the market is covered

with both platforms serving the market. We again identify the equilibrium prices and

then the values of (7, a) for which this market configuration is feasible. Proceeding as

we did in the previous market configurations, to derive the equilibrium prices, we first

derive best response prices of each platform to the price set by the other platform. The
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WO3

(0 -a --------

(7-a) (qay + qpyo) Wa W"

Figure A-2: The reaction curve of platform # given wa > (7 - a)(y,3 qo + yaga) and the

reaction curve of platform a given wp > (qa + q,3)(7 - a)yp intersect at the price pair

(w , wU).

condition for a covered market in which both the high-quality and low-quality platforms

serve the market is

(q 3 < - a <
(qa,+ qo)yo -

(A.13)a< -3) + a.
ga (ya - Y,3)

The first order conditions associated with the profit functions for both platforms yield

the following best reply functions,

wa(w,3) = (ye. - y6)(jf(7 + a) - 2f 2 (7 - a)) + }

wp(w.) =
(Ya - y,)(}f(a - 7) - If 2(7 - a)) + jwa
(7- a)(q, + qO)y,3

where w* = ya(jf 2 (a - 7) + jf(7 + a)) - yp(If 2(a - 7) + 1f(5a -7)).

Interior Solution. From the above best response functions we get the following unique
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equilibrium prices in the case of an interior solution.

1
wa = (ya - yO) -f (7f(- a) - 6 (3a - 7)), (A. 14)

27

wg = (y- y)f(f(7 a) + 3(3a - 7)). (A.15)

A market is covered with an interior solution in the price subgame if the price charged

by the lower quality platform is lower than the value derived by the lowest quality

content provider, i.e., (7 - a) (q + qg)yp - o > 0. In this market configuration the

lowest quality content provider prefers the lowest quality platform, otherwise we have a

preempted market. Moreover, the lowest-quality content provider's net utility must also

be positive. Thus the following condition has to hold in equilibrium,

(7 - a)(q. + qO)yp - wc > max{wi - (7 - a)(y3qp + y qQ), 0}.

By plugging the equilibrium prices in Eq. (A. 14) and Eq. (A. 15) into the above in-

equality, we obtain the following necessary conditions on the tuple (ye, y3, 7, a) for this

configuration to exist.

2f(ya - y) + 18y + 9y3 5f + 18 (A.16)

2f(y, - y3) + 6ya + 21y3 5f + 6

Corner solution. We denote the content provider market to be covered with a corner

solution in the price subgame if the lower quality platform quotes a price that is just

sufficient so that the lowest quality content provider joins the platform. In this case, a

corner solution occurs and we have the following price charged by platform f,

Wy =cc a) (q., + gO) yo. (A. 17)

From the first order conditions of the high quality profit function we deduce that the

equilibrium price is given by,

1 1
= (f4f(a - 7) + 6(a - 7))y + -(4f (7 -a + 3(7 - 5a))y,3. (A.18)

18 18
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(7 - a)(q. +

-I-
Wa Wor

Figure A-3: The best response functions of platform 3 and a given 2f(y_,-y)+8Ya± 9 yfl <2f (y,,-y,3)+6y,,± 21y3)

< 5f+18 . These curves intersect at (wg, wI).
a 5f +6 '

For configuration CIII to occur with a corner solution the following three conditions

need to hold,

(7-a)(qa + q,3)yw - > (- a)(ypq, + ya qO) - Wa ,

Wg ;t> (7-a) (qa + qp) yo, (A. 19)

w U <(- a) (qa, + qO) yp. (A.20)

The above inequalities yield the following necessary and sufficient conditions on 7, ya, y8

for the above equilibrium prices to yield Configuration CIII,

2f(ya - YO) + 3 0y, - 3y,3 2f(ya - y3) + 18y, + 9y3 4 f(y' - yO) + 18 ya - 9yA
< -< in .-21)

2f(ya - y8) + 18ya + 9 y3 - a 2f (ya - y)) + 6 ya + 21y,3' 4f(ya -yp) + 6ya + 3W

Covered Preempted market CIV.

In this case we suppose ex ante that the market is covered with only the high quality

platform serving the market. We identify the equilibrium prices for this market con-

figuration and derive the best price responses of each platform in the usual way. The

condition for a covered market where only the high-quality platform participates in the
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* Wcc Wcy

Figure A-4: The best response functions of platform # and a given 2f(y-yO)+
3 Oy.-

3 y6Figure . and ~ 2f(y.-yO)±18y.±9yO

< min 2f(y,-yf4)+18yQ+
9y, 4f(y -y)+18y9-

9y . These curves intersect at (W, WCC).
a - 2f(y.-yg)+6ya+ 2 1yp' 4f(ya-yp)+6y.+3y Tt

market is,

(7 - a)(yoqp + yaqa) - Wa > max{0, (7 - a)(qa + qp)yo - w,}.

The profit functions for platforms a and # given ya and yf3 are

a 8
7r = f2(ya -yp)±+wa,

7r= 
2 f2(ya - yo).

(A.22)

(A.23)

(A.24)

We note that in this configuration, given we, platform 3's profit does not depend on w,.

Thus any wp that meets the condition specified by Eq. (A.22) is a best response. Given

wp, it follows from the condition specified by Eq. (A.22) and the first order conditions

of Eq. (A.23), that

(7- a)(qaya + qpyo)

(7- a)qa(ya - yp) +wOl

if w ; (7- a) (qa + q) yo,

if w,3 < (7-a)(q + qp)y3.

110

Wa { (A.25)



Thus the above characterizes the price equilibrium combinations for configuration CIV.

X X X

X X X X

(Ta(q+~iy3 x x x x
X X X X

Wa a) (yoq,3 + y. q.)

Figure A-5: The reaction correspondence of platform # given wa < (< - a)(yoqo +
yaqa) and the reaction curve of platform a given wf. Their intersection points give
the equilibrium price pairs in this market configuration. These are depicted by the red

(dark) line.

A.1.3 Nash Equilibrium in the Price Subgame

In this section, we show the existence of pure strategy Nash equilibrium in the price-

subgame. We look at the equilibrium price pairs derived in the pervious section and

determine if they are best replies across all the configurations. We characterize the price

subgame equilibria in terms of the tuple (7, a, f, ya, yp) and give the conditions for their

existence. Specifically, we give the conditions for these price equilibria to yield their

corresponding market configurations.

We show that the uncovered market configuration, (CI), does not occur at a subgame

price equilibrium. We then show that market configurations CII, CIII and CIV exist.

In doing so, we determine the set of parametric values (7, ya, y,3, a) for which these

different configurations exist and characterize the prices in each configuration using the

same parameters.

In the remaining part of this section, we show that if Assumption 6 holds configu-

ration CI does not exist whilst CII, CIII and CIV exist. We also give the conditions

for their existence given the tuple (7, a, f, ya, y,3) and their accompanying equilibrium
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prices.

Lemma 11. Let Assumption 6 hold. Any equilibrium price pair (w. , wO) G R-z is not

a pure strategy Nash equilibrium in the price subgame.

Proof. We assume to arrive at a contradiction that their exists a pair of equilibrium

prices (W., wO) E RZ. that are a pure strategy Nash equilibrium in the price subgame.

To prove our Lemma we show that given a subgame (7, a, f, ya, yo) such that condition

in Eq. (A.6) is met, the prices in the pair (wg, wu) are not best reply pairs on the whole

domain of strategies, i.e, there exists for at least one platform the incentive to deviate

to a price that will yield a different configuration and higher profits. In particular, we

show that wg does not beat all price strategies in the projection of R1Zz U Rzzz U Rzy

against wu7.

As shown in section A. 1.2 there are two possible characterizations for the equilibrium

price pair that holds if configuration CI is exogenously imposed. We show that prices

satisfying both characterizations are not best reply pairs on the whole domain.

Case I. Equilibrium price pair (w Wi) in Eq. (A.4) and Eq. (A.5).

As previously discussed in section A.1.2, the above price characterizations yield con-

figuration CI only if the condition in Eq. (A.6) is met. We denote the profit for platform

# under the price pair (wu, of) as irg and that under the pair (w, wp) as T,. We also

denote the difference between the two profits, 7rg -To, as d(7). Let 7* denote the upper

bound value of -y such that configuration CI is possible. We now show that there exists

configurations with price pairs (w., wp) such that 7ru < wp for 7 < 7*, which implies

that these price characterization cannot be a subgame equilibrium. For this purpose we

fix wgj and consider profits of platform 3 under configurations CIII and CIV.

Let - = (7 - a)(q, + q3)yo, then configuration CIII will arise whenever 7** <

7 < 7*, where 7** = "4f(yy3)+y3y The function d(7) is convex since 2 ()>

Moreover, d(7) has two roots,

_ 4f(ya - yO) + 18y, + 9yo

72 = a. - y,) + 6y, + 3y,3

772 =a.
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It follows that whenever 72 < 7 < 7* then d(77) < 0. This implies that platform # would

prefer to deviate to a covered market with a corner solution. However, this configuration

is possible for all values of 7 > a when 7** < 72. And this occurs when Lot > . So

we now proceed to show that when ! < that platform # would prefer to deviate to
yo 2

configuration CIV where all masses of CPs join it.

Let V = (7 - a)(q. + qp)y3 and consider the case when V- < . It follows that

7** > a, so for a < 7 < 7** a covered preempted market results. The difference d(77)

under this configuration is convex since .27 > 0. The roots of d(77) are, r11 and a.

Moreover, rl > 7** whenever 1 < 1L-0 < 9+!. Since < 9f for f E (0, 1]) platform/3YO3 f 2 - f

prefers to deviate to configuration CIV whenever <

Case II. Equilibrium price pair ( wi) in Eq. (A.3).

We show that if platform # picks the price w= (7 - a)(qa + qO)yO then it makes

a higher profit in the resulting configuration. We denote the profit of platform 3 under

the price pair (wg, wg) as 7r ' and that under the price pair (wu , w) as T,,. Note that

when platform # picks the price - the market becomes covered and configuration CIII

emerges. The function T, - r= d(wu') is increasing in wui since ad(wu) > 0. Moreover,

it has a single root at wui* (--a)(yaqa+yo qp). Thus for given any wui > wu'* platform

# would prefer to deviate to price U3. Therefore an equilibrium price pair (w. , wO ) for

which the characterization in Eq. (A.5) holds is not a subgame Nash equilibrium. 0

We now show that the equilibrium price pair characterized for configuration CII in

Section A.1.2 is a subgame equilibrium price pair and give the conditions on 77, a yp, and y,

for this to hold.

Lemma 12. Let Assumption 6 hold. Given a tuple (7, a, f, ya, y3), there exists a unique

equilibrium price pair (w* w*) E R.zz only if,

7 2f(ya - y3) + 30ya - 3y,
1<-<

a 2f(ya - yB) + 18y + 9y3

1r1 = a(4yf 2 + 4f2ya + 3fyayl + 216yyo - 8f2yayo +108y +3fy - 6fy )/f/(4fy a+6y -

3yays - 8fyayo + 4fy2 - 3y2).
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Proof. From section A.1.2 we know that the prices in the pair (w', w') are unique and

mutual best replies in the restricted domain RZu; which corresponds to the market con-

figuration CII. Therefore this price pair is our only candidate for the price equilibrium

that falls in RlT. To show that the candidate pair (wU, w) is a price subgame equi-

librium, we need to show that the prices in these pair are also mutual best replies on

the whole domain of strategies, i.e, given price wu, platform # does not have an in-

centive to change to price UTf which will result in another configuration and a higher

profit. Formally, we have to show that w' beats any strategy w,3 in the projection

R 1 U RIrr U Rrv against wu and vice versa. We denote the equilibrium price candidate

(wU, wu) as (w*, w*).

We first fix w and show that platform a has no incentive to deviate to any price -wC

in any configuration. We denote the profit under the price pair (w*, w*) as ir* and that

under the pair (TL, w*) as T,. We denote the difference r* - T, as d(77).

1. Platform a has no incentive to deviate to configuration CI.

We find platform a's best reply given w* under market configuration CI and show

that the profit realized is less than that under configuration CII at price w*. Let

WQ be the best reply of platform under configuration CI. It is given as the solution

to the following maximization problem,

max 7ra(Wa,W w*),

s.t. w. : w7 qy, + q<3y
y,3 qa + qp

The constraint in the above problem arises from the necessary conditions expressed

in (A.1) for market configuration CI to hold. The profit function 7r" is concave

in w, since a';"' < 0. The unconstrained optimal solution to the above maxi-

mization problem is lager than the constraint. Therefore the constraint binds and

it is the best reply.

We now compare the two profits under both configurations. After evaluating the

difference d(77) = 7r* - Tc, we obtain that d(7) is a convex function in 7, because,
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a 2 () > 0. In addition, d(77) > 0 since d(77) is a quadratic function in 7 with a

single root at a4(1+f)yQ+(2+f)y . Therefore, given w* platform a has no incentive to

deviate to a price w that would result in configuration CI.

2. Platform a cannot deviate to configuration CIII. Form section A.1.2 we know

that w* is defined only if the condition in Eq. (A. 12) is satisfied. This implies that

w, 3 > (7 - a)(a + q)y. Therefore, it is not possible to have a covered market

with content providers patronizing the two platforms when platform #'s price is

fixed at w*

3. Platform a has no incentive to deviate to configuration CIV.

We proceed in a similar manner to the first case. We find platform a's best reply

given w* under market configuration CIV and show that the profit realized is

less than that under configuration CII at price w*. Let wc be the best reply of

platform under configuration CIV. It is given as the solution to the following

maximization problem

max 7ra(wa, w*),

s.t. wQ < (7 - a)qaya + qy

Since 7r, is linear and increasing in we, the constraint binds and is the best re-

sponse. Under this price d(7) is a convex function in 7, because a2 d(7) > 0. The
.92(77)

function d(7) has two roots 71 and 72, these have been defined in the proof of

the previous Lemma. Since configuration CII is defined outside these two roots

it follows that d(7) is positive. Therefore, platform a has no incentive to deviate

to configuration CIV.

We now fix w* and show that platform # has no incentive to deviate to any price -wp

that will yield another configuration. We denote the profit of platform # under the price

pair (w*, w,) as 7r* and that under the pair (Ue, w*) as T4. We denote the difference

7r) - To by d(7).
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1. Platform 3 has no incentive to deviate to configuration CI.

We proceed in a similar fashion to the previous parts. We find platform /'s best

reply given w* under market configuration CI and show that the profit realized

is less than that under configuration CII at price w*. Let U74 be the best reply

of platform under configuration CI. It is given as the solution to the following

maximization problem,

max 7r W* W

w*YO (qa + qO)
S. t. Wp >.

The constraint in the above problem arises from the necessary conditions expressed

in (A.1) for market configuration CI to hold. The profit function 7r,3 is concave in

w,3 since the O 2 f) > 0. Through computation one can show that the optimal

solution is at the boundary since the constraint binds.

We now compare the two profits. The difference, d(7), is a convex function in 7,

because, .
2

(y) > 0. Moreover, this function is a quadratic function in 77 with a

single root at Y = a(4yc±4fy.y2yo +fY/ Therefore, for all 7 the difference d(77) > 0.
4fy.+fy,3-4yck-

2 yp)*

Thus given w*, platform 3 has no incentive to deviate to a price that results in

CI.

2. Platform / has no incentive to deviate to configuration CIII.

We show that platform # makes more profit under configuration CII than if it

changed its price and deviated to configuration CIII. Let W,3 be the best response

price under configuration CIII given w*. It is defined below,

T,3 = argmax r(w*, w8),

s.t. wO < (57 - a)(qa + q,)y . (A.26)

The above profit function is concave in wp since a < 0. Moreover one can show
t
2
Whi

through computation that the constraint in problem (A.26) binds at the optimum.
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We now compare profits under CII and those resulting in CIII under the deviation

price W,. The difference in profits given by d(7) is a convex function in 7, because
02 > 0. In addition, the function d(7) has a single root at a 2f (y-y,)+3Oy.- 3 y

0
2d(7y) > . 2f (y.y)+18y.+9yO

therefore d(7) > 0. Thus given w*, platform # has no incentive to deviate to a

price that results in configuration CIII .

3. Platform # has no incentive to deviate to configuration CIV.

If platform # chooses to deviate to a configuration where all CPs subscribe to it,

the best price it can offer is given by WU = w* + (k + a)q,(yl - y,). Platform #

has no incentive to deviate in this case. Therefore we consider cases where w, is

positive. Proceeding in a similar manner to the previous cases we can show that

d(7) > 0 for 7 > a. This implies that platform # has no incentive to deviate to

configuration CIV.

We have shown that the equilibrium price pair (wU, wu) for which condition (A.12)

holds is a pure strategy Nash Equilibrium in the price subgame. We next show that con-

figuration CIII with a corner solution exists and give both the necessary and sufficient

conditions under which this configuration exists.

Lemma 13. Let Assumption 1 hold. Given a tuple (7, a, f, ya, y,3), there exists a unique

equilibrium price pair (w*, w*) E Rzzz such that w* = (7- a)(qa + q3)yp only if,

2f(ya - yo) + 30y, - 3yp < <min 2f(ya - yO) + 18y, + 9yp 4f(ya - yo) + 18y" - 9 y,3

2f(y, - yB) + 18y, + 9 yp - a - 2f (yc, - y3) + 6y, + 21yfl' 4f (y, - yp) + 6y, + 3yp3

Proof. In section A.1.2 we determined that the prices, in the unique equilibrium pair

(wC, wy), are unique and mutual best replies in the restricted domain R7Zz if a covered

market configuration with a corner solution 2 was assumed. Thus this price pair is our

only price subgame equilibrium candidate.

2A corner solution refers to the instance when w*= (7 - a)(gc + q@)yl.
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Since our only candidate pair is (WgC, Wyc), we need to show that the prices in these

pair are also mutual best replies on the whole domain of strategies, i.e, given price

wg, platform # does not have an incentive to change to price W which will result in

another configuration and a higher profit. We show that w' beats any strategy T'-3 in

the projection R, U RII U Riv against wcC and vice versa. We denote w* = wCC and

w = mgc.

We first fix w* and show that given this price, platform a has no incentive to deviate

to a price that would result in configuration CI, CII or CIV. We note that under

the price w* it is not possible to have the uncovered configurations CI or CII since all

content providers have an incentive to participate. So we only look at the possibility of

deviating to configuration CIV. We denote the profit under the price pair (w*, w*) as

7r* and that under the pair (Ua, w*) as Wc. We denote the difference 1* - T. as d(7).

1. Platform a has no incentive to deviate to configuration CIV. We find platform

a's best reply given w* under market configuration CIV and show that the profit

realized is less than that under configuration CIII at price w*. Let Wa be the

best reply of platform under configuration CIV. It is given by,

wa= argmax ra(wa, wI*),

S.t. Wa < (7 - a)qaya + g8yo.

The constraint in the above problem arises from the necessary condition expressed

in Eq. (A.22) for market configuration CIV to hold. The profit function 7F, is

linear and increasing in w,. Therefore the constraint binds and it is the best reply.

We now compare profit at the price pair (w*, w*) in configuration CIII to that

under the pair (wa, wO) in configuration CIV. The difference in profits is given

by d(y) which is a convex function in - because 0
2 d(5) > 0.3 Moreover, d(7y) has a

single root at = a(f(y y,)+6y 0 y,3 ) therefore d(7) > 0. Consequently platform

a has no incentive to deviate to configuration CIV.

We now fix w* and show that platform # has no incentive to deviate to any price W.

216a (y.- y,>( - y 3)
216f 3 + (ya - y4) 232f2 + (12ya$ + 84y2 - 15y2,)).
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We note that it is not possible for platform # to come up with prices which will result

in configuration CIV where all CP's flock to platform a, because w* is defined only

for ~ < min 2f(y.-yO)+18y.+
9
yO 4f(y.-yO)+18y.-9 , where as configuration CIV results

N-2f(yc -yp)+6ya+21yp3' 4f(y.-yO)+6ya+3y w

only if 77 > 2f(y.-ye)+18y.+9y. We denote the profit of platform # under the price pair
2f(y.-yp)+6ya +21y,*

(w*, w 3) as 7r* and that under the pair (T,, w*) as Tp. We denote the difference 7r) -

as d(77).

1. Platform 3 has no incentive to deviate to configuration CI We show that the best

response given w*, such that configuration CI emerges, will yield a lower profit.

Let wp denote the best response under CI given w*. It is given by,

Up = argmaxra (w*, wa),

SA. O >w*,(qa + qp3)yo

-qpyp + qoyc

For this configuration to occur we need the condition in Eq. (A.1) to be satisfied

hence the constraint in the above maximization problem. Since lro is independent

of w,8 we have the best response satisfying the constraint inequality i.e., T3 >

.a("+q )y. The function d(7) is a concave function in 7, because, < 0.4
q3yp6+qceya a2Q7)

Moreover, d(7) has two roots at

71 a, (A.27)

a(4f (y, - y8) + 18ya - 9yp) (A.28)
4f (ya - yp) + 6y + 3y,3

Thus for all y1 < -y 2 , we have d(77) > 0. In Section A.1.2 the equilibrium pair

(wC, wc) is defined only if E [1, y2]. Therefore platform # has no incentive to

deviate to a price that results in CI.

2. Platform / has no incentive to deviate to configuration CII.

This follows from the fact that the maximization problem given below has no

Sf(-12y -108y y-33y- -48y+3fyy +4f+4 +8 +4 -12
108 a(y. -yp3)(2y.+yO )
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solution.

Let ,3 = argmax 7r3(w*, wo),

s.t. w3 > (7- a)(q. + q0)yo.

We note that the supremum to the this problem is given by p = (7-a) (qa+qp)y .

Therefore any price w satisfying the maximization constraint will yield a lower

profit.

3. Platform 0 has no incentive to deviate to configuration CIV.

If platform # chooses to deviate to a configuration where all CPs subscribe to it,

the best price it can offer is denoted by wpQ3 and is given by,

w7p3 = argmax 7ry(w*, w3),

s.t. wp < w* + (7 + a)q0 (yo - ya).

The profit function is increasing in w3, therefore the constraint binds and we have

p3 = w* + (k + a)qa(ypl - ye). ' The difference d(7) between the profits under

the price pair (w*, w,) in configuration CIII and that under price pair (w*, w

in configuration CIV is concave whenever y, < y 2 and convex vice versa.

Moreover, d(7) has two roots at

a((3 - f)yp + (-12 + f)ya) (A.29)
((-9 - f)y + fya)

a((15 - 4f)y3 + (-6 + 4f)ya) A.30)
((-4f + 3)yo + (6 + 4f)ya)

One can show that when y, < ygL-f the interval in which config CIII is defined

lies between the interval defined by the two roots. Since in this case d(7) is concave

the difference is positive implying that platform # has no incentive to deviate. In

'The constraint directly arises from the utility maximization by the CPs. In particular, all CPs have
to prefer joining the low quality platforms including those with highest quality (7 + a).

6 .
2

d(7) _ 1 (33fy2 -27y, -8y, f 2yg +6fy2 -54y yg9-
3 9

y fyp +4y2 f
2 +4 Yf

2
)f

0- 108a(y. -yq)
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the case where For the region in which configuration CIII is defined d(7) > 0

since previous cases we can show that d(7) > 0 for -- > a. This implies that

platform # has no incentive to deviate. In the case when ya 2 y, - the roots

given by Eq. (A.29) and Eq. (A.30) above are negative. Since d(77) is convex and

configurations CIII is defined only for positive 7 we have that platform # has no

incentive to deviate.

LI

We now show that configuration CIII with an interior solution exists and give both

the necessary conditions under which this configuration exists.

Lemma 14. Let Assumption 6 hold. Given a tuple (7, a, f, y, y,), there exists a unique

equilibrium price pair (w,w7) C Rzz such that w < (77 - a)(qa + q,3)yp only if,

2f (ya - yB) + 9yp + 18y< 7 5f + 18

2f (ya - yO) + 6y, + 21y, a 5f +6

Proof. We follow the same line of proof applied in the previous two lemmas. From

section A.1.2, we know that the prices in the pair (we, ig) are unique and mutual best

replies in the restricted domain R=zz; if a covered market configuration was assumed

and an interior solution resulted.'. Thus this price pair is our only candidate for the

price equilibrium pair that falls in Rz-zz (with an interior solution). Moreover, it is also

shown in the same section that for (w3, wg) to be in R1 zz it is necessary and sufficient

that the condition expressed in Eq. (A.16) holds.

We now show that the prices in the equilibrium price pair (wv, we)are also mutual

best replies on the whole domain of strategies, i.e, given price we, platform # does not

have an incentive to change to price 7PT which will result in another configuration and a

higher profit, and vice versa. Formally, we show that w" beats any strategy wp in the

projection R1 U R 11 U RIv against wg and vice versa.

7An interior solution refers to the instance when w3 < (7 - a)(qa + q)yo
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We first fix wm = wg and show that platform a has no incentive to deviate to any

price wc. We note that it is not possible for platform a to come up with prices which

will result in either configuration CI or CII because < - a) (q, + qo)yp 8 . We

therefore check to see if platform a deviates to a covered but preempted market, i.e,

configuration CIV. We denote the profit of platform a under the price pair (w*, w*) as

7r* and that under the pair (Ta, w*) as T,. We denote the difference ir* - Wa as d(7).

1. Platform a has no incentive to deviate to configuration CIV.

If platform a chooses to deviate to a configuration where all CPs subscribe to it,

the best price it can offer is denoted by U7a and is given by,

w, = argmax ira(Wa, WO),

s.t. wa <qa(7 - a)(ya - y,) + w).

The constraint in the above maximization problem reflects the fact that all content

providers should prefer platform a to platform # for configuration CIV to occur.

Since 7r, is linear and increasing in we, a = (77 - a)qa(ya - yfl) + w). Under

this price d(7) is a convex function in 77, because, a2 ,,) > 0.' Moreover d(77) has a

single root at 7 = a5 ' 18 . Thus for all values of 77, the following inequality holds,5f1+6

d(77) > 0. Consequently platform a has no incentive to deviate to configuration

CIV.

We now fix w* = wc and show that platform # has no incentive to deviate to any

price w, in any other configuration. We denote the profit of platform 3 under the price

pair (w*, w*) as 7 and that under the pair (g, w*) as T,. We denote the difference

7r3 as d(

1. Platform 3 has no incentive to deviate to configuration CI.

We show that the best response given w*, such that configuration CI emerges,

will yield a lower profit. Let U7, denote the best response under CI given w*. It

8The fact that wo is an interior solution implies a covered market will result for any value usa.

9  = 16 f2 _-
O2 )48a(6 ± 5f)2 (y, yo)f.
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is given by,

argmax 7r3 (w*, w3),

S. t. wp > .OW* qc O
(qayQ+ylqo)

For this configuration to occur the lowest quality content provider should not join

platform a, which implies w* > (7 - a)(qaya + q3y3). This implies that the

configuration is possible only if 1 < 7f(y-y"_ +36y.-9yO We denote this bounda 7f (y,,,-y,3)+l2y,,+15y,

by ~y. Moreover, from section A.1.2 we know that w* is defined only if >

2f (yc -y,)±18y . We denote this upper bound by . Therefore, configuration

CIV can occur only if i <7 < ~y. The function d(7) is a convex function in 7,

because, a2 (,,) 0.10 Moreover d(7) has two roots at yi and 72. These are given

explicitly below,

a(Q(f, yp) + (8f2 ± 216 + 96f)ya ± 36(18fyj+ 6f 2y3 - 6 yaf 2yb + 3 6 yafy3))

((36 - 30f + 67f 2 )y + (8f 2 ± 72 + 48f)ya) + 36(8f

a(Q(f,y3) + (8f2+ 216+ 96f)ya - 36(18fyj + 6f 2y2 - 6 yaf 2 y'3 + 3 6 ycfya))
Y (A.32)72 - ((36 - 30f + 6 7 f 2 )Yb + (8f 2 + 72 + 48f)ya) 32

where Q(f, y3) = (67f 2 + 102f + 108 )y,3. Thus for 7 < 72, we have d(7) > 0. It is

also the case that y2 > i> when - < -+. Therefore for O < 1-- platform 3

has no incentive to deviate. For 2 > fj , ~9 < 1 which implies that configuration
YO3

CIV is not possible. Thus given w*, platform 3 has no incentive to deviate to a

price that results in CIV.

2. Platform # has no incentive to deviate to configuration CII.

For this configuration to occur the lowest quality content provider should not join

platform /, which implies w,3 > (7 - a)(q. + q3)yO. Therefore, platform O's best

price under this configuration is formally given by,

wp = argmax 7r3 (w*, wp),

10
2dQ(- ) (y2-y,)f((36-30f+67f

2)y +(8f
2 +72+48f)y.)

5) 486(yo+2y.)a
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s.t. WO > (7 - a)(qa + q0)yop.

The profit function 7r,3 is concave in wf8. An interior solution to the above max-

imization problem exists only if wp > (7 - a)(q, + qp)y3. One can show that

this happens only if 7 < j where ' = a (20f (Ya-yb)+9y.+1Y3) . But configuration(20f (Y.-yp) - 3y. +30O)

CIII with an interior solution is only defined for - < 7 < a 5fl+. Since - >

a maximum does not exist and the supremum of the profit function under this

configuration is that given under the price wp = (7 - a) (q, + q)yf3. The function

d(7), under this price, is a convex function of 7, because a2d(;7) > 0." Moreover,

d(7) has a single root at §. Therefore d(7) > 0 for all , < < 5f+1 . This implies

that given w*, platform # has no incentive to deviate to a price that results in

configuration CII.

3. Platform # has no incentive to deviate to configuration CIV where all CPs migrate

to platform a..

For this configuration to occur the lowest quality content provider should not join

platform # but platform a. This implies wf3 > (7 - a) (y, - yc) + w*. Therefore,

platform /'s best price under this configuration is formally given by,

= argmax 7ry(w*, w3),

s. t. wp8 > (-a) (y,3 - ya) + w*.

For this configuration to occur 7 > 12. The function d(7) is a convex function of

7y, because 2(7) > 0. 1. Moreover, d(7) has a single root at af+6. Therefore

d(7) > 0 for all 7, and in particular when 7 > ~y. This implies that given w*,

platform # has no incentive to deviate to a price that results in configuration

CIV.

4. Platform # has no incentive to deviate to configuration CIV where all CPs migrate

11 02
d(5) _ (((f+3)((f+3/2)2-63/4))

2 y +((f+3)((f+3/2)
2 

-63/4))yayfl+4f
2
(f+3)2

2 y)
2(57) - 486fa(y. -yo)

12 1f 7 < then we cannot have a covered market where all CP's patronize platform a.

1 3 a2
d( - (25f2 + 60f + 36)(ya - yp)f

_(57) - 486 a(5+6
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to platform #.

For this configuration to occur the highest quality content provider should join

platform # . This implies wo < (7 + a)(y, - ya) + w*. Therefore, platform #'s

best price under this configuration is formally given by,

argmax 7ro (w*, w,),

s.t. w3 < (7 - a)(y - y.) + w*.

The function d(7) is a convex function of 7, because a( > 0. Moreover, d(7)

has a single root at a 5f-1. Therefore d(7) > 0 for all 7, and in particular when

this configuration occurs. This implies that given w*, platform # has no incentive

to deviate to a price that results in configuration CIV.

We finally show that configuration CIV exists. We give the necessary conditions for

its existence together with the possible price characterizations in this configuration.

Lemma 15. Let Assumption 6 hold. Given a tuple (7, a, f, yQ, yl), there exists an

equilibrium price pair (w*, w*) C 'ZTv such that

1. w* > (7-a)yo, w * = (7 - a)(qpya + qaya) only if,

7 4f (ya- y,) + 18ya + 9y,3 f+9->and ya> yg.
a -4f(y - y8) + 6y, + 3y3 - f

2. w*,3 = (7-a)y,, w* = (7-a)(q3yp + qaya) only if,

4f(y, - yp3) + 18y, - 9y3 a + 9

a ~ 4f(ya - yo) + 6y. + 3yp - f

3. w* = (7 - a)yo - c(7 - a)yg, w* = (7-a)(qoyp + qay) - c(7 - a)yp only if,

7 4f(ya - y) + 18ya - 9y - 9y'c and y, 10y3 - 9cy,
a 4f(ya -y3) + 6y, + 3yp- 9ylc
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f +±9- 9c
where 0 < c < 1 and y, > ypW.

f

4.w* = 0, w* = '((7 - a)(y, - yo) only if,

9+2f <
3+2f ~ a

Proof. From section A.1.2, the condition in Eq. (A.25) characterizes the equilibrium

price pairs that exist if configuration CIV is exogenously assumed. We show a subset of

this characterization is a subgame Nash equilibrium for the range of values of 57 stated

in the Lemma.

Proving case 1 : w* > (7 - a)(qa + qp)y,, w* = (7 - a) (qflyfl + qaya).

Let (w*, w7) be a price pair that satisfies the condition in Eq. A.25 where w* >

(7 - a) (qa + qj3)yo. We fix w* and check whether platform # has an incentive to deviate

to configuration CIII. Note that this is the only configuration that platform # can

deviate too; since w* = (;7 - a)(qyQ + qay,) the lowest quality content provider will

join at least one platform. Thus platform # can only deviate to a covered market

configuration.

We denote the profit of platform # under the price pair (w*, w,*) as 7r and that

under the pair (w3, w*) as Fp. We denote the profit difference 7r - T as d(7). Platform

# maximizes its profit function to find the best price w3 that will yield configuration

CIII given the tuple (ya, y1 ,8,7, a). The maximization problem has a constraint which

ensures that the price is less than the value gained by the lowest quality CP.

Let To = argmax 7r3(w*, wp3),

s. t. 0 < wp3 < (7-a) (qa + q,3)yo.

It follows that 0 < 7,3 < (7-a)(q + q,3)y,3 only if 7> a and 2a < f9. Consequently,YO3 f

market configuration CIII is possible with this price only if 2 < f±9 since we assume in
Yt> f

the problem formulation that 7> a. Under the price 70~ the function d(;7) is a concave
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function of 7, because 0
2 d(7) < 0." Moreover, d(7) has a single root a. Therefore for

all 7 > a and ya. <~ y-f platform # will deviate to configuration CIII. This suggests

that we potentially could have a preempted solution when y," > yp-9.f

We fix w* and check whether platform a has an incentive to deviate to configuration

CI or CII when f-9. We only consider those two configurations because configuration
f

CIII is not possible given w > (7 - 1)y3. We denote the profit of platform a under

the price pair (w*, w*) as 7r* and that under the pair (wa, w*) as -7,. We denote the

difference 7r* - T, as d(7).

Let w = argmax 7ra(w wa),

s.t. W, < W(3 + qaya)
(qa + q,)y,8

Let TDf' be the interior solution. It follows that this solution exists whenever w >

(qa+q ye . We denote this bound by w*. Therefore an interior solution -Tt' results iny~q/3+qayc,1

market configuration CI only if w,* > w* > (7- a)(q., + qg)y3. One can show that this

occurs only if 7 < a(4f y-y +8y+3 . We denote this bound as 7*. The function d(7)

under this price is a concave function of 7, because 2, < 0.15 Moreover d(7) has a

single root at 7*. Therefore, for all 7 < 7* platform # will deviate to configuration CI.

We now investigate the case when w, E ((7 - a)(qa + qg)y, , w**). In this case Wa =

+q . We denote the difference 7r* - T, as d(T*).. This difference is convex
yo (qo +q.) . eia L1W

in w* since (7= q"""$43"" > 0.. This difference has two roots at r 16 and r2. 17

Whenever w* E (r1, r2) platform a has an incentive to deviate. It follows that this

occurs whenever r2 > r1 which in turn results whenever 7 < 7*. Therefore if w* E

((7 - a)(qa + q)yp, w**) , which occurs only if 7 < 7* platform a has an incentive to

deviate. This implies that there is a potential for a preempted market if 7> 7*.

We now check whether there is an incentive for platform to deviate to configura-

tion CII or CIII where r, E (0, 1). This can occur whenever w* E [(7 - a)(qa +

14 .23d(';> _ -(Yf-(9+f>Y,3)2f

- 216a(y.-y,)

15 t92 d(7) _ -1i(36Y2+16Y!2+48Y2 -24yfy,-32yf/3+36yy +992+16f2y2 _24fy2>

2 a(
2
y.+yo)

16, _ a + #y

17 _ 2 fy ((2f(-a)+3a)y+(2f(a-7+6a)y.))
2 3 2y.fy,
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qo)y, 2/9(-7(2f + 3) + a(2f - 3))(ya - Yf)f]. Moreover, this interval is non-empty
whenever < (4f (y,-y) +18y-9y) . This implies that platform a would have an incentive

a (4f (ycQ-yo)+6y.+3yo)

to deviate to whenever the former applies since d(Tl7) > 0 is positive in this range.

Putting all the above results together implies that configuration CIV with the price

pair given above is possible only if 7 > 7*.

Proving case 2: w*= (7- a)y, w* = {(7 - a)(q,3yp + qayQ)

The first part of the proof where we fix w* and check whether platform # has an

incentive to deviate to configuration CIII is exactly the same as in the previous case.

We fix w* and check whether platform a has an incentive to deviate to configuration

CIII when Y > +-9. We only consider these configuration because configuration CI
YO3 - f

and CII are not possible given w 3 = (7 - a)(qa + q)y3.

We denote the profit of platform a under the price pair (w*, w*) as 7r) and that

under the pair (T, w*) as T,. We denote the difference 7r*, - T, as d(7).

Let UT, = argmax r(w, w,),

s. t. wC, > (7 - a) (q y,3 + gay,).

It follows that T, exists whenever 7 < 7*. It is also the case that function d(7) is

a concave function of 7, because a( < 0." Moreover, d(7) has a single root 7*.

Therefore for all 7 - 7* platform # will deviate to configuration CIII. In particular,

when 7 < 7* platform a will always deviate since configuration CIII is defined for that

range. This implies that a preempted market with prices (w*, w,) occurs only if 7* < 7

and Y ;> f+9
yO - f

Proving case 3: w* (7-a)(qaya + q y) -c(7-a)y and w* = (7-a)(qa+qa)yo -

c(7 - a)(qa + qO)yp, where c E [0, 1).

We fix w* and check whether platform # has an incentive to deviate to configuration

CIII. Note that this is the only configuration that platform # can deviate too since
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w*< (7 -a)(qaya + qoyo) which implies that the lowest quality content provider will

join at least one platform.

We denote the profit of platform # under the price pair (w*, w*) as 7r* and that under

the pair (w3, w*) as To. We denote the difference, 7r* -T3 as d(7). Platform # maximizes

the following profit function to find the best price w3 that will yield configuration CIII

given the tuple (ye, y3,7).

Let Wp = argmax r,3(w*, w3),

s.t. 0 < WO < (7 - a)(q. + qp)y,(1 - c).

It follows that Wp3 E (0, (7- a)(qa + qO)yO(1 - c)) whenever 1L- < (9-c+f). It is also theYO - f

case that function d(7) is a concave function of 7, because 2 d(;) < 0.19 Moreover, d(7)

has a single root a. Therefore, for all 7 > a and V-0 < (9-9c+f) platform # will deviate to

configuration CIII. This suggests that we potentially could have a preempted solution

when 7 > a and Y > (9-9c+f)

We now fix w73  (7 - a)(qa + q3)yo - c(7 - a)yp where c E [0, 1) and check whether

platform a has an incentive to deviate to configuration CIII . We again consider

only this configuration because configuration CI and CII are not possible given w* <

(7 - a) (qa + qO)yo.

Let ., = argmax 7ra(w3, Wa),

s.t. wa >(7 -a) q13y13 + qaye - c(7 - a)(qc, + q3)yp.
3

It follows that Tw > (7- a)(qoyp +qaya) -c(7-a)(q+qp)yp and results in configuration

CIII only if ; > 4f(y-y)+18.-9y0c-9/3" Therefore platform c deviates only in the above
a - 4fy-O+y.9~+y

case. Putting all the above results together we find that this price configuration holds

whenever, ; < 4f(y,-yo)+18y.-9yoc-9ya and Y > 9+f-9c
a 4f(y,-yo)+6ya-9ypc+3yo YO - f

Proving case 4:w* = 0, w* = qa(7 - a)(yc - yo)

192 -1 f(f(y_-yo)+9yp(c-1))
2

216a a(y -y3)
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We proceed in a similar way to that used in proving case 3. We fix w* and check

whether platform 0 has an incentive to deviate to configuration CIII. Note that this is

the only configuration that platform # can deviate too since w* <(7- a)(qoyc, + qy,3).

This means that platform # maximizes its profit function to find the best price Up that

will yield configuration CIII given the tuple (ye, yp,37, a).

Let wp = argmax 7ro(w*, w 3),

s.t. wO < 0.

However any price wp < 0 is dominated by wp = 0 thus platform 3 has no incentive to

deviate for any 7.

We fix w = 0 and check whether platform a- has an incentive to deviate to configu-

ration CIII. We again consider these configuration because configuration CI and CII

are not possible given w 3 < (7 - a)(qa + qp)yo.

Let T, = argmax 7rc(W3, wa)

S. t. wa > qa(- a)(yo, - Y,3).

It follows that w, > q,(7 - a)(ya - y,3) only if 2 < 2f+9. This implies that whena 2f±+3

> 2! + this price structure and market configuration are possible .
a - 2f +3

In this Appendix we have shown that there exists equilibrium price pairs that are

Nash equilibrium in the price subgame. Moreover, we have shown the market configura-

tions in which they occur and the conditions for them to occur. In particular, we have

shown that each of the configurations CII, CIII, and CIV exists. We next present

a proof for Theorem 1 which shows that given any tuple (7, a, ye, yO) only one market

configuration is feasible in the price subgame Nash equilibrium. In addition, for market

configurations CII and CIII, the price characterizations are unique.
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Proof of Theorem 1

Proof. Given a tuple (7, a, f, y,, y3), we know from Lemma 11 through 15 that an equi-

librium pair (w*, w*) exists. Moreover, cases 1, 2, and 3 directly follow from Lemma 12

through 14. In particular,

1. If 1 < < 2f,(yy)+30y,3y then the equilibrium price pair is unique and
a 2f (y.-yO)+l8y.+ 9 yO '

(w*, w7*) E RZ. This follows from Lemma 12.

r2f 2(yc,-yg)+30y, -3yo<I i 2f(y.-yO)+18y.+9yO 4f(y.-y,3)+18yy,-9yO hn h2. if 2yyf)3yy < < min 2(Y , then the
2f(y,--yo)+18y,+9yo - a 2f(ya-yp)+6ya+21yO1 4f(y)-y,)+6yo+3yI

equilibrium price pair is unique and (w*, w)) E R=r. This follows from Lemma

13.

3. If " ""+ < Z< 5f+18 then the equilibrium price pair is unique and
2f(y.-yO)±6y.+±21yO a 5f+6

(w*, w7*) E l~ru. This follows from Lemma 14.

4. If max 5f18 41-y +18ya+3yO < i < oo then (w*, w*) E Rz1v. This follows

from Lemma 15.

Proof of Theorem 2

We first show that without loss of generality we can assume platform # chooses a price

wO > 0. This will enable us to show that no content provider joins platform # and

consequently enable us to rule out the existence of configuration CII and CIII.

Lemma 16. Platform 3 charges w3 > 0.

Proof. We first show that w3 > 0 dominates any price wf3 < 0. Assume that w3 < 0

and r3 > 0, then platform # makes negative revenue on the content provider side. By

raising its price to w3 = 0 it increases its total revenue. This is because the revenue

from the content provider side becomes non-negative and the profits on the consumer

side increase: This happens across all configurations because r, is non-decreasing in

WO1 0
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Since by Lemma 16, wf 2 0, it follows that any content provider j joining platform

# will get utility v < 0. Therefore, no content provider has incentive to join platform

p. This implies that market configurations CII and CIII where content providers

patronize both platforms do not exist. We now show that there trivially exists pure

strategy subgame equilibrium price pairs when one platform has zero investment. We

show that these prices result in configurations CI and CIV and give the conditions on

7 for these to occur. We now proceed to prove Theorem 2.

Proof. We first derive the demand function ra(wa). Given y, = 0, ya > 0 and

Lemma 16, the content provider decisions are as if only one platform is on offer. There-

fore, the demand addressed to platform a is equal to the mass of content providers with

content quality yj such that -yjyaq, > w_ and is given by,

ra(wa) = - 7+ a o.
2a qy

The value wT, that maximizes platform alpha's profit problem for platform a is repre-

sented as,

Ta = argmax 7ra(wa),

s -t. w. 2! (yc q..)(- a).

The profit function does not depend on wo so platform a maximizes the above function

with respect to wa and ensuring that w, > yaq,(7 - a). This last constraint reflects

the fact that when the constraint binds all content providers are on board; a price lower

than this yields no more content providers and results in a loss of revenue. The interior

solution for the above maximization is w* = -fya(2f(a - 7) + 3(7 + a)), and occurs

whenever 1 < 7 < (9 + 2f)/(3 + 2f). In this case since w* > qaya(77 - a) the resulting

configuration is CI. The constraint binds when 7 > (9 + 2f)/(3 + 2f). In this instance

the resulting configuration is CIV since all content providers join platform oz. l
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A.1.4 Best reply in the domain [0, Yh)

In order to avoid confusion when platform # is the high quality firm we will change

notation as follows; we label the high(low) quality platform as h(l) and the quality

associated with it as Yh(l)- Given Yh, we will compute firm 1's best reply. We will show

that the profit for the low quality firm is decreasing in y' across all configurations which

are possible given (7, Yh, a). This will help us infer that the low quality platform chooses

0 as its best response. Since the choice of y' by the low quality firm determines the

market configuration we define the critical limits for which the various configurations

exist given Yh.

" Market is uncovered, with positive masses of consumers on both platforms, in the

in the price subgame whenever,

a(f +15) - (f + 97 )
(9 - 2f)7 + a(2f + 3) (A33)

e Market is covered and a corner solution applies in the price subgame whenever,

Yi E ~2Y a(f +15) - (f +97) 2 a(f + 9) - (f +3)7 (A.34)

y(9 - 2 f)7+ a(2 f + 3 ), (21 - 2f)T - (9 - 2f)a_

if 1 < ; < f±15[f +9

Yi E 0, 2Yh ( (A.35)
(21 - 2f)7 - (9 - 2f)a_

if f+15 < < 5f+18
f+9 a - 5f+6 '

SE ,[o (2f +9)a - (2f +3)7] (A.36)
(3 - 4f)77+ (9 + 4f)a _

if 5f+18 < < 2f+9
5f+6 a - 2f+3'

" Market is covered and an interior solution applies in the price subgame whenever,

y E 2yh _ +9)+ , yh , if 1 < 5f+1. (A.37)
(21 - 2f)7 - (9 - 2f)a a 5f+6
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* Market is preempted whenever,

J 2yh (2f + 9)a - (2f + 3)'; h i 5f+18 < 7<92. (A.38)
h3-4)7+ 9+4~ 5f +6 - a 3+2f

> 9 + 2f (A.39)
a - 3+2f

We now show that given the tuple (7, yh, a) the profit function 7r, is decreasing in every

configuration that it is defined.

Lemma 17. Given (yh, 7, a),f 2 3/5 and y' E [0, Yh) , the profit function 7r1(y, Yh) is

decreasing in yI for all market configurations for which it is defined.

Proof. We show that for each configuration the revenue function ri = iri(yi, Yh) + c(yj)

is decreasing in yi.

Uncovered Configuration CI: Let the revenue function in this configuration be de-

fined by ruj, one can by show that for 1 < < f±1 and yi in the set defined in (A.33),

'9ru'< 0. Hence the revenue function in this configuration is decreasing in yl.
'
9
y1

Covered Configuration with interior solution CIII: Let the revenue function in this

configuration be defined by rci. One can also show that for 1 < 2 < 5f+18 and yj in the

set defined in A.37, the derivative of the above function, - < 0. Therefore the profit09w

function is decreasing in yj when yj lies in the set specified in (A.37).

Covered Configuration with corner solution CIII: Let the revenue function in this

configuration be defined by rec. One can show that for 1 < < 2f±9 and yi in the setsa 2f +3

defined in (A.34), (A.35) and (A.36) the derivative of the above function, arc < 0.

Pre-empted Configuration CIV: Let the revenue function in this configuration be

defined by rp. The derivative of the above function, L = -2/9f 2 7. The above derivative

is negative therefore the profit function is decreasing in yi when this configuration is

defined. D

Lemma 18. Given the tuple (y., 7, a, f ), f> 2 and the domain [0, y,), then B3(ya) =

0.
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Proof. We show that given (yh, 7, a) platform 1 will prefer not to invest. Specifically, we

show that the profit function 71 is continuous in yi over the domain [0, Yh). This coupled

with Lemma 17 implies that platform 1 picks the lowest quality as the Lemma claims.

We split the domain in which 2 lies into four sections depending on the number and

type of market configurations that are possible. We show that in each section the profit

function is continuous.

Case I. 1 < 2 < f+15
a f+9

Four market configurations are possible when 1 < 2 < f ; these are uncovered

(CI), uncovered (CII) with both platforms participating, covered with a corner solution

and covered with an interior solution (both of which are in configuration CIII). Given

a in the above range, the domain [0, Yh) in which y' lies can be partitioned into three

sets, each of which corresponds to one of the latter three market configurations. These

partitions are captured in (A.33), (A.34) and (A.37). By Lemma 17, we know that

profits are decreasing in y' for each partition. We will first show that the value of the

profit function in the partition defined in (A.33), is larger than any profit attained in the

partition defined in (A.34). Similarly, we show that any profit attained when y' lies in

the partition defined by the constraint in (A.37) is not greater than that attained when

yj lies in the partition specified by (A.34). Lastly we show that the profit of a platform

in configuration CII tends to that in configuration CI as yj -± 0 and is in fact equal at

the limit.

To show the first result we compare the infimum value of the profit function in the

uncovered configuration to the highest possible profit attained when platform 1 chooses

yj such that a covered market with a corner solution results (i.e, yi is in the set specified

in (A.34)). Let yf4 = 2 Yh ,(f±15>(f+97) it follows that limyy afc r7u(y, Yh) = 7r"4(Y", Yh)

(Since vu is right continuous, the limit exists). Since iu (y1 , Yh) > I (ycCe, Yh) when

y' satisfies the inequality in (A.33), it also follows from Lemma 17 that rir(yl, Yh) >

wjc(Q, Yh) when f lies in the set specified in (A.34).

To show the second result, we compare the lowest value of the profit function in

the covered configuration with a corner solution to the supremum profit value attained

when platform 1 chooses yi such that a covered market with an interior solution re-
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sults. The interval over which the covered configuration with an interior solution,

CIII, is defined is open. Let y' = 2 Yh(212()-f+29)a) we define the supremum of

ri(y1, Yh) over the range in which this configuration is defined as 7rfi(yf, yh). We note

that yfc is the infimum of the interval over which this configuration is defined, there-

fore lim 1 yC 7rf(yi, Yh) = 7rfi(yf , Yh) since 7rc(yh, Yi) is left continuous. By plugging in

Y1 = yfc into riC(yI, Yh) we note that icC(yci, Yh) = 7rya, Yh). Therefore, it follows from

Lemma 17, that ricc(yh, Yi) > rfg(P, Yh) when y' satisfies the constraint in (A.34) and Q

satisfies the constraint in (A.37).

Finally, since 7r'(yl, Yh) is left continuous by plugging yj = 0 to the function 7ry (y1, Yh)

we show that limy,+o 7r1(y1, Yh) = 7rfi(0, Yh). Where grfi(0, Yh) is the profit function when

configuration CI is defined.

Case II f+15 < 7 < 5f+18
f+9 - a 5f+6

In this instance three market configurations are possible depending on the value of

yh and yl; these are uncovered CI, covered with a corner solution, CIII, and covered

with an interior solution, CIII. Given a 2 in the above range, the domain [0, Yh) in

which yi lies can be partitioned into two sets each of which corresponds to the latter two

of the three market configurations. These partitions are captured in (A.34) and (A.37).

We proceed in a similar manner as we did for the previous case. By Lemma 17 we know

that profits are decreasing in y' for each partition. We claim that any profit attained

in the partitions defined in (A.37) is less than that attained by the minimum profit in

the partition defined in (A.34). The proof is exactly the same as that described in case

I. We then show that as yj -+ 0 the profit of a platform in configuration CIII with a

corner solution approaches that of the profit in configuration CI and in the limit when

yi = 0 they are equal. Since 7rc(y1 , Yh) is left continuous by plugging yj = 0 to the

function rC(y 1 , Yh) one can show that limylo ricC(y 1 , Yh) = rui(0, yh). Where 7i(0, Yh)

is the profit function when configuration CI is defined.

Case III. 5f+18 < < 2f±9
5f±+6 - a 2f+3~

In this section we need only show that the profit function is continuous across con-

figuration CIII with a corner solution and a pre-empted market configuration CIV.

Indeed these are the only two configurations possible when yi > 0. (We already showed
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in the previous case that limy,,o irfc(yi, Yh) = sLi(0, yh)). To show this result we compare

the infimum value of the profit function in the covered configuration with a corner so-

lution to the profit value attained when platform I chooses a yi such that a pre-empted

market results. Note the interval over which the covered configuration with a corner

solution, CIII, is defined is open on its upper limit. Let yi' = 2Yh (2f +9)a-(2f+3) , we(3-4f)7+(9±4f)a'w

define the infimum of 7rfc(y, yi) over the range in which this configuration is defined as

1ic(yf, yh). Since 7rc(y, Yh) is right continuous limY,,1 y qrc(yj, Yh) = iirc(y, Yh). Note

yf' is the infimum of the range. By plugging in y' = yf into the profit functions un-

der a covered market (with a corner solution) and a pre-empted market, we find that

7rfC (yl, Yh) = 7rYp, Yh). This implies that the profit function is continuous across these

two market configurations at this point.

Case IV. < I < oo.

When 7 falls in the above range only market configuration CIV is possible when

yj > 0. We showed in Lemma 17 that the profit function 7r,(y 1, Yh) is decreasing in y'

in this configuration. So we only need show that limy, o 7rf(y1, Yh) = ij"ic(0, Yh), where

7Lic(0, Yh) is the profit function in CI. Since 7rf (y, Yh) is left continuous limy,,o ir (yI, Yh) =

irf (0, yh). Via simple algebra, one can show that 7rr(0, Yh) = qJ'Iic(0, Yh) which shows that

7r, is continuous. I

A.1.5 Proof of Theorem 3

We first show that a symmetric equilibrium is not feasible. Let j, i E {c', #} and Bi(yj)

be the set of yf E [0, ool such that,

yi E arg max 7ri(yjy).
yV E [O,oo)

Lemma 19. Let Assumption 6 and 7 hold. If yj E [0, oc] then yj $ Bi(yj).

Proof. We show that given yj, platform i never chooses yj = yj > 0 and therefore a

symmetric equilibrium is not possible. A symmetric argument applies for the other

platform. Assume yj E Bi(yj) so that yj = yj > 0, then both platforms would make zero

profits because of Bertrand competition on both sides of the market. We now check if
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platforms would prefer yj = yj = 0 and show that there exists a profitable deviation

for platform i. There are two cases to consider, when 7/a < (2f + 9)/(2f + 3) and

7/a > (2f + 9)/(2f + 3). The arguments for both cases are very similar so we present

only one.

Case I. ; < .

Let platform i increase its quality by a small E > 0; platform i becomes the high

quality platform. Results from Theorem 2 imply that the resulting equilibrium profit 7ri

for the high quality platform given the subgame (7, a, e, yj) can be expressed as follows

using a Taylor series expansion, 7ri(e, 0) = Q(7, f, a)e- !I"(0)e-o(c)| 2I, where Q(7, f, a)

is a positive number. There exists an c* such that for all e C (0, E*) the above quantity

is positive. Thus platform i would prefer to set quality e E (0, e*) instead of 0. 3

We now proceed to find the sets in which the best replies lie given each platform's

investment level. Given quality choice ya, platform # can choose a best reply that

depends on whether it acts as a high-quality or a low-quality platform. In the former

case it chooses a reply in the domain (y,, oo) and in the latter case it chooses a reply

in the domain [0, ye). Lemma 18 shows that if platform a invests in a positive quality

and platform # acts as a low quality platform, then platform # prefers not to invest. By

symmetry a similar claim exists for platform a given platform O's quality choice. We

now proceed to prove Theorem 3.

Proof. Given that platform # invests in y,8 > 0 platform a can choose to be a low

quality or a high quality platform. The best response for platform a given it acts as

a low-quality (high-quality) platform is given by B,(y,) = 0 (B3(yo) C (yo, oo)). The

former follows from Lemma 18 and the latter from Lemma 19. The overall best response

is the maximum of these two best responses, i.e., the value for which the profit function

is highest. Let y = {yly, > y,3}. Given y,3 > 0 then B,(yl) E {0U }. If yp = 0 then

the best response is given by y* = {y0|I'(ya) = r'(y.)}; where r,(ya) is the revenue

made by the high quality platform. Note that given the tuple (7, a, f), r,(ya) is a linear

function in y,. It follows that y* is a singleton since the profit function is concave in y,.

Therefore given yo = 0, B,(yo) = y*. Since the explicit form of the revenue function
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depends on whether 7/a < (9 + 2f)/(3 + 2f) or 7/a 2 (9 + 2f)/(3 + 2f) we have two

implicit characterizations of this singleton. The sets in which platform a/s best response

lies is similar by symmetry. Consequently, the only points of intersection are [y*, 0] and

[0, y*].

A.1.6 Proof of Theorem 4

Proof. We show that for a c > 1 and f large enough the pair (y* 0), as defined in the

Theorem statement is a SPE. Some of the expressions involved are too large to put

in the paper. Where this is the case we state the importance of the results for the

proof. In Theorem 3, we showed that the pair (0, y*) is a candidate equilibrium pair.

In particular y* is the best response of one platform given the other platform chooses

not to invest. We proceed to show that for a quadratic investment function when one

platform invests in y* the other opts not to invest concluding that a SPE exists for this

investment function. To analyze this response we partition the space in which 7/a lies

into three regions corresponding to the types of market configurations that exits in each

of the region. Note that the revenue2 o function is of a different form in each of these

regions, hence the different analysis.

Case I. 1 < 2 < 5f+18.a 5f +6~

If the platform acts as a high quality platform, i.e., chooses y > y* there are three

possible revenue functions that may result depending on the choice of y. Let r(y, y*)

denote the revenue function of the platform that is responding to an investment level of

y* by the other platform. This revenue function is made up of a concatenation of three

other revenue functions. These are,

c( *) i* 1 (21-2f)?+(2f -9)a
i ( Y if2 (f+9)a-(f-3)7

rcc(y Y*) if y E * 1 (21-2f);+(2f -9)a * 1 (9-2f)?+(2f+3)a]
r 2 (f+9)a-(f-3)77 2 2 (f+15)a-(f+9)77

rui(y y*) if y C 1 (9-2f)5
7 +(2f+3)a

r y 2 (f+15)a-(f+9)7 7

The restrictions over which these functions are defined are derived from the market

20 Revenue = Profit + Investment cost
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configurations in Theorem 1. The first refers to the revenue function when the market

is covered with an interior solution, the second refers to the revenue function when

the market is covered with a corner solution and the last refers to when the market is

uncovered with masses present in both configurations.

We find a differentiable upper-bound of r(y, y*) and show that the best response when

the platform acts as a high-quality platform, under this function, is dominated by the

best response when it acts as a low-quality platform. Let this upper-bound be denoted

by rest. Lemma 20 shows that r"i(y, y*) over the domain y > y* is an upper-bound of

r(y, y*). So we find the best response under this function and compare it with the best

response when the platform acts as a low-quality platform and opts not to invest. Let

the maximum profit value when the platform acts as a high-quality platform under the

upper-bound revenue be denoted by 7res(yest, y*), where

yest = argmax 7rest(yy*),

sAt. y > y*. (A.40)

Let the maximum profit value when the platform acts as a low-quality platform be

denoted by 7ro'. From Lemma 18 this occurs at y = 0. One can show that grlow > rest21

Case I 5f+18 < _< 9+2f.
5f +6 - a 9+2f

In this region two market configurations are possible if the platform picks y > y*.

These are a preempted market and a covered market with a corner solution. Since in the

preempted market several price equilibria exist we pick the one that yields the highest

price and use that to calculate an upper-bound for the profit function. We denote it by

7est. We compare this solution against ir
1 "7 , which is the profit of the platform when it

chooses to be the low-quality platform. In a similar manner to the first case we show

7rlow > 7rest. In particular 7r"' - 7rlo = -2/27f 2 (3a -4f7-37)(a -T+f7) < 0 whenever

f > 1 - a/k.

Case III. 5ff+15f±+6 a

In this interval, when the platform decides to act as a high quality platform, only

21The expression showing that the difference of the two terms is positive has many terms and is

omitted for the sake of clarity.
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the pre-empted market exists. Moreover, there are multiple price equilibria. So we use

the price equilibria that yields the highest possible profit and use it to derive an upper-

bound for the profit function. The analysis then proceeds in exactly the same manner

as that in case II because the upper-bound for the profit function when the platform

chooses to act as a high-quality is the same as that in case II.

Lemma 20. If E * (21-2f)+(2-9)a oo then r" (y, y*) > r(y, y*)

Proof. r(y, y*) is continuous since limy_, r"i(y, y*) = rcc(p, y*) and limy, r'"(y, y*) =

rui(i, y*) where = y* (21-2f)+(2f-9)a and * 1 (9-2f)7+(2f +3)a The revenue func-
2 (f+9)a-(f-3)77 Y 2 (f+15)a-(f+9)7 *

tions r"c(y, y*) and rui(y, y*) are increasing in y since the derivatives are positive.

Moreover, the former is convex in y, whilst the later is concave y. The difference

r' (p, y*) - r'"(p, y*)22 is positive whenever 1 < 2 < .+15 Furthermore, r'c(9, y*) -
a f+9

r'ui(y, y*) 23 and r'"i(Q, y*) - r'"( , y*) 24 are also positive in this interval. This coupled

with the fact that the revenue functions are increasing implies that rci(y, y*) > r"c(y, y*)

in the domain of y where rcc(y, y*) is defined. Moreover, the concavity of rui(y, y*)

also implies that rd(y, y*) > rui(y, y*) in the domain of y where the latter is defined.

Therefore, whenever 1 < < f then rci(y, y*) > r(y, y*). In the case where f15 <a f+9 f+9

< 18+5 only two market configurations exist, a covered market with an interior
a 6±5f

solution and an uncovered market with a corner solution. The difference between the

revenue functions over the region where the covered market with a corner solution is

defined is concave in y and increasing. This follows because i) the second derivative of

the difference, r'ci(y, y*) - r'cc(y, y*), is negative2 5 whenever y > y*; ii) the difference is

increasing in y since the derivative is positive in this range; iii) for y > g, the range in

which the covered market with corner solution is defined, the difference is positive. 0

22 i ff((f + 9)a - (f + 3)k)((5f + 6)k + (18 - 5f)a)

2 f (a-)(5f 2 a2 + 32fa2 - 261a 2 
- 10f 27a - 58fa+ ±120a + 5f 2572 + 26f72 - 3y 2)/a((f + 3)a + (3 -

22(-5fa + 5fy + 24a)(fa + 15a - f77- 97) 2 fa((f + 3)a + (3 - f)77)
25 3 fy.2(7-a)2

8 (y-y*)
3

a
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A.2 Non-neutral Model

A.2.1 Sets of Prices that yield relations (i),(ii) and (iii) as de-

fined in section (3.5.2)

We now define sets WR(j), WR(ii) and WR(jjj) that contain price pairs (Wa, wp) that may

yield relations (i), (ii) and (iii), as defined in sections 3.5.2, respectively. First we define

set WR(j) by solving for the price pairs for which F(y,, -) > Fi(yg, .). We characterize

this set below;

{{wC, w3)|w, < Ta, wp > wp and w, < qafA + qa/q,3wp} if ya, E A,

WR(i) {(w., WO)|w, < U7, W,3 > U7 3l if ya E A,

{(Wa, W)Iwa > 0,w > 0} if ya E 9.

Here (qa, q,3) = (2/3,1/3), A =(ya -y3)(7+a)2/(7-a), A = (YO, A =[~ ~~ ~ (;7+a)2(57 -)2772-a2)\

2 , E = [2yi, 00). If ya E A then T. = qafA+qa(7-a)fy,

and Tp = (57+a)fy,-fAqa. If y0 E A then T, = (7+a)2/3fy, and ,3 = (77-a)1/3fyp.

We similarly characterize set WR(ii) by solving for price pairs for which F(y,, -) <

F (y,3, -);

{{(Wa,Wfl)|Wa w,'W <wp and Wa > qafA+qa/q3wp} ify, EA,

WR(ii) = {(wa, WO) Iw > l-aW, W3 -} if ya E A,

{(wC, wO) C 0} if ya E E.

Here (q0, q3) = (1/3, 2/3), A, A, A, and E are as previously defined. In addition, if

y, C A then wa = qf A + q,(77 - a)fy3, and _wL = (;y + a)fya - fAqp. If y, E A then

w= (7 + a)1/3fya and Ip = (77 - a)2/3fyo.

We similarly characterize set VR(ji) by solving for price pairs for which F(y 0,-) =

F (yo, -);
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{(w0 , wO)}|wa = _Wa if WO < (77 - a)1/2fyp and y. C A,

{(wC, 1w,3)}|wp = wL if wa > (T7 + a)1/2fyp and y, E A,

WR(iii) {(wa, wOI)} |Wa = qaf A + qa/qaw,3 if wz E ((77 - a)yz/2, (7 + a)yz/2)

for z E {c, #} and y, E A,

{(wa,w))|wIa > wa, W <_ 1L, if ya E A U 2yi,3

{(Wa, W)) E 0, if ya C 0/2yg3a.

Here (qa, q3) = (1/2,1/2), A, A, A, and E are as previously defined. In addition, if

ya C A then ww, = qf A + q,(7 - a)fyl, and _wp = (T7 + a)fya - f AqO. If ya E A then

wa = (T7 + a)1/2fy, and _w, = (57 - a)1/2fy,3.

We note that if a price pair lies on the intersection of any of the sets WR(j), WR(ii),

and WR(iii), then more than one equilibrium allocation exists.

A.2.2 Relation (ii) does not hold on the equilibrium Path

We first present a lemma showing that if a price subgame results in multiple CP al-

location equilibria, such that relations (i) and (ii) hold, the CP allocation equilibrium

for which relation (i) holds yields the highest profit for platform a. Let T,(w0 , w,3)

(ra (wa, wf3)) denote platform a's profit whenever relation (i) ((ii)) holds.

Lemma 21. Given a price pair (w0 , w3) such that the CP allocations which yield rela-

tions (i) and (ii) can occur, then T,(w0, w,) > r(w 0 , wp).

Proof. Let Ts, T, (-, F-) denote the CP demand when relation (i) ((ii)) holds. It follows

that T, ;> r. and To 5 F since qc > q, and q, < qp. Moreover, pagi > paya. To see

this note that,

p0  = qa(y((7±+a) + (57-a)?a) - yp((T+ a) +(57- a)?)),
Theee = (yp((T + a) + (7 - a)F ) -W( + a ) + -a)

T herefore, TC,(w,wp) = Tna + P,-q, > Fa W, +ypa -a = W a wO~w).E
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We now show in the next lemma that if an SPE exists then the CP allocation that

holds in the equilibrium path does not yield relation (ii).

Lemma 22. If (w*, w*) is an SPE of the quality subgame then the CP allocation on the

equilibrium path does not yield relation (ii).

Proof. From appendix A.2.1, there are three cases to consider; y, E A, y, E A and

y, E . In the last case, a CP allocation equilibrium that yields relation (ii) does not

exist. Therefore, we only consider the first two cases.

(a) ya E A

Let 7w w ) = r.W*, + p*q, denote the revenue under the equilibrium price

pair (w*, w*.). Here, F, (q,) refers to the mass of CPs (consumers) at equilib-

rium and p* is the price offered to the consumer at equilibrium. Let -W =

W* - e, where e > 0. Observe that since y, C A and (w*, w*) E WR(ji), it

is always possible to choose E such that (WQ, w,) E WR(ii). Let ira(wa, w*) be

the profit function for platform a generated by choosing the CP allocation equi-

librium which yields relation (ii), whenever more than one CP allocation equi-

librium is possible. This profit function is quadratic and concave in w over

the interval I = (max{w, 1/3f A + 1/2w*}, 1/3fya). Here, w.a is as defined

in appendix A.2.1, where (q,,q3) = (1/3f,2/3f). The unrestricted maximum

w" = arg max (ww) < max{_w, (-7 - a)1/3fya}. Therefore, w(w,,w*) is de-

creasing in the interval I. If we pick an e small enough, then Ta E I. This implies

that 7r(U7, w*) > Wa(w*,, w*). Note also that at price (T, w*), the revenue aris-

ing under the CP allocation equilibrium which yields relation (i) is higher, see

lemma 21. Therefore price w, dominates price w* and platform a has an incentive

to deviate.

(b) y, E A

Let T, = w - e, where e > 0 such that ( w*) E WR(j) n Waggigy. Here, w is as

defined in appendix A.2.1, with (qa, q,3) = (1/3f, 2/3f). Denote the revenue under

the equilibrium price pair (w*, w*) by 7c(w*,, w*) = Faw*, + p*q. At the price
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pair (W7, w*) only one CP allocation equilibrium is possible; the one that yields

relation (i). Let T0 (T 0, w*) = T, + pca represent the revenue at this price.

We next show that TQ(wQ, w7) > fa(w*, w7). First we note that revenue made on

the CP side by platform a is higher under the new price since Ta > F, = 0. This

follows from the fact that W < wt, < (7 + a)2/3fya. Therefore, a positive mass

of CPs will patronize the platform since they gain positive utility upon joining.

Revenue on the consumer side is also higher under this new deviation. To see this,

note that since relation (i) holds, -3 < q. This implies 4 < -, which further

implies that Pa > p*. Observe that q, > qa (since the CP allocation equilibrium

yields relation (i)), y, > yp and,

Pa = ga(Ya((7+a) + (7-a)a) -y((7+a) + (7-a)T,)),

p,= qa(y,((7±a)±+ Qy a)ra) -yp (( + a) +(7 -a)/)).

A.2.3 Proof of Theorem 5

In this Appendix, we show that given the tuple (7, a, f, ya, y,3) such that ya > y, a

unique SPE exists in the CP price game. We define the baseline CP price game as

the game induced by selecting the CP allocation equilibrium which yields relation (i),

whenever multiple equilibria exist. We then show that this game has a unique SPE.

In addition, we show that all reduced extensive form games, for which an SPE exist,

have this same unique SPE. Thus without loss of generality we may only consider the

baseline CP price subgame. Recall we are considering reduced extensive form games in

which the CP allocation equilibria chosen, whenever multiple equilibria exist, are those

that yield either relation (i) or (iii).

Proof. The proof involves the following two steps.

Step. 1 Baseline-CP price game has a unique SPE

Given a tuple (7, a, f, yo, y3) such that ya > y3 and price wo, we denote platform
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a's profit function by 7r(w w,3). This profit function is quadratic in w, over the range

I = [(7 - a)2/3f ya, min{(7+ a)2/3fya, 2/3fA + 2w}]. It is linear and decreasing for

WC < (7- a)2/3fya. Let w' = argmax 7r,(w,, w,3) be the unrestricted maximum of the

quadratic function. This value is given by wu = -'((3 - 2f)7+ (3+2f)a)fya. Whenever

y, > y,3 then w' < min{(7 + a)2/3fya, 2/3fA + 2wQ}, where wp 2 (7 - a)1/3fyp3.

Therefore, given wa, the best response is given by w* = max{wl, (7- a)2/3fya}. Given

another w', the profit function F' (wa, w') = rc(wa, wa) + k(w,3 , w') over the range

[0, 2/3fA + 2((7 - a)1/3fyo)}. Therefore w' = wu = argmax 7r,(w,, w') and the best

response w* is also the same. Thus given any w,3 the best response is a constant w*.

We can similarly show that given any w, the best response by platform 3 is given by

w= max{w0, (7 - a)1/3fy,3} where wu= ((3 + f)7 + (3 - f)a)fyfy. Thus the pair

(w*, w*) form a unique SPE.

If wc < (7 - a)2/3fy, then all CPs will connect to platform a. Following some

algebra the former holds when 2 >92f. On the other hand, only a fraction of the CPs
a- 3+2f

join the platform whenever I < ±2. If wg ; (7 - a)1/3fy3) then all CPs will connecta 3+2f /3

to platform #. Following some algebra, one can show the former holds when 2 >

Therefore, only a fraction of the CPs join the platform whenever < 2a 3-f

We define the following sets of prices which we use to characterize market configu-

rations that hold at the SPE.

R {(wa, wO)Ira(wa, wp) < 1, Tp(W, WO) < 1},

,Rzzn = {(wa, w3)ra(wa, w3) < 1, rp(wo, w,) = 1; or ra(wa, w) = 1,3r (w, w3) < 1},

Rzz11 = (W{(wa, w3Ira(wa, wO) = 1, ra (w, w 3 ) =1)}.

The set Rz" consists of prices (wa, w,3) such that only a fraction of the CPs in the market

subscribe to the platforms. Set RlZz" consists of prices (WW/3) such that the market

is covered; all CPs patronize either platform a or # but not both. Lastly set RZzz

consists of a pair of prices such that the market is covered with all CPs patronizing both

platforms. We summarize results of the previous paragraph below.

a) If 1 < < 9 2 , then (w*, w*) E RI-.a 3+2f ''
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b) If 92f <I < 2 then (w*, w*) E 1zz2 .
3+2f -a 3-f0

c) If 2f <2 < oo then (w*, w*) E RIz"3-f - a '

Step. 2 CP price games that have a SPE, have the same SPE as the baseline CP price

game Given a price game and any pair (wp, w') E R+, the profit value 7ra(wa, w3) =

ra(wa, w') + k(wfl, w') for all w, E [0, 2/3f A + 2((7 - a)1/3fyp)} except possibly at

W" = 1/2f A+w' and wc = 1/2fA+w,3 . Therefore the best response for platform a given

platform 3 charges w3 is given by w* as defined in the previous step if w* # 1/2f A+w,3.

In the case w* = 1/2fA + wo then a best response does not exist. Similarly, we can

show that the best response given any w, is given by w*, as defined in step 1, if a best

response exists. Thus if the best responses intersect they only do so at the price pair

(w* ,w ).

A.2.4 The case when yc =y,

Lemma 22 implies that neither relation (i) or (ii) hold at the SPE when y, = yg.

Therefore, if an SPE exists it must be that relation (iii) holds. We bound the maximum

revenue value that can result in instances for which an SPE exists. Given a tuple

(7, a, f), we show later in the investment stage that this pair is not an SPE because

either platform has an incentive to deviate.

We now provide an upper-bound for the revenue gained by the platforms if an SPE

exists. Revenue for both platforms is derived only from the CP side. This follows because

only relation (iii) can hold in equilibrium; due to Bertrand competition, platforms earn

no revenue from the consumer side. As discussed in section 3.5.3, the allocation of

consumers is evenly divided when relation (iii) holds, i.e, q, = qp = 1/2f. Moreover, if

relation (iii) holds then r, = r which further implies w, = w3. Let revenue for platform

a and # be represented by 7r (w*, w,) and 7rg(w*, w ) respectively at the SPE price

(w* ,w*). Then 7r,(w*, w*) = 7rf(w*, w*) where w* E ( a) (gya), (7+ a)(qaya))-

We consider only prices in this range because other prices are dominated and will not

be picked in equilibrium. Consider the function r(wo) = rewa where ra = 1/2a(7 + a -
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wa/qay). This function is concave and quadratic in w, and at the value w* we have

-r(w*) = -ra(w*, w*). Let,

wa = argmax 7r(w.),

s. t. woa E ((7 - a) (gaya),1 (7 + a) (ga ya))-

If an SPE exists platform a's profits are bounded by ir(Gi). Since platform O's profits

are the same as a's they are also bounded from above by the same value.

A.2.5 Proof of Theorem 6.

Given a quality choice y,3, we derive platform's a best response and vice versa. We then

find the intersection points that form the SPE. We will give Lemmas that define the

best responses and then we will be able to infer the SPE's from these responses.

Lemma 23. Let Assumptions 6 and R.1 hold. Then

Bi(y3) = y*(7, a, f, c) if yo < y,
0 if yO ;> ,

where

_(,,c a2f (2f + 3)2 2 90 - 8(f - 3) 2  ((2f +9) 2 -36)
216c a3  a2  a

7 _ 487f a + 36f a2 + 12f72 + 4f272 - 8f 2 77a + 4f2a2 + 972 + 187a + 9a2 )2

y(, a, f, c) = -432ac(-607a - 45a 2 - 15772 + 2fa2 + 2fy2 - 4 7f a)

Proof. We first find the best response given y3 = 0. Let y* = argmax 7ra(Ya, Y,3),

s.t. y, E R+. In region R.1 the market is uncovered as shown in Appendix A.2.3. The

profit function 7ra(yc, yg) is quadratic and concave in y, in this market configuration.

The best response, B,(yg) = y*(.) exists since 7r,(ya, yo) is coercive and its value is that

given in the Lemma statement.
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Next, we find the best response when y3 > 0. The price equilibria that holds depends

on whether platform a acts as the high-quality or the low-quality platform. Indeed, given

yp > 0 platform a's choice of investment y, will determine which of the following three

relations defined in section 3.5.2 will hold on the equilibrium path.

If y, is higher (lower) than yo then relation (i) ((ii)) will hold. When y, = yo , relation

(iii) may hold if an SPE exists. Therefore, we partition the domain [0, oo) depending

on whether platform a acts a high quality or low quality platform. These partitions are

defined as, 11 = [0, y,8), 12 = (yr, oc). In interval 11 (12) only (ii)((i)) holds. In contrast,

at the point ya = y8 relation (iii) holds if an SPE exists. In order to find the best reply

given yp we proceed as follows. We find the best response of platform a in partitions

I1 and 12. We pick the best reply amongst these choices and show it dominates the

maximum possible choice given y, = y3 as calculated in the previous Appendix.

y*1 = argmax ia(ya, y,) (A.41)

s.t. yai E Ii.

Where fr, is the profit function in the interval I1. In a like manner we denote the best

reply in interval I2 by Y*2. Formally,

Ya argmax ra(ya,yp) (A.42)

s.t. Ya2 E 12.

Where 7r, is the profit function in the interval 12. The profit function fr, is concave

in y,. Let y" be the unrestricted solution. This value is less than zero in region R.1.

Therefore, the lower constraint in the maximization problem A.41 binds and we have

y* = 0. On the other hand , the unrestricted maximization of problem A.42 yields

Y*2 = y*(7, a, f, c) as defined in the statement of the Lemma.

Next we compare the profit values at the solutions in both intervals. Let r*

?ra(ya,y-)ya~y 2 and fr* = fra(ya YO) lyo. One can show that the difference 7r* - fr*

is decreasing in y,3. Moreover, the two are equal at yf3 = F; the value presented in
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the Lemma statement. Hence whenever yo <7, Y*2 dominates y*i and vice versa. In

addition, yi2 > y3 whenever y, < 7. Therefore this solution lies in the interior of 12.

To complete this proof we now show that the profit attainable when y, = yp is less

than max{fr*, 7r* }. We denote the upper-bound profit value when y, = ye by *. It

suffices to show that this value is less than r* when y, > V and less than r* when yf8 <7.

We first show the former, i.e, the difference 7r* - *, is positive whenevery3 > 7. This

difference is convex and quadratic in yo. Moreover it has roots at 0 and 7. Therefore

the difference is positive whenever yp > 7. Next we show fr* - T* is positive. The

difference is quadratic and convex in y,. Moreover, the roots are imaginary 27 thus we

infer that the difference is positive.

y*1

y

0
0 Y y

Figure A-6: The best reply responses of both platforms in region R.1. The intersection
points, (y*, 0) and (0, y*), give the equilibrium investment levels in region R.1.

A similar analysis follows for platform #. The best responses of the platforms inter-

sect at points (y* 0) and (0, y*). Consequently this points form an SPE, see Figure A-6.

We next state a number of Lemmas that yield the other results in Thereof 6. We

omit the proofs because they are very similar. Where there's significant diversion we

add comments.

2 6 y,(48f 2 ;a + 36f 2a2 + 12f 2;y2 + 8f 3 ; 2 _ 16f 377a + 3 a 2 
- 27f7 2 - 547fa - 27fa2 + 432cypa)

27roo = (-27a2 + 16f 2 a2 
- 144fa2 - 32f 2 7a - 48f7 2 - 1927f a + 16f 2T 2 - 2772 - 54;7a ±

-3(77 + a) * (96f a + 21a + 2157 + 32f57)(32f 2a 2 + 9a 2 - 64f 27a + 18;7a + 32f 2;72 + 9;72 )))f
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Lemma 24. Let Assumptions 6 and 8, f > 1 and R.2 hold. Then

y* (7, a, f, c)

y*(7a, f, c)

if Yo < Y,

if ya > y, 28

(2f + 3)2 2
as 72 +90 - 8(f - 3)2_

-9 7 +

(f 3)2 -90 + 2(f + 6) 2

as a2

Lemma 25. Let Assumptions 6, 8 and R.3 hold. Then

y*(7, a, f, c)
0

(4f772 + 37 - 3a),

f yw <7,

f Y,3 >

y*(;7, a, f, c)

y7, a, f, c)

=0,

(-4f7 - 377 + 3a) 2a
c3(187a + 9a 2 + 37 2 _ f7 2 + 2fi7a - f a2)

Lemma 26. Let Assumption 6, 8 and R.4 hold. Then

y* (7,a, f, c)

y*(7, a, f, c)

if yo < 7,
if y3 > F, 29

yh(7, a, f, c) = (4f57 2
-9c

+ 37 - 3a) ,

Bi(yo) =

where

y (7, a, f, c)

y *(7, a, f, c)

a2 f

216c
a2 f
432c

((2f +9)2 -36)

a

where

y* (7, a, f, C)&

B(yp) =

=c

Bi(y,3) =

where
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_*(7,a~f af f -3_) -90 + 2(f + 6)2 ((f _ 9)2 -72)

y*(7,a,f,c) 432c as3  a2 a

Lemma 27. Let Assumption 6, 8 f > 0.47 and R.5 hold. Then

Bi(y,3) =
y*7, a, f, c)

y*(7, a, f, c)

if YO < 7,
if yO ;> 7,

f= (4f7+ 37 - 3a),
9c

= (-2f7+37-3a),
18c

= (20f 2 - 2 + 36f72 - 365f a + 97 2 - 1877a + 9a 2).
1207c

Proof. We first find the best response given y, = 0. Similar to the proof of Lemma 23

we let y* = argmax 7r (YQ, yOI), s.t. y, E R+. In region R.5 the market is covered as

shown in Appendix A.2.3. The profit function 7ra(ya, yp) is quadratic and concave in y"

in this market configuration. The best response, B0 (y3) = y*(-) exists since 7r,(ya, ya)

is coercive and the solution is that given by y* (7, a, f, c) in the Lemma statement.

Next we find the best response when y3 > 0. Given yo > 0 a platform a decides to

have a quality that is the same as platform # or to be either the high or low quality

platform. The choice made will determine which of the three relations defined in section

3.5.2 will hold.If y, > (<)y, then relation (i)((ii)) results. If ya = y, and an SPE exists

then relation (iii) holds. Therefore we partition the domain [0, y,) into two regions that

do not include the point y,3. These partitions are defined as I1 = [0, yp),I2 = (y3, 00).

In order to find the best reply we proceed as follows. We find the best response of

platform a in partitions I1 and 12. We pick the best reply amongst these choices and
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show it dominates the choice y, = y'. Let

y*1 = argmax fa(ya, y3) (A.43)

s.t. Ya1 E I1.

Where fr is the profit function in the interval I1. In a like manner we denote the best

reply in interval 12 by Y*2. Formally,

Y*2 = argmax ra(ya, y,) (A.44)

s.t. Ya2 E 12-

Where 7r, is the profit function in the interval 12. The profit function fr, is concave

in y,. Let y*i be the unrestricted solution of problem A.43. Its value is given by

y~a = y*(7, a, f, c). This value is greater than zero in region R.5. The unrestricted

maximization of problem A.44 yields Y*2 = y*(7, a, f, c) as defined in the statement of

the Lemma.

Next we compare the profit values at these solutions. Let r*, = lra(ya, ly)|y=Y and

*= fa(ya,,3)|yy*1. One can show that the difference r* - r* is decreasing in y,.

Hence whenever yp3 <7, Y*2 dominates y,* and vice versa. Moreover, the two are equal

at y, = V; this is the value presented in the Lemma statement. In addition, one can

show that 7 E (y*1, Y2*) whenever f > 3(2v'Y9 - 1)/50 ~ 0.47.

To complete this proof we now show that the highest profit attainable when ya = y'3,

and a SPE in the quality subgame exists, is less than max{fr*, 7r* }. We denote the

upper-bound profit value when y, = y, by T*. It suffices to show that this value is less

than 7r*. From previous Appendix it follows that W* < 7r*. To see this note that when

ya = y,3, and an SPE results, platform a makes no revenue on the consumer side. l

The best responses for platform # are similarly derived. These responses intersect

at the investment pairs (y*, y*) and (y*, y*). Thus these form the SPE as stated in the

Theorem, see Figure A-7.
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Yhi

0
0 Y1~ Yh

Figure A-7: The best reply responses of both platforms in region R.5. The intersection
points, (y*, 0) and (0, y*), give the equilibrium investment levels in region R.5.

A.3 Social Welfare, CP and Consumer Surplus Com-

parison

A.3.1 Social Welfare Comparison

In this section we provide comparison of social welfare at the SPE under both models.

First, we characterize the difference between welfare of the non-neutral and neutral

regime in terms of the following exogenous parameters (7, a, f, c). We show that this

difference is non-negative and that in general, the non-neutral regime is favored to the

neutral regime. Since the SPE for both models have been characterized for f > 3/5 the

comparisons are also based for the same range of f.

We denote the difference between the non-neutral and neutral welfare by dw. The

welfare functions at the SPE's have different forms in both models depending on whether

the market is covered or uncovered. The restrictions on the tuple (7, a, f, c) that define

the limits in which the CP market is uncovered and covered coincide in both models.

So we compare the welfare between the two regimes for each of the regions defined in

Section 3.5.5. After some algebra, the difference in welfare for the different regions are

given below:
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Regions Difference in welfare dw

R.1 and R.3 dw=0.

R.2 and R.4 dw = 93312ca2 ((7 - a 2 f 2 - 6(-7 + a)(7 + 3a)f + 9(;7+ a)2 ). ...

x (-(;7 - a)2f 2 + (60a2 - (57 - 7a)2)f + 6(77 + a)(277 + 3))f 2.

R.5 dw = If 2 (3a + 57+ 27f)(37 - 3a - 27f).

For f > 3/5 the value dw is positive in regions R.2, R.4 and R.5. In these regions,

the low-quality platform makes an investment that increases the gross value of CPs and

Consumer surplus compared to their values in the neutral regime. On the other hand,

in regions R.1 and R.3 the welfare in both regimes is the same because the investment

levels are the same.

A.3.2 CP surplus comparison

In this section we compare the CP surplus in both regimes. Let dcp denote the difference

in CP surplus between the two regimes. The following table shows this difference in the

regions defined in Section 3.5.5.

Regions Difference in welfare dcp

R.1 and R.3 dcp=O.

R.2 and R.4 dcp = 186f24ca2 f 2 (-6(;7 + a)(7 + 3a)f + (7 - a)2f 2 + 9(7 + a)2 ) ...

x (3(7+ a) - f(7 - a))2.

R.5 dcp = _ f 2 (7(3 - 2f) - 3a)a.

For regions R.1 and R.3 the CP surplus is the same in both regimes. In these regions

the investments across both platforms are the same. Therefore, the aggregate utility

gained by the CPs is the same across both regimes. In regions R.2, R.4 and R.5 the
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value dcp is positive.

A.3.3 Consumer surplus Comparison

In this subsection we compare the consumer surplus in both regimes. Let dc denote the

difference in consumer surplus between the two regimes. The following table shows the

consumer surplus difference in the regions defined in Section 3.5.5.

Regions Difference in welfare dc

R.1 and R.3 dc=0.

R.2 and R.4 dc 93312c2f2(-6(;7+ a)(7 + 3a)f + (7 - a)2f 2 + 9(;7+ a)2 ) . . .

x (1 + 10f)(3(k + a)(k + 3a) - (k - a)2 f)f 2 .

R.5 dc 2 2 (77(3 - 2f) - 3a)(;7)(1 + 10f).

In regions R.1 and R.3 consumer surplus is the same under both regimes because

both platforms invest in the same qualities. However, in regions R.2, R.4 and R.5 the

value dc is positive.

A.3.4 Platform profits Comparison

In this subsection we compare aggregate and individual platform profits in both regimes.

Let dtp denote the difference in aggregate platform profit between the two regimes. The

following table shows this difference in the regions defined in Section 3.5.5.
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Regions Difference in aggregate dtp

R.1 and R.3 dtp=O.

R.2 and R.4 dtp = 1is624ca2 f 2 (-6(7 + a)(7 + 3a)f + (7 - a) 2 f 2 + 9(7 + a) 2 ) ...

x (-54(k + a)(k + 3a)f + 17(k - a)2 f + 9(k + a)2 ).

R.5 dtp = -1f 2 (7(3 - 2f) -3a)(7)(k(6f - 1) + a).

In regions R.1 and R.3 the profits of the platforms are the same in both the neutral

and non-neutral regimes. This follows because the investments across platforms are

equal in both regimes. In regions R.2, R.4 and R.5 the aggregate profit in the neutral

regime is higher than that in the non-neutral regime since dtp is positive.

Next we show that profit of the high-quality platform is larger in the neutral regime in

regions R.2, R.4 and R.5. Let dtph be the difference between the high-quality platform's

profit in both regimes.

Regions Difference in profits dtph

R.1 and R.3 dtph=O.

R.2 and R.4 dtph = I64 f3f(-6(7+ a)(7 + 3a)f + (7 - a) 2 ! 2 + 9(7+ a) 2 ) ...

x (-3(k + a)(k + 3a)f + 17(k - a) 2 + 9(k + a)2 f).

R.5 dtph = - i7f 3 (7(3 - 2f) - 3a).

Given the restrictions that define regions R.2, R.4 and R.5, dtph is positive whenever

f > 3/5.

Next we show that in general the low-quality platforms prefer the non-neutral regime.

Let the difference between the low-quality platform in the neutral and non-neutral profit

be denoted by dtpl. The table below shows the value of this difference in the different

regions.
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Regions Difference in profits dtpl

R.1 and R.3 dtpl=0.

R.2 and R.4 dtpl = is6624ca2 f 2 ((-6(7 + a) (T7 + 3a)f + (7 - a) 2 f 2 + 9(7+ a)2))2

R.5 dtpl = 1 f 27f 3 (7(3 - 2f) - 3a)2 .

The value dtpl is non-negative. In regions R.1 and R.3 the profits are the same

because the investments across both platforms are the same. In contrast, the low-

quality platform's profits in regions R.2, R.4 and R.5 are superior in the non-neutral

regime because dtpl is positive.
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