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ABSTRACT

When ferrofluid in a cylindrical container is subjected to a rotating azimuthally directed
magnetic field, the fluid "spins up" into an almost rigid-body rotation where ferrofluid
nanoparticles have both a linear and an angular "spin" velocity. Flow observations are often
limited to the ferrofluid free surface due to the opaque nature of the ferrofluid and the surface
flow can spin-up in the same or opposite directions to the direction of the rotating field. The
mechanisms governing this flow have been attributed to surface driven flows that depend on the
shape of the meniscus formed by the free surface. However, bulk flow experiments using
ultrasound velocimetry show that even in the presence of a stationary cover, bulk ferrofluid
flows would result when a rotating magnetic field was applied. The mechanisms explaining the
bulk flows have been attributed by some authors to being a result of spin diffusion theory while
others believe that non-uniform magnetic properties drive the flow, with both theories being
rigorously explored in this thesis.

This thesis applies ferrohydrodynamic analysis to extended fluid flow equations driven
by magnetization forces and torques on the ferrofluid, Maxwell's equations relating
magnetization, magnetic field and ferrofluid flow, and a Langevin magnetization relaxation
constitutive law including the effects of fluid linear and spin velocities.

Some key concepts investigated in this analysis are: (1) Ferrofluid filled cylindrical
vessels of finite height placed within a uniform magnetic field result in non-uniform magnetic
fields inside the ferrofluid due to demagnetization effects that can drive the flow; (2) A spherical
vessel of ferrofluid in a uniform magnetic field has a resulting uniform magnetic field unless
there is a spatial variation of magnetic properties, induced in this thesis by an external source of
non-uniform magnetic field from a current carrying coil or a permanent magnet; and (3)
COMSOL Multiphysics spin-diffusion modeling shows that spin viscosity can also initiate a
flow due to spin-velocity boundary conditions which can hinder magnetic nanoparticle rotation
near a wall or allow particles to roll along a wall due to flow vorticity.

Ferrofluid spin-up flows were investigated that take into account demagnetizing effects
associated with the shape of the container. The experiments conducted in this thesis involve
using a sphere of ferrofluid in a uniform rotating field since a sphere has uniform and equal
demagnetizing factors in all three Cartesian directions. The uniform rotating magnetic field is
generated by two orthogonally placed spherical coils, known as "fluxballs" that generate a



uniform magnetic field in the horizontal and vertical directions inside the fluxballs and a dipole
field outside. By driving the coils with sinusoidal signals that are out of phase in time by 90
degrees a uniform rotating field is generated inside the test chamber containing the sphere of
ferrofluid. The test sphere of ferrofluid is placed at the center of the larger surrounding
"fluxball" machine.

Negligible flows are measured within the ferrofluid filled sphere using ultrasound
velocimetry in the "fluxball" machine with a uniform rotating magnetic field. COMSOL
simulations using non-zero values of spin-viscosity, with a zero spin-velocity boundary condition
at the outer wall, predict measureable flow while simulations setting spin-viscosity to zero result
in negligible flow. Previously published values of spin-viscosity measured in cylindrical vessels
are much larger than values allowed by kinetic theory because the flows, from which they were
determined, are actually due to the demagnetizing field effects and not due to spin-diffusion.
Experiments were also performed by partially filling the test sphere with ferrofluid but only 2/3
full, resulting in significant flows due to non-uniform magnetic fields from spatially dependent
demagnetizing factors and possibly free surface effects.

Ultrasound velocimetry measurements were also performed with a small permanent
magnet or a DC/AC excited small coil on top of the ferrofluid filled test sphere, causing a non-
uniform DC or AC magnetic field within the ferrofluid filled test sphere in addition to the
uniform rotating magnetic field imposed by the fluxball coils. With an imposed non-uniform
magnetic field component from magnet or coil, complex measureable flows with strong vortices
are obtained. Formation of vortices is also confirmed in COMSOL simulations of an infinitely
long cylinder subjected to a uniform rotating field and the field from an infinitely long
permanent magnet.

These measurements demonstrate that a non-uniform magnetic field or a non-uniform
distribution of magnetic properties drive the flow. The spin-up ferrofluid flow in a rotating
uniform externally applied field is highly dependent on the shape of the container due to
demagnetizing effects. These demagnetizing effects in a finite-height ferrofluid filled cylindrical
container create a non-uniform field inside the ferrofluid that drives the flow and is the cause for
previously observed flows in the classic cylindrical spin-up flow experiments. COMSOL
Multiphysics simulations applied to a cylinder of infinite height filled with ferrofluid show that
spin-diffusion theory cannot be the dominant mechanism for spin-up flows as fitting the
COMSOL analysis to measurements result in unphysically large values of spin viscosity. The
unphysically large values of spin viscosity are obtained by attributing spin-up flow to be due to
spin-diffusion alone rather than the correct non-uniform magnetic field effects.

In conclusion, this thesis, through experimental results and numerical simulations, proves
that non-uniform magnetic properties within the ferrofluid and not spin-diffusion theory is the
driving mechanism for the measured flow.

Thesis Supervisor: Markus Zahn
Title: Professor
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Figure 5-27. Panel monitoring x, y and z magnetic field components measured by GMW

sensors in LabVIEW program controlling the phase, magnitude and frequency of the current in

35
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Chapter 1. Introduction to Ferrofluid Spin-up Flow

Phenomena

1.1. Background

Ferrofluids are stable colloidal suspensions of single domain magnetic nanoparticles in a

carrier fluid like oil or water. The nanoparticles are usually ferro- or ferrimagnetic particles with

typical diameters of order 10 nm coated with a surfactant layer of 1 to 2 nm as seen in Figure

1-1. Their small size allows them to be easily dispersed by Brownian motion and prevents them

from agglomerating under gravity, while their surfactant layer prevents them from sticking to

each other from van der Waals attraction forces. Ferrofluids exhibit superparamagnetic behavior

and the nanoparticles typically make up to 10% of the total fluid volume.

Magne Pft l

Figure 1-1. 10 nm diameter magnetic nanoparticles coated with 2 nm surfactant. Image taken
from [1].



In the presence of DC, AC and rotating magnetic fields, ferrofluids exhibit a rich set of

behavior that has led to many thousands of application patents [2, 3]. They are used for improved

heat transfer in loud speakers [1], as liquid-rotary-shaft seals on disk drives [4], as inertia

dampers in stepper motors [4] and in the development of microfluidic pumps driven by

rotating/alternating magnetic fields [5-8]. Ferrofluids are also increasingly being used in medical

applications including targeted destruction of tumors [9], drug delivery devices [10], in-vivo

monitoring of chemical activity in the brain [11] and as enhanced contrast agents for MRI [12].

1.2. Spin-up Mechanisms in Ferrofluid Literature

Spin-up flow is the term given to describe the process in which a fluid in a container

reaches a state of rotation due to a rotating uniform or non-uniform magnetic field. In the case of

spin-up flow of ferrofluid in a stationary cylindrical container, ferrofluid flow is set into rigid-

body-like motion driven by a uniform rotating magnetic field. The mechanism governing the

spin-up flow of ferrofluids in rotating fields has been a topic of interest since its first experiment

in 1967 by Rosensweig and Moskowitz [13]. The various mechanisms for spin-up flow will be

discussed in this section.

1.2.1. Surface Driven Flows

Historically, such rigid-body observations were made only on the rotating free surface

since velocity distributions in the bulk of the ferrofluid could not be easily measured, using

streak path techniques or other optical methods, due to the opacity of the ferrofluids. Brown and

Horsnell [14] observed for low applied fields that the fluid would co-rotate with the field while

counter-rotation would occur for high applied magnetic fields. Kagan [15] and Calugaru [16]
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observed the opposite behavior of counter-rotation at low fields and co-rotation at higher applied

fields. These authors however, used micron-sized concentrated suspensions of particles and non-

uniform magnetic fields.

Rosensweig [17] showed that for ferrofluids in uniform rotating magnetic fields,

magnetic surface shear stresses caused by the shape of the meniscus at the free surface drive

surface flow. A perfectly flat surface would not rotate, while a concave and convex shaped

meniscus creates flow that counter-rotates and co-rotates respectively to the magnetic field

rotational direction. Additionally, Rosensweig [17] observed that the angular rotational rate of

the free surface increased with a decrease in the internal diameter of the cylindrical container,

contrary to expected results in viscous flows. These observations led Rosensweig [17] to

conclude that "surface stress rather than volumetric stress is responsible for the spin-up

phenomenon" and that surface flows entrain the bulk fluid layers below.

For this theory to hold, a ferrofluid filled cylinder with no free surface would not have

any surface shear stresses and never result in any spin-up flow. Experiments done by Chaves [18,

19], Elborai [20] and He [21], using ultrasound velocimetry, were able to show that in a

ferrofluid container without a free surface there is a bulk flow that co-rotates with the rotating

magnetic field direction. In experiments with the presence of a free surface, the surface flow

would confirm Rosensweig's theory [17] but the flow would be opposite to the co-rotating bulk

flow in the case of a concave shaped meniscus. The mechanisms explaining the driving force

behind these bulk flow spin-up flow experiments have been attributed to two different theories,

described in the next sections, which until this thesis no single theory has been proven to be

solely responsible.



Concave Flat Convex
(Counter-Rotation) (No Rotation) (Co-Rotation)

(a) (b) (c)

Figure 1-2. Experimental observations of driven ferrofluid free-surface flow. A) Concave shaped
free-surface results in fluid counter-rotating with respect to magnetic field. B) Flat surface results
in no discernible motion, c) Convex shaped free-surface results in fluid surface co-rotating with
magnetic field [17, 22]. This image taken from [23].

1.2.2. Spin Diffusion Theory

When a ferrofluid is subjected to a magnetic field the nanoparticles try to align their

internal dipole moments in the direction of the field. However, this alignment is impeded by two

processes: rotational Brownian motion and Mel redistribution of sub-particle magnetic domains.

As a result, these delays lead to a lag between the magnetization M and the applied field H

such that they are not collinear. This creates a body-torque density, given by pOMx H, which

results in spinning nanoparticles dragging the fluid around it and converting some of its internal

angular momentum to the angular momentum of the fluid. In effect, the particle's 'spin' diffuses

to the external fluid and this process is known as "spin-diffusion".



Chaves [18, 19], Elborai [20] and He [21] account for the bulk ferrofluid flows to the

spin-diffusion theory initially proposed by Zaitsev and Shliomis [24]. The spin diffusion theory

confirms the results obtained by Moskowitz and Rosensweig [13], in that the fluid rotates in near

rigid-body motion right up to a thin boundary layer (about 10% of cylinder radius) near the solid

wall surface [25]. It assumes that the magnetic field throughout the ferrofluid region is uniform

with uniform magnetization of the ferrofluid. This results in a magnetic body force of exactly

zero and a uniform magnetic body couple.

Zaitsev and Shliomis [24] analytically determine using the phenomenological structured

continuum theory [26-28] which includes the effects of body couples, which have antisymmetric

stresses representing the short-range transport of spin. This short-range transport of internal

angular momentum would only result in macroscopic motion if there were a non-uniform

distribution of spin cancellation that depends on particle/wall interactions. Their results were

used to estimate the magnitude of the phenomenological spin-viscosity coefficient r7' of the

commonly accepted constitutive form of the couple stress pseudodyadic.

Kaloni [29] also uses spin-diffusion but attributes the experimental observation of

Rosensweig [17] to a shear stress dependent slip boundary condition [30] on the translational

velocity coupled with a spin-slip boundary condition [31]. Kaloni, however, fails to make

definite predictions on the magnitude and direction of spin-up flows under experimental

conditions.

There are several problems with spin-diffusion theory. One such discrepancy is the value

of spin-viscosity, determined by Zaitsev and Shliomis [24], who predict an angular velocity of 5-

6 orders of magnitude less than that obtained experimentally [2, 32]. As a result many authors

consider the effect of spin-diffusion to be negligible [32-35]. But the analysis of Zaitsev and
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Shliomis [24] lacks the (CoxM) and the (v-VM) in their magnetic relaxation equation. The

importance of these terms has been previously shown in works by Zahn and co-workers [20, 21,

36-39].

1.2.3. Spatial Non-Uniformities in Magnetic Field

Shliomis [34] states that the assumption of a uniform magnetic field throughout the

ferrofluid is incorrect and attributes the spin-up flow to the inherent non-uniform field generated

within the ferrofluid due to the demagnetizing effects of the finite height cylinder. Geometry of

the material body plays a vital role when it is subjected to an external uniform magnetic field. If

a material body of irregular shape is subjected to an external uniform field, the magnetic field

inside the body is no longer uniform in direction and magnitude throughout the body. The

magnetic field inside an ellipsoidal body's axis is given by

Hit,,,al =Hexternal -NM (1.1)

where the internal magnetic field Hinternal [A/m] and magnetization M [A/m] inside the material

are uniform if the external magnetic field, Hexternal [A/m] is also uniform where N represents the

demagnetizing factor.

Demagnetizing factors in the three perpendicular directions for external magnetic fields

in the x, y and z directions obey the following relation.

NX + N, + NZ =1 (1.2)



For the internal magnetic field to be uniform for an external uniform magnetic field the shape of

the body must be ellipsoidal such as that of a sphere, a prolate or oblate spheroid, or an infinitely

long cylinder. The demagnetizing factor N for an oblate spheroid is derived in [40] and can be

written as

Nx =N, =- 3acsnm - (1.3)
Y2 2 

m2 _ V;2

NZ= 2 1- arcsin j (1.4)
m2 -1 Vm2 _im

and for a prolate ellipsoid

N = 1_ m In m+ 4m 1 (1.5)
m2 -2m2- m- 2_

N =N = m - In (1.6)
2(2 -1) 2Vm2 -1 m - -m2_1

where m is the ratio of major to minor axis.

L
Figure 1-3 is a plot of demagnetizing factor N, (shown as -) as a function of the three

4ff

equatorial axes (a, b and c corresponding to x, y and z) including the prolate (b=c) and oblate

(a=b) spheroid cases. Figure 1-3 also confirms the demagnetizing factor N, of a sphere (where all

equatorial axes are equal a=b=c resulting in equal demagnetizing factors as follows [41])

N, = N, = NZ =1 (1.7)
3

Demagnetizing factors for non-ellipsoidal bodies are only an approximation and represent

an average of the internal field. In the case of a right-circular cylinder, as seen in Figure 1-4, with
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radius r and length 2nr, where n is a non-dimensional length to diameter ratio, simple and

approximate demagnetizing factors in different directions can be given by the following

equations [42].

2n

N, = N, =_ (1.8)
2 2n+1

N, - (1.9)
2 2n +1

These directional demagnetizing factors applied to an infinitely long cylinder (n -> oo) would

have uniform internal magnetic fields with Nx=Ny=1/2 and Nz=O. Table 1-1 is a list of

demagnetizing factors for uniformly magnetized bodies.

Direction of Magnetization M Demagnetizing Factor N (SI)
Sphere, any direction 1/3

Prolate Spheroid, long axis <1/3
Prolate Spheroid, short axis >1/3

Needle (- long cylinder), axial M =0
Needle (-0 long cylinder), transverse M =l/2

Thin disc or sheet, in-plane M =0
Thin disc or sheet, transverse M z_ 1

Table 1-1. Table of demagnetizing factors for uniformly magnetized bodies.
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Figure 1-3. Demagnetizing factor along the major axis (N,) of a general ellipsoid [40].

Figure 1-4. Right-circular cylinder. Image taken from [42].



The notion that ferrofluid spin-up flows are a result of field non-uniformities is also

described by Glazov [32, 35, 43]. Glazov attributes the spin-up flow due to higher-order spatial

harmonics that occur due to non-idealities in the stator winding distribution, in particular, slot

effects. Glazov concludes that no flow should occur in the absence of the higher-order

harmonics, in the two-pole stator winding source of applied magnetic field, and all observations

of spin-up flow are due to imperfections in the experimental apparatus. Jenkins's analysis [44]

agrees with Glazov's work in that there should be no rotating flow. However, Glazov's analysis

fails to explain the experimentally observed counter-rotation of the fluid motion with respect to

rotating magnetic field direction at the free surface [17].

1.2.4. Non-Uniform Magnetic Properties Driving Flow

Shliomis [34] states that another possible reason for spin-up flow is the non-uniformity of

magnetic permeability due to radial temperature gradients produced by viscous dissipation in the

microeddies created around the rotating particles. Pshenichnikov [33] states that such forces play

a dominant role in strong fields or high frequencies and account for measured flows when there

are no free surfaces. Pshenichnikov analytically predicts counter-rotation of fluid with respect to

rotational field direction for frequencies below 16 kHz and states that experimental data obtained

in [45, 46] support this conclusion about the significant role played by internal heat sources in

the generation of flows. Pshenichnikov [33] extends this analysis by conducting an experiment

where a spatial non-uniformity in the magnetic susceptibility is created by placing a permanent

magnet under a thin cuvette filled with ferrofluid where flows are generated rotating counter to

the direction of the rotating magnetic field. Pshenichnikov [33, 47] states that for low frequencies



and weak field, energy dissipation is minimal and surface driven flows are the main cause of

spin-up flows.

Pshenichnikov in [45] states that the non-uniformity of the field due to demagnetizing

effects is not sufficient to produce the rotational flow and that the flow has to have been a result

of non-isothermal distribution of the dissipation energy resulting in flow that is counter to the

direction of the rotating field. This contradicts the observations of Chaves [18, 19], Elborai [20]

and He [21] where bulk flows were found to co-rotate with the magnetic field direction.

1.2.5. Overview of Thesis

The objective of this thesis is to determine whether spin-diffusion theory or non-

uniformities in the magnetic field drive the spin-up flow. Ultrasound velocimetry experiments

conducted in a spherical container of ferrofluid, driven by uniform fields generated in a spherical

'fluxball' machine, ensure a uniform rotating magnetic field within the ferrofluid volume. These

results will be bolstered by simulations of spin-up flow done using COMSOL Multiphysics 3.5a.

Through these rigorous experiments and simulations, the conclusions of this thesis determine

that non-uniform magnetic fields and non-uniform magnetic properties within the ferrofluid are

the governing mechanisms for spin-up flow. The thesis is structured as follows:

Chapter 2 summarizes the physical, magnetic and rheological properties of the

ferrofluids used in the experiments. It also describes the system of governing ferrohydrodynamic

equations used this thesis.

Chapter 3 theoretically solves for ferrofluid flows in a planar geometry under the

influence of an AC and DC magnetic field. Results are obtained using Mathematica and

COMSOL which corroborate results of Zahn and co-workers [21, 36-38].



Chapter 4 describes the classic spin-up experiments in cylindrical geometry done by

Chaves [18, 19], He [21] and Elborai [20] using the non-invasive ultrasound velocimetry

technique. Results by Chaves [19] are simulated with COMSOL Multiphysics using spin-

diffusion theory. Corrections to other authors' works are also given.

Chapter 5 presents the spherical apparatus and design of the setup used by this thesis to

generate and control the uniform rotating magnetic field of the fluxball coils. Several tests are

performed and documented to ensure that the magnetic field generated is uniform and parts were

designed to ensure accurate measurement of velocity profiles within a sphere of ferrofluid.

Chapter 6 presents the results of the experiments with negligible fluid flows in the

sphere of ferrofluid driven by the rotating field of the fluxball machine. Through further

COMSOL simulations and experimental results in a uniform field, flows generated due to spin-

diffusion are shown to be negligible. The spin-viscosity values used by other authors [19-21] are

shown to be overstated, by many orders of magnitude to account for the demagnetizing fields of

a finite height cylinder, through a theoretical determination of spin-viscosity. Experiments are

performed where a non-uniform field is introduced to a sphere of ferrofluid concentric to the

spherical fluxball machine, by using a solenoidal coil or a permanent magnet placed on top of the

ferrofluid filled sphere and the resulting measureable flows are analyzed. Experiments of

measureable flow, due to non-uniform demagnetizing effects, are obtained using both a 2/3 full

sphere of ferrofluid and a finite height cylinder in a uniform rotating magnetic field. This chapter

confirms that non-uniform distribution of magnetic properties within the ferrofluid drives any

measureable flow and the effects of spin-diffusion are negligible. This determines the reason for

the discrepancy between experimentally fitted and theoretically derived values for spin viscosity



to be due to demagnetizing effects associated with the shape of the container that were

previously ignored for short cylinders of ferrofluid.

Chapter 7 presents COMSOL simulations of flow in an infinitely long cylinder in the

presence of a non-uniform field, generated as a result of a permanent magnet and a uniform

rotating field, with spin-viscosity r/'=0. COMSOL was not able to solve for the three dimensional

flows within a sphere but was able to solve two dimensional flows in infinite height cylinders,

both cases perturbed by non-uniform fields from a permanent magnet and a uniform rotating

field. These cylindrical simulations are not representative of the experiments in the spherical

geometry but the results obtained have many of the same characteristics.

Chapter 8 summarizes the accomplishments and contributions of this thesis and also lists

some topics of interest for future work.

Appendices that follow document the COMSOL Multiphysics*, Mathematica® and

LabVIEW* code used in this thesis. It also documents all the designs of the parts built and used

in this thesis as well as all the data taken from all the experiments conducted.
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Chapter 2. Governing Equations and Ferrofluid

Properties

This chapter summarizes the measured physical properties of two commercial ferrofluids

used extensively in experiments and simulations reported in this thesis. The values used were

taken from a combination of measurements made by Elborai, He and Franklin and reported in

their respective theses [1-3].

In addition, this chapter will outline the governing ferrohydrodynamic equations used in

this thesis. These include Maxwell's equations, the magnetic relaxation constitutive relation and

the fluid mechanical conservation of linear and angular momentum equations. These equations

describe ferrofluid behavior in static, oscillating and rotating uniform and non-uniform magnetic

fields.

2.1. Governing Equations

2.1.1. Maxwell's Equations

The ferrohydrodynamic experiments are usually conducted at low frequencies, typically

less than a few MHz, and at non-relativistic velocities allowing for the analysis to be considered

in the magnetoquasistatic limit (MQS). In this limit, the displacement current density term is

ignored and Ampere's law reduces to

VxH=J+ =0 (2.1)



where H [A/m] is the magnetic field and the volume current density source J [A/m 3] can be set

to zero since the ferrofluid is non-conductive. The irrotational magnetic field can then be

represented as a gradient of a magnetic scalar potential y [A] as

H =-V y (2.2)

Gauss's law for the magnetic flux density is given by

V-B=0 (2.3)

where the magnetic flux density B [T] has a constitutive relation with respect to magnetic field

and magnetization M [Aim] of a material given as

B = po (H +M) (2.4)

where po = 4) x 10-7 [H/m] is the magnetic permeability of free space. Combining equations

(2.2)-(2.4) yields a Poisson's equation, in terms of scalar potential and magnetization, with an

effective magnetic volume charge density of -uoV-M.

V2
V=V-M (2.5)

2.1.2. Fluid Mechanics Equations

The fluid mechanics equations governing ferrohydrodynamics are conservation of linear

and angular momentum equations [4]. The conservation of linear momentum equation is

p +(v.V)v = -Vp'+2{V x o+({+r)V2v+(q+ -)V (V-v)+F (2.6)
at



where p [kg/m3] is the ferrofluid mass density, p' [N/m2 ] is the dynamic pressure including

gravity effects where p'= p - p(r-g) and g [m/s 2] is the gravitational acceleration and r [m] is

the position vector with respect to an arbitrary origin. F [N/m 3] is the Kelvin body force density

given as F = uo (M-V) H, o [1/s] is the spin velocity, q [Ns/m 2] is the dynamic viscosity of the

ferrofluid, 2 [Ns/m 2] the bulk viscosity and { [Ns/m 2] is the vortex viscosity approximately

3
equal to { =-7#,, for small volume fraction #v, of magnetic nanoparticles [4, 5].

2

The conservation of angular momentum equation is given as follows [4]

I +(v-V)O =T+2{(Vxv-2o)+(r'+A )V (V-0) +r'V 2 (2.7)
atI

where I [kg/m] is the moment of inertia density, r' [Ns] is the shear coefficient of spin viscosity,

2' [Ns] is the bulk coefficient of spin viscosity and T [N/m2] is the magnetic torque density

given by T =,po (M x H).

The ferrofluid is considered to be an incompressible fluid where the conservation of mass

equation given by

+V-(pv)=0 (2.8)
at

reduces to the necessary condition

V.v =0 (2.9)

since p =constant.



For analyses done in this thesis, the spin velocity is only in the z direction perpendicular to the

x-y plane of the rotating field so that

V-) = 0 (2.10)

where it is assumed that the spin velocity is z directed and does not depend on z. This simplifies

Eq (2.7) as the next to last term is zero.

2.1.3. Magnetic Relaxation Equation

When a ferrofluid is subject to a magnetic field, the individual nanoparticles try to align

their dipole moment to the applied field and the whole fluid eventually 'relaxes' into being

magnetized in that direction. The two processes that dominate this relaxation process are

Brownian relaxation, where the particle physically rotates against the viscous drag force of the

fluid, and Neel relaxation which is characterized by the movement of the nanoparticle's magnetic

moment relative to the crystal axis. These two processes can be explained by a graphic [1] shown

in Figure 2-1.

The characteristic relaxation times associated with both relaxation mechanisms are given

in (2.11) and (2.12) where K = 23000-100000 [J/m 3] (for magnetite) [6] represents the anisotropy

constant of the magnetic domains and depends on the size of magnetic nanoparticles, fo =109

[Hz] (for magnetite) as the frequency constant for Neel relaxation, q7o [Ns/m 2] is the dynamic

viscosity of the carrier fluid, k =1.38x10 2 3 [J/K] is Boltzmann's constant and T [K] the

temperature in Kelvin.

,B 3VagO Brownian relaxation time (2.11)
kT

1 KVN

N-e kT Nel relaxation time (2.12)
A



The two particle volumes VB and VN for spherical particles are given by

4
VB =-r(R +6)3 Brownian particle volume (2.13)

3

VN = 4R3 Ndel particle volume (2.14)
3

where 5 [m] represents the thickness of the surfactant layer surrounding the spherical magnetic

nanoparticle and R [m] the radius of the magnetic nanoparticle. Typical relaxation times for

Brownian and Neel relaxations are on the order of 10- - 10-9 seconds [4] and depends on the

radius of the nanoparticles.

The combined effect of both relaxation times can be expressed by the following equation

for the effective time constant r, .

1 1 1
+ -1(2.15)

rff rB N

The smaller of the two time constants dominates the physical relaxation process, with Noel

relaxation dominating Vrff for small particles and Brownian relaxation dominating rff for larger

particles. A plot of the relaxation times as a function of particle diameter is given in Figure 2-2

[1].
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Figure 2-1. Brownian and Neel relaxation illustrated here with non-spherical particles taken from
[1]. A) Particles have their magnetic moment aligned horizontally in the presence of no applied

field. B) Magnetic moment relaxes at angle 0 to the vertically applied magnetic field. For
Brownian relaxation the whole particle turns to angle 0, whereas Neel relaxation only results in
the moment turning with respect to the crystal axis. C) In the steady state the magnetic moment
is aligned with the applied field resulting in complete rotation of particle by Brownian relaxation
and only magnetic moment rotation in Neel relaxation.
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Figure 2-2. Brownian, Neel and effective relaxation times are illustrated in this plot as a function
of spherical particle diameter. This plot corresponds to EFHl hydrocarbon-based ferrofluid, with
the following parameters, p =1169 kg/m 3, q1O =10 cP, K = 23000 J/m3 for magnetite, fo= 109 Hz
and T=300K. Brownian plot assumes zero surfactant thickness 6=0 [1] .

In addition to the particle relaxation times, the ferrofluid magnetization as a whole relaxes

depending on translational and spin velocity. The ferrofluid magnetic relaxation equation used in

this thesis is the one derived by Shliomis [5] and is given by

-m+(v-V)M+M(V-v)=MM 1M- M (2.16)
at eff

where Teff [s] is the effective relaxation time constant, v [m/s] the translational velocity, o [1/s]

the spin velocity and Meq [A/m] the equilibrium magnetization. This relaxation equation is used

in this thesis for alternating and rotating magnetic fields, of angular frequency 92, where

2ff <<1. The ferrofluids used in this thesis have a maximum Terf ~ 105 s and the maximum

experimental rotational frequency used is 95 Hz resulting in a valid regime of operation since the

maximum A r,, ~ 0.006.

The equilibrium magnetization Meq for a monodisperse ferrofluid is given by the

Langevin equation L(a) [4]



M eq = M, Icoth(a)
H a H (2.17)

MdVpMoH
kT ' Vol d

where MS [A/m] is the saturation magnetization, #,01 [%] is the volume fraction of magnetic

particles in the ferrofluid, Md = 446 kA/m [A/m] is the domain magnetization for magnetite [4],

VP [M3] is the magnetic core volume per particle, po [H/m] is the magnetic permeability of free

space, H [A/m] is the magnetic field magnitude within the particle, k =1.38x10-23 [J/K] is

Boltzmann's constant and T [K] the temperature in Kelvin.

Equations (2.5), (2.6), (2.7) & (2.16) with assumptions in (2.9) and (2.10) govern the

ferrohydrodynamic behavior of isothermal ferrofluids.



2.2. Properties of Ferrofluids Used In This Thesis

2.2.1. Magnetic Properties and Particle Size

The magnetization curves of the two Ferrotec® ferrofluids used in this thesis, oil-based

EFH1 and water based MSGW1 1, were measured by Elborai [2], Franklin [1] and He [3] using

an ADE Technologies Model 880 Digital Measurement Systems (DMS) Vibrating Sample

Magnetometer (VSM). These plots can be seen in Figure 2-3 and Figure 2-4 respectively. These

figures have values of magnetization M and field intensity H reported as poM and poH with units

of Gauss. The saturation magnetization for the different ferrofluids also determines the volume

fraction of the particles in the different ferrofluids given by

#1 = oms (2.18)

floMd

The low-field limit of the Langevin curve describes a linear relation between

magnetization M and applied field H and is given by slope of the magnetization curve

corresponding to the magnetic susceptibility g . The Langevin curves of Figure 2-3 and Figure

2-4 do not have enough precision in the low field to accurately determine the slope. Elborai [2]

and He [3] separately measured the low field linear regions of the magnetization curve for EFH 1

and MSGW 11 as shown in Figure 2-5 and Figure 2-6. The values of magnetic susceptibility X

were then determined through a linear least squares fit of the linear region data.

Values for saturation magnetization, magnetic susceptibility and volume fraction for

MSGW 11 and EFH1 are listed in Table 2-3.



The minimum and maximum particle size diameters for MSGW11 and EFH1 were

estimated using the data from the linear and saturation portions of the magnetization curves. The

high field asymptote of the Langevin equation is given as

lim L(a)= -I = 1 6 3 J (2.19)
a>>1 a )r poMd Hd,,

where dmin is the minimum diameter of the assumed spherical shaped particles. The low field

asymptote of the Langevin equation is given by (2.20) where dmax is the maximum diameter of

the assumed spherical shaped particles.

a ipMHd3 XH
limL(a) ~ -= 7/O "a - (2.20)
a«1 3 l8kT M

Elborai [2] and He [3] also use TEM images to determine the particle size for MSGW1 1

but not for EFH1 due to incomplete evaporation of the oil-based ferrofluid. Franklin [1] also

determines an average particle diameter by using a non-linear best least-squares fit to the

experimental data. The range of particle size diameters for both these techniques along with

Franklin's [1] average particle sizes are tabulated for MSGW11 and EFH1 in Table 2-1.

Franklin's average particle sizes are used in this thesis and are tabulated in Table 2-3.

Ferrofluid Estimated particle Estimated particle Franklin's [1] Average
diameter (VSM) [nm] diameter (TEM) [nm] particle diameter [nm]

MSGW11 5.5-12.4 6.3-27.6 (mean) 7.9
9.4±3.4 (STD)

EFH1 6.9-13.3 - 10.6

Table 2-1. Estimated particle diameters for MSGW11 and EFH1 ferrofluids by Elborai [2],

Franklin [1] and He [3] using VSM measurements. Elborai [2] and He [3] also made

measurements of particle size using TEM. Franklin's [1] average particle diameter is also listed.
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Figure 2-3. Magnetization curve for MSGW 11, measured by Elborai [2] and He [3], used in this
thesis. A saturation magnetization of ~ 154 Gauss is measured.

Ms -421.2096, V - 0. 071253
500

400

300

200

100

i 0

-100

-200I
-300

-400

+EFH1

500 L .. .
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

PH1 [Tesla]

Figure 2-4. Magnetization curve for EFH1, measured by Elborai [2] and He [3], used in this
thesis. A saturation magnetization of ~421 Gauss is measured.
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Figure 2-5. Measured linear magnetization at low applied fields by Elborai [2] and He [3] for
MSGW11. Z~0.56.
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at low applied fields by Elborai [2] and He [3] forFigure 2-6. Measured linear magnetization
EFH1. X~1.59 .



2.2.2. Relaxation Times and Spin-viscosity

Knowledge of the size of the particles allows for the calculation of the Brownian and

Neel relaxation times in (2.11) and (2.12). He [3] calculates the Brownian and Neel relaxation

times using particle sizes from both the VSM and TEM measurements. For Brownian relaxation

times a surfactant layer of thickness 3=2 nm is assumed and for Neel relaxation, the anisotropy

constant K=78000 J/m3 is assumed for a 12.6 nm particle [3, 6]. He [3] and Elborai [2] also

calculate the values of reff and q' from their experimental results for MSGW1 1. The values of eff

are in close agreement with the values calculated using the VSM particle size and are tabulated

in Table 2-2.

The values of reff and q' for MSGW1 1 used in this thesis are the average of the

experimentally derived Tre and q' obtained by Elborai [2] and He [3]. There are no

experimentally reported values of Teff and q' for EFH1, the eff used is the average of the Teff

values calculated using VSM and are tabulated in Table 2-3.

Ferrofluid Calculated Calculated Calculated Experimental Experimental
TB [ps][3] Ty [s][3] 'Tg [ps][3] Teg [psI j' [kg m/s]

MSGW11 0.66-3.38 5.16x10-9-0.147 (VSM) 0.0051-3.38 1.57x10 l1.43x105  6.4x10-9±5.4x10-9 [3]
(VSM) 1.18x10-8-1.91x10 8 1 (TEM) (VSM) [3] 3.15x10 9±1.13x10-9

0.84-24.2 0.012-24.2 1.2x10-51 .18x10- 5 [2] [2]
(TEM) (TEM)

EFH1 3.57-14.28 2.56x10--12.0 (VSM) 0.025-14.3 - -
(VSM) I (VSM)

Table 2-2. Table of calculated and experimentally determined values of relaxation times and spin
-viscosity for ferrofluids, MSGW1 1 and EFHl, based on magnetic nanoparticle sizes listed in
Table 2-1 for VSM and TEM measurements.



2.2.3. Viscosity and Mass Density

The values for the viscosity and mass density for the two ferrofluids, MSGW1 1 and

EFH1, were taken from Elborai's and He's theses [2, 3]. The mass density was determined by

filling a container of calibrated volume with each ferrofluid, measuring the difference in weight

between the full and empty container and dividing the mass value by the volume of the

container. The viscosity measurement was made by Elborai and He using the CSL500 rheometer

from TA instruments configured in a Couette cell geometry [2, 3].

2.2.4. Speed of Sound Measurement

Precise knowledge of the speed of sound in the sample fluid is necessary to accurately

interpret ultrasound reflections. Signal Processing Corporation's DOP 2000 comes with a speed

of sound measuring device as seen in Figure 2-7. A schematic cross-section of it, shown in

Figure 2-8, contains a micrometer screw gauge at one end and an ultrasound probe at the other.

By turning the micrometer the distance between the face of the ultrasound probe and the

reflecting face of the micrometer is changed. The Signal Processing program measures the

differential change in the time taken for an ultrasound echo signal to propagate over a distance

that is incrementally changed by adjusting the micrometer, giving the speed of sound in the

sample fluid. The values measured are similar to those measured by Elborai and He in their

theses [2, 3] and are tabulated in Table 2-3.
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Figure 2-7. Picture of Signal Processing's speed of sound measuring device.
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Figure 2-8. Schematic cross-section of speed of sound measuring device by Signal Processing
Corporation [3].

89



Ferrofluid Mass Viscosity rj Vortex Saturation Magnetic Volume Average Speed of 'tenf [ps] j7' [kg m/s]
Density [cP] Viscosity Magnetization Susceptibility fraction % particle sound
[kg/m 3] ([cP] poM, [G] X vol. diameter [m/s]

_101  p f0 M , davg (nm)

MSGW11 1200 2.02 0.83x10 153.9 0.56 2.75 7.9 1439 [2, 3], 13.9 4.78xI0-
1487 [SK]

EFH1 1221 7.27 8.2x10 421.2 1.59 7.52 10.6 1116 [2, 3], 7.16 -

I I__II_1 1116 [SK]

Table 2-3. Values for the mechanical, physical and magnetic properties for the two ferrofluids (MSGW1 1 and EFH1) used in this
thesis. Most of these values were taken from measurements by Elborai and He documented in their theses [2, 3]. The speed of sound
measurement was made by the author of this thesis and is denoted by his initials [SK].
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Chapter 3. Ferrofluid Flows in Planar Geometry

The application of magnetic fields to ferrofluids tends to orient the magnetic moments of

the constituting magnetic particles in the direction of the applied field with resistance to free

rotation of the particles from fluid viscosity or magnetic crystalline anisotropy. Hydrodynamic

forces and Brownian and Noel relaxation effects contribute to the antisymmetric stress between

the magnetic particle and the carrier fluid, affecting the effective magnetoviscosity of the

magnetic fluid.

This chapter derives the effective magnetoviscosity for planar-Couette magnetic fluid

flow, with an applied uniform AC magnetic field transverse to the duct axis, using Shliomis's

first magnetization relaxation equation with zero spin-viscosity coefficients (2' = '=0) in Eq.

2.7.

The case of planar Poiseuille flow stressed by magnetic fields similar to that described by

Zahn [1] and Pioch [2-4] is also replicated using Mathematica® and COMSOL Multiphysics®

3.5a with (q'# 0) and without spin-viscosity (q'= 0). The results of Zahn [1] are extended to

3
include the physical vortex viscosity ( [Ns/m 2], equal to 3= - ,, for dilute suspensions,

2

where q [Ns/m 2] is the dynamic viscosity of the fluid, and #,, is the volume fraction of magnetic

nanoparticles [5, 6].



3.1. Planar Geometry Setup

The planar geometry used in this chapter is shown in Figure 3-1. To impose the

horizontal tangential field Hz, ±y directed surface currents on the x=O and x=d planes are

required. The uniform AC magnetic flux density B, is imposed by an external permanent magnet

or electromagnet as shown in Figure 3-2b.

-d

d

Ferrofluid

VIr

B -N V

H-
y - -

0z

Figure 3-1. Planar ferrofluid layer between rigid walls. Planar Couette flow is generated by
moving the surface at x=d at a velocity V. It is magnetically stressed by a uniform x directed AC
magnetic flux density B2, or by a uniform z directed tangential AC magnetic field H. Image
taken and modified from [7].
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Figure 3-2. (a) An imposed current i will impose a magnetic field H = -ix in the ferrofluid. (b)
S

d2 2An imposed voltage source v(t) = will impose a flux - in the magnetic circuit, that will
dt N

result in a flux density B that is spatially uniform in the ferrofluid given by B = Aix for planar
NA

Couette flow. Image taken and modified from [7].



3.2. Governing Equations

The governing equations outlined here are explained in detail in Chapter 2.

1) Maxwell's Equations: Ampere's Law

VxH=J (3.1)

Since the ferrofluid in Figure 3-1 is a current free region J = 0, (3.1) results in Hy and Hz being

constant in the ferrofluid volume, assuming that H only varies with the x coordinate

dH dH
VxH=O-> - -- = 0 -> H, H = constant (3.2)

dx dx

Maxwell's Equations: Gauss's Law for Magnetic Flux Density

V.B=0 (3.3)

Similarly (3.3) results in a spatially uniform Bx in the ferrofluid volume

dB
V-B=0 -> x =0 -> B = constant (3.4)

dx

The three other coupled equations are the two fluid mechanics conservation of linear and angular

momentum equations and the magnetic relaxation equation given below.

2) Conservation of Linear Momentum

p -+ (v.V) vI = -Vp'+2V x +({+r)V2 vp (M-V) H (3.5)
at

3) Conservation of Angular Momentum

I +(v-V)wj =pjOMxH+2{(Vxv-2o)+1q'Vo (3.6)
at

4) Magnetic Relaxation Equation

__M 1
-- +(V.V)M=OXM I(M -Mq) (3.7)
at Tf9
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3.2.1. Assumptions

In addition to the assumptions of incompressible flow (V-v =0) and no divergence of

spin velocity w (V-0 = 0), the fluid's equilibrium magnetization (Meq) is assumed to be given by

a linear relationship with respect to the magnetic field H with X the magnetic susceptibility.

Meq = XH (3.8)

By ensuring that the gap d is sufficiently small, the imposed magnetic field, Hz or

magnetic flux density Bx , do not depend on the y and z coordinates for the geometry shown in

Figure 3-1. The imposed horizontal magnetic field Hz is generated by surface currents, in the y

direction on x=0 and x=d planes, that extend beyond the volume of ferrofluid such that the

fringing fields at the ends are ignored. As a result, the imposed magnetic field and flux sources

only depend on x.

The flow velocity v and spin velocity w are of the form

v = v, (x)i, O = &m, (x)i, (3.9)

associated with planar Couette flow. The pressure term given in (3.5) is given by

p'= p - p(r-g) (3.10)

where r [m] is a position vector with respect to the origin, p is the applied pressure and g [m/s2],

the gravitational acceleration. In the planar case of Figure 3-1, the gravitational field is given as -

gix. Eq. (3.10) can then be written as

p = p + pgx (3.11)

The AC magnetization, flux density and field can be written in phasor form as given as

M = Re[Men'], B = Re[Bein], H = Re[Hei'] (3.12)



where the small hat symbol above the variables represents the complex amplitude of the

individual magnetization, flux density and magnetic field, and ) represents the AC radian

frequency of operation.

Steady state flow is assumed as the fluid responds to the time average component of both the

force and torque density terms in (3.15) and (3.16). These are given as

< F >= 2 Re I(M-V)N* (3.13)

and

<T >=8 Re[M xH* (3.14)
2 1

where the delimiters < > denote time average values and * represents the complex conjugate.

The flow is also assumed to be viscous dominated, setting the inertial terms in Eqs (3.5)-

(3.6) to 0, resulting in

0=-Vp'+24Vxo+({+q)V 2 v+< F > (3.15)

0=< T >+2{(Vx v -2o)+'V 2 O (3.16)



3.2.2. General Solution for Planar Couette Flow With Imposed AC

Bx Field Only with Zero Spin-Viscosity (7'=0)

The only imposed flux density is B. therefore

Hz =H, =0 (3.17)

and using Gauss's law for the magnetic flux density

B= po (M+H) (3.18)

H,(x) can be determined to be

B
H, (X)= B* -M,(x) (3.19)

Ipo

The force density terms in (3.15), in different Cartesian directions, can be calculated to be

< F >= I Re
2<F >=- 

p d M d --l1x
dx po 2 dxI

< F [ $* A

< F, >=< F >= 0

Expanding (3.15) for all three Cartesian directions gives

x: 0=--+<F,>
ax

y: 0=- +

dwO, d2v
dx dx2

po I 21

(3.20)

(3.21)

(3.22)

(3.23)

+MX ___ MY
_#0 d ( -* -x)dx 1 4 dx

z: 0=-v (3.24)



where - -= 0 and p'= p +pgx
ay az

The applied magnetic flux density Bx increases the pressure in the x direction in (3.22)

and is given by p "

O=- +< F>=- a(p+ pgx+ pgo $ = (3.25)
ax ax 4 ) ax

Integrating (3.24) with respect to x gives

z: 0=2{my+({+r||) dvz +C,
dx

dv -247o d(3.26)
dv -2{ C+Z '= + C2, C2=- ,
dx {+q ' +7

with constants C1 and C2. With zero spin-viscosity (rl'=0), equation (3.16) results in

0 =< T >+2{(Vxv-2m) (3.27)

which reduces to

<T>-2{ + 2 =0 (3.28)
(' dx'

Substituting (3.26) in (3.28) results in (3.29) with constant C3 .

<T,>-2 ( +2w +C2 =0
(3.29)

-><T >- 4 o =C 3 , C 3 =2{C 2

For (3.29) to be valid for all x, < T, > and y, have to be constants and not functions of x.

Using (3.19) in (3.7) with (3.12) results in magnetization components given as

X( jn r+1) EX
MX = Y (3.30)

Ipo [( _)2 +(j r+1)(j7r+1+%o)



Mz = x (3.31)
pO [(WT) +(jnr+1)(jKT+1+ O)

Integrating (3.28) gives the solution for the flow velocity of the form

(<T >
v,(x)= 2 -2%,J x+C (3.32)

Using the boundary conditions associated with planar Couette flow

v, (x =0) =0 -> C=O

(< >V (3.33)
v (x=d)=V 4 2 -2J, =-3

The resulting flow and spin velocities can then be given as

v (x)= (3.34)
d

<T > V
W, = { 2 (3.35)

S 4 2d

The time averaged magnetic torque density in the y direction is given by

<T >= 0 Re[M, H*] 0 Re[M x -M *] (3.36)
2 X 2 p11o

-zr' , (1-(2 _)2 +(w~r)
<>= BxZOCY(3.37)

2puO 1(+xO +(r + ( ) 2+XO (2+Xo )-2(mY_)2 + (n _)2

Substituting (3.37) in (3.28) with d V gives

dx
- + 2a) + = xZOCV Y0 (3.38)

d ' 2po 1+70+(m~W,r)2 + (K2r)22+ (+7) (m)+( )
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Using the following substitutions in (3.38)

r = V + ),d
2 V

(3.39)

(3.40)new 
-d

(3.41)

results in a fifth order equation in r

P r 1-(nr)2+V r
2( 2

0 (2 +X0 )-2Vew r 2 2 )2=0
1+%0 +Vn.r- -

which can be solved for P as

r 4j4+ (1+ C V + 2+ Z2K 2-2 C- +r V new2+o (2+o) j
2

Vew 22K22
+ ir + - + r

He [7], in his thesis, defines r the same way as defined in (3.39) and proves r is related to the

effective viscosity Aq by

r = Aq
2{

(3.44)

He [7] also defines a parameter PB which is related to P for all non-zero frequencies as

2

P-- 2 P
B g04 (l+%) 2 (l+XO)2
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(3.42)

(3.43)

(3.45)

-) 
+(

2

B '
P = I ̂

Vne, (Qr Z)4 + (j2Z)2 2+



The derivation in this section assumes non-zero frequencies resulting in a time-averaged

torque density in Eq. (3.14) that is half as large as the DC torque density

T= po(MxH) (3.46)

This causes PB DC = B AC to be double of what it should be so that for the DC case, PB defined

by He [7] is given as

JPB DC +o)2 (3.47)

Using He's value of ZO = 1.55 ( for EFH1), with values of Vnew from his thesis, a plot of

PB as a function of 2r for the DC case (92r =0) can be seen in Figure 3-3. Figure 3-3 is identical

to He's plot, from his thesis [7], shown in Figure 3-4.
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0" 11 2r
0.0 02 0.4 0.6 0.8 1.0

Figure 3-3. Solutions for the change in non-dimensional magnetoviscosity 2r = for planar

Couette flow versus magnetic flux density parameter PB for various values of Vnew with an

imposed DC B, field for EFHI using Eq. (3.47) for PB DC as a function of 2r = .
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Vt/d= 5 10 121
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0

.14

0 2 4 6 8 10 12 14 16 18 20
P

Figure 3-4. He's [7] solution for the change in magnetoviscosity for planar Couette flow as a
function of P=PB with an imposed DC Bx and or P=PH for an imposed Hz field for various values

Vr
of V1 e,=-- with EFH1. The imposed H, can be generated using a current source as seen in

Figure 3-2 (a) . Results are identical to Figure 3-3 for imposed Bx.

The fifth order equation in (3.42) can have five real roots, three real and two imaginary

roots, or one real and four imaginary roots to the equation depending on values of PB and Vnew.

This is illustrated in Figure 3-3 and Figure 3-4 where for certain values of applied magnetic field

and flow parameters PB and Vnew there are either one (one real and four imaginary roots) or

three (three real and two imaginary roots) possible solutions for Aq . The three possible

solutions include both stable and unstable multiple values for Aqy . This behavior is also seen in

plots of PB as a funCtion of 2r, at four different values for Vnew (Vnew=O (red), 12 (green), 24
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(blue), 36 (black)), at different normalized frequencies -r = 0.2, 0.4, 0.6, 0.8, 1.0 given in Figure

3-5 to Figure 3-9. The Mathematica® code for generating these plots are given in Appendix A.

PB
50 -

40

30-

Vnew=36

20

Vnew=24

Vnew=0

0 2r
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3-5. Solutions for the change in magnetoviscosity for planar Couette flow versus
magnetic flux density parameter PB for various values of Vnew with an imposed AC B, field, for

EFHi using Eq. (3.45) as a function of 2r = , at a normalized frequency of 12r = 0.2.
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Figure 3-6. Solutions for the change in magnetoviscosity for planar Couette flow versus
magnetic flux density parameter PB for various values of Vnew with an imposed AC B, field, for

EFH1 using Eq. (3.45) as a function of 2r = , at a normalized frequency of 2 r = 0.4.

Figure 3-7. Solutions for the change in magnetoviscosity for planar Couette flow versus
magnetic flux density parameter PB for various values of Vnew with an imposed AC B, field, for

EFH1 using Eq. (3.45) as a function of 2r = ,at a normalized frequency of 92,r =0.6.
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Figure 3-8. Solutions for the change in magnetoviscosity for planar Couette flow versus
magnetic flux density parameter PB for various values of Vnew with an imposed AC B, field, for

EFH1 using Eq. (3.45) as a function of 2r = , at a normalized frequency of zr =0.8.

30-

Vnew=12

0 2r
0. .20 0.6 0.8 1.0

Figure 3-9. Solutions for the change in magnetoviscosity for planar Couette flow versus
magnetic flux density parameter PB for various values of Vnew with an imposed AC B, field, for

EFH1 using Eq. (3.45) as a function of 2r = ,at a normalized frequency of 9r =1.0.
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3.2.3. General Solution for Planar Couette Flow With Imposed AC

Hz Field Only with Zero Spin-Viscosity (7'=0)

The only imposed flux density is Hz therefore

B, =H, =0 (3.48)

The zero imposed flux density however, using Gauss's law for the magnetic flux density

B=ypo (M+H) (3.49)

still generates an x directed magnetic field in the fluid H,(x) and with B = 0

H,(x) = -MX(x) (3.50)

The force density terms in (3.15), in different Cartesian directions, can be calculated to be

d FX* IF dix
<F1 >=-Re uM -HI =-ReI uM~ -(-Mr2 L9 X dx 1/ 2 L10^ dx

+$MXdx]<F >= - *

(3.51)

0 d *$ -)

< F, >=0,< F >= I Reo d$* =0
2 0 dx

Expanding (3.15) for all three Cartesian directions gives

x: 0=- +< F >y =-

y:A K

z: 0=-v C dx,
dx)
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(3.52)

(3.53)

(3.54)

d 2v
dx2

(3.55)

- po^ 
21



where -=--=0 and p'= p+ pgx
ay az

The x directed magnetic field results in an increase in x directed pressure and is given by

p"

0=- +< F p g / >=- p+pgx+ 4 NI =- (3.56)

Integrating (3.55) with respect to x gives

z: 0=2{my+({+17 ) dvz+C,

dv -2co ~dx _ _ 
(3.57)

-> = '+C2, C2=
dx {+(

with constants C1 and C2. With zero spin-viscosity (r7'=0), equation (3.16) results in

0 =< T >+2{(Vx v-2e)) (3.58)

which reduces to

< T, > -2{ dvz +2 = 0 (3.59)
dx

Substituting (3.57) in (3.59) results in (3.60) with constant C3.

(-2{w1 < >+ 2 (3.60)

-><T >- f,=C3, C3=2(C2

For (3.60) to be valid for all x, < T, > and co have to be constants and not functions of x.

Using (3.50) in (3.7) with (3.12) results in magnetization components given as

M= [2 (3.61)
[(Cor)2+(jK2r+1)(jK2r+1+ze)1
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Mz = (

pUO[ (COr), +(j92r +1) (jnr +1+ XO)

and the resulting flow and spin velocities can be determined, similar to Eqs (3.32)-(3.35), as

Vx Vz W = (

< T,> V
m, 4{ 2d

The time averaged magnetic torque density in the y direction is given by

< T, >= &Re[-$,' +$ M$* ]z= H .- Re[MH * +$ ']S2 2

(

<T, >

Substituting (3.37

- 2w +
d

2 1(I+X0 + (0r)2) +(n_)2 (2 +XO(2 + O) - 2(mr2(

)in (3.28) with dv= gives
dx d

^ 1(1+7)2 
_2+(or

4 (1+XO+(Wylr) ( r)2 2+X (2+o)-2(zr) 2 +(n T

Using the following substitutions in (3.38)

r = + -d
2 V

Vew= V

, 2

PH

3.62)

3.63)

3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

110

, 2 2 I_)2 + (0 1_)2-H -rz zo OjY ((I + X0

)2 )

= 0



results in a fifth order equation in r

PH 2+r +r nVew 2 _2 2 2
r +2 2 -- 0 (3.7 1)

2 r4g4+ 1+ - r V + o + 2K 2-2 - r V., +x X(2+zo)

which can be solved for PH as

2r(r4n 4 +(1+(- +r) 2Vne 2 +xo)2 +'r 2n 2(2-2(- +r)2 Vew2 + X(2+X))) (
PH 21 1 2(.2

(- + r)((- +r) 2Ve w _,2i 2 + (1+XO)2)2 2

where r is defined the same way as defined in (3.39) and is equivalent to the change in viscosity

term in (3.44).

The derivation in this section assumes non-zero frequencies resulting in a time-averaged

torque density in Eq. (3.14) that is half as large as the DC torque density given in (3.46). For the

DC case PH is given as

PH P (3.73)
HIC 2

Using EFH1's value of gO =1.55, a plot of PH as a function of 2r for the DC case

(r = 0) with Vnew=[0 (red), 4 (green), 8 (blue) and 12 (black)] can be seen in Figure 3-10.
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Figure 3-10. Solutions for the change in magnetoviscosity for planar Couette flow versus
magnetic field intensity parameter PH for various values of Vnew with an imposed DC Hz field, for

EFH1 using Eq. (3.73) as a function of 2r = .

The fifth order equation in (3.71) could have for some values of PH and Vnew either five

real roots, three real and two imaginary roots or one real and four imaginary roots to the

equation. This is illustrated in Figure 3-10 where for certain values of applied magnetic field and

flow parameters PH and Vnew there are either one (one real and four imaginary roots) or three

(three real and two imaginary roots) possible solutions for Ai . The three possible solutions

include both stable and unstable multiple values for Aq . This behavior is also seen in plots of

PH as a function of 2r, at four different values for Vne, (Vnew= (red), 4 (green), 8 (blue), 12

(black)), at different normalized frequencies DI r=0.2,0.4,1.0 given in Figure 3-11 - Figure

3-13 respectively. The Mathematica* code for generating these plots are given in Appendix A.
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0 ' ' ' '' ' 2r
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3-11. Solutions for the change in magnetoviscosity for planar Couette flow versus
magnetic field intensity parameter PH for various values of Vnew with an imposed AC Hz field,

for EFH1 with normalized frequency of r =0.2 using Eq. (3.72) as a function of 2r - Aq

PH
20

Vnew=12

15

10 
__Vnew=8

5 
Vnew=t

Vnew=0

0 ' ' '2r
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3-12. Solutions for the change in magnetoviscosity for planar Couette flow versus
magnetic field intensity parameter PH for various values of Vnew with an imposed AC Hz field,

for EFH1 with normalized frequency of f2r = 0.4 using Eq. (3.72) as a function of 2r = A .
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Figure 3-13. Solutions
magnetic field intensity

0.2 0.4 0.6 0.8 1.02r

for the change in magnetoviscosity for planar Couette flow versus
parameter PH for various values of Vne, with an imposed AC Hz field,

for EFH1 with normalized frequency of Qir =1.0 using Eq. (3.72) as a function of 2r =

114



3.2.4. Numerical Simulations of Planar Poiseuille Flow

Zahn and Greer, in their paper [1], derive coupled linear and angular momentum

conservation equations for planar Poiseuille flow with imposed magnetic flux density B, and

magnetic field Hz with the same geometry setup as Figure 3-1. The parameters are expressed in

dimensionless form indicated by tildes, given in (3.74) with time normalized to the magnetic

relaxation time r, space normalized to the duct spacing d, and magnetic field quantities

normalized to a nominal magnetic field strength Ho.

n 5 H M B x
2 A = 'f3 ,x=-,v Z 9-oy = OrZ

Ho Ho uOHO d d
- T 27 , r1 ' ~ 2{ ap' d ap'

T, = H ,ipH0 rd 2  20H p 2

The coupled dimensionless flow and spin velocity equations that are solved are given as

ap' ~ d- 11 2-

= + 2 (3.75)
S di ~ 2 di2

<T, >-{ +26, +,' 2' = 0 (3.76)
d diC& ) d 2

with magnetization derived in [1] as

M = 2 (3.77)

X,2(j+ 1 )jn+1+fio)

M =[2 +( +1)( +I+X)] (3.78)

and torque calculated to be

<Ti, >= Re [ 5* -if* (H + )] (3.79)
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and is given by a complicated equation, Eq. (33), in [1]. Zahn [1] simplifies the expression by

linearizing the torque in the limit of small 6, and is given by the form

lim < T, >= To + ab, (3.80)

where To and a are given as

=X Re [[Xo2 + jf(2 +1+ o ]A *]]

[IIX 0 + f22 2(3.81)

5 (n2 -1)+ f 2 [f 2-l+o )2
a -= - 2 2  I +(3.82)

2 1 +'X +nf2 + 2

Equations (3.75)-(3.76) along with the complete torque expression, given by Eq. (3.79),

were simultaneously solved using Mathematica® and COMSOL Multiphysics* 3.5a. For (3.75)

the no slip boundary condition was implemented on the flow velocity while for (3.76), the

boundary condition on spin velocity was set to 0 if '# 0, otherwise no boundary condition was

implemented on spin velocity if ' =0. These boundary conditions for 1'# 0 are

i,(i=0)=0 ,(ii=0)=0 (3.83)
9j(i=1)=0 ,(.i=1)= 0

The results were also compared to the linearized torque expression in Eq. (3.80). The

Mathematica® code implemented the shooting method to solve for the boundary value problem

while COMSOL* used the finite element method. The code to generate these results are given in

Appendix A.
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Zero Spin-viscosity Cases (r7'=O)

The results of Zahn and Greer [1] were first replicated with parameters taken from their

paper such as =1, =1, =1, 0.00001. The value for the vortex viscosity 4 is set equal

to the dynamic viscosity =# and was used to verify the results obtained in the paper [1] as

given in Figure 3-14. The results obtained are identical to that of Figure 3-14. The value for the

3
vortex viscosity is not physical since it should be equal to = -## [6], and this case is

2

considered in 3.2.4.4.

Figure 3-15 and Figure 3-16 are results of normalized flow and spin velocities as a

function of normalized distance i with an imposed normalized magnetic flux density B, =1.

The results of Mathematica* and COMSOL* are in good agreement with each other. Figure 3-17

and Figure 3-18 are results of normalized flow and spin velocities with an imposed normalized

magnetic field Hi =1 with good agreement between COMSOL* and Mathematica®. The

linearized torque in both these cases gives similar results to that obtained by using the complete

torque equation.

Figure 3-19 and Figure 3-20 are for the case of an imposed rotating field with B, =1 and

Hi = i. In this case, the linearized torque equation gives results that are slightly different from

using the complete torque equation, however, if the field magnitude is increased such that

5, =10 and Hz = i as seen in Figure 3-21 and Figure 3-22, the difference between the results

using the complete and linearized torque equation can be clearly seen.
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Figure 3-14. Dimensionless flow velocity 9 (i) and spin velocity 6b, (i) versus position i with

S=1,4=1, a =1, = 0.00001, a =1 for various values of dimensionless spin viscosity 4'

with (i) tangential magnetic field (HZ = H0 , B, =0); (ii) perpendicular magnetic field

(H, = 0, B, = pOH 0 ) ; and (iii) rotating magnetic field (Hz = iH0 , B, = pOHO) taken from [1].
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Figure 3-15. Normalized flow velocity i () for an imposed normalized magnetic flux density

B, =1 with zero spin-viscosity condition (#' =0) and gO =1, # =1, =1, =0.00001, fl =1.

The linearized torque and complete torque implementations in Mathematica give identical results
with their curves overlapping.

Figure 3-16. Normalized spin velocity o, (i) for an imposed normalized magnetic flux density

B, =1 with zero spin-viscosity condition ( '=0) and ZO =1, #=1, =1, =0.00001, fl =1.

The linearized torque and complete torque implementations in Mathematica give identical results
with their curves overlapping.
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Figure 3-17. Normalized flow velocity i, (i) for an imposed normalized magnetic field HZ =1

with zero spin-viscosity condition (i'= 0) and ZO =1, =1, =1,- = 0.00001, d =1. The
az

linearized torque and complete torque implementations in Mathematica give identical results
with their curves overlapping.

Figure 3-18. Normalized spin velocity Co, (i) for an imposed normalized magnetic flux density

HZ =1 with zero spin-viscosity condition (#'=0) and X0=1, 7=1,4=1, 0.00001, l =1.

The linearized torque and complete torque implementations in Mathematica give identical results
with their curves overlapping.
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Figure 3-19. Normalized flow velocity i, (i) for an imposed rotating normalized rotating field
B =1, H =iand zero spin-viscosity

Xo =1, i =1, =1, = 0.0000 1, f =1. There is a slight deviation between the results using the

linearized torque equation and the complete torque equation.

Figure 3-20. Normalized spin velocity t, (i) for an imposed normalized rotating field with
B = 1, H = i and zero spin-viscosity condition (0' =0) and ,e =1, =1, {=1, 2=1

= 0.00001. There is a slight deviation between the results using the linearized torque

equation and the complete torque equation.
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Normalized flow velocity versus normalized x for
Bx=10 and Hz=i
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Figure 3-21. Normalized flow velocity v,(i) for an imposed rotating normalized rotating field

with B, =10, HZ = i and zero spin-viscosity condition (4'=0) and xO = 1=1, 1= 1

-=0.00001. The linearized torque equation gives a significantly different result than the
az

solution obtained with the complete torque equation.

Figure 3-22. Normalized spin velocity d) (i) for an imposed normalized rotating field with

B =10, HZ = i and zero spin-viscosity condition (4'=0) and xo=1,4=1,{=1, =1

=0.00001. There is a significant difference between the results using the linearized torque
az

equation and the complete torque equation.
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3.2.4.2. Non-Zero Spin-viscosity Cases (rl'90)

Similar to the zero spin-viscosity cases, the results of non-zero spin viscosity were first

replicated with parameters taken from Zahn and Greer [1], such as

=1 =1,=1, =1, = 0.00001, with the value for the vortex viscosity {= which gives
az

results identical to that of Zahn and Greer [1] as given in the plots of Figure 3-14. The value of

-3
the vortex viscosity is not physical since it should be equal to = [6] and this case is

2

explored in 3.2.4.4.

Figure 3-23 and Figure 3-24 are plots of the normalized flow and spin velocities for a

rotating imposed field B, =0.1, H, =0.li with i'= 0.01. There is good agreement between the

results of using the linearized and complete torque expressions. The COMSOL results have kinks

in the plot due to the meshing algorithm of the program. These results were obtained with a

triangular mesh. By changing the mesh to a quadrilateral mesh, the kinks vanish but convergence

is hard to obtain for stronger imposed normalized fields. The quadrilateral mesh results are

shown in Figure 3-25 and Figure 3-26.

Similarly, Figure 3-27 and Figure 3-28 are plots of the normalized flow and spin

velocities for a rotating imposed field B, =1, H, = i with i'= 0.01 with a triangular mesh.

Figure 3-29 and Figure 3-30 are flow profiles obtained with an imposed magnetic flux density

5, =1, HZ =0 while Figure 3-31 and Figure 3-32 are flow profiles obtained with an imposed

magnetic field B =0, H, =1. In all cases, COMSOL simulations were performed with a

triangular mesh.
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Figure 3-23. Normalized flow velocity ii(i) for an imposed rotating normalized rotating field
with B = 0.1, H = 0. li with normalized spin-viscosity condition 4'=0.01 and ZO =1,4=1,

= 1, .a = 0.0000 1, U = 1.az
Mathematica

The linearized torque and complete torque implementations in

give identical results with their curves overlapping.

Figure 3-24. Normalized spin velocity o, (i) for an imposed rotating normalized rotating field

with B, =0.1, HZ = 0. li and normalized spin-viscosity condition 4'= 0.01 with ZO = 1, = 1,

=1, = 0.00001, f2 =1. The COMSOL calculation has kinks in it due to the shape of the

triangular mesh elements used in the meshing. The linearized torque and complete torque
implementations in Mathematica give identical results with their curves overlapping.
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Figure 3-25. Normalized flow velocity v (i) for an imposed rotating normalized rotating field

with B, =0.1, H =0.li with normalized spin-viscosity condition 4'=0.01 and ZO =1,4=1,

=1, = 0.00001, f =1. The mesh uses quadrilateral elements instead of triangular elements

removing the kinks in the graph.

Normalized spin velocity vs normalized x for Bx=O.1
and Hz=O.li with n'=0.01 and quad mesh
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Normalized spin velocity o, (i) for an imposed rotating normalized rotating field

with B =0.1, H =0.li and normalized spin-viscosity condition 4'=0.01 with X0 =1,4=1,

=1, = 0.00001, fl =1. The mesh uses quad elements instead of triangular elements

removing the kinks in the graph.
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Figure 3-27. Normalized flow velocity i () for an imposed rotating normalized rotating field
with B, =1, H, = i and normalized spin-viscosity condition /'=0.01 with Xo=1,7=1,

{=1, =0.00001, n=1. The linearized torque and complete torque implementations in
Dz

Mathematica give identical results with their curves overlapping.

Normalized spin velocity vs normalized x for Bx=1 and
Hz=i with q'=0.01
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Normalized spin velocity o, (i) for an imposed rotating normalized rotating field

with B, =0.1, HZ =0.li and normalized spin-viscosity condition i'=0.01 with ZO =1,4=1,

=1, E =0.00001, n =1. The COMSOL calculation has kinks in it due to the shape of the
az

triangular mesh elements used in the meshing affecting the results. The linearized torque and
complete torque implementations in Mathematica give identical results with their curves
overlapping.
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Figure 3-29. Normalized flow velocity 9 (i) for an imposed normalized magnetic flux density

with B =1, H = 0 and normalized spin-viscosity condition 4'=0.01 with ,O =1,4=1,

{=1, =0.00001,i=1. The linearized torque and complete torque implementations in
az

Mathemnatica give identical results with their curves overlapping.

Figure 3-30. Normalized spin velocity Co,(i) for an imposed normalized magnetic flux density

with B =1, H = 0 and normalized spin-viscosity condition 4'=0.01 with X0 =1,4=1,

=1, ' =0.00001, n =1. The linearized torque and complete torque implementations in
az

Mathematica give identical results with their curves overlapping.
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Figure 3-31. Normalized flow velocity i (i) for an imposed normalized magnetic field with

B, = 0, H, =1 and normalized spin-viscosity condition i' 0.01 with ZO =1, # =1,

{=1, L=0.00001,nl=1. The linearized torque and complete torque implementations in
az

Mathemnatica give identical results with their curves overlapping.

Figure 3-32. Normalized spin velocity @Y (i) for an imposed normalized magnetic field with

B, =0, Hz =1 and normalized spin-viscosity condition i'=0.01 with Zo =1, =1,

=1, =0.00001, n =1. The linearized torque and complete torque implementations in
az

Mathematica give identical results with their curves overlapping.
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3.2.4.3. Comparison with Pioch's results [2, 3]

Pioch, in her analytical results [2-4], obtained kinks in her distribution of flow and spin

velocities with certain parameters. Figure 3-33 and Figure 3-34 are flow and spin velocity

profiles obtained using zero spin-viscosity Q'=0 with parameters o =1, 1 = 5.

Even though the value of vortex viscosity {is not physical and is simply set to the dynamic

viscosity of the fluid, the presence of sharp kinks can be independently verified using

Mathematica* and COMSOL Multiphysics® code that is documented in Appendix A.

SBx = 1,I Hz |= 0
0 , 0 14 016 8x

# corresponding
-e to {=0.0592

fe corresponding
to!(=0.0224

e: n = 5.0

A5.0
o! =

0 .0159 0

.01 .0224 .0036

.025 .0353 .0056

.05 .0592 .0067

.1 1.1088 .0073

Figure 3-33. Pioch's [2] planar Poiseuille velocity flow v, (i) distribution stressed with a

perpendicular magnetic field at normalized frequency fl =5 for different values of effective
viscosity if corresponding to different values of vortex viscosity {. Other parameters are

az
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A=5.0

.0159 30.3867

.0224 21.2167

.0353 12.9145

.0592 6.77365

.1086 4.74664

'reff = 0

6 = 5.0

Figure 3-34. Pioch's [2] planar Poiseuille spin velocity

corresponding
to =0.0592

corresponding
to =0.0224

&,(i) distribution stressed with a

perpendicular magnetic field at normalized frequency f2=5 for different values of effective

viscosity i7 ,ff corresponding to different values of vortex viscosity {. Other parameters are

o 3, = 1.

Figure 3-35 and Figure 3-36 are Mathemnatica and COMSOL implementations using

Pioch's parameters of X0 =1, j= = 0.0592, = 1, 12 =5 for an imposed magnetic flux density

BX =1, HZ =0 . The spin velocity plot of Figure 3-36 has a similar kink pattern as that obtained

by Pioch in Figure 3-34.

Figure 3-37 and Figure 3-38 are Mathematica simulations of flow and spin velocity

distributions with Pioch's parameters of go =1, i= = 0.0224, -1, fl =5 for an imposed

magnetic flux density Bx =1, Hz =0 . The kinks in the flow and spin velocity distributions are

identical to that obtained by Pioch in Figure 3-33 and Figure 3-34.
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Figure 3-35. Normalized flow velocity v, (i) for an imposed normalized magnetic field with
B, = 1, HZ =0 and zero spin-viscosity condition with Pioch's parameters given as

0=1, i= =0.0592, " 1, d =5 corresponding to {=0.0592 in Figure 3-33. There is good

agreement between the Mathematica and COMSOL simulations.

Figure 3-36. Normalized spin velocity o, (i) as a function of i distance for an imposed

normalized magnetic field with B, =1, H, = 0 and zero spin-viscosity condition with Pioch's

parameters given as X=1, = = 0.0592, a =1, l =5 corresponding to =0.0592 in Figure
az

3-34. Kinks as observed in Figure 3-34 are replicated in Mathematica and COMSOL.
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Figure 3-37. Normalized flow velocity v,(i) for an imposed

B, =1, H, =0 and zero spin-viscosity condition with ZO =1,i

normalized magnetic field with

=4=0.0224, =1,a= 5. The

kink in the velocity at i=0.5is identical to that obtained by Pioch in Figure 3-33 with

{=0.0224.

Figure 3-38. Normalized spin velocity Co,(i) for an imposed normalized magnetic field with

B, =1, H, =0 and zero spin-viscosity condition with ZO =1, #= =0.0224, =, f =5 .The

kinks in the spin velocity are identical to that obtained by Pioch in Figure 3-34 with {=0.0224..
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3.2.4.4. Simulations Using Physical Values For Vortex Viscosity { With Non-

Zero Spin-viscosity i'+ 0

The results of Zahn [1] and Pioch [2, 3] used values of vortex viscosity { that were non-

physical (4 = i). Vortex viscosity is given by the following relationship [6]

= p (3.84)
2

where is the normalized dynamic viscosity and #, is the volume fraction of the magnetic

nanoparticles.

Assuming a typical volume fraction of 10% for ferrofluids, Mathematica® simulations

were done using values given X0 =1, =1, 4=0.15, E = 0.00001, fl =1, Q'=0.01.

Figure 3-39 and Figure 3-40 are Mathematica® plots of normalized flow and spin velocity

distributions for an imposed perpendicular magnetic flux density (B, =1) while Figure 3-41 and

Figure 3-42 are plots for an imposed tangential magnetic field (H, = 1). In both these cases there

is good agreement between using the complete and linearized torque expressions.

Figure 3-43 and Figure 3-44 are Mathematica* plots of normalized flow and spin velocity

distributions for an imposed rotating magnetic field i, =1, Hi = i with observable deviations

between the results using the complete and linearized torque expressions.
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Figure 3-39. Normalized flow velocity i (3) for an imposed normalized magnetic field with

B,=1, H, =0 with ZO =1,i =1,=0.15, -O=0.00001, d2=1, '0.01. The results obtained

with the complete torque equation and the linearized torque equation are in good agreement with
their curves overlapping each other.

Figure 3-40. Normalized spin velocity b, (3) for an imposed normalized magnetic field with

B,=1, H,= 0 with =1, =1, =0.15, 0.00001,nf2=1,'=0.01. The results obtained
az

with the complete torque equation and the linearized torque equation are in good agreement with
their curves overlapping each other.
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Figure 3-41. Normalized flow velocity i (i) for an imposed normalized magnetic field with

B,=O,H =l with oO=1,1=1, =0.15, =0.0000 1,n=1,'=0.01. The results obtained
az

with the complete torque equation and the linearized torque equation are in good agreement with
their curves overlapping each other.

Figure 3-42. Normalized spin velocity @, (i) for an imposed normalized magnetic field with

B =0, HZ =1 with Zo =O1, 1, 0.15, 0.00001, dl =1, '=0.01. The results obtained

with the complete torque equation and the linearized torque equation are in good agreement with
their curves overlapping each other.
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Figure 3-43. Normalized flow velocity v,(i) for an imposed normalized rotating magnetic field

with B =1, HZ = i withro =1, i=1, 4= 0.15, = 0.00001, U =1, i'= 0.01.The results obtained

show differences obtained between the complete torque equation and the linearized torque
equation.

Figure 3-44. Normalized spin velocity Co, (i) for an imposed normalized rotating magnetic field

with 5, =1, HZ = i withgo =1, ,=1, 4=0.15, =0.00001, U =1, q'= 0.01.The results obtained
az

show differences obtained between the complete torque equation and the linearized torque
equation.
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3.3. Conclusions

This chapter extends the planar Couette flow analytical results of [7] to include

perpendicular applied magnetic flux densities B, at AC frequencies and also analytically derives

the effective magnetoviscosity for tangentially applied AC magnetic fields Hz.

This chapter replicates the planar Poiseuille flow results of Zahn [1] and Pioch [2-4]

using Mathematica® and COMSOL Multiphysics* with good agreement between the results of

the two software packages. The results of Zahn [1] and Pioch [2-4] use non-physical values of

vortex viscosity and this chapter extends their analysis to include physical values of vortex

3
viscosity { =-7#,, for dilute suspensions.

2
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Chapter 4. Ferrofluid Flows in Cylindrical Geometry

4.1. Introduction

The classic spin-up experiment involves placing a ferrofluid filled cylinder in a uniform

rotating magnetic field and observing the velocity distribution. The opacity of the ferrofluid led

many researchers to observe the velocity distribution using streak path techniques with tracer

particles only on the surface of the fluid [1-3]. However this led to observations of flow that were

counter-rotating to the rotational direction of the magnetic field [4]. This counter-rotating

phenomena was explained to be a result of asymmetric tangential stresses on the boundary of the

magnetic fluid [5, 6]. It was believed that the flow in the bulk of the fluid would be an

entrainment of this surface flow until a new technique, pulsed ultrasound velocimetry, showed

that the volume flow below the interface was co-rotating to the rotational direction of the

magnetic field [7-9].

Pulsed ultrasound velocimetry is a technique that allows for the measurement of bulk

velocity flow measurements of opaque fluids [10-13]. If asymmetric tangential stresses on the

boundary of the magnetic fluid entrained the fluid layers below, then by placing a cover and

removing the free surface at the top of the cylinder the fluid would conceivably not have any

motion [2, 14-17]. Experiments were done with and without the cover on top of the surface and

co-rotating motion was observed in the bulk of the fluid in both cases while counter-rotating

motion, with a concave shaped meniscus, was observed near the surface [7-9]. The governing

mechanism for the flow in this case was believed to be because of spin-diffusion theory.
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This chapter will outline this experiment and will go over the spin-diffusion model and

simulations that were used to explain and reproduce this phenomena. This chapter will also

critique erroneous reasons for flow reversal that were obtained by Finlayson in his COMSOL

simulations [18] as well as, incorrect conclusions reached by Elborai in his PhD thesis [8]. This

chapter will also correct the value of rl' quoted by Chaves [9] for the fluid EMG900_2.

4.2. Experimental Setup

4.2.1. Ultrasound Measurement of Bulk Flows in a Ferrofluid Filled

Cylinder with no Free Surface

The bulk flow experiments [7-9, 19] conducted with ultrasound pulsed velocimetry used

a three phase two-pole induction motor Y connected stator winding to generate the uniform

rotating magnetic field. The rotating field was generated by using balanced three-phase currents

each with 1200 phase difference, in time and space, from each other. This was done by exciting

two phases with ±600 phase difference and grounding the remaining phase allowing the neutral

point voltage to float [7-9, 19].

The cylindrical vessel, with interior radius R, was made of polycarbonate with notches

made around the container at specific angles between the probe and the radius to the cylinder

center. A special cover was used to suppress the asymmetric surface tangential stresses generated

by a free surface. The setup is illustrated in Figure 4-1.

The Signal Processing DOP2000 ultrasound velocimeter was used along with Griltex-Pl

latex tracer particles produced by EMS CHEMIE at a concentration of 0.Olg/ml in experiments
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by He, Elborai and Chaves [7-9, 19]. These copolyamide particles are neutrally buoyant in

ferrofluid with a density of 1.1 g/m13 and a diameter of 50pAm. The ultrasound probes send pulses

that get reflected off these tracer particles added to the ferrofluid. The velocity is determined by

measuring the Doppler frequency shift in the received pulses while the time of flight gives the

distance away the moving particle is from the probe. The velocimeter only measures the

component of the velocity parallel to the axis of the transducer. By combining the readings of

multiple probes at various angles the rotational velocity profile v,(r) can be determined. The

velocity measured at a point in the fluid can be expressed in cylindrical coordinates with no

dependence in the # direction as

v(r, z) = vr (r, z)i, + vo (r, z)i, + vz (r, z)i, (4.1)

If the probe is placed at an angle a as shown in Figure 4-2, the radius r at a point on the

ultrasound path is given by the expression

r = (x2 +(R sin a)2) (4.2)
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Figure 4-1. Experimental setup illustrating measurement of bulk ferrofluid flow profiles in
cylindrical geometry. Left: Ultrasound transducers placed at various heights in the container
surrounded by the stator. Right: Top view of probes placed at different incident angles [19].

Resolving the unit vectors i, =cos #i, +sinpi, and i= - sin #i, + cos pi into Cartesian

coordinates and using (4.2) gives

x Rsina.
v(r, z)= v,(r, z) -X-1,+I, +v,(r

(r r
R sin a . x . r .

,z) -x1 +-x Y, + vz(r, z)i,r r

x Rsina
where cos = - and sin # = . The ultrasound transducer in Figure 4-2 only measures the

velocity vm in the x-direction given by

x Rsina
Vm (x) = v(r, z)-ix = Vr (r) x - v (r) Rsina

Vx2 + (R sin a)2 0 V2 + (R sin a)2

Rewriting this to solve for v, gives

x x2 +(R sin a)2
v,(rVr (r) -v,(x) 

Rsina Rsina
(4.5)
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requiring that in addition to the measurement vm(x), a measurement of the radial component of

the velocity v,(r) is needed. This is typically done with the ultrasound probe axis directed along a

radial line to the cylinder center.

Ultra-sound probe

x Ix

Figure 4-2. Spin-up flow measurement geometry. Ultrasound transducer positioned at angle a
with respect to the radial direction. Probe measures x component of velocity vector vm(x) [7, 8].
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4.3. Experimental Results and Conclusions

Chaves conducts several

EMG900_2 (kerosene based) [9].

Ferrofluid '1 (N s m-2)
EMG705_0 0.0025
EMG900 2 0.0045

Table 4-1. Physical and magnetic
Chaves [9].

experiments using two fluids EMG705_0 (water based) and

Their physical characteristics are tabulated in Table 4-1.

p (kg/m) poM, (mT) X Volume Fraction
1220 21.9 4.99 0.039
1030 23.9 1.19 0.043

properties at room temperature for a subset of fluids used by

The rotating field generates a well defined circular flow, as seen in Figure 4-3, with

negligible circulation in the axial direction in Figure 4-4. Having a consistently shaped velocity

profile allows for investigating the effect of various parameters on the magnitude of the

rotational velocity of the fluid v,.

Velocity profiles for the two different liquids (EMG705_0 and EMG900_2) are plotted as

a function of frequency (Figure 4-5), magnetic flux density (Figure 4-6) and position along the

height of the cylinder (Figure 4-3). It is evident that increasing the frequency, keeping the

strength of the field constant, increases the magnitude of the rotational velocity while

maintaining the same velocity profile shape. The same direct relationship is true between

magnetic flux density and magnitude of rotational velocity.
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Figure 4-3. Velocity flow profiles for a) EMG705_0 and b) EMG900_2 ferrofluids at various
heights along the ferrofluid cylinder with a cover at the top. Plot shows that the # directed

velocity profile does not significantly change with height. Plots taken from [9].
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Figure 4-4. Velocity in the axial direction for a) EMG705_0 and b) EMG900_2 ferrofluids.
Velocity profiles are for axial lines r = 0 (center of cylinder) and r = 0.5Ro where Ro=24.7mm is
the radius of the cylindrical vessel used. The z-directed flows are small (~- 2mm/s) suggesting
flow is mainly in the 0 direction of the rotating field. Plots taken from [9].
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Figure 4-5. Velocity flow profiles for a) EMG705_0 and b) EMG900_2 ferrofluids as a function

of frequency at constant rotating flux density of 12.3 mT RMS. Plot shows that increasing

frequency proportionally increases the peak magnitude of the rotational velocity. Plots taken

from [9].
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Figure 4-6. Velocity flow profiles for a) EMG705_0 and b) EMG900_2 ferrofluids as a function
of strength of applied rotating magnetic flux density at 85 Hz. Plot shows that increasing the
strength of the rotating magnetic field increases the magnitude of the rotational velocity. Plots
taken from [9].
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Figure 4-7. Velocity flow profiles for EMG705_0 at different heights in the cylindrical container
without a cover. The negative velocity at the surface of the ferrofluid indicates counter-rotating
flow opposite to that of the positive co-rotating velocity in the bulk. Plots taken from [9].

Figure 4-7 illustrates that the bulk flow and the flow at the free surface of the ferrofluid

are governed by two different mechanisms and can result in opposite flow directions. The flow in

the bulk of the fluid is always seen to be co-rotating with the direction of the rotating field. The

flow at the surface is caused by asymmetrical tangential stresses that are a function of the

meniscus formed with the edges of the container. In Figure 4-7, the ferrofluid 'wets' the surface

creating a concave surface shape resulting in counter-rotational flow [6].

Elborai, in his thesis, investigates changing the meniscus shape in two configurations A

and B as shown in Figure 4-8 [8]. Configuration B aligns the surface of the ferrofluid with the

bottom rim of the iron stack of the stator winding and configuration A aligns the surface with the

top rim. In configuration B, the ferrofluid interface is pulled up towards the stronger magnetic

field strength resulting in a convex shaped meniscus while in A the stronger field pulls the
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interface into a concave shaped meniscus. In both cases the ultrasound probe is placed at the top

of the cylinder to measure flows at the ferrofluid-air boundary. The results plotted in Figure 4-9

clearly show that bulk flow and surface flow are in opposite directions and are governed by two

different mechanisms. At a free surface the flow is determined by the shape of the meniscus

resulting in a co-rotating or counter-rotating flow with a convex or concave shaped meniscus

respectively. Elborai goes further to incrementally add ferrofluid to the cylinder of configuration

A progressively increasing the height of the ferrofluid. Figure 4-9 shows that initially the

ultrasound probe close to the surface of the ferrofluid measures a counter-rotating flow but as

more ferrofluid was added the probe being no longer near the surface measures the bulk co-

rotating flow.
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Figure 4-8. Elborai's experimental configuration to change the shape of the meniscus formed at

the ferrofluid free surface [8]. Configuration A pulls the meniscus of the ferrofluid downwards

into a concave shaped meniscus resulting in counter-rotating flow at the free surface. The

meniscus is pulled up into a convex shape by the stator in configuration B resulting in co-rotating

flow at the free surface. Figure taken from [8].
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Figure 4-9. Elborai's measured change of rotational rate of MSGW1 1 ferrofluid as the height of
the ferrofluid is increased in increments of 1mm. Experiments were done at two rotating
frequencies of 10 and 50Hz. Concave shaped meniscus (A) results in counter-rotating flow while
convex shaped meniscus (B) results in co-rotating flow consistent with asymmetric tangential
stresses at the ferrofluid-air boundary [6, 8]. As more ferrofluid was added in configuration A,
the probe is no longer close to the surface of the ferrofluid and the motion co-rotates similar to
that in the bulk of the fluid. Plot taken from [8].
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4.3.1. Assumptions and Subtleties of Prior Work

A fundamental assumption made by Elborai, He and Chaves [7-9, 19] was that the

demagnetizing effects, due to the shape of the cylinder, did not contribute to the flow. This

would be true if the cylinder was infinitely long. For practical purposes a fully filled cylinder of

ferrofluid with a height that is significantly greater than its diameter would be a good

approximation. However, the ratio of the maximum height of the ferrofluid in the cylinder with

respect to the cylinder's diameter used by these authors brings into question their assumption of

ignoring demagnetizing effects. The results of Chaves [9, 19], He [7] and Elborai [8] are similar

but based on Table 4-2, Chaves's experimental results would appear to be the most accurate by

being the set of data that has the least effect due to demagnetizing factors associated with the

shape of the cylinder. All further experimental data used in this thesis, for a cylindrical geometry,

will be based on Chaves's results.

Author Inner diameter of vessel Maximum height of Ratio of height/diameter
(m) ferrofluid in vessel (m)

Elborai [8] 0.0574 0.0500 0.871
He [7] 0.0919 0.0600 0.653

Chaves [9, 19] 0.0494 0.0635 1.285

Table 4-2. Table of ferrofluid cylindrical dimensions used in prior experiments illustrating the

invalidity of assuming negligible demagnetizing effects.

A subtlety in all these author's works is the strength of the magnetic flux density used.

For all their results the magnetic flux density quoted is the strength of the flux produced by the

stator in the absence of the ferrofluid. It is not evident that the authors correct for the actual field

inside the ferrofluid especially when determining values of spin viscosity r/'. This brings into

doubt the accuracy of q'that they derive from their experimental results.
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4.4. Numerical Simulation of Ferrofluid Spin-up Flow in

Cylindrical Geometry

There are different theories for bulk ferrofluid spin-up flow in rotating fields. Shliomis

states that the imposed rotating magnetic field is non-uniform itself due to the demagnetizing

effects associated with a finite height cylinder [20], while another theory considers

inhomogeneous heating of the fluid due to the dissipated energy of the rotating field to create a

spatial variation in susceptibility driving the rotational flow [2, 20-22]. Taking the case where

the cylinder's height is significantly greater than its diameter, resulting in negligible field non-

uniformity in most of the fluid, and assuming that the strength of the magnetic field is weak

enough to assume negligible heating effects of the fluid, the only theory that would explain

rotational motion in experiments by Chaves, Elborai and He is the spin-diffusion theory [7-9,

19]. This section will explore this limiting case where spin-diffusion is the governing cause of

the rotational flow.
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Theoretical Model of Experiment

4.4.1.1. Governing Equations

The governing equations outlined here were explained in detail in Chapter 2. There are

four governing equations for ferrofluid spin-up flow that need to be solved simultaneously. The

two Maxwell's equations applicable to ferrofluid flow are outlined below and can be combined

into one equation for magnetic scalar potential.

1) Maxwell's Equations: Ampere's Law

VxH=J (4.6)

2) Maxwell's Equations: Gauss's Law for Magnetic Flux Density

V-B=0 (4.7)

Since the ferrofluid is a current free region, (4.6) can be rewritten such that H is the gradient of a

magnetic scalar potential y as given in (4.8) below.

VxH=0= H=-Vy/ (4.8)

(4.7) can be rewritten to include the relation between magnetic flux density and fluid

magnetization M.

B=p(H+M)

V-B =0 =mpOV-(H +M)=0 (4.9)

V-H =-V-M

Substituting (4.8) into (4.9) gives a Poisson's relation between fluid magnetization and magnetic

scalar potential.
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1) Poisson's Equation

V2y/= V.M (4.10)

The three other equations that are coupled together are the fluid mechanics equations and the

magnetic relaxation equation outlined below.

2) Conservation of Linear Momentum

p +(V.V) V = -Vp'+2V x co+({+q)V'v +p 0 (M-V) H (4.11)

3) Conservation of Angular Momentum

I -- +(v-V)01 = pOMxH+2{(Vxv-2m)+1'V 2o (4.12)
1at

4) Magnetic Relaxation Equation

__M 1+(v-V)M=oixM- (M-Mq) (4.13)
at eff

4.4.1.2. Model Assumptions

The applied field is assumed to not be strong enough to magnetically saturate the fluid.

The equilibrium magnetization M eq of the fluid is assumed to be in the linear regime of the

Langevin equation as a function of the magnetic field inside the ferrofluid given by

Meq = XHfld (4.14)

To not consider the effect of the non-uniformity of the field on ferrofluid spin-up, an

infinitely long cylinder will be modeled since it has no demagnetizing effect in the axial

direction and equal demagnetizing factors of in the transverse directions resulting in a uniform

field inside the ferrofluid filled cylinder.
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The flow is also assumed to be viscous dominated allowing for the inertial terms to be

dropped. The left hand side of the linear momentum equation in (4.11) can be set to 0 and the

equation reduced to

0 = -Vp'+2(Vxo +({+q)V 2v+,u (M-V) H (4.15)

The same can be done for the left hand side of the angular momentum equation in (4.12) and the

remaining equation is given as

0 = pOM x H + 2{ (V x v - 2w)+ 'V 2C (4.16)

If the magnetic field is applied in the transverse x-y plane, the spin-velocity 0 is assumed

to only be in the z-direction o*. This is because in an infinitely long cylinder case, the driving

force is created only by the transverse magnetic field which creates a torque only in the z-

direction. The spatially varying demagnetizing field of a finite height cylinder would create an

internal magnetic field that had components in the transverse (x-y) plane as well as the axial

plane (z). In that case, there would be a torque and spin-velocity in all three directions (x, y and

z).
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4.4.2. Model Setup and Boundary Conditions

4.4.2.1. Modeling the Rotating Magnetic field

There are two ways to model the magnetic field, one is by using a current source

boundary condition while the other is by using a scalar potential boundary condition. Both

methods will be explored and be shown to be identical. For both cases, the following boundary

conditions always apply

n-jjBJ|=0,nxJ|HJ|=0 r=R

where represents the jump in the value across the boundary r=Ro.

1) Surface Current Boundary Condition

The actual experimental setup is similar to Figure 4-10 and involves placing a cylinder of

ferrofluid inside a stator winding (itself surrounded by a material with assumed infinite magnetic

permeability) of radius Ro with an air region in between. The resulting magnetic field in the air

region is a uniform field imposed by the current source and a dipole field created by the

ferrofluid.

The source of the magnetic field is a 3 phase 2 pole stator winding with each phase

having 1200 phase difference from each other. This requires a surface current boundary condition

driving the three phase coils in the axial (z) direction of the cylinder which can be described by

(4.17) where n is the rotational frequency and # the angle from the x axis.

2x2f 2ff 2ffK(#,t)=KO cos2tcos#+cos(Eit 2 )cos(# - ) + cos(it + -)cos(# + ) iLc3 3 3 3 (4.17)
3

K(#,t) = - KO cos(t -#)i,
2
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3
K(#, t)= - KO cos(At -#)i,2

Figure 4-10. . Two dimensional representation of actual spin-up flow experiment. Shaded region
represents the infinitely long cylinder of ferrofluid of radius Ro. The unshaded air region separates
the ferrofluid from the outer stator winding that has a current boundary condition imposed at r=R
surrounded by a u = oo region.
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2) Scalar Potential Boundary Condition

Although setting up the model using the current boundary condition can be accomplished

in COMSOL Multiphysics, it can be difficult to solve. A simpler method of setting up the

magnetic field using the magnetic scalar potential can be used. The fact that the only region of

interest is the region of ferrofluid and it is only affected by the uniform field imposed allows for

this setup to be simplified to a one region problem, similar to Figure 4-11, to aid the numerical

simulation process.

It is known that an infinitely long cylinder can be considered a special case of an ellipsoid

of revolution with demagnetizing factors of % in the transverse (x,y) direction and zero

demagnetizing factor in the axial (z) direction. Therefore in the presence of an externally applied

uniform magnetic field (H xext Hyext ) the field inside the infinitely long ferrofluid (Hxfluid , H yfluid )

cylinder can be given by the following relation.

1
Hxjuid =Hxext -- IM

2 (4.18)
1

Hyfluid Hyext -- M
2 Y

Eqs (4.18) and (4.14) are substituted into Meq of (4.13) and the only driving force will be

due to the uniform external rotating magnetic field (Hxext, H yext) To describe the uniform

rotating field in Cartesian coordinates the external fields (Hxext, Hyext) are sinusoidal functions of

time with rotational frequency Q and 900 out of phase with each other. Eq (4.19) generates a

counter-clockwise uniform rotating magnetic field of magnitude Ho.

H xet = HO cos(nt)ix (4.19)
Hyext = H0 sin(9t)i,
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Ho is related to the surface current as follows

3
Ho =-- Ko

2
(4.20)

Since

H = -V y(4.21)

yf(r = R0 ) can be determined to be the following boundary condition for a counter-clockwise

rotating magnetic field.

V= Ho (x cos(Ot) + y sin(flt)) (4.22)

2Ro x

Figure 4-11. One region model setup with shaded circle representing ferrofluid with linear
magnetization and boundary condition on magnetic scalar potential. The scalar potential
generates a magnetic field rotating in the # direction at frequency 0. This magnetic field
represents the external magnetic field and has to be corrected for demagnetizing effects before
being used in the magnetic relaxation equation. The arrows inside the stator show the uniformly
distributed rotating magnetic field created inside the ferrofluid at a particular instant in time.
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4.4.2.2. Fluid Boundary Conditions

The linear momentum equation in (4.15) requires two vector boundary conditions. For a

rigid and stationary boundary the no slip and no-penetration boundary conditions are as follows

n.|v||=O,nxllvll=O r=R (4.23)

where v represents the jump in velocity of the fluid across the boundary r=Ro. The boundary

condition on v(r = R0 ) for this model is

v(r = R)= 0 (4.24)

The conservation of angular momentum in (4.16) requires two vector boundary

conditions if 17'#0 .The appropriate boundary conditions for the spin-velocity o is still a

subject of debate and depends on the assumptions for the particle/wall interactions. Two

possibilities for this boundary condition are considered.

1. The "spin-no-slip" boundary condition which assumes that the particle/wall interactions

are strong enough that there is no relative spin between the particle and surface.

n-||||=0,nx||o)|= 0 r=R (4.25)

2. The "spin-vorticity" boundary condition that assumes that antisymmetric stresses vanish

at the wall and that the ferrofluid nanoparticles roll along the particle wall interface.

O--Vxv =0 r=RO (4.26)
2

Finlayson, in his paper [18], does COMSOL simulations using the "spin-vorticity"

boundary condition which results in flow reversal for all magnetic field strengths which is not
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observed experimentally. This result confirms that the "spin-vorticity" boundary condition is not

a valid boundary condition to use for modeling ferrofluid flows.

The boundary conditions used for this analysis are the "spin-no-slip" boundary condition

at the wall boundary.

co(r = R0 )= 0 (4.27)

Neglecting the effect of "spin-diffusion" by setting q'= 0, the angular momentum

equation in (4.16) reduces from a second order to a zeroth order equation. Therefore there is no

boundary condition on the spin-velocity o implying zero or negligible particle/wall interactions.

4.4.3. COMSOL Simulations

The goal of this section is to reproduce the experimental results of EMG900_2 in Figure

4-6b, using spin-diffusion theory, with COMSOL Multiphysics. The reason why the plot with

EMG900_2 will be replicated is to verify Chaves's value for spin-viscosity r7'that he determines

experimentally to be 6xl' 0- kg m s 1 [9]. This value will be shown to be slightly erroneous due

to the fact that the value of the magnetic field used in his paper refers to the magnetic field in the

absence of the ferrofluid. It is not clear whether he corrects this value to include the

demagnetizing effects for an infinitely long cylinder that this model assumes as seen in (4.18).

However, Chaves does allow for order of magnitude errors in his estimated values of { and rff

giving a range of estimated values for spin-viscosity 17' from 10-8-142 kg m s-'.

Equations (4.10)-(4.13) were made non-dimensional with respect to reference parameters

such as the radius of the vessel Ro, frequency of the applied rotating field 0 and a reference

magnetic field intensity Ho.
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d v - - - -- 2- -
Rd - +(v-V)v]= -Vp'+2{V v+(MV)H (4.28)

dco - -- - - - - - - - -2-
R[ - +(v-V)o]= Mx H +2{(Vx v -2c)+'V o (4.29)

dt

dM
d- +(v-V)M= 1M - (M-Meq) (4.30)

dt neff

V2 = V-M (4.31)

where

- v-M-H - p -V=VROv= ,M=-,H=- ,t=tQ,p= ,"=-,=
Ron HO HO #oH. 9 HORo

- {A2 - 9n2 _p_2 _ n
poH 1 -pi, R, 2oH, R.=o p-oHR7- 1

Equations (4.28)-(4.3 1) were put into COMSOL in non-dimensional form, setting internal

constants such as po=1, and in all cases the transient form of the equations were used. A fluid

mechanics module was used to represent the augmented Navier-Stokes equation for (4.28). Two

transient convection and diffusion modules were used to represent the magnetic relaxation

equation (with zero diffusion) in x and y coordinates for (4.30). A diffusion equation was used

for the angular momentum equation in (4.29) with q' the coefficient for the spin diffusion term.

A general PDE module was used to represent Poisson's equation in (4.31). The time-dependent

terms in the PDE module set of the linear and angular momentum equations were all set to 0.

Table 4-3 lists the necessary constant parameters and the values that Chaves uses for his

experiment in Figure 4-6b. In this experiment the variable that Chaves varies is the strength of

the magnetic field. This in turn affects certain normalized parameters due to their dependence on

the reference magnetic field Ho and are tabulated in Table 4-4.
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Parameter Value

Teff (S) 
I I -

p (kg/m
3

) 1030

tj (Ns /m2) 0.0045

poM, (mT) 23.9

C (Ns/m 2) 0.0003
Frequency (Hz) 85

Radius of cylindrical vessel (m) 0.0247
Radius of stator (m) 0.0318
Volume Fraction (4.3

1.19

92 (rad/s) 534.071
r7'(kg m/s) 6x10-'u

Table 4-3. Table of physical and experimental parameters used by Chaves to generate

experimental plot of Figure 4-6b using EMG900_2

Normalized Variable BO=143G BO= 125G BO=103G
HO=11379.6 A/m HO=9947.2 A/m HO=8196.5 A/m

/'= 1.61x10 6  2.11x10 6  3.11x10~6

go H0

42 2 0.00048 0.00062 0.00092

- r/9
11 = 2 0.0074 0.0097 0.014

R = 1101.5 1441.5 2123.1
ploH2

Table 4-4. Table of normalized parameters
field used by Chaves [9].

that depend on the strength of the RMS magnetic

Two different COMSOL simulations, as described in 4.4.2.1, were done using the

normalized equations in Eqs (4.28)-(4.31) and using the normalized parameters for the 143G

case in Table 4-4. The first type of simulation was done imposing the surface current boundary

condition with a region of air separating the stator from the two dimensional infinitely long

cylinder. The second simulation was done using the scalar potential boundary condition method
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in only the region of interest - the cylinder of ferrofluid. Both will be shown to be identical with

the scalar potential method being easier to implement in COMSOL Multiphysics. Summary of

the setup of the COMSOL models used is documented in Appendix B.

4.4.3.1. Simulations Using Surface Current Boundary Condition

The model setup was similar to Figure 4-10 with a normalized radius Ro of 1 for the

cylindrical vessel and a stator normalized radius R, of 10 in COMSOL . In the actual experiment

a line dipole field would be generated by the ferrofluid in the surrounding free space region. This

dipole field could affect the stator winding current if sufficiently close by. From the dimensions

of the experiment the stator was not that much larger than the actual cylindrical vessel of

ferrofluid, therefore the current in the windings may have been perturbed.

When specifying boundary conditions in a numerical package such as COMSOL

Multiphysics the boundary conditions specified are implied to be fixed. To simulate the case

where the normalized radius of the stator would have been 1.29 and imposing a fixed surface

current boundary condition would be erroneous since the current is actually affected by the

dipole field and this effect was not measured by Chaves. The best method to simulate this

experiment is to take the value of magnetic field measured in the absence of the ferrofluid and

assume that this is an imposed rotating field sufficiently far away such that the current was not

perturbed by the dipole field. The normalized boundary condition was imposed at the normalized

radius of 5 and was

o3
K( 2, t)=-KO cos(t -#) (4.32)

2
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with Ko equaling % such that the magnitude of the current density equals the normalized value of

magnetic field H = 1.

Figure 4-12 is a COMSOL plot of the velocity field within the ferrofluid cylinder, while

Figure 4-13 is a streamline plot of the magnetic field distribution in and around the cylinder of

ferrofluid. Figure 4-14 gives the distribution of the magnetic field inside and outside the

ferrofluid cylinder as a function of normalized radius. There is a jump in magnetic field at the

air-ferrofluid wall corresponding to the additional dipole field created, that decays as the cube of

the distance away from the wall, while sufficiently far from the wall the magnetic field is only

due to the imposed stator current. The magnetic field and magnetization are mostly uniform

inside the cylinder except for a small region at the wall as seen in Figure 4-15 and Figure 4-16.

The reason for this is the non-linear effects of the velocity and spin-velocity on the

magnetization near the wall. The non-linear effects, however, are very small.
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Velocity field distribution
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Figure 4-12. Plot of counter-clockwise rotating steady flow of ferrofluid in cylinder surrounded
by a stator driven by a surface current boundary condition at r =1I that generates a counter-
clockwise rotating magnetic field. Flow profile is similar to that of rigid-body motion.
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Magntude of normalized magnetic field as a function of normalized radius
1.4

1.3

32

0,8

0.7

0.6 1

Normallzed radiu

Figure 4-14. Magnitude of normalized magnetic field distribution as a function of normalized
radius inside and outside the cylinder of ferrofluid. The different colors represent the magnetic
fields at various times. It is evident that the field inside the cylinder is uniform and outside the

cylinder it is a uniform and a line dipole field, that decays as the cube of the distance, generated
outside. The stator is excited at a normalized radius (R1 =10) sufficiently far away from the

ferrofluid with HI= 1. Magnitude of the normalized magnetic field inside the ferrofluid is
approximately 0.629.
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Magnitude of normalized magnetic field as a function of normalized radius

I 1 1 I 1

1 Y

I It II 1

0.62931
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized radius

Figure 4-15. Plot of magnitude of normalized magnetic field as a function of normalized radius
within the ferrofluid cylinder. Magnetic field is uniform in majority of the fluid except for some
variation at the boundary T =1 due to the velocity and spin velocity affecting the magnetization
there. The difference between the magnetic field at the wall and in the rest of the fluid is very
small (=1x10-4)
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0.748
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Magnitude of normalized magnetization as a function of normalized radius
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Figure 4-16. Plot of normalized magnitude of magnetization as a function of normalized radius
showing that the magnetization at the wall boundary F =1 deviates from the magnetization in
the bulk since there is the greatest change in velocity and spin-velocity near the wall. The non-
linearity of the magnetization is very small since the magnitude at the wall changes by =x 10-4
compared to the magnetization in the bulk of the fluid.
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Simulations Using Magnetic Scalar Potential Boundary Condition

The model was setup similar to Figure 4-11 with a normalized radius Ro of 1 for the

cylindrical vessel. Since the model involved normalized variables the boundary condition

imposed in (4.22) has to be normalized and is given by

= x cos(t)+ y sin(t) (4.33)

representing a counter-clockwise rotating magnetic field where

- x - y
x= -,y (4.34)

The flow pattern obtained is identical to that of Figure 4-12 and is shown in Figure 4-17

along with streamlines of the uniform magnetic field distribution inside the ferrofluid cylinder.

The magnetic field distribution within the ferrofluid, in Figure 4-18, can be seen to be mostly

uniform in the bulk with some variation at the wall where velocity and spin-velocity affect the

magnetization significantly as seen in Figure 4-19.
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Arrow: Velocity field Streamline: Magnetic Field
1.5 -

0 .

-0.

-1.5 -

t + t I I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X axis

Figure 4-17. Velocity flow profile and magnetic field distribution using scalar potential boundary
condition method for a counter-clockwise rotating field. Flow velocity is depicted by arrows
counter-rotating while streamlines depict the uniform rotating magnetic field distribution in the
region of ferrofluid.
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Magnitude of normalized magnetic field as a function of normalized radius

- - - -- - -- - - -- -- 7 - 5 - - - - -i- -

0.626968 r-

0.626964 H

I _ I_ 11 _
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I ___- ~ ___ I

0.7 0.8 0.9 1

Figure 4-18. Plot of magnitude of normalized magnetic field as a function of
The field is shown to be uniform and approximately equal to 0.627.

0.74609

0.746085

0.746075 L
0

normalized radius.

Magnitude of normalized magnetization as a function of normalized radius

r - - - - - - -I

0.1 0.2 0.3 0.4 0.5
Normalized radius

0.6 0.7 0.8 0.9 1

Figure 4-19. Plot of magnitude of normalized magnetization as a function of normalized radius
within the ferrofluid cylinder. The different colored lines correspond to different times. The
magnetization can be seen to be uniform and approximately equal to 0.746.
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Comparison of Both Methods

Figure 4-20 compares the velocity profile obtained as a function of normalized radius

using both the scalar potential and surface current boundary condition. They can be seen to be

almost identical with minor differences due to the more difficult meshing required for the surface

current method. The velocity profile is linear in the bulk of the fluid resembling rigid-body

rotation except for a small boundary layer at the wall where no-slip boundary conditions of zero

velocity has to be satisfied.

Figure 4-21 compares the spin-velocity as a function of normalized radius and is identical

for both implementations . The spin velocity is uniform throughout the bulk of the fluid but at the

small boundary layer near the wall the spin-velocity has to satisfy the boundary condition of zero

spin-velocity.

The plots of velocity and spin-velocity profiles given in Figure 4-20 and Figure 4-21

along with the approximately identical plots obtained for magnetic field (Figure 4-18 and Figure

4-15) and magnetization (Figure 4-19 and Figure 4-16) for the two different methods prove that

they are identical. The scalar potential method is easier to mesh and implement and will be used

for all other simulations in this thesis.
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Velocity profile comparison of Surface current and Scalar potential
methods

E 0.0004
0

' 0.00035

M 0.0003

0.00025 - Surface
0.0002 current

0 0.00015
0. 5- - Scalar

,= 0.0001 potential

0.00005

0

0.00 0.20 0.40 0.60 0.80 1.00
Normalized radius

Figure 4-20. Plot of rotational velocity as a function of normalized radius comparing the two
different implementations on source boundary conditions - Surface current and scalar potential.
Velocity profiles can be seen to be almost identical in both implementations and linear with
radius throughout the bulk of the fluid except at the =1 boundary where a no-slip boundary
condition, v(F =1) = 0, has to be satisfied.

Spin velocity profile comparison of Surface current and
Scalar potential methods

0 0.14

0' .12.C
(A 

0.1
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E S
E 0.06 - Surface current

o 0.04 - - Scalar potential
-a

. 0.02

01

0.00 0.20 0.40 0.60 0.80 1.00
Normalized radius

Figure 4-21. Plots of spin-velocity as a function of normalized radius for both model
implementations. Spin velocity is shown to be identical and constant within most of the fluid
region and going to zero on the T =1 boundary to satisfy the o,(F =1)= 0 boundary condition.
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Comparison with Analytic Solutions Using a Linear Magnetic

If the ferrofluid region in Figure 4-10 is replaced by a linear magnetic material

Poisson's equation can be replaced with Laplace's equation in magnetic scalar

potential.

V2y=V.M

(1+X)V 2 =O0

V2y =0

Solutions to Laplace's equation in the individual regions are given as

(4.35)

r (A cos(2t -#)+ Bsin(2t -#)) 0 < r < R.
y=r- (C cos(Qt -#)+ Dsin(2t -#))+ r(E cos(At -#)+F sin(2t -#)) RO < r < R

r-' (G cos(92t -#0)+ L sin(nt -#0)) r > R,

Since p = oo for r>R1,

H(r > RI)=0 -> G = L =0

The surface current boundary condition at r=R, implies

3
(H, -H,2 =-KO cos(92t -#0)

r=R1  2

0+ 1 (C + ER,2 )sin(Qt -#0) -(D + FR,2 )cos(nt -#0))= 3 KO cos(nt -#0)R,2 2

implies that

C =-ER1

3
D+FR1

2 = KoR,2
2
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Material

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

pA = p(1+ X),



At r=Ro, the tangential magnetic field is continuous resulting in

(H02-HOI) =0

1 ((C+ ER )sin(Ot -#)+(D+
RO

FR) cos(t - ))= (A sin(t - #) + Bcos(9t -#)) (4.42)

resulting in

C+ER 2
A D 0

RO

D + F R 2
B =

(4.43)

The jump in the normal magnetic flux density is also continuous as given in

(uo Hr 2 - 1,Hr, ) r=RO
= 0 (4.44)

i(Ccos(t- f) - D sin(At - #))+ uo (-Ecos(nt- #)+ F sin(2t - ))= ,u (-A cos( t - #b)+ B sin(t - ))(4.45)
Ro2

requiring the relationships

PO (C-ER2)AA=O
0O (4.46)

pB + A-(D -FR2 =0

Using (4.40), (4.43) and (4.46) results in

A=C=E=0 (4.47)

(4.48)
p0 (RO + R2 ) + pa, (R R- R 2)

(4.49)D = 3KoR ±(pR -po)
2((,po -p1)R 2 + R (p+p2
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F = 3KoR2 (, 1 +po) (4.50)
2(R2 (po +,u)+(R02 - 1 )) (450

The magnetic field distribution is then given as

B (cos(ft - #)iO - sin(nt - #)i,) 0 < r < Ro

(D DH{sin(t - 0)Kr _F )Pr +cos(M 0)( r2 +F)l R <r <R (4.51)

0 r>R,

The field inside the linear magnetic material is uniform and has a magnitude of B . Substituting

values used in the simulation of 4.4.3.1 where R1 =10, Ro =1, po=1 (due to normalization),

x=1.19 and Ko=2/3 (since H = 1) results in a value of

B =0.629307 (4.52)

which is approximately equal to the magnitude of the magnetic field strength obtained in Figure

4-15. This confirms that the ferrofluid's magnetization is mostly linear except at the boundary

where spin-velocity and velocity effects make it non-linear. The magnitude of the magnetization

M can be calculated to be

Ml = |XH = 1.19x0.629307 = 0.74888 (4.53)

which is approximately equal to the value achieved from simulation in Figure 4-16.

To verify (4.52) for an infinitely long cylinder which has demagnetization coefficients of

1/2, the internal magnetic field within the cylinder can be given as

1 H
H in,,,nal = H external I M -> M = X H -> H internal = external (4.54)

2 12 1+ X
2
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with Hexterna =1and X=1.19 resulting in Him,,,al ~0.627 which is in good agreement with

(4.52). The reason for the slight disagreement is because the applied uniform field comes from a

source at R I=10 rather than from infinity.
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4.4.3.5. COMSOL Simulations of Flows With r '=0

The conservation of angular momentum equation given in (4.12) has the spin-viscosity

term which is the essential component to 'spin-diffusion' theory. Some authors do not include it

in their analyses, by setting it to zero, because they believe that 17' values are so small that its

effect is negligible [2, 5, 20, 23, 24].

By setting the term to zero, the conservation of angular momentum equation reduces to a

zeroth order equation in space requiring no boundary condition on spin-velocity o at the wall.

I[- -V) (0= puMxH+2{(Vxv -2w) (4.55)

In the case of the rotating field in the cylinder, the velocity is in the # direction and there is no

variation in the i direction resulting in no spatial variation for the spin-velocity o4 . Having no

spatial variation in spin-velocity means that the only driving terms for the linear momentum

equation are the viscous and pressure forces.

p V)V=-Vp'+1 +({+r/)V2v+:J H (4.56)

In an infinitely tall cylinder the magnetic field distribution is uniform inside leading to no Kelvin

force density inside the ferrofluid to drive the flow. Therefore, with no driving forces for the

flow the state for the ferrofluid is one without motion.

F =uo (M-V) H = 0 (4.57)

Simulations of an infinitely tall cylinder of ferrofluid subjected to a uniform rotating field

with r'=0 were done using the parameters for the 143G case of Chaves's EMG900_2 ferrofluid

as given in Table 4-3 and Table 4-4. The velocity profile can be seen in Figure 4-22 below and
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can be seen to be very small =10-13 normalized magnitude. These results are also confirmed by

Finlayson in his simulations [18].

X 103 Magnitude of normalized rotational velocity as a function of normalized radius over time

*6 4 -- - -- - -- - - - -- - -- - - -- - - -- -- -

E
0
C 0!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized radius

Figure 4-22. Plot of normalized rotational velocity as a function of normalized radius. The
different colored lines represent different profiles in time. The magnitude of the velocity is
extremely small =10~13 normalized magnitude.
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4.4.4.

4.4.4.1.

Errors in Other Author's Analyses

Chaves's Results [9]

Chaves, in his paper, determines the value of r'to be 6x10-10 kg m s1 but admits for order

of magnitude errors in his estimated values of C and Ueff giving a range for the spin viscosity of

10-1- 10-12 kg m s-. Using the normalization scheme outlined in 4.4.3 and the normalized

parameters in Table 4-4, for the different magnetic field strengths used, COMSOL simulations

were done to replicate Figure 4-6b.

Comparison of COMSOL and experimental results for ferrofluid EMG900_2
(q '=6x10-10 kg m s-1)

6

5

4
000 103G Experimental

fA

E - *- 125G Experimental
E3
.6 -+- 143G Experimental

S--- - 103G COMSOL
2-

- - 125G COMSOL

------ 143G COMSOL
1-

0

0 5 10 15 20 25

radius (mm)

Figure 4-23. Experimental data of Figure 4-6 and COMSOL simulations using parameters from
Chaves's paper with r'=6xl0- 0 kg m s~
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Figure 4-23 shows that the COMSOL simulations do not match the experimental results obtained

by Chaves. This is because Chaves in his determination of q' used the values of magnetic field

which were obtained in the absence of ferrofluid. He did not correct for the value of the magnetic

field inside the fluid, given by the relation in (4.18), for an infinitely long cylinder resulting in a

higher value for t'than actually needed to replicate the data [25].

The value for r7' can be tweaked with the COMSOL model to match the experimental

results. Simulations with a value of t'=4.84x10 1 0 kg m s1was shown to match the experimental

results very well as shown in Figure 4-24.

Comparison of COMSOL and Experimental results for ferrofluid
EMG900_2 in cylinder (q'= 4.84x10 10 kg m s-1)

6

5

4 .
- 103G Experimental

E -*i-- 125G Experimental

.+-- 143G Experimental

--- -103G COMSOL

- - 125G COMSOL

1--143G COMSOL

0

0 5 10 15 20 25

radius (mm)

Figure 4-24. Plot of velocity profile as a function of radius for Chaves's experiment showing that
a value of q'=4.84x 10-10 kg m s-Iclosely matches the experimental results instead of Chaves's
quoted value of 6x10-10
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4.4.4.2. Elborai's PhD Thesis [8]

Elborai on page 191 of his thesis [8] outlines his normalization scheme for the governing

fluid mechanics equations. It appears that Elborai did not normalize the governing equation but

instead normalized each term in the set of equations. This leads to some terms in his equations

scaled by a constant unitless term. His normalized equations for conservation of linear and

angular momentum are given below.

av -- - --- 2- -
R -l +(v-V)v]=-Vp'+2-Vxo+(1+-)V v+F (4.58)at q )

I am - - - y -2- A* + 7' - - -
Re(p2)[ - +(v-V)]=T+2-(Vxv -2m)+ 7-V '+V(V-) (4.59)

where his normalized variables are given as follows

- - v-M - H - OV=VRO, v= M= ,H= ,t=tnp= ,w=-,
RolL HO Ho uOHO 0

R=pF= ROF - T
IF MoH ' p=joH2

Dimensionalizing his conservation of linear momentum equation with his normalization scheme

is shown below.

p R 1 RO (v-V)v]- RO Vp'+2 Vxw+(l+_) V 2v+ ROF
n 2R poH 02 n uHR0  0

pR v +(-V)v] R Vp'+ 2 R V xo+(1 + ) ROV2V+ ROF

)72 at p- kuHi 2 u OH 21 dt/H 0  17 E2) q 20

p[av +(v-V)v]= - Vp'+2(V x (o +()7  )V2v + q2at pOHo u0HO

184



The result is that the force and pressure terms are scaled by a 2 term which is unitless but is

not necessarily equal to 1. Similarly dimensionalizing his equation for conservation of angular

momentum is shown below with the same 2 term scaling the torque vector.
poHo

A I -+ RO (v-V)m]= T +2-( RO-Vx-v _ 2 2' Ri m+ V(V-m)
q pR g22 at K2R poH 2 -O0 92 Rn

1 I-+(T +2 1(Vxv 2 + (' 1 2+ V(V-)
q92 at poH q K q(V

I[ +(v-V)O] = T ±A 2{(V xv -2w) + 'V2+(A'+ 1')V(V.O)
at poHo

This poses as a serious error in his thesis especially if he used the normalized equations for his

COMSOL simulations.

Another serious error in Elborai's thesis are his results for simulations with r/'=0. In his

thesis, Figures 8-1 (pg 198), 8-2 (pg 198) and 8-3 (pg 201) all show non-zero velocity profiles

for a zero spin-viscosity and in the case of an infinitely long cylinder. This is an incorrect result

as explained in 4.4.3.4 and is also inconsistent with a similar simulation done by Finlayson [18]

with r/'=0. The reason why Elborai might have gotten a non-zero flow was he might have

forgotten to remove the "spin-no-slip" boundary condition w(r = R) =0 when he set r/'=0

resulting in Eq. (4.56) having a non-zero curl of spin velocity w resulting in non-zero flow.

Elborai's figure 8-1 is shown on the next page.
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Figure 8-1: Velocity flow profiles obtained by numierically solving the spin-up model
without a spin diffusion term (i e., with spin viscosity rq'= 0). The simulation was
run for the parameters of MSG W11 listed in Table 8.1 with T = 1 x 10- s and
f = 200 Hz. Note that De = 27rf.

Figure 4-25. Elborai's erroneous plot (Figure 8-1) of velocity profiles with rj '=0 for an infinitely
long cylinder in a uniform rotating magnetic field. His plots show non-zero flow when there
should be no flow because there is no spatial variation in spin velocity o . Plot taken from [8].

4.4.4.3. Finlayson's Paper [18]

Finlayson sets up his COMSOL simulations similar to that done using the scalar potential

boundary condition method in Figure 4-11 except that Finlayson does not correct for the

demagnetizing field associated with an infinitely long cylinder given in (4.18) resulting in an

error with his numerical result.

One of Finlayson's conclusions from his simulations was that he observed flow reversal

at high magnetic fields. Finlayson associates this result with those obtained by authors who were

investigating flows at the free surface and had observed flow reversal [1, 3, 4, 19]. However, the

mechanism for this flow reversal had nothing to do with high magnetic fields but rather
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depended on the shape of the meniscus formed at the free surface as explained by Rosensweig

[6]. Finlayson confuses his result using spin-diffusion theory with the mechanism of tangential

stresses at the free surface which are two differing mechanisms even though he does mention it

at the end of the first paragraph on page 2 of his paper. Also, this logic of flow reversal at high

magnetic fields is not completely correct since the magnetization of the ferrofluid would saturate.

It is not clear if he accounts for this since he does not explain the expression he uses for the

equilibrium magnetization M, qwhich could be the complete Langevin equation or the linear

relation given in (4.14).
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4.5. Conclusions

This chapter summarizes the assumptions, setup and results of the previously measured

bulk flow experiments of spin-up flows in uniform rotating fields by various authors [7-9] . It

also outlines the setup for the COMSOL simulations, using spin-diffusion theory, q'# 0, with

boundary condition cO(r = Rwaii) =0, to explain the experimental results obtained but that

neglect the demagnetizing effects associated with the shape of the ferrofluid cylinder. The

experimentally fit values of spin viscosity derived by these authors [7-9] do result in COMSOL

simulations that are in good agreement with the experimental results but these values of spin

viscosity are many orders of magnitude greater than that derived theoretically as seen in Chapter

6. The explanation for this discrepancy is also explained in Chapter 6.

This chapter also explores the case neglecting the effect of spin diffusion (7'=0)

resulting in negligible flows when an infinitely long ferrofluid filled cylinder is subjected to a

uniform rotating magnetic field. Corrections to other author's works are also made in this

chapter.
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Chapter 5. Experimental Setup of Ferrofluid Spin-up

Flows in Spherical Geometry

5.1. Introduction

Spin-diffusion theory, applied to finite height cylindrical vessels in the previous chapter,

was shown to reproduce circular co-rotating bulk flows in uniform rotating magnetic fields. The

assumption made was that the cylinder had to be significantly taller than its diameter such that

non-uniform demagnetizing fields due to the cylindrical shape did not significantly contribute to

generating the flow. However, most experiments actually conducted using a three phase two pole

stator winding or current driven pairs of coils that limit the height of the imposed magnetic field

in the ferrofluid filled cylinder such that these demagnetization effects cannot be disregarded [1-

4]. Shliomis believes that the rotating fluid motion is generated as a result of the non-uniform

field created due to the non-uniform demagnetizing fields associated with a finite length

ferrofluid filled cylinder [5].

To compare whether spin-diffusion or non-uniform fields, due to demagnetizing effects,

generate the spin-up flow, an experiment where the non-uniform demagnetizing field effects are

insignificant was conducted. An infinitely long cylinder is only useful from a theoretical

standpoint since the uniform field demagnetizing factors are equal (to 1/2) in the transverse

direction and zero in the axial direction allowing for the creation of a uniform field. A uniform

field can also be created if the magnetic material is in the shape of a sphere allowing for equal

demagnetizing factors (of 1/3) in all directions. An experiment subjecting a ferrofluid filled
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sphere to a uniform rotating magnetic field was performed to determine if non-uniform

demagnetizing fields were the primary cause for the spin-up flow.

This chapter will describe the setup of the experiment to subject a ferrofluid filled sphere

to a uniform rotating magnetic field, generated inside of two spherical coils in quadrature in time

and space called a "fluxball machine", with bulk flows being measured using ultrasound

velocimetry. Two 10 cm diameter hollow polypropylene spheres were each filled with a different

ferrofluids, EMG705 and MSGW1 1, with their magnetic and fluid properties given in section

2.2. Each ferrofluid filled sphere was mounted in a special polycarbonate holder, that keeps the

sphere fixed and holds the ultrasound probes needed to measure the bulk velocity flows, and

tested one at a time in the uniform magnetic field apparatus. A list of the materials used and the

design of certain parts are documented in Appendix C.

5.2. Experimental Setup

5.2.1. Probe Holder

The probe holder was made of 0.5 inch thick polycarbonate and was designed in

SolidWorks®. Polycarbonate was chosen since it is nonmagnetic, nonconducting, resistant to

solvents and high temperature (melting point of ~11 5C) and is easy to machine. These

properties made it an excellent choice to be used as a probe holder.

The probe holder had to hold the 10 cm diameter sphere of ferrofluid and had to be

machined very carefully to get the correct curvature of the ball. To accomplish this, the probe

holder was precisely cut using a computer controlled OMAX waterjet cutter. The individual parts
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of the probe holder were then held together with polycarbonate screws (Appendix C). Figure 5-1

illustrates a graphic of the probe holder with the sphere of ferrofluid.

In addition to holding the sphere of ferrofluid fixed and exactly in the center of the

fluxball machine, the probe holder had to also hold the individual ultrasound probes at precise

angles with respect to the radius. The setup is similar to that explained in section 4.2 except with

notches placed underneath, along the equator and along one side of the sphere. A graphic of the

various probe angles from the top and side view of the probe holder can be seen in Figure 5-2

and Figure 5-3.

Special individual holders that snugly fit the ultrasound probes were cut out with the

waterjet, glued on to notches in the probe holder and drilled through with an 8.3 mm drill bit to

allow for the probe to touch the sphere. The exact dimensions of the individual parts for the

probe holder are documented in Appendix C. The standard dimensions of the ultrasound probe

are given in Table 5-1.

Ultrasound Probe Characteristics
Diameter 8 mm
Length 10 mm & 30 mm

Case material Epoxy
Output wire Radial

Other specification Non-magnetic

Table 5-1. Ultrasound probe specifications used in this thesis.

Additional notches were also made on the probe holder to allow for the placement of

GMW three axis sensors to measure the magnetic field strengths at three positions on the

circumference of the sphere. The GMW sensor datasheets are in Appendix C.
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Figure 5-1. SolidWorks design of assembled probe holder (ultrasound probe holders not shown)
holding the sphere of ferrofluid. The positions of the notches are shown allowing for the
ultrasound beam to be directed at specific angles with respect to the radial direction. Notches for
the GMW magnetic field probes can also be seen.

The support rod fits into the support notch in Figure 5-3 and holds the probe holder and

sphere of ferrofluid upright and fixed. It is made from low friction material like Teflon because it

is needed to slide in and out of the fluxball access holes which can be seen in Figure 5-20.

Figure 5-5 and Figure 5-6 show the top and side views of the actual constructed probe

holder containing the sphere of ferrofluid. The notches for the ultrasound probe holder and the

GMW magnetic field sensors can be clearly seen.
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Figure 5-2. Top view of probe holder showing various probe angles, with respect to the radial
direction, measured along the equator of the sphere. The probe positioned at 200 to the radial
direction is clearly drawn out. Image obtained from SolidWorks design of probe holder.

Figure 5-3. Side view of probe holder. Probes are placed at two different heights and also some
underneath the sphere of ferrofluid. The angles the probe makes with respect to the radial
direction is also noted. The support notch in the center helps to hold the probe holder and sphere
of ferrofluid fixed in the fluxball machine. Image obtained from SolidWorks design of probe
holder.

195

.................... :::::.: .......... . 10 :



Figure 5-4. SolidWorks Graphic of probe holder with sphere of ferrofluid and support rod
needed to keep it firmly in place.

Figure 5-5. Top of assembled probe holder containing sphere of ferrofluid. Notches for the
ultrasound probes and the GMW field sensor can be seen.
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Figure 5-6. Side view of assembled probe holder containing sphere of ferrofluid. Notches for the
underball ultrasound probe sensors and GMW field sensors can be seen.
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Testing the Probe Holder

Before conducting any experiments with ferrofluid it was necessary to test whether the

probe holder would accurately measure a flow that could be easily established experimentally

and with simulations.

A simple experiment was conducted using a 10 cm diameter sphere that had the top %/

surface sawed off and the sphere filled with transformer oil. A disk of diameter 81 mm was then

positioned on top of the free surface and was rotated at a constant RPM entraining the fluid

layers below.

The setup of the experiment is given in Figure 5-7. The velocity profiles were measured

using Signal Processing's DOP2000 velocimeter similar to the process outlined in section 4.2.1.

To allow for the measurement of the velocity profiles, Griltex-P1 was added to the transformer

oil. Plots of the area under the ultrasound echo curves (Appendix D) were made at various

concentrations of Griltex-Pl mixed with the transformer oil. The optimum concentration of

Griltex-Pi was found to be 0.008g/ml. The probes were placed at different positions in the probe

holder measuring different velocity profiles inside the sphere. The same flow was set up and

simulated in COMSOL Multiphysics and the model file is detailed in Appendix D.

The transformer oil used was Shell DIALA A with its physical properties listed below.

The viscosity of the oil was measured at 23"C with TA instrument's AR-G2 rheometer while the

speed of sound was measured using Signal Processing's DOP2000 velocimeter.

Viscosity r (Pa s) Density p (kg/m') Speed of sound (m/s)
Shell DIALA 0.0155 900 1421

(Measured at 23*C)

Table 5-2. Table of physical properties of Shell DIALA A transformer oil. Viscosity and speed
of sound are measured values with value for density taken from the datasheet.
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The Brookfield DV-I+ viscometer was used as a motor drive by fitting the LV- 1 spindle

into a specially made acrylic disk that was the same diameter of the free surface at the top of the

% sphere. The dimensions of the disk are documented in Appendix C.

Brookfield viscometer

Ultrasound Probe LV-1

Circular disk fitted to spindle

Probe holder 3/4 sphere containing transform r il

stand

Figure 5-7. Experimental apparatus of flow driven by rotating circular disk entraining flow inside
sphere of transformer oil. The flow is measured with ultrasound probes at various positions on
the circumference of the sphere.

Figure 5-8 is a picture of the experimental setup with the sphere empty and the ultrasound

probes positioned on the equator of the sphere. Figure 5-9 is a picture of the experimental setup

with the circular disk attached to the LV-1 placed on the free transformer oil surface of the filled

sphere. One probe is placed along the radial direction and the other 20* to the radial direction

along the equator. These two probes allow for a calculation of the rotational velocity v, and the

results, seen in Figure 5-10, are in good agreement with the COMSOL simulations.
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The ultrasound probe can only measure the velocity in the direction of the ultrasound

beam. As a result, Figure 5-11 is a plot of the z-directed velocity as a function of position z

(where z=O is the equatorial plane of the sphere) measured by the probe placed underneath the

sphere at 250 to the radial direction. The position of the probe can be clearly seen in Figure 5-3.

The results are in close agreement with the COMSOL simulations for the same probe position.

Figure 5-12 compares the experimental and COMSOL results for a probe measuring the

x-directed velocity as a function of x where x=z=O is the center point of the sphere. The probe is

placed at (y=Oz=-2.5cm) in the holder shown in Figure 5-3. The experimental results are in

approximate agreement with the results obtained using COMSOL.

The results obtained in this experiment confirms that the probe holder was designed and

built to measure flow profiles in the sphere accurately. The probe holder was used for all

experiments in this thesis with a Griltex-P1 concentration of 0.008g/ml mixed with the sample

fluid.
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Figure 5-8. Picture of experimental setup showing LV1 spindle (without disk) positioned above
3/4 empty sphere with ultrasound probes positioned on the circumference

Figure 5-9. Sphere filled with Shell DIALA transformer fluid with disk fitted on LV-1 spindle
placed on top of the sphere.
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Figure 5-10. Rotational velocity v4, as a function of
sphere of radius 5cm at three different rotational rates
match those obtained using COMSOL simulations.

radius measured at the equator of the 3/4

20, 50 and 100 RPM. Experimental results
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Figure 5-11. Velocity profile measured by probe placed underneath the sphere at 250 to the radial
direction as seen in Figure 5-3. The velocity is a function of z position where z=O is at the
equator level of the sphere. Three different experimental rotational rates (20, 50 and 100 RPM)
are compared to COMSOL simulations.
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Figure 5-12. Velocity profiles measured from probe placed at z= -2.5 cm as seen in Figure 5-3.
The probe measures x-directed velocity as a function of x where x=z=O is the center position of
the sphere. Experimental and simulation profiles are seen for three different rotational rates 20,
50 and 100 RPM.
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5.2.3. Fluxball

If a spherical coil is wound of thin wire such that the vertical turns density is uniformly

distributed with respect to the z axis as in Figure 5-13, the magnetic field intensity produced

inside it will be uniform. In [6], [7] and the rest of this thesis such a spherical coil is commonly

referred to as afluxball.

N
Assuming that the fluxball is made up of N turns of wire, the turn density in z is 2 and

the number of turns at r=R in an increment of length in the z direction would then be given as

- dz . Because z = R cos 9, dz = -sin 9Rd9, the number of turns per unit length Rd9 along the
2R

N
surface of the sphere can then be determined to be -sin 0. Multiplying

2R
this with the current I in

each turn of wire gives the surface current density.

. NI (-dz)
K=i- -

* 2R Rd9
. NI .i -sn
* 2R

(5.1)

Figure 5-13. Mathematical description of a fluxball of radius R with uniformly distributed
windings in z of N total turns each carrying current I resulting in a surface current sheet flowing

azimuthally in the 0 direction but varying sinusoidally with respect to the zenith angle 9 [6, 7].

Image taken from [6].
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Fluxball Surface current

NIK()= Nsin i2R

Figure 5-14. Cross-sectional view of fluxball with sphere of linearly magnetic material inside.
Sphere and fluxball are both surrounded by a region of air.
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If a sphere, containing linear magnetic material with magnetic permeability given as

p1 = pO(1+y) (5.2)

where X is the magnetic susceptibility, is placed inside this fluxball such that there are three

regions of interest as depicted in Figure 5-14. The field distribution in all three regions can be

solved using the magnetic scalar potential V since V x H =0 so that

H=-Vvy (5.3)

Magnetic flux density can be given as B =pu (H + M). Applying Gauss's Law of magnetism

(V-B =0) everywhere results in Laplace's equation in magnetic scalar potential (V 2y =0) in all

three regions. The solution to Laplace's equation in spherical coordinates for the three different

regions are

Arcos0 O<r<RFF

C
y= Brcos9+- -cos0 RFF <r<R (5.4)

r
D
2 cos 0 r>R

r

The magnetic field in each region is

-AcosOir + Asin0io O<r<RFF

(2 Cos> +(C+Bro) sin 9
H =-Vy= -Bcos + c ir + C i+ RFF< r < R (5.5)

+ 3r r3 0

2Dcos0. Dsin9.
3 r + 3 r>Rr r

Boundary conditions at r=RFF require that

H 02 - H 1 =0 
(5.6)

yoHr2 -1H,. =0
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which gives

Apu cos()+,u (-B cos(9)+ 2C )= 0
0 + RFF3

-A sin(9) + (C+ BR-F = 0 (5.7)
FF

resulting in

A= 3Bpu C =(Bpo-Bp )R13  (5.8)
2p +p' 2p6+pA

Boundary conditions at r=R require that

H03 -H =NIsin(9)
2 2R (5.9)

iUoHr3 -poHr 2 =0

which gives

2Dpo cos(9) - #0 (-B cos(9)+ 2C cos(_)) 0
R 3 )R 3(5.10)

D sin(9) (C + BR3) sin(9) NI sin(9)
R3 R 3 2R

resulting in

NI -> C = - 1)R F

3R 3(2po+pi)R
3  NIR2 (5.11)

D=C- =~(,0 -1)NIRF +N
2 3(2p 0+ p1)R 6

Solving for A gives

-NI__ p--NIA= -> A = (5.12)
(2po +p,)R (3 +%)R
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and substituting in (5.5) gives

NI COS ir - NI Sin Gio 0<r<RFF
(3+X)R (3 +)R

NI_ _________ NI (R 3 X-(3+X)r 
3 ) sin(9)

H= Ncos(9)+ 2 FXCOS(O) r + i RFF < r < R (5.13)
3R 3Rr 3 (3 + )3r3R(+X)

NI(2R FX+R3(3+X))cos(9) NI(2R FX+R3(3+X))sin(G).
i, + I

3r 3 R(3+%) 6r 3R(3+) r>R

where the field inside the magnetic sphere is uniform and can be rewritten as

H =i N, COS(A -i, 0 I sin(6) = NI , (5.14)
H + (3 +( X)(3+) ) (3 +)R

The field outside the magnetic sphere is the sum of the dipole field, generated by the

magnetic sphere, and a uniform field while the field outside the fluxball is purely a dipole field.

In the case that the ferrofluid filled sphere is empty (X=O) (5.13) reduces to (5.15) where the

internal uniform field and dipole field outside the fluxball is clearly shown in Figure 5-15.

NI.
-I r<R
3R z

H =< 3(5.15)
H NI ( i2cos 9+i sin 0) r> R

6rR r
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dN

/
960 Trn Fluxball Coil: 12.3 W/mT

Figure 5-15. Magnetic field lines produced by a fluxball of 960 turns. It produces a 25 mT
uniform magnetic field in a spherical region of diameter 8 cm. The power consumed per mT of
field density produced is also listed [7]. Image taken from [7].
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5.2.4. Lawler's Fluxball Machine [7]

To generate a uniform rotating magnetic field, two concentric orthogonally oriented

fluxballs have to be excited with alternating currents that are out of phase by 900 as shown in

Figure 5-16. This configuration will be known as afluxball machine for the rest of this thesis.

Lawler, in his thesis [7], built a fluxball machine by stacking and bonding polycarbonate

discs and flanges of different radii to support the windings. Pictures of the fluxball machine can

be seen in Figure 5-17 through Figure 5-19. A picture showing the winding support structure for

the inner fluxball can be seen in Figure 5-20 with the complete fluxball machine, containing a

ferrofluid filled sphere of diameter 10 cm inside the test chamber, shown in Figure 5-21.

Table 1-1 outlines Lawler's specifications for the fluxball machine he built. He quotes

that the fluxball machine would have an interior B field of 5.4 mT/A for each fluxball. This will

be shown to be slightly inaccurate in section 5.2.7. The measured dimensions of the built inner

fluxball are given in Appendix C.

Characteristic Inner Fluxball Outer Fluxball
Interior B field 5.4 mT/A 5.4 mT/A

Winding Axis Radius, r(0=0 0) 10.36 cm 15.04 cm
Quadrature Axis Radius, r(0=900) 11.02 cm 16.75 cm

Peak Current 5 A 5 A
Continuous Current 2 A 2 A

Total Turns 1280 1920
Length of Winding 700 m 1568 m

Total Slots 32 48
Slot Height 5.9 mm 5.9 mm

Flange Height 0.50 mm 0.50 mm

Table 5-3. Magnetic, geometric and electrical specifications for Lawler's fluxball machine [7].
Interior B field is slightly erroneous.
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Figure 5-16. The rotating uniform magnetic field is produced by driving the two orthogonal coils
with sinusoidal currents that are out of phase by 900 in time . The inner coil (top row) generates
the vertical uniform magnetic field while the outer coil (middle row) generates the horizontal
magnetic field. Combining them together gives the rotating uniform magnetic field as seen in the
last row. Image taken from [7].
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Figure 5-17. Lawler's fluxball [7] machine that was used in this
a radius of 16 cm while the inner winding has a radius of 11
uniform rotating magnetic fields in a spherical volume of 15
fluxball. Image taken from [7].

thesis. The outer windings have
cm. The two windings create
cm diameter inside the inner

Figure 5-18. An exposed view of the insides of the outer windings. The inner fluxball winding is
orthogonal to the outer winding and fits inside the outer winding generating a uniform rotating
magnetic field in the region inside the inner fluxball when excited by two phase AC signals. The
inner fluxball is slightly separated showing the region inside. Access holes were also made to
allow for probes and cables to be inserted inside the inner fluxball. Image taken from [7].
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Figure 5-19. Insides of the inner and outer windings are shown. It can be seen that the inner
winding has enough space to fit a ferrofluid filled sphere of diameter 10 cm. Image taken from
[7].

0.50 nn Access n.9mm
lblycarboneate Flange Tabe Polycarbonate Dism

10m

Fu 52 Co ot phamber s
*~ Y R 6=,'mm ,

4-Inner Windin~g
Bundle

± cm

Figure 5-20. Cross-sectional plot of inner fluxball showing the test chamber and the fluxball
winding support structures. The access tube at the top and bottom of the inner fluxball can also
be seen and is further illustrated with the cable entering the test chamber in Figure 5-18. The
ferrofluid filled sphere of diameter 10 cm fits inside the test chamber. Image taken and modified
from [7].
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1 cm

Figure 5-21. Cross-sectional diagram of the complete design for the fluxball machine. The inner
fluxball can be seen to fit inside the outer fluxball and that their windings are orthogonal to each
other. A uniform rotating magnetic field is created inside the test chamber which will be
occupied by a 10 cm diameter sphere of ferrofluid. Image taken and modified from [7].
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5.2.5. Lumped Parameter Model of Fluxball Machine

The individual fluxballs of the fluxball machine can be modeled as a series R-L circuit.

Measurements of the resistance and inductance were made using the Hewlett-Packard 4192A LF

Impedance Analyzer for each fluxball winding with and without spheres of ferrofluid. The

measurements are an average of the values taken over a range of frequencies below the self

resonant frequency of the individual windings with combinations of electrically shorting and

electrically open circuiting the individual fluxballs. Two different sized spheres of ferrofluid

were used, one with 10 cm diameter and the other with 7 cm diameter, with specifications for

both listed in Appendix C. The measurements are listed in Table 5-4 and Table 5-5.

Resistance for Setup No Sample MSG Wi1 EFH1 MSG W11 EFH1
(D=10 cm) (D=10 cm) (D=7 cm) (D=7 cm)

Inner fluxball with Outer fluxball Open 23.81 n 23.85 Q 23.76 K2 23.80 n 23.80 Q
Inner fluxball with Outer fluxball Short 23.77 n 23.84 Q 23.76 2 23.79 2 23.80 n
Outer fluxball with Inner fluxball Open 52.70 Q 52.77 L2 52.69 E2 52.64 n 52.67 Q
Outer fluxball with Inner fluxball Short 52.70 K2 52.76 n 52.70 n 52.63 K2 52.66 Q

Table 5-4. Averaged resistance values over frequency range 1OHz-1OOHz of various
configurations of the inner and outer fluxball with and without differently sized spheres of two
different types of ferrofluid, MSGW 11 and EFH 1.

Inductances for Setup No Sample MSGW1 1 EFH1 MSG W11 EFH1
(D= 10 cm) (D=10 cm) (D=7 cm) (D=7 cm)

Inner fluxball with Outer fluxball Open 0.172 H 0.177 H 0.183 H 0.173 H 0.176 H
Inner fluxball with Outer fluxball Short 0.172 H 0. 177 H 0.183 H 0.173 H 0.176 H
Outer fluxball with Inner fluxball Open 0.565 H 0.570 H 0.577 H 0.566 H 0.569 H
Outer fluxball with Inner fluxball Short 0.565 H 0.570 H 0.577 H 0.566 H 0.569 H

Table 5-5. Averaged inductance values over frequency range 1OHz-lOkHz of various
configurations of the inner and outer fluxball with and without differently sized spheres of two
different types of ferrofluid, MSGW 11 and EFH 1.
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5.2.6. Controlling the Fluxball Machine

The purpose of the fluxball machine is to generate a uniform rotating magnetic field at

any frequency specified and in any rotational direction. To ensure that the desired magnetic field

strength is reached either a current source in series with the fluxball can be used, or a voltage

source with the voltage set at a specific level to generate the desired current magnitude. Lawler,

in his thesis [7], used the LVC 5050 power amplifier as a voltage source to generate the desired

current in the fluxball machine. The same LVC 5050 power amplifiers were used for this thesis

and its datasheets are given in Appendix C.

To control this voltage source Lawler used a LabVIEW program that implemented a hard

coded PID control system that was simple enough to obtain data for his thesis. However, the

previous section showed that the lumped model for the fluxball windings changes with the

inclusion of different sized spheres and different types of ferrofluid used. In addition, the R-L

model for the fluxball has an impedance that is frequency dependent given by

Zflbal, = (Rfluxball + Rflud ) + jI 11.xbail + Lfluid ) (5.16)

A more versatile program was developed with NI LabVIEW 8.2 to dynamically control

the voltage and phase applied to the individual fluxballs. The LabVIEW program directly

controls the NI PCI-6036E DAQ card which allows for simultaneous measurement of 16 analog

inputs and the generation of two analog outputs, one for each fluxball winding, via an NI BNC

2120 connector block. The two output channels are amplified, with a voltage gain of 20, by the

LVC 5050 amplifier and fed to the individual fluxball windings. The individual fluxball

windings are placed in series with two 10 50W resistors that minimally affect the circuit

characteristics but the voltage drop across them represents the current flowing through the
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windings. These current measurements along with their phase difference are fed back into the

inputs of the DAQ card. The LabVIEW program with the help of the NI LabVIEW 8.2 PID

Control Toolkit then adjusts the output channel voltages from the DAQ card to obtain the

specified current value through the fluxball windings and ensures that the phase difference

between spherical coils is ±90*. The setup for controlling the fluxball machine is drawn out with

a circuit diagram shown in Figure 5-23 and datasheets for the parts used are given in Appendix

C.

A screen shot of the LabVIEW user interface is shown in Figure 5-22. A detailed

description of its functionality and the underlying code is given in Appendix J. The LabVIEW

interface allows for the control of the two fluxball windings as well as a third coil. For the

purposes of this chapter the controls highlighted in Figure 5-22 are sufficient to control and

maintain the phase, magnitude and frequency of the current in the individual fluxball windings.

218



Switch controls field's rotational direction

Individual on/off switch for each fluxball

RMS current set point for fluxball
windings

2

Fluxball frequency

PID gains to maintain current phase
difference with tuning switch

Current through fluxballs plotted in
these charts

PID gains to maintain current magnitude
in individual fluxballs with tuning

'7 switches

Phase difference between outer fluxball
and inner fluxball current

Figure 5-22. Front control panel of program in NI LabVIEW 8.2 showing all the controls needed to maintain the magnitude, phase and
frequency of the current in the individual fluxball windings.
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Connected to
6036E Ch1 Input via

BNC 2120

Figure 5-23. Circuit diagram for controlling the fluxball machine. The LabVIEW program is
interfaced to the 6036E DAQ card and the two output channels are amplified by the LVC 5050
and fed to the individual fluxball windings. The voltage across the 10 resistors represents the
currents in the fluxball windings and the magnitude and phases are fed back to the LabVIEW
program. A PID control program adjusts the input to the amplifier so that the resulting current
can eventually reach the desired set value.
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5.2.7. Testing and Characterizing the Fluxball Machine

To test the fluxball machine, three GMW Hall effect three axis magnetic sensors were

fitted into the GMW probe slots seen in Figure 5-2 and Figure 5-3 to measure the magnetic field

on the circumference of the 10 cm diameter sphere, without ferrofluid, made by the fluxball

machine. The specifications for these sensors are included in Appendix C and a picture of one of

the sensors is given in Figure 5-24 below.

Z Axis A
CSA

10mm;

Y Axis
.. CSA

12 sCam

Z !X Axis
OUW CSA

(Under PCB)

Figure 5-24. GMW three axis magnetic field sensor.

The three sensors labeled GMW Sensors 1-3 were oriented in each slot as shown in

Figure 5-25 and Figure 5-26. They were supplied with a constant 5.0 V DC from a supply

voltage and voltage signals were read from the pins of the sensors, using a shielded 20 conductor

data cable listed in Appendix C, via the input terminals of the BNC 2120 interfaced with the

LabVIEW program. The LabVIEW interface panel can be seen in Figure 5-27 and can monitor

two sensors at a time. This is because the BNC 2120 has eight BNC inputs, two of which are

used to monitor the current through the fluxball leaving 6 terminals to monitor the x, y and z axis
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readings of the two sensors. The third sensor values are measured by swapping out the

connecting terminals of one of the already measured two sensors.

Figure 5-25. Side view of probe holder with empty sphere, showing GMW sensors 1& 3 in dark
blue. The individual sensor's axes are oriented as shown and denoted as x1, yi for sensor 1 and
x3, y3 for sensor 3. Image obtained from SolidWorks design of probe holder.

Figure 5-26. Top view of probe holder with empty sphere, showing GMW sensor 2 (dark blue)
fitted in slot and sensor's x and y axis (denoted as x 2 and y2) aligned as shown. Image obtained
from SolidWorks design of probe holder.
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Figure 5-27. Panel monitoring x, y and z magnetic field components measured by GMW sensors in LabVIEW program controlling the
phase, magnitude and frequency of the current in the two fluxball windings. Only two sensors can be monitored at a time due to a lack
of inputs on the BNC 2120/6036E DAQ card. The graphs display the voltage waveforms along individual axes of the sensor while
also calculating the RMS flux density magnitude. Clicking on the Take Sensor DATA button copies all the data to a text file for post
processing.
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Since each sensor measures the magnetic field along the individual axes that its internal

current sensors are aligned to, the magnitude of the magnetic field outside the 10 cm diameter

sphere picked up by the three individual sensors is given by

B|= B ,,+B ,,+BU (5.17)

Values of the turn ratio N and the average radius R can be substituted in (5.15) to determine the

theoretical flux density for the individual fluxballs

B|=|,oH| MON , 0I=KWI, KW- pN (5.18)
3R 3R

where Kw is known as the winding factor and represents the relationship between the applied

current and the magnetic field.

The fluxballs were individually energized at different current magnitudes and frequencies

without any ferrofluid filled sphere. The magnitude of the magnetic fields were recorded at these

frequencies and fluxball currents and compared to theoretical values as determined in (5.18).

Table 5-6 is a list of measured RMS values of magnetic flux density, for the different sensors,

when energizing only the inner fluxball at different frequencies and currents. It also lists the error

associated with each measurement as compared to the theoretical values for the flux density

using the inner fluxball's turn ratio of 1392 turns and an average radius of 10.7 cm. A maximum

error of - 10% difference with respect to the theoretical value is highlighted. Table 5-7 is a list of

measured flux density magnitudes of the different sensors when energizing the 2069 turn outer

fluxball of 15.9 cm average radius. A maximum error of 12% difference with respect to the

theoretical value is also highlighted. The differing radii of the two exciting coils are

counterbalanced by the increase in number of turns for the outer coil such that
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"nner ~ "" 115 turns/cm (5.19)
R,,. R

The winding factors for the different fluxballs are determined for each sensor and then

averaged. Those sensor averaged winding factors are then averaged for every frequency and

current combination to give an average winding factor of 5.09 mT/A (RMS) and 5.03 mT/A

(RMS) for the inner and outer fluxballs respectively. This value is approximately equal to the

value that Lawler predicted (~ 5.05 mT/A (RMS) pg 82 of [7]) it to be but Lawler measured

values were significantly higher, 5.4 mT/A (RMS). This discrepancy could be because Lawler

did his measurements when the fluxball was placed on a steel optical table. Lawler himself,

recognizes this discrepancy in his conclusions and calculates that the reflected fields from the

steel table could increase the magnetic field by 5% which almost exactly explains his

measurements (105% of 5.05mT/A = 5.303 mT/A) and confirms his theoretical results with

those in Table 5-6 and Table 5-7. The experiments that were conducted in this thesis were all

done with the fluxball machine on a wooden table.

Table 5-8 compares the values of the measured magnetic flux density, for the individual

sensors, obtained by energizing the individual fluxballs. It shows that the inner and outer

fluxballs generate the same magnetic field when energized with the same current with a

maximum error of ~ 9%. Table 5-9 compares the magnitude of magnetic flux density obtained

by the different sensors giving the error in the spatial distribution of the magnetic field, when

energizing the individual fluxballs one at a time, due to the construction process of the fluxball

machine. A maximum spatial error in magnetic flux of 7% and 10% for the inner fluxball and

outer fluxball respectively, was obtained confirming that the fields generated by the individual

fluxballs are mostly uniform in the test chamber.
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f RMS Bmag (mT) Bmag (mT) Bma (mT) Btheoretical Sensor 1 Sensor 2 Sensor 3 K, K, K, Avg K,
(Hz) Iinnefluxball Sensor 1 Sensor 2 Sensor 3 (mT) Error Error Error (mT/A) (mT/A) (mT/A) (mT/A)

(A) (%) (%) (%) Sensor 1 Sensor 2 Sensor 3
1 0.354 1.850 1.812 1.724 1.927 3.978 5.950 10.517 5.252 5.125 4.876 5.085
1 0.707 3.731 3.716 3.495 3.853 3.173 3.562 9.298 5.284 5.255 4.943 5.160
1 1.414 7.007 6.938 7.087 7.707 9.077 9.972 8.039 4.955 4.906 5.011 4.957
10 0.354 1.850 1.813 1.756 1.927 3.978 5.898 8.857 5.235 5.128 4.967 5.110
10 0.707 3.727 3.711 3.551 3.853 3.277 3.692 7.844 5.278 5.248 5.022 5.183
10 1.414 7.011 6.937 7.199 7.707 9.025 9.985 6.586 4.958 4.905 5.090 4.985
50 0.354 1.843 1.808 1.747 1.927 4.341 6.158 9.324 5.233 5.114 4.941 5.096
50 0.707 3.723 3.705 3.556 3.853 3.381 3.848 7.715 5.269 5.240 5.029 5.179
50 1.414 7.024 6.931 7.204 7.707 8.857 10.063 6.521 4.967 4.901 5.094 4.987
100 0.354 1.843 1.809 1.742 1.927 4.341 6.106 9.583 5.204 5.117 4.927 5.083
100 0.707 3.724 3.705 3.541 3.853 3.355 3.848 8.104 5.262 5.240 5.008 5.170

Average winding factor 5.09

Table 5-6. Table of measured RMS magnitude of magnetic flux density of the three GMW sensors positioned in the slots of the probe
holder for only energizing the inner fluxball. The percentage error compared to the theoretical value of the flux density is also
calculated. The winding factors are also calculated for the different frequencies, sensors and fluxball current and averaged.
Highlighted values indicate greatest error obtained from measurements.
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f RMS B.g (mT) B.g (mT) Bg (mT) Baeore,-a Sensor 1 Sensor 2 Sensor 3 K. K, K, Avg K,
(Hz) Iouterfluxa Sensor 1 Sensor 2 Sensor 3 (mT) Error Error Error (mT/A) (mT/A) (mT/A) (mT/A)

(A) (%) (%) (%) Sensor1 Sensor 2 Sensor 3
1 0.354 1.845 1.682 1.763 1.927 4.261 12.719 8.516 5.190 4.757 4.987 4.978
1 0.707 3.709 3.407 3.573 3.854 3.768 11.603 7.297 5.245 4.818 5.053 5.0388
1 1.414 7.097 6.636 7.256 7.708 7.932 13.913 5.870 5.020 4.692 5.131 4.9476
10 0.354 1.847 1.731 1.784 1.927 4.157 10.176 7.426 5.213 4.896 5.046 5.0516
10 0.707 3.708 3.496 3.607 3.854 3.794 9.294 6.414 5.240 4.944 5.101 5.0949
10 1.414 7.086 6.787 7.324 7.708 8.075 11.954 4.987 5.010 4.799 5.179 4.9959
50 0.354 1.838 1.726 1.775 1.927 4.624 10.436 7.893 5.210 4.882 5.020 5.0374
50 0.707 3.699 3.467 3.592 3.854 4.027 10.047 6.804 5.226 4.903 5.080 5.0695
100 0.354 1.83 1.735 1.772 1.927 5.039 9.969 8.049 5.165 4.907 5.012 5.028

Average winding factor 5.03

Table 5-7. Table of measured RMS magnitude of magnetic flux density of the three GMW sensors positioned in the probe holder slots
only when energizing the outer fluxball. The table also lists the measurement error compared to the theoretical value as well as the
average winding factors. Highlighted values indicate greatest error obtained from measurements.

f (Hz) RMS I (A) through Sensor 1 Sensor 1 Sensor 1
individual fluxball Error (%) Error (%) Error (%)

1 0.354 0.271 7.729 2.212
1 0.707 0.593 9.070 2.183
1 1.414 1.268 4.551 2.329
10 0.354 0.162 4.737 1.570
10 0.707 0.512 6.150 1.553
10 1.414 1.058 2.210 1.707
50 0.354 0.272 4.751 1.577
50 0.707 0.649 6.865 1.002
100 0.354 0.710 4.265 1.693

Table 5-8. Table of errors between the values of measured magnitude of flux density by the different sensors obtained by energizing
the inner and outer fluxballs individually. There is a maximum of ~ 9% difference between the magnitude of the magnetic flux
generated by the inner and outer fluxballs.
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Inner Fluxball
f RMS Sensor 2 Sensor 3 Sensor 1 Sensor 3

(Hz) lInnerfluxball Error (%) Error (%) Error (%) Error (%)
(A) wrt Sensor wrt Sensor wrt Sensor wrt Sensor

1 1 2 2
1 0.354 2.054 7.162 2.097 4.857
1 0.707 0.402 6.451 0.404 5.947
1 1.414 0.985 1.142 0.995 2.148

10 0.354 2.000 5.132 2.041 3.144
10 0.707 0.429 4.850 0.431 4.312
10 1.414 1.055 2.667 1.067 3.777
50 0.354 1.899 5.568 1.936 3.374
50 0.707 0.483 4.563 0.486 4.022
50 1.414 1.324 2.548 1.342 3.939
100 0.354 1.845 5.326 1.879 3.704
100 0.707 0.510 4.837 0.513 4.426

Outer Fluxball

f RMS Sensor 2 Sensor 3 Sensor 1 Sensor 3
(Hz) Iouterfixhal Error (%) Error (%) Error (%) Error (%)

(A) wrt Sensor wrt Sensor wrt Sensor wrt Sensor
1 1 2 2

1 0.354 8.835 3.924 9.691 4.816
1 0.707 8.142 3.667 8.864 4.872
1 1.414 6.496 2.212 6.947 9.343

10 0.354 6.280 3.201 6.701 3.062
10 0.707 5.717 2.645 6.064 3.175
10 1.414 4.220 3.373 4.405 7.912
50 0.354 6.094 3.637 6.489 2.839
50 0.707 6.272 2.788 6.692 3.605
100 0.354 5.191 2.957 5.476 2.133

Table 5-9. Table compares the values measured by the sensors with respect to each other to determine the maximum spatial error in

magnetic field for both fluxballs when the individual fluxballs are energized. A maximum of ~ 7% for the inner fluxball and 10%
spatial error for the outer fluxball is highlighted.
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5.2.8. Resonant Operation of Fluxball Machine

Table 5-10 compares the electrical properties of the two pole stator winding machine,

used by He [3] and Elborai [4] in their experiments with a rotating uniform magnetic field, with

those of the two fluxball windings. To provide the same amount of current as the two pole stator

winding machine, a larger voltage is required because of the greater impedance that scales with

frequency, due to the higher inductance of the individual windings. The winding factor of the

combined fluxball machine used in this thesis is taken to be the average of the winding factors of

the inner and outer fluxball and is equal to 50.6 G/A (RMS).

Setup Winding Resistance (0) Winding Inductance (H) Winding Factor Kw
(Gauss/A RMS)

2 pole stator winding [3, 4] 3.1 0.008 38
Inner Fluxball 23.8 0.172 50.9
Outer Fluxball 52.7 0.565 50.3

Table 5-10. Table documenting winding resistance, inductance and winding factor for the inner
and outer fluxballs along with the 2 pole stator winding used by He [3] and Elborai [4] in their
experiments of generating a rotating field.

The LVC 5050 amplifier used by He [3] and Elborai [4] is the same amplifier used in this

thesis and has a maximum RMS voltage output of 106 V (Appendix C) with three possible gains

of 20, 70 and 130. The NI PCI 6036E DAQ card has a maximum peak output of 10 V. To

operate the fluxball machine at a particular frequency, the DAQ card should not exceed 10 V

peak and the output of the amplifier should not exceed an RMS value of 106 V.

Table 5-12 for He's [3] and Elborai's [4] stator winding is a list of impedances calculated

at various different frequencies along with the calculated voltage output by the LVC 5050

amplifier and the DAQ card, at various gain settings, for a desired magnetic field strength. It also

lists which cases meet these specifications and which do not. Elborai's [4] and He's [3] two pole
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stator machine's low impedance allows for all but one case to be satisfied without any

modifications to the setup.

Table 5-13 and Table 5-14 list the same output voltages by the LVC 5050 amplifier and

6036E DAQ card necessary for the frequencies and magnetic field strengths for each individual

fluxball winding. The outer fluxball actually limits the cases further since to generate a rotating

magnetic field both the inner and outer fluxballs have to be energized leaving only three possible

frequency/current combinations. Of these three cases two occur at a frequency of 1 Hz, which

might not be enough to create the torque needed since the magnetization of the fluid and

magnetic field will be mostly collinear, while the one case of 20 Hz is insufficient to do a

thorough investigation.

The main problem is the high impedance values at the high frequencies resulting in large

voltages needed to generate the currents specified. A good solution is by inserting a series

capacitor with the windings to cancel the impedance due to the inductance of the windings at the

resonant frequency of the resulting RLC circuit as shown in Figure 5-28.

Rwinding Lwinding + Va -

+ Fluxball Series Cap
Vsource LVC Windings

5050
Amplifier

Figure 5-28. Circuit diagram of LVC 5050 amplifier in series with fluxball windings and series
capacitor for resonant operation of fluxball.

The voltage drop across the capacitor at resonance can be given as
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Va I= 1 |Vr, 1 (5.20)
2cap winding

where C is the frequency of the sinusoidal signal applied to the fluxball and R,,i,,ing the

resistance of the winding which is the impedance of the RLC circuit at the resonant frequency.

The factor given in (5.20) is usually very large for most standard capacitors. This
nC,, in

means that any series capacitor chosen to operate at a resonant frequency must have a large

enough dielectric breakdown voltage to withstand the high voltages calculated by (5.20).

Two high frequencies (47 Hz and 95 Hz) were chosen for resonant operation and

capacitance and voltage drops across the series capacitors were calculated for both fluxball

windings as tabulated in Table 5-15 and Table 5-16. It can be seen that at a resonant frequency of

47 Hz the inner fluxball has to have a series capacitance of 66.7 gF rated to withstand an RMS

voltage of 102 V, while the outer fluxball needs a series capacitance of 20 pF rated at 334 V

RMS. At a resonant frequency of 95 Hz, the inner fluxball has to have a series capacitance of

16.3 pF capable of withstanding 205 V RMS, while the outer fluxball needs a capacitance of 5

pF rated at 675 V RMS. Panasonic AC film capacitors were used because they have high voltage

ratings, are compact and can easily be mounted in an enclosure. The datasheet for the enclosure

and these capacitors are in Appendix C.

For the 66.7 pF capacitor, four 15 gF capacitors (Digikey #P9413-ND), each rated at 250

V RMS, were put in parallel with a single 6 pF capacitor (Digikey #P9661-ND) rated at 440 V

RMS. These five capacitors were mounted with screws in a single enclosure (Digikey #707K-

ND) with terminals mounted on the outside. The 20 pF capacitor was assembled with placing

four 5 gF capacitors (Digikey #P9660-ND), each rated at 440 V RMS, in parallel with each other
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and mounted in a single enclosure. The 16 tF capacitor was made by placing a 10 pF capacitor

(Digikey #9411-ND), rated at 250 V RMS, in parallel with a 6 pF capacitor (Digikey #9661-ND)

rated at 440 V RMS. For the 5 jF capacitor, which had to withstand an RMS voltage of 675 V,

three 15 gF capacitors (Digikey #9413-ND) were placed in series adding up their individual

rated voltage of 250 V RMS to a total of 750 V RMS. Both the 16 pF and the 5 gF capacitors

were mounted into a single enclosure with two separate output terminals. The enclosures

containing the capacitors can be seen in Figure 5-29 with their internal wiring displayed in

Figure 5-30.

The individual capacitor boxes were assembled and their capacitances measured. They

were also connected in series with the individual fluxball windings and the impedance values of

the resulting RLC circuit were also measured at the individual resonant frequencies. These

results are tabulated in Table 5-11. It can be seen that at resonance the impedance of the

individual windings are mostly real allowing for lower voltages to generate the desired magnetic

flux density in the fluxball.

Capacitance Desired (pF) Measured Capacitance (pF) Measured Impedance of capacitor in
series with fluxball windings (0)

20 20.32 Zinner=25.25+0.65j (@47 Hz)
66 68.00 Zouter=54.5-0.8j (@47 Hz)
16 16.23 Zinner-25.28-1.5j (@95 Hz)
5 5.10 Zouter=55+6.91j (@95 Hz)

Table 5-11. Measured values of capacitance and impedance of the RLC circuit at the specified
resonant frequency.
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f (Hz) RMS I (A) Bn,9 Impedance Z (Q) LVC 5050 RMS LVC 5050 LVC 5050 LVC 5050 Possible?
(Gauss RMS) current (A) GAIN=20 GAIN=70 GAIN=130

6036E Peak 6036E Peak 6036E Peak
Output (V) Output (V) Output (V)

1 1.000 38.000 3.100 3.100 0.219 0.063 0.034 YES
1 2.000 76.000 3.100 6.201 0.438 0.125 0.067 YES
1 5.000 190.000 3.100 15.502 1.096 0.313 0.169 YES

20 1.000 38.000 3.259 3.259 0.230 0.066 0.035 YES
20 2.000 76.000 3.259 6.518 0.461 0.132 0.071 YES
20 5.000 190.000 3.259 16.295 1.152 0.329 0.177 YES
50 1.000 38.000 3.991 3.991 0.282 0.081 0.043 YES
50 2.000 76.000 3.991 7.982 0.564 0.161 0.087 YES
50 5.000 190.000 3.991 19.954 1.411 0.403 0.217 YES
100 1.000 38.000 5.906 5.906 0.418 0.119 0.064 YES
100 2.000 76.000 5.906 11.811 0.835 0.239 0.128 YES
100 5.000 190.000 5.906 29.528 2.088 0.597 0.321 YES
1000 1.000 38.000 50.361 50.361 3.561 1.017 0.548 YES
1000 2.000 76.000 50.361 100.722 7.122 2.035 1.096 YES
1000 5.000 190.000 52.400 262.000 18.526 5.293 2.850 NO

Table 5-12. He's [3] and Elborai's [4] 2 pole stator with impedance and magnetic flux density values calculated at different frequencies
along with output voltage values of amplifier and 6036E DAQ card. Only one situation does not meet the specifications of current
setup and is highlighted in yellow.
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f (Hz) RMS I (A) Bmag Impedance Z (Q) LVC 5050 RMS LVC 5050 LVC 5050 LVC 5050 Possible?
(Gauss RMS) current (A) GAIN=20 GAIN=70 GAIN=130

6036E Peak 6036E Peak 6036E Peak
Output (V) Output (V) Output (V)

1 1 50.9 23.825 23.825 1.685 0.481 0.259 YES
1 2 101.8 23.825 47.649 3.369 0.963 0.518 YES
1 5 254.5 23.825 119.123 8.423 2.407 1.296 NO
1 8 407.2 23.825 190.596 13.477 3.851 2.073 NO

20 1 50.9 32.150 32.150 2.273 0.650 0.350 YES
20 2 101.8 32.150 64.300 4.547 1.299 0.699 YES
20 5 254.5 32.150 160.749 11.367 3.248 1.749 NO
20 8 407.2 32.150 257.199 18.187 5.196 2.798 NO
50 1 50.9 59.045 59.045 4.175 1.193 0.642 YES
50 2 101.8 59.045 118.089 8.350 2.386 1.285 NO
50 5 254.5 59.045 295.223 20.875 5.964 3.212 NO
50 8 407.2 59.045 472.357 33.401 9.543 5.139 NO
100 1 50.9 110.660 110.660 7.825 2.236 1.204 NO
100 2 101.8 110.660 221.321 15.650 4.471 2.408 NO
100 5 254.5 110.660 553.302 39.124 11.178 6.019 NO
100 8 407.2 110.660 885.284 62.599 17.885 9.631 NO
1000 1 50.9 1080.970 1080.970 76.436 21.839 11.759 NO
1000 2 101.8 1080.970 2161.940 152.872 43.678 23.519 NO
1000 5 254.5 1080.970 5404.850 382.181 109.194 58.797 NO

Table 5-13. Lawler's [7] inner fluxball with impedance and magnetic flux density values calculated at different frequencies along with
output voltage values of amplifier and 6036E DAQ card. There are only five possible situations to energize the inner fluxball with the
current setup to work without any modifications.
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f (Hz) RMS I (A) Bmag Impedance Z (12) LVC 5050 RMS LVC 5050 LVC 5050 LVC 5050 Possible?
(Gauss RMS) current (A) GAIN=20 GAIN=70 GAIN=130

6036E Peak 6036E Peak 6036E Peak
Output (V) Output (V) Output (V)

1 1 50.3 52.819 52.819 3.735 1.067 0.575 YES
1 2 100.6 52.819 105.639 7.470 2.134 1.149 YES
1 5 251.5 52.819 264.097 18.674 5.336 2.873 NO
1 8 402.4 52.819 422.555 29.879 8.537 4.597 NO

20 1 50.3 88.421 88.421 6.252 1.786 0.962 YES
20 2 100.6 88.421 176.842 12.505 3.573 1.924 NO
20 5 251.5 88.421 442.105 31.262 8.932 4.809 NO
20 8 402.4 88.421 707.369 50.019 14.291 7.695 NO
50 1 50.3 185.158 185.158 13.093 3.741 2.014 NO
50 2 100.6 185.158 370.316 26.185 7.482 4.029 NO
50 5 251.5 185.158 925.791 65.463 18.704 10.071 NO
50 8 402.4 185.158 1481.265 104.741 29.926 16.114 NO
100 1 50.3 358.890 358.890 25.377 7.251 3.904 NO
100 2 100.6 358.890 717.781 50.755 14.501 7.808 NO
100 5 251.5 358.890 1794.452 126.887 36.253 19.521 NO
100 8 402.4 358.890 2871.123 203.019 58.005 31.234 NO
1000 1 50.3 3550.391 3550.391 251.051 71.729 38.623 NO
1000 2 100.6 3550.391 7100.782 502.101 143.457 77.246 NO
1000 5 251.5 3550.391 17751.954 1255.253 358.644 193.116 NO

Table 5-14. Lawler's [7] outer fluxball with impedance and magnetic flux density values calculated at different frequencies along with
output voltage values of amplifier and 6036E DAQ card. There are only three possible situations to energize both fluxballs with the
current setup to work without any modifications.
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f (Hz) RMS I (A) Bmag Impedance Z LVC 5050 RMS LVC 5050 Series Vcap RMS
(Gauss RMS) () current (A) GAIN=20 Capacitance (V)

6036E Peak (pF)
Output (V)

47 1.00 50.90 23.8 23.8 1.68 66.67 50.79
47 2.00 101.80 23.8 47.6 3.37 66.67 101.59
95 1.00 50.90 23.8 23.8 1.68 16.32 102.67
95 2.00 101.80 23.8 47.6 3.37 16.32 205.33

Table 5-15. Table of capacitance and voltage values calculated for capacitors in series with the inner fluxball windings under resonant
operation at two frequencies 47 Hz and 95 Hz.

f (Hz) RMS I (A) Bmag Impedance Z LVC 5050 RMS LVC 5050 Series Vcap RMS
(Gauss RMS) (A1) current (A) GAIN=20 Capacitance (V)

6036E Peak (pF)
Output (V)

47 1.00 50.30 52.7 52.7 3.73 20.3 166.85
47 2.00 100.60 52.7 105.4 7.45 20.3 333.7
95 1.00 50.30 52.7 52.7 3.73 4.97 337.25
95 2.00 100.60 52.7 105.4 7.45 4.97 674.50

Table 5-16. Table of capacitance and voltage values calculated for capacitors in series
operation at two frequencies 47 Hz and 95 Hz.

with the outer fluxball windings under resonant
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20pF

66pF

Figure 5-29. Assembled capacitor boxes used for resonant operation of fluxball at 47 Hz and 95
Hz. The 20 pF and the 66 tF capacitors are housed in separate enclosures, while the 16 gF and 5
pF are housed in one enclosure.

Figure 5-30. Capacitor banks with their enclosure lids removed showing their wiring
connections. Enclosure at top of the figure is for the 16 gF and 5 pF both together. The 16 pF is
made by placing a 10 ptF capacitor in parallel with a 6pF capacitor while the 5 pF capacitor is
made by three 15 pF capacitors in series. The enclosure at the bottom left with four 15 gF
capacitors in parallel with a 6 gF capacitor, is the 66 pF while the bottom right, with 5 pF four in
parallel, is for the 20 gF capacitor. The banana plug connection terminals (in red and black) can
also be seen.
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Chapter 6. Ferrofluid Flows in Spherical Geometry

This chapter will describe the results of the experiments conducted using a ferrofluid

filled sphere inside of two spherical coils in quadrature in time and space to generate the uniform

magnetic field with bulk flows being measured using ultrasound velocimetry. None or negligible

flow was measured concluding that the spin-diffusion effect is not the governing mechanism for

the flow.

Researchers that used the spin-diffusion model and were able to simulate their

experimental flows [1, 2] using values of spin-viscosity r' (=10-10 kg m s-1) that were more than

ten orders of magnitude greater than the r' values derived by Rosensweig, Finlayson and

Schumacher (=10-20 kg m s-1) [3, 4], using an extension of kinetic molecular theory of viscosity

in a dilute gas from [5]. This suggests that values experimentally determined for spin-viscosity rq'

[1, 2, 6] are overstated, to compensate for the actual demagnetizing effects in the cylinder.

Experiments of flow generated in a 2/3 filled sphere further confirm that the non-uniform

field, due to demagnetizing effects associated with the shape of the ferrofluid volume, drive the

flow. By slightly modifying the fluxball machine, experiments were also performed using a

cylindrical geometry under a uniform rotating field generated by the fluxball machine resulting

in non-zero flow. Experiments were also conducted where the imposed uniform rotating

magnetic field was made non-uniform by using a solenoidal coil and a permanent magnet.

Significant measureable flow was obtained in both cases suggesting that both a non-uniform

field and a non-uniform distribution of magnetization, similar to Pshenichnikov's conclusions

[7], drive the flow.
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6.1. Experimental Results From Applying a Uniform

Rotating Magnetic Field

Experiments were conducted using the setup described in Chapter 5 with two different

Ferrotec® ferrofluids, oil-based EFH1 and water-based MSGW11. The individual ferrofluids

were mixed with Griltex-Pl of concentration 0.008g/ml and before any experiment the spheres

of ferrofluid were vigorously shaken using an orbital shaker for 30 minutes. The magnetic field

strengths used by the fluxball machine were 50.6 and 101.2 RMS Gauss fields corresponding to

1A and 2A RMS current through each spherical winding of the fluxball machine. Figure 6-1 is a

picture of the complete experimental setup used for the experiments in this thesis.

FH 

H

Figure 6-1. Picture of complete experimental setup used in this thesis.
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Four ultrasound probes were placed such that they measured velocity profiles along 4

different lines in the x-z plane along the center (y=O) of the ferrofluid filled sphere, as illustrated

in Figure 6-2. The four probes, denoted as Channels 1-4, were multiplexed internal to the

DOP2000 and they measure the velocity and distance away the moving tracer particles are from

the probe. A negative velocity measured by the DOP2000 denotes a particle moving towards the

probe, while a positive velocity is for a particle moving away from the probe. Since the beams of

the four probes intersect in the y=O (center of sphere) plane, four velocity vectors can be

determined at the four points indicated in Figure 6-2. A current phase difference of +900 between

the outer and inner fluxball creates a clockwise rotating uniform magnetic field also illustrated in

Figure 6-2. The settings of the DOP2000 ultrasound velocimeter used to obtain all the data in

this thesis are given in Table 6-1. The experimental results were conducted allowing sufficient

time for the fluxball and the ferrofluid filled sphere to cool to room temperature of =25 0C to

minimize temperature effects on the magnetic susceptibility of the ferrofluid.

Velocimeter Settings Value
Channels 1-4 Multiplexed

PRF 100-200 Hz
Emitting frequency 4 MHz

Power level High
Burst length 8 cycles
Resolution 0.56mm
Sensitivity Very High

Time Gain Control (TGC) Slope, 31dB-61dB
Starting depth 9 mm

Number of gates 180-230
Number of profiles 32

Emission/profile 128

Table 6-1. DOP2000 velocimeter settings used to obtain measurements in this thesis.
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Velocity Velocity+900 clockwise field
vector can
be
determined
at these
positions

Channel 2

z

x y

Figure 6-2. Figure depicting positions of the four ultrasound probes (labeled as Channels 1-4), in
x-z plane at y=O (center of the sphere), positioned to measure flows in a ferrofluid filled sphere.
A current phase difference of +900 between the outer and inner fluxballs creates a clockwise
rotating magnetic field. Image obtained from SolidWorks design of probe holder.

A series of experiments were done investigating different parameters. These different

degrees of freedom are tabulated in Table 6-2. Figure 6-5 to Figure 6-8 are plots of a sphere

filled with EFH1 ferrofluid subjected to 50.6 G and 101.2 G RMS field in two rotating

directions. The profiles are with respect to distance from the probe, with the channel number

denoted as a subscript, along the x or z direction as depicted in Figure 6-2. The velocity profiles

are truncated to not include the velocity right near the probe surface (distance = 0) because of the

saturation of the ultrasound transducer by the echoes near the sphere wall. The profiles are also

truncated right where the ultrasound beam hits the inside wall of the sphere at the other end

(distance = 10 cm along the sphere's diameter) because of the multiple reflections of echoes
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occurring between the different layers of the sphere wall creating a lot of noise. Figure 6-3 is a

plot of the raw data obtained by the ultrasound probe 4 using EFH1 at 47 Hz. It clearly shows

that there is a lot of noise at the probe surface and at the distance where the ultrasound beam

reflects off the inside wall of the sphere. Figure 6-4 is a truncated plot that illustrates the flows in

the bulk of the fluid filled sphere.

x 10-3 Ch4 47Hz EFH1

0 0.02 0.04 0.06 0.08
z distance from Probe 4 (m)

----- baseline

-U-- 50.6G Clockwise

- 50.6G Counter-clockwise

101.2G Clockwise
--- 101.2G Counter-clockwise

Figure 6-3. Velocity profile at 47 Hz for EFH1 clearly showing saturation of ultrasound probe 4
right near the probe surface (z distance from probe 4 = 0) and multiple reflections at probe wall
(z distance from probe 4 =10cm).
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x 10' Ch4 47Hz EFH1
1 f - F - -

0.8 I |
0.8 ----------- -----------

0.4 ---- --- - -----

O 0.2 ------ I --------- -- -baseline

- - 50.6G Clockwise
0 50.6G Counter-clockwise

0 * 101.2G Clockwise
-- o-- 101.2G Counter-clockwise

-0.6 -- -

-0.8 ------ ---- - -- ---- |

-11I i

0.02 0.03 0.04 0.05 0.06 0.07 0.08
z distance from Probe 4 (m)

Figure 6-4. Same velocity profile as Figure 6-3 but truncated to remove most of the noise due to
saturation of the transducer at zero z-distance from probe 4 and multiple reflections at z-distance
from probe 4 of 10 cm.

The baseline case is the velocity profile when no field is applied and under the rotating

field there is very little deviation from the baseline. This implies that there is none or negligible

flow (<lmm/s) under a uniform rotating field. Any slight deviations from the baseline could be

because of instrument noise or due to the maximum 10% spatial non-uniformity of the field in

the test chamber of the fluxball machine as explained in section 5.2.7. The negligible flow

obtained for EFHI also occurred at different frequencies and these results are documented in

Appendix E.
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Parameters investigated
Fluids used MSGWl l and EFH1

Frequencies used 15 Hz, 47 Hz and 95 Hz
Magnitude of rotating flux density 50.6 G, 101.2 G

Rotational direction Clockwise (+90) and counter-clockwise (-90")
(Phase difference between outer and inner fluxball)

Table 6-2. Table of parameters investigated in experiment subjecting a sphere of ferrofluid to a
uniform rotating magnetic field.

x 1043

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
0.01

Ch1 95Hz EFH1

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x1 distance from Probe 1 (m)

Figure 6-5. Velocity profile as a function of distance away from channel 1 probe at 95 Hz using
EFH1. Two field strengths and two rotating directions are investigated. Any flow measured is
not significantly more than the baseline and the flow is very small <1mm/s. The slight deviation
for the 101.2 G clockwise field could be because of the maximum spatial error of 10% in
magnetic field strength in the test chamber of the fluxball machine as described in section 5.2.7
or just noise.
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- baseline
"3 50.6G Clockwise

- 50.6G Counter-clockwise
* 101.2G Clockwise

- 101.2G Counter-clockwise

I I I I

0.02 0.03 0.04 0.05 0.06
x2 distance from Probe 2 (m)

0.07 0.08

Figure 6-6. Velocity profile as a function of distance away from channel 2 probe at 95 Hz using
EFH1. Any flow measured is not significantly more than the baseline and the overall flow is very
small <1mm/s The slight deviation for the 101.2 G counter-clockwise field could be because of
the maximum spatial error of 10% in magnetic field strength in the test chamber of the fluxball
machine as described in section 5.2.7 or just instrument noise.

Ch3 95Hz EFH1

* baseline
* 50.6G Clockwise
* 50.6G Counter-clockwise
*-- 101.2G Clockwise

-k--- 101.2G Counter-clockwise

0.02 0.03 0.04 0.05 0.06
z3 distance from Probe 3 (m)

0.07 0.08

Figure 6-7. Velocity profile as a function of distance away from channel 3 probe at 95 Hz using
EFH1. Two field strengths and two rotating directions are investigated. Any flow measured is
not significantly more than the baseline and is very small <lmm/s.
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Ch4 95Hz EFH1

- 0.2- - -+baseline

E - 50.6G Clockwise

50.6G Counter-clockwise
8 101.2G Clockwise
> -0.2 ---- 101.2G Counter-clockwise

-0.4 -- --- - - - -

-0.6-

-0.8--- - ----- - -

-1
0.02 0.03 0.04 0.05 0.06 0.07 0.08

z distance from Probe 4 (m)

Figure 6-8. Velocity profile as a function of distance away from channel 4 probe at 95 Hz using
EFH1. Two field strengths and two rotating directions are investigated. No flow is measured
above baseline.

Figure 6-10 through Figure 6-13 are the velocity profiles for a sphere of MSGW11

ferrofluid under the influence of two different rotating directions at a low frequency of 15 Hz.

Negligible flow compared to the baseline case, which is the flow measured with no field,

confirms the same result as obtained with EFH1 under the influence of a uniform rotating field.

Appendix E has plots of a sphere of MSGW1 1 at other frequencies, 47 Hz and 95 Hz, and they

all have none or negligible flow with respect to the baseline case.

To ensure that the experimental setup was working properly, a one inch magnetic stir bar

(VWR #58948-138) was inserted into two other spheres of the same ferrofluids and placed in the

fluxball machine. The magnitude of the magnetic flux density of the stir bar was measured to be

90 G using the Ametes GMW three axis hall effect sensors. The stir bar and the GMW sensors
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are documented in Appendix C. The stir bar would settle at the bottom of the sphere of ferrofluid

and the applied rotating field was perpendicular to the magnetic poles of the stir bar. As a result,

the stir bar could be heard bouncing around the sphere and erratic non-zero flows were

measured. An example of one such flow is given in Figure 6-9 where a velocity profile measured

by probe 3 of a sphere of MSGW1 1 containing a stir bar was excited with a 101.2 G uniform

magnetic field rotating in the clockwise direction at frequency 47 Hz. The results confirm that

the setup was operating properly and the negligible flow (without the stir bar) is a real result.

Measured flow with stir bar from probe 3 at 101.2 G 47 Hz
clockwise magnetic field

0.015 -

0.01

0.005

E 0

0. 0.0 0.03 0.04 .05 0.06 0.07 0.08 0.09 0 1
6 -0.005

-0.01

-0.015

-0.02
x-distance from probe 3 (m)

Figure 6-9. Velocity profile as a function of x distance from probe 3 when a magnetic stir bar is
added to a sphere of MSGW1 1 excited at 101.2 G 47 Hz uniform rotating field.
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Ch1 15Hz MSGW11

0-- baseline

E -- 50.6G Clockwise

0 - 50.6G Counter-clockwise
0* 101.2G Clockwise
> -0.2 - --- 101.2G Counter-clockwise

-0.4 ------

-0 .6 -- - -- --- -

-0.8 -

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
x distance from Probe 1 (m)

Figure 6-10. Velocity profile as a function of distance away from channel 1 probe at 15 Hz using
MSGW 11. Two field strengths and two rotating directions are investigated. Negligible flow
compared to the baseline is measured.

U.21

E
0

> -0.2

x 10-3 Ch2 15Hz MSGW11

--- baseline

---- 50.6G Clockwise
50.6G Counter-clockwise

-+- 101.2G Clockwise
-- 101.2G Counter-clockwise

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x2 distance from Probe 2 (m)

Figure 6-11. Velocity profile as a function of distance away from channel 2 probe at 15 Hz using
MSGW 11. Two field strengths and two rotating directions are investigated. Negligible flow
compared to the baseline is measured.
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x 10-3  Ch3 15Hz MSGW11

T -I

I I I I I

I I | l I I I

I I I

1 | 2

0.2 00 0.4 00 0.0 0.7 00

z3 istnefo Prb 3 I(m

e baseline
* 50.6G Clockwise

50.6G Counter-clockwise

-*-101.2G Clockwise

101.2G Counter-clockwise

Figure 6-12. Velocity profile as a function of distance away from channel 3 probe at 15 Hz using
MSGW1 1. Two field strengths and two rotating directions are investigated. Negligible flow
compared to the baseline is measured.

x 10-3 Ch4 15Hz MSGW11

0.8 - -

0.6 --

I I I

I |

0.02 0.03 0.04 0.05 0.06
z distance from Probe 4 (m)

----- baseline

- -- 50.6G Clockwise

- 50.6G Counter-clockwise
-- *--- 101.2G Clockwise
------ 101.2G Counter-clockwise

).07 0.08

Figure 6-13. Velocity profile as a function of distance away from channel 4 probe at 15 Hz using
MSGW 11. Two field strengths and two rotating directions are investigated. Negligible flow
compared to the baseline is measured.
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6.2. Numerical Simulation of Ferrofluid Spin-up Flow in

Spherical Geometry in a Uniform Rotating Magnetic Field

To understand the results obtained in the previous section, the experiment was

numerically simulated in three dimensions using COMSOL Multiphysics. Two simulations were

carried out, one with spin-diffusion theory (r'f0) and the other without (r/'=0) for two

ferrofluids, Chaves's EMG900_2 [6] and Elborai and He's MSGW1 1 [1, 2] . Elborai and He's

MSGW11 [1, 2] is the same MSGW11 used in Figure 6-10 through Figure 6-13.

6.2.1. Governing Equations

The governing equations used are identical to that used in section 4.4.1.1, and are listed below.

5) Poisson's Equation

V =V-M (6.1)

6) Conservation of Linear Momentum

pL +(v.V) v = -Vp'+2V x +(+ )V2v +p(M.V) H (6.2)at

7) Conservation of Angular Momentum

I [ +(v-V)] =pOMxH+2{(Vx v-22)+q'V 20 (6.3)
at

8) Magnetic Relaxation Equation

aM 1
a- +(V-V)M=OXM M (M -M,) (6.4)at 'Tf

251



6.2.2. Model Assumptions

The applied field is assumed to not be strong enough to magnetically saturate the fluid.

The equilibrium magnetization Meq of the fluid is assumed to be in the linear regime of the

Langevin equation as a function of the magnetic field inside the ferrofluid given by

Meq = XHfl.id (6.5)

The flow is also assumed to be viscous dominated allowing for the inertial terms to be

dropped. The left hand side of the linear and angular momentum equations in (6.2) and (6.3) can

be set to 0 and the equations reduced to

O = -Vp'+2(V x9 +({+r/)V2v +pO (M-V) H (6.6)

and,

0=fpOM x H +2{(V x v - 2o)+r'V 2
(9 (6.7)
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6.2.3. Model Setup and Boundary Conditions

6.2.3.1. Modeling the Rotating Magnetic Field

Although the model can be setup in COMSOL using current boundary conditions on the

fluxballs, similar to Figure 5-14, it can be difficult to solve. A simpler method of setting up the

magnetic field is by using the magnetic scalar potential boundary condition similar to that

described in section 4.4.2.1. The only region of interest is the region of ferrofluid and it is only

affected by the uniform field imposed. This simplifies the problem into a one region problem

similar to Figure 6-14, to aid the numerical simulation process.

It is known that a sphere has demagnetizing factors of 1/3 in all directions. Therefore in

the presence of an externally applied uniform magnetic field ( H m,, H,,,,, H z,,, ) the field inside

the sphere of ferrofluid (Hxfluid , H yfluid , H zfluid) can be given by the following relation.

1
Hxfluid = Hx"' 3 M

3 x

Hyfluid =Hyext M (6.8)
3

H ,fuid = H z "' 3 M
3 z

Eqs (6.8) are substituted into Meq of (6.4) and the only driving force will be due to the

uniform external rotating magnetic field (HxextH yext). To describe the uniform rotating field in

Cartesian coordinates the external fields (Hxext, Hyext ) are sinusoidal functions of time with

rotational frequency K2 and 900 out of phase with each other. Eq (6.9) generates a counter-

clockwise uniform rotating magnetic field of magnitude Ho.
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Hxe-x= Ho cos(nt)i,
Hyex = H0 sin(nt)i,

H=-Vy

(6.9)

(6.10)

yV(r = R) can be determined to be the following boundary condition for a counter-rotating

magnetic field.

yI(r = k) = Ho(xcos(At) + y sin(ft)) (6.11)

Figure 6-14. One region model setup with shaded circle representing ferrofluid and boundary
condition on magnetic scalar potential. The scalar potential generates a magnetic field rotating in
the # direction at frequency 0. This magnetic field represents the external magnetic field and
has to be corrected for demagnetizing effects before being used in the magnetic relaxation
equation. The arrows inside the stator show the uniformly distributed rotating magnetic field
created inside the ferrofluid at a particular instant in time.
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Fluid Boundary Conditions

The linear momentum equation in (6.6) requires two vector boundary conditions. For a

rigid and stationary boundary the no slip and no-penetration boundary conditions are as follows

n -|vI|=O,nx||vI|=0 r=R (6.12)

where v represents the jump in velocity of the fluid across the boundary r=Ro. The boundary

condition at v(r = R0 ) is

v(r = R0 )=0 (6.13)

The conservation of angular momentum in (6.7) also requires an initial condition as well as two

vector boundary conditions if 17'# 0. The "spin-no-slip" boundary condition as described in

section 4.4.2.2, which assumes that the particle/wall interactions are strong enough that there is

no relative spin between the particle and surface, is applied and given as

w(r = R)=0 (6.14)

Neglecting the effect of "spin-diffusion" by setting 7' =0, the angular momentum equation in

(6.7) reduces from a second order to a zeroth order equation. Therefore there is no boundary

condition on the spin-velocity w implying zero or negligible particle/wall interactions.
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6.2.4. COMSOL Simulations with Spin-Diffusion (rl' 0)

The goal of this section is to simulate the spin-up flow experiment when a sphere of

ferrofluid is subjected to a uniform rotating magnetic field and compare the results with those

obtained experimentally in the previous section. Elborai [1] and He [2] both use the same

MSGW11 fluid that was used to obtain Figure 6-10 through Figure 6-13. In their theses, they

determine values for i' and - that can be used in the COMSOL simulations. The simulations

would help gain insight whether or not a flow should have been measured in the spherical case.

In addition, Chaves's EMG900_2 fluid used in [6] will also be simulated in the spherical

geometry since values of r and r' are also determined in his paper.

Equations (6.1)-(6.4) were first non-dimensionalized with respect to reference parameters

such as the radius of the sphere Ro, rotational frequency Q and strength of rotating field Ho.

d v --- 2-
R,[ =+(v-V)v]= -Vp'+2{Vx +({+r)V v+(M.V)H (6.15)

dt

RJ[ -+(v-V)co]=MxH+2{(Vxv-2o±)+'V o (6.16)
dt

dM1
d- +(v-V)M1= xM - (M-M ) (6.17)

dt eq

V 2 = V-M (6.18)

where

v -M - H- - pV =VRO, v ,M= -,H=-,t=tM,p= , ,
RO Ho H uOHO £2 HORO

__n Ig22 _ _ __'

S ' ,R ,R, 2
MOo oHO poHo uOHO pOHo
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These equations (6.15)-(6.18) were put into COMSOL in non-dimensional form and in all

cases the transient form of the equations were used. A fluid mechanics module was used to

represent the augmented Navier-Stokes equation (6.15). Three transient convection and diffusion

modules were used to represent the magnetic relaxation equation in x, y and z coordinates (6.17).

A diffusion equation was used for the angular momentum equation (6.16) with q' the coefficient

for the spin diffusion term and a general PDE module was used to represent Poisson's equation

in (6.18). The time-dependent terms in the PDE module set of the linear and angular momentum

equations were all set to 0. The general PDE module could potentially be replaced by the AC-DC

Magnetostatics, No Currents module, both giving the same results.

The results from the previous section are that negligible flow was obtained with

MSGW 11 at all field strengths and frequencies. The values of q' and teff were independently

determined by Elborai [1] and He [2]. These are tabulated in Table 6-3.

MSGW11 Tef(S) qt' (kg ms)
Elborai [1] 1.2x10 5±1.18x10-5  3.15x10 9 ±1.13x10-9

He [2] 1.57x10- ±1.43x10-) 6.4x10-9 ±5.4x10~9

Table 6-3. Table of q' and teff determined by Elborai [1] and He [2] in their theses.

For the COMSOL simulation, an average of the values of q' and Teff determined by

Elborai [1] and He [2] was used resulting in Teff =1.39x10-5 s and 17' =4.78x10-9 kg m/s. The

parameters for MSGWll and EMG900_2 are tabulated in Table 6-4. The non-dimensional

parameters used in (6.15)-(6.18) were then determined for a RMS rotating flux density of 100 G

at 95 Hz and tabulated in Table 6-5. The model files are documented in Appendix F.

The results of the simulation give rotational flow in the spherical case as seen in Figure

6-15 and Figure 6-16. The flow is in the same plane and direction as the rotating field and the

magnitude of the dimensional rotational velocity as a function of radius for the two different
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fluids in a 10 cm diameter sphere subjected to a rotating field are plotted in Figure 6-17. The

magnitude of the velocity obtained is significant and should be easily measured with the

DOP2000 velocimeter.

Parameter EMG900 2 Value MSGW11 value
teff (S) 1x106  1.39x10-5

p (kg/m 3) 1030 1200
qj (Ns /m2) 0.0045 0.00202

poM, (mT) 23.9 15.4

((Ns/m 2) 0.0003 0.000083
Frequency (Hz) 95 95

Radius of spherical vessel Ro (m) 0.05 0.05
Volume Fraction (%) 4.3 2.75

x 1.19 0.56
rl'(kg m/s) 6x10' 0  4.78x10-9

Table 6-4. Table of parameters for EMG900_2 and MSGW1 1 ferrofluids used in COMSOL
simulations.

Normalized Variable EMG900_2 MSGW11

2 9x10-7  7.17x10-6

2 0.001089 0.000313
0 

-= 2 0.0169 0.00758

Table 6-5. Table of normalized parameters that depend on the strength of the RMS magnetic
field (Bo= 100 G, Ho= 7957.75 A/m) used and the radius of the sphere Ro=5 cm.
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-035
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Figure 6-15. Velocity field generated with non-zero spin-viscosity for both MSGWl 1 and
EMG900_2 in sphere. Velocity flow co-rotates in the same direction as the rotating field.

Figure 6-16. Velocity field observed from top of sphere perpendicular to plane of counter-
clockwise rotating magnetic field.
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Figure 6-17. Dimensional rotational velocity for 10 cm diameter sphere of ferrofluid with non-
zero spin-viscosity in a uniform rotating magnetic field calculated using COMSOL Multiphysics
3.5a. The results of MSGW1 1 and Chaves's EMG900_2 [6] both have velocity magnitudes that
can be measured using the DOP2000.

The normalized magnetic field as a function of radius for both EMG900_2 and MSGW 11

are plotted in Figure 6-18 and Figure 6-19. The distribution of magnetic field has slight

variations at the wall boundary due to the velocity no-slip boundary condition affecting the

magnetization. The magnetization for the EMG900_2 and MSGW1 1 are plotted in Figure 6-20

and Figure 6-21 respectively.
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Normalized magnitude of magnetic field as a function of radius for EMG900 2
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Figure 6-18. Normalized magnitude of magnetic field as a function of radius for EMG900_2
calculated using COMSOL Multiphysics 3.5a. The field is mostly uniform of magnitude 0.716
with slight variation at the wall boundary due to the no-slip velocity boundary condition
affecting the magnetization there. The different colored lines correspond to different times in the
simulation.
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Figure 6-19. Normalized magnitude of magnetic field as a function of normalized radius for
MSGW1 1 calculated using COMSOL Multiphysics 3.5a. Magnetic field is distributed uniformly,
of magnitude 0.8427, throughout the fluid with slight variation near the wall boundary due to no-
slip velocity boundary condition affecting the magnetization. The different colored lines
correspond to different times in the simulation.
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Figure 6-20. Normalized magnitude of magnetization as function of normalized radius for
EMG900_2 using COMSOL Multiphysics 3.5a. The different colored lines correspond to
different times in the simulation. The magnetization is uniform with magnitude 0.8521 with
slight variations near the wall due to the velocity no-slip boundary condition.
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Figure 6-21. Normalized magnitude of magnetization as a function of normalized radius for
MSGW1 1 using COMSOL Multiphysics 3.5a. The different colored lines correspond to different
times in the simulations. The magnetization is mostly affected near the wall due to the velocity
no-slip boundary condition there and is of magnitude 0.472.
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6.2.5. Comparison with Analytic Solutions Using a Linear

Magnetic Material

Since the magnetic field is mainly uniform within the ferrofluid as seen in Figure 6-18

and Figure 6-19, the magnetic material can be considered to be almost linear. In section 5.2.3,

the magnetic field distribution inside a sphere of linear magnetic material placed inside a fluxball

is calculated. To generate a rotating magnetic field, a fluxball machine comprised of two

orthogonal fluxballs is used resulting in an equation for the magnetic field inside the linear

magnetic material given by

HJ = NI (6.19)
(3+X)R

If g = 0, with a normalized magnetic field magnitude of 1

NI=3  (6.20)
R

Substituting a X =1.19 for EMG900_2 gives a normalized magnetic field magnitude of 0.716

similar to that obtained in Figure 6-18. The magnetization can also be calculated using

M = vjH resulting in a normalized value of 0.852 equal to that in Figure 6-20.

Similarly for MSGW11 with a r = 0.56 results in a normalized magnetic field

magnitude of 0.843 and a normalized magnetization of 0.472 as confirmed in Figure 6-19 and

Figure 6-21.
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6.2.6. Theoretical Determination of Spin-Viscosity il' [3, 4]

Bird, Stewart and Lightfoot [5] derive the dynamic viscosity of a low density gas from a

molecular kinetic theory of gases. This theory can be extended to derive a theoretical value for

spin-viscosity 17' by considering the flux density of internal angular momentum e), instead of

linear momentum as is done in [5], and is given as

Angular momentum flux density = ?'V0 (6.21)

where the spin-viscosity coefficient 1' is the analog to dynamic viscosity q7 used in [5].

A shear flow in the x-y plane shown in Figure 6-22 has a gradient of x-velocity in the y

direction resulting in transfer of linear momentum in the x-direction to the y-direction. The

particle's spin direction is in the z-direction which is also transferred in the y-direction. A plot of

the distribution of the z-directed spin oz as a function of y is given in Figure 6-23.

v dimension
boundary plate "

(2D, moving) velocity, u
shear stress, -r

fluid gradient, -

boundary plate (2D, stationary) x

Figure 6-22. Laminar shear flow between two plates resulting in Couette flow
http://en.wikipedia.org/wiki/File:Laminar shear.svg.
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Yo~ ~~o (y = yo) _--- ---
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yo-a --------- - - - - -

Figure 6-23. Molecular transport of spin velocity oz from the plane (y = yo-a) to the plane at yo. k is the

mean free path of the particle.

The frequency of molecular bombardment per unit area on one side of the plane (y-a) is

Z =!nu (6.22)
4

where n is the number of molecules per unit volume and u is the magnitude of the average

particle velocity given as

U = kT (6.23)
;rm

where k is the Boltzmann constant, m the mass of the particle and T the average temperature of

the fluid. The flux per unit area of internal angular momentum across the planes (y = yo+a) and

(y = yo-a) can be given as

Angular momentum flux density = ZmI c - ZmIOO+a (6.24)
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where I is the moment of inertia per unit mass. On average a particle reaching a plane would

have experienced their last collision at a distance a from the plane given by

2
a =-2 (6.25)

3

where A is the mean free path given by

1
A = (6.26)

,[2;(2R2 2n

with 2R2 representing the collision diameter of the particle. Assuming that all particles have spin

velocities representative of the region in which they last collided, the spin profile oz(y) is

essentially linear over many mean free paths and is given by

2 do
3 dy )O 

(6.27)

IY~a= YO+2 da
(Oz0- = 20+2

3 dy ,O

Substituting these equations into (6.24) results in

4 d
Angular flux density =--ZmIA Z (6.28)

3 dy ,O

where the coefficient to daz is the spin viscosity term 7'as given in (6.21).
dy

4
= -ZmIA (6.29)

3
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The ferrofluid nanoparticles have a core radius of R, and are coated with a surfactant layer of

radius R2 resulting in a two layered sphere with different mass densities in each layer as seen in

Figure 6-24.

Nanoparticle core pi

Surfactant layer P2 R22R

Figure 6-24. Two layered sphere representing nanoparticle of radius R2 with a core of radius RI. The
core has a mass density of p, while the surfactant layer has a mass density P2.

The moment of inertia per unit mass I is given as

I= Z{PRI +p 2 (R1 -R)] (6.30)

Substituting (6.30) into (6.29) results in an estimate for '1 as

16 kT 1 2 Cp 1Rf +p 2(R -R )1 (6.31)
45 m m(2R2)

where the mass of the two layered nanoparticle is given as

m= 4 A[(A -p2) Rf +p2 R (6.32)

with pi, R, the mass density and radius of the core and P2, R2 the mass density and radius of the

particle including the surfactant layer.

Schumacher, in his paper [3] states that "The spin viscosity is estimated using kinetic

molecular theory of an ideal gas and multiplied by 1000 to get an estimate for our liquid since
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liquid viscosities are typically 100-1000 times larger than gas viscosities". Schumacher [3]

calculates that for a particular ferrofluid, with characteristics listed in Table 6-6, a value of

q'=6.4x10-20 is theoretically obtained.

Parameter Schumacher's Ferrofluid [3]
p (kg/m 3) 1187.4
q (Ns /M2) 0.00385
C (Ns/m 2) 0.00193
tl'(kg m/s) 6.4x10-

Table 6-6. List of physical parameters and values used by Schumacher in his theoretical
determination of q' [3].

The fluids used in this thesis, EFH1 and MSGW 1l, and even Chaves's EMG900_2 have

parameters with values of the same order of magnitude as those listed in Table 6-6. The

theoretical value for 17' for these fluids should also be on the order of q' ~ 1020 which is many

orders of magnitude smaller than the values experimentally determined by He [2], Elborai [1]

and Chaves [6].

6.2.7. Rosensweig's Alternate Method of Determining Spin-

Viscosity

Rosensweig also theoretically derives an expression for rq' using the kinetic theory of

dilute gases [4], similar to Schumacher in [3]. In addition to that, Rosensweig also derives an

expression for tq', in his book [8], using the viscosity of the fluid itself r/ given by

)' _)12 (6.33)
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where 1 is the characteristic diffusion length and has the same order of magnitude as the average

distance between the solid particles defined by the approximate dilute-limit relationship

{ 1/3
1 = (_ ) 1/3(6.34)

d 6p

where d is the particle diameter and #,, is the volume fraction of magnetic nanoparticles in the

ferrofluid.

He [2], using values determined for MSGW1 1 in his thesis (d=5.5-12.4nm, q=0.00202

Ns/m 2,#, 1 =2.75%), derives a value of r/' for MSGW11 to be q'=0.436-2.214x10-16 [kg m/s]

which is also several order of magnitudes smaller than the value determined from his

experiments q'z (1-11.8)x10~9 [kg m/s].
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6.2.8. COMSOL Simulations with No Spin-Diffusion (ri'=0)

The theoretical rq' term is calculated to be extremely small, which is why several authors

do not include it in their analysis by setting it to 0 [7, 9-12]. The results obtained are similar to

those obtained in the cylindrical geometry and documented in section 4.4.3.5. The model file is

documented in Appendix F.

By setting the term to zero, the conservation of angular momentum equation reduces to a

zeroth order equation in space requiring no boundary condition on spin-velocity o at the wall.

=Ih p x H + 2 (V x v - 2o) + (6.35)

The constant demagnetizing factors of 1/3 in all directions for the spherical case results in a

magnetization that would only be in the same plane as the rotating magnetic field. Any other

ferrofluid container shape would result in a spatially varying demagnetizing field that would

result in a spatially varying magnetization. Since the magnetization and applied magnetic field

do not vary spatially, there would be no spatial variation in spin-velocity and the magnetic force

term would also be zero for a cylinder with non-moving walls.

.VI- <V = -Vp '+ +({+)V 2v + (6.36)

F =ypo (M-V) H = 0 (6.37)

Simulations of a sphere of ferrofluid subjected to a uniform rotating field with r '=0 were

done using the parameters for both Chaves's EMG900_2 [6] ferrofluid and MSGW 11 as given in

Table 6-4 and Table 6-5. The velocity profiles for EMG900_2 and MSGW1 1 are negligible

(~101 normalized velocity magnitude) as seen in Figure 6-25 and Figure 6-26 respectively.
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Magitude of normalred rotaUona velocty a afunction of normained radus over time for EM900j;
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Norm aized radus

Figure 6-25. Plot of normalized rotational velocity v, as a function of normalized radius for

EMG900_2 calculated using COMSOL Multiphysics 3.5a. The different colored lines represent
different profiles in time. The magnitude of the velocity is extremely small 1014 normalized
magnitude and is in the noise.

MagitLde of normaizd veiociy as a £metionofn rmalfad radis over time fr MSGW11

0.6

.0

-0.2

,0.4
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Normalized radius

Figure 6-26. . Plot of normalized rotational velocity as
MSGW 1l calculated using COMSOL Multiphysics 3.5a.
different profiles in time. The magnitude of the velocity
magnitude and is in the noise.

a function of normalized radius for
The different colored lines represent
is extremely small =10-13 normalized
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6.3. Conclusions of Spin-up Experiment with Uniform

Rotating Magnetic Field

The experiment of applying a uniform rotating magnetic field to a sphere of ferrofluid

gave negligible flow as described in section 6.1. This result could not have been possible using

the 1' values determined experimentally by Chaves [6], He [2] and Elborai [1]. These values

were also many orders of magnitude greater than the theoretical derivation of q'.

The negligible flow obtained in the spherical geometry and the non-zero flow in the

cylindrical geometry with a stationary lid confirms that flow is generated due to the non-uniform

field created by the demagnetizing effects of the shape of the ferrofluid container as stated by

Shliomis [12]. The negligible flow in the spherical case could not have been possible using the q'

values determined experimentally by Chaves [6], He [2] and Elborai [1]. This also means that the

experimentally determined q' values compensates for the demagnetizing effects due to the

cylindrical shape of the container and explains why fitted q' values to meeasurements were many

orders of magnitude greater than the theoretical derivation of q'.

All these facts along with the negligible flow obtained with q'=0 (section 6.2.8) conclude

that the effects of spin-diffusion are truly negligible. Pshenichnikov [7] takes Shliomis's [12]

argument further by stating that the flow is fundamentally created by a spatial non-uniformity in

magnetic susceptibility brought about either by a strong bias field or by spatial non-uniform

heating of the fluid due to the dissipation energy of the rotating field. To fully investigate this

hypothesis, the sphere of ferrofluid is subjected to a non-uniform rotating field and this

experiment is detailed in the next section.
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6.4. Experimental Setup of Applying a Non-Uniform

Rotating Magnetic Field to a Sphere of Ferrofluid

A non-uniform rotating magnetic field is created by superimposing the uniform rotating

magnetic field, generated by the fluxball, with the magnetic field imposed by a permanent

magnet or a solenoidal coil placed at a particular point on the ferrofluid filled sphere. The field

will be mainly non-uniform in the region near the solenoidal coil or permanent magnet and

uniform elsewhere.

In the case of the fluxball machine, there was very little room inside the test chamber of

the inner fluxball leaving only the option of placing the coil/magnets on top of the sphere of

ferrofluid. To allow for this, the crane part had to be redesigned to remove the slot for the GMW

probe and leave only the slot for the ultrasound probe at z=+2.5 cm as seen in Figure 6-2. The

new crane part (named Crane version 4) can be seen in Figure 6-2, Figure 6-27 and Figure 6-28

and its dimensions are given in Appendix C.

The experimental results were conducted allowing sufficient time for the fluxball and the

ferrofluid filled sphere to cool to room temperature of ~250C to minimize temperature effects on

the magnetic susceptibility of the ferrofluid.
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6.4.1. Design and Construction of the Third Solenoidal Coil

The third solenoidal coil will be referred to as the third coil for the rest of this thesis. The

design requirements for the third coil are as follows:

1. The coil has to be able to fit inside the small region above the sphere of ferrofluid and the

inside wall of the inner fluxball.

2. It has to have low resistance to prevent significant heating of the ferrofluid filled sphere that

would drive convection currents.

3. It has to have high inductance to generate a strong enough magnetic field to make the total

field significantly non-uniform in the region near the ferrofluid filled sphere.

To meet these criteria, the third coil was made using 0.5 inch wide insulated copper foil

(Alpha-Core Laminax B-series #B0500x0625). The copper foil was of 5 mil thickness with a

0.625 inch wide polyester backing of 1.2 mil thickness and is described in Appendix C. The

copper foil automatically limited the coil's height to 0.625 inches and the third coil was made by

winding 150 turns of this foil. The resulting dimensions of this solenoidal coil, documented in

Appendix C, was small enough to fit inside the small region above the sphere of ferrofluid as

seen in the outline diagram of Figure 6-27 and the profile picture of Figure 6-28.

Figure 6-29 and Figure 6-30 are pictures of the actual third coil designed and built. Figure

6-29 also shows that the third coil had its leads coated with Kapton insulating tape to prevent

short circuiting of the leads in case the high currents melt the wire insulation. Figure 6-30

illustrates that the windings and the structural integrity of the coil were also held together with

the help of cable ties.
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Access hole of inner fluxball

Crane version 4 Sphere of ferrofluid

Figure 6-27. Wire diagram showing position of third coil placed on top of ferrofluid sphere with
very little room left between access hole of inner fluxball and third coil.

Sphere of ferrofluid in probe holder
Third coil

Crane version 4

Bottom half of inner fluxball

Li

Figure 6-28. Side profile of half of inner fluxball with third coil placed on top of sphere of
ferrofluid. The modified crane version 4 is also shown.
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Figure 6-29. Side profile of actual third coil used in experiment. The leads are coated in Kapton
insulation tape to prevent conductors from touching if enough current melts the wire insulation.
The coil also has a tube fitted to its inner annulus to fit inside the inner fluxball's access hole.

Figure 6-30. Picture showing the underneath of the third coil used in experiment. The windings
are held together using cable ties.
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6.4.2. Lumped Parameter Model of Third Coil

The third coil can be modeled as an R-L circuit. Measurements of the resistance and

inductance of the third coil was made using the Hewlett-Packard 4192A LF Impedance

Analyzer. The properties for the third coil are tabulated in Table 6-7 with values of resistance

and inductance taken at two frequencies 100 Hz and 1 kHz.

At 100 Hz At 1000 Hz
Resistance 0.26 0 0.394 Q
Inductance 0.7 mH 0.688 mH

Self Resonant Frequency 1.98 MHz

Table 6-7. Table of measured resistance and inductance values for the R-L model of the third

coil at two frequencies, 100 Hz and 1 kHz.

6.4.3. Normal Operation of the Third Coil

The purpose of the third coil is to generate a magnetic field at DC as well as at any AC

frequency specified. To generate the desired current through the third coil, it would have to be

connected to a voltage source which in this case would be the output of the LVC 5050 power

amplifier with inputs from a NI PCI-6035E DAQ card. The NI LabVIEW 8.2 program used in

section 5.2.6 was used to control the NI PCI-6035E DAQ card which generates an output voltage

of 0-10V that is amplified, with a voltage gain of 20, by the LVC 5050 power amplifier and fed

to the third coil in series with a 10 200W resistor.

The voltage drop across this resistor represents the current flowing through the third coil

and this measurement is fed back to an input of the DAQ card. The LabVIEW program uses the

NI LabVIEW 8.2 PID Control Toolkit to then adjust the output channel voltage from the DAQ

card to obtain the desired current through the third coil. This measurement also allows for the

control of the phase difference between the third coil current and the inner fluxball current
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during AC operation of the third coil. Since the third coil will be used in conjunction with the

fluxball machine, both the NI PCI-6036E and PCI-6035E DAQ cards have to be used in

conjunction with two LVC 5050 power amplifiers and two BNC 2120 connector blocks. The

different amplifiers, DAQ cards and connector blocks are numbered and laid out in the circuit

diagram for the whole setup as shown in Figure 6-31 and the datasheet for the parts are given in

Appendix C.

A screen shot of the LabVIEW user interface (identical to Figure 5-22) is shown in

Figure 6-32. The controls highlighted in Figure 6-32 are sufficient to control and maintain the

magnitude, frequency (including DC operation) and phase difference between the third coil and

inner fluxball currents. The phase difference between the third coil and the inner fluxball is

controlled by adjusting the phase of the signal exciting the third coil using the NI LabVIEW 8.2

PID Control Toolkit taking care of the mutual inductance effects between the fluxball and the

third coil. The controls for the individual fluxball windings were highlighted in Figure 5-22. A

detailed description of the LabVIEW program's functionality and code are given in Appendix J.

The 10 200W resistor was made by placing two 50W 10 resistors in series with each

other which were themselves placed in parallel with another two 50W 10 series resistors. The

combined resistance of this arrangement is 10 but the power rating is 200W. The resistors were

mounted in a metal enclosure (Digikey #HM947-ND) that had heat sinks (Digikey #ATS 1145-

ND) placed to dissipate the heat generated as seen in Figure 6-34. The inside of the resistor box

with the four resistors are shown in Figure 6-35.

The third coil was inserted by fitting the tube (seen in Figure 6-29) into the access hole of

the upper half of the inner fluxball. This positions the third coil along the axial line of the inner
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fluxball and provides consistency for the numerous experiments conducted. A picture of the third

coil inserted into the upper half of the inner fluxball is shown in Figure 6-33.

Connected to
6036E Chi Input via

BNC 2120 #1 LVC 5050 #1 Output Chi

Inner 

-I--IFInnerl 
2O*\outer COSPfl Vouter COS(P) viBN210#

Fluxball LC55
Windings Outer Power Amplifier #1

FluxballGain2
W indings 6036E Ch2 Outputu

Connected to LVC 5050 #1 Output Cs via BNC 2120 #1
6036E Ch2 Input via

1 1 BNC 2120 #1

Connected to
6035E Chi Input via

BNC 2120 #2

Third Coil
Windings

Figure 6-31. Circuit diagram outlining whole setup of controlling fluxball machine as well as

third coil. Two LVC 5050 amplifiers, two DAQ cards and two BNC 2120 connector blocks have

to be used.

279



Switch to turn on current
to third coil

Switch for DC operation
of third coil

Third coil current magnitude

Third coil frequency

Phase difference setting
between third coil and

inner fluxball

Current waveform through
third coil

Measured current phase
difference between third
coil and inner fluxball

PID Gain settings for
phase and magnitude of

third coil

Figure 6-32. Front control panel of program in NI LabVIEW 8.2 showing all the controls needed to control third coil including setting
magnitude, frequency and phase difference between third coil and inner fluxball. It also has a control to drive a DC current through the
coil.
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Figure 6-33. Tube inserted in the annulus of third coil (see Figure 6-29) fits inside the inner
diameter of the inner fluxball's access tube. This allows for the third coil to be properly aligned
along the axis of the fluxball for the numerous experiments conducted.

Figure 6-34. 1Q 200W resistor in enclosure with heat sinks mounted. BNC connector used to
connect the resistor in series with the LVC-5050 amplifier. The leads coated in Kapton tape
connect the resistor to the third coil. The banana plug leads allow for the voltage measurement
across the 1Q resistor.
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Figure 6-35. 1Q 200W resistor made by using four 10 50W resistors and mounted in the metal
enclosure shown above. Two series 10 resistors are placed in parallel with another two series 1Q
resistors. The leads to the coil are coated with Kapton tape with banana plug leads connected to
measure the voltage drop across the 1Q combined resistor.
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6.4.4. Magnetic Characteristics of Third Coil

The magnetic field in non-magnetic media in the axial direction (z-direction) of a single

circular hoop in the z=O plane, of radius a about the origin, carrying a constant current I is given

by (6.38) [13] where z is the position along the axial direction.

Bz = PoIa2 3/2
2(Z2 +a2)

(6.38)

23.62 mm Third coil 23.62 mm

One turn coil

42.67 mm

Figure 6-36. Cross-sectional diagram representing dimensions of third coil windings and one

turn coil equivalent with radius a ~ 21.34 mm.

To compare the theoretical axial magnetic field obtained using (6.38) with measured data,

the value of a has to be determined. By taking the mean location of the third coil windings as

seen in Figure 6-36, the single turn equivalent current loop has an approximate radius a :: 21.34

mm.
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Measurements of axial magnetic flux density (Bz) as a function of axial distance (z) were

made using 1A DC and 1A RMS for different frequencies and plotted in Figure 6-37.

To determine the winding factor K, for the third coil, several measurements of magnetic

flux density as a function of current, at the center of the annulus of the third coil z=O, were made

for different frequencies including DC. These winding factors were averaged over the several

frequency measurements and then averaged over the different current amplitudes to give an

overall winding factor of 42.4 Gauss/A. These results are tabulated in Table 6-8.

Bz field as a function of z distance
5

4.5

4

3.5

3 ...DC

2.5 -- +- f=10

---U--- f=25
2

--- A--- f=47

1.5 -- x.- f=95

1 :Theoretical

0.5-

0 ---- ---

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

z (M)

Figure 6-37. Measurement of axial magnetic flux density Bz of third coil as a function of axial
distance z at different frequencies and DC. Measured results are very similar to the plot of a
theoretical one turn model of third coil with radius a=21.34mm.
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I(A) B,(mT) B,(mT) Bz(mT) Bz(mT) B,(mT) Frequency
RMS/DC at DC at f = 10 Hz at f = 25 Hz at f = 47 Hz at f = 95 Hz Averaged

(RMS) (RMS (RMS) (RMS) K.=B,/I
(mT/A)

1 4.36 3.79 4.27 4.35 4.38 4.23
2 8.74 7.64 8.55 8.75 8.79 4.25
3 13.12 11.53 12.8 13.13 13.22 4.25

Overall Average K, 4.24

Table 6-8. Table of measured axial flux densities at r=z=O (origin of axial direction) at different
frequencies and DC. The average winding factor is calculated over the frequency range and an
overall average winding factor is calculated for three different current measurements.

For an N turn coil the theoretical magnetic field at z=O can be calculated by setting z=O

and multiplying Eq (6.38) by N, resulting in a theoretical value of K", given in (6.39), in good

agreement with experiment results

K = = 4.42 mT/A (RMS) (6.39)
2a

6.4.5. Using Permanent Magnets

Neodymium permanent magnets of diameter 1 inch could also be placed on top of the

ferrofluid filled sphere instead of the third coil. Five magnets were purchased from K&J

Magnetics Inc. with different surface field strengths as tabulated in Table 6-9. The surface field

strength was also measured using the F.W. Bell three axis probe and Teslameter. The

specifications for the magnets and the Teslameter are documented in Appendix C.

A special holder, as seen in Figure 6-38, was made to fit inside the inner diameter of the

inner fluxball access hole and hold the magnet. This would help keep the position of the magnet

consistent between experiments. The magnet holder fitted in the access hole, to align it with the

axial line of the inner fluxball, can be seen in Figure 6-39.
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K&J Magnetics # Quoted Surface Field Measured Surface Field Height (inches)
Strength (Gauss) Strength (Gauss)

DX02 1601 1088 1/8
DX04 2952 2580 1/4

DX04B-N52 3309 2910 1/4
DX08 4667 3900 1/2

DX08B-N52 5233 4400 1/2

Table 6-9. Table detailing height and surface field strength of 1 inch diameter neodymium
permanent magnets.

Figure 6-38. Magnet holder to fit inside inner fluxball's access hole.
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Figure 6-39. Magnet in holder fitted inside upper half of inner fluxball's access hole.
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6.5. Experimental Results With a Non-Uniform Field

Imposed

6.5.1. Parameters Investigated in Experiments Using The Third

Coil

The experiments conducted with the third coil generated a non-uniform field that resulted

in significant flow that was measured with the ultrasound velocimeter. The parameters varied for

the experiments conducted are tabulated in Table 6-10. The fluxball field strength of 50.6 G and

101.2 G RMS correspond to IA and 2A RMS current in the fluxball windings respectively. The

third coil is excited using AC frequencies as well as DC. The AC frequencies used are exactly

the same as the rotational frequency of the rotating field, in effect, if the rotating field is rotating

at 95Hz, the third coil would also be excited at 95Hz. The phase of the third coil under AC

operation was also adjusted relative to the phase of the signal exciting the inner fluxball using the

LabVIEW program in Figure 6-32. The third coil flux density of 169.6 G and 296.G RMS

corresponds to an AC third coil current of 4A and 7A RMS respectively. The ±339.2 G DC

corresponds to a DC third coil current of ±8A for the third coil. The experimental results of all

cases conducted with the third coil are documented in Appendix G.
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Parameters Varied Values
Rotating field direction Clockwise and Counter-clockwise

Fluxball rotating field strength (RMS) 50.6G, 101.2G
Rotating Field Frequencies 15Hz, 47Hz, 95Hz

Fluids EFH1I, MSGW11
Third Coil Frequencies 15Hz, 47Hz, 95Hz, DC

Phase of third coil with respect to phase of inner fluxball 0*,+600,-601,+1200,-1200,1800
Field strength of third coil (RMS) 169.6G (AC), 296.8G (AC), ±339.2G (DC)

Table 6-10. Table of parameters varied in experiments conducted with magnetic field generated
by third coil and fluxball machine.

6.5.2. Parameters Investigated in Experiments Using Permanent

Magnets

The experiments conducted with the permanent magnets also generated a non-uniform

field that resulted in significant flow that was measured with the ultrasound velocimeter. The

parameters varied for the experiments conducted are tabulated in Table 6-11. The fluxball field

strength of 50.6 G and 101.2 G RMS correspond to 1A and 2A RMS current in the fluxball

windings respectively. The experimental results of all the cases conducted with permanent

magnets are documented in Appendix H.

Parameters Varied Values
Rotating field direction Clockwise and Counter-clockwise

Fluxball rotating field strength (RMS) 50.6G, 101.2G
Rotating Field Frequencies 15Hz, 47Hz, 95Hz

Fluids EFH1, MSGW11
Pole of Magnet facing sphere of ferrofluid North, South

Surface field strength of magnet 1601G, 2952G, 3309G, 4667G, 5223G

Table 6-11. Table of parameters varied
permanent magnets and fluxball machine.

in experiments conducted with field generated by
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6.5.3. Effect of Rotational Direction of Magnetic Field

In general, the ferrofluid flows reverse direction when the rotating field direction is

changed from counter-clockwise to clockwise directions. This occurs in experiments involving

the third coil as well as the permanent magnets. The flow generated as a result of the non-

uniform fields is very complicated and irregular with the creation of several vortices. As a result

the flow does not necessarily change symmetrically when the field direction is reversed.

Figure 6-40 and Figure 6-41 are velocity profiles measured by the channel 2 probe with a

50.6 G clockwise and counter-clockwise rotating magnetic field respectively for EFH1 at 95Hz

with permanent magnets having their south poles facing the ferrofluid filled sphere. It can be

clearly seen that the flow profile reverses as a result of reversal of the rotating field directions. A

plot of the velocity vectors determined at the four points in Figure 6-2 are plotted in Figure 6-42

and Figure 6-43 for a clockwise and counter-clockwise rotating field respectively, of rotating

field strength 101.2 G at 95Hz using the oil-based EFH1.

The reversal in flow direction is also observed when using the third coil and MSGW 11.

Figure 6-44 and Figure 6-45 are plots of velocity flow profiles measured by the channel 1 probe

for clockwise and counter-clockwise rotating 95 Hz fields respectively for MSGW1 1 using a

third coil which is entirely in phase with the inner fluxball current. The velocity vectors at the

four points in Figure 6-2 can also be constructed with data measured by the four probes and is

illustrated in Figure 6-46 and Figure 6-47 for clockwise and counter-clockwise rotating field

respectively with velocity vectors reversing direction, although not symmetrically, as a result of

reversal of field direction.
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x 10-3 Ch2 95Hz EFH1 S POLE 50.6G Fluxball Clockwise Rotating Field

1 - - - - - - - - - - - - - - - --- - - - - - - - - - - - - ~ ~ g e- -- No Magnet
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Figure 6-40. Channel 2 velocity profile as a function of distance from Probe 2 for EFH1 at 95 Hz
and 50.6 G clockwise rotating magnetic field under the influence of permanent magnets with
south poles facing the top of the sphere of ferrofluid.
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Figure 6-41. Channel 2 velocity profile as a function of distance from Probe 2 for EFH1 at 95Hz
and 50.6 G counter-clockwise rotating magnetic field under the influence of permanent magnets
with south poles facing the top of the sphere of ferrofluid.
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95Hz EFH1 S POLE 101.2G Fluxball Clockwise Rotating Field Flow profile scale=2

0.01 -- - -------- ---------------------- - --------- ---- ---- ------- ------------ --- -- - - - 6 1

E 0.04 -------------- - -------- ------------ ---- ----------- ---- -------------------- ---- - ---- 52 3

0

-- --2-- --.1--0.0 - -6 -- ---. 4 --.02 - ----. 02

EFH 6 at------- a---- 101.2 GG5 H lc ws oaigfed wt a nt aigters uhp lsfcn

CO

-0 --- - 00-06 ----- -02 - 0-0-02

the top of the ferrofluid filled sphere. The flow pattern follows the clockwise rotating field
direction with greater magnitude flow occurring at the top of the sphere. The little flow at the
two measurement points near the bottom of the sphere also seems to flow towards the right
implying vortices must be forming in the region between the top two points and the bottom two
points. The arrows are scaled by a factor of 2 to better see them.
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95Hz EFH1 S POLE 101.2G Fluxball Counter-clockwise Rotating Field Flow profile scale=2

0.1 ------------- ----- ------ --- ----------- - - ---------- ---- ------- -- -- --- 6 1
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E 0.08
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C) -2
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Distance33 09
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-0.12 -0.1 -008 -0.06 -0.04 -0.02 0 0.0D2
Distance from Chl and Ch2 Probes (in)

Figure 6-43. Velocity vectors plotted at the points where the four probe beams intersect for
EFH1 at a 101.2 G 95 Hz counter-clockwise rotating field with magnets having their south poles
facing the top of the ferrofluid filled sphere. The flow pattern generally reverses direction with
the counter-clockwise rotating field with greater flow occurring near the region of non-uniform
field at the top of the ferrofluid filled sphere near the magnets. The arrows are scaled by a factor
of 2 to better see them.
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Ch1 95Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=0

0.008 -

0.006

0.004

00- - baseline

50.6G Fluxball no 3rdcoil
E---- 101.2G Fluxball no 3rdcoil

-2 0 --- 50.6G Fluxball 169.6G 3rdcoil
* 101.2G Fluxball 169.6G 3rdcoil

--- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

-0.006 - -

-0.006-

-0.008

-0.01
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

Figure 6-44. MSGW1 1 velocity flow profile measured by channel 1 probe for 95 Hz clockwise
rotating field with the phase of the third coil with respect to the inner fluxball equal to 0.
Baseline refers to the flow measured by the velocimeter without any field applied.
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Ch1 95Hz MSGW11
0.01 ------------

0.008--- ---------
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Figure 6-45. MSGW11 velocity flow profile measured by channel 1 probe for 95 Hz counter-
clockwise rotating field with the phase of the third coil with respect to the inner fluxball equal to
0. Baseline refers to the flow measured by the velocimeter without any field applied. Flow
reverses direction but is not symmetric due to complicated flow patterns. The velocity goes to 0
at around 0.055m implying the presence of two vortices formed.
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95Hz MSGW11 50.6G Fluxball Clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10

-------------- -------------- ------ ------- - -------------- - - - - - - - - - - - -

-------------- ------------+------- ------+---------------- ---------+------------ ---- ---------
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---- Ch- C-3 -

C42

-0.1 -0.08 -0.06 -0.04
Distance from Chi and Ch2 Probes (m)

> phase=0
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Figure 6-46. MSGW1 1 velocity flow vectors at four points as determined by the intersection of
the four probe beams for a 50.6 G clockwise rotating field with 296.8 G non-uniform field
imposed by the third coil. The individual velocity vectors correspond to the phase of the third
coil with respect to the inner fluxball current. The arrows are scaled by a factor of 10 to better
see them.
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95Hz MSGW11 50.6G Fluxball Counter-clockwise Rotating Field 296.OG 3rd coil Flow profile scale=10
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Figure 6-47. MSGW 11 velocity flow vectors at four points as determined by the intersection of
the four probe beams for a 50.6 G counter-clockwise rotating field with 296.8 G non-uniform
field imposed by the third coil. The individual velocity vectors correspond to the phase of the
third coil with respect to the inner fluxball current. The flow vectors reverse direction compared
to the clockwise rotating field in Figure 6-46. The arrows are scaled by a factor of 10 to better
see them.
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6.5.4. Effect of Permanent Magnets on Fluid Flow

In the cylindrical case described in Chapter 4, the flow was completely in the v, direction

allowing for a simple determination of field strength on the magnitude of the flow velocity. In

the spherical case with a non-uniform field imposed by the magnets, the flow has vortices that

are generated making the flow field irregular. In addition, the four probes only measure velocity

profiles in the direction of the four ultrasonic beams and do not completely give the entire flow

field inside the sphere of ferrofluid. As a result, the effect of the surface strength of the

permanent magnets on the flow magnitude is difficult to determine.

Figure 6-48 seems to suggest that the velocity magnitude of the flow profile has a direct

correlation with the surface strength of the magnets. But Figure 6-49 which is the flow profile

measured by the channel 4 probe with the same driving conditions as Figure 6-48 does not show

this behavior since the magnitude of the velocity appears to be the same, further bolstering the

fact that the flow is irregular caused by the spatially non-uniform field. Figure 6-50 further

illustrates an inverse dependence of magnet strength on the magnitude of velocity proving that

the four probes give a limited view on the complicated flow profile generated and the exact

dependence of the flow magnitude on the strength of the magnet is difficult to determine.

However, one safe conclusion that can be determined is the presence of a stronger magnet

definitely increases the likelihood of there being a measureable flow generated.

The strength of the magnet does consistently result in a shift in the position of a vortex

formed near the position of the magnet at the top of the ferrofluid filled sphere. A vortex is when

the velocity profile goes through zero with opposite polarity of velocity on either side of zero.

Figure 6-51 has velocity profiles that reverse direction indicating that vortices are being formed.
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The position of these vortices are dependent on the strength of the magnet used, a stronger

magnet pushes the profile closer to probe 4 and away from the magnet at z4=0.1m. This behavior

is consistently observable at different frequencies, rotating field direction and even by changing

the pole facing the ferrofluid sphere from south to north as seen in Figure 6-52. This shift in the

flow profile towards the probe also occurs with MSGW1 1 as seen in Figure 6-53.

The polarity of the pole facing the ferrofluid filled sphere can affect whether the

dominant flow is generated nearer to the magnet or further away from it. Figure 6-53 illustrates

that with the north pole facing the MSGW1 1 filled sphere the flow is more dominant away from

the magnet. Figure 6-54 is the velocity vector plot for an MSGW1 1 filled sphere with the south

pole of the magnets facing the sphere. The flow is more dominant nearer to the magnet at the top

of the sphere. Figure 6-55 on the other hand, is the velocity vector plot for the same driving

conditions as Figure 6-54 except with the north pole of the permanent magnets facing the sphere.

The flow in this case is more dominant at the bottom of the sphere with still significant flows at

the top. Changing the polarity of the magnet with EFH1 from south to north as seen in Figure

6-56 and Figure 6-57 do illustrate that flows generated with the north pole facing the sphere does

tend to increase the flow at the bottom of the ferrofluid sphere. However, this effect seems to be

greater in MSGW1 1 than in EFH1.
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x 104 Ch1 47Hz EFH1 S POLE 101.2G Fluxball Counter-clockwise Rotating Field
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Figure 6-48. Flow profile measured by channel 1 probe for 101.2 G counter-clockwise rotating
field at 47 Hz for EFH1 with magnets having their south poles facing the top of the ferrofluid

filled sphere. Strength of the magnets seems to directly affect magnitude of flow velocity except
for 1601 G and 2952 G permanent magnets.
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Ch4 47Hz EFH1 S POLE 101.2G Fluxball Counter-clockwise Rotating Field
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Figure 6-49. Flow field as measured by channel 4 probe for same driving conditions as Figure
6-48 does not show as large an increase in velocity magnitude but does show a reversal of flow
direction.
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Figure 6-50. Flow profile measured by channel 4 probe in a 50.6 G counter-clockwise rotating
field at 15 Hz for EFH1 ferrofluid with magnets having their south poles facing the top of the

ferrofluid filled sphere. The magnitude of velocity has an inverse relation with the strength of the

magnets used unlike seen in Figure 6-48.
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x 10-3 Ch4 95Hz EFH1 S POLE 50.6G
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Figure 6-51. Flow measured by channel 4 probe with 50.6 G clockwise rotating magnetic field at
95 Hz with magnets having their south poles facing the top of the EFH1 filled sphere. The
velocity profile indicates that there is a vortex formed since the flow direction reverses. As the
magnet strength increases there is a shift of the vortex formed away from the magnet at 0.1m
from probe 4.
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Figure 6-52. Flow measured by channel 4 probe with 101.2 G counter-clockwise rotating
magnetic field at 47Hz with magnets having their north poles facing the top of the EFH1 filled
sphere. The velocity profile indicates that there is a vortex formed since the flow direction
reverses. As the magnet strength increases there is a shift of the vortex formed away from the
magnet at 0. 1m from probe 4. A vortex is formed when velocity goes through zero with opposite
polarity of velocity direction on either side of zero.
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Figure 6-53. Flow measured by channel 3 probe with 50.6 G clockwise rotating magnetic field at
95 Hz with magnets having their north poles facing the top of the MSGW11 filled sphere. The

velocity profile here also indicates there is a shift of the vortex away from the magnet at 0. 1m
from probe 4 but the velocity magnitude is larger away from the magnet.
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96Hz MSGW11 S POLE 101.2G Fluxball Clockwise Rotating Field Flow profile scale=5
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Figure 6-54. MSGW 11 velocity flow vectors at four points as determined by the intersection of

the four probe beams for a 101.2 G clockwise rotating field with the south pole of the magnets
facing the top of the ferrofluid filled sphere. The flow is more dominant near the magnet at the

top of the sphere.
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96Hz MSGW11 N POLE 101.2G Fluxball Clockwise Rotating Field Flow profile scale=5
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Figure 6-55. MSGW1 1 velocity flow vectors at four points as determined by the intersection of
the four probe beams for a 101.2 G clockwise rotating field with the north pole of the magnets
facing the top of the ferrofluid filled sphere. The flow is more dominant away from the magnet at
the bottom of the sphere with significant flow still generated near the magnet at the top of the
sphere.
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95Hz EFH1 S POLE 101.2G Fluxball Counter-clockwise Rotating Field Flow profile scale=2
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Figure 6-56. EFHl velocity flow vectors at four points as determined by the intersection of the
four probe beams for a 101.2 G counter-clockwise rotating field with the south pole of the
magnets facing the top of the ferrofluid filled sphere. The flow profile seems to be more
dominant at the top of the sphere near the position of the magnet.
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95Hz EFH1 N POLE 101.2G Fluxball Counter-clockwise Rotating Field Flow profile scale=3
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Figure 6-57. EFH1 velocity flow vectors at four points as determined by the intersection of the
four probe beams for a 101.2 G counter-clockwise rotating field with the north pole of the

magnets facing the ferrofluid filled sphere. The flow profile at the bottom of the sphere is just as
significant as the flow at the top near the magnet.
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6.5.5. Effect of Strength of Rotating Field On Flow Generated by

Permanent Magnets

The strength of the rotating field has a direct effect on the magnitude of the flow

generated by the non-uniform field of the permanent magnets. Figure 6-58 is a velocity profile

plot measured by channel 4 probe for both EFHI and MSGW1 1 at all rotating frequencies with a

non-uniform field generated by a 5233 G magnet and a counter-clockwise rotating field of

strength 50.6 G. The flow obtained is not significant. Figure 6-59, on the other hand, is the

velocity profile obtained for the same case as Figure 6-58 except with a rotating field strength of

101.2 G. The velocity profiles obtained are more significant confirming that the rotating field

strength does affect the magnitude of the flow in the case of a non-uniform field generated by

permanent magnets.
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Ch4 5233G N POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Figure 6-58. Velocity profiles measured by channel 4 probe at all rotating frequencies for both

EFH 1 and MSGW 11 with the strongest magnet of strength 5233 G and a rotating field strength

of 50.6 G rotating in the counter-clockwise direction.
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Ch4 5233G N POLE Fluxball Counter-clockwise Rotating Field
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Figure 6-59. Velocity profiles measured by channel 4 probe at all rotating frequencies for both
EFH1 and MSGWl 1 with the strongest magnet of strength 5233 G and a rotating field strength
of 101.2 G and 75.9 G rotating in the counter-clockwise direction. The magnitude of flow
generated is greater than that obtained in Figure 6-58.
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6.5.6. Effect of Strength of Rotating Field and Strength of Non-

Uniform AC Field on Flow Generated by Third Coil

The magnitude of the flow generated by the rotating field and the non-uniform field of

the third coil is dependent on the strength of the non-uniform field generated by the third coil

with a phase difference of 0 with respect to the inner fluxball field. In addition, the strength of

the rotating field generated by the fluxball also has a direct dependence on the magnitude of

flow. All of these behaviors can be clearly illustrated in the channel 3 measured EFH1 velocity

profile for a counter-clockwise rotating and third coil oscillating field of frequency 95 Hz as seen

in Figure 6-60.

This result is also obtained for all frequencies, rotational directions and for both EFH1

and MSGW11 as confirmed by the channel 4 measured MSGW11 velocity profile for a

clockwise rotating field and third coil oscillating field of frequency 47 Hz in Figure 6-61.
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Figure 6-60. EFH1 velocity flow profile measured by channel 3 probe for a counter-clockwise
rotating field and third coil oscillating field at 95 Hz. Baseline refers to the flow measured by the
velocimeter in the absence of any field. The phase of the third coil with respect to the inner
fluxball field is zero. There is a direct dependence of the fluxball rotating field strength and the
strength of the non-uniform field imposed on the magnitude of the flow profile.
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Figure 6-61. MSGW 11 velocity profile as measured by channel 4 probe for a 47 Hz clockwise
rotating field with a third coil oscillating field frequency of the same value. The strength of the

rotating field as well as the non-uniform field generated by the third coil has a direct effect on the

magnitude of the flow profile generated.
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6.5.7. Effect of Strength of Rotating Field and DC Field on Flow

Generated by Third Coil

The experiments conducted by imposing a non-uniform DC field generated by the third

coil driven by a DC current instead of AC, all result in significant flow. The polarity of the DC

field does not have any effect on the flow, instead the strength of the rotating field has a direct

effect on the flow profile creating vortices in many cases, such as the channel 1 velocity profile

of MSGW1 1 under the influence of a 95Hz rotating and DC non-uniform field in Figure 6-62.

This behavior is consistent with different field rotational frequencies and with EFH1 as

illustrated by the channel 4 velocity profile of a 47Hz counter-clockwise rotating field with an

imposed DC non-uniform field in Figure 6-63.
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Figure 6-62. MSGW1 1 velocity profile measured by channel 1 probe for a 95 Hz clockwise
rotating field with a non-uniform DC field imposed by the third coil. The flow profile is affected
by the strength of the rotating field and not by the polarity of the DC field imposed by the third
coil.
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Figure 6-63. EFHl velocity flow profile generated by
with a DC field imposed by the third coil.

a 47 Hz counter-clockwise rotating field
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6.5.8. Effect of Rotational Frequency and Magnetic Properties of

Ferrofluid on Flow

Due to the irregular complicated flow obtained by the non-uniform field imposed it is

difficult to determine the dependence of frequency on the magnitude of flow. Figure 6-64

suggests that there is a direct dependence of frequency on the magnitude of the flow generated

and type of fluid used (EFH1 having a higher magnetic susceptibility and magnetic saturation

than MSGW 11). However, Figure 6-65 illustrates that the flow profile behavior is different when

measured by different probes and no direct frequency dependence or magnetic fluid dependence

on the magnitude of flow can be determined due to the irregularities of the flow profile

generated.

In general, the complicated flow that results makes it difficult to draw conclusions about

the frequency and magnetic properties dependence on the magnitude of the flow. However all

the results do support a safe conclusion that increasing the frequency does increase the chances

of measuring non-zero velocity profiles (also bolstered by Figure 6-59) and that there is more

likelihood of flow with the more magnetically responsive EFHI than MSGW11.
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Figure 6-64. Velocity profiles measured by channel 1 probe for both MSGWl 1 and EFH1, and
all three counter-clockwise rotational frequencies (15 Hz, 47 Hz, and 95 Hz) with a non-uniform
field imposed by a south pole facing permanent magnet of surface field strength 5233 G on top
of the ferrofluid filled sphere. EFH 1 is in general more responsive than MSGW 11.
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Figure 6-65. Velocity profile measured by channel 4 probe for MSGW1 1 and EFH1 at all
investigated rotational frequencies (15 Hz, 47 Hz and 95 Hz) for a clockwise rotating field and a
north pole facing permanent magnet of surface field strength 5233 G on top of the ferrofluid
filled sphere.
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6.6. Experiments of Non-Zero Flow Driven By Non-Uniform

Fields Due to Demagnetizing Effects

6.6.1. Using a 2/3 Full Ferrofluid Filled Sphere

The 10 cm diameter hollow sphere can hold a maximum of ~ 524 ml of ferrofluid. For

this experiment two spheres were filled to 2/3 its maximum volume (~ 350 ml) with EFH1 and

MSGW 11 respectively as seen in Figure 6-66. The four ultrasound probes are placed at the

positions shown in Figure 6-68 and Figure 6-69 to measure the velocity profiles in those

directions.

Figure 6-66. Picture of MSGW 11 2/3 full sphere of diameter 10 cm. The ferrofluid can be seen
to only occupy 2/3 of the volume of the sphere.

Non-zero flows were measured in the bulk of the ferrofluid 2/3 filled sphere under the

influence of a rotating uniform magnetic field. Figure 6-70 to Figure 6-73 are the individual

ultrasound probe's measured velocity flow profiles for a 2/3 filled sphere of EFH1 with a 101.2
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G RMS uniform rotating magnetic field. Figure 6-74 is a calculated rotational velocity flow

profile as a function of radius, at the equator of the sphere approximately 2 cm below the free

surface, using the measurements of channel 1 and channel 3 and the equations outlined in section

4.2.1.

The bulk flows measured are a result of the non-uniform field due to the demagnetizing

fields associated with the 2/3 full sphere. It is not immediately clear whether surface driven flows

would result since the free ferrofluid surface is not in the plane of the rotating field but

perpendicular to it as seen in Figure 6-67.

Figure 6-67. 2/3 full sphere with rotating field rotating in the Front Plane indicated.

Figure 6-75 to Figure 6-78 are the individual ultrasound probe's measured velocity flow

profiles for a 2/3 filled sphere of EFH1 with a 50.6 G RMS uniform rotating magnetic field.

Figure 6-79 is a calculated rotational velocity flow profile as a function of radius, at the equator
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of the sphere approximately 2 cm below the free surface, using the measurements of channel 1

and channel 3 and the equations outlined in section 4.2.1.

Experiments were also conducted with a 2/3 full MSGW 11 filled sphere of diameter 10

cm, however, no measureable flow was observed. This is because not only is the MSGW1 1

magnetically less responsive than EFHi, having a lower magnetic susceptibility and magnetic

saturation, but the applied magnetic field of the fluxball machine could not be driven higher than

101.2 G RMS to drive the flow.

X Chi 2 probe

Figure 6-68. Profile view depicting positions of two of the four ultrasound probes (labeled as
Channels 2 & 4), in x-z plane. Channel 2 probe placed underneath the sphere while channel 4 is
the probe placed 2.5 cm below the equator of the sphere. The sphere shown here has its top
portion removed to illustrate how the actual ferrofluid volume looks. The actual sphere was
intact and just filled 2/3 full.
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Figure 6-69. Top view depicting positions of two
Channels 1 & 3), in x-y plane. Channel 1 is probe is
channel 3 is aligned 200 to the radial direction.

of the
aligned

four ultrasound probes (labeled as
along the radius of the sphere while

101.2 G Channel 1 EFH1 2/3 Full
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0. -v(m/s) @95Hz
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-0.003

-0.004

0.005 0.025 0.045 0.065 0.085
Distance from channel 1 probe (m)

Figure 6-70. EFHl velocity profile measured by channel 1 probe for 2/3 full sphere at 47 Hz and
95 Hz 101.2 G RMS uniform rotating field.
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Figure 6-71. EFH 1 velocity profile measured by channel 2 probe
95 Hz 101.2 G RMS uniform rotating field.

for 2/3 full sphere at 47 Hz and

Figure 6-72. EFH1 velocity profile measured by channel 3 probe for 2/3 full sphere at 47 Hz and
95 Hz 101.2 G RMS uniform rotating field.
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Figure 6-73. EFH1 velocity profile measured by channel 4 probe

95 Hz 101.2 G RMS uniform rotating field.

for 2/3 full sphere at 47 Hz and

101.2 G V4 vs R EFH1 2/3 Full
0.0075

0.0055

0.0035
E

* 0.0015 -- v(m/s) @47Hz

-0.0005 -- v(m/s) @95Hz

-0.0025 I i I I I

0 0.01 0.02 0.03 0.04 0.05

r(m)

Figure 6-74. Rotational velocity v9 as a function of radius for 2/3 filled sphere of EFH1, under a
101.2 G RMS uniform rotating magnetic field, measured at the equator of the sphere

approximately 2 cm below the free surface.
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Figure 6-75. EFH1 velocity profile measured by channel 1 probe for
95 Hz 50.6 G RMS uniform rotating field.

Figure 6-76. EFH1 velocity profile measured by channel 2 probe for 2/3
95 Hz 50.6 G RMS uniform rotating field.

2/3 full sphere at 47 Hz and

full sphere at 47 Hz and
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. EFH1 velocity profile measured by channel 3 probe for 2/3 full sphere at 47 Hz and
G RMS uniform rotating field.

Figure 6-78. EFH1 velocity profile measured by channel 4 probe
95 Hz 50.6 G RMS uniform rotating field.

for 2/3 full sphere at 47 Hz and
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95 Hz 50.6

50.6 G Channel 4 EFH1 2/3 Full
0.005

0.003

E 0.001

-0.001 --- v(m/s) @47Hz

-0.003 
-v(m/s) @95Hz

-0.005

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Distance from channel 4 probe (m)



50.6 G V, vs R EFH1 2/3 Full
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Figure 6-79. Rotational velocity v, as a function of radius for 2/3 filled sphere of EFH1, under a
50.6 G RMS uniform rotating field, measured at the equator of the sphere approximately 2 cm
below the free surface.
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6.6.2. Using a Finite Height Cylinder

He's polycarbonate cylinder, used in his thesis [2], of 91.9 mm diameter and height 60

mm was used to conduct this experiment. A top view picture of the cylinder, as seen in Figure

6-80, shows the grooves on the sides of the cylinder allowing for the placement of the ultrasound

probes. A side view of the cylinder, as seen in Figure 6-81, shows support posts that were fitted

on its sides to allow for fitting inside the inner fluxball. The cylinder had its lid fitted to prevent

the ferrofluid from spilling but it was too difficult to fill the cylinder all the way to ensure no free

surface. The cylinder filled with ferrofluid was then placed inside the inner fluxball as shown in

Figure 6-82.

The inner fluxball was designed to be fitted inside the outer fluxball vertically, as seen at

the left of Figure 6-83. This generates a rotating field in the x-y plane as shown. To carry out the

classical cylindrical experiment, the rotating field should be in the plane of the ferrofluid

cylinder. This was achieved by placing the cylinder fitted inside the inner fluxball as shown in

Figure 6-82 and placing the entire inner fluxball inside the outer fluxball oriented 900 to its

designed configuration.

The ultrasound probes were placed one along the radial (a=0*) groove and one along the

(a=10*) groove at a height approximately half way from the surface of the ferrofluid towards the

bottom of the cylinder, to ensure bulk flow measurements. The results plotted in Figure 6-84 for

EFH1 illustrate that non-zero velocities were obtained in a uniform rotating field, generated by

the fluxball machine, for two rotational frequencies 10Hz and 95Hz. The flow was measured by

ultrasound probes positioned half way from the ferrofluid free surface and the bottom of the

cylinder to ensure measurement of bulk flows.
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Figure 6-80. Top view of He's [2] cylindrical polycarbonate cylinder with lid. The grooves on
the side of the cylinder allow for the placement of ultrasound probes that are at angles (a) with
respect to the radial direction as illustrated in Figure 4-2. This image was taken from He's thesis
[2].

Figure 6-81. Side profile of He's [2] cylinder. Support posts were added to the sides of the
cylinder to allow for fitting into the access hole of the inner fluxball.
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Figure 6-82. He's [2] cylinder securely fitted inside inner fluxball by placing support posts inside
the inner fluxball's access holes. Picture shows half of the inner fluxball with the cylinder fitted
inside it.

Figure 6-83. Inner fluxball configurations. Left: Inner fluxball designed to be placed vertically
generating a rotating magnetic field in the x-y plane. Right: Inner fluxball rotated 900 from
designed configuration and generates rotating magnetic field in y-z plane.
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V, vs r for ferrofluid filled cylinder in fluxball
with 101.2 G RMS rotating field
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4
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Figure 6-84. EFH1 rotational velocity vq, as a function of radius for a rotating field strength of
101.2 G RMS for two rotational frequencies 10 Hz and 95 Hz. The flow is measured in the bulk
of the fluid half way from the ferrofluid free surface towards the bottom of the cylinder. Baseline
represents the measured velocity with no magnetic field applied.
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6.7. Conclusions

In this chapter, COMSOL simulations using spin-diffusion theory (q'# 0) with

co(r =wal) =0 boundary condition predict non-zero measureable flow for a ferrofluid filled

sphere subjected to a uniform rotating magnetic field. COMSOL simulations that neglect the

effect of spin-diffusion (q' = 0 ) give negligible flow which is in agreement to the results of

experiments performed subjecting the spherical geometry to a uniform rotating magnetic field.

Measured flows were obtained in geometries where demagnetizing effects associated with the

shape were significant (2/3 full sphere and cylinder). These experiments confirm that not only

are spin-diffusion effects negligible but that the demagnetizing effects associated with the shape

of the container results in a non-uniform field inside the ferrofluid volume driving the flow.

These results also for the first time explain why the experimentally fit values of spin

viscosity used by several authors [1, 2, 6], to explain their experimental results obtained in

cylindrical geometry (Chapter 4), are many orders of magnitude greater than the theoretical

values of spin viscosity derived here in this chapter. The reason for this discrepancy is due to the

fact that these experimentally fit spin viscosity values encompass the demagnetizing effects

associated with the shape of the cylindrical container resulting in larger values than theory and as

a result have mistakenly attributed the effect of spin-diffusion theory to being a possible

explanation for the driving force behind spin-up flow.

To further bolster the theory that non-uniform magnetic properties drive the flow, this

chapter describes results of experiments where the fully filled ferrofluid sphere is subjected to a

non-uniform field imposed by permanent magnets or a third solenoidal coil in addition to the
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rotating uniform magnetic field. In both these cases complicated and significant measureable

flows were obtained.
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Chapter 7. COMSOL Simulations of Ferrofluid

Flows With Zero Spin-Viscosity (iq'=0) in Cylindrical

Geometry With Non-Uniform Magnetic Fields

This chapter will describe COMSOL simulations of flows in an infinitely long ferrofluid

filled cylinder, assuming zero spin-viscosity, subjected to a uniform rotating field and a non-

uniform magnetic field imposed by an infinitely long permanent magnet. The results of this

chapter demonstrate that the flows obtained are complicated and irregular and that they have

similar characteristics obtained from the spherical geometry experiments of Chapter 6, even

though the geometries are not identical.

7.1. Setup of Simulations

7.1.1. Model Geometry

The model is setup as shown in Figure 7-1 with two concentric cylinders, the inner one

representing the ferrofluid cylinder while the outer one represents a stator winding. The stator

winding with a surface current boundary condition generates the uniform rotating field, while the

permanent magnet, magnetized in the y direction, is placed at a distance R3 above the ferrofluid

filled cylinder making the field non-uniform. The strength of the magnet is a times greater than

the strength of the rotating field. Air fills the gap between the outer stator winding and the

ferrofluid cylinder.
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3
t)= - KO cos(K2t - #)i,2

a ->o

Figure 7-1. Model setup for simulating flows in ferrofluid under the influence of the non-uniform
field of the permanent magnet, as well as, the uniform rotating magnet field imposed by current
boundary condition far away. The magnet placed at a distance R2 from the cylinder is magnetized in
the y direction and is a times the strength of the rotating field. The south pole of the magnet faces
the cylinder as shown.
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Governing Equations

Ampere's Law with zero volume current and Gauss's Law for magnetic flux density can

be combined to give the first relation between magnetic flux density and ferrofluid

magnetization. This relation in (7.1) is derived in Eq. (4.9) and although it could be further

reduced to Poisson's equations in terms of a magnetic scalar potential as used in Chapters 4 and

6, the magnetic scalar potential is not used in these models. The reason for this is explained in

section 7.1.5.

1) Maxwell's equation

V-H = -V-M (7.1)

The three other equations that are coupled together are the fluid mechanics linear and angular

momentum equations and the magnetization relaxation equation outlined below. The spin-

viscosity term r' is set to 0 in the conservation of angular momentum equation since results in

Chapter 6 suggest its role is insignificant.

2) Conservation of Linear Momentum

p -+(v-V) v = -Vp'+2V x+({+)V2v+p (M-V) H (7.2)at

3) Conservation of Angular Momentum

I'd +(v-V) =uoMxH+2{(Vxv-2w)+$( (7.3)

4) Magnetization Relaxation Equation

__M 1
-- +(v-V)M= oxM- (M -M,) (7.4)
at Tff
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7.1.3. Boundary Conditions

The rotating magnetic field is generated by using a z-directed surface current boundary

condition identical to Eq. (4.17). The fluid boundary conditions are no slip on the boundary as

given by

v(r = Reg) = 0 (7.5)

Since r/'=0, there are no boundary conditions on spin velocity (o.

7.1.4. Assumptions

The equilibrium magnetization M eq of the fluid is not assumed to be in the linear regime

of the Langevin equation unlike the previous COMSOL simulations done in Chapters 4 and 6.

The equilibrium magnetization is described by the complete Langevin equation as given in Eq

(2.17) and is used in these simulations because of the magnetic saturation of the fluid near the

permanent magnet.

The flow is also assumed to be viscous dominated allowing for the inertial terms to be

dropped. The left hand side of the linear and angular momentum equations in (7.2) and (7.3) are

set to 0 and the equations reduce to

0= -Vp'+ 2(V xco+({+r)V2V+p (M-V) H (7.6)

0 = pOM x H +2{(V x v - 2o)+ (7.7)

7.1.5. COMSOL Simulations

The COMSOL simulations were done by using non-dimensional forms of equations (7.1)

-(7.4) with respect to reference parameters such as radius of the vessel Ro, frequency of the
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applied rotating field f and a reference magnetic field intensity Ho. For all the simulations used

in this chapter, these reference values are given in Table 7-1.

Parameters Value
Radius of cylindrical vessel Ro (m) 0.05

Rotational frequency (Hz) 95
Rotational frequency ( (rad/s) 596.9

Rotational field flux density RMS Bo (Gauss) 100
Rotational field intensity RMS Ho (A/m) 7957.75
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Table 7-1. Reference values used for normalizing equations for simulations in this section.

The non-dimensional equations are given as

d v - - - - -- - - -- 2- -- 7-8-Re[ - +(v-V)v]= -Vp '+2{Vxo+({+i)VV+(M-V)H (7.8)
dt

R"[ - + (v.V)o]= M x H + 2(V x v - 2o) (7.9)
dt

dM 1
- +(v.V)M=wOxM- (M-Meq) (7.10)

dt I re

V-H=--V-M (7.11)

where

- - v -M- H-
V=VR,v= M H=-,t=tQp= 2 2'R' Ho H0  pOHo 0  0o

- -"p 2 2_2

r/= 2 ,Rk= pH2 ,Rv= uH2

For all cases the transient form of these equations were entered into COMSOL. A fluid

mechanics module was used to represent the augmented Navier-Stokes equation in (7.8), but

with setting the density p term to 0 to get rid of the inertial terms on the left hand side of (7.8). A

diffusion equation was used for the conservation of angular momentum equation, having no

convective derivative automatically gets rid of the left hand side of (7.8), with r/' representing



the diffusion constant and set to 0. Two transient convection and diffusion modules were used to

represent the magnetic relaxation equation (with zero diffusion) in x and y coordinates for (7.10).

A Perpendicular, Induction Currents module automatically implements (7.11) using a magnetic

vector potential A where

B=VxA (7.12)

It is because this module allows for the z-directed surface current boundary condition and the

specification of the y-directed magnetization of the permanent magnet that there is no need to

work with the magnetic scalar potential method. The magnetic scalar potential method would

require using a general PDE module and then handling the permanent magnet's magnetization

separately.

The COMSOL model was setup such that Rcy; = 1, R1 = 10 and R2 = 0.2 normalized

distances. The normalized boundary condition was imposed at R1 and was

3
K(#, t)= - KO cos(t - #)i( (7.13)

2

with Ko equaling % such that the magnitude of the current density equals the normalized value of

magnetic field H = 1. The magnetization of the magnet would then be a factor a times the

strength of the normalized rotating magnetic field, M = aH, where case studies would take a

values of 2, 10, 20 and 40. These would correspond to permanent magnets having surface

magnetic field strengths of 200 G, 1000 G, 2000 G and 4000 G. For the results in this section the

magnet is aligned such that its south pole faces the cylinder of ferrofluid as shown in Figure 7-1.

Both fluids EFH1 and MSGW1l were simulated by normalizing their physical

characteristics with respect to values in Table 7-1. These values are tabulated in Table 7-2. The

model files for all the cases are documented in Appendix I.

343



Normalized Variable EFH1 MSGW11

H2 0.00308 0.000313
0

)- 2 0.0273 0.00758
0

Table 7-2. Table of normalized parameters that are normalized with respect to reference RMS
magnetic field strength (Bo=100 G, Ho=7957.75 A/m) and frequency Q=596.9 radis and
reference radius of the cylinder Ro=5 cm.

7.2. Simulation Results

7.2.1. Magnetic Field Distribution With No Magnet

In the presence of just a rotating magnetic field, the cylinder of ferrofluid creates its own

dipole field that rotates. The sum of the dipole field of the cylinder and the external rotating field

creates two regions of strong magnetic field intensity and two regions of weak magnetic field

intensity due to addition and cancellation of the uniform field with the dipole field as seen in

Figure 7-2. Figure 7-3 is a series of plots of magnetization and magnetic field as a function of

time for a rotating field of frequency ). The surface plot clearly shows regions of strong and

weak magnetic field created as a result of addition and cancellation of the ferrofluid dipole field

with the external uniform rotating field with the magnetization (white arrows) following the

rotating magnetic field direction. The magnitude of the velocity that results is negligible as was

described in section 4.4.3.5.
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plus signs.

345



Tkne=1.6 Strface: Magetic field, norm [Aftn]
Arrow: Maceti-aion Streanline: Maaetic fleld

Tkne=3.1 Surface: Magnetic field, norm [An]
An-ow: Minntieti n Streamne: Mamtk: flak

Max: 1.378

1.3
1.2

1.1

Max: 1.378

1.3
1.2

r1.1

-1 - -1 U I Z 3 Mh: 0629

92t = )-
2

Tne-4.7 Surface: Mamee f ld. norm rAhn1 Tima=6.3 Sfa: Mmonn fisld. nern IAArn1Max: 1.376

1.3

1.2

1.1

0.8 -1.5

-2
0.7

-2.5

-3 -z -1 0 1 2 3 Mi: 0.628

9t = )T

0 0.5 1 1.5 2

0t =
2

Figure 7-3. Plots of total magnetic field and magnetization for one period of rotation, at
rotational frequency 0, for a ferrofluid cylinder subjected to a uniform counter-clockwise
rotating magnetic field. The magnetization is plotted as white arrows, the streamline plot
represents the total magnetic field while the surface plot represents the magnitude of the total
magnetic field. The dipole field of the ferrofluid cylinder in addition to the uniform field creates
rotating regions of strong (red) and weak (blue) magnetic field outside the ferrofluid cylinder.
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7.2.2. Magnetic Field Distribution

The total magnetic field as a result of the uniform rotating magnetic field and the

permanent magnet has a similar distribution as Figure 7-2, with cancellation and addition of the

magnetic field resulting in regions of strong and weak magnetic field that rotate with the rotating

field. This is illustrated in Figure 7-4.
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Figure 7-4. Field due to permanent magnet that cancels with uniform externally applied field at

points marked by crosses, and adds at points marked by grey plus signs.
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In addition, the rotating dipole field of the ferrofluid cylinder also adds to the distribution

of the total magnetic field of the permanent magnet and the uniform rotating field. It is difficult

to see these effects when plotting magnitude of the magnetic field that is scaled to include the

strength of the permanent magnet's field. This is because the permanent magnets used have

strengths that are several times the strength of the rotating field as seen in Figure 7-5 which is a

3,x
magnetic field plot at 92t = - with a permanent magnet that is 40 times stronger than the

2

strength of the rotating field. Figure 7-6 is the same plot of Figure 7-5 except scaled to see the

effect of the uniform rotating field, the dipole field due to the ferrofluid cylinder and the field

due to the permanent magnet. The white region represents the magnetic field magnitude that is

beyond the values represented by the scale. For all the plots in this chapter, the white regions

represents values that are beyond the scale maximum.

Figure 7-7 is a plot of the total magnetic field inside and outside the ferrofluid cylinder

scaled to see the total effect of the ferrofluid cylinder's dipole field, the uniform rotating

magnetic field and the field due to the permanent magnet. It clearly shows that the field due to

the permanent magnet and the uniform rotating magnetic field results in regions of strong and

weak magnetic field that rotate with the rotating field inside and outside the ferrofluid cylinder.

The region of strong field can be seen inside the ferrofluid cylinder at 92t = z while the region
2

of weak field inside the ferrofluid can be seen at 92t = . The dipole field due to the ferrofluid
2

filled cylinder can also be seen to be perturbed by the field due to the magnet.

348



Max: 38.455

35
30

-1 -Z - U I z j Min: 6.424e-4

Figure 7-5. Total field distribution of rotating uniform magnetic field and field due to permanent
magnet. The permanent magnet is 40 times the strength of the uniform rotating field and the
scale reflects this but makes it difficult to see the effect of the ferrofluid cylinder's dipole field
interacting with the field due to the permanent magnet and the effect of the field due to the
permanent magnet and the uniform rotating field.
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Figure 7-6. Same plot as Figure 7-5 except total field distribution, of rotating uniform magnetic
field and field due to permanent magnet, is scaled to see the effects of ferrofluid cylinder's dipole
field, the field due to the permanent magnet and the uniform rotating field. The white region
represents the region of magnetic field that is beyond the values represented by the color scale.
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Figure 7-7. Total magnetic distribution with a magnet that is 40 times strong er than the strength
of the rotating magnetic field placed on top of the EFH1 filled cylinder. The white region

represents magnetic field strengths that are beyond the scale shown. The plots show the

evolution in time of the total magnetic field inside and outside the ferrofluid cylinder due to the

uniform rotating field, the ferrofluid cylinder's dipole field and the field due to the permanent

magnet. The magnetization of the fluid follows the same direction as the white arrows in Figure
7-3 for the same time.
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7.2.3. Distribution of Magnetization

The previous section elaborated on the total magnetic field due to the uniform rotating

field and the field due to the permanent magnet, creating regions of cancellation (weak field) and

addition (strong field) that rotate. The distribution of the ferrofluid's magnetization clearly shows

the effect of these rotating regions of strong and weak field as seen in Figure 7-8. The blue circle

representing weak magnetization, that can be seen at 9t = 2 , is the magnetization due to the
2

almost complete cancellation of the magnetic field due to the permanent magnet and the rotating

field at a certain distance from the top of the cylinder. The red region of strong magnetization at

the top of the cylinder at 92t = is due to the strong region of the magnetic field that saturates
2

the fluid EFH1 with a normalized value of M = 4.2 using reference values defined in section

7.1.5 and EFH1 saturation magnetization value from Table 2-3.

The position of the blue region of magnetization is determined by the strength of the

permanent magnet with respect to the rotating field. The stronger the permanent magnet the

further away the region of weak field is from the top of the cylinder. This is illustrated in Figure

7-9 for permanent magnets that are 10 and 40 times stronger than the strength of the rotating

field.

These results confirm that it is not only the non-uniform field that is responsible for the

non-zero velocity profiles that result, but also due to the non-uniform distribution of the

magnetization of the ferrofluid.
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Figure 7-8. Distribution of magnetization in the EFH1 filled cylinder as a function of time in a
non-uniform field generated by a uniform rotating field and the field of a permanent magnet that
is 10 times stronger than the strength of the rotating field. The blue circle which represents a
weak field, due to near complete cancellation of the rotating magnetic field and the field due to
the permanent magnet, can be clearly seen to rotate in an arc near the top of the sphere. The red
region represents the strong field that saturates the EFH1 with a normalized saturation
magnetization of M = 4.2. Non-uniform distribution of the magnetization also contributes to the
generation of non-zero velocity flows.
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353

Max: 2.00
2

1.8

1.6

1.4

1.2

1

0.8

0.6

OA

0.2

0
Min: 0

v. -a.a



7.2.4. Distribution of Spin Velocity w and Torque

Figure 7-10 and Figure 7-11 are plots of torque and spin velocity w as a function of time

for a MSGW1 1 filled cylinder with a permanent magnet that is 20 times stronger than the

strength of the counter-clockwise rotating field. From both of these plots, it can be seen that

torque and spin velocity reversal occurs above the region where the total magnetic field inside

the fluid is at a minimum (blue region), in this case 0.739.

The reason for this reversal is due to the fact that the magnetic field direction with respect

to the ferrofluid magnetization vector changes abruptly as seen by the two points A and B in

Figure 7-12. At point A, the magnetization vector with respect to the magnetic field can be seen

to create a torque in the +z direction, while at point B the magnetic field lags the magnetization

vector because of the distribution of the magnetic field creating a torque in the -z direction as

seen in Figure 7-13.
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Figure 7-10. Distribution of torque (surface plot) and streamlines of magnetic field as a function
of time for MSGW 11 filled cylinder with a permanent magnet 20 times stronger than the
strength of the counter-clockwise rotating field. Torque distribution can clearly be seen to have

3)r
regions of torque reversal as seen at K2t = -. The shape of the streamlines of magnetic field

4
inside the cylinder are affected by the torque as shown with arrows.
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Figure 7-11. Distribution of magnitude of spin velocity w (surface plot) and streamlines of
magnetic field as a function of time for MSGW 1l filled cylinder with a permanent magnet 20
times stronger than the strength of the counter-clockwise rotating field. Spin-velocity can clearly

be seen to reverse directions as seen at nt = 2 . The shape of the streamlines of magnetic field

inside the cylinder are affected by the spin-velocity as seen by arrows shown.
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arrows at 92t = for MSGW 1 1 filled cylinder with permanent magnet 20 times stronger than
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the counter-clockwise rotating field. Torque reversal occurs because the field lines of the magnet
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Figure 7-13. Magnetization and magnetic field vectors at two points in Figure 7-12 justifying
torque and spin reversal seen in Figure 7-10 and Figure 7-11.
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7.2.5. Distribution of velocity

Figure 7-14 and Figure 7-15 show the velocity field distributions represented by vectors

and streamlines for an MSGW 11 filled ferrofluid cylinder with a permanent magnet that is 20

times stronger than the strength of the rotating field. The flow profile can be seen to be

3r 3z 7z
complicated and irregular with the formation of vortices as seen at 92t = . To

understand this, Eq (7.7) can be solved for the curl of spin velocity w as given below

0=puOM x H + 2{(V x v - 2o)

0 = OVx(MxH)+2{(-V 2v -2V x o) (7.14)

Vxo= (poVx(MxH)-2;V2v)
4{

and substituting (7.14) in the linear momentum equation of (7.6) gives

0 = -Vp'+ (uOV x (M x H) - 2V 2 v) + (+7)V 2v +O (M.V) H
2

1
0 = -Vp'+7V 2 v+pO (M.V) H+-(poVx(MxH)) (7.15)

2
1

0 = -Vp'+V 2 v+F± -(VxT)
2

where F and T are defined in section 2.1.2.

Eq (7.15) is the effective linear momentum equation when r '=0 that describes the

behavior seen in Figure 7-14 and Figure 7-15. The curl of the torque density and the force

density term both contribute to creating the vortices and the irregular flow seen. The regions of

weak and strong magnetic fields cause the gradient of the force density term to change direction
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3ffand is partly responsible for the flow reversal seen at 92t =-- with respect to the velocity vectors
2

at £t = -. Expanding Eq (7.15) using the identity
2

Vx(MxH) =M(V-H)-H(V-M)+(H-V)M-(M-V)H (7.16)

and the relation in (7.1) gives

-Vp +qV2v + (M-VH)+ I B(V-H)+8 H-VM = 0 (7.17)
2 2 2

With the aid of the known vector identity

(H-V)M +(M-V) H = V (H-M)- H x(V x M)- M x (V x H) (7.18)

and the fact that V x H =0 results in the expression

-V p+ }+qV2V+ B (VH)+0 Hx(VxM)=0 (7.19)
2 2 2

The extra pressure term is proportional to the projection of the magnetization on the magnetic

field and the pressure distribution is illustrated in Figure 7-16. Figure 7-17 is a plot of the

magnitude and direction of the velocity field as a function of time illustrating that the normalized

magnitude of velocity is of the order lx 10-3-1x10-2. Dimensionalizing this velocity with respect

to the reference values given in Table 7-1, gives a velocity of ~3-30mm/s which is on the same

order of measured velocity profiles in the experiment conducted with the spherical geometry.
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7.2.6. Effect of Reversing Rotational Field Direction

Reversing the rotational direction of the uniform magnetic field reverses the velocity flow

direction to match the reversed direction. Figure 7-18 and Figure 7-19 are plots of counter-

clockwise and clockwise rotating magnetic fields that result in flows that follow the field

direction. The plots are for EFH1 with a permanent magnet that is 20 times stronger than the

strength of the rotating field. This result is similar to the result obtained experimentally with the

spherical geometry as explained in section 6.5.3.
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Figure 7-14. Distribution of velocity field, with formation of vortices, for MSGW1 1 filled
cylinder with permanent magnet 20 times stronger than uniform counter-clockwise rotating field
as a function of time over one period of rotation (a)-(d).
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Figure 7-15. Distribution of velocity streamlines, illustrating vortices formed, for MSGW11
filled cylinder with permanent magnet 20 times stronger than uniform counter-clockwise rotating
field as a function of time over one period of rotation (a)-(d).
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Figure 7-16. Distribution of modified pressure term in (7.19), in the MSGW11 ferrofluid filled
sphere with a permanent magnet that is 20 times stronger than the field of the counter-clockwise
rotating field. The pressure is strongest near the magnet.
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Figure 7-17. Magnitude and direction of velocity field with magnetic field streamlines for
MSGW1 1 filled cylinder with permanent magnet 20 times stronger than uniform rotating field as
a function of time over one period of rotation (a)-(b). Dimensional magnitude of velocity is
calculated to be on the order of 3-30 mm/s according to these simulations which corroborates
experimental results from Chapter 6.
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Figure 7-18. Distribution of velocity field for EFH1 filled cylinder with permanent magnet 20
times stronger than uniform rotating field as a function of time over one period of rotation (a)-
(b). The rotating field is rotating in the counter-clockwise direction with the velocity over most
of the period in the same direction as the rotating field except at 2t = /T.
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Figure 7-19. Distribution of velocity field for EFH1 filled cylinder with permanent magnet 20
times stronger than uniform rotating field as a function of time over one period of rotation (a)-
(b). The rotating field is rotating in the clockwise direction with the velocity flow over most of
the period in the same direction except at 92t = z.
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7.2.7. Non-Uniform Distribution of Spin

Zaitsev and Shliomis [1], in their paper, accounted for the flow in the cylindrical

geometry due to the non-uniform distribution of spin velocity w brought about by the 'spin-no-

slip' boundary condition given by o(r = Rwa51) =0. This required r ' 0 in the conservation of

angular momentum equation. The experiments and simulations in Chapter 6 show that the effect

of spin-viscosity rl' is negligible and flow is a result of the spatially non-uniform field and the

non-uniform distribution of the magnetic properties of the ferrofluid.

The results shown in Figure 7-20 illustrate that the non-uniform field and the non-

uniform distribution of the magnetization of the ferrofluid creates a non-uniform distribution of

spin velocity o which is a result and not a starting point for the case of the non-zero flow as

stated by Zaitsev and Shliomis [1]. In addition to the magnitude of spin velocity, the results in

Figure 7-20 plot the spatial gradient of the spin velocity w and can be seen to form streamlines of

constant values emanating from velocity vortices that also have the maximum value of spin

velocity c as seen at at = -. At at = , two regions of positive spin velocity coexist with a
2 2

region of negative spin velocity with the velocity directions reversing direction in each of these

regions corresponding to the reversal of spin velocity and torque.
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Figure 7-20. Distribution of magnitude (surface plot) and gradient streamlines of spin velocity w
with velocity field across one period of rotating field with permanent magnet 40 times the
strength of the counter-clockwise rotating field. Non-uniform distribution of spin velocity and
non-zero velocity is a result of the non-uniform field and not the other way round.
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7.3. Conclusions

This chapter explored, through COMSOL simulations neglecting spin-diffusion (q'= 0),

subjecting an infinitely long cylinder to an external uniform rotating magnetic field with an

imposed non-uniform field from an infinitely long permanent magnet placed on the side of the

ferrofluid filled cylinder. The results of complicated significant flows were obtained similar to

those of the experiments in Chapter 6, which involved using a spherical geometry subjected to a

uniform rotating field with a non-uniform field imposed by a solenoidal coil or permanent

magnet placed on top of the ferrofluid filled sphere. As a result this chapter confirms the results

that a non-uniform field and non-uniform magnetic properties in a ferrofluid result in flow

without spin-diffusion effects.

This chapter also illustrates that the non-uniform field and non-uniform magnetic

properties in a ferrofluid results in a non-uniform distribution of spin velocity which is the

starting assumption for Zaitsev and Shliomis's [1] spin-diffusion theory requiring that 1'# 0. A

non-uniform distribution of spin velocity is a result and not the cause for flow which is driven by

the non-uniform field and non-uniform magnetic properties of the ferrofluid volume.
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Chapter 8. Thesis Summary and Suggestions for

Future Work

This thesis investigated the effect of uniform rotating magnetic fields on ferrofluid spin-

up flow by conducting experiments subjecting a ferrofluid filled sphere, with uniform

demagnetizing factors in all three Cartesian directions, to a uniform external rotating magnetic

field generated by two orthogonally placed spherical coil 'fluxballs' excited by two sinusoidal

signals out of phase by 900 in time. The constant demagnetizing factors of a sphere ensured that

the field inside the ferrofluid volume would be uniform and negligible measureable flow was

obtained using ultrasound velocimetry. Negligible flow was obtained with COMSOL

Multiphysics in a spherical geometry using zero spin-viscosity (tj'=0) while simulations of spin-

diffusion theory, with non-zero spin-viscosity (r ' 0) and o=0 boundary condition, predicted

flow that should have been measureable by ultrasound velocimetry. Ultrasound velocimetry

results from geometries where the demagnetizing effects associated with the shape of the

container result in a non-uniform magnetic field within the ferrofluid volume, such as a 2/3 full

sphere and a ferrofluid filled cylinder of finite height both subjected to a uniform rotating

magnetic field, result in measureable flow (Chapter 6).

These results confirm that spin-diffusion theory is not the governing mechanism for spin-

up flow as was previously believed by several authors [1-3]. The demagnetizing effects

associated with the shape of the container results in a non-uniform field distribution in the

ferrofluid volume, which have been ignored by these authors [1-3], and is the real mechanism

driving the flow. As a result, the values of spin viscosity experimentally derived by these authors
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[1-3] includes these demagnetizing effects and is the reason why the experimentally fit values of

spin viscosity are many orders of magnitude greater than that derived theoretically.

The governing mechanism where non-uniform magnetic properties of the fluid drive the

flow is further bolstered by ultrasound measurements of strong flows obtained when the

ferrofluid filled sphere was subjected to a non-uniform field imposed by a solenoidal coil or a

permanent magnet, in addition to the uniform rotating magnetic field. The results obtained had

similar characteristics to COMSOL simulations of an infinitely long cylinder, with zero spin-

viscosity (q'=0) subjected to a non-uniform field of an infinitely long permanent magnet and a

uniform rotating field, even though the geometries were different.

In conclusion, this thesis proves that spin-diffusion theory is not the governing

mechanism for ferrofluid spin-up flow in a uniform rotating magnetic field. The governing

mechanism for the flow is due to non-uniform magnetic properties within the ferrofluid volume

either imposed by an external source (magnet/coil) or created due to the demagnetizing effects

associated with the shape of the container.

By determining the governing mechanism for spin up flow, this thesis helps understand

the mechanism necessary for generating any flows in ferrofluids subjected to magnetic fields and

is of value in applications involving ferrofluid pumping in particular MEMS devices.
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8.1. Key Contributions

Different models for ferrofluid spin-up flow are studied, through COMSOL Multiphysics

numerical simulations in cylindrical and spherical geometries and experiments using rotating

magnetic fields with a coil or permanent magnet to create non-uniform magnetic fields. The

following points summarize the key contributions to ferrofluid spin-up flow research made in

this thesis:

1. Experiments in Chapter 6 of a ferrofluid filled sphere in a uniform rotating field give no

measureable flow with an ultrasound velocimeter confirming that the shape of the ferrofluid

container is responsible for non-uniform fields within the ferrofluid, due to demagnetizing

effects, which drive the flow. This is further corroborated by experiments done in a 2/3 full

sphere of ferrofluid and a finite height cylinder subjected to a uniform rotating field resulting

in strong flows with velocity of the order of 1-30 mm/s. These experiments confirm that a

non-uniform field due to the demagnetizing effects associated with the shape of the ferrofluid

volume are the driving mechanisms for spin-up flow.

2. Experimental results (Chapter 6) of non-zero irregular flows obtained in the spherical

geometry due to non-uniform fields imposed by a permanent magnet and a solenoidal coil in

addition to a uniform rotating magnetic field, also demonstrate that non-uniform magnetic

fields and non-uniform distribution of magnetic properties are responsible for driving the

flow.

3. Zaitsev and Shliomis [4] in their paper, stated that a non-uniform distribution of spin

velocity (non-zero spin-viscosity rl' 0) imposed by a spin velocity boundary condition (>=0,

would result in macroscopic rigid body motion in a cylindrical geometry. The experiments
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(Chapter 6) and simulations (Chapter 7) done in this thesis, confirm that non-uniform

magnetic fields and non-uniform distribution of magnetic properties drive the flow and a

non-uniform distribution of spin is a result and not the cause of the macroscopic flow.

4. COMSOL simulation results of non-zero irregular and complicated two dimensional flows in

a cylindrical geometry of infinite height due to non-uniform fields imposed by an infinitely

long magnet in a uniform rotating field confirm similar experimental observations obtained

in the spherical case even though the geometries are different (Chapter 7).

5. Pshenichnikov, in his paper [5], applies a permanent magnet induced bias field perpendicular

to the plane of a uniform rotating field to a cuvette containing ferrofluid. In this thesis the

simulations (Chapter 7) were conducted with the field of an infinitely long permanent magnet

in the same plane as the rotating field. Although the plane of the magnetic field of the

permanent magnet, with respect to the plane of the rotating field, is different from the

simulations (Chapter 7) done in this thesis and Pshenichnikov's implementation, the results

obtained have similar characteristics of flow reversal/vortex formation (as seen in Figure

8-1). Pshenichnikov's results could be attributed to the total magnetic field of the magnet and

the uniform rotating field creating regions of strong and weak fields creating vortices/flow

reversal. Pshenichnikov's results also confirm the conclusion from this thesis that non-

uniform magnetic properties are the governing mechanism driving spin-up flow.
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Figure 8-1. Velocity profile for the circular cuvette in the absence of the bias field (curve 1) and
with it (curve 2), taken from Pshenichnikov [5].

6. Simulations of velocity profiles with non-zero spin-viscosity (q ' 0) give non-zero flow that

have been previously measured by other researchers [1-3] in cylindrical geometry and should

be measureable in the spherical geometry. Simulations of velocity profiles with zero spin-

viscosity (tj'=0) give negligible flow in both cylindrical and spherical cases. The experiment

of subjecting a ferrofluid filled sphere to a uniform rotating magnetic field gave negligible

flow (Chapter 6) confirming that only non-uniform distribution of magnetic properties either

imposed by a coil/magnet or due to demagnetizing effects associated with the shape of the

container drives the flow.

7. As a result of experiments and simulations (Chapter 4 and Chapter 6) with and without spin

viscosity ij', spin-diffusion is shown to have a negligible effect on ferrofluid spin-up flow.

The value of spin-viscosity is either zero with no boundary condition on spin velocity w or an

alternative explanation is that the value of spin-viscosity is negligibly small as derived by

Schumacher [6] using a modification of the dynamic viscosity derivation of an ideal gas
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using molecular kinetic theory [7]. The boundary condition on spin velocity w used in this

thesis

(- y-Vxv =0 (8.1)
2

where y is the spin boundary condition selector that has a value between 0 and 1 and 11||

represents the jump in spin velocity w across the fixed boundary. A value of ' y=0

representing the 'spin-no-slip' (o =0) boundary condition would still give measureable flow

1
in the fluid volume while a value of y =1 representing the 'spin-vorticity' (o = - Vxv)

2

boundary condition results in flow that is in the opposite direction of the rotating magnetic

field [8]. A value of y between 0 and 1 could potentially result in none or negligible flow.

Regardless of what the boundary condition on spin velocity is, the experiments of a ferrofluid

filled sphere in a uniform rotating field gave negligible flow while experiments where

demagnetizing effects are significant (2/3 full sphere and ferrofluid filled finite height

cylinder in Chapter 6) result in significant flow justifying the significance of non-uniform

magnetic properties within the ferrofluid volume driving the flow.

8. The theoretical value of spin-viscosity (i') derived using a modification of molecular kinetic

theory of dilute gases is many orders of magnitude smaller than that obtained experimentally

by several researchers by fitting numerical solutions of the governing equations to

measurements. The spin-viscosity values experimentally determined by several researchers

[1-3] is thus, mathematically overstated to account for the demagnetizing effects associated

with the shape of the cylinder, but not considered in their theoretical modeling, and is not the

mechanism driving the flow.
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8.2. Suggestions for Future Work

In closing, the following directions for future work are suggested to build and extend

upon the results presented in this thesis:

1. To confirm negligible flow in an infinitely tall cylinder, a special toroidal structure can be

built as shown in Figure 8-2. The vessel can be built in slices that are held together with o-

rings to prevent leaks. Helmholtz coils can be used to generate the uniform rotating magnetic

field in the ferrofluid volume of each slice. The cross-section of the slices can be seen in the

bottom right corner of Figure 8-2. A permanent magnet can be fitted inside the slot at the top

of every slice to create a non-uniform field replicating experimentally the simulations in

Chapter 7. The slices will have to be made fairly thin to ensure the spatial variation of the

magnetic field does not change too much as a function of the # direction.

Slot for insertinot
permanentmaget on top of

toroid

Figure 8-2. Infinitely long cylinder modified to be shaped as a toroid with slot on top for
placement of permanent magnet. Cross-sectional diagram of toroidal vessel can also be seen.
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2. Simulating the ferrofluid spin-up flows in a 3D finite height cylinder using an improved

COMSOL to investigate demagnetizing fields driving ferrofluid rotational flows. The present

limitation is the setup of the mesh in 3D and the processing and memory capability of the

computer used.

3. The magnetic field from the third coil/magnet is spatially non-uniform and its effect resulted

in complicated flows with vortices that were difficult to analytically investigate. Applying a

non-uniform field that can be distributed spatially, in a manner such that its effects on

ferrofluid flows can be analytically calculated, would be beneficial in understanding the

effect of the torque and force densities in generating vortices.

4. Simulating the experiment of a ferrofluid sphere in a non-uniform field as described in

Chapter 6 using COMSOL. The reason why it could not be completed in this thesis was

because it required a better computer than a dual quad-core computer with more than 100GB

of RAM to handle a very fine mesh in three dimensional geometry. A cluster of computers

running COMSOL would be ideal.

5. Developing a molecular kinetic theory of viscosity for liquids would aid in determining a

more precise analytical determination of spin-viscosity r'.
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Appendix A: Ferrofluid Flows in Planar Geometry

Supplementary Code

Al. Mathematica Code for Planar Couette Flow With fi=1, A,=o

(Section 3.2.2)

In{185):= << "VectorAnalysis'"

ClearAll[v, B, M, E, eqn, x, y, z, egnll, eqn12, f, TL, eqnT2, Bx, Hz, Hnorn];SetCoordinates[Carteslan[x, y, z]];

CleanSlate []

a - {x[x], wy[x], vz[xJv - (0, 0, vz[x]l;B - {Bx, By[x], Bz[x]} e t';M - {Mx[x], Ky[x], Mz[x]) eft;H - (Hx[x], By, Hz} e't;

2 n
TL = -;

$Assumptions -Bz[x] e Reals && &y [x] e Reals && Hz e Reals && Bx eReals && Q e Reals && 01e ReBals && X0 e Reals &&

r e Reals&& t e Reals && v[x] e Reals && Ex[x] e Reals && H e Reals && B e Reals && v e Reals && v e Reals &&

my [x] e Reals && my [x] e Reals && Dxi e Reals && 0 e Reals && Hz e Reals && p e Reals && vz" [x] a Reals && C e Reals &&
X: e Reals && mx[x] e Reals && mz[x] e Reals && By [x] e Reals &&My [x] e Reals && Hy e Reals && iEix eReals &&

oz [x] e Reals && MIy e Reals e& Reals && EMxTi e Reals Li zrix] e Reals && - e Reals && HO e Reals;

Print["Torque Expression"]
M[1] - Xa 1] ?M[2] - Xh 1[2]

T -pK K.Hrad2[v_, M :-, N[1 + v[1] k 1f[1] - (a .M) [1]+ , XH M[2] + v[21 ay M[2] - (in.M) [2] +

tm[3] +[3] t(.m[3] - (a.M) [3] + M}3 - X0 H[3]

BX
eqn - qrad2[v, H] /. 1x[x] -+ - - MK [x];

eqn8 - eqn[1] - Oeqn7 - equ[2] .. 0

eqn9 = eqn[3] = 0

eqnll - FullSiMlify [Solve[{eqn7, eqn8, eqn9}, Kz[x], {Mz[x], My [x]}]]N - K /. 4;eqnl2 -

FullSisplify [Solve[{eqn7, eqn8, eqn9}, My [x], {xz[x], Mz[x]}]]N - N 1. %;

eqn13 - FullSiplify (Solve[(eq7, eqn8, eqn9}, Mz[x], {x[x], my [x]}]m - M/. %;M - Flatten[M]
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In[20':= - sb:tuing zann a erage Tcrqu e bensity anI oin .!

Ixnoru[x) = (xa (Ri (-i . 0)2_ (RiiiX 2  (1+i0) (H Wi[x]-Dimz[x]) + W-r x] (fiw i[xi +fuz x)))) /
((xq ((-IL+0)2 2--r2 czx)

Iynom=[x] =

((x& ((-X+O) 2- _ 
2 ) + (1+ (- )2 - ((x]) 2  

2 +(aYx]) 2 
(z[3X) 2))))

Knomi[x] -

(xq ( + (+0) 2 + X0 (W (- + n EF eX) + &- F- + i (lZ 0xx -T x) -( xx 5e x)e~]-E(zx

((Xo ((-i +0)2 - (iexqx])2) + 1+I (I+D2 _ ([]2 +iT-]2 + (i-Z[x])2)M

nownu- Sr iy[{mznomxl, mynorm[x, Kznom[x]} I/. {Bi-+ o, ax][ -. 0, Wsz[x] -+ 0, if f 0}]

1I[24 8= 1 Cllaing normalized average Tcr ue de nities in ean curec:tion 

avgTx = 0 .5 * Re[my fl] * conjugate[Ri] - Conjugate[Hy] Mz[x] ]/ My [x] -> Nnorm[ [2]J, Mz[x] - norm[3]]};
avgTx = FullSimplify [CoplexRxpand [] ;
avgTy -1/2 Pe[M[x] * Rz+ Nz[x] Conjugate[M[x]]] /. {f[x] - Mnorm[[1]], 4z[x] -+ Mnorm[[3]]};
avgTy - FullSilelify [C'm1exspand [t] J;
avgTz = FullSi~lify [ .5 Re [M [x] .Conjugate[Hfjj -Conjugate [Hx[x]J .My[x]] /.

{Kx[x] -+ nor([1J], My [x] -> Inom[[2]]};

avgTx = avgTx /. {r-+ 0, urfx] -+- 0, B] +, 0K -}

avgTy = avgy /. {~-., [x] -, , [0x] -, 0, F -H .0}

avgTz - avgTz /.{x-, 0, &-x] -+ 0, W-Frx] -+ o, 19Y -+ 0}

f-lnralizing T and since this is DrC- av . eragep gite half the powem if it ,ere fC,

it should be dcoibled w,

avgTx= Fulimpify[1.guo.avgTx/. {[r] ->wy[ xr-,ur[. [s]., D ->Q9.E}];

avgTy=FullSimplify[1.opavgTy/. (ey[x] ->y[xsJ.z,sx[x] ->ex[x]sz, f2-> Q*E}]

av-rTx=Tull1ixmlif,[ 2-t) wavg~x,
avgTns=:ullimify[2-;2 ramvlj
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v avgry
i21:= eqntosolve - 2 1y [X] + - - - 0

d 2C

V PO t VZ XG My [X] (-t2 Q2 + (1 + XO)2 + t:2 Wy [X]2)

eqntosolve - - + 2 p xY [(] +r2(l[Xo)
2
+r(w+X]

2  
2 0

d 4C( ('24+r22 (2 + Xo (2 + Xo) -2r
2

]
2) + (1+X8 +u12x2)

eqntosolve = r +
P y [1x] -02 + (1 + X)2 + y[X] ) i=ai 1 riT- (r-!'Iw1

2 Wew (0' + 02 (2 + xo (2 + Xo) - 2 &ixT2 ) + (l + Xo + [X
2 )) 2

eqntosolve -r 2 Vnew (N4 + 02 (2 + X. (2 + XO) - 2 Zy [x]2 +(+o+y[2 )+Py[XT (-02 + (1 + XO ) 2+ MyM X2)

Flatten [Solve [eqntosolve, P]

eqpl P 1. t;

eqlot . eqpl /. {Xo- .55', r -+ 0 .5' r)

eqp1
eqplotDC - /. X- 1.55', r - 0.5' r)

1

Plot[Evaluate[Table[erplotDC /. { -* 0}, (Vnew, 0, 12, 41]], (r, 0, 1}, AxesLabel -+ (2 r, PBDC),

PlotRange -+ {{0, 1}, (0, 20)), MaxRecursion - 15, GridLines -+ Automatic, PlotStyle -# (Red, Gren, Blue, Black)]

Plot[Evaluate[Table[eQPlot /. (T 4 0.2}, {Vnew, 0, 12, 4]], (r, 0, 1}, AxesLabel - {2 r, PH),

PlotRange -+ ((0, 1}, {0, 20}), MaxRecursion -+ 15, GridLines -+ Automatic, PlotStyle -+ (Red, Green, Blue, Black)]

Plot[Evaluate[Table[eqplot /. { + 0.4}, (Vnew, 0, 12, 4}]], fr, 0, 1}, AxesLabel -+ {2 r, PH},

PlotRange -+ {(0, 1}, {0, 20)), MaxRecursion -* 15, GridLines -s Automatic, PlotStyle -+ (Red, Green, Blue, Black)

Plot[Evaluate[Table[eqplot /. {-+ 1}, (Vnew, 0, 12, 4}]], (r, 0, 1}, AxesLahl-+ (2 r, PH}, PlotRange -. (0, 1}, {0, 20)),

MaxRecursion -+ 15, GridLines - Automatic, PlotStyle -+ (Red, Green, Blue, Black)]

Pict [Eauae [Table el . (-. (We. .1 { . e el(2 . Range-{1) 00

lVax~ecursi-1; :iLine-.Atoamai PFct e-{ed reenlue Blac!a

PitEaluxateTable[etplot 4> . 3-10 (ie 3 .12 .{: 3 1).Aescael-{2h FH) PictRange-{{f0.1 .{0.53

I'ax~eusion-1: rid±ines-Automc lot.tle-{RPed Green Blue Black

FlcztFEaluate [Tale [e colot (, -. { e . 4 12 4) { r.3 1) .iax.Pecursion-10 Grid Lines-,Au nciat±i Fraxme-=Truxe,

FPctRange(, 3 1 (3 20)3

Frame-True, PitRange-{{ I

Flct [Evelae[Table [ecrla c

Frame-True. FlcRange-{. 3

Flot[Ev-aluate[abl3e[etylce

P.rax e-.TruxePl&ternge-{{

Pl1t[{Ealuate[Tale[etlot

F re-re.PlctRanige-{

PloctEaluate[Tale[etnlet

PlctRangre-({0.1 3{0202

-. 2 {We: 4 12 4 3 a.Vaxecr si-15.tridLin:es-Autmaic
14~ 122

, 3.-0,4 ('ew 4 12 4 ' 1,,1axRecursica-15 nriLines-Automatic

.(r.6 (e. 4 12 4 r 3) axRecursion-15,GriLines-Automratic

14 {] 2.

. . {Wes 12 4 3 l. 1ax ecursion-15,.<ricLiesautomatic

1) (3 23

.(C1) Wes4,1 4 3 1 'ax~ecursic-1,G:ridLines-AutmaicFrame-True,
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A2. Mathematica Code for Planar Couette Flow With H =0, B# =1

(Section 3.2.3)

<< "VectorAnalysis'"

ClearAll[v, B, M, H, egn, x, y, z, eqnll, egnl2, f, TL, egnT2, Bx, Hz, norst]; SetCoordinates(Cartesian[x, y, z]];

CleanSlate[]

u - [x], my [x], sz[x]}; v -0, 0, vz[x]}; B - (Bx, By [X], Bz[x]} e"t; M - {Ex[x], my [x], NZx] eat; H - {Hx[x], By, Hz ea' t;
2nx

TL. - -- ;

22
$Assitians - Hz [x] a Reals && my [x] a Reals && Hz a Reals && Hz a Reals RR 2 a Reals SR p0 a Reals RR X e IReals SR C e als SR t a Reals RG vz Lx] a Reals SR Ex[x] e als SR

* e Reals && B e Reals && V Reals &me Reals SR &iji e Reals && my KxiT
2 

e Reals && fi x Reals && 0 a Reals && Hz e Reals && p e Reals && vz" [x] e Reals [A C e Deals R
X: e Reals &R mx [x] e Reals && mz [x] e Reals 4R By [x] e Reals L& My [x] e Reals && By e Reals SR aiirli a Reals &R wz [x] e Reals &R Vy [] a Reals &R t9 e Reals &&

a[] Reals S II[r Reals &R ± e Reals &L HO e Reals;
p0

Null

Null

Print["Torque Expression"]

T. pO.Hqrad2[v_, M] :- [ ] + M[ l-x.H[1] ,x + M[2] + v[2] ay M[2] - (a-H) [2] + X[2] - XD H[2] ,tm[3 + v[3] a.m[3 - (&.M)[3] M[3] - xa H[31

BZ
en - grad2[v, K] /. Ex[x] -+ - -Nz[x];

90
Null

eBn8 - en[1] .. O eqn7 - an[2] . 0
eens9 - -pn[3] .. 0

epll - FllSiplify [Solve[equ7, aqu8, esp9), Mx[x], (Nz[x], My [x]}]] N - N/. t; eap12 - FullSiwplify[Solve[{ecp7, egnS, egp9}, My [x) , {Mx[x], Nz[x]}]] U - MI. 4;
eqn13 - FullSimplify [Solve[{ae7, aen, ea9), z[x], {Nz[x], My [x]}]] N - I. t; N - Flatten[]

utu ngahn's T ue Densit n o gn

xnom[x] = (x ( (-i4 )2 
_ i [x 2'+ (1+ 0) ( y [X] i-R iz[x]) + mx[x] (F-y [X] +yZimz-]))))/

(x ((-i+] - 2) + (lI) +) 2 2- Xx) 2+ (+z x)2)))) I. {Z - 0, Hi_, -, O X] -+ 0, mz[x] -}

Hynozm[x] - (x, (Hi ()i+ )'. XeX(H +(-1-X) .11ZipiT)m+ X p (Hi X )2 +i-i - i T - (Hi -x) ( +IE D + .H WEY[x) mz[x])))/

((Xe ((-i+0)2 - (XcTi]2) (Ii+ i+D) 2 (&2ifl' 2 + (asz x])')))) I. (Ri-. , ffz . 0, xx 0, mzx - 1

NZnom u[x] = (x8 (E (i + 0)2, + Xe ( (1- i0) - 1W &--x-x]) + (- -+ 0) (W Am X x- E eyT [T) - (A ur-x - +5 I y [x]) v-z~x] - Tz (-z Tx] ) 2

((xo ((-i+0)2 (ix])2) + (l+iD) ((_i+j)2 _ ((-)_ 2x])2 + (mypx])
2
+ (ezix])')))) /. {Hz-+ 0, By-. 0, Ux[x] - 0, mx[X] -. 0};

norm = Fulisimpliry [(mnou[x], mynorm[x], Nznorm [x]}]
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torn

Scalculain noncalizedi average Tereie ciensities rn each direction;:i

avgTx = 0.5. R [i] *Conjugate[F-] - Conjugate [y] ,1z[x] ] /. {My [x] -> Mnor[ [2]] , Mz[x] ->twrno [[3]]);

avgTx - FuliSimplify [CpexEipand[(]];

avgTy - 1/2 * Re[Mzlx] * - [x].Conjugate[r[x]]] i. {[xl -+ M nor[[11, mz[x] -P Nnor[[3]]};

avgTy - FuliSmlli fy [coMlexxpand []];

avgTz - FullSimplify [o.5Re[MK[x] *Conjugate[I]J - Conjugate[Bfx]] aI [x] ]] /. {zx[x] -+ tnorm[[1]], !*H[1 -> Knorm[2]]};

avgTx - avgTx /.f {i -+0, H ~- 0, a tx] - 0, Wz [x] -0 };

avgM - avgTy /. Ez-+ 0, H - 0, iFx[x] - 0, wza Ix] -+ }

avgTz - avgTz /.{Hi- o 0, -.,. x[ 0-.O, z[x] -. 0};

avgTx - rulIiimpify (1.yO eavgTx /. {y [x] - y [x] *r, wz-x-> wx[x] t , Q - *a , fi -# n / yO}];

avgTy - rull1Simplify[1Ayo aavgTY /.9{-7[x] -- wy [x] a , ax[x] -> [x] * E, d -> at, ffx -+ Bx /yO}}
egntosolve - 2 y [x + - - -- 0

d 2C

V Re I BxaXD U,[x] (1-tg2 + t2 L[]2)
egntosolve- - 2y[x] + .-.

d 4y0O(14g
4
+r

2
Q2(2.Xo (2+x)-2T

2
My[x]

2
)+(1Xo+t2 M[X]

2
)

2
)

eqntosolve - r + .. f? .&=X 2) 7212)) 0 /. wy [x] ( r - new
Wew (04 + 02 (2.Xo (2+ Xo) -2 ir[x

2
) + (1+Xo. + ))22

Fu+llwplify (t]

egntosolve . Sipli fy r new (04 + 02 (2+ Xs (2 +Xo ) - 2m yr[x) ) + (1+ Xo +m-- ry {x22+sy[])..0/.y [ ( er - Wew]

Flatten (Solve (eqntosolve, P]]

el - P /. t;

elotDC - /. (Xs -# 1.55', r -+ 0.5' r}
2.55'-

eqplot . /.2 w {Xg -# 1- 55', r -+ 0. 5' r}
2. 55'2

Plot[Evaluate[Table[eWlotDC/. {0-4 0}, { ew, 0, 36, 12}]], {r, 0, 1}, AmesLabel-# {2r, PB),

PlotStyle - {Red, Green, Blue, Black)]

Plot(Evaluate[Table[eWlot /. (0-. 0.2}, {Vnew, 0, 36, 12)]], (r, 0, 1), AresLabel- {2 r, PB},

PlotStyle - (Red, Green, Blue, Black)]
Plot[Evaluate[Table[ewlot/. (0-. 0.4}, (new, 0, 36, 12)]], (r, 0, 1), AxesLabel-. {2r, PB),

PlotStyle - (Bed, Green, Blue, Black)]

Plot[Evaluate[Table[eplot /. {04- 0.6}, (Vnew, 0, 36, 12}]], (r, 0, 1}, AxesLabel-. (2r, PB),

PlotStyle 4 (ed, Green, Blue, Black)]

Plot[Evaluate[Table[egplot /. (0 -+ 0.8}, (Vnew, 0, 36, 12}]], (r, 0, 1), AmesLabel (2 r, PB),

PlotStyle -+ {Red, Green, Blue, Black)]

Plot [Evaluate [Table [eqplot /. (0 -e 1.0}, {Wnew, 0, 36, 12}]], {r, 0, 1}, AeSTael { 2 r, PB},

PlotStyle -+ (Rad, Green, Blue, Black}}

FPl-,e:[ Ealu -at Tac 7: ie Ie l
Fl. alia e Tab .+e eI

Plot ia e4aluaeTaIe ea10

1 v-'alae Ta i iea
pi ZLra-ia eI~ &1J ' 63- c

W 12 36

PlotRange 4 (0, 1), {0, 20}), IMaRecursion - 15, GridLnea- Automatic,

PlotRange-. ((0, 1}, (0, 50)), MaxRlecursion 4 15, GridLines -m Automatic,

PlotRange-. -{0, 1}, {0, 501, Maxecursion - 15, GridLines -. Antomatic,

PlotRange-. (-0, 1}, (0, 50}), Maxiecursion- 15, GridLmane-. Atomatic,

PlotRange-. (0, 1}, (0, 50)), Rarnecursion- 15, GridLines Automatic,

PlotRang.- -{0, 1), (0, 50)), MaxRecursion - 15, GridLane- Automatic,

2.. ax31ecur-sIcN-15.7 -idmwines-Automai 17rare-.TrueEtcRangre-(01)2

3 1+- 1.a.eurson1' riLines-;atomatic Erare-Tru e.PlcRange-({0 3

'1 fx.ec 1 u 1 ,ieLines-i-jnaicfram-,TrueFPlF a nge-{

fI 16jS aeuso-15.Gid'is-,atoLa FTrm-TrueFlo14ange-({0

- La1ecusic- 15 Gidies-Automatic . !rale-True .PlozRange, - 3 .

3.5 :

(2 50)
3 50

{! '3

6)
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A3. Mathematica Code for Replicating Zahn and Pioch's Results

(Section 3.2.4)

qf=0 case with Complete Torque Equation
(.Trying to develop the case in ZahnGreer Fig 9 plots vith etaprine zero jith coolete Torque equation)

Clear11[Bx, Hz, vz, o, A, B]

i -A:

(Nxi^2+ (is+1)* (jog+1 +X))

Mr X*((ifl+l+X) Hz-Bxu[x])
(u[x]^2+ (i*+1) *(iu+ 1+X))

1
T - *Ra[Mz*CofjUgate[Bx] - Conjugate[Mx] * (Hz + Mz)];

(* DIIRSIOHLESS FLOW AND SPIN VELOCITY EUATIONS *

lineareqn - s*(+j)f*D[vz[x], {x, 2)] +*sD [[x], x] -D[p[z], z] .. I

pinn. ' s D[w[x], {x, 2)] -Cu (D[v[x], x] +2u[x]) +Torque ..

T - SiAMyT /. (Nx -* Nx /. (Bx.-18, Hz - 11, X - 1, A -1}, Mz -> z .(Bx - 10, Hz - 11, X -1, 0 41}, Bx -19, Hz . 11, X - 1, - 1), e[x] efReas];

(* Doing case in Fig 5a ZahnGreer with etaprie=0 ,)

eqn-linearegn/. (wa-l, C-1, D[p[z], z] -+.00801):
eqn2 . spineqn /. (Torque - T, f - 1, - ,S 8);
eqn2 . e2

eqn3 - D[eqn2, x]

Solve[eqn3, vz [x]]

eqn4 .eal.

mend . 1:

l. - 1: Au . 1: Ainc . (A - 1) 120 // N:

Equstosolve - {egn2, egn4, vz[S] .. 8)

fpend[A ] :. vz[xend] /. NMSolve[{Eputosolve, a[@] .. A), {vz, a), Ix, I, xend)]

fpende[8.811]

Tablef[A, fpend[A]), (A, I1, Au, liac)]
fpA - Interpolatio[%]

fpA[A]

rooteq - Fina~inot [fpl[A] .. 0, (A, (11, Au))]

A -I /. rootegn:

A - A[1]]

fpend[A]

eqnresult . MDSolve[(Equtosolve, i[(] .. A), f(z, v), (x, U, zend)]
vz[x] . vz[x] /. egaresult

e[x] . u[x] /. eqnresult

Plot[Evaluate[vz[x]], {x, 0, xend)]

Plot[Evaluate[e[x]], {x, 8, xend)]
Exceldatayz - Table[Evaluate[vz[x]], {x, 3, uend, 8.01)]
Exceldataz - Table[Evalnate[[x]], (x, U, mend, 6.31)]
Export[ f:\desktop\vzxdata.xls", Exceldatavz, "XLS]

Eagort[If:\desktop \wxdata.xls", Exceldatan, "XLS"]
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sf=O case with Linearized Torque Equation

(.Trying to develop the case in ZahnGreer Fig 5 plots ith etaprime zero with Litearized Torque equation*)

ClearR11[x, Hz, vz, a, A, D]
i -1

x.(u[xl.Hz+ (i.+1) Bx)
Mx-

(E~X]^2 +(iwR+ 1)* (iVR+1+X))

X.((.0+1+x)Hz-Bx.9[x])
M .

(u[x]^2 + (i..1)* (I.2+ 1+X))

1
T . - [x[Mz . Conjugate [Bxj - Conjugate[Mx] (Hz + MZ)];

2

(, DDESIONLESS FLOW AM SPDt VELOCITY EQUATIONS )

1
lineareta . -*(C.+P)0 D[vz[x], {x, 2)] +C.D[e[x], x] -D[p[z], z] ..

2
mpineq -3l' aD[ulx], {x, 2)] - C(D [vz[x], x] +2 e[x]) +Torque .-

T$. (-x'M[(x*D^2+3
t
'*(A^2+ 1+X))*(Hz*Conjugate[Bx])])/ ((0'^2 1+x)^2 + (XU)^

2
)

a .X*e(Ns[BX]^2t*(D^2_- 1) + (Ebs[Hz]^2) * (a^2- (1+ X)^2)) /(2 * ((Q^2 + 1+ X)^2 + (X* A2))

Tlifear .Sielify[TI + a [x.] /. (Mx -P Mx /. (BxK-f, Hz- 1, x 1, -. 1), Mm -+Mz /. (Bx-13, Hz-+i, X 1, -1), Bx-1, Hz-Ix-+1, - 1}, [x] e Deals]

(. Doing case in Fig Sa ZahnGreet with etaprime=0 .)

eqnl.liieareqM/. (j-+,1, C-1I, DMp[z], z] -.. 8881);

eqR2 - spinen 1. (Torque - Tlinear, ( - 1, q - 1, i- );

e-n2 . eqn2

eqn3 . D[eqn2, x]

Solve [eqn3, v2 I ' [x]

eqn - eqal /. %

mend - 1;

31 - -1; Au - 1; ainc - (Au - A1) 12 //N;

Eqmtosolve . (eqn2, eqn4, vz[] .. 6)

fpend[A ] : - vz[xend] /. MVSolve[(Eqstosolve, a[l] .. A), {vz, w), (x, 6, xend)]

fpendt[@.s11]

Table[(A, fpend[A), (A, 31, Au, Ai)]

fpA - Interpolatiox[(]

fpA[A]

rooteqa - Frado=t [fVA[A] .. 1, (A, (1, An))]

A.A . rooteun;

fpend[A]

egaresult . UMolve[(Estosolve, u[S] - A), (vz, i), (x, 0, xend)]
vz[x] - vz[x] I. eqaresult

cx] . u[x] /. equresult

Plot[Evaluate[vz[x]], (x, 0, xed)]
Plot [Evaluate[e[x]], (x, 3, Nend)]

Exceldatavz - Table[Evaluate[v[x]], Ix, 6, xen, .31)]

Exceldatanz - Table[Evaluate(u[x]], (x, B, xend, 6.31)]

ExortI"f: \deoktop~vzxdata.xlr", Exceldatau, " XLSI]

Emort[" f: desktop~vxdata. ins , Exceldatan, "XLS"]
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'=:0.01 with rotating field imposed (Bx=0.1B0Hz=0.1iH0)
with F=1 with Linearized Torque Equation

(<Trying tO develop the case in ZahnGreer Fig "I plats with etapril nonzero and lineamd Torque equnation mth fx and Naz f-ids t)

Cle3.11[B., H., .3, 0, 1, B]

i - A;

X. (.[x] Hz . (A1.1) .Bx)

(.[x]^2 . (i.QD+1) . (1 e9+.1+ X))

T- - A eCMJ.fAat[Bx] - Cos0agtnEX](HN+M3)];

(, DIMENSINLESS FLOW AND SPIN VELOCITh ED10UIS )

2

spimnee - ' eDrorx], {x, 2}] -f.(Dlvax]x, x] 2en[x]) .TOrque .. 9;

T.5S lif[T /3. -> hI. (3.-.3.1, H3.-.3.1., x-.1, 31},M-. (.I 4-..1.1, H 1 -3.1.1, x-.1, 3-. 1}, Ex-.1, 3a .3.1.i, x-.1, 3.1). .3.] * hal1];
T - (- x.e t(x3e .^ 1.3.0 (3^2, + 1]+ X))O (H.e o1gat [B])]) / (H^3+1. X)^2 + (2.3])2

( -0Bx n.0KON .nd Hz-HO RoIttn agei fed,

Tlinear -HSily[T3.+..3.] I. (3x-.3x/. (B..-.3.1, Ha-+3.1.i, X-1, 0-1) ,. -.. (Bx .1, 31-.9.1.1,
. ] . an]
W1. lineares /. ( . 1, f-+ 1, D[[], z] -+ a.60.61)
p2 -spinwp /. (Torgu . inear, ( - 1, q o 

1
, q -. 0.31);

eqn2 - q&2
-. nd -1;

-1 -- 1; - 1; Mc .CA - 11) /1 U / I;
BI- 1; D.- 2; Bim- ( - B) It13 //E:

bO-.arTConditions . (-I[N] .. 1, .'[6] ]., .[1] .. , .'[0] .. B
Egqstosolve - {e(ql, eqA2}

fpend[A_, AL ] :- Amd /. AMIeW[{Eqnotalve, na[G]. 8, va'[S] A, .[8] 8 , -'[M B),{I , (x, -. ed), aSM ose
fenps.[A_, M_] :-13d3 ] 1. -1s.1(3{3soo3, 0.[3] .3, v"'[] . A, .[G] 0, .'[0] .B), 1, 0, - d), 3.31tq. - 13se]

pend[13, 1]
WAa - Tablefpend[1, B], (R, 31, l, 6c), (B, B, 33, Di3 )];

data -. Tablefpendt[A, ] (, 11, Am, 3 i, (, 3 B,3., Bu, Bim}];

I33. L1st3tepO31= [data, {{, it), (B1, B%)}]
f0B- LitItas1tm3n=[datan., {{31, AM), 31B, B))]

63[1, B]

6p1[1, B]
Wll 0.1]

fPB1, A.7]
rot0165- Fi'n1S t[{B1[1, B] ., 633[,3] -- ), ({, (11, 1U)}, (B, (B, B.)]

AA/.o1ote

0 B /. rootega

3-3[[1]]
B .3B1]

BU - -5einc

BI - +5e im

ClWeaA, a]

data . Tle[fpend[A, B], (1, , 31, im0}, (B, BI, NO, Bic)];

data - T lefpenW[1, ], (a, 11, An, Aim), (B3,3 , BnDIMc)];

0- L33t13ere611ax3dta, (4{1, 124, (B1, 4)}
03. L].3xat=yeq-33U1 dt.., {{M, 3u}, (B1, ft)]

fpl[1, BI

fgB[A, B]

20ot3.n 6a 1 [{fB[1, 3] .] , 633[1,3 1 3), (4{, (11)), (3, (31, 3.)))]
A -/. rooteg

B 1. rootean

3-3[[1]]
B -DB1]]

11u- +1eiac

BI B - 1.e BI-c

B. B + 1.Bxin

C0oi[1, B]
a- Tab3.[f3end[A, B], (1, 31, An, 3A}s, 4M, BI, a-, Dimc)];

dat1-. Tal3Efg3ftEme , B], (1, 31, A., Am), (B, B, ., Bimc);

63l - LitI.a.3.1.a3a[data, (1, 1), (B, BU}]

f03 L.swt.ntra."-I-li[data, (, A), 4B1, 3U}]

6p3[1, B]
f0B[1, 3]

3ooteen - 33n61t[{033, B 0, fail[,3] B .}, (1, (11, A)}, (B, (31, B.)})]

A -. 11. rooteen

B B /. rooteg)

3-3[[1]]
B -[1]

BI - - 1eline

Clea1, B]
data -T le.fped[1, B], (1, 1, An, i1), (B, 3, 63, 3im)];
data- Tale[fpeade[1, 8], (1, Al, An, Am), (B, BI, Bn, Dim}];

fP- List3me33."1.-[data, (4, 1.), (B1, B))

f0- LiffMnt-tr1L1M33[data, {{, An), (1, B)}]

0331, 3]
rooteqn - 3I34MM 03[3B1, B] .. 8, fl, B] . 0). 43, (1, 31)), (B, (B1,. BU ]

3-3 A1. .q.
6 -3 I . rootegaB 1. -otegg

B3[[i1]]

fpendlk, B]

fpede[1, B]

eqrut - 1SOlE[(Est.1v, 0.[] 8, 0'[] . 1, &[1]- 8, .'[19 3, 40.,.), 4x, 3, X.)]
633,] - 0.3] /. .5.re2ut

EX] -O] . e33result

Evalnt13330.1]]

Esm161te33[1]]

Plat[E3.lhate,.3,]], (x, 3, .0,d}]
F3t[EnalMte1.x]], 4, 3, 3ad)]

Exceldatave - Tle[E..1..te3..3x]], (., 8, send, 3.31)]
E660ldata16 . T3l[63N6613t[3X]], 43, 3, -Ad, 3.31))

Eqrt[. f:\desktop.v.. data.x311, E63eldatav, "XLS"]

362t301603103)63113 33% 61,3131),B6x,63.1,



q=0 case with Complete Torque Equation- Lorettas cases Bx=1, Hy=O, y=f=0.05 92, n=5 (Table 3.1 pg 43 of Lorettas thesis)

(,Tryng to develop the Case in ZahnGreer Fig 5 plots with etaprim zero with complete Torque equation,)

Clearm11[ox, Hz, va, a, A, B]

i - A;

X* ([x*1Hz + (iA.0+ 1) *Bx)

(.[x]^2 +(i*+1) .(i*+ 1+X))

Z x.((i*Ol++ x)*Hz -Bx*[x])
( (*D+ 1)*(i*+. +X))

1
T - - *R[Xz *ConjuWate[Bx] - Conjugate[f] * ( oz +oM)];

(, DIESIO1LESS FLOW AND SPT VELOCITY EQUATIONS

1
linearegn . - * (U+ i) *D[vztxl, {x, 2)] + *D[x], x] -D[pEz], 2] I

2

spinen - il *D[Eu[x], (x, 2)] -C* (DtVz[x], x] + 2*u[x]) +Torque ..

T - Simplifr[T /. {Mx -* NX /. (Bx - 1, NZ -10, X-I 1, 0 - 5), MZ -* MZ /. (Bx - 1, NZ 8 , X-a 1, n - 5}, BX - 1, H2 8 , x - 1, 0 - 5}, w[x] e Reals];

(, Doing case in Fig 5a Zahnreer mth etapri=O0 ,)

eqnl-linearean/. (,1- 6.S592, (-S.592,D[V[z], z]- 1);

eqn2 - spineqn /. (Torque - T, ( -1.S8592, 1- .. 592, a'- 0);
e2 . equa

eqn3 - D eqn2, x]

Flatten[Solve[eqn3, vz' [z]]]

eqn4 - egal /. %

xend - 1;

11 - -15: Au 15; Mac - (au - 11) 1 / N:

Egstosolve - (eq2, eju, z[U] 8. S)

fpead[A] - v[xend] /. Solve[{Eqnstoslve, w[6] .. A), (vz, a), (x, 0, sed)]
fpedS[S. 611]

Table[(A, fPend[A]), (A, 1, Au, Air)]

fpA - Interpolation[t]

fpA[A]
rooteqn - Fiadaoot[fpL[A] .. 9, (A, (1, Au))]

A . A /. rooteqgn

A - A[[1]]

fpend[A]

eqnresult - ISSolve[{Eqastosolve, u[S] .: A), (vz, i), (x, 3, xed)]
vz [a] . vz[x] 1. eqaresult

u[x] . [x] /. eqaresult

lot[Evalunte(Vz[x]], (X, U, rid]

Plot[Evalunte[u[x]J, (x, 9, rend)]

Eceldatavz - Table[Evaluate[vzM]], (x, 8, xend, 8.01)]

Exceldataa -Table[Evaluate[.[x]], (x, , end, 9.81)]

Exort [f: \desktopvztdata.xal", Exreldatavz, "XLS"]

Eport( f: \desktop\wxdata.xls" , Exceldatarz, "XLS"]

399



o'=0.01 with rotating field imposed (Bx=B0,Hz=iH0)
with 1=1 f=o.15 with Complete Torque Equation

(Tryig to deelop the case in ZahnGreer Fin 5 plots wth etaprio nonzero and c lete Tortue equao with x and Hz fields uposed,)
C X, , , B]

i -1;

(E~x]^2 +(1 *R+1) (1eR+Q'1+ X))
01 r((i .0+. (.0) t3- ,)

T0.- .t([M0 e o agt[B.] - Cofogte[Ex],Q h.3+Ma]:
U2

(DRENSIOHLESS FLOW AMD SPIN VELOCITY EOUMTION5

lineareqn.-(+eDax,[,]+ Dex]]-ps, a]..0;
spineen. -.U~)3'-.. , ], (3[] 3],.3(2)] x].2 x]) +(Torg, .. 8;

( -4.as adHz-HO Rotating Magnetic tield ,)

T MM3pf1[T /. (x-N.0/. (Bx-1, H-1, r-1, 0-1), m- -- m- /. (3x1, 1-1i, X-1, 0-1), B-.1,1. -i, X-1, 0.1),[] eoeal.]:
( 1., i in F1 0a ZahnGrr wth etcqrun£ .f01 0 )

30gl1lineareenf{ol, (.4.15, 3414,], ,] ,I.64361}
.2 .. pi.pn 1. {Torqe- T, f - 8.15, q - 1, N' -. M.11);

egn2 . e5n2

0 . 11 A - 3.1U; ie.. (A. - 01) /11 // N;
B1. 4 ; f. - 4.1; Bin . (B. - B1) 100 j/ 3;

=a-aTyconditions . t[1 ] .. 0, W'[] .. 1, .[8] .. 4, W'] .. B)
EQasto..l . {.1, Pn2)

fpsd[A ,_] : e[xd] /. Mft.l.e{(Egato..oe, o[4] .. 8, .'[9] .. A, .[8] .. 1, .'[8] .), (I., .), (x, 4, -d), MNnSte. - 18084]
fMendM[A_, A-] : 1~ed . OSOLWE[{Egasto...1-, "1[5] 9 , TZ'[9] A, WEI] 8 , 0'181. B}, {vz, w), {x, 9, -An), Max36trp 1B80]

fpend[1, 1]

data . T(le0fpOe[14, B], {A, 7a, Au, Aime), (E, Bl, B, Bim)}];

dta . Table[f0edW[A, B], (1, A, 7A, Aimc}, (3, B1, Bu, Bi )];
toA - ListIfterpolat=[data, ((11, AM), (B, Bu}}]
fpB . LIsttro7tflot[data., ((01, 01), 41, Bu)]

fyl1, B]

fa [A, B]

fl[1, 9. 7]

fll, 0."]
o.otn . F..r t[{f0B[11, 0]..4 0 010, a] M.34 , 1( , 101}, (0, (BI, B)4]
1.I/. roten

B3.0B/. ootega

1 -1[1]]

3. B[[1]]
IL - I- 19.1lc

tu . b 11 ,, , 3 3 )

B1-B -18eBinc

Bu t B . 1@.D inc

Clem[A, BI

data . TSle(fpd[(, B], (, 1, A., U1, {B, BI, B., Bi-)];
datae . Tabla~fpend"[A, B], {A, Al, Ax, hm)c, (B, B1, Bu, Bimc)];

fpB. ListIxterpolMIn=[dat., ((, Ru, (01, B))]

031[1, B]

P[A, 3]

rtegn . Fi 0a t[{fpB[1, B] ..0, p[A, B]. ), ((1, ({1, 04), (0, (B1, Bu)]
. A 1. roteg.

B -B I. rootegn

0.0[[1]]
B B.11]]

BA. + 5 eBinc

Clear[A, B]
data . Table[fpend[, B3, (1, Al, IV, Aim), (B, B1, BX, Bi0)];
dt . Table[fpe.dE[A, B], (1, A, Am, A ), (, 0, BU, Bim)];

fA - Li1tvtnp1t1M=[datA, (({1, 0), {B1, 01}]
fpB . List0ftepo1Oi.an=[data, (al,01), (B1Bu)]

030(1, 0]
bal[k B]

rooten .0 1a3t[fB[1, B] 0, fp[1, B]. 8), (1, (A, AM}}, {B, (31, BU}}}]
0.0/.ro..teqn

B3.3B/. rootegn
1. [[1]]

0.3(B[1]]

Cle:[1, B]

dt. . Tal[fpen1, B], (1,01,01u,0101), (0, B1,OBu, 01.c)];
dat.. . Tale[3pendo[1, B], (1,01,0.u, M1ac), (3,31,3Bu, 0i01)];
030 . ListInteo.30l[data0, ((01, 014, (31,01))}]
t

0
3.e ListInterp3]t13u4data0, ((01,014}, (B1,0B1}}]

fpB[1,3B]

root0n .Fqm.30St[{fpB1, B].I, 0,311,0B]. 44G, ({0, (01,0A1}},4{0,4(01, 34))}]
1-B/. - ootega

1 . 11]]
3B. B[{1]]

tpE1, B]
fte.B1, 3]

nr . -iOl[.{Eqop.nto,11,e, .,[] A., I'[,] .1, .[] -.4, .'[] .), 4.., .4, 4x, 40 nd)]

.04x] -. 04.] 1 .qgareet

.4x] . 3(0] I/. egnreul
Evaluate~o.[1]]

Eval.teo(1]]4

Plot[WZLoWte4.2[]], (, 4,S B,)]
fPot. -t lau o4a lo~xt],], , (3 , 4B , Bd)]

3'e1i dtav. -T*l.[Eoaluateo4.4]], (, , = n, (.1]

Eooedaa . FoTle[Eaete x], {xr, B, .. 8, (.1}]JI ulI,(BB)J

E.ert[ 3;:\desktopowlta1. ols, E01,ldatad, "0S.4
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A4. COMSOL Simulations of Planar Poiseuille Flow With Non-Zero

Spin-viscosity (ri'#O) (Section 3.2.4)

Zahm Greer Analysis wit Poisseuille flow ijposed andR field culy fllc/CZAIhu/SsiaDocun6*/2ODr~'bOX/RSZd1Vo2FSS.

Zahn Greer Analysis with Poisseuille flow imposed and H field only

1. Table of Contents

* Tile - Zahn Greer Analysis with Poisseuille flow imposed and H field only
" Table of Contents
" Model Properties
" Constants
" Global Expressions
" Geometry
" Geom1
" Solver Settings
" Postprocessing
" Vaiables

2. Model Properties

Property Value
Model name Zahn Greer Analysis with Poisseulle flow imposed and H field only
Author ShahrarKhushnjshahi
Company MIT
Department EECS
Reference
URL http://lees.miLedulees/oldfies/fullfacultylZahn/Publications/Ferrohydordynarnics/Zahn-

Gmer-Femhydrodynamicspumping1995JMMMv14gp185.pdf
Saved date May 10. 2010 3:39:50 PM
Creation date Jun 3, 2008 314:47 PM
COMSOL COMSOL 35.0.603
version

Fie name: C:WUsers\ShahraeDocumentsWy Dropbox\Research Files\Software Data FesCornsol
Files\WorldingZahnGreeranalysis\Zah nGreerPouisselleflow_etaprmeOpoint0l.mph

Application modes and modules used in this model:

* Geom1 (2D)
o Perpendicular Induction Curents, Vector Potential (AC/DC Module)
" Incompressible Navier-Stokes
a PDE, General Form

2.1. Model description

5/12/2010 12:16 AM
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Zahn Greer Analysis with Poisseuille Flow imposed. This analysis is a steady state analysis with etaprime=0.01
and values for viscosity taken as 1

3. Constants

Name Expression Value Description
Omega I Real Angular frequency
f 1 Real Frequency
Hmax 0.1i Normalized H
Bmax 0.1 Normalized B
zeta 1 normalized vortex viscosity
eta 1 normalized viscosity
etaprime 0.01 normalized spin viscosity
Xi 1 susceptibility
Tau 1 Ferrofluid time constant
muO 1 Magnetic permeability of free space
rho 1 density of MSGW11
pmax -le-4

vfrac 0.1 1_1_1

4. Global Expressions

IName Expression UnItl Description
T 0.5*real(Mx emqa*conj(Bmax)-mu0*conj(Myemqa)*(Hmax+Mxemqa))

5. Geometry

Number of geometries: 1

5.1. Geomi

5/12/2010 12:16 AM
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2

03

-23

-1S -S -43 -4

5.1.1. Point mods

5/12/2010 12:16 AM
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5.1.2. Boundary mode

5/12/2010 12:16 AM
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5.1.3. Subdomain mode

5/12/2010 12:16 AM
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6. Geom1 .

Space dimensions: 2D

Independent variables: x y. z

6.1. Mesh

6.1.1. Mesh Statistics

6 of 15 5/12/2010 12:16 AM
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Number of degrees of freedom 21089
Number of mesh, points 1293
Number of elements 1182
Triangular 0
Quadrilateral 1182
Number of boundary elements 220
Number of vertex elements 4
Minimum element quality 0.84
Element area ratio 0.318
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6.2. Application Mode: Perpendicular Induction Currenta, Vector Potential (mqa)

Application mode type: Perpendicular Induction Cunents. Vector Potential (AC/DC Module)

Application mode name: emqa

6.2.1. Scalar Variables

Name WMrable Value Un tDescrpion
I epsion0l epsonOemqa 8.854187817e-121 F/m I Permittivlly of vacuum
lmuO |muo emqa I I |H/RPermeablity of vacuuml

6.2.2. ApplIcation Mods Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Bias application mode None
Solve for Total potential
Background field Magnetic vector potential
Frame Frame (ret
Weak constraints Off

5/12/2010 12:16 AM
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I Constraint tvDe I Ideal

6.2.3. Variables

Dependent variables: Az, redAz

Shape functions: shlag(2,'Az')

Interior boundaries active

6.2.4. Boundary Settings

Boundary 1,4 2 3
Type Magnetic field Magnetic field Magnetic field
Magnetic A/m (Hmax*flc2hs(t-1,0.05); {Hmax*flc2hs(t-1,0.05); {Hmax*fic2hs(t-1,0.06);
field (HO) ((Bmax/mu0)-Myemqa)*fic2hs(t- ((Bmax/mu0)-My_emqa)*fIc2hs(t- ((Bmax/muO)-Myemqa)

1,0.01)} 1,0.01)) 1,0.01))
Surface A/m 0 Hmax -Hmax
current
density
(JsOz)

6.2.5. Subdomain Settings

Subdomain 1
Relative 1 {(1+(XI*((*Omega*Tau+1+XI)*Hmax-(Bmax*Tau*w/muO))/((Tau*w)A2+
permeability (*OmegaTau+1)*(*Omega*Tau+1+XI))))mu0_emqa,0;0,(1+(Xi*((w*Tau)Hmax+
(mur) (*Omega*Tau+1)*(Bmax/mu0))((w*Tau)^2+(*Omega*Tau+1)*(*Omega*Tau+1+XI))))

I/mu0_emqa)
magconstrel B = poH + poM
Magnetization A/m {Xi*((*Omega*Tau+1+Xi)*Hmax-Bmax*Tau*w/mu0))/((Tau*W)^2+(*Omega*Tau+1)
(M) (*Omega*Tau+1+Xi));Xi*((w*Tau)*Hmax+(*Omega*Tau+1)*(Bmax/mu0))/((w*Tau)^2+

S (j*Omega*Tau+1)*(j*Omega*Tau+1+Xi)))

6.3. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

6.3.1. Scalar Variables

Name I Variable I Valuel UnitI Description
visc vel fact viscvel fact ns 10 1 Viscous velocity factor

6.3.2. Application Mode Properties

Property Value
Default element type Lagrange - P2 P1
Analysis type Stationary
Comer smoothing Off
Frame Frame (ref)

5/12/2010 12:16 AM
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weak constraints
constraint typ~ offJ

6.3.3. Variables

Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,V), shlag(1,'p')

Interior boundaries not active

6.3.4. Boundary Settings

Boundary 1 2 3
Type Inlet Wall Wall

intype Pressure, no viscous Velocity Velocity
stress

outtype Pressure, no viscous Pressure, no viscous Pressure, no viscous
stress stress stress

stresstype Normal stress, General stress General stress
normal flow

velType uO Uin UOin

x-velocity (uO) m/s 1 0 0

Pressure (p0) Pa pmax 0 0

Normal stress (fM) N/m2 pmax 0 0

Velocity of the tangentially m/s 0 0 Umax
moving wall (uvw) I

#-velocity of moving wall (uwall) m/s 0 0 Umax

Boundary 4
Type Outlet
intype Velocity
outtype Normal stress
stresstype General stress
velType U~in
x-velocity (uO) m/s 0
Pressure (p0) Pa 0
Normal stress (fM) N/m2 0

Velocity of the tangentially moving wall (uvw) m/s 0
#-velocity of moving wall (uwall) m/s 0

6.3.5. Subdomain Settings

Subdomain 1

Integration order (gporder) 44 2
Constraint order (cporder) 2 2 1
Density (rho) kglm3 0

Dynamic viscosity (eta) Pa-s 0.5*(zeta+eta)

Volume force, x dir. (Fx) N/m3 zeta*wy

9 of 15 5/12/2010 12:16 AM
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I cdon | j
6.4. Application Mode: PDE, General Form (g)

Application mode type: PDE, General Form

Application mode name: g

6.4.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.4.2. Variables

Dependent variables: w, w_t

Shape functions: shlag(2,'W)

Interior boundaries not active

6.4.3. Boundary Settings

IBoundaryl 114I
Type7 Dirichlet boundary condition

6.4.4. Subdomain Settings

Subdomain 1
Damping/Mass coefficient (da) 0
Source term (f) etaprime*wyy-1*zeta*(uy+2*w)+T
Conservative flux source term (ga) {{0;0))

7. Solver Settings

Solve using a script: off

Analysis type Transient
Auto select solver On
Solver Time dependent
Solution form Automatic
Symmetric auto
Adaptive mesh refinement Off
Optimization/Sensitivity Off
Plot while solving Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver

5/12/2010 12:16 AM
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Parameter Value
Pivot threshold 0.1
Memory allocation factor 0.7

7.2. Time Stepping

Parameter Value
Times range(0,0.1,10)
Relative tolerance 0.01
Absolute tolerance 0.0010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Include algebraic
Allow complex numbers Off

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling
Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
Mass constant On
Damping (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

8. Postprocessing

5/12/2010 12:16 AM
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rnw.I hml~wom3 k

9. Variables

9.1. Boundary

Name Description Unit Expression
dVblbnd.emqa Area integration 1 1

contnbution

murbnd-emqa Relative 1 murbndox..emqa
perneabilky

Jsz_emqa Surface current A/m unx * (Hy emqagdown-Hy_emaup)-uny * (Hxemqa-down-
density Hxemqagup)

unTxemqa Macwell surface Pa -0.5 * (Bxemqa-up * Hxemqaup+Byemqa-up
stress tensor x Hy_emqaup) * dnx+(dnx * Hxemqa~up+dny * Hy.emqa.up)
component * Bx emqasup

dnTxemqa Maxwell surface Pa -0.5 * (Bxmernqadown * Hxemqa.down+ By_ernqa_down *
stress tensor. x Hyemgadown) * unx+(unx * Hxemqa_down+uny
component Hyemqa_down)* Bxemgadown

unTyemqa Macwell surface Pa -0.5 * (Bxermqaup * Hx.emga.up+By"emqa up
stress tensor, y Hy_emqa_up) * dny+(dnx * Hx ernqaup+dny * Hy_ernqaup)
component * By-emqaiup

dnTyemqa Maxwell surface Pa -0.5 * (Bx_erqadown * Hxemqadown+Byeqadown*
stress tensor. y Hy.emqa_down) * uny+(unx * Hx emqa down+uny *
component Hyemgadown) * Byemga down

5/12/2010 12:16 AM12 of 15
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Surface resistive
hetinc

W/mA2| Jsz emqa * Ezjemqa

nPo emqa Power outflow W/mA2 nx emqa * Pox emga+ny emqa * Poy _emqa

FsLtzx_emqa Lorentz surface Pa -Jsz-emqa * Byemqa
force contribution,
x component I

FsLtzyemqa Lorentz surface Pa Jszemqa * Bx emqa
force contribution,
y component

normFsLtz-emqa Lorentz surface Pa sqrt(abs(FsLtzx_emqa)A2+abs(FsLtzy_emqa)A2)
force contribution,
cycle average,
norm

K-xjns Viscous force per Pa etajns * (2 * nx ns * ux+ny_ns * (uy+vx))
area, x component

T-x ns Total force per Pa -nx-ns * p+2 * nxjns * eta-ns * ux+ny_ns * eta-ns *(uy+v)

area, x component

K_y_ns Viscous force per Pa etajns * (nx-ns * (vx+uy)+2 * ny_ns * vy)
area, y component

T_y_ns Total force per Pa -nyns * p+nxns * etajns * (vx+uy)+2 * nyns * etajns *vy

area, y component

9.2. Subdomain

Name Description Unit Expression
drguess-emqa Width in radial m 0

direction default
guess

RO_guessemqa Inner radius default m 0
guess

Sxjemqa Infinite element x m x
coordinate

SOxguess-emqa Inner x coordinate m 0
default guess

Sdx guess-emqa Width in x direction m 0
default guess

Syemqa Infinite element y m y
coordinate

SOyguess-emqa Inner y coordinate m 0
default guess

Sdyguess-emqa Width in y direction m 0
default guess

curlAxjemqa Curl of magnetic T Azy
potential, x
component

curlAyemqa Curl of magnetic T -Azx
potential, y
component

dVol-emqa Volume integration 1 detJLemqa
contribution

Bx-emqa Magnetic flux T curlAxemqa
density, x
component

5/12/2010 12:16 AM
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Byemqa Magnetic flux
density, y
comDonent

curlAyemqa

Hxemqa Magnetic field, x Nm Bx-emqa/muO-emqa-Mxemqa
component

Hyemqa Magnetic field, y Nm Byemqa/muO-emqa-Myemqa
component

mu emqa Permeability H/m mu0 emqa * mur emqa
muxx-emqa Permeability, xx H/m muOemqa * murxx emqa

component

muxy.emqa Permeability, xy H/m mu0_emqa * murxyemqa
component

muyxemqa Permeability, yx H/m muOemqa * muryxemqa
component

muyy.emqa Permeability, yy H/m muOemqa * muryyemqa
component

Jpzemqa Potential current NmA2 sigma-emqa * deltaV emqa/L-emqa
density, z
component

Ezemqa Electric field, z V/m -d(Az,t)
component

Jzemqa Total current NmA2 Jpzemqa+Jiz-emqa+Jez-emqa
density, z
component

Pox-emqa Power flow, x W/mA2 -Ezemqa * Hyemqa
component

Poyemqa Power flow, y W/m^2 Ez-emqa * Hx-emqa
component

normE emqa Electric field, norm V/m abs(Ez emga)
Jizemqa Induced current A/mA2 sigmaemqa * Ez-emqa

density, z
component

Q emqa Resistive heating W/mA3 Jz emqa * (Ez emqa+detaV emqa/L emqa)
W emqa Total energy density J/mA3 Wm emqa
dWemqa Integrand for total J/mA3 dVol-emqa * Wemqa

energy

Wm-emqa Magnetic energy J/mA3 0.5 * (Hx emqa * Bx emqa+Hyemqa *
density By emqa4+Mx emqa * Bx emqa+My emqa * By emqa)

FLtzx_emqa Lorentz force N/mA3 -Jz-emqa * By.emqa
contribution, x
component

FLtzyemqa Lorentz force N/mA3 Jz-emqa * Bx emqa
contribution, y
component

normFLtz-emqa Lorentz force N/mA3 sqrt(abs(FLtzx-emqa)A2+abs(FLtzyemqa)A2)
contribution, norm

normMemqa Magnetization, norm Aim sqrt(abs(Mx emqa)A2+abs(My_ emga)A2)
normBr-emqa Remanent flux T sqrt(abs(Brx-emqa)A2+abs(Bryemqa)A2)

density, norm

normH emqa Magnetic field, norm Am sqrt(abs(Hx emga)A2+abs(Hy emga)A2)
normB-emqa Magnetic flux T sqrt(abs(BxLemqa)A2+abs(Byema)A2)

I density norm
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InormJ.emqa Total current
dmni norm

A/m^2 abs(Jzemqa)
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y, I

Evz emqa Lorentz electric V/m d(xt) * Byemqa-d(y,t) * Bx emqa
field, z component

normEv._emqa Lorentz electric V/m abs(Evzemqa)
field, norm

normPoemqa Power flow, time W/mA2 sqrt(abs(Pox-emqa)A2+abs(Poyemqa)A2)
average, norm

U ns Velocity field m/s sqrt(uA2+v^2)
V ns Vorticity 1/s vx-uy
divU ns Divergence of 1/s ux+vy

velocity field

cellRens Cell Reynolds 1 rho ns * Uns * h/etans
number

res_u_ns Equation residual N/mA3 rho-ns * (u * ux+v * uy)+px-F-x.ns-etajns * (2 *

for u uxx+uyy+vxy)
resvns Equation residual N/mA3 rho-ns (u * vx+v * vy)+py-F_y_ns-etajns * (vxx+uyx+2 *

for v Vy)

beta x ns Convective field, x kg/(mA2*s) rhons * u
component

beta_y_ns Convective field, y kg/(mA2*s) rhons * v
component I

Dm ns Mean diffusion Pa*s etans
coefficient

dans Total time scale kg/mA3 rho-ns
factor

taumjns GLS time-scale mA3*s/kg nojac(l/max(2 * rho-ns * sqrt(emetrc(uv)),48 *
eta ns/hA2))

tauc ns GLS time-scale mA2/s 0.5 * nojac(f(uA2+vA2
res_pns Equation residual kg/(mA3*s) rhojns * divLJns

for p

abswx g Igrad(w)| sqrt(wx^2+wyA2)
absga5x g sgrt(ga5x^2+ga5yA2)
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A5. COMSOL Simulations of Planar Poiseuille Flow With Zero Spin-

viscosity (rj'=0) (Section 3.2.4)

Zahn Greer Analysis witi Poisseuille flow inposed and H field only

Zahn Greer Analysis with Poisseuille flow imposed and H field only

1. Table of Contents

e Tile - Zahn Greer Analysis with Poisseuille flow imposed and H field only
a Table of Contents
a Model Properties
9 Constants
a Global Expressions
* Geometry
e Geom1
* Solver Settings
* Postprocessing
a Vadables

2. Model Properties

Property Value
Model name Zahn Greer Analysis with Poisseulle flow imposed and H field only
Author ShahdarKhushrushahi
Company MIT
Depaitment EECS
Reference
URL http://lees.mit.edulleeslold_ fies/fulltfaculty/ZahnIPublications/FermhydordynarnkcsZahn-

Greer-Ferrohydrodynamicspumping1995JMI~v149p185.pdf
Saved date May 7. 2010 11:32:38 AM
Creation date Jun 3, 2008 3:14:47 PM
COMSOL COMSOL 3.5.0.803
version

Fie name: CAUsers\ShahriarDocuments1My Dropbox\Research FIes\Software Data FIes\Comsol
Fies\WorkingZahnGreranalysis\ZahnGreer_Pouisselleflow_etaprime0.mph

Application modes and modules used in this model:

* Geom1 (2D)
o Perpendicular Induction Cunrents. Vector Potential (AC/DC Module)
o Incompressible Navier-Stokes
o PDE. General Form

2.1. Model description

5/1212010 12:19 AM
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Zahn Greer Analysis with Poisseuille Flow imposed. This analysis is a steady state analysis with etaprime=0

3. Constants

Name Expression Value Description
Omega 1.3 Real Angular frequency
f 1 Real Frequency
Hmax 0 Normalized H
Bmax 1 Normalized B
zeta 0.1125 normalized vortex viscosity

eta zeta normalized viscosity
etaprime 0 normalized spin viscosity

Xi 1 susceptibility
Tau 1 Ferrofluid time constant
mu0 1 Magnetic permeability of free space
rho 1 density of MSGW11
pmax -1

4. Global Expressions

Namel Expression Unit Description
T 0.5*real(Mx emga*conj(Bmax)-mu0*conj(My_emqa)*(Hmax+Mxemqa)) I

5. Geometry

Number of geometries: 1

5.1. Geom1

5/12/2010 12:19 AM2 of 15
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5.1.1. Point mods

5/12/2010 12:19 AM3 of 15

418

. . ............... ....

-3 -1 -23 -2 -43 -1 -03 0 as 1 13 1 2-3 3 is 4 43 S 13

Zahn Greer Analysis wilb Poisseuille flow imposed and H field "ny



Zalm reer Analysis witi Poisseuille flow iniposed and H field only

I0-$

-0.3

-13'

file:///C:/seSbuhrocumW~yV2D boxawardiho0Feas-.

.S3 . -43 -4 -13 23 -2 -ts -1 -43 0 03 1 13 2 L3 3 I3 4 43 S S3

5.1.2. Boundary mode
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5.1.3. Subdomain mods
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6. Geoml

Space dimensions: 2D

Independent vaiables: x y. z

6.1. Mesh

6.1.1. Mash Statistics

5/12/2010 12:19 AM
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Number d degrees of freedom 762
Number df mesh points 54
Number df elements 70
Triangular 70
Quadrilateral 0
Number boundary elements 38
Number d vebtex elements 4
Minimum element qualiy 0.9
Element area ratio 0.328

------------ 
ow .
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6.2. Appliation Mode: Perpendicular Induction Currents, Vector Potential (emqa)

Application mode type: Perpendicular Induction Currents, Vector Potential (AC/DC Module)

Application mode name: emqa

6.2.1. Scalar Variables

Name Mriable Value Unit Description
epsilonO epsilonOemqa 8.854187817e-12 Permittivity of vacuum
muC muOemqa I Him Permeability of vacuum

6.2.2. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Bias application mode None
Solve for Total potential
Background field Magneticvector potential
Frame Frame (ref)
Weak constraints Off

5/12/2010 12:19 AM'/ of 15
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I Constraint type I Ideal

6.2.3. Variables

Dependent variables: Az, redAz

Shape functions: shlag(2,'Az')

Interior boundaries active

6.2.4. Boundary Settings

Boundary 1,4 2 3
Type Magnetic field Magnetic field Magnetic field

Magnetic A/m {Hmax*flc2hs(t-1,0.05); (Hmax*fic2hs(t-1,0.05); {Hmax*fIc2hs(t-1,0.06);
field (HO) ((Bmax/muO)-Myemqa)*flc2hs(t- ((Bmax/muO)-Myemqa)*flc2hs(t- ((Bmax/muO)-Myemqa)

1 1,0.05)) 1,0.05)) 1,0.05))

Surface A/m 0 Hmax -Hmax
current
density
(JsOz)

6.2.5. Subdomain Settings

Subdomain 1
Relative 1 {(1+(Xi*((J*Omega*Tau+1+XI)*Hmax-(Bmax*Tau*wmu))/((Tau*w)A2+
permeability (*OmegaTau+1)(*Omega*Tau+1+Xl))))mu0_emqa,0;0,(1+(Xi*((w*Tau)*Hmax+
(mur) (*Omega*Tau+1)*(Bmax/mu0))((w*Tau)^2+(*Omega*Tau+1)(*Omega*Tau+1+XI))))

I ImuO._emqa}
magconstrel B = poH + poM

Magnetization Aim (Xi*((*Omega*Tau+1+Xi)*Hmax-Bmax*Tau*w/mu0))/({Tau*w)^2+(*Omega*Tau+1)
(M) (J*Omega*Tau+1+Xi));Xi*((w*Tau)*Hmax+(j*Omega*Tau+1)*(Bmaximu0))/((w*Tau)^ 2+

(J *Omega*Tau+1)*(*Omega*Tau+1+Xi)))

6.3. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

6.3.1. Scalar Variables

Name I Variable I Valuel Uniti Description
visc vel fact visc vel fact ns 10 1 Viscous velocity factor

6.3.2. Application Mode Properties

Property Value
Default element type Lagrange - P2 P1
Analysis type Stationary

Frame Frame (ref)

5/12/2010 12:19 AM8 of 15
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IWeak constraints IOff
Constraint tye Ideal

6.3.3. Variables

Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,Y), shlag(1,'p')

Interior boundaries not active

6.3.4. Boundary Settings

Boundary 1 2 3
Type Inlet Wall Wall
intype Pressure, no viscous Velocity Velocity

stress

outtype Pressure, no viscous Pressure, no viscous Pressure, no viscous
stress stress stress

stresstype Normal stress, General stress General stress
normal flow

velType uO U~in UOin
x-velocity (uO) mis 1 0 0
Pressure (p0) Pa pmax 0 0
Normal stress (fO) N/m2 pmax 0 0
Velocity of the tangentially m/s 0 0 Umax
moving wall (uvw)

#-velocity of moving wall (uwall) m/s 0 0 Umax

Boundary 4
Type Outlet
intype Velocity
outtype Normal stress
stresstype I General stress
velType U~in
x-velocity (uO) m/s 0
Pressure (p0) Pa 0
Normal stress (fM) N/m2 0
Velocity of the tangentially moving wall (uvw) m/s 0
#-velocity of moving wall (uwall) m/s 0

6.3.5. Subdomain Settings

Subdomain 1
Integration order (gporder) 44 2
Constraint order (cporder) 2 2 1
Density (rho) kg/m 3 0

Dynamic viscosity (eta) Pa-s 0.5*(zeta+eta)
Volume force, x dir. (Fx) N/m 3 Zeta*wy

5/12/2010 12:19 AM
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I cdon 1 |0
6.4. Application Mode: PDE, General Form (g)

Application mode type: PDE, General Form

Application mode name: g

6.4.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.4.2. Variables

Dependent variables: w, w_t

Shape functions: shlag(2,'w')

Interior boundaries not active

6.4.3. Boundary Settings

Boundaryl 1-4
Type Neumann boundary condition

6.4.4. Subdomain Settings

Subdomain 1
Damping/Mass coefficient (da) 0
Source term (f) etaprime*wyy-1*zeta*(uy+2*w)+T
Conservative flux source term (ga) ({00))

7. Solver Settings

Solve using a script: off

Analysis type Transient
Auto select solver On
Solver Time dependent
Solution form Automatic
Symmetric auto
Adaptive mesh refinement Off
Optimization/Sensitivity Off
Plot while solving Off

7.1. Direct (UWFPACK)

Solver type: Linear system solver

5/12/2010 12:19 AM
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Parameter Value
Pivot threshold 0.1
Memory allocation factor 0.7

7.2. Time Stepping

Parameter Value
Times range(0,0.1,10)
Relative tolerance 0.01
Absolute tolerance 0.0010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Include algebraic
Allow complex numbers On

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling
Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
Mass constant On
Damping (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

8. Postprocessing

5/12/2010 12:19 AM

426

11 of 15

file: ///C:/Users/Shahriar/Documents/My%/20Dropbox/Researclf/20Files..



Za~ (fee Anlyss ifl~oiacill flw xr~sedndtisd wly fll:///C/LsersShiarocummo2Wapor/RhzaRardi*2DYies-.

UW10 browwtv O

S 3 - -43 -4 -13 -3 -3 -2 -13 -1 -03 0 LS I 3 2 L3 3 33 4 43 1 3

9. Variables

91. Boundary

Name Description Unit Expresson
dVolbnd-emqa Area integration I I

contribution

murbndemqa Relative 1 murbndxxemqa
permeabiliy

Jsz-emqa Surface current Alm unx * (Hy ernqadown-Hy_emqaup)-uny * (Hxemqa-down-
density Hx emqasup)

unTx_emqa Maxwell surface Pa -0.5 * (Bxemqaoup * Hx-emqaup+By-emqamup
stress tensor. x Hymemqa up) * dnx+(dnx * Hx emqaup+dny * Hyemqagup)
component * B(emqa up

dnTxemqa Maxwell surface Pa -0.5 * (Bxernqadown * Hx_emqasdown+By emqadown
stress tensor. x Hyemqajdown) * unx+(unx * Hx emqa_down+uny*
component Hyemqadown) * Bx emqa down

unTyemqa Maxwell surface Pa -0.5 * (Bx emqajup * Hx emqasup+By emqagup
stress tensor, y Hy_emqaup) * dny+(dnx * Hx emga_up+dny * Hy_emqaup)
component * By-emqaup

dnTyemqa Maxwell surface Pa -0.5 * (Bxernqajdown * Hxemqadown+Byemqa down
stress tensor, y Hyemqadown) * uny+(unx * Hx emqa~down+uny
component Hyemqa down) * Byemqa down

5/12/2010 12:19 AM
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Surface resistive
heatina

W/mA2| Jszemqa * Ez-emqa

nPo emqa Power outflow W/mA2 nx emqa * Pox emqa+ny emqa * Poy emqa
FsLtzxemqa Lorentz surface Pa -Jsz-emqa * Byemqa

force contribution,
x component I

FsLtzy.emqa Lorentz surface Pa Jszemqa * Bx-emqa
force contribution,
y component

normFsLtz-emqa Lorentz surface Pa sqrt(abs(FsLtzx-emqa)A2+abs(FsLtzyemqa)A2)
force contribution,
cycle average,
norm

K x-ns Viscous force per Pa eta-ns * (2 * nx-ns * ux+nyns * (uy+vx))
area, x component

Tx ns Total force per Pa -nx-ns * p+2 * nxns * etans * ux+nyns * eta-ns * (uy+vx)
area, x component

K_y_ns Viscous force per Pa eta-ns * (nxns * (vx+uy)+2 * nyns * vy)
I area, y component

T_y_ns Total force per Pa -nyns * p+nxns * etans * (vx+uy)+2 * ny_ns * eta-ns * vy
I area, y component

9.2. Subdomain

Name Description Unit Expression
drguess-emqa Width in radial m 0

direction default
guess

ROguess-emqa Inner radius default m 0
guess

Sxemqa Infinite element x m x
coordinate

SOx guess-emqa Inner x coordinate m 0
default guess

Sdx guess-emqa Width in x direction m 0
default guess

Sy_emqa Infinite element y m y
coordinate

SOy_guessemqa Inner y coordinate m 0
default guess

Sdyguess-emqa Width in y direction m 0
default guess

curlAx-emqa Curl of magnetic T Azy
potential, x
component

curlAyemqa Curl of magnetic T -Azx
potential, y
component

dVol_emqa Volume integration 1 detJ-emqa
contribution

Bxemqa Magnetic flux T curlAx-emqa
density, x
component

5/12/2010 12:19 AM
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Byemqa Magnetic flux
density, y
comDonent

curlAyjemqa

Hx.emqa Magnetic field, x Nm Bxemqa/muO.emqa-Mxemqa
component

Hyemqa Magnetic field, y Nm Byemqa/muOQemqa-Myemqa
component

mu emqa Permeability H/m muO emqa * mur emqa
muxxemqa Permeability, xx H/m muQemqa * murnoemqa

component

muxyemqa Permeability, xy H/m mu0_emqa * murxyemqa
component

muyxemqa Permeability, yx H/m muO-emqa * muryx emqa
component

muyyemqa Permeability, yy H/m mu0_emqa * muryyemqa
component

Jpz._emqa Potential current NmA2 sigmaemqa * deltaV-emqa/Lemqa
density, z
component

Ez-emqa Electric field, z V/m -d(Az,t)
component

Jz-emqa Total current AImA2 Jpzemqa+Jiz-emqa+Jez_emqa
density, z
component

Pox-emqa Power flow, x W/mA2 -Ezemqa * Hyemqa
component

Poyemqa Power flow, y W/mA2 Ez.emqa * Hx-emqa
component

normE emqa Electric field, norm V/m abs(Ez emga)
Jiz-emqa Induced current AmA2 sig ma_emqa * Ez-emqa

density, z
component

Q emqa Resistive heating W/mA3 Jz emqa * (Ez emqa+deltaV emqa/L emqa)
W emqa Total energy density J/mA3 Wm emqa
dW emqa Integrand for total J/mA3 dVol-emqa * W-emqa

energy

Wm-emqa Magnetic energy J/mA3 0.5 * (Hxemqa * Bx emqa+Hyemqa *

density By emqa+Mx emqa * Bx emqa+My emqa * By emqa)
FLtzx emqa Lorentz force N/m^3 -Jz-emqa * Byemqa

contribution, x
component

FLtzy-emqa Lorentz force N/mA3 Jz-emqa * Bx emqa
contribution, y
component

normFLtz-emqa Lorentz force N/mA3 sqrt(abs(FLtzx emqa)2+abs(FLtzyemqa)2)
contribution, norm

normMemqa Magnetization, norm A/m sqrt(abs(Mxemga)A2+abs(My emqa)A2)
normBremqa Remanent flux T sqrt(abs(Brx-emqa)2+abs(Bry_emqa)A2)

density, norm

normH emqa Magnetic field, norm A/m sqrt(abs(Hx emga)A2+abs(Hy emga)A2)
normB-emqa Magnetic flux T sqrt(abs(Bxemqa)A2+abs(Byemqa)2)

densit norm I
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normJ.emqa Total current
density, norm

A/mA2 abs(Jz-emqa)

Evz-emqa Lorentz electric V/m d(xt) * Byemqa-d(yt) * Bx emqa
field, z component

normEvemqa Lorentz electric V/m abs(Evzemqa)
field, norm

normPo-emqa Power flow, time Wim^2 sqrt(abs(Pox-emqa)A2+abs(Poyemqa)^2)
average, norm

U ns Velocity field m/s sqrt(uA2+v^2)
V ns Vorticity 1/s vx-uy
divU ns Divergence of 1/s ux+vy

velocity field
cellRens Cell Reynolds 1 rho-ns * Uns * h/etans

number

res_u-ns Equation residual N/m^3 rhons * (u * ux+v * uy)+px-F-x ns-etans * (2 *
for u uxx+uyy+vxy)

res-v-ns Equation residual N/m^3 rho ns * (u * vx+v * vy)+py-F_y_ns-eta-ns (vxx+uyx+2 *
for v vyy)

beta x ns Convective field, x kg/(m^2*s) rhons * u
component

betay_ns Convective field, y kg/(m^2*s) rhons * v
component

Dm_ns Mean diffusion Pa*s eta-ns
coefficient

dans Total time scale kg/m^3 rho-ns
factor

taum-ns GLS time-scale m^3*s/kg nojac(1/max(2 * rho ns * sqrt(emetric(uv)),48 *
eta ns/h^2))

tauc ns GLS time-scale mA2/s 0.5 * nojac(if(uA2+v^2
res_p_ns Equation residual kg/(mA3*s) rhons * divU ns

for p

abswx g Igrad(w)| sqrt(wx^2+wyA2)
absqa5x q jga5x| sqrt(ga5xA2+ga5yA2)

5/12/2010 12:19 AM
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Appendix B : COMSOL Simulation of Ferrofluid

Flows in Cylindrical Geometry

B 1. COMSOL Simulation Using Surface Current Boundary Condition

Method (Chaves 143G case, ri'=6x10- 0 ) (Section 4.4.3.1)

2Dessecylideresrfceesxreit_frceincluded_eaprrnemWDCbwvsai... fi1e://:/RzesrcW.20Files/Softre%20Dala2Files/Couol%.2FiL...

COMSOL Model Report

1. Table of Contents
* Tile - COMSOL Model Report
STable of Contents
* Model Properties
* Constants
* Global Eipressions
* Geometry
* Geom1
" Solver Settings
" Postprocessing
" Variables

2. Model Properties

Pro Value
Model name
Author

Department
ReferenceURL
Saved date Feb 16,2010 1:00:57 AM
Creation date Sep 19. 2008 9:32-.1 PM
COMSOL version COMSOL 3.5.0.0$8

Fie name: D:\Documents and Setings\Administratoreddop\Comaol_TeatbedGoodFiles
\Good2DCylinderfiles
\2Dcase_cylinder~surfaoecurren_forceincuded_etaprmenonoChaves-airgap_R10.mph

Application modes and modules used in this model:

* Geomi (2D)
o Incompressible Navier-Stokes
" Diffusion
o Convection and Diffusion
o Convection and Diffusion
o Perpendicular Induction Currents. Vector Potential (ACIDC Module)
" PDE. General Form

1 of25 3/9/200 4:00PM
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o PDE, General Form

2.1. Model description

Rotation of Ferrofluid in a rotating magnetic field in an infinitely long cylinder

Using Parameters from Chaves Paper of 2008 on spinup Flow

Using parameters for EMG900_2 trying to get plot similar to Fig 4b

Using my normalization scheme outlined in VeryifyingShihabsmethod_081205.doc

Excited with surface current on boundary Includes force terms

Etaprime nonO case

3. Constants

Name Expression Value Description
Xi 1.19
omega 2*pi*f
zeta 0.00048
eta 0.0074
etaprime 1.61e-6
f 85

tau le-6
omegatau omega*tau
RO 0.027

I 2/3

4. Global Expressions

Name Expression Unit Description
FMx Mx*(Azyx-Mxx)+M_y*(Azyy-Mxy)
FMy Mx*(-Azxx-M_yx)+My(-Azxy-M_yy)
T Mjx*Hy-M y*Hx A*mol/mA4
M_eqx Xi*Hx A/m
M-eqy Xi*Hy A/m
Hx Hx emqa A/m
Hy Hyemqa A/m
phi atan2(yx) rad

5. Geometry

Number of geometries: 1

5.1. Geom1

3/9/2010 4:00 PM
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5.1.1. Point mode
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5.1.2. Boundary mode
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5.1.3. Subdomaln mode
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6. Geom1

Space dimensions: 2D

Independent variables: x. y. z

6.1. Mesh

6.1.1. Mesh Statistics

Number of degrees of freedom 199887
Number of mesh points 5593
Number of elements 11024
Triangular 11024
Quadrilateral 0
Number of boundary elements 188
Number of vertex elements 8
Minimum element quality 0.342
Element area ratio 0.003
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6.2. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

6.2.1. Scalar Variables

IName IVaiable IValue Unit Description
visc vel fact visc vel fact ns 10 1 Viscous velocity factor

6.2.2. Application Mode Properties

Property Value
Default element type Lagrange - P2 P1
Analysis type Transient
Comer smoothing Of
Frane Frame
Weak constraints Of
Constraint type Ideal

6.2.3. Variables

3/9/2010 4:00 PM
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Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,V), shlag(1,'p')

Interior boundaries not active

6.2.4. Point Settings

Point 1, 3-8 2
pnton 101

6.2.5. Boundary Settings

IBoundary 13-4,6-
Type Wall

6.2.6. Subdomain Settings

Subdomain 2
Integration order (gporder) 442
Constraint order (cporder) 2 2 1
Density (rho) kg/m 3 0

Dynamic viscosity (eta) Pa-s eta+zeta
Volume force, x dir. (F-x) N/m3 2*zeta*wy+FMX
Volume force, y dir. (F-y) N/m3 -2*zeta*wx+FMy
cdon 0

6.3. Application Mode: Diffusion (di)
Application mode type: Diffusion

Application mode name: di

6.3.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Stationary
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.3.2. Variables

Dependent variables: w

Shape functions: shlag(2,w')

Interior boundaries not active

6.3.3. Boundary Settings
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IBoundary 13-4, 6-7
Type Concentration

6.3.4. Subdomain Settings

Subdomain 2
Diffusion coefficient (D) m2/s etaprinm
Reaction rate (R) mol/(m 3. s) T+2*zeta*(vx-uy-2*w)

6.4. Application Mode: Convection and Diffusion (cd3)

Application mode type: Convection and Diffusion

Application mode name: cd3

6.4.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.4.2. Variables

Dependent variables: M_x

Shape functions: shlag(2,'Mx')

Interior boundaries not active

6.4.3. Boundary Settings

IBounday 13-4, 6-7
1Type II nsulation/Symmet~r

6.4.4. Subdomain Settings

Subdomain 2
Diffusion coefficient (D) m2

/s 0

Reaction rate (R) mol/(m3.s) -w*M_y-((M-x-M_eqx)/omegatau)

x-velocity (u) m/s u
y-velocity (v) m/s v

6.6. Application Mode: Convection and Diffusion (cd)

Application mode type: Convection and Diffusion

Application mode name: cd
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6.5.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.5.2. Variables

Dependent variables: M_y

Shape functions: shlag(2,'M_y')

Interior boundaries not active

6.5.3. Boundary Settings

IBoundary 3-4, 6-7
Type Insulation/Symmetry

6.5.4. Subdomain Settings

Subdomain 2
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m 3 .s) w*M_x-((My-Meqy)/omegatau)
x-velocity (u) m/s u
y-velocity (v) m/s v

6.6. Application Mode: Perpendicular Induction Currents, Vector Potential (emqa)

Application mode type: Perpendicular Induction Currents, Vector Potential (AC/DC Module)

Application mode name: emqa

6.6.1. Scalar Variables

Name Variable Value Unit Description
epsilonO epsilonO emqa 8.854187817e-12 F/m Permittivity of vacuum
muo muO emqa I H/m Permeability of vacuum

6.6.2. Application Mode Properties

Property Value
Default element type Lagrange - Quintic
Analysis type Transient
Bias application mode None
Solve for Total potential
Background field Magnetic vector otential

3/9/2010 4:00 PM10 of 25

440

file:///F:/Research%/20Files/Software%/20Data%/20Files/Comsol%/20Fil...



2Dcasecylinder surfacecurrentforceincluded-etaprimenonChavesai... file:///F:/Research%20Files/Software%20Data%20Files/Consol%20Fi...

Frame 
Frame (ref)

Weak constraints Off
Constraint type Ideal

6.6.3. Variables

Dependent variables: Az, redAz

Shape functions: shlag(5,Az')

Interior boundaries not active

6.6.4. Boundary Settings

Boundary 1-2,5,8
Type Surface current
Surface current density (JsOz) Alm *(3/2)*cos(t-phi)*fic2hs(t-1,0.06)

6.6.5. Subdomain Settings

Subdomain 1 12

magconstrel B= po B= poH + poM
Magnetization (M) A/m {0;O} I (M x;M4y)

6.7. Application Mode: PDE, General Form (g)

Application mode type: PDE, General Form

Application mode name: g

6.7.1. Application Mode Properties

Prop Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.7.2. Variables

Dependent variables: avgv, avgv_t

Shape functions: shlag(2,'avv')

Interior boundaries not active

6.7.3. Boundary Settings

I Boundaryl 13-4, 6-7
T pe Dirichlet boundary condition

6.7.4. Subdomain Settings
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Subdomain 2
Source term (f) v
Conservative flux source term (ga) (;O))

6.8. Application Mode: PDE, General Form (g2)

Application mode type: PDE, General Form

Application mode name: g2

6.8.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.8.2. Variables

Dependent variables: u2, u2_t

Shape functions: shlag(2,'u2')

Interior boundaries not active

6.8.3. Boundary Settings

IBoundaryl 13-4, 6-7
Type Neumann boundary condition

6.8.4. Subdomain Settings

Subdomain 2
Source term (f)
Conservative flux source term (ga) ((;)

7. Solver Settings

Solve using a script: off

Analysis type Transient
Auto select solver On
Solver Time dependent
Solution form Automatic
Symmetric auto
Adaptive mesh refinement Off
Optimization/Sensitivity Off
Plot while solving Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver
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Parameter Value
Pivot threshold 01
Memory allion facto07

7.2. Time Stepping

Parameter Value
Times range(0,0.1,10)
Relative tolerance 0.01
Absolute tolerance 0.0010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Include algebraic
Allow complex numbers Off

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling
Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
Mass constant On
Damping (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

8. Postprocessing
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9. Variables

9.1. Boundary

9.1.1. Boundary 1-2, 5, 8

Name Description Unit Expression
K x ns Viscous force Pa

per area, x
component

Tx ns Total force per Pa
area. x
component

K_y ns Viscous force Pa
per area. y
component

T_y_ns Total force per Pa
area. y
component

ndflux_w_di Normal diffusive moll(mA2's)
flux, w

ndflux_M x cd3 Normal diffusive moll(mA2*s)
_flux M x

444
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nctlux_M x cd3 Normal
convective flux,
M x

mol/(m^2*s)

ntfluxM x cd3 Normal total mol/(mA2*s)
flux M x

ndfluxM_y_cd Normal diffusive mol/(mA2*s)
I flux, M y

ncflux_M_y-cd Normal mol/(mA2*s)
convective flux,
M y

nffluxM_y_cd Normal total mol/(mA2*s)
flux, MY 

dVolbnd-emqa Area integration 1 1
contribution

murbnd-emqa Relative 1 murbndxxemqa
permeability

Jsz-emqa Surface current A/m unx * (Hyemqadown-Hyemqaup)-uny *

density (Hx emqa down-Hx emqa up)
unTx-emqa Maxwell surface Pa -0.5 * (Bxemqa up * Hx-emqaup+Byemqa_up

stress tensor, x Hyemqaeup) * dnx+(dnx* Hx-emqa.up+dny *
component Hy-emqa up) * Bx emga up

dnTx emqa Maxwell surface Pa -0.5 * (Bxemqa.down *
stress tensor, x Hx emqa_down+Byemqa_down * Hy_.emqa_down)
component unx+(unx * Hx emqa-down+uny * Hy.emqadown) *

Bx emqa down

unTyemqa Maxwell surface Pa -0.5 * (Bx emqa~up * Hx emqaup+Byemqa_up
stress tensor, y Hyemqa~up) * dny+(dnx * Hx emqaup+dny *

component Hy emqa up) * By emga up
dnTyemqa Maxwell surface Pa -0.5 * (Bx_emqa.down *

stress tensor, y Hx-emqadown+Byemqadown Hyemqadown)
component uny+(unx * Hx emqa-down+uny * Hyemqa-down)*

By emqa down

Qs-emqa Surface W/mA2 Jsz-emqa * Ez-emqa
resistive heating

nPo emqa Power outflow W/mA2 nx emqa * Pox emqa+ny emqa * Poy emqa
FsLtzx-emqa Lorentz surface Pa -Jsz-emqa * Byemqa

force
contribution, x
component

FsLtzyemqa Lorentz surface Pa Jsz-emqa * Bx-emqa
force
contribution, y
component

norm FsLtz emqa Lorentz surface Pa sqrt(abs(FsLtzxemqa)A2+abs(FsLtzyemqa)2)
force
contribution,
cycle average,
norm

9.1.2. Boundary 3-4, 6-7

Name Descri tion Unit ression
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K x ns Viscous force
per area, x
component

eta-ns * (2 * nx-ns * ux+nyns * (uy+vx))

T x-ns Total force per Pa -nxns * p+2 * nxns * eta-ns * ux+ny_ns * etans *
area, x (uy+vx)
component

K_y_ns Viscous force Pa etajns * (nx-ns * (vx+uy)+2 * nyns * vy)
per area, y
component

Ty_ns Total force per Pa -ny-ns * p+nx ns * etans* (vx+uy)+2 * nyns * eta-ns*
area, y vy
component

ndflux w di Normal diffusive mol/(m^2*s) nx-di * dflux-w-x-di+nydi * dflux_w_ydi
flux, w

ndfluxM x cd3 Normal diffusive mol/(m^2*s) nx cd3 * dflux_M x x cd3+nycd3 * dfluxM_x_y_cd3
flux, M x

ncflux M x cd3 Normal mol/(mA2*s) nx cd3 * cfluxM x x cd3+ny cd3 * cflux_M_x_y_cd3
convective flux,
M x

ntfluxM x cd3 Normal total mol/(m^2*s) nx-cd3 * tfluxM-x x cd3+nycd3 * tfluxM_x_y_cd3
flux, M x

ndfluxM_y_cd Normal diffusive mol/(mA2*s) nx-cd * dfluxM_y_xcd+ny-cd * dflux_M_y_y_cd
flux, My

ncflux_M_y_cd Normal mol/(mA2*s) nx-cd * cflux_M_y_xcd+ny-cd * cfluxMjy.y.cd
convective flux,
M y

ntflux_M_y_cd Normal total mol/(mA2*s) nx-cd * tflux_M_y_x_cd+nycd * tfluxMyycd
flux, M y

dVolbnd-emqa Area integration i 1
contribution

murbndemqa Relative 1 murbndxxemqa
permeability

Jsz-emqa Surface current A/m unx * (Hy_emqadown-Hyemqaup)-uny *
density (Hx emqa down-Hx emqa up)

unTx-emqa Maxwell surface Pa -0.5 * (Bxemqa_up * Hx emqaup+Byaemgaup*
stress tensor, x Hyemqaup) * dnx+(dnx * Hx-emqa_up+dny *
component Hy _emga up)* Bx emqa up

dnTxemqa Maxwell surface Pa -0.5 * (Bxemqadown *
stress tensor, x Hxemqadown+Byemqa~down Hyemqadown)
component unx+(unx * Hx emqadown+uny * Hyemqa_down) *

Bx emqa down
unTyemqa Maxwell surface Pa -0.5 * (Bxemgaup * Hx-emqaup+Byemqa_up

stress tensor, y Hyemqa._up) * dny+(dnx * Hx-emqa-up+dny
component Hy emqa up) * By emqa up

dnTyemqa Maxwell surface Pa -0.5 * (Bxemqa_down *
stress tensor, y Hx emqa down+Byemqa~down * Hyemqadown) *
component uny+(unx * Hx emqa down+uny * Hyemqa_down) *

By emqa down

Qs-emqa Surface W/m^2 Jsz-emqa * Ez-emqa
resistive heating

nPo emqa Power outflow W/mA2 nx emqa * Pox emga+ny emqa * Poy emqa
FsLtzx-emqa Lorentz surface Pa -Jszemqa * Byemqa

force
contribution, x
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component

FsLtzyemqa Lorentz surface Pa Jsz-emqa * Bx-emqa
force
contribution, y
component

normFsLtzemqa Lorentz surface Pa sqrt(abs(FsLtzx-ema)^2+abs(FsLtzyemqa)2)
force
contribution,
cycle average,
norm

9.2. Subdomain

9.2.1. Subdomain I

Name Description Unit Expression
U ns Velocity field m/s

Vns Vorticity 1/s
divUns Divergence of velocity 1/s

field

cellRe-ns Cell Reynolds number 1

res u ns Equation residual for u N/mA3

res v ns Equation residual for v N/mA3
beta x ns Convective field, x kg/(mA2*s)

component

beta_y_ns Convective field, y kg/(mA2*s)
component

Dm ns Mean diffusion coefficient Pa*s
da ns Total time scale factor kg/mA3
taumns GLS time-scale m^3*s/kg
tauc ns GLS time-scale mA2/s

res_p_ns Equation residual for p kg/(mA3*s)

grad w x di Concentration gradient, mol/mA4
w, x component

dflux w x di Diffusive flux, w, x mol/(m^2*s)
component

gradw_yjdi Concentration gradient, mol/mA4
w, y component

dflux_w_ydi Diffusive flux, w, y mol/(mA2*s)
component

grad_w_di Concentration gradient, mol/mA4
w

dflux-w di Diffusive flux, w mol/(mA2*s)
grad_M x x cd3 Concentration gradient, mol/mA4

Mx, x component

dflux_M x x cd3 Diffusive flux, Mx, x mol/(mA2*s)
component

cflux_M x x cd3 Convective flux, Mx, x mol/(mA2*s)
component

tflux_M x x cd3 Total flux, Mx, x mol/(mA2*s)
component

grad_M_x_y_cd3 Concentration gradient, moVmA4
M_x, y component
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dfluxM-xiy_cd3 Diffusive flux, Mx, y
comoonent

mol/(mA2*s)

cflux_M_x.y_cd3 Convective flux, Mx, y mol/(mA2*s)
component

tfluxM_x_y_cd3 Total flux, M-x, y mol/(mA2*s)
component

betaM x x cd3 Convective field, Mx, x m/s
component

beta_M_xicd3 Convective field, M x, y m/s
Component

gradM-x.cd3 Concentration gradient, mol/mA4
M x

dflux M x cd3 Diffusive flux, M x mol/(mA2*s)

cflux M x cd3 Convective flux, M x mol/(mA2*s)

tflux M x cd3 Total flux, M x mol/(mA2*s)
celIPe M x cd3 Cell Peclet number, M x I
Dm M x cd3 Mean diffusion mA2/s

coefficient, M x
res M x cd3 Equation residual for M X mol/(mA3*s)
ressc_M x-cd3 Shock capturing residual mol/(mA3*s)

for M x

daM x cd3 Total time scale factor, 1
M x

grad_Myxcd Concentration gradient, mol/mA4
M-y, x component

dflux_M_y_xcd Diffusive flux, M_y, x mol/(mA2*s)
component

cfluxM_yxcd Convective flux, M_y, x mol/(mA2*s)
component

tflux_M_y_xcd Total flux, M_y, x mol/(mA2*s)
component

grad_M_y_y_cd Concentration gradient, mol/mA4
Miy, y component

dfluxM.yy_cd Diffusive flux, Miy, y mol/(mA2*s)
component

cfluxMyy_cd Convective flux, M_y, y mol/(mA2*s)
component

tfluxM y_y_cd Total flux, M_y, y mol/(mA2*s)
component

betaMyxcd Convective field, M_y, x m/s
component

betaMyy_.cd Convective field, M_y, y m/s
component

gradMiy.cd Concentration gradient, mol/mA4
MY

dflux M y cd Diffusive flux, MiY mol/(mA2*s)
cflux M y cd Convective flux, Miy mol/(mA2*s)

tflux M, ycd Total flux, M-y mol/(mA2*s)
cellPe M, ycd Cell Peclet number, M y I
Dm_M_ycd Mean diffusion mA2/s

coefficient, M-, y I
res_M_y_cd Equation residual for mol/(mA3*s)

IM yII
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Ires-sc_M_ycd Shock capturing residual
I IforM v

mol/(mA3*s)

daM-y-cd Total time scale factor, 1
M y

drguess-emqa Width in radial direction m 0
default guess

ROguess-emqa Inner radius default m 0
guess

Sxemqa Infinite element x m x
coordinate

SOxguess-emqa Inner x coordinate default m 0
quess

Sdxjuess-emqa Width in x direction m 0
default guess

Syemqa Infinite element y m y
coordinate

SOy_guessemqa Inner y coordinate m 0
default guess

Sdy-guess-emqa Width in y direction m 0
default ,uess

curAxemqa Curi of magnetic T Azy
potential, x component

curlAyemqa Curi of magnetic T -Azx
potential, y component

dVol-emqa Volume integration I detJ-emqa
contribution

Bxemqa Magnetic flux density, x T curlAx-emqa
component

Byemqa Magnetic flux density, y T curlAyemqa
component

Hx-emqa Magnetic field, x A/m Bx_emqa/(mur-emqa * muO-emqa)
component

Hyemqa Magnetic field, y A/m Byemqa/(muremqa * mu0_emqa)
component

mu emqa Permeability H/m mu0 emga * mur emqa
muxx-emqa Permeability, xx H/m muOemqa * murxx emqa

component

muxyemqa Permeability, xy H/m muOemqa * murxyemqa
component

muyxemqa Permeability, yx H/m mu0_emqa * muryx emqa
component

muyyemqa Permeability, yy H/m muOQemqa * muryyemqa
component

Jpzemqa Potential current density, A/m^2 sigma emqa * deltaV-emqa/L-emqa
z component

Ez-emqa Electric field, z V/m -d(Az,t)
component

Jz-emqa Total current density, z A/mA2 Jpzemqa+Jiz-emqa+Jez-emqa
component

Pox emqa Power flow, x component W/mA2 -Ez emqa * Hy emqa
Poy emqa Power flow, y component W/m^2 Ez emqa * Hx emga
normE emqa Electric field, norm V/m abs(Ez emaa)
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Induced current density, A/MA2
z component I

sigma-emqa * Ez-emqa

Q emqa Resistive heating W/mA3 Jz emqa * (Ez emqa+deltaV emqa/L emqa)
W emqa Total energy density J/mA3 Wm emqa
dW emqa Integrand for total energy J/mA3 dVol emqa * W emqa
Wm-emqa Magnetic energy density J/mA3 0.5 * (Hx emqa * Bx-emqa+Hyemqa

By emqa)
FLtzx-emqa Lorentz force N/mA3 -Jz-emqa * Byemqa

contribution, x
component

FLtzyemqa Lorentz force NImA3 Jz-emqa * Bx-emqa
contribution, y
component

normFLtz_emqa Lorentz force N/mA3 sqrt(abs(FLtzx-emqa)A2+abs(FLtzyemqa)A2)
contribution, norm

normM emqa Magnetization, norm Anm sqrt(abs(Mx emga)A2+abs(Myemga)A2)
normBr-emqa Remanent flux density, T sqrt(abs(Brx-emqa)A2+abs(Bryjemqa)2)

norm

normH emqa Magnetic field, norm A/m sqrt(abs(Hx emqa)A2+abs(Hy emqa)A2)
normB-emqa Magnetic flux density, T sqrt(abs(Bxemqa)A2+abs(Byemqa)A2)

norm

normJ-emqa Total current density, AmA2 abs(Jz-emqa)
norm

Evz-emqa Lorentz electric field, z V/m d(x,t) * Byemqa-d(y,t) * Bx-emqa
component

normEvemqa Lorentz electric field, V/m abs(Evz-emqa)
norm

normPo-emqa Power flow, time W/mA2 sqrt(abs(Pox-emqa)A2+abs(Poyema)2)
average, norm

absavgvx g |grad(avgv)|

absga8xg |ga8x_

absu2x g2 |grad(u2)|

absga9x g2 |ga9x_

9.2.2. Subdomain 2

Name Description Unit Expression
U ns Velocity field m/s sqrt(uA2+v^2)
V ns Vorticity 1/s vx-uy
divUns Divergence of 1/s ux+vy

velocity field
cellRens Cell Reynolds I rhons * Uns * h/etans

number

res_u_ns Equation N/mA3 rho-ns * (ut+u * ux+v * uy)+px-F-x-ns-eta ns * (2 *
residual for u uxx+uyy+vxy)

res vns Equation N/mA3 rho-ns * (vt+u * vx+v * vy)+py-F_y_ns-eta ns * (vxx+uyx+2
residual for v * vyy)

beta x ns Convective kg/(mA2*s) rhons * u
field, x
component

beta_y_ns Convective kg/(mA2*s) rho.ns * v
field, y

3/9/2010 4:00 PM20 of25

450

Jiz-emqa

file:///F:/Research%/20Files/Software%/20Data%/20Files/Comsolo20Fil...



2Dcasecylinder-surfacecirrentforceincluded-etaprimenon_Chavesai... file:///F:/Research%20Files/Software%20Data%/o20Files/Comsolo2OFil...

component

Dmns Mean Pa*s etans
diffusion
coefficient

da ns Total time kg/mA3 rhons
scale factor

taumns GLS mA3*s/kg nojac(l/max(2 * rho ns * sqrt(emetric(u,v)),48*
time-scale eta ns/hA2))

taucns GLS mA2/s 0.5 * nojac(if(uA2+v^2
time-scale

res_p_ns Equation kg/(mA3*s) rhons * divUns
residual for p

grad w x di Concentration mol/mA4 wx
gradient, w, x
component

dflux-w-x-di Diffusive flux, mol/(mA2*s) -Dxx_w_di * wx-Dxyw_di wy
w, x
component

gradw_ydi Concentration moVmA4 wy
gradient, w, y
component

dfluxw_y_di Diffusive flux, moV(mA2*s) -Dyxwdi * wx-Dyywdi * wy
w, y
component

grad_w_di Concentration mol/mA4 sqrt(grad-w-x-di2+gradw_y_di2)
gradient, w

dflux_w_di Diffusive flux, mol/(mA2*s) sqrt(dfluxwx.diA2+dfluxw_yjdiA2)
w

grad_M x x cd3 Concentration mol/mA4 M_xx
gradient, Mx,
x component

dflux_M x x cd3 Diffusive flux, mol/(mA2*s) -Dxx_Mx cd3 * M xx-Dxy_M_xcd3* M.xy
Mx, x
component

cflux_M x-x-cd3 Convective moV(mA2*s) M_x * u_M x cd3
flux, Mx, x
component

tflux_M x x cd3 Total flux, moV(mA2*s) dflux_M-x-x-cd3+cfluxM-x-x-cd3
M-x, x
component

grad_M_x_y_cd3 Concentration mol/mA4 Mxy
gradient, Mx,
y component

dfluxM_x_y_cd3 Diffusive flux, mol/(mA2*s) -DyxMx_cd3 * M-xx-DyyMKxLcd3 * My
M-x, y
component

cflux_M_x_y_cd3 Convective mol/(mA2*s) M_x * v_M x cd3
flux, M x, y
component

tflux_M_x_y_cd3 Total flux, mol/(mA2*s) dflux_M_x_y_cd3+cfluxMx_y_cd3
Mx, y
component

beta_M_x_x_cd3 Convective m/s u_M-x-cd3
field, Mx, x
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component
beta_M_x_y_cd3 Convective m/s v_M x cd3

field, Mx, y
component

gradM-x-cd3 Concentration moVm^4 sqrt(grad_M-x-x-cd3^2+grad_M_x_ycd3A2)
gradient, M x

dfluxM x cd3 Diffusive flux, mol/(mA2*s) sqrt(dfluxMx x cd3A2+dfux_M_xjcd3A2)
M x

cflux_M x cd3 Convective mol/(mA2*s) sqrt(cfluxM x x cd3A2+cflux_M_x..y_cd3A2)
flux, M x

tflux M x cd3 Total flux, M X mol/(mA2*s) sqrt(tflux M x x cd3A2+tflux M x y cd3A2)
cellPeM x cd3 Cell Peclet 1 h *

number, M x sqrt(beta M x x cd3A2+beta M x y cd3A2)/Dm M x cd3
DmM x cd3 Mean mA2/s (DxxM-x-cd3 * u_M x cd3^A2+DxyM-x-cd3 * u_M x cd3

diffusion * v_M x cd3+DyxM-xcd3 * v_M x cd3
coefficient, u_M x cd3+DyyM x-cd3 *
M x v M x cd3A2)/(u M x cd3A2+v M x cd3A2+eps)

resM x cd3 Equation mol/(mA3*s) -DxxM-x-cd3 * Mxxx-Dxy_Mx cd3 * M_xxy+M xx *
residual for u_M x cd3-DyxM_xcd3 * Mxyx-Dyy_M_xcd3 *
M x Mxyy+Mxy * v M x cd3-R M x cd3

res scM x cd3 Shock mol/(mA3*s) M-xx * uM-x-cd3+Mxy * v_M x cd3-RM x cd3
capturing
residual for
M x

daM x cd3 Total time 1 DtsM x cd3
scale factor,
M X

grad_M_y_xcd Concentration mol/mA4 Mjyx
gradient, M_y,
x component

dflux_M_y_x_cd Diffusive flux, mol/(mA2*s) -Dxx_M_y_cd * M_yx-Dxy_M_y_cd * Myy
M-y, x
component

cfluxM_y_xcd Convective mol/(mA2*s) M_y * u_M_y_cd
flux, Mjy, x
component

tflux_M_y_xcd Total flux, mol/(mA2*s) dflux:_M_yjxcd+cflux_M_yjxcd
M-y, x
component

gradMy ycd Concentration mol/mA4 M-yy
gradient, M_y,
y component

dfluxMy_cd Diffusive flux, mol/(mA2*s) -Dyx_M_y_cd * Myx-DyyM-ycd * Myy
M-y, y
component

cflux_M_y_y_cd Convective mol/(mA2*s) M_y * v_M_y_cd
flux, Mjy, y
component

tflux_M_yy.cd Total flux, mol/(mA2*s) dflux_M_y_y_cd+cfluxM_y_ycd
Mjy, y
component

betaMy-x-cd Convective m/s uMjycd
field, M_y, x

I component I I
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beta_M_yJ_cd Convective
field, M_y, y
comne,nt

v_M_y_cd

grad_M_y_cd Concentration mol/mA4 sqrt(grad_M_y_x_cd^2+grad_M_yJ_cdA2)
gradient, MY

dfluxM-ycd Diffusive flux, moV(mA2*s) sqrt(dflux_Mjx_cdA2+dflux_M_y_ycdA2)
M Y

cflux_M_y_cd Convective mol/(mA2*s) sqrt(dlux_M_y_x_cd^2+cflux_M_y_y_cd^2)
flux, M v

tflux M y cd Total flux, M y mol/(mA2*s) sqrt(tflux M y x cd^2+tflux M y y cdA2)
cellPeM_y cd Cell Peclet I h *

number, M y sqrt(beta M y x cdA2+beta My y cd^2)/Dm M y cd
Dm_M_y_cd Mean mA2/s (Dxx)_Myd * u_M_y_cd2+Dxy_M_y_d * u_M_y_cd *

diffusion v_M_y_cd+Dyx_M_y_cd v_M_y_jcd*
coefficient, u_M_y_d+Dyy_M_y_cd *

M y v M y cdA2)/(u M y cd^2+v M y cdA2+eps)

resMjy-cd Equation mol/(mA3*s) -Dxx_M_y_cd * Mxx-DxyMySd * Myxy+Myx
residual for u_M_y_cd-Dyx_M_y_cd * Myyx-Dyy_M_y_d
MY yM yyy+M yy * v M y cd-R M y cd

ressc_M_y_cd Shock mol/(mA3*s) M_yx * u_M_y_cd+M_yy * v_M_y_cd-R_M_y_cd
capturing
residual for
M y

da_M_y_cd Total time 1 Dts_M_y_cd
scale factor,
M Y

drguess-emqa Width in radial m 0
direction
default guess

RO_guess-emqa Inner radius m 0
default guess

Sxemqa Infinite m x
element x
coordinate

SOxguess-emqa Inner x m 0
coordinate
default guess

Sdxguess.emqa Width in x m 0
direction
default guess

Syemqa Infinite m y
element y
coordinate

SOy_guess-emqa Inner y m 0
coordinate
default guess

Sdyguess-emqa Width in y m 0
direction
default guess

curiAx-emqa Curl of T Azy
magnetic
potential, x
component
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curlAyemqa Cud of
magnetic
potential, y
comnonent

-Azx

dVol-emqa Volume I detJemqa
integration
contribution

Bxemqa Magnetic flux T curlAx-emqa
density, x
component

Byemqa Magnetic flux T curlAyemqa
density, y
component

Hx-emqa Magnetic field, A/m Bx-emqa/muOemqa-Mx-emqa
x component

Hyemqa Magnetic field, A/m Byemqa/muOemqa-Myemqa
y component

mu emqa Permeability H/m muC emqa * mur emqa
muxx-emqa Permeability, H/m muOemqa * murxx-emqa

xx component
muxyemqa Permeability, H/m muOemqa * murxyemqa

xy component

muyxemqa Permeability, H/m muOemqa * muryxemqa
yx component

muyyemqa Permeability, H/m muOemqa * muryyemqa
yy component

Jpzemqa Potential A/mA2 sigma-emqa* deltaV-emqa/L-emqa
current
density, z
component

Ez-emqa Electric field, V/m -d(Az,t)
z component

Jz-emqa Total current A/mA2 Jpzemqa+Jiz-emqa+Jez-emqa
density, z
component

Pox-emqa Power flow, x W/mA2 -Ez-emqa * Hyemqa
component

Poyemqa Power flow, y W/mA2 Ez-emqa Hx-emqa
component

normEemqa Electric field, V/m abs(Ez-emqa)
norm

Jiz-emqa Induced A/mA2 sigma emqa * Ez-emqa
current
density, z
component

Q-emqa Resistive W/mA3 Jz-emqa * (Ez-emqa+deltaV emqa/Lemqa)
heating

W_emqa Total energy J/mA3 Wm-emqa
density

dWemqa Integrand for Pa dVol-emqa * W-emqa
total energy

Wm-emqa Magnetic J/mA3 0.5 * (Hx_emqa * Bx-emqa+Hyemqa *
energy Byemqa+Mx-emqa * Bx-emqa+Myemqa * Byemqa)
density
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Lorentz force I N/m3 -Jzemqa * Byemqa
contribution, x
component

FLtzyemqa Lorentz force N/m^3 Jz-emqa * Bx-emqa
contribution, y
component

normFLtz.emqa Lorentz force N/m^3 sqrt(abs(FLtzx-emqa)^2+abs(FLtzy_emqa)^2)
contribution,
norm

normM-emqa Magnetization, A/m sqrt(abs(Mxemqa)A2+abs(Myemqa)A2)
norm

normBr-emqa Remanent flux T sqrt(abs(Brxemqa)A2+abs(Bryemqa)A2)
density, norm

normH-emqa Magnetic field, A/m sqrt(abs(Hxemqa)^2+abs(Hyemqa)2)
norm

normB-emqa Magnetic flux T sqrt(abs(Bxemqa)^2+abs(Byemqa)^2)
density, norm

normJ-emqa Total current A/mA2 abs(Jz-emqa)
density, norm

Evzemqa Lorentz V/m d(xt) * Byemqa-d(y,t) * Bxemqa
electric field, z
component

normEv.emqa Lorentz V/m abs(Evz.emqa)
electric field,
norm

normPo-emqa Power flow, W/mA2 sqrt(abs(Pox-emqa)^2+abs(Poy_emqa)A2)
time average,
norm

absavqvxg Igrad(avgv)| sqrt(avqvx^2+avqvy^2)

absga8x g |qa8x|_I sqrt(ga8x^c2+ga8yA2)

absu2x g2 |grad(u2)| sqrt(u2x^2+u2y^2)
absqa9x q2 Igagx sqrt(ga9x^2+ga9yA2)
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B2. COMSOL Simulation Using Scalar Potential Boundary Condition

Method (Chaves 143G case, i'=6x 1040) (Section 4.4.3.2)

2D case cylinder willh Chves's paramters file II ass e~c~ 2O~iles(Softw n"/ ODsaa OFiles/CorimolY20FiL..

2D case cylinder with Chaves's parameters

1. Table of Contents

a Title -2D case cylinder wih Chaves's parameters
* Table of Contents
* Model Properties
* Constants
a Global Expressions
* Geometry
* Geom1
a Solver Settings
* Postprocessing
* Vaiables

2. Model Properties

Property Value
Model name 2D case cylinder with Chaves's parameters
Author Shahdiar Khushrushahi
Company MIT
Department EECS
Reference

URL

Saved date Feb 18, 2010 1:21:37 PM
Creation date Sep 19. 2008 9:3218 PM
COMSOL version COMSOL 3.5.0.603

Fie name: D-Documents and SefingsXAdministratoADesktop\ComsolTestbed\GoodFiles
\Good2DCyindedies2Dcylinder finlaysonsmethod-etaprime6em10_demagfieldsChaves_143G.mph

Application modes and modules used in this model:

* Geom1 (2D)
" Incompressible Navier-Stokes
a Diffusion
o Convection and Diffusion
o Convection and Diffusion
" PDE. General Form
" PDE. General Form
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2.1. Model description

Rotation of Ferrofluid in a rotating magnetic field in an infinitely long cylinder

Using Parameters from Chaves Paper of 2008 on spinup Flow

Using parameters for EMG900_2 trying to get plot similar to Fig 5b

The values used in this model correspond to normalizing to 14.3mT values from his paper. The normalized
values can be calculated from CalculatingDifferentParameters.xls under EMG900

Using my normalization scheme outlined in VeryifyingShihabsmethod_081205.doc

This method uses scalar potential similar to Finlaysons Comsol paper

Etaprime nonO case

Etaprime of 6e-10 quoted in Chaves's paper is used

3. Constants

Name Expression Value Description
Xi 1.19
omega 2*pi*f
zeta 0.00048

eta 0.0074

etaprime 1.61e-6
f 85

tau 1e-6

omegatau omega*tau

RO 0.027

I 2/3

HO 1

4. Global Expressions

Name Expression Un Description
FMx M-x*(-psixx)+MJy*(-psixy) \
FMy Mx*(-psiyx)+My*(-psiyy)
T M-x*Hy-M_y*Hx
M_eqx (Xi*Hx)
M_eqy (Xi*Hy)

Hx -psix-Mx/2

Hy -psiy-M_y/2

phi atan2(y,x) rad

5. Geometry

Number of geometries: 1

5.1. Geoml
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-L5 -1 4M 0 0.5 I .5

5.1.1. Point mode
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-LS -1 -0 0 0.5 1 LS

5.1.2. Boundary mode
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-15 4 -05 0 0.5 15

5.1.3. Subdomain mode
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-1 -05 0 0.5 1 L5

6. Geomi

Space dimensions: 2D

Independent variables: x. y. z

6.1. Mash

6.1.1. Mesh Statistics

Number of degrees of freedom 68110
Number of mesh points 2319
Number of elements 4476
Triangular 4476
Quadrilateral 0
Number of boundary elements 160
Number of vektex elements 4
Miimum element u 0 0.901
Element area ratio 0.254
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-as
-1as- . -05 .02Auk 0 5 -'

6.2i.Appliciin Mods: Incompressible Naviet-Stokes (fis)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

6.2.1. Scalar Variables

'Name IVariable jValejUnitj Description
Iviso Vel fact visp vel fact nsll 1 1 Viscous velocity facotorl

6.2.2. Application Mode Properties

Proper-tyL Value

Default element type Lagrange - P2 P1
Analysis type Transient
Comer smoothiing Off
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal
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6.2.3. Variables

Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,V), shlag(1,'p')

Interior boundaries not active

6.2.4. Point Settings

Point 2-41
pnton 0

6.2.5. Boundary Settings

Boundaryl1-4
Type Wall

6.2.6. Subdomain Settings

Subdomain 1
Integration order (gporder) 44 2
Constraint order (cporder) 2 2 1
Density (rho) kg/m3 0

Dynamic viscosity (eta) Pa-s eta+zeta
Volume force, x dir. (F-x) N/m3 2*zetawy+FMx

Volume force, y dir. (F-y) N/m3 -2*zeta*wx+FMy

cdon 0

6.3. Application Mode: Diffusion (di)

Application mode type: Diffusion

Application mode name: di

6.3.1. Application Mode Properties

Property Value
Default element type L ran e - Quadratic
Analysis type Stationary
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.3.2. Variables

Dependent variables: w

Shape functions: shlag(2,W)

Interior boundaries not active
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6.3.3. Boundary Settings

lBoundary 11-4
Type Concentration

6.3.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2

/s etaprire

Reaction rate (R) mol/(m 3-s) T+2zeta*(vx-uy-2*w)

6.4. Application Mode: Convection and Diffusion (cd3)

Application mode type: Convection and Diffusion

Application mode name: cd3

6.4.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.4.2. Variables

Dependent variables: M_x

Shape functions: shlag(2,'Mx)

Interior boundaries not active

6.4.3. Boundary Settings

B1oundary 11-4
Type Insulation/Symmetry

6.4.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2/s 0

Reaction rate (R) mol/(m3.s) -w*M_y-((M_x-M_eqx)/omegatau)

x-velocity (u) m/s u
y-velocity (v) m/s v

6.5. Application Mode: Convection and Diffusion (cd)
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Application mode type: Convection and Diffusion

Application mode name: cd

6.5.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.5.2. Variables

Dependent variables: M_y

Shape functions: shlag(2,'M_y)

Interior boundaries not active

6.5.3. Boundary Settings

Boundary 1-4
IType IIInsulation/Symmetry

6.5.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3.s) *M_x-((M_y-M_eqy)/omegatau)

x-velocity (u) m/s u
y-velocity (v) mIs v

6.6. Application Mode: PDE, General Form (g)

Application mode type: PDE, General Form

Application mode name: g

6.6.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.6.2. Variables

3/9/2010 4:15 PM10 of 17

465

2D case cylinder with Chaves's parameters



file:///F:/Research%2OFiles/Software%2Data%2OFiles/Comsol%2Fi..

Dependent variables: psi, psi-t

Shape functions: shlag(2,'psi')

Interior boundaries not active

6.6.3. Boundary Settings

EBounda! 1-4

Type Dirichlet boundary condition
(r) -pal+HO*(x*cos(t)+y*sin(t))

6.6.4. Subdomain Settings

[Subdomain1Damping/Mass coefficient (da) o
Source term (f) -M xx-Myy

6.7. Application Mode: PDE, General Form (g2)

Application mode type: PDE, General Form

Application mode name: g2

6.7.1. Application Mode Properties

Prop Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.7.2. Variables

Dependent variables: u2, u2_t

Shape functions: shlag(2,'u2')

Interior boundaries not active

6.7.3. Boundary Settings

IBoundaryj 11-4
Type Dirichlet boundary condition

6.7.4. Subdomain Settings

Subdomain
Source term (f) v
Conservative flux source term (ga) ;D))

7. Solver Settings
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Solve using a script: off

Analysis type Transient
Auto select solver On
Solver Time dependent
Solution form Automatic
Symmetric auto
Adaptive mesh refinement Off
Optimization/Sensitivity Off
Plot while solving Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver

Parameter Value
Pivot threshold .1
Memory allocation factor 0.7

7.2. Time Stepping

Parameter Value
Times range(0,0.1,10)
Relative tolerance 0.0001
Absolute tolerance 0.000010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Include algebraic
Allow complex numbers Off

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On

Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling

Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
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Mass const a nt On
Dampi mass constant On
Jacobian constant On
Constraint Jacobian constant On

8. Postprocessing

TOmIO h~ vanayfm S=ane: goes

-15 -1 -05 0 0.5 I L5

9. Variables

9.1. Boundary

Name Description Unit Expression
K x ne Vcous force per ama. x Pa eta-ns * (2 *nx _ns * ux+ny_ns * (uy+vx)

component

T x_ns Total fore per area, x Pa -nx ns * p+2 *nxns * etans * ux+ny_ns
component eta_ ns * (uy+vx)

K_y_ns Viscous force per area. y Pa eta-ns * (nxns * (vx+uy)+2 * ny ns * vy)
component

T y_ns Total force per area. y Pa -nyns * p+nx ns * atans * (vx+uy)+2 *
component ny ns * eta ns * vy

ndflux w di Normal difusive flux, w mol/(m^2*) nx di * dflux w x di+ny di dflux w y di
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ndfluxM x cd3 Normal diffusive flux, Mx mol/(mA2*s) nx-cd3 * dflux_M_x-x-cd3+nycd3 *

dflux M x y cd3

ncfluxM x-cd3 Normal convective flux, mol/(mA2*s) nx cd3 * cflux_M_x-x-cd3+nycd3 *

M x cflux M x y cd3

ntfluxM x cd3 Normal total flux, Mx mol/(mA2*s) nx-cd3 * tflux_M_x.x-cd3+ny._cd3 *

tflux M xiy cd3
ndflux_M_ycd Normal diffusive flux, M-y mol/(mA2*s) nx-cd * dflux_M_y_xcd+nycd *

dflux M yy cd

ncflux_M_y_cd Normal convective flux, mol/(mA2*s) nx-cd * dluxM_y_x_cd+nycd *
M y cflux M y y cd

ntfluxMjcd Normal total flux, M_y mol/(mA2*s) nx-cd * tflux_M_y_x_cd+ny_cd
tflux M y y cd

9.2. Subdomain

Name Description Unit Expression
U ns Velocity field m/s sqrt(u^2+v^~2)
V-ns Vorticity 1/s vx-uy
divUns Divergence of 1/s ux+vy

velocity field

cellRens Cell Reynolds 1 rhons * Uns * h/etans
number

res_u_ns Equation N/m^3 rho-ns * (ut+u * ux+v * uy)+px-F x ns-etans * (2 *
residual for u uxx+uyy+vxy)

res v ns Equation N/mA3 rho-ns * (vt+u * vx+v vy)+py-F_y_ns-etans (vxx+uyx+2
residual for v * vyy)

beta x ns Convective kg/(mA2*s) rhons * u
field, x
component

beta_y_ns Convective kg/(mA2*s) rho-ns * v
field, y
component

Dm-ns Mean Pa*s eta-ns
diffusion
coefficient

dans Total time kg/mA3 rhons
scale factor

taumns GLS mA3*s/kg nojac(1/max(2 * rho-ns * sqrt(emetrc(u,v)),48 *

time-scale eta ns/hA2))
taucns GLS mA2/s 0.5 * nojac(if(uA2+vA2

time-scale
res-p_ns Equation kg/(m^3*s) rhons * divJns

residual for p

grad w x di Concentration mol/mA4 wx
gradient, w, x
component

dflux w x di Diffusive flux, mol/(mA2*s) -Dxx_w_di * wx-Dxyw_di wy
w, x
component

gradw_y_di Concentration moVmA4 wy
gradient, w, y
component I I
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dfluxw_y-di Diffusive flux,
w, y
component

mol/(mA2*s)| -Dyx_w_di * wx-Dyywdi * wy

grad w-di Concentration mol/m^4 sqrt(grad w-x-diA2+gradw_yjdi2)
gradient, w

dflux_w_di Diffusive flux, moV(mA2*s) sqrt(dflux w x diA2+dfluxw_yjdi2)
w

gradM-x-x-cd3 Concentration mol/mA4 M_xx
gradient,
M-x, x
component

dflux_M x x cd3 Diffusive flux, moV(mA2*s) -DxxMPxcd3 * M-xx-DxyMxcd3 * Mxy
M-x, x
component

cfluxM x x cd3 Convective moV(mA2*s) Mx * uM-x_cd3
flux, M_x, x
component

tfluxM x x cd3 Total flux, mol/(mA2*s) dfluxM-x-x_cd3+cflux_M x x cd3
M-x, x
component

grad_M_x_y_cd3 Concentration mol/m^4 Mxy
gradient,
M-x, y
component

dfluxM-xjcd3 Diffusive flux, mol/(mA2*s) -DyxM-x-cd3 * Mxx-DyyM-xLcd3 * M.xy
Mx, y
component

cflux_M_x_y_cd3 Convective mol/(mA2*s) Mx * vM-x_cd3
flux, M-x, y
component

tfluxM_x_y_cd3 Total flux, moV(mA2*s) dflux_M_x_y_cd3+cflux_M_x_y_cd3
M-x, y
component

betaM x x cd3 Convective m/s u_M x cd3
field, Mx, x
component

beta_M_x_y_cd3 Convective m/s v_M x cd3
field, Mx, y
component

gradM-x-cd3 Concentration mol/mA4 sqrt(grad_M-x-xcd3A2+grad_M_x_y_cd32)
gradient, M x

dflux_M x cd3 Diffusive flux, mol/(mA2*s) sqrt(dfluxM x x cd3A2+dflux_Mx_y_cd32)
M x

cfluxM x cd3 Convective mol/(mA2*s) sqrt(cfluxM-x x cd3^2+cflux_M_x_y_cd3A2)
flux, M x

tflux_M x cd3 Total flux, mol/(mA2*s) sqrt(tflux_M_x_x_cd3A2+flux_M_x_y_cd32)
M x

cellPeM x cd3 Cell Peclet 1 h *
number, M x sqrt(beta M x x cd3A2+beta M x y cd3A2)/Dm M x cd3

DmM x cd3 Mean mA2/s (DxxM-x-cd3 * u_M_xcd3A2+DxyMx-cd3 * u_M x cd3
diffusion * v_M x cd3+DyxMxLcd3 * v_M x cd3 *
coefficient, u_M_xcd3+Dyy_M-xcd3 *

I M x v M x cd3A2)/(u M x cd3A2+v M x cd3A2+eps)
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resM x cd3 Equation
residual for
M x

mol/(mA3*s) -Dxx_M x cd3 * Mxxx-DxyM.xycd3 * M xxy+M_xx *
uM-x-cd3-Dyx_M x cd3 * M_xyx-Dyy_M_xcd3 *

M xvv+M xy * v M x cd3-R M x cd3
resscM x cd3 Shock mol/(mA3*s) M_xx * u_M_x_cd3+M xy vM x cd3-RM x cd3

capturing
residual for
M x

daM-x-cd3 Total time 1 DtsM-x-cd3
scale factor,
M x

gradM_yxcd Concentration moVmA4 M-yx
gradient,
Mjy, x
component

dfluxM_y_xcd Diffusive flux, mol/(mA2*s) -Dxx_M_y_cd * M_yx-Dxy_M_yjcd * Myy
Mj, x
component

cflux_M_y_x_cd Convective mol/(mA2*s) My * u_Mycd
flux, Mjy, x
component

tflux_M_yjxcd Total flux, mol/(mA2*s) dflux_M_y.xcd+cfluxM_y_x_cd
Mjy, x
component

gradM_y_cd Concentration mol/m^4 Myy
gradient,
M-y, y
component

dfluxM_y_y_cd Diffusive flux, mol/(mA2*s) -DyxM_y_jcd * M_yx-Dyy_M_y_cd * M-yy
Mjy, y
component

cflux_M_y_y_cd Convective mol/(mA2*s) M_y * v_M_y_cd
flux, Mjy, y
component

fflux_M_y_y_cd Total flux, moV(mA2*s) dflux _M_y_y_cd+cflux_M_y_ycd
Mjy, y
component

beta_M_yxcd Convective m/s u_M_y_cd
field, My, x
component

beta_M_y_y_cd Convective m/s vM-ycd
field, My, y
component

gradM-yscd Concentration moVmA4 sqrt(grad_M_y_xcdA2+grad_M_y_y_cdA2)
gradient, My

dfluxM_ycd Diffusive flux, mol/(mA2*s) sqrt(dfluxM_y_xcdA2+dfluxM_y_y_AcdA2)
M Y

cflux_M_y_cd Convective moV(mA2*s) sqrt(cfluxM_y_x_cdA2+cfluxM_y_y_cd2)
flux, M y

tflux_M_y_cd Total flux, mol/(mA2*s) sqrt(tfluxMyx_cdA2+tflux_M_y_y_cdA2)
My

cellPe_M_y_cd Cell Peclet 1 h *
number M y sqrt(beta M y x cdA2+beta M v v cd^2)/Dm M v cd
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Dm_M_y_cd Mean
diffusion
coefficient,
M v

mA2/s (DxxM y-cd * u_M_y_cdA2+DxyMy-cd * u_M_y_cd *
vMjy-cd+Dyx_M_y_cd * vM_y_cd *
uMjy-cd+Dyy_M_y_cd *
v M v cdA2)/(u M v cA2+v M v

resM_y_jcd Equation mol/(mA3*s) -Dxx_M_y_cd * Myxx-DxyMycd *Mxy+Myx *
residual for u_M_y_cd-DyxM_y_cd * M_yyx-Dyy_M_y_cd *
MY M_ Myyy+M yy * v M y cd-R My cd

res-scM_y_cd Shock mol/(mA3*s) M_yx * u_M-y-cd+M-yy * v_M_y_cd-RM_y_cd
capturing
residual for
M y

da_M_y_cd Total time 1 DtsM-y-cd
scale factor,
M y

abspsix g Igrad(psi)| _ __ sqrt(psix^2+psiy^2)
absga7x g Iga7x sqrt(ga7x^2+ga7yA2)
absu2x g2 Igrad(u2)I sqrt(u2xA2+u2y^2)
absga8x q2 Iga8xA sqrt(ga8xA2+qa8yA2)
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B3. COMSOL Simulation of Chaves 125G Case, r'=6x10- (Section

4.4.4.1)

2D case cylinder with Chaves's parameters file:///F:/Researdif20File/Softwre%20Data%20File/tonnoI%20FiL.

2D case cylinder with Chaves's parameters

1. Table of Contents

" Title -2D case cylinder wlh Chves's parameters
" Table of Contents
" Model Properties
" Constants
" Global Expmssions
" Geometry
" Geom1
* Solver Settings
" Postprocessing
" Variables

2. Model Properties

Pro Value
Model name 2D case cylinder wth Chaves's parameters
Author Shahrer Khushrushahi
Company MIT
Department EECS
Reference
URL
Saved date Feb 18. 2010 1-20:31 PM
Creation date Sep 19, 2008 9:3219 PM
COMSOL version COMSOL 35.0.803

Fie name- DiDocuments and SetingsAdministtoADesklop\Comsol_Testbed\GoodFiles
\Good2DCylindedies\2Dcylinder finlaysansmehodetaprimeem10_demagfieldsChaves_125G.mph

Application modes and modules used in this model:

* Geoml (20)
o Incompressible Navier-Stokes
o Difusion
o Convection and Diffusion
o Convection and Diffusion
o PDE. General Form
o PDE. General Form
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2.1. Model description

Rotation of Ferrofluid in a rotating magnetic field in an infinitely long cylinder

Using Parameters from Chaves Paper of 2008 on spinup Flow

Using parameters for EMG900_2 trying to get plot similar to Fig 5b

The values used in this model correspond to normalizing to 12.5mT values from his paper. The normalized
values can be calculated from CalculatingDifferentParameters.xis under EMG900

Using my normalization scheme outlined in VeryifyingShihabsmethod_081205.doc

This method uses scalar potential similar to Finlaysons Comsol paper

Etaprime of 6e-10 quoted by Chaves in his paper is used

3. Constants

Name Expression Value Description
Xi 1.19

omega 2*pi*f
zeta 0.00062

eta 0.0097

etaprime 2.11e-6

f 85

tau 1e-6

omegatau omega*tau

RO 0.027

I 2/3

HO 1 ___

4. Global Expressions

Name Expression Unit Description
FMx Mx*(-psixx)+M_y*(-psixy) \
FMy Mx*(-psiyx)+My*(-psiyy)
T M x*Hy-M_y*Hx
Meqx (Xi*Hx)
M_eqy (Xi*Hy)
Hx -psix-M x12
Hy -psiy-My/2
phi atan2(y,x) rad

5. Geometry

Number of geometries: I

5.1. Geoml

3/9/2010 4:15 PM
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5.1.1. Point mode
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5.1.2. Boundary mode
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5.1.3. Subdomain mode

-1 45 0 0.5 1 L5 2
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1.5

-2

-2 -15

6. Geam1

Space dimensions: 2D

Independent variables: x y. z

6.1. Mesh

6.1.1. Mesh Statistics

-i 415 0 0.5 1 1.5 2

3/9/2010 4:15 PM

Number of degrees of freedom 66110
Number of mesh points 2319
Number of elements 4476
Triangular 4476
Quadrilateral 0
Number of boundary elements 160
Number of vertex elements 4
Minimum element quality 0-901
Element area ratio 0.254
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-2 -L5 -1 45 0 0.5 1 L 2

6.2. Application Mode: Incompressible Navier-Stokes (no)
Application mode type: Incompressble Navier-Stokes

Application mode name: ns

6.2.1. Scalar Variables

I Name Variable IValuel Unil Desription
visc vel fact visc vel fact ns 10 1 Viscous velocy faact

6.2.2. Application Mode Properties

Property Value
Default element type Lagrange - P2 Pi
Analysis type Transient
Comer smoothing Off
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal
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6.2.3. Variables

Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,V), shlag(1,'p')

Interior boundaries not active

6.2.4. Point Settings

Point 2-4 1
pnton 0 1

6.2.5. Boundary Settings

Boundary 1-4
Type Wall

6.2.6. Subdomain Settings

Subdomain 1
Integration order (gporder) 44 2
Constraint order (cporder) 2 2 1
Density (rho) kg/m 3 0

Dynamic viscosity (eta) Pa-s eta+zeta
Volume force, x dir. (Fx) N/m3 2*zeta*wy+FMx
Volume force, y dir. (F-y) N/m3 -2*zeta*wx+FMy
cdon 0

6.3. Application Mode: Diffusion (di)

Application mode type: Diffusion

Application mode name: di

6.3.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Stationary
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.3.2. Variables

Dependent variables: w

Shape functions: shlag(2,W)

Interior boundaries not active
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6.3.3. Boundary Settings

B1oundary 11-4
Type Concentration

6.3.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2/s etaprime

Reaction rate (R) mol/(m3-s) T+2*zet*(vx-uy-2w)

6.4. Application Mode: Convection and Diffusion (cd3)

Application mode type: Convection and Diffusion

Application mode name: cd3

6.4.1. Application Mode Properties

Prop Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame [Frame (ref)
Weak constraints Off
Constraint type Ideal

6.4.2. Variables

Dependent variables: M_x

Shape functions: shlag(2,'Mx)

Interior boundaries not active

6.4.3. Boundary Settings

Boundary 11-4
IType IIInsulation/Symmetd

6.4.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3.s) -*M_y-((Mx-M_eqx)lomegatau)

x-velocity (u) m/s u

y-velocity (v) m/s v

6.6. Application Mode: Convection and Diffusion (cd)
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Application mode type: Convection and Diffusion

Application mode name: cd

6.5.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (re)
Weak constraints Off
Constraint type Ideal

6.5.2. Variables

Dependent variables: M_y

Shape functions: shlag(2,'My)

Interior boundaries not active

6.5.3. Boundary Settings

IBoundary 11-4
Type Insulation/ mmetry

6.5.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m 3-s) w*M_x-((M_y-M-eqy)omegatau)
x-velocity (u) m/s u
y-velocity (v) m/s v

6.6. Application Mode: PDE, General Form (g)

Application mode type: PDE, General Form

Application mode name: g

6.6.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.6.2. Variables
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Dependent variables: psi, psit

Shape functions: shlag(2,'psi')

Interior boundaries not active

6.6.3. Boundary Settings

EBoundar 11-4
Type Dirichlet boundary condition
(r) -psl+HO*(x*cos(t)+y*sin(t))

6.6.4. Subdomain Settings

Subdomain 11
Dampaing/Mass coefficient (da) 10
Source term (f) -M xx-Myy

6.7. Application Mode: PDE, General Form (g2)

Application mode type: PDE, General Form

Application mode name: g2

6.7.1. Application Mode Properties

Prop Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.7.2. Variables

Dependent variables: u2, u2_t

Shape functions: shlag(2,'u2')

Interior boundaries not active

6.7.3. Boundary Settings

IBoundaryl 11-4
T pe Dirichlet boundary condition

6.7.4. Subdomain Settings

Subdomain 1
Source term (f) v
Conservative flux source term (ga) ((0;0))

7. Solver Settings
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Solve using a script: off

Analysis type Transient
Auto select solver On
Solver Time dependent
Solution form Automatic
Symmetric auto
Adaptive mesh refinement Off
Optimization/Sensitivity Off
Plot while solving Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver

Parameter Value
Pivot threshold 0.1
Memory allocati ctor 0.7

7.2. Time Stepping

Parameter Value
Times range(0,0.1,10)
Relative tolerance 0.0001
Absolute tolerance 0.000010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Include algebraic
Allow complex numbers Off

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling

Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
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Mass (ostant On
Damping (mass) onstant On
Jacobian constant On
Constraint Jacobian constant On

S. Postprocesing

21

-2 - -0 0 0.5 a L5 2

9. Variables

9.1. Boundary

Name Description Unit Expression
K x ns Vacous force per area. x Pa etans * (2 * nx_ns * ux+nyns * (uy+v4)

component

T x_ns Total fore per ama. x Pa -nx.ns * p+2 *nx ns * etans * ux+nyns*
component eta ns * (uy+vx)

K_y_ns Vscous force per ama. y Pa eta-ns * (nxLns * (vx+uy)+2 * ny ns * vy)
component

Ty_ns Total force per ama. y Pa -nyns * p+nx ns * etans *(vx+uy)+2
component ny ns * eta ns * y

ndflux w di Normal difusive flux w mol/(mA2*9) nx di * dflux w x di+ny di * dflux w y di
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ndfluxM x cd3 Normal diffusive flux, M. mol/(mA2*s) nxcd3 * dflux_M-x-x-cd3+nycd3 *
Idflux M x y cd3

ncfluxM x cd3 Normal convective flux, mol/(mA2*s) nx_cd3 * cflux_M_x_x_cd3+nycd3 *
M x cflux M x ycd3

ntfluxM x cd3 Normal total flux, M_x mol/(mA2*s) nx_cd3 * tflux_M-x-x-cd3+nycd3
tflux M x-y cd3

ndflux_M_y_cd Normal diffusive flux, M_y mol/(mA2*s) nx_cd * dflux_My-xcd+nycd *
dflux M yy cid

ncflux_M_y_cd Normal convective flux, mol/(mA2*s) nxcd * cflux_M_y_xcd+nycd *
My cflux M y ycd

ntflux_M_y_cd Normal total flux, M_y mol/(mA2*s) nx_cd * tflux_M_y_xcd+ny cd *
I tflux My y cd

9.2. Subdomain

Name Description Unit Expression
U ns Velocity field m/s sqrt(uA2+vA2)
V_ns Vorticity 1/s vx-uy
divUns Divergence of 1/s ux+vy

velocity field
cellRe_ns Cell Reynolds 1 rho_ns * U_ns * h/eta_ns

number

res_u_ns Equation N/mA3 rho ns * (ut+u * ux+v * uy)+px-F-x-ns-eta ns * (2 *
residual for u uxx+uyy+vxy)

res v ns Equation N/m^3 rho-ns * (vt+u * vx+v vy)+py-F_y_ns-etans (vxx+uyx+2
residual for v * vyy)

beta x ns Convective kg/(mA2*s) rhons * u
field, x
component

beta_y_ns Convective kg/(mA2*s) rhons * v
field, y
component

Dmns Mean Pa*s eta-ns
diffusion
coefficient

da_ns Total time kg/mA3 rhons
scale factor

taum_ns GLS mA3*s/kg nojac(1/max(2 * rhons* sqrt(emetric(u,v)),48 *
time-scale eta _ns/hA2))

taucns GLS mA2/s 0.5 * nojac(if(uA2+vA2
time-scale

res_p_ns Equation kg/(mA3*s) rhons * diMJns
residual for p

grad w-xdi Concentration mol/mA4 wx
gradient, w, x
component

dflux w x di Diffusive flux, moV(mA2*s) -Dxx-w-di * wx-Dxywdi * wy
w, x
component

gradw_y_di Concentration mol/mA4 wy
gradient, w, y
component
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Diffusive flux, mol/(mA2*s)
W, y
cm nnft

-Dyxw_di * wx-Dyyw_di * wy

gradwidi Concentration mol/mA4 sqrt(grad w-x-diA2+gradw_yjdi2)
gradient, w

dflux_w_di Diffusive flux, mol/(mA2*s) sqrt(dflux-w.xdiA2+dflux.w_ydiA2)

grad_M-x-x-cd3 Concentration mol/mA4 M_xx
gradient,

component

dflux_M x x cd3 Diffusive flux, moV(mA2*s) -Dxx_M x cd3 * M-xx-DxyMjxcd3 * Mxy
M-x, x
component

cfluxM x x cd3 Convective mol/(mA2*s) M_x * u_M x cd3
flux, M_x, x
component

tflux_M x x cd3 Total flux, mol/(mA2*s) dflux_M x x cd3+cfluxM x x cd3
M_x, x
component

grad_M_x_y_cd3 Concentration moVmA4 Mxy
gradient,
M-x, y
component

dfluxM_xycd3 Diffusive flux, mol/(mA2*s) -DyxM_xcd3 * M-xx-Dyy_M_xcd3 * Mxy
Mx, y
component

cflux_M_x_y_cd3 Convective mol/(mA2*s) Mx * v_M x cd3
flux, Mx, y
component

fflux_M_x_y_cd3 Total flux, mol/(mA2*s) dflux_M_x_y_cd3+dlux_M_x_y_cd3
M-x, y
component

beta_M-x-x-cd3 Convective m/s u_M-x-cd3
field, Mx, x
component

beta_M_x_y_cd3 Convective M/s v_M x cd3
field, Mx, y
component

grad_M x cd3 Concentration mol/mA4 sqrt(gradMx-x-cd3A2+grad_M_x_y_d32)
gradient, M x

dflux_M x cd3 Diffusive flux, mol/(mA2*s) sqrt(dfluxMx x cd3A2+dfluxMx_y_cd32)
M x

cflux_M x cd3 Convective mol/(mA2*s) sqrt(cfluxMx x-cd3A2+cfluxMx_y_Ad3^2)
flux, M X

tflux_M x cd3 Total flux, moV(mA2*s) sqrt(tfluxM-xx_cd3A2+tflux_M-xjy0cd32)
M x

cellPeM x cd3 Cell Peclet 1 h *
number, M x sqrt(beta M x x cd3A2+beta M x y cd3A2)/Dm M x cd3

DmM x cd3 Mean mA2/s (Dxx_Mx cd3 * uM x cd3A2+Dxy._M_x_cd3 * u_M x cd3
diffusion * v_Mxcd3+Dyx_Mxcd3 * vM x cd3 *
coefficient, uM-x.cd3+Dyy_M x cd3 *

I M x - v M x cd3A2)/(u M x cd3A2+v M x cd3A2+eps)
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res_M x cd3 Equation
residual for
M x

moV(mA3*s) -Dxx_M x cd3 * Mxxx-DxyM-x-cd13 * Mxxy+M xx *
u_M_xcd3-Dyx_M-x-cd3 * M-xyx-DyyMx_cd3 *
M xy+M xyv*v M x cd3-R M x cd3

ressc_M x cd3 Shock mol/(mA3*s) Mxx * uMxcd3+Mxy v_M x cd3-R_M x cd3
capturing
residual for
M X

daM-x-cd3 Total time 1 DtsM-x-cd3
scale factor,
M X

gradM-y xcd Concentration moVm^4 Mjyx
gradient,
M-y, x
component

dfluxM_yxcd Diffusive flux, mol/(mA2*s) -Dxx_M_y_.cd * M_yx-Dxy_M_y_cd * Myy
M-y, x
component

cflux_M_y_xcd Convective mol/(mA2*s) M_y * u_M_y_cd
flux, My, x
component

tflux_M_y_xcd Total flux, mol/(mA2*s) dflux_M_y_xcd+cflux M_yjx_cd -
M-Y, x
component

gradM_y__cd Concentration mol/m^4 M_yy
gradient,
M-y, y
component

dfluxM_y_y_cd Diffusive flux, mol/(mA2*s) -Dyx_M_y_cd * M_yx-DyyMy_cd * Myy
Mjy, y
component

cflux_M_y_y_cd Convective mol/(mA2*s) M_y * v_M_y_cd
flux, Mjy, y
component

tflux_M_y_y_cd Total flux, mol/(mA2*s) dflux_Myy-cd+cflux_Myycd
Mjy, y
component

betaM_y_xcd Convective m/s uM_y_cd
field, My, x
component

beta_M_y_y_cd Convective m/s vM-ycd
field, My, y
component

gradM_y_cd Concentration mol/m^4 sqrt(grad_M_y_xcdA2+grad_M_y_y_cdA2)
gradient, My

dflux_M_y_cd Diffusive flux, mol/(mA2*s) sqrt(dfluxM_y_xcdA2+dfluxM_y_ycdA2)
M -y

cfluxM-y-cd Convective mol/(mA2*s) sqrt(cflux_MJyxcdA2+cflux.M_y_y_cdA2)
flux, MY

tfluxM_y_cd Total flux, mol/(mA2*s) sqrt(tflux _M_y_xcdA2+tflux_My-y_cdA2)
M y

cellPe_M_y_cd Cell Peclet 11 h*
_ _ number, M y sqrt(beta M y x cdA2+beta M v v cdA2)/Dm M v cd
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Dm_M_y_cd Mean
diffusion
coefficient,
M v

mA2/s (DxxMjcd * u_M_y_CdA2+Dxy_MJcd * u_M_y_cd *
vMjycd+Dyx_My-cd * vM_ycd *
uMjy-cd+DyyMycd *
v M y cdA2)/(u M v cdA2+v M y cdA2+evs)

res_M_y_cd Equation moI/(mA3*s) -Dxx_M_y_cd * My-Dxy_M_y_cd * Myxy+M_yx *
residual for u_M_y_cd-DyxM_y-cd * M_yyx-Dyy_M_ycd
MY M yyy+M yy * v M y cd-R M y cd

ressc_M_y_cd Shock mol/(mA3*s) M_yx * u_M_y_cd+Myy * v_M_y_cd-RM_y_cd
capturing
residual for
M y

daM_y_cd Total time 1 DtsM-ycd
scale factor,
M y

abspsix g Igrad(psi)l sqrt(psix^2+psiyA2)
absga7xg |ga7x| sqrt(ga7x^2+ga7yA2)
absu2x g2 lgrad(u2)| sqrt(u2xA2+u2yA2)
absga8x g2 jga8x sqrt(ga8x^2+ga8y^2)
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B4. COMSOL Simulation of Chaves 143G Case With Adjusted

q1'=4.84x10-W (Section 4.4.4.1)

2D case cylinder with Chaves's paraiters file:///F:/Researc a20Files/Softwarea%2O Files/Cosol%2Fi..

2D case cylinder with Chaves's parameters

1. Table of Contents

* Title -2D case cylinder wth Chaves's parameters
a Table f Contents
a Model Properties
* Constants
s Global Expressions
0 Geomety
0 Geom1
* Solver Settings
* Postprocessing
* Variables

2. Model Properties

Propety Value
Model name 2D case cylinder with Chaves's parameters
Author Shalirlar Khushrushahi
Company PAT
Department EECS
Reference
URL
Saved date Mar 9. 2010 1:48:42 PM
Creation date Sep 19. 2008 9:32-18 PM
COMSOL version COMSOL .5.0.603

Fie name: D-Doouments and SeftingsdministratoDesktop\ComsoTestbed\GoodFiles
\Good2DCylindefiles\2Dcylinder finlaysonsmethod-etaprimermding-demagfieldsChees_143G.mph

Application modes and modules used in this model:

* Geom1 (2D)
o Incompressible Navier-Stokes
o Difusion
o Convection and Difusion
o Convection and Diffusion
o PDE. General Form
o PDE, General Form
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2.1. Model description

Rotation of Ferrofluid in a rotating magnetic field in an infinitely long cylinder

Using Parameters from Chaves Paper of 2008 on spinup Flow

Using parameters for EMG900_2 trying to get plot similar to Fig 5b

The values used in this model correspond to normalizing to 14.3mT values from his paper. The normalized
values can be calculated from CalculatingDifferentParameters.ds under EMG900

Using my normalization scheme outlined in VeryifyingShihabsmethod_081205.doc

This method uses scalar potential similar to Finlaysons Comsol paper

Etaprime nonO case

Etaprime of 4.84e-10 for a better fit is used

3. Constants

Name Expression Value Description
Xi 1.19

omega 2*pi*f
zeta 0.00048

eta 0.0074

etaprime 1.3e-6
f 85

tau 1e-6

omegatau omega*tau

RO 0.027

I 2/3

HO 1

4. Global Expressions

Name Expression Un Description
FMx M.x*(-psixx)+M_y*(-psixy) -

FMy Mx(-psiyx)+My*(-psiyy)
T Mx*Hy-M_y*Hx
Meqx (Xi*Hx)
Meqy (X*Hy)
Hx -psix-M x/2
Hy -psiy-M_y/2

phi atan2(y,x) rad

5. Geometry

Number of geometries: 1

5.1. Geom1
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-2 -[5 -1 -a3 0 0.5 0

5.1.1. Point mode
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-LI

-2 -. 1-S00

5.1.2. Boundary mode
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-2

5.1.3. Subdomain mode

-iS -1 -05 0 0.5 1
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6. Geom1

Space dimensions: 2D

Independent variables: x. y. z

6.1. Mesh

6.1.1. Mesh Statistics

-1S -1 -45 0 0.5 1
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Number of degrees of freedom 88110
Number of mesh points 2319
Number of elements 4476
Triangular 4478
Quadrilateral 0
Number of boundary elements 160
Number of vetex elements 4
Minimum element quality 0.901
Element arm ratio 0.254

g
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-2 -1.5 -as a as 1

6.2. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

6.2.1. Scalar Variables

IName IVariable IValual Un ij Description
Iviac, vel fact vso, vel fact ns110 11 Viscous velocty factorl

6.2.2. Application Mode Properties

Property Value
Default element type Lagrange - P2 P1
Analysis type Transient
Comer smoothing Off
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal
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6.2.3. Variables

Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,V), shlag(1,'p')

Interior boundaries not active

6.2.4. Point Settings

Point 12-41
pnton 0 1

6.2.5. Boundary Settings

Boundary 1-4
Type Wall

6.2.6. Subdomain Settings

Subdomain 1
Integration order (gporder) 442
Constraint order (cporder) 2 2 1
Density (rho) kg/m3 0

Dynamic viscosity (eta) Pa-s eta+zeta
Volume force, x dir. (Fx) N/m3 2*zeta*wy+FMx

Volume force, y dir. (Fjy) N/m3 -2*zeta*wx+FMy

cdon 0

6.3. Application Mode: Diffusion (di)

Application mode type: Diffusion

Application mode name: di

6.3.1. Application Mode Properties

Prope Value
Default element pe Lagrange - Quadratic
Analysis type Stationary
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.3.2. Variables

Dependent variables: w

Shape functions: shlag(2,'w)

Interior boundaries not active
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6.3.3. Boundary Settings

IBoundary 11-4
1Type IIConcentration]

6.3.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2

/s etaprime
Reaction rate (R) mol/(m 3 .s) T+2*zeta*(vx-uy-2*w)

6.4. Application Mode: Convection and Diffusion (cd3)

Application mode type: Convection and Diffusion

Application mode name: cd3

6.4.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.4.2. Variables

Dependent variables: M_x

Shape functions: shlag(2,'M-x')

Interior boundaries not active

6.4.3. Boundary Settings

B1oundary 11-4
1Type IIInsulation/Symmetry

6.4.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3 .s) -w*M-y-((M-x-M-eqx)/omegatau)

x-velocity (u) m/s u
y-velocity (v) m/s v

6.5. Application Mode: Convection and Diffusion (cd)

3/9/2010 4:17 PM

498

2D) case cylinder with Chaves's parameters

9 of 17



file:///F:/Research%2Files/Software%2Data%2Files/Comsol%2OFi...

Application mode type: Convection and Diffusion

Application mode name: cd

6.5.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.5.2. Variables

Dependent variables: M_y

Shape functions: shlag(2,'My)

Interior boundaries not active

6.5.3. Boundary Settings

B.oun bdary a 1 S-4
1Type IIInsulation/Symmet

6.5.4. Subdomain Settings

6.6. Application Mode: PDE, General Form (g)

Application mode type: PDE, General Form

Application mode name: g

6.6.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.6.2. Variables
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Dependent variables: psi, psit

Shape functions: shlag(2,'psi')

Interior boundaries not active

6.6.3. Boundary Settings

Boundary 1-4
Type Dirichlet boundary condition
(r) -psI+HO*(xecos(t)+y*sin(t)

6.6.4. Subdomain Settings

Subdomain 1
Damping/Mass coefficient (da)0
Source term (f) -M xx-M._yy

6.7. Application Mode: PDE, General Form (g2)

Application mode type: PDE, General Form

Application mode name: g2

6.7.1. Application Mode Properties

Prope Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.7.2. Variables

Dependent variables: u2, u2_t

Shape functions: shlag(2,'u2')

Interior boundaries not active

6.7.3. Boundary Settings

1Boundaryj 11-4
Type Dirichlet boundary condition

6.7.4. Subdomain Settings

Subdomain
Source term (f) I
Conservative flux source term (ga) ((0;0))

7. Solver Settings
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Solve using a script: off

Analysis type Transient
Auto select solver On
Solver Time dependent
Solution form Automatic
Symmetric auto
Adaptive mesh refinement Off
Optimization/Sensitivity Off
Plot while solving Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver

Parameter Valuel
Pivot threshold 0.1
Memory allocation factor 0.7

7.2. Time Stepping

Parameter Value
Times range(0,0.1,10)
Relative tolerance 0.0001
Absolute tolerance 0.000010
Times to store in output Specified times
Time steps taken by solver Free
Madmum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Include algebraic
Allow complex numbers Off

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling
Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On

501
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Mass constant On
Damping (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

8. Postprocessing

T""10 *~V=~t Sa"m*f.g 9sp)

-2 2. -L -WS a MS

9. Variables

9.1. Boundary

Name Description Unit Epresion
K x ns Viscous force per area. x Pa etains * (2 * nx.ns * ux+nyjns *(uy+ve)

component

T xns Total force per area. x Pa -nxns * p+2 * nx ns * ta_ns * ux+nyns
component eta ns * (uy+vx)

K_y_ns Viscous force per area. y Pa eta-ns * (nxns * (vx+uy)+2 * ny ns* vy)
component

T y_ns Total force per area, y Pa -nyns * p+nx ns * eta-ns * (vx+uy)+2
component y nys * eta ns * vy

ndflux w di Normal difusive flux, w mol/(mA2*s) nx di * dlux w x di+ny di * dflux w y di

13 of17 3
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ndflux M x cd3 Normal diffusive flux, M_x mol/(mA2*s) nx cd3 * dflux_M_x-x cd3+nycd3 *
dflux M x y__d3

ncfluxM x cd3 Normal convective flux, mol/(mA2*s) nx-cd3 * cflux_M_x-x-cd3+ny-cd3*
M x cflux M x y cd3

ntflux_M x cd3 Normal total flux, Mx mol/(mA2*s) nx-cd3 * tflux_M_x-x-cd3+nycd3 *
tflux M x y cd3

ndfluxM_y_cd Normal diffusive flux, M_y mol/(m^2*s) nx-cd * dfluxM_y_x_cd+nycd *
dflux M y y cd

ncflux_M_y_cd Normal convective flux, mol/(mA2*s) nx_cd * dluxM y_xcd+ny-cd *
M y cflux M y y cd

ntflux_Mjcd Normal total flux, Mj mol/(mA2*s) nx-cd * tflux_My_x_cd+nycd
I I Itflux M y y cd

9.2. Subdomain

Name Description Unit Expression
U_ns Velocity field m/s sqrt(uA2+vA2)
V ns Vorticity 1/s vx-uy
divU-ns Divergence of 1/s ux+vy

velocity field

cellRens Cell Reynolds 1 rhons * Uns * h/etans
number

res_u_ns Equation N/m^3 rho-ns * (ut+u * ux+v* uy)+px-F x ns-etans * (2 *
residual for u uxx+uyy+vxy)

res v ns Equation N/mA3 rhons * (vt+u * vx+v * vy)+py-F_y_ns-eta-ns * (vxx+uyx+2
residual for v * vyy)

beta x ns Convective kg/(mA2*s) rhons * u
field, x
component

beta_y_ns Convective kg/(mA2*s) rhons * v
field, y
component

Dm ns Mean Pa*s eta ns
diffusion
coefficient

dans Total time kg/mA3 rhons
scale factor

taumns GLS mA3*s/kg nojac(1/max(2 * rho-ns * sqrt(emetrc(u,v)),48 *
time-scale eta ns/hA2))

taucns GILS mA2/s 0.5 * nojac(if(uA2+v^2
time-scale

res_p_ns Equation kg/(m^3*s) rhons * divU_ns
residual for p

grad w x di Concentration moVmA4 wx
gradient, w, x
component

dflux w x di Diffusive flux, moV(mA2*s) -Dxx_w_di * wx-Dxyw_di * wy
w, x
component

gradw_y di Concentration moVmA4 wy
gradient, w, y

I_ _ Icomponent
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Diffusive flux, moV(mA2*s)
w, y
component

-Dyx-wdi * wx-Dyy-w-di * wy

grad-w-di Concentration mol/mA4 sqrt(grad-w-x-diA2+gradw_yjdi2)
gradient, w

dflux_w_di Diffusive flux, moV(mA2*s) sqrt(dflux w x diA2+dfluxw_y_diA2)
w

gradM-x-x-cd3 Concentration mol/mA4 M_xx
gradient,
M-x, x
component

dflux_M x x cd3 Diffusive flux, moV(mA2*s) -Dxx_M-x-cd3 * M xx-DxyMxcd3 M.xy
Mx, x
component

cflux_M x x cd3 Convective moV(mA2*s) Mx * uM-x_cd3
flux, M_x, x
component

tflux_M x x cd3 Total flux, mol/(mA2*s) dfluxM-x-x-cd3+cflux_M x x cd3
M-x, x
component

grad_Mx_y_cd3 Concentration mol/mA4 Mxy
gradient,
M-x, y
component

dfluxM x_y_cd3 Diffusive flux, mol/(mA2*s) -DyxMx-cd3 * Mxx-DyyMxcd3 * Mxy
M-x, y
component

cflux_M_x_y_cd3 Convective mol/(mA2*s) Mx * vM-x-cd3
flux, M x, y
component

fflux_M_x_y_cd3 Total flux, mol/(mA2*s) dfluxM_x_y_cd3+cflux_M_x_y_cd3
M-x, y
component

beta_M x x cd3 Convective m/s u_M x cd3
field, Mx, x
component

betaM_x_y_cd3 Convective m/s v_M x cd3
field, Mx, y
component

gradM-x-cd3 Concentration mol/mA4 sqrt(grad_M-x-x-cd3A2+grad_M-x_y_cd3A2)
gradient, M x

dflux_M x cd3 Diffusive flux, mol/(mA2*s) sqrt(dfluxM-x x cd3A2+dflux_Mxjcd32)
M x

cfluxM x cd3 Convective mol/(mA2*s) sqrt(cfluxMx x cd3A2+cflux_M_x_y_cd3A2)
flux, M x

tflux_M x cd3 Total flux, mol/(mA2*s) sqrt(tfluxM-x x cd3A2+tflux_M_xy_cd32)
M x

cellPe_M-x-cd3 Cell Peclet 1 h *
number, M x sqrt(beta M x x cd3A2+beta M x y cd3A2)/Dm M x cd3

DmM x cd3 Mean mA2/s (Dxx Mxcd3 * u_M x cd3A2+Dxy_M-x-cd3 * u_M x cd3
diffusion * v_Mx cd3+DyxM_xcd3 * v_M x cd3 *
coefficient, u_M x cd3+DyyM-x-cd3 *
M x v M x cd3A2)/(u M x cd32+v M x cd3A2+eps)
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res_M x cd3 Equation
residual for
M x

mol/(mA3*s) -Dxx_M x cd3 * M xxx-DxyM-xcd3 * Mxxy+Mxx *
uM x cd3-Dyx_M x cd3 * M_xyx-Dyy_Mjxcd3 *

M xyy+M xy * v_M xcd3-R M x cd3
resscM-x-cd3 Shock moI/(mA3*s) M_xx * u_Mx_cd3+M xy* vM xcd3-RM x cd3

capturing
residual for
M X

da M x cd3 Total time 1 Dts M x cd3
scale factor,
M X

grad_M_y-x-cd Concentration moVmA4 M-yx
gradient,
Mjy, x
component

dfluxMjxcd Diffusive flux, moV(mA2*s) -Dxx _Mycd * Myx-Dxy_Mjcd * Myy
M-y, x
component

cflux_M_y_x_cd Convective moV(mA2*s) M_y * uM-y-cd
flux, M.y, x
component

tflux_M_y_xcd Total flux, moV(mA2*s) dflux_M_y_x_cd+cfluxM_y_xcd
Mjy, x
component

grad_M-y_ycd Concentration moVmA4 Mjyy
gradient,
M-y, y
component

dfuxM_y_y_cd Diffusive flux, mol/(mA2*s) -Dyx_M_y_cd * M_yx-Dyy_M_y_cd * Myy
Mjy, y
component

cfluxM_y_ycd Convective moV(mA2*s) M_y * v_M_y_cd
flux, Mjy, y
component

tflux_M_y_y_cd Total flux, mol/(mA2*s) dflux_M_y_y_cd+cflux_M_y_y_cd
M-y, y
component

betaMy-xcd Convective M/s u_M_y_cd
field, M-y, x
component

beta_M_y_y_cd Convective M/s _M_y_cd
field, My, y
component

gradM-y-cd Concentration moVmA4 sqrt(grad_M_y__xcdA2+grad_M_y_y_cd2)
gradient, My

dfluxM_y_cd Diffusive flux, mol/(mA2*s) sqrt(dfluxM_y_x_cdA2+dflux_M_"yycdA2)
M y

cfluxM_y_cd Convective mol/(mA2*s) sqrt(cfluxM_yx_cdA2+cflux_M_y_y_cdA2)
flux, MY

tfluxM_y_cd Total flux, mol/(mA2*s) sqrt(tflux_M_y_x_cdA2+tflux_M_y_y_cd2)
M Y

cellPeM_y_cd Cell Peclet 1 h *
I number, M y - sqrt(beta M y x cdA2+beta M v v cdA2)/Dm M v cd
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DmM_y_cd Mean
diffusion
coefficient,
M V

mA2/s (DxxMy-cd * u_M_y_cdA2+DxyM-y-cd * uM-y-cd *
v_Mjy-cd+Dyx_M_y_cd * v_M_y_cd *
uM_ycd+DyyMy_cd *
v M y cd^2)/(u M y cd^2~+v M cd2+ s)A7p

resMycd Equation mol/(mA3*s) -Dxx_M_y_cd * M_yxx-Dxy_M_ycd * Mxy+Mx *
residual for u_M_y_cd-Dyx_M_y_cd * M_yyx-Dyy_M_y_cd *
MyM Vyy+M yy * v M y cd-R My cd

res-scM-y-cd Shock mol/(mA3*s) M_yx * u_M_y_cd+M_yy * v_M_y_cd-RM_y_cd
capturing
residual for
M y

daM-y-cd Total time 1 DtsM-y-cd
scale factor,
M Y

abspsix g Igrad(psi)| sqrt(psix^2+psiyA2)
absga7x g |ga7x| sqrt(ga7x^2+ga7yA2)
absu2x g2 |grad(u2)| sqrt(u2xA2+u2y^2)
absga8x p2 |ga8xl sqrt(ga8x^2+ga8yA2)
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B5. COMSOL Simulation of Chaves 143G case With ij'=O (Section

4.4.3.5)

ZD case cylinier with Chaves's paraeters file:///F:Resrcifa20Files/So ftrare0Da a%20Ft les/CosolY20FiL..

2D case cylinder with Chaves's parameters

1. Table of Contents

" Title - 2D case cylinder wih Chaves's parametes
" Table of Contents
" Model Properties
" Constants
" Global Expressions
" Geometry
" Geom1
" Solver Settings
" Postprocessing
" Varables

2. Model Properties

Pro Value
Model name 21) case cylinder wih Chaves's parameters
Author Shahder Khushrushahi
Company MIT
Department EECS
Reference

URL

Saved date Feb 17. 210 5:31:41 PM
Creation date Sep 19, 2008 9:3216 PM
COMSOL verion COMSOL 35.0.603

Fie name: D-Vocuments and SeingsAdministratoADesIdop\ComsolTestbed\GoodFiles
\Good2DCylindedies\2DcyinderGnlaysonsmethod-etprime0_demsgieldsChaves_143G.mph

Application modes and modules used in this model:

* Geom1 (21))
o Incompressible Navier-Stokes
o Difusion
o Convection and Diffusion
o Convection and Diffusion
o PDE. General Form
o PDE, General Form

1 of 17
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2.1. Model description

Rotation of Ferrofluid in a rotating magnetic field in an infinitely long cylinder

Using Parameters from Chaves Paper of 2008 on spinup Flow

Using parameters for EMG900_2

The values used in this model correspond to normalizing to 14.3mT values from his paper. The normalized
values can be calculated from CalculatingDifferentParameters.xls under EMG900

Using my normalization scheme outlined in VeryifyingShihabsmethod_081205.doc

This method uses scalar potential similar to Finlaysons Comsol paper

Etaprime 0 case

3. Constants

Name Expression Value Description
Xi 1.19
omega 2*pi*f

zeta 0.00048

eta 0.0074

etaprime 0
f 85

tau 1e-6

ormegatau omega*tau

RO 0.027

I 2/3

HO 1

4. Global Expressions

Name Expression Uni Description
FMx Mx*(-psixx)+M*(-psixy) \
FMy Mx*(-psiyx)+M_*(-psiyy)
T M x*Hy-M_y*Hx
Meqx (Xi*Hx)
M_eqy (Xi*Hy)
Hx -psix-M x/2
Hy -psiy-My/2

phi atan2(y,x) rad

5. Geometry

Number of geometries: 1

5.1. Geoml

2 of 17
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5.1.1. Point mode
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5.1.2. Boundary mode

file:///F:/Research%2OFiles/Software%20Data%2GFiles/Coinsol%20FiL.
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5.1.3. Subdomain mode
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45

-2

6. Geom1

Space dimensions: 2D

Independent variables: x. y. z

6.1. Mesh

6.1.1. Mesh Statistics

-5 -1 - 0.5 1

3/9/2010 4:08 PM
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Number of degrees of freedom 66110
Number of mesh points 2319
Number of elements 4476
Triangular 4476
Quadrilateral 0
Number of boundary elements 160
Number of verdex elements 4
Minimum element quality 0.901
Element area ratio 0.254

2D case cylinder with Chaves's parameaters
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.2 1. -1 42 a 0.5 I

6.2. Application Mode: Incompressible Navier-Stokes (no)
Application mode type: Incompressible Navier-Stokes

Application mode name: ns

6.2.1. Scalar Variables

IName Oiable I Vauel Un &I Descrition
viso0 Ae factivisc Val fact na 10 1 IViscous velocly facta

6.2.2. Application Mode Properties

Property Value
Default element type Lagrange - P2 Pi
Analysis type Transient
Comer smoothing Off
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

3/9/2010 4:08 PM
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6.2.3. Variables

Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,V), shlag(1,'p')

Interior boundaries not active

6.2.4. Point Settings

Point 12-4 1
pnton 101

6.2.5. Boundary Settings

B1oundaryl 1-41
1Type I Wall1

6.2.6. Subdomain Settings

Subdomain 1
Integration order (gporder) 442
Constraint order (cporder) 2 2 1
Density (rho) kg/m 3 0

Dynamic viscosity (eta) Pa-s eta+zeta
Volume force, x dir. (F-x) N/m3 2*zeta*wy+FMx
Volume force, y dir. (Fjy) N/m3 -2*zeta*wx+FMy
cdon 0

6.3. Application Mode: Diffusion (di)

Application mode type: Diffusion

Application mode name: di

6.3.1. Application Mode Properties

Prop Value
Default element type Lagrange - Quadratic
Analysis type Stationary
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.3.2. Variables

Dependent variables: w

Shape functions: shlag(2,W)

Interior boundaries not active

8 of 17 3/9/2010 4:08 PM
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6.3.3. Boundary Settings

Boundary 1-4
Type Insulation/Symmetry

6.3.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) M2/s etaprime

Reaction rate (R) mol/(m3.s) T+2zeta*(vx-uy-2*w)

6.4. Application Mode: Convection and Diffusion (cd3)

Application mode type: Convection and Diffusion

Application mode name: cd3

6.4.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.4.2. Variables

Dependent variables: M_x

Shape functions: shlag(2,'Mx)

Interior boundaries not active

6.4.3. Boundary Settings

lBoundary 11-4
Type Insulation/mmet

6.4.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) M2/s 0
Reaction rate (R) mol/(m3-s) -w*M_y-((M_x-M_eqx)omegatau)
x-velocity (u) M/S u
y-velocity (v) m/s v

6.6. Application Mode: Convection and Diffusion (cd)

3/9/2010 4:08 PM
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Application mode type: Convection and Diffusion

Application mode name: cd

6.5.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.5.2. Variables

Dependent variables: M_y

Shape functions: shlag(2,'M_y')

Interior boundaries not active

6.5.3. Boundary Settings

IBoundaryl 1-4
1Type IIInsulation/Symmetryl

6.5.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3-s) w*M_x-((M_y-M egy)/omegatau)
x-velocity (u) m/s u
y-velocity (v) m/s v

6.6. Application Mode: PDE, General Form (g)

Application mode type: PDE, General Form

Application mode name: g

6.6.1. Application Mode Properties

Property Value
Default element type Lagrange - Qua(ateic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.6.2. Variables

3/9/2010 4:08 PM
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Dependent variables: psi, psi-t

Shape functions: shlag(2,'psi')

Interior boundaries not active

6.6.3. Boundary Settings

B oundlar 11-4
Type Dirichlet boundary condition
(r) -psI+HO*(x*cos(t)+y*sin(t))

6.6.4. Subdomain Settings

Subdomain1
Damping/Mass coefficient (da) 0
Source term (f) -Mxx-Myy

6.7. Application Mode: PDE, General Form (g2)

Application mode type: PDE, General Form

Application mode name: g2

6.7.1. Application Mode Properties

Prop Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.7.2. Variables

Dependent variables: u2, u2_t

Shape functions: shlag(2,'u2')

Interior boundaries not active

6.7.3. Boundary Settings

1Boundaryl 11-4
T pe Dirichlet boundary condition

6.7.4. Subdomain Settings

Subdomain
Source term (f) I
Conservative flux source term (ga) ((0;0)}

7. Solver Settings

11 of 17 3/9/2010 4:08 PM
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Solve using a script: off

Analysis type Transient
Auto select solver On
Solver Time dependent
Solution form Automatic
Symmetric auto
Adaptive mesh refinement Off
Optimization/Sensitivity Off
Plot while solving Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver

Parameter Value
Pivot threshold 0.1
Memory allocation factor 0.7

7.2. Time Stepping

Parameter Value
Times range(0,0.1,10)
Relative tolerance 0.0001
Absolute tolerance 0.000010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Include algebraic
Allow complex numbers Off

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling

Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On

3/9/2010 4:08 PM
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Mass constant 
On

Dampig (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

8. Postprocessing

Tem.1O Ana:vde0yVffht saI neg s)

-2 -13 -1 -03 0 0.5 1

9. Variables

9.1. Boundary

Name Description Unit Eipremsion
K x ns Viscous force per area. x Pa eta.ns * (2 * nx.ns * ux+ny ns * (uy+vx)

component

T x_ns Total fome per asea, x Pa -nx_na * p+2 * nx ns * etans * ux+ny_ns
component eta ns (uy+vx)

K_y_ns Viscous fome per area. y Pa eta_ns * (nxns * (vx+uy)+2 * ny ns * vy)
component

Ty_ns Total fome per area, y Pa -nyjns *pinxjns * etans * (vx+uy)+2 *
component ny ns * eta ns * vy

ndflux w di Normal dffusive flux w moI/(mA2*s) nx di * dflux wy di

3/9/2010 4:08 PM13 of 17
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ndfluxM x cd3 Normal diffusive flux, M_x mol/(mA2*s) nx_cd3 * dflux_M-x-xscd3+nycd3
dflux M xy cd3

ncflux M x cd3 Normal convective flux, mol/(mA2*s) nxcd3 * cflux_M-x xcd3+ny-cd3 *
M x dlux M x y cd3

ntflux M x cd3 Normal total flux, M_x mol/(mA2*s) nx_cd3 * tflux_Mx x-cd3+nycd3 *
tflux M x-y cd3

ndfluxM_y_cd Normal diffusive flux, M_y mol/(mA2*s) nxcd * dflux_Mjxcd+nycd *
dflux M y cd

ncflux_M_y_cd Normal convective flux, mol/(mA2*s) nxcd * cflux_M_y_xcd+nycd *
My cflux M y y cd

ntflux_M_y_cd Normal total flux, M_y mol/(mA2*s) nxcd * tflux_M_y_xcd+nycd
tflux My y cd

9.2. Subdomain

Name Description Unit Expression
U ns Velocity field m/s sqrt(uA2+v^2)
V ns Vorticity 1/s vx-uy
divUns Drvergence of 1/s ux+vy

velocity field

cellRens Cell Reynolds 1 rhons * Uns * h/etans
number

res_u_ns Equation N/mA3 rho ns * (ut+u * ux+v * uy)+px-F-x-ns-eta ns * (2 *
residual for u uxx+uyy+vxy)

res v ns Equation N/m^3 rho-ns * (vt+u vx+v * vy)+py-F_y_ns-eta-ns * (vxx+uyx+2
residual for v * vyy)

beta x ns Convective kg/(mA2*s) rhons * u
field, x
component

beta_y_ns Convective kg/(mA2*s) rhons * v
field, y
component

Dm-ns Mean Pa*s eta-ns
diffusion
coefficient

dans Total time kg/mA3 rho_ns
scale factor

taumns GLS mA3*s/kg nojac(1/max(2 * rhons * sqrt(emetric(u,v)),48 *
time-scale eta ns/hA2))

tauc ns GLS mA2/s 0.5 * nojac(if(uA2+v^2
time-scale

res-p_ns Equation kg/(mA3*s) rho_ns * divU_ns
residual for p

grad_w_x_di Concentration mol/mA4 wx
gradient, w, x
component

dflux w x di Diffusive flux, mol/(mA2*s) -Dxx-w-di * wx-Dxyw_di * wy
w, x
component

gradw_y_di Concentration mol/mA4 wy
gradient, w, y
component

3/9/2010 4:08 PM
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dfluxw_y_di Diffusive flux,
w, y
component

mol/(mA2*s) -Dyxw_di * wx-Dyyw di * wy

grad_w_di Concentration moVmA4 sqrt(grad-w-x-di^2+grad.w_yjdi2)
gradient, w

dflux_w_di Diffusive flux, moV(mA2*s) sqrt(dflux-w-x-di2+dfluxLw_y_di2)
w

grad_M x x cd3 Concentration mol/mA4 M_xx
gradient,
MLx, x
component

dflux_M x x cd3 Diffusive flux, moV(mA2*s) -Dxx_M x cd3 * Mxx-Dxy_Mxcd3 * My
M-x, x
component

cflux_M x x cd3 Convective mol/(mA2*s) M_x * u_M x cd3
flux, M_x, x
component

tflux_M x x cd3 Total flux, mol/(mA2*s) dflux_M x x cd3+cfluxM x x cd3
Mx, x
component

gradM_xycd3 Concentration mol/mA4 Mxy
gradient,
M-x, y
component

dflux_M_x-y-cd3 Diffusive flux, mol/(mA2*s) -DyxM x-cd3 * Mxx-DyyM_xcd3 * My
M-x, y
component

cfluxM_x_y_cd3 Convective mol/(mA2*s) Mx * v_M x cd3
flux, M-x, y
component

tfluxMx_y_cd3 Total flux, mol/(mA2*s) dflux_M_x_y_cd3+luxM-xjy_cd3
M-x, y
component

beta M x x cd3 Convective mIs u M x cd3
field, Mx, x
component

beta_M_x_y_cd3 Convective m/s v_M x cd3
field, Mx, y
component

grad_M x cd3 Concentration mol/mA4 sqrt(grad_M-x-x-cd3A2+grad_M_x_y_cd32)
gradient, M_x

dflux_M x cd3 Diffusive flux, moV(mA2*s) sqrt(dfluxM-x-x-cd3A2+dfluxMxy_cd32)
M x

cflux M x cd3 Convective moV(mA2*s) sqrt(cfluxM-x-x_cd32+cfluxM_x_y_cd3A2)
flux, M x

tflux_M x cd3 Total flux, mol/(mA2*s) sqrt(tfluxM-x-x_cd32+tflux_Mx._ycd32)
M x

cellPeM x cd3 Cell Peclet 1 h *
number, M x sqrt(beta M x x cd3A2+beta M x y cd3A2)/Dm M x cd3

DmM x cd3 Mean mA2/s (Dxx_M-x-cd3 * u_M x cd3A2+DxyMxcd3 * u_M x cd3
diffusion * vM x cd3+DyxMxcd3 * vM x cd3 *
coefficient, uM x cd3+Dyy_M._xcd3 *
M x v M x cd3A2)/fu M x cd3A2+v M x cd3A2+eps)
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res_M x cd3 Equation
residual for
M x

moV(mA3*s) -Dxx_M x cd3 * M xxx-DxyM x cd3 * M_xxy+M xx *
u_Mxcd3-Dyx_M-x-cd3 * M xyx-DyyMxcd3 *
M xyyv+M xy *v M x cd3-R M x cd3

resscM x cd3 Shock mol/(mA3*s) Mxx * uM-x-cd3+M-xy * v_M x cd3-R_M x cd3
capturing
residual for
M x

daM-x-cd3 Total time 1 DtsM-x-cd3
scale factor,
M x

grad_Myxcd Concentration mol/m^4 Mjyx
gradient,
Mjy, x
component

dfluxM_y_xcd Diffusive flux, mol/(mA2*s) -Dxx_M_y_cd * Mjyx-DxyM_y-cd * M yy
Mjy, x
component

cflux_My-xLcd Convective mol/(m^2*s) My * u_M_y_cd
flux, Mjy, x
component

tflux_M_y_xcd Total flux, mol/(mA2*s) dfluxM_y_xcd+cflux My x_cd
Mjy, x
component

grad_M_y_y_cd Concentration mol/mA4 MLyy
gradient,
M-y, y
component

dfluxM_y_y_cd Diffusive flux, mol/(mA2*s) -DyxMy cd * Myx-Dyy_M-y-cd * Myy
Mjy, y
component

cflux_M_y_y_cd Convective mol/(mA2*s) M_y * vM_y_cd
flux, Mjy, y
component

tflux_M_y_y_cd Total flux, mol/(mA2*s) dfluxMyycd+cflux_M-y_y_cd
M4y, y
component

betaM_y_xcd Convective m/s uM_y_cd
field, M_y, x
component

betaM-yy.cd Convective mis vyycd
field, My, y
component

gradM_y_cd Concentration mol/mA4 sqrt(grad_M_y_xcdA2+grad_M_y_y_cdA2)
gradient, My

dfluxM_y_cd Diffusive flux, mol/(mA2*s) sqrt(dflux_M_y_xcd^A2+dfluxMy_y_cdA2)
M Y

cflux_M_ycd Convective mol/(mA2*s) sqrt(cfluxM4y x cdA2+cflux_M_y_y_cdA2)
flux M y

tflux_M_y_cd Total flux, moV(mA2*s) sqrt(tfluxM_yjxcdA2+tflux_M_y_y_cdA2)
M Y

cellPeM_y_cd Cell Peclet 1 h *
I number. M Y sart(beta M v x cdA2+beta M v v cdA2)VDm M v cd
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Dm_M_y_cd Mean
diffusion
coefficient,
M v

mA2/s (Dxx_M_y_cd * u_M_y_cd^2+Dxy_M_y_cd * uM_ycd *
v_M_y_cd+Dyx_M_y_cd * v_M_y_cd *
u_M_ycd+DyyMycd *
v M v cdA2)/tu M v cd^2+v M v cdA2+eos)

res_M_y_cd Equation moV(m^3*s) -Dxx_M_y_cd * My-Dxy_M_y_cd * Mjyxy+Myx *
residual for u_M_y_cd-DyxM_ycd * Myx-Dyy__ycd *
M y Myyy+Myy * v M y cd-R M y cd

resscM_y_cd Shock mol/(mA3*s) M_yx * u_M_y_cd+Myy * v_M_cd-RM_y_cd
capturing
residual for
M y

daM_y_cd Total time 1 Dts_M_y_cd
scale factor,
M y

abspsix-g Igrad(psi)l sqrt(psix^2+psiyA2)
absga7xg Iga7x4 sqrt(ga7x^2+ga7yA2)
absu2x g2 lgrad(u2)| sqrt(u2xA2+u2y^2)
absga8x g2 |qax| sqrt(ga8x^2+ga8y^2)
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Appendix C : Specifications (refer to Chapters 4-6)

C1. 10 cm Diameter Sphere to Contain Ferrofluid

Material Polypropylene
Polypropylene Material

Bacdng
Finish
Shape

Ball Type
Diameter

Diameter Tolerance
Translucent

Operating Temperature Range

Easy-to-Machine Chemical-Resistant Polypropylene
Plain Back
Smooth
Balls
Hollow
3.937"
2.05"

Translucent White
Up to +220" F

Softening Point Not Rated
Tensile Strength Poor
Impact Strength Poor

Tolerance Standard
Grade Not Rated

Hardness Not Rated
Sphericity Not Rated

Quantity 1
Specifications Met Not Rated

C2. 7 cm Diameter Sphere to Contain Ferrofluid

PartNumber 3748K35
Material

Polypropylene Material
Bacing
Finish
Shape

Ball Type
Diameter

Diameter Tolerance
Translucent

Operating Temperature Range
Softening Point

Tensile Strength
impact Strength

Tolerance
Grade

Hardness
Sphericity
Quantity

Specifications Met

Polypropylene
Easy-to-Machine ChemIcal-Resistant Polypropylene
Plain Back
Smooth
Balls
Hollow
2.756"
±.02"
Translucent White
Up to +220" F
Not Rated
Poor
Poor
Standard
Not Rated
Not Rated
Not Rated
10
Not Rated
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S8.16 perFI
Matial Flsoropolymers

FluropolymMerke MOa Vi EecM l Grade TeisnS PTFE
B PlainBack

Finish Smooth
Shape Rod and Discs

Rods an Discs paTe Rod
Lent r ChtengiV

Aalle Lentsf SoldIn1'Increments
M amum CoNnuIeUs Lengt S

Dlamr..r 3W
DlaeterTolerance .005"

-,.. ...
Opefinl Temperne Range -350-t+ 50" F

Sn PoingtPeil NotRaed
Perlgrmance CharadadeIc Electa WisuldOr, Weather Resistart, Very Low Fricion

TensieSegi Poor
impadStIeng Good

Tolerance Slandard
Hadss Shore D5S

Spedicadm Met 3A Saniary Slandards (3A Compant. Aerospace Maleal Specacabons (AMS) American Sodly for Tesang
and Materals (aSTM, Food aid Drug Acminisrsaton (FDA) Complia Undners Laboratores (UL)

AMSSpedcamlon AMS3651

C4. Screws to Attach Parts of Probe Holder Together

$4.70 per Pack of10
Headltyle Pan

Pan Head Slyle Pan
Materiel Type Plastc

Finish Plain
Plastic Type Polycarbonate

Self LocMng Element None
Drine Stle Phillips

System of Measurement Inch
Inch Thread Size 1W-20

Thread Length FullyThreaded
Length 1*

Decimal Size .250"
Head Diameter .492"

Head Height .175"
Drive #3

Rockiel Hardness Not Rated
Minimum Tensile Sirengih Not Rated

OperaingTemperalue -40" to +212 F
Color Clear

Specifications Met Not Rated
Screw Ouanly Indivdual Screw
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C3. Teflon Support Rod Stock

PalNumnber 8546K015

Part Number 931 40A246



C5. Stock Material Used to Make Probe Holder

Material
Polycarbonate Material

Bacidng
Finish

Shape
Sheets, Bars, Strips, and Cubes Type

Thickness
Thickness Tolerance

Length
Length Tolerance

Width
Width Tolerance

Clear
Operating Temperature Range

Softening Point
Performance Characteristic

Tenslie Strength
Impact Strength

Tolerance
Hardness

Specifications Met
Note

Polycarbonate
Abrasion-Resistant Polycarbonate
Plain Back
Smooth
Sheets, Bars, Ships, and Cubes

Square Sheet
117

Clear with No Tint
-40'to +200" F
+295"F

High Impact Strength, Weather Resistant
Good
Excellent
Standard
Not Rated
Not Rated
Clear hard-coat finish is on both sides.

Weld-On Cements for Plastics
Fusing teo plasac surfaces togeeher, these acdhesives make extra-strong bonds. Applicallon lemporasre range is 70* to 80' F Operaling temperature range varies wlr materials being joined. These

produds are compeant under all sate VOC riles Or efed on Odober 1, 2009, ecep in the Los Angeles area (uIess noted).
Weld-Ow 3 bonds acryc, btyrale. PETG, polycarbonale, and polystyrene to themselves. Dries dear WeM.n 4052 hoods AS acrylic, PVC, CPVC, polystyrene. adnyl to tenmsees and ead ohier.

Dries dear. WeM-O 4707 bonds ASS to ISeat Dries white. Weld-e 4807 is high steng for joining various liies of polystrene Dries white.
Weld-Os Bedns Readies
Na. Sie to Harden Full Strength
3 -FLCen 3045e. 2M49dls. tmtm4052 1-plt Can 15 min 7 days 7352A11 1
4052 1-gat Can 15 min. 7 days 7352A12 914707 1-1. Can 10mln. 24-72 hrs. 7352A17t 1
4707 1-gat Can 10 rin. 24-72 hrs 7352A19t 6
4807 I-pt Can 10-15min 24-72 hrs 7352A24 1
4807 1-gal Can 10-15 min. 24-72 hrs. 7352A26 6
T This product Is compliant under al state VOC rules in eed on
October 1.2009.

adi

8.00
021
3.96
.30
3A7
3.91
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Part Number 8707K65 $350.19 Each

C6. Plastic Cement
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C7. GMW Three Axis Magnetic Field Sensor

Ametes Magnetic Field Sensor -3 Axs MFS-3A
The high magnetic field sensitivity, accurate calibration, high
stability and high signal output of the Sentron CSA-lV Hall effect '

IC enable it to be conveniently used to monitor the extended fields
from magnetic items and electric equipment. As a demonstration of
the CSA-lV capability, three CSA-lV with sensitive axes mutually
perpendicular, are combined in a compact module as the MFS-3A.
Three output voltages Vx = S*Bx, Vy = S*By and Vz = S*Bz are
generated proportional to the magnetic flux density components BX,
By and Bz with the sensitivity S = 280mV/mT over the field range of
*7.3mT. This enables calculation of the total magnetic flux density,
B = (Bx + By2 + Bz 11=Vx4 Vy2 +yVz2)1mS.

Specifications Z A
* Measures Bx, B, BzC
* Suitable for environmental magnetic fields
* Field range: *7.3mT (+/-730)
* Resolution: IOpT (+/-0.1G)
* Three linear analog outputs Vx, Vy, V2 of O.5V to 4.5V 0.0 C

* Sensitivity: S = 280mV/mT
*Accuracy: *3%
* Angular alignment: +3deg
* Frequency response dc to 100kHz (-3dB)
* Small size: 10 x 13.5 x 12mm (0.39 x 0.53 x 0.47inch)
* Low weight: 2.5g (0.loz) c
* Low power: 36mA max at 5V Xx

(Under PCB)
A=~

Applications:

* Quality assurance of magnetized materials and items such as sealing strips and permanent magnets by fast
and complete characterization of the external magnetic field.
* Detection/separation of magnetic and non-magnetic materials by monitoring the modification of the local
or imposed field caused by magnetic item/items.
* Non-contact, non-invasive and continuous "Condition Monitoring" of electrical motors, generators.
transformers or inductors by comparing the amplitudes of selected external or "leakage" field spectral
components with initial or reference values. Quality assurance of electrical components by leakage field
measurement.
* Independent monitoring of the ON/OFF status of large magnets with extended fringing fields. The MFS-
3A output can be used to operate warning indicators and/or interlocks. Resolution of*lOpT readily allows
measurement of the 5OOpT (5G) safety level applicable to Magnetic Resonance Imagers (MRI).
*Wearable, battery operated "Personal Magnetic Field Detector" to immediately generate a warning to the
wearer that they have entered a region of increased magnitude magnetic field.
* Magnetic field detection and warning or interlock to be incorporated in magnetically sensitive equipment
such as time standards or patient support equipment that may be used in the fringe field of an MRI or other
large magnet.

Revsion 07 May 2007 MFS-3A
Europe - Senls GnbH: Technoparkstrasse 1, 8005 Zurich, Switzerland. www.senis.ch. +41(79) 366-8756
The Americas - GMWAssociates: 955 Industrial Road, San Carlos, CA 94070, USA. www.gmw.comt +1(650)8024292
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Sentron CSA-1VGMW RevIsed Jan 2005

CSA-1V

Current Sensor

Features: Applications:
* Sensitive to a magnetic field parallel to * AC and/or DC current measurement

the chip surface * Wide-Band Magnetic Field
* Very high sensitivity Measurement
" Linear output voltage proportional to a a Battery Chargers

magnetic field * AC-DC Converters
* Wide-band: DC to 100kHz 0 Motor Control
* Very low offset and offset-drift
* Very low noise
* Isolated from current conductor
* Surface mount SOIC-8 package

General Description

The CSA-1V is a single-axis integrated mag netic field sensor based on the Hall effect. The circuit ih
fabricated using a conventional CMOS technology with an additional ferromagnetic layer. The
ferromagnetic layer is used as a magnetic flux concentrator providing a high magnetic gain. Therefore
the circuit features very high magnetic sensitivity, low offset, and low noise.
The CSA-1V is packaged in a standard SOIC-8 full plastic package. This package provides:

" highest isolation for applications with the current conductor on the PCB (up to 600V)
* highest sensitivity for applications with the current lead above the chip.

Package: SOIC-8

Pin Out:
1 A OUT, analog sensor output
2 \Sn pos. supply voltage
3 Not connected
4 PV, programming voltage
5 GND, supply common
6 PD, programming data
7 PC, programming clock I
8 COOUT, common output

Note 1: Used for factory programming

Manufactured by: sentron AG (A Melexis company) * 5aarerstrasse 73- * 6300 Zug switzerland * Tel: +41 (41) 711
sonfl . pa +4 t 711 1as wwIie..n n .*,arepre nna .

GMW Associates. 955 Inaustriat Rd, San Carlos, CA 94070
www.gmw.com. Tel: (650) 802-8292. Fax: (650) 802-8298. Email salesegmw.com
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Sentron CSA-1 VG M W Revised Jan 200

Absolute Maximum Ratings

VSUP Supply Voltage 0 8 V
T Ambient Temperature -40 +150 C

Recommended Operating Conditions

VSUP Supply Voltage 4.5 5 5.5 V

IOUT Output Current -1I mA

CL Load Capacita-nce 100pF

Electrical Characteristics
At T=-40C to 1509C, Vsup=4.5V to 5.5V if not otherwise specified.

ISUPSupyCret1 16 m

Vcommon Common (reference) VsuP/ 2  VSUpI 2  VSUp/ 2  
IOUT=OMA

Output Voltage 2 -20mV +20mV
BW Bandwidth: DC to 100 kHz

tR Response Time 6 Ps
Note 2: Rationetric (proportional to Vs")

Characteristics of the Linear Magnetic Field Sensor 4
With VsUp- 5V and in the temperature range -40"C to 1500C, if not otherwise specified.

S Magnetic Sensitivity 270 280 290 V/T B = BL
AS/SAT Magn. Sensitivity - 0.02 0MC lour=0mA

Temperature Drift 0.02 1 T=-20*C to 125*C
Voff Offset Voltage -15 0 15 my B=OT, lout=OmA,

T=-20*C
80ff Equivalent Magnetic Offset -50 0 50 uT BOT, IOUT=OmA

3) T=-20*C to 80*C
AVoff/A&T Offset Temperature -Drift -0. ** - r M=rC B=OT, 1.OUOm,

BFS ullSc -- I mT T=-20*C to 125*C
BB F-ull Scile Magnetic Field -/r - .5 m

Range
BL Linear Magnetic Field - 5 MT

Range
NL Non Linearity 0.5 1 - B

ABnise input referred magnetic noise 125 nT/4Hz f10Hz to 10kHz
spectrum density (RMS)

Note 3: Ratiometric (proportional to V aur)
Note 4: When the analog output pin AOUT is used in differential mode (Is Vout = AOUT - COOUT)
Note 5: Device saturates for B>B 6 but Is not damaged
Note 6: Specification correction: Was 300+A 10 V/T. Now 280+- 10 V/T. All parts manufactured to date, have been calibrate
to 280+/- VIT

Manufactured by: sentron AG (A Melexis Company) e SaarerStrasse 73 a 6300 Zug * Switaarland * Tel: +41 (41) 711
9470 P..- +A1 fai0711 91al -nn anrnn *.I...9...n..a *h -

GMW Associates. 955 Industrial Rd, San Carlos, CA 94070
www.gmw.com. Tel: (650) 802-8292. Fax: (650) 602-8298. Email salesagmw.com
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Sentron CSA-1V

Revised 
Jan 2005

Block Diagram

VDD ne

PV PC PD

Fig. I Block diagram of CSA -IV

IMPORTANT, For reliable operation within the specifications the sensor must be connected
as follows:

Connect Pin 6 (PD) to Pin 5 (GND)
Connect Pin 7 (PC) to Pin 2 (Vdd)
Connect Pin 4 (PV) to Pin 2 (Vdd)
Put a 100nF capacitor close to the chip between Pin 2 (Vdd) and Pin 5 (GND)

VSLP

CSA-1V
1 A-Out CO OUT 8

2 Vdd PC 7

3 n.c. PD 6

4PV GND 5 .GND

GNDG

If the supply voltage is disturbed by EMI It can be useful to place a second capacitor (100pF,
ceramic) parallel to the 100nF capacitor.

Fig. 2 Connection diagram of CSA-1 V

Manufactured by: Sentron AG (A Melexis company) * Baarerstrasse 73 @ 6300 Zug a Switzerland * Tel: +41 (41) 711
917fl * Fw- 441Mi1714 94HR ww matrn h * alat antrann h

GMW Associates. 955 Industial Rd, San Carlos, CA 94070
www.gmw.com. Tel: (650) 802-8292. Fax: (650) 802-8298. Email saies@gmw.com
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GMW Sentron CSA-1V
Revised Jan 2005

Package Information SOIC-8

8 7 6 5 1
0.158 (4.01) 0.244 (6.
0.150 (3.81) 0.228 (5.

1 2 3 4

0.050 (1.27) 0.018 (0.46) 0.
0.014 (0.36) M

0.022 (0.56) 0.059 (1.50) 0.0
0.018 (0.046 0.049 (1.24) 0.0

0.197 (5.00)
0.188 (4.78)

B: Magnetic sensitive direction

.20)

.79)

015 (0.37)
in

69
53

87 6 5
i

11 Bf34

(1.75) 0.012 (0.3)

(1.35) 1450

0.009 (0.23)
0.007 (0.18)

Fig. 3 Package information and magnetic sensitive direction

Ordering Information

Order part number: CSA-1 V-SO

Parts are supplied on tape and reels.

Quantiites below 2600 pcs are available in cut reels to the quantiity ordered
Quantities above 2600 pcs are available In complete 13", 2600 pc reels
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Manufactured by: Sentron AG (A Melexis Company) * Baarerstrasse 73 6300 Zug * switzrfland * Tel: +41 (41) 711 1
3170 * Payr +51 fA17 918833 unaret.rn h * mal a~nran eh .

GMW Associates. 955 Industrial Rd, San Carlos, CA 94070
www.gmw.com. Tel: (650) 802-8292. Fax: (650) 802-8298. Email sales@gmw.com



C8. Probe Holder Construction Drawings
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C9. Brookfield LV1 Spindle Disk Attachment
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C10. Dimensions of Inner Fluxball
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C12. LVC 5050 Power Amplifier

There are two amplifiers in the LEES HVRL laboratory. Although they look identical,

one is actually an older model where the front panel controls have been disabled. The only

voltage controls are the on/off switch and the rear gain selector.

APPLICATION
The LVC 5050 is a general purpose,
high voltage, medium continuous W4,/$ - A"

current, linear power amplifier. It

works best when driving loads of

2 - 16 ohms. The LVC 5050 works

well with either pulsed or

continuous test signals or AE Techron, Inc. LVC 5050
environments that have both

conditions. The LVC 5050 has two (2) separate channels that can be operated independently or combined for greater

maximum voltage or current. In Bridge-mono mode the available output voltage doubles. In Parallel-mono mode the

amplifier operates with twice the available output current

FEATURES
1 Bi Level TM Power Supply. amplifier optimizes itself for either, high pulse voltage or low voltage high current,

dynamically. The LVC 5050 produces less heat, higher long term power, with no added distortion.

0 Output of 20.0 amperes rms, or 106 volts rms, per channel depending on load.

N Frequency bandwidth of DC to 20 kHz at full power.

0 Option of controlled voltage, or controlled current operation, modes changed via a jumper

b User-adjustable voltage or current limiting

b Remote switching to standby mode by contact closure

0 External monitoring of voltage and current output

k Equipped with circuitry to protect the amplifier from input overloads, improper output connection (including shorts and

improper loads), excessive temperature, voltage or current.

0 Shipped ready to operate using single-phase, 120-volt AC mains. Also available in 100, 200, 208, 230 and 240 VAC
versions.

k Installs easily into a standard 19 inch rack, or stands alone for bench top operations

INDICATORS AND CONTROLS
k Front panel LEDs indicate signal presence and output

overload . NO - / -

> A pushbutton power "On/Off" located on the front
panel

k Two gain controls on the front panel for controlled

voltage applications

P A back panel slide switch to lift signal ground from chassis ground

k A back panel slide switch to choose between 2 channel, bridge mono and parallel mono operation

Call us or visit our website! When your project or product requires a low noise, low distortion, high power amplifier

solution, contact AE Techron Inc. We are happy to help.
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PERFORMANCE (one hour continuous ratings)

Frequency response
+/- 0.1 dB from 20 Hz to 20 kHz at I watt

Phase response
+/- 10 Degrees (10 Hz to 20 kHz at I watt

Signal-to-noise ratio
At 26 dB gain, better than 105 dB (A-weighted) below
full output

THD,
Less than 0.05% from 20 Hz to I kHz increasing
linearly to 0.1% at 20 kHz at full output

I.M. Distortion

<0.05% from 410 milliwatts to full output at 26dB gain,
with and 8 ohm load

Slew rate
> 31 V per microsecond

Load Impedance
Rated for 16,8,4 and 2 ohm use. Safe with all load types
even reactive ones.

Input Impedance
Greater than 10K ohms, balanced, and 5K ohms
unbalanced.

Output impedance
Less than 10 milliohms in series with less than 2
microhenries

OUTPUT POWER LVC 5050
40 mSec 1 Hour Continuous

V Ohms Watts Volts Amps Watts Volts Amps

o 2 2505 71 35 800 40 20

s 4 1940 88 22 576 48 12

8 1270 101 12 1205 98.2 12

16 702 106 7 702 106 7

40 mSec 1 Hour Continuous

Ohms Watts Volts Amps Watts Volts Amps

4 5320 146 36

C 8 3003 155 19 3003 155 19

16 2036 180 11 12036 180 11

40 mSec 1 Hour Continuous
0C Ohms Watts Volts Amps Watts Volts Amps
0

1 5320 73 73

2 4045 90 45

4 2670 103 26 2416 98.3 25

8 1378 105 13 1324 102.9 13

PHYSICAL CHARACTERISTICS

Chassis: The Amplifier is designed for stand alone, or rack mounted, operation. The Chassis is black steel with a silver
finished aluminum front panel. The unit occupies three EIA 19-inch-wide units.

Weight: 77 lbs. (35.2 kg), Shipping 88 lbs. (40.2 kgs)

AC Power: Single phase, 120 volts, 60 Hz, 30 amperes ac service. (Note: 100, 120. 200, 208, 230 or 240 volt, 50-60 Hz
models are available Call for specifications.) US models come with 3 blade NEMA TT30P plug.
Cooling: Forced air cooling from the front, through removable filters, to the back.
Dimensions: 19 in. x 16 in. x 5.25 in (48.3 cm x 40.3.0 cm x 13.3 cm)

SUPPORT
When you purchase an AE Techron amplifier, a full complement of
technical and factory support personnel join your team. AE Techron Inc.
provides:

k Applications engineering for your technical questions and customized
product needs.

k A one year limited warranty to protect your equipment investment.

I A fully equipped service center to keep your amplifier operating at
original performance requirements.

AE Techron Inc.
2507 Warren Street

Elkhart, IN 46516 USA
Phone: 574-295-9495

Fax: 574-295-9496
E-mail; Sales@aetechron.com

Web: www.aetechron.com
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C13. National Instruments PCI-6036E DAQ card

YNATONTINFRMENTSm

Tedhical Sales
United States
(8) 531-285
infoei.com

NI PCI-6036E

200 kS/s, 16-Bit, 16-Analog-input Muliuction DAQ

* FREE award-wnning global services and support at ni.com/support

* Consider NI M Series for 16-bit resolition, 125 MS/s, aid similer costs ith
the PCI-6251.

- Lab\MEW, LaWridows/CM, andMeasurement Studio for Msual Basic and
Msual Studio NET Integration

- Two 16-Uit analog outpus; eight digital 10 ires; two 24-bit counters
- NIST-traceable caibration certlicate and more than 70 signal condtioning

options
" Induded NI-DAQmxdriver sotvere and additional measuremert services

Overview
National trnaninrt recomunid M Sades OAQ ad NI4JAQnumdw ddetiesarfar newapplicabon, increase accuracy and
purfrm 164it menssem rts at 1.25 Weu Ih the PCIl4261.

Add sensor and high-Wvltage measurement capabilty to your E Series device wth National Instruments SCC or SC)I sigral
conditioning. The National Instrumenrs PCI6036E is a lowcost DAQ board that uses E Series technology to delverreisble, 16-bR
acquisition for a vde rangs of appications. The M PCI.03E has sixteen 16-bit analog inputs and t 16-bi analog outputs. In
addlion, it haseight digital 10 lines and two 24-bit, 20 MHz counterAimers. Depending on your hard drhe, the PCI-603E can stream
to dalk at rates up to 200 k S/s.

Using NI hardwe and diver sotwAre options, you have leidble OS, appication development envonmert, and appication sotvae
dicoices. Complele your DA system wih NI signal condtloning to measure virtualy anytype of sensor and voltage.

Specifications

Specfications Documents
" DetaledSpecilications
- Dat Sheet

Specfications Summary

Specfications Summary

PCl-603E

Multinon Data Acquision

PCI

543

Product Narre

Product Famlty

FornFactor



Operating System/Target

LabVIEW RT Support

DAQ Product Family

RoHS Compliant

Analog Input

Channels

Single-Ended Channels

Differential Channels

Resolution

Sample Rate

Max Voltage

Maximum Voltage Range

Maximum Voltage Range Accuracy

Minimum Voltage Range

Minimum Voltage Range Accuracy

Number of Ranges

Simultaneous Sampling

On-Board Memory

Analog Output

Channels

Resolution

Max Voltage

Maximum Voltage Range

Maximum Voltage Range Accuracy

Minimum Voltage Range

Minimum Voltage Range Accuracy

Update Rate

Current Drive Single

Digital i/O

Bidirectional Channels

input-Only Channels

Windows, Real-Time , Linux, Mac OS

Yes

E Series

No

16, 8

16

8

16 bits

200 kS/s

10V

10V, -10V

7.56 mV

50 mV, -50 mV

0.061 mV

4

No

512 samples

2

16 bits

10V

10 V, -10 V

2.417 mV

10V, -10V

2.417 mV

10 kS/s

5 mA

8



Output-Only Channels

Number of Channels

Timing

Logic Levels

Input Current Flow

Output Current Flow

Programmable input Filters

Supports Programmable Power-Up States?

Current Drive Single

Current Drive All

Watchdog Timer

Supports Handshaking 110?

Supports Pattern 1/0?

Maximum Input Range

Maximum Output Range

Counter/Timers

Counters

Number of DMA Channels

Buffered Operations

Debouncing/Glitch Removal

GPS Synchronization

Maximum Range

Max Source Frequency

Minimum Input Pulse Width

Pulse Generation

Resolution

Timebase Stability

Logic Levels

Physical Specifications

Length

Width

0

8,0,0

Software

TTL

Sinking , Sourcing

Sinking , Sourcing

No

No

24 mA

192 mA

No

No

No

5V,OV

5V,OV

2

1

Yes

No

No

5V,OV

20 MHz

10 ns

Yes

24 bits

100 ppm

TTL

17.5 cm

10.6 cm



C14. National Instruments PCI-6035E DAQ card

WNATIONAL Tecihnicall Saesm
United States
(866) 531-6285
info@ni.com

NI PCI-6035E

200 kSls, 16-B3t, 16-Analog-Input Multifunction DAQ

- T s 1 2-bt analog outptts; 8 digital 1/ lines; two 24-bit counters
" Consider NI M Seriesfor 1 6-bit resoition, 125 MS/s, and similar costs vth

the PCI-6251.
SInducded NI-DAQmxdrver soitvare and acditional measurement services
- LabVIEW, Laebndoe/CM, and Measssemert Studio for V4sual Basic and

Vtsual Studio .NE T Integration
" NIST-traceatie calibration certilicate and more than 70 signal condtioning

options
- FREE award-wrining global services and support at ni.com/support

Overview
National inaumtae recommeulnd M Seies DAQ and NI-DAQr driver autirefor newapicflomu. Increase accuracy and
performn16it smeesurments at 1.26 iS/s ia N te PCI-8261.

The National Instruments PCI-6035E lowcoDt date acquisition board uses E Seriestecnologies to deliver reliable measurements in a
vrde range of applications. You get up to 200 kS/s sampgling and 16-bit resolution Wth 16 single-ended or eight differential analog
inputs. The N PCl-603 E also teaturestwo 12-bit analog cutputs. Depending on your hard dive, the PCI-6035E can stream to disk at
rates up to 200 kS/s.

Complete your D AQ sysiem ith N signal conditioning to measure virtually any tye of sensor and voltage.

Specifications

Specifications Documents
* Detailed Specilications
- Date Sheet

Specfications Summary

SpecIfications Summary

GenraW

PCI-6035E

Multifunction Data Acquisition

PCI
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Operating System/Target

LabVIEW RT Support

DAQ Product Family

RoHS Compliant

Analog Input

Channels

Single-Ended Channels

Differential Channels

Resolution

Sample Rate

Max Voltage

Maximum Voltage Range

Maximum Voltage Range Accuracy

Minimum Voltage Range

Minimum Voltage Range Accuracy

Number of Ranges

Simultaneous Sampling

On-Board Memory

Analog Output

Channels

Resolution

Max Voltage

Maximum Voltage Range

Maximum Voltage Range Accuracy

Minimum Voltage Range

Minimum Voltage Range Accuracy

Update Rate

Current Drive Single

Digital I/O

Bidirectional Channels

input-Only Channels

Windows, Real-Time , Linux, Mac OS

Yes

E Series

No

16, 8

16

8

16 bits

200 kS/s

10V

-10 V, 10 V

7.56 mV

-50 mV, 50 mV

0.061 mV

4

No

512 samples

2

12 bits

10V

-10 V, 10 V

8.127 mV

-10 V, 10 V

8.127 mV

10 kS/s

5 mA



Output-Only Channels

Number of Channels

Timing

Logic Levels

Input Current Flow

Output Current Flow

Programmable Input Filters

Supports Programmable Power-Up States?

Current Drive Single

Current Drive All

Watchdog Timer

Supports Handshaking 1/0?

Supports Pattern 1/O?

Maximum Input Range

Maximum Output Range

Counter/Timers

Counters

Number of DMA Channels

Buffered Operations

Debouncing/GlItch Removal

GPS Synchronization

Maximum Range

Max Source Frequency

Minimum Input Pulse Width

Pulse Generation

Resolution

Timebase Stability

Logic Levels

Physical Specifications

Length

Width

0

8,0,0

Soitware

TTL

Sinking , Sourcing

Sinking , Sourcing

No

No

24 mA

192 mA

No

No

No

OV,5V

0 V, 5 V

2

1

Yes

No

No

0 V, 5 V

20 MHz

10 ns

Yes

24 bits

100 ppm

TTL

17.5 cm

10.6 cm



C15. National Instruments BNC 2120

1 68-Poltion -O
Connector

2 Power Indicator LED
ARRINAL3 Quadrature Encoder

A1 S(0) Knob
()AA SNC-2120 2 4 Quadrature Encoder

180 Output Screw

PP1

3 e PFOITemial

E6 DIOLEState
4, AES-Indicators

7 DIO Screw Terminals
8 Function Generator

Amplitude Adjust
Knob

9 Function Generator
gas ( M WFrequency Adjust

P1 2 V:9 (2 Knob
12 1& 10 S1ne-T00angle

PF 4' Waveform Selection
PF1 6 E)Switch

~ 11 Frequency Range
_____ 7-Po Selection Switch

oF 9 ____ D ;; 12 Floating Source (FS)/
ME) Ground-Referenced

E3 __& Source (GS) Switch
M asa 13 BNC Connector

14 BNC/Thermocouple
Selection Switch

1 BNCTemprature
Reference Selection
Switch

16 Temperature
O u Reference

17 Thermocople Input
Connector

18 Resistor
Measurement Screw

is Terminals
19 Resstor/BNC
SSelection Switch

10v S0ne/Tiang
WaveormSeletio

Figure 1. BNC-2120 Front Panel

1NC-2120 Installation Guide 4 Su c om
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RH Series Aluminum Housed
Wirewound Resistors
Specificatiam:
- Taminal.: Copper cid steel ore - Tenuhal finih: Tin/Lead SC40 Sib with nickel

inderphte, Lerdfre? NJPd/Au OperlingTemperatur Range: -6PC-20P3
Fatmrear
* Molded wnstnttion br total ewironnet protecticn - Compleia welded ronstmction
'Meetsapplicablorequirernerts of MIL-PRF-185/6 -Maurts on chssis toutiireheit-Eink
effert aFcellanistabilty in operation (<1% change in -esistanct) D

Terperuare wairt
DimenuioIo mm) tellirnt Ti m

series A 3 2 0 (ppnPD) Dufroad
11.20 10.41 9.13 28.G0 .100-.C00/2100

I-005 11.29 16.41 5.13 28.5 1 DO - .CQ / t5C
1_____ 12d 1 b.41 153 20W~b 1011 IW l f1

1427 2C.32 991 34.93 .230/*100
RI-01) 14.27 2C.32 991 34.93 1.0-2.00/ 5[

14.27 2C.32 931 34.93 100 - 25K I t2(
18.26 27.43 13.87 49.23 .13/ 100 for6 ar

RI-025 1826 27.43 13.87 4923 100- S.00I/t5
18.28 27.43 13.87 49.23 120- S Kr/ 0

39.67 29.96 16.49 70.64 .160- .60 1 E00
RI-06) 39.67 28.96 15.49 70.61 13D - 8.00 / i6C

30.67 28.06 15.40 70.64 1CO-25K0/.i20

Resitaice ValUes Resitanceilahet
IHGl 1%. RHA R110110.1. ME

10* 10 100 2.014 .20 25* 75* 882* 1 K*
but 12 1bL* 10K 1* N3* "l@O 1.CK4 2bK+

1.0* 25 30C* 15K+ 2.3+ 35+ 300* 2.3K
5.0* 32* 895* 10* 50+ 330 2.5K

Resitance Vahlies Realonce Values
All025,1%, AlC AllOWi, 1% RHD

.10+ 4 5 10+ 1.0<* .15 .50+ 2.G+ 0.0 20 2C0* 20K
109 209 2039 8.0* .20 1.0 3.3* I 0 20 8009
30* 25* 300 25 1.5* 5.0* 12* 400 50

12 40 502* .30 2.0* 6. 16 100D 10K

PMeW Value DilI-Key Pice aecl
DesaiptRa Rsling (IN) amge I0)) Pat loe -1 in 5A

111005, 1%AIL 5 (7.G)4 1-2,100, 208 RIlA-:Value-N) .G 322 8.31
IH0%0, 1%, 1(4 5(7.5)1 10K RHA-1OK-ND E.55 320 2.99
11-1025.1%. 413 25 40.300 RHS-:Value!-NJ L.15 374 3.49
1H05C. 1%, IH) E0 .15 - .0 fHDjVduci ND 0.79 S so 8.22

-lHub, 1%, -1H. tO 1U,1-30 1.0K HHLIValueel-NJ I.1 4b9 4.29

Rohs Compliant
4100E, 1%. "l-1 5 (1.6)4 .10 - .EO RHR P(Valua)-ND 3.45 311 2.90

1H030, 1%, 1HA 5(7.5)f 1.0- M RHRA-(Valus)-ND Z.25 23 2.73

1100, 1%, *N 5(7.53 2DK- 10K RHRA-(Valus)-ND 223 291 2.71
;H00E, 1%, "I4'e 5(7.6)# 15K RHRA-1SK-ND 0.39 304 2.84

M110 IC, l16, AH 10 (12.)# .20 RHR0-lh-iD t.40 576 5.38

101C.1%, ;H3 10 (12.E)9 1.0-1.0K RHRB-(Valeu)-ND 228 205 1.92
4101C.1%. 1H3 10 (12.E) 2DK- 10K RHRP-(Value)-ND 2.39 214 2.30

'IHO IC, 1a, 1115 10 (12.2)$ 25K RHRE-25K-ND 12 295 2.6
IH025,1%, H3, 25 :0 RHR-.10-4D 723 651 6.37
1H07F.1%. IH' 26 1n- 16K RHRr-(Val)-ND i7R 840 3189

1H021, 11A, RHII 25 8.3K RHRO-8DK-ND .03 273 2.55
105C, 1%, ;H) 0 .15 -. E0 RHRD-(Vlue)-D .8 799 7.46

1105C.1%. 1J EO 1.0-1.0K RHRD-(VaIe)-JD .33 417 3.9

11105C, 1%, 113 CO 2.5K RIIRD-2DK-NC E.93 354 3.30

0 Fcr conleo partnumber. substitute vaue from Resstgne Value Cl-rtfor (Valu). * RaKE Camolwa( OIy
jPcwer roting irdicates watthge prited 0l parts, new corstracton allows these resistors to )e ,ied at h'her wattge
(listed h pareihses) but wil only be printed with tie higher wattage an cusormer request.
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C17. GMW Sensor cable

Part Number 76731K43

Type Multicondudor Cable ar
Multiconductor Cable and Cord Type Flexible Cable

Flexible Multliconductor Cable Type Continuous-Flex
Conpnuous-Flex Multicondudor Cable Type Standard

Volts 300 VAC
Amps 4

Grounding Wire Has a greenyellow grou

Gauge (AWG) 20
Number of Condudors 12

Outside Diameter .48'
Lenglh Cut-to-length (per foot)

Maximum Continuous Lenglth 100*
Shielded Shielded

Conductor Type Stranded
Conducor Material Copper

Conductor Insulation Material PVC
Jacketbmaterdal PVC

Jacket Color Green
Insulation Cord Color(s) Black

Temperature Range +23' to +158' F (-5" to+
Specifications Met Canadian Standards As

Laboratories (UL)
CSA SpedlcaUon CSA Certfied, FT1 Veri

UL Spedtcalon UL Recognized

1-99 Ft. $4.87 pei
100 or more 54.07 pei

d Cord

und wire. Total number of condudors Indudes the ground wire.

70' C)
sociation (CSA). Conformite Europeene (CE) Approved, Underwriters

cal Flame Test

C18. Enclosure for Series Capacitors for Resonant Operation of fluxball

Instrument Boxes I®oisA
Economiul cas mokled of high impact mate ri21.
Mating cover has interloc.king flange on lid. CasesLpplied
counterstnk holes for flLsh mounting. Intemal with cover
grooved gLides to hold PC boards and ciruit and mounting
cards. from .062 to .093 thick. IdealI for prototype
or production Lsage. e Low cost - Sturdy
constrcion

Dimensons
Idies (nm) Cslocr Digi-Key Pies Each

A B C Malarial Pat le. 1 10 100

3.75 (95.25) 6.25 (159.75) 2.00 (50.9D) BlzkABS 707K-ND 14.04 13.04 12.02
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C19. Panasonic AC Film Capacitors for Resonant Operation of Fluxball

Panasoni1 AC Film Capacitors
Stack Type: Parasonic's 'stack type" construction offers s ignificant .167 (4.8) Quick
reduction in case siza (compared to oil-filied car type) with a built-ir' Connect Terminal
mountirg foot C-
Features: * Compact size compared to il-filled type capacitors * 0.187 t=-
irch (4.75mm) tarmirals stardard (0.250 irch [6.35mm] available) - 1go' E
200, 2M0 are stardal voltages * U.L 810 (Filet E76560) and C. S.A listed 4 - -
(CtA.-C22.2 No. 0-M91 File t LF008-17) - Jig stardard is available. (JIS C
400) o Primary appl icatiors: refrigerator., motor rur, lighing, etc. -- Flame 04.3 H I- D -
retardant plastic case is rated 4V-0 -B

Voltage Cap. DAltins (mm) DIui-w I Pricing panDsnie
VAC pF A B C D E F H PartNo. 1 10 100 500 Partkot

Wound TW -G Case
10 49.7 48.3 24.0 22.5 34.5 34.5 11.5 P941i-ND+ 6.75 54.00 459.00 2025.00 J6251106-64

250 12 50.0 48.5 26.7 25.3 37.5 38.0 11.5 P9412-ND+ 7.62 61.40 521.90 2202.50 JS251126-&
15 50.0 48.5 30.5 28.8 41.0 36.0 11.5 P9413-ND 9.08 72.60 617.10 2722.50 JS251156-B4
4 49.7 48.3 24.0 22.5 34.5 34.5 11.5 P9659-ND* 7.35 62.80 533.80 2355.00 DS441405-BA

440 5 50.0 48.5 26.7 25.3 37.5 32.0 11.5 P9660-ND* .3. 67.00 569.50 2512.50 D8441505-BA
6 50.0 48.6 30.5 28.8 41.0 41.5 11.5 P9661-ND+ 9.58 76.60 651.10 2372.50 D441605-BA

C20. Stir Bar

VWR@ Spinbar@ Stir Bars, Octagon
Suppher: VWR International

Teflon@ resin-coated, octagon-shaped stirring bars have . molded-on pivot ring.

VWcaktaog*LxDia., mmi

12.7 x 3 (11 x 21,)*

12.7 x 7.9 (1/2 x1 ,)

12.7 x 9.5 ('/ x 3,)

15.9 x 7.9 (1, x s53
15.9 x 9.5 (1 x a4)

22.2 x 7.9 (7/ x 3/,)

22.2 x 9.5 7/a X Ya)

25.4 x 7.9 (1 x 5/2)

58948-091

58948-116

58947-120

58948-218

58947-122

58947-106

58947-124

58948-13

Case of 50

Each

Case of 50

Each

Pice

$311.15

$9.31

$299.69

$9.99

$8.85

$4.17

$5.50

$4.52

$5.65

$S.54
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C21. Alpha-Core Laminax Copper Foil Used for Third Coil

B-Series

The metal foil is bonded to the insulator. Dimensions and the width of margins may be vaned as required. Film
backed foil is used as a winding conductor in transformers and coils, replacing interleaved winding of two
individual materials. It is also used as electrostatic and grounding shields in many types of equipment.

B 0.500" Wide Copper Foil $24.04 (CT Sales Tax)

B0500x0625
To Customize cal 800-836-5920

0.0014"-0.010" thlick Fod insulated with 0.625" wide Polyester, Nomext or Kapton@ Fft

C22. Permanent Magnets by K&J Magnetics, Inc

Home * NEODYMIUM DISC MAGNETS * DXo2

1 100 t roll
weight 0.32 lbs

0.006" thick (+$25.93) -

Po lyester 1.2 mil 

Description

" Dimensions: 1 dia. x 1/8" thick
" Tolerances: *0.004" x 40.004"
* Matenal: NdFeB, Grade N42
* Plating/Coating: Ni-Cu-Ni (Nickel)
* Magnetization Direction: Axial (Poles on Flat Ends)
* Weight: 0.426 oz. (12.1 g)
* Pull Force, Case 1: 12.60 lbs
* Pull Force, Case 2: 57.00 lbs
* Surface Field: 1601 Gauss
* Max Operating Temp: 176eF (800C)
* Brmax: 13,200 Gauss
* BHmax: 42 MGOe

Here is a strong NdFeB disc in the very popular 1" diameter size. The nice thin shape allows the DX02 to be used
inconspicuously for a wide array of applications.

This size is also available in grade N52 as part number DX02-N52 and in grade N52 with Gold plating as part
number DX02G-N52.

DX02: 1 for 32.00 W
Quantity: 1

Home a NEODYMIUM DISC MAGNETS * DX04

0X04: 1 for S4.00

Quantity: 1

AdGtE cr

553

sacKet
Conductor

eDimensions: 1' dia. x 1/4" thick
* Tolerances: 40.004" x A0.004"

Material: NdFeB, Grade N42
a Plating/Coating: Ni-Cu-Ni (Nickel)
* Magnetization Direction: Axial (Poles on Flat Ends)
* Weight: 0.851 oz. (24.1 g)
* Pull Force, Case 1: 27.20 lbs
* Pull Force, Case 2: 59.00 lbs
a Surface Field: 2952 Gauss
* Max Operating Temp: 176eF (800C)
* Brmax: 13,200 Gauss
* BHmax: 42 MG~e

These sturdy, NdFeB magnet discs are incredibly strong and must be handled with caution. They are grade N42 and
triple plated (like all of our nickel plated magnets) with nickel-copper-nickel plating. Each of these discs has a pull
force of over 25 lbs.

This size is also available in grade N52 with Black Nickel plating as part number DX04B-N52.

I Tieetmicall Dowrikktds I



Home a NEODYMIUM DISC MAGNETS * DX04B-N52 -

* Dimensions: " dia x 1/4"thick
* Tolerances: *0.004" x &0.004"
* Material: NdFeB, Grade N52

Plating/Coatingr Ni-Cu-Black Ni (Black Nickel)
Magnetization Direction: Axial (Poles bn Flat Ends)eWeight: 0.851 oz. (24.1 g)

ePull Force, Case 1: 33.68 lbsePull Force, Case 2: 73.05 lbs
eSurface Field: 3309 Gauss

Q~j; ' fA Max Operating Temp: 176OF (800C)
eBrmax: 14,800 Gauss
eBHmax: 52 MGOe

This is a very strong and sturdy neodymium disc magnet. With N52 strength, these magnets should not be taken
lightly. They must be handled with care because they can quite easily give a nasty pinch if you get beween two of
them. They are triple plated in black nickel which gives the discs an attractive, shiny black appearance. The DX04B
is one of our best magician's magnets because of it's compact size and high strength-to-size ratio.

This size is also available in grade N42 with standard Nickel plating as part number DXO4.

DX04B-N52: Ifer

Quantity:

Home * NEODYMIUM DISC MAGNETS a DX08

* Dimensions: 1" dia. x 1/2" thick
* Tolerances: &0.004' x t0.004
* Material: NdFeB, Grade N42
* Plating/Coating: Ni-Cu-Ni (Nickel)
6 Mannetization Direction: Axial (Poles on Flat Ends)
* Weight: 1.70 oz. (48.3 g)
e Pull Force, Case 1: 44.00 lbs
" Pull Force, Case 2: 60.80 lbs
* Surface Field: 4667 Gauss
" Max Operating Temp: 176OF (800C)
* Brmax: 13,200 Gauss
* BHmax: 42 MGOe

These strong discs are very powerful and will pinch and do harm if they are not handled properly. One magnet is
capable of holding over 40 lbs of steel!

This size is also available in grade N50 with Black Nickel plating as part number DX08B-N52.

DXOB: Far.6

Quantity:

Home ) NEODYMIUM DISC MAGNETS a DX08B-N52 -

" Dimensions: 1" dia. x 1/2" thick
" Tolerances: t0.004" x &10.0014"
" Material: Nd~eB, Grade N52
" Plating/Coating: Ni-Cu-Black Ni (Black Nickel)
" Magnetization Direction: Axial (Poles on Flat Ends)
" Weight: 1.70 oz. (48.3 g)
" Pull Force, Case 1: 54.48 lbs
" Puli Force, Case 2: 75.28 lbs
" Surface Field: 5233 Gauss
" Max Operating Temp: 1760F (800C)
" Brmax: 14,800 Gauss
" BHmax: 52 MGOe

The DXO8B is the same size as our popular DXCO, but is grade N52. There is a very noticeable difference in
strength between the N52 and N42 versions of this magnet. The DX06B-N52 will pinch even harder than the
standard DX08. If you need a very powerful magnet, this is the one for you. Unbelieveably strong!

This size is also available in grade N42 with standard Nickel plating as part number DX08.

DX08-N52: 1 frillOS

A Quantity: 1
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C23. F.W. Bell Three Probe and 7030 Teslameter

-d -A __HLLI_______________________________________________MUTULL

Standard 3-Axis Probes PO

Description
The Model 7030 three-channel GAUSS/TESLA METER from F.W. Bell leads theway
forAdvanced Hal Effect Magnetic measuring technology. The easy-to-use front panel
programming feature incorporates the latest in user control operations. The 7030 is
capable of simultaneously measuring and displaying seven &rferdeparameters per
channel -flux density, frequency, temperature, min, max, peak and valey. With the
7030's vector summation feature, that makes a total of 27 different parameters.

This high accuracy instrument is fully equipped to meet most magnetic measuring
applications. Bell's exclusive dynarnic probe correcting software increasesthe 7030
measurement capabilities to make it the most versatile magneic measuring toolin
the waM.

Key features include high-resolution, Ngh-accuracy and high-speed with a largegraphic
electroluminescent display. The 7030features 50 kHz frequency response, ternperature
and frequency measurements, Auto Zero, Auto Range, Holdfunctions for Peak, Valley,
Min and Max, corrected and uncorrected outputs for each channel and Vector
Summation and angle. The Model 7030 provides the userwith gauss, tesla, O, Alm.
IEEE-488 and RS-232 communications ports and Classifier output.

The 7030 operates with Bell's fiFth generation Hal Effect probes. These probes provide
temperature compensation and measurement readings (0*C to +75*C) while
monitoring the magnetic field. The easy-to-read 1/4 VGA display is easily viewable in
most light conditions and can be customized to meet a user's specific needs.
Applications range from basic magnetic measuring to sensitive complicated three-
axis vector summing requirements. All instruments are fully CE compliant.

Features
* Bright 1/4-VGA Readout
* Large eectroluniinescent graphic display
- Over 100 standard probes avaiable
- Automatic probe coefficient correction
- Displays in Gauss, Tesla, Amp/meter or O
* Relative Mode

* Fully menu-driven for easy operation
- Auto Zero and Auto Calibration
- IEEE-488 and RS-232 interface
- CE Compliant
e Manufactured to ISO 9000 standards
e Comprehensive Technal Support
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SPECIFICATION
Ranges 300mG (30pT)* 3kG(300mT)

3G (3OOpT)* 30kG (3T)
30G (3mT) 300kG(30T)t
300G (30mT)

.* Low field probe
f High field probe

Resolution

Accuracy (Displayed Reading)
de basic
ac basic

Frequency Raing
dcmode
ac mode

Accuracy (Corrected Analog Output)
dc basic
ac basic
Frequency Range

I pG (0.lnT) to IG (0.1 mT) (Depending on probe selection)

±0.05% of reading
±2% of reading

dc to 250Hz
20Hzto 50kHz

t0.1% of range
±2% of range
deto 500Hz

Frequency Range (Uncorrected Analog Output)
dc mode dc to 100Hz
ac mode 20Hzto5OkHz

Analog Output
Output Voltage
Source Impedance
Connector

Additional Influences
Temperature Goeffident

Temperature Range
Operating
Storage

Front Panel Display

Communication Ports
RS-232

Baud Rate
IEEE-488

Protocol

Power

Width
Height
Depth

13V P. or ±10V F.S. or adjustable from 0.1 -9.9V
<100 ohms
Standard BNC

±(0.02% of reading ±1 count)/C

0*C to +50"C
-20"C to +60 0C

1/4 VGA, 320 x 240 pixels
Electroluminescent graphic display with 4 shades of amber
4.7"(119 mm) W x 3.5" (89mm) H

Standard 9-pin 'D" connector
300,600,1200,2400,4800,9600,19200,38400 bits/sec
Standard 24-pin GPIB connector
IEEE-1987,2 and SCPI-1 999

Volts: 100/120 or 220/240
Frequency: 50-60 Hz or 50-60 Hz
Current: 1.0 A (max) or 0.5A (max)

16.3" (414 mm)
5.' (132mm)
13.5' (343mm)

weight
19.6 lbs. (8.9 kg)

Shipping 25.8 lbs. (11.6 kg)

Due to continuous process linprovenient, specifications subject to change without notice,
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C25. Heat Sinks

BGA Cooling Solutions
maxiFLOWTM Heat Sink Using Thermal Tape

Theninl Resist.
0 200 LFM

Dimnaiors (1INe.)
(mm) Uijjjai iiilef Digi-oV Price Each

L W H Rw Flow PANo. 1 10 10
31 31 7.5 6.9 5.3 ATS1105-ND 9.03 5.79 4.92

32.5 32.5 7.5 5.0 4.2 ATSI108-D 9.13 5.05 4.99
33 33 7.5 5.9 4.2 ATSII07-ND 7.92 5.87 4.9
35 35 7.5 5.3 3.4 ATMi0I-ND 7.97 5.91 4.92

37.5 37.5 7.5 4.0 3.3 ATWii09-ND 7.94 5.96 497
40 40 7.5 4.5 - 3.2 ATS1110-ND 8.02 602 5.01

42.5 42.5 7.5 4.3 9.0 AT1111-ND 9.11 6.09 5.07
45 45 7.5 4.0 2.6 ATS1112-ND 9.19 614 5.12
15 15 12.5 11.7 9.4 AThSfA-ND 9.35 627 5.22
17 17 12.5 11.1 9.0 ATS1114-ND 9.45 634 5.29
10 10 12.5 10.2 9.4 ATShiIs-NO 9.52 639 5.33
21 21 12.5 7.2 5.7 ATSiiS-ND 9.62 647 5.39
23 23 12.5 6.7 5.4 ATSI17-ND 9.71 6.54 5.45
25 25 12.5 5.2 4.0 ATM 119-ND 9.79 6.59 5.49
27 27 12.5 4.9 9.9 ATI1119-ND 9.99 S66 5.55
29 29 12.5 4.5 . AT1120-ND 9.99 674 5.61
30 0 12.5 4.4 3.6 ATh1121-ND 9.07 691 5.67
31 31 12.5 4.3 9.5 ATS1122-ND 9.14 6.6 5.72

32.5 32.5 12.5 3.5 2.9 ATSIi29-ND 9.24 690 5.79
33 33 12.5 3.5 2.7 AT61124-ND 9.29 697 5.91
35 35 12.5 3.0 2.2 ATS1125-ND 9.34 7.01 5.94

97.5 37.5 12.5 2.9 2.1 ATii26-ND 9.43 7.09 5.90
40 40 12.5 2.6 2.0 ATS1127-ND 0.53 7.15 5.96

42.5 42.5 12.5 2A 2.0 ATS112-ND 0.62 7.02 6.02
45 45 12.5 2.1 1.6 ATI1129-ND 9.72 7.09 6.09
15 15 175 .7 .1 A110 9.92 7.16 1
17 17 17.5 9.3 6.9 ATS1191-ND 9.01 7.23 6.20
10 10 17.5 7.7 6.4 ATS1132-ND 10.01 7.0 626
21 21 17.5 5A 4.3 ATS1133-ND 9.71 7.39 6.33
23 23 17.5 5.1 41 ATS1i4-ND 9.90 7.46 6.39
25 25 17.5 3.9 3.0 ATSI135-ND .99 7.53 6.45
27 27 17.5 3.7 2.9 AT116-ND 10.01 7.62 6.53
29 29 17.5 3.5 2.9 AThi1i7-ND 10.10 7.69 6.59
30 0 17.5 3A 2.7 ATSfiS1-ND 10.19 7.76 6.65
31 31 17.5 3.3 .7 ATS190-ND 10.20 7.94 6.72

32.5 32.5 17.5 2.7 2.1 ATS1140-ND 10.40 7.91 6.79
33 33 17.5 2.7 2.1 ATM1i41-NJD 10.44 7.95 6.91
35 35 17.5 2.3 1.7 ATSi142-ND 10.51 9.00 6.96

97.5 37.5 17.5 2.1 1.6 ATS1143-ND 10.60 9.07 6.92
40 40 17.5 2.0 1.6 A 144-ND 0.Z72 9.14 S.99

46 1",_ _ - % 143 3 7

C26. Kapton Tape

High Temperature Tape
Vig 0 TiprtrKapltnTap 2.7-mil, AMber KAPTON1 Pol6id F ~nilmiqcng AdhmiA i,? X E kG M5;Z kW1144D 2660419 1/2 y,

Hbh Temperature Kapto. Tape. 2.7-mu, Amber KAPTON PolijMide F, bilicone Adhesive 3
1
4" X 36 yds. SM541834-ND 39.90 - 5413 3/4

Wave bolder Tape. Low Static. 2.7-mil. Amber Polyimide Film, Silicone Adhesive 1/2"x 36 yde. 0NM59191241D 28.65 - 5419 1/2'
Wave bokler Tape. Law Otic. 2.7-mil. Amber Poliimkie Film, biliconme Adhesive a/4"x 3syds. AM5919344JD 40.93 - 5419 3/4"

Wave bolder Tane, Water-Soluble, PVA Film Backing, Water-soluble byithetic Adhesive 1/2"x36yds. SM541412ND 27.07 - 5414 1/2"
Wave oklderTape. Water-boluble. PVA Film Backing, Water-soluble Synhett Adhesive 3/4"x 3Syds. S54149441D 46.85 - 5414 3/4

Appendix D : Testing the Probe holder

D1. Determining GrilTex-Pi Concentration (Section 5.2.2)

The area under the echo graph obtained for various concentrations of the experiment

outlined in Testing the probe holder section was plotted for the various probes used. The area
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under the echo curve can be seen to be dependent on concentration for very low concentrations

and is then fairly constant with concentration with a consistent greatest area obtained for a

Griltex-Pi concentration of 0.008g/ml. The graphs below are plots of the area under the curves

for the various probes used at three different rotational rates.

Area under Echo curve
Velocity measured in radial direction

0.04 -

0.035 - _ ___

0.03

0.025

0.02 - -- 20RPM

0.015 - - 50RPM

-100RPM
0.01 -

0.005 -

0

0 0.002 0.004 0.006 0.008 0.01

Griltex-P1 Concentration (g/ml)
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Area under Echo curve
Velocity measured by underball probe at 250

0.04

0.035

0.03

0.025

0.02 - 20RPM
0.015 - 50RPM
0.01 -

0.005

0

0 0.002 0.004 0.006 0.008 0.01

Griltex-P1 Concentration (g/ml)

Area under Echo curve
Velocity measured by 20" probe at equator

0.04

0.035

0.03

0.025 - ____ ____ ____ _ ___

0.02 -20RPM

0.015 - 50RPM

-100RPM
0.01

0.005

0

0 0.002 0.004 0.006 0.008 0.01

Griltex-P1 Concentration (g/ml)



Area under Echo curve
Velocity measured by probe at z=-2.5 cm

0 0.002 0.004 0.006 0.008

Griltex-P1 Concentration (g/ml)
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D2. COMSOL Model File for Shell DIALA A Transformer Oil

Experiment (Section 5.2.2)

2DsawedofFspheretoprotatingv4_1-ELLDILAoilmph

COMSOL Model Report

1. Table of Contents

STite - COMSOL Model Report
. Table of Contenrts
- Model Properties
- Geometry
- Geom1
- Geom2
. Extrusion CoLpling Variables
. Sover Settings
- Postprocessing
. Variables

2. Model Properties

Property |jvalue
|voename |

Vuthor
2ompany

pepartment

teference
PRL

aved date IApr 30, 2008 12:45:26 PM
eation date Mar 18, 2008 7:40:16 PM

OMSOL version jOMSOL 3.5.0.603

File name: C:\Users\Shahriar\pocuments\My Dropbox\Research Files\Software Data Files\Comsol
Files\Working_Rotatingcylinderinsphere\2DsawedoffspheretoprotatngyAv4_SHELLDIALAdl.mph

Application modes and modules used in this model:

. Geom 1 (Axial symmetry (21D))
o Swirl Flow (Chemical Engineering Module)

. Geom2 (31)

ie:/C'Lke'sahar/cu-ntsM*2c''pbox..saweddspheretoprotatingv4_SELDIAAoil.htrId (I oF 19) [311/2010 6:50:27 R4
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2Doadofspheretoprotatingv4_9-ELDLAhoImph1

3. Geometry

Number of geometries: 2

3.1. GeomI

002

0122

021

0

-0132

013

-0134

-0130s

-006 -015 -0D4 -013 -3012 -00n 0 031 012 0 J03 0134 01D5 036 0107 0136 009 0.1 0.11

3.1.1. Point mode

Ale:/CVLkursf! D mnt %Dopbox.. sawedefspheretoprig_v_5EL AAoil.html (2 of 19) [31112010 6:50:27 F!4
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2Dsawedolfspheretoptating-v_4-5LDIALAoilmph

23

0.02 ---.0j21

0 - - - - 4

-0.04

-0.00 =o-0-3

-0.06 -0.05 -0f4 -0.03 -0.02 -0.01 0 0.01 .02 0.J 0.04 0.05 0.06

3.1.2. Boundary mode

Hl://CLkershahrar/Documents/M%2D~ropbox...saaedcsphetoprotatngv_4ELLDIAill.html (3 of 19) [3/12010 6:50:27 PMJ
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2Dswoffpheretoprot*ingvAS-ED-AoI i*I

OO2

0.01

0OD5

-OJ06 -4 DS -0 J04 4fl03 -CJ02 AM~ 0 041 O02 OjO3 on4 ons 0.06 0n J0 O aog~ a.1 an

3.1.3. Subdomaln mode

fie4= ks aa/ow~sM92~~bxswdfpeeortdgX _FLDAolhr (4 of 19) [3f191010o 6-.50:27 PrI
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2Dsawedoffspheretoprotatingv_4_SHELDIALAoimph

002

-0.02.

-0-03

-0.04

-0.05

-0.6 -0.05 -0 -0.03 -GD2 -421 0 001 0.02 0.03 04 0.05 006 0.07 (.01 009 0.1 0.11

3.2. Geom2

Rie:ff/C|iLkers/Shahrar/Documents/My%20Dopbox...sawedffspheretoptatingv4S-ELaLDAoiIl.htm (S of 19) [31I2010 6:50:27 PMJ
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3.2.1. Point mode

Me ://l rf hhrlr/Documents/M(%20Drpbor.. saweddspheretoprotatng_v_4_S9LLDAAoil.hr (6 of 19) (3112010 6:50:27 PNM
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2DsawadofRphemtoprotatingv_4_SI-E.LDAAoilnph

3.2.2. Edge mode

Ale:/C|/Lkers/hahriar/Documents/IV%20Dropbor..sawedolipheretopstating_v_4_51-ELLDIAAillhtml (7 of 19) [3/12010 6:50:27 PMJ
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3.2.3. Boundary mode

fle:///C|/Uus/ShahrDocuments/iw#20Dopbox...sawedesphemtoprotating_v_4 _5-RDIAkoil.hrd (8 of 19) [31/12010 6:50:27 PM
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2Dsawadofspheretoprotating-v_4S-ELLDIAoilmph

3.2.4. Subdomain mode

flle:ff/C|Lkers/ahriar/Documents/My%2ODropbox..savwedfspheretoptating_4_SELLDIAAil.htrrm (9 of 19) [3/1/2010 6:50:27 Pv]
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2sawedoffspheretoprotatingyv4_9-ELLDALAollph

4. GeomI

Space dimensions: Axial symmetry (2D)

Independent varlables: r, phi, z

4.1. Mesh

4.1.1. Mesh Statistics

umber of degrees of freedom 13657
umber of mesh polnts 1072

mber of elements 52
Numbeu r f vr t e 052

rilateral
umber of boundlar elements
umber of vertex elements

0*

.05

-o;as

file://CUrsfhahrlar/Documents/M%20Dopbo ... awdofspheretopretating_ _4_HELLDILAoil.html (10 of 19) [3/1/2010 6:50:27 131
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2Dsawdolfpheretoprotatingjv_4_SFELLDALAo mph

inimum element quality .685
lement area ratio .13

-0.0 -00s -a04 -0.03 -0.02 -ani 0 0.0I 0A2 a03 0.04 0ns 01 0s 7 015 O19 01 0.11

4.2. Application Mode: Swirl Flow (chns)

Application mode tpe: Swirl Flow (Chemical Engineering Module)

Application mode name: chns

4.2.1. Scalar VariablesIame :Variable alue Unit escription
'sc vel fact visc vel factchns 10 1 iscous velodty factor

4.2.2. Application Mode Properties

Iroperty 1Falue
file:f/fC|/Lkers/sahar/Documents/My%20Dropbo,.avadofspheretopretating_v_4SHIELLDIALAPo html (11 oF 19) [3/1/2I10 6:50:27 PM]
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2mwedoffsphroproaUngY_4_SHELLDIALAoil.n

Default element type Lagrange - P2 P1

|Analysis type Stationary
|Comer smoothing ||Off

IWeakly compressible flow
|Turbulence model INone
|Realizability ||f

INon-Newtonian flow
|Brinkman on by default
|Two-phase flow Single-phase flow
|Swirl velocity ||On
|Frame |Frame (ref)

eak constraints |off
|Constraint type IdeaZil

4.2.3. Variables

Dependent variables: u, v, w, p, logk, logd, logw, phi, psi, nrw, nzw

Shape functions: shlag(2,'u'), shlag(2,'v), shlag(2,'w'), shlag(1,'p')

Interior boundaries not active

4.2.4. Point Settings

Point 1, 4 2-3

4.2.5. Boundary Settings

ounday = i ||2 ||3-4Z|
~rype ~ Symmetry boundary niet

Iverrype U0in uO
Isymtype Axial symmetry ymmetry Symmetry
<cp-velocity (wO) 1mr/s 0 -(2*pi*RPM/60)*r

4.2.6. Subdomain Settings

ISubdomain 1
lIntegration order (gporder) 14442
IConstraint order (cporder) 12221
IDensity (rho) kg/ 3  0
IDynamic viscosity (eta) Pa s 0.01545
jcdon I I-EPI
ISurface tension coefficient (sigma) N/ 1
Parameter controlling interface thickness (epsilon) Jm ] hmax chns

fle:///CA/semrhhrr/Dcurmnt/My%20Dopbo...awedoffhertopintting-_4_SHELLIALO.htrnI (12 of 19) [3/1/2010 6:50:27 PM]
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2Dsawedoffspheprlo tingv4_SHELLDIALAoil.mph

5. Geom2

Space dimensions: 3D

Independent variables: x, y, z

5.1. Scalar Expressions

|Name _ e Unit |Description
D u2D*sin(atan2(xz))+w2D*cos(atan2(xz)) [ u-component 3D

v_3D v2D |T-component 3D
w_3D u_2D*cos(atan2(x,z))-w_2D*sin(atan2(x,z)) |w- -component 3D
Velocity_3D sqrtu3D^2+v_3D^2+w_3D^2) |Magnitude of 3D Velocity

5.2. Mesh

5.2.1. Mesh Statistics

Number of degrees of freedm 13657
INumber of mnesh points 1586]
Number of elements685

rTetrahedral 685
jPrism 1

S111exahedalINumber of boundary elemein-ts 1 1067
ITriangular 1106
IQuadrilateral -IjI
Number of edge elements ]128

INumber of vertex elements 10
IMinimum element qualiy .F361fh

.jElement volume ratio .1

fd:/I~esSara/wnf/y2~~o..wd ~ r~moigv!_HLXLo~tr (13 of 19) [3/1/2010 6:50:27 P14]
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2DsawadoffsphwsoprotatingyxASHELD4IAni

0.05

:0:05 - - - - - - -

6. Extrusion Coupling Variables

6.1. Geon 1

6.1.1. Source Subdomain: 1

me vaue

rarsformaticn type al
rce trairsformation ,Z,
tUnation Subdomain 1 Xom2
nation transformation x^2+ A

Jame i _21D

6.1.2. Source Subdoman: 1

bame |Value

lei/ICVLurshahriar/Documents/M 20opbo..aadosphereopradng_4jHELDIAlh~tml (14 oF 19) [3111210 660:27 PM
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2DwedoffsphtprttbngvA4SHEU.DUAoil.mh

|Expression ||u
[Transformation type ||General

|Source transformation r, z,
|Destination Subdomain 1 (Geom2)
|Destination transformation sqrt(x^2+y^2), y,

|Name |u_2D
6.1.3. Source Subdomain: 1

|Name | ylue

|Expression |
|Transformation type ||General
|Source transformation ||r, z,
|Destination Subdomain 1 (Geom2)

IDestination transformation |srt(xA2+z^2), y,

|Name ||w_2D

7. Solver Settings

Solve using a script: off

[Analysis type tationary
|Auto select solver

ISolver Parametric
|Solution form utomatic ]
ISymmetric uto

aptive mesh refinement
|0ptimization/Sensitivity I
|Plot while solving |

7.1. Direct (PARDISO)

Solver type: Linear system solver

|Parameter |Value |
|Preordering algorithm ||Nested dissection
|Row preordering ||On
|Bunch-Kaufmann |119
|Pivoting perturbation ||1.OE-8

|Relative tolerance ||1.OE-6
|Factor in error estimate |400.0

Check tolerances On

7.2. Stationary

file:///C/Users/Shahriar/Documents/My%2ODropb...awedoffsphretoprotating-v_4_SHELDUAoli.htn (15 of 19) [3/1/201O 6:50:27 PM]
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2Dawedoffsphereotnpabingv_4SHELLDALAoil.rnph

Parameter Valu
1Linearity Automatic

|Relative tolerance |1.0E-6
|Maximum number of iterations |250

|Manual tuning of damping parameters |

|Highly nonlinear problem

|Initlal damping factor |1.0
|Minimum damping factor |1.02-4

|Restriction for step size update |10.0

7.3. Parametric

|Parameter | aIue
IParameter name |RPM
IParameter values 1 20 50 100

|Predictor Linear

|Manual tuning of parameter step size |

lInitial step size |.0
IMinimum step size P.0

|Maximum step size 10.0

7.4. Advanced

Parameter lue
lConstraint handling method Elimination
INull-space function utomatic
[Automatic assembly block size On
jAssembly block size 1000
lUse Hermitian transpose of constraint matrix and in symmetry detectionO
jUse complex functions with real input Off

IStop if error due to undefined operation On
IStore solution on file Off

IType of scaling None ]
IManual scaling
IRow equilibration On
iManual control of reassembly

ILoad constant 1InI I
JConstraint constant On
JMass constant On
jDamping (mass) constant On

Jacobian constant On ]
[Constraint Jacobian constant On 1

8. Postprocessing

fie:///CI/Uem/Shahrir/DcumeMbfy%20Dobo..awedoffsphermtpmating_v_4_SHE.LCALol.htrni (16 of 19) (3/1/2010 6:50:27 PMJ
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2Dsawdoffspheretoprotatingv_4_9B-LDIMAimph

qfM(4)=10 I uo coy- t'o

-006 -0J5 -0.04 -0023 -002 -001 0 001 0.02 023 0.04 0.05 006 0.07 0JO 09 0.1 0.11

Aile:/ urshahriar/Documents/M62opbo...awedosphweopratinv_4_5HEULLodhtml (17 of 19) [3/1/110 6-50:27 Fj
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2Dsawadoffipheretoprotatingyv_4_S-ELLD14LAo inph

RP(4=100 hce: v_2D Mui 0.21

mm -am*

9. Variables

9.1. Boundary

e scription t slon
jns Viscous force per area, r compcnent a ta ctns* (2 * tr+nzhns * (uz+vr))

_rschns cI force per area, r component _Chns * p2* nrChns * eta_dhns * txrn_chns * eta_ctris *
uz+vr

z_Chnis scous force per area, z comporet __ ta chnis * nhs* (+uz)+2 * nchs* vz

z_dins otal force per area, z component nzchns * p+2nrn * eta-chns * (r+uz)+2 * nzChnis *
tafcns * _vz

_hs scous force prarea, p component a ta ctns * (nr'din~s * wr+nzChnis * wz-nrChnis * wfr
_chns al force pr area, pNcompoet a ta chns * (nrdchns * wr+nz dchns * wz-r dhns * w/r)

9.2. Subdomah

me Description nit E essin

Ailel/C /rs/hahrr/Documnts/M620Dopbo...aadoffsphretopretating_v_4HELEAaLkAA.hml (18 of 19) [3/1/10 650:27 4
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2Dwwedofrprptatingv_4_SHELLDIALAoiI.rnph

IUchns Velocity field IM/s sqrt(u^2+vA2+w^2)

IVrchns Vorticity, r component |1/s -wz

IVz chns Vorticity, z component 1/s r+w/r

Vphi chns Vorticity, phi component 1/s uz-vr

IV-chns Vorticity 1/s sqrt(VrchnsA2+Vz chns^2+Vphi chns^2)

IdivU chns Divergence of velocity field 1/s ur+vz+u/r
lcellReschns Cell Reynolds number 1jj jj rhochns * U chns * h/eta chns

res~u-chns Equation residual for u Pa - r * (rho-chns * (u *ur+v * uz)+pr-F_r_chns)-rho -chns * w^2+2

1 11 11 1* eta chns * (u/r-ur)-eta_chns * r * (2 * urr+uzz+vrz)

res-v-chns Eqainrsidual for v Par * (rho -chns * (u * vr+v *vz)+pz-F-z-chns)-eta-chns * (r * (vrr
+uzr)+2 * r * vzz+uz+vr)

res _wv chns9 Equation residual for w Par * (rho-chns * (u * wr v z)-F_phi chns)+rhoL-chns * u * w-

-1 Ieta chns * (wr-w/r)-eta chns * r * wrr-r * eta chns *wzz

jbeta-r-chns jConvective field, r compont jPa*s Ir * rho chns * u

|beta-z chns ||Convective field, z component |jPa*s Ir * rho-chns * v

DIm-chns :]Mean diffusion coefficient ]kg/s I r* eta-chns

Ida-chns TI~otal time scale factor jkg/m^ 2 1r * rho-chns

taum-chns GLS time-scale m^*/g nojac(1/max(2 * rho-chns *sqrt(emetric(u,v)),48 *eta-chns/

1h^A2))

Itauc chns ]GLS time-scale Im^2/s 0r.5 * nojac(if(u^ 2+v^ 2

Ores p--chns_ Equation residual for p Jkg/(m^2*s) ]rho-chns * r * divU-chns

file:///C|/UserShhriar/Document/My%20Dropbo...awedoffspheretoprotating_v_4_SHELLDIALAoil.htrni (19 of 19) [3/1/201 6:50:27 PM]
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Appendix E : Results of Uniform Rotating Magnetic

Field Applied to Sphere of Ferrofluid (Section 6.1)

E1. EFH1 at 47 Hz

x 1 0-3 Chi 47Hz EFH1

-- +-- baseline

-U-- 50.6G Clockwise
-'- 50.6G Counter-clockwise
- -101.2G Clockwise

101.2G Counter-clockwise

-1 1 111__i__
0.02 0.03 0.04 0.05 0.06 0.07 0.08

x, distance from Probe 1 (m)
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-0- baseline
-U-- 50.6G Clockwise

.50.6G Counter-clockwise

101.2G Clockwise
- 101.2G Counter-clockwise
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Appendix F COMSOL Simulations of Spherical

Geometry in Uniform Rotating Magnetic Fields

Fl. MSGW1 1 Filled Sphere with 1OOG Rotating Field with (t' 0)

(Section 6.2.4)

Prrofluid in 3D Cylinder with rotating H field file:///F:/Researc% 20Files/Sotwssare%20Dat%2Fies/Comsol%2OFiL..

Ferrofluid in 3D Cylinder with rotating H field

i. Table of Contents

* Title - Ferrltuid in 3D Cylinderwith rotating H field
* Table of Contents
* Model Properties
* Constants
* Global Expressions
+ Geometry
* Geom1
* Solver Settings
e Postprocessing
" Variables

2. Model Properties

Property Value
Model name Ferrofluid in 3D Cylinder with rotating H field
Author Shatrar
Company MIT
Department EECS
Reference

URL
Saved date Mar 26. 2010 5:31:35 PM
Creation date Oct 6, 2008 11:21:14 PM
COMSOL version COMSOL 3.5.0.608

File name: F:Research Files\Software Data Files\Comsol Files\Good3DSpherefiles
\3DcasensphereMSGW11_scalarpotentialmethodf luxball1OOG.mph

Application modes and modules used in this model:

* Geom1 (3D)
o Incompressible Navier-Stokes
o Diffusion
" Convection and Diffusion
o Convection and Diffusion
SConvection and Diffusion
" PDE, General Form
o PDE, General Form

2.1. Model description

Model is with a rotating magnetic field in a cylinderwith ferrofluidwith boundary condition of omega=O. Ifthis boundary
condition is removed there is no flow.

Parameters picked are similarto those frem Chaves's papers normalized. Locket
CalculationnornalizedyvelodtyalerhavesM.ls
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3. Constants

Name Expression Value Description
Xi 0.56 0.56
omega 2*pl*f 596.902604
f 95 95
zeta 0.0003125 3.125e-4
eta 7.58e-3 0.00758
etaprime 7.17e-6 7.17e-6
H-0 1 1
Tau 1.39e-5 1.39e-5
ome atau omega*Tau 0.008297
RO 0.05 0.05

4. Global Expressions

Name Expression Unit Description
FMx Mx(d(Hxx))+My*(d(Hxy))+Mz*(d(HxFz))
FMy Mx*(d(Hy,x))+M_y*(d(Hy,y))+M_z*(d(Hy,z))
FMz Mx*(d(Hz,x))+My*(d(Hz,y))+M z*(d(Hz,z))

T MxHy-M_y*Hx
M_eqx XI*Hx

M_eqy XiY*H
M_eqz XI*Hz
Hx -psix-M_ 3

H -ps' -M /3
Hz -psiz-M.z/3
potential H0*(xcos(t)+y*sin(t))

5. Geometry

Number of geometries: I

5.1. Geom1

5/12/2010 9:37 PM2 of 19
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5.1.1. Point mode

5/12/2010 9:25 PM
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5.1.2. Edge mode

5/12/2010 9:25 PM4 of 19
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5.1.3. Boundary mode

5 of 19 5/12/2010 9:25 PM
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5.1.4. Subdomain mode

5/12/2010 9:25 PM6 of 19
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6. Geom1

Space dimensions: 3D

Independent variables: , y, z

6.1. Scalar Expressions

Name Expression Unit Description
r sqrt(x^2+yA2+Z2) m
phi atan2(y.x) rad
theta atan2(xz) rad

6.2. Mesh

6.2.1. Mesh Statistics

Number of degrees of freedom 704248
Number of mesh points 10168
Number of elements 54859
Tetrahedral 54859
Prism 0
Hexahedral 0
Number of boundary elements 3852
Triangular 3852
Quadrilateral 0
Number of edge elements 180
Number of vertex elements 6
Minimum element quality 0.355
Element volume ratio 0.058

5/12/2010 9:25 PM7 of 19
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6.3. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

6.3.1. Scalar Variables

Name Variable IValue Uniti Description
visc vel fact visc vel fact ns 10 1 Viscous velocit facto

6.3.2. Application Mode Properties

Property Value
Default element type Lagrange - P2 P1
Analysis type Stationary
Corner smoothing Off
Frame Frame (ret)
Weak constraints Off
Constraint type Ideal

6.3.3. Variables

Dependent varables: u, v. w. p, nxw, nyw. nzw

Shape fujnctions: shlag(2,'u'). shlag(2,V). shlag(2.'w'). shlag(1.,p')

hterior boundaries not active

6.3A. Point Settings

5/12/2010 9:25 PM

597

4a 45

Ferrofluid in 3D Cylinder with rotatirg H field

8 Of 19



file:///F:/Research%20Files/Software%20Data%20Files/Comsol%20Fil.

IPoint I11-4, 6 5
jpnton 10 1

6.3.5. Boundary Settings

IBoundaryl 
1-8

IType IIWall

6.3.6. Subdomain Settings

Subdomain I
Integration order (gporder) 4442
Constraint order (cporder) 2 2 2 1
Density (rho) kg/m 3 0
Dynamic viscosity (eta) Pa-s sta+zeta
Volume force, x dir. (Fx) N/m3 2*zeta*sy+FMx
Volume force, y dir. (Fy) N/m3 -2*zeta*sx+FMy
Volume force, z dir. (Fz) N/m3 FMZ
cdon 0

6.4. Application Mode: Diffusion (di)

Application mode type: Diffusion

Application mode name: di

6.4.1. Application Mode Properties

Prope Value
Default element type Lagrange - Quadratic
Analysis type Stationary
Frame Frame (ref)
Weak constraints Off
Constraint type ideal

6.4.2. Variables

Dependent variables: s

Shape functions: shlag(2,'s')

Interior boundaries not active

6.4.3. Boundary Settings

IBoundary 1-8
Type Concentration

6.4.4. Subdomain Settings

Subdomain
Diffusion coefficient (D) m2/s etaprime
Reaction rate (R) mol/(m3. s) T+2*zeta*(vx-uy-2*s)

6.5. Application Mode: Convection and Diffusion (cd)

Application mode type: Convection and Diffusion

5/12/2010 9:25 PM
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Application mode name: cd

6.5.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.5.2. Variables

Dependent variables: M_x

Shape functions: shiag(2,'M.x')

Interior boundaries not active

6.5.3. Boundary Settings

lBoundaz-8
IType IIInsulation/Symmetry

6.5.4. Subdomain Settings

Subdomain 1
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3 .s) -s*M_y-((M_x-M_eqx)(omegatau))

x-velocity (u) m/s u
y-velocity (v) m/s v
z-velocity (w) m/s w

6.6. Application Mode: Convection and Diffusion (cd2)

Application mode type: Convection and Diffusion

Application mode name: cd2

6.6.1. Application Mode Properties

Proper Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.6.2. Variables

Dependent variables: M_y

Shape functions: shlag(2,'My')

Interior boundaries not active

6.6.3. Boundary Settings

5/12/2010 9:25 PM
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Boudar 1-8
Type insulation/Symmetry

6.6.4. Subdomain Settings

Subdomain 1

Diffusion coefficient (D) m2 /s 0
Reaction rate (R) mol/(m3.s) s*Mx-((M-y-Meqy)Iomegatau)
x-velocity (u) m/s u
y-velocity (v) m/s v
z-velocity (w) m/s w

6.7. Application Mode: Convection and Diffusion (cd3)

Application mode type: Convection and Diffusion

Application mode name: cd3

6.7.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.7.2. Variables

Dependent variables: M_z

Shape functions: shlag(2,'M_z')

Interior boundaries not active

6.7.3. Boundary Settings

IBoundary 11-8
Type Insulation/Symmetry

6.7.4. Subdomain Settings

Subdomain I
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3.s) -((M-z-Meqz)/omegatau)
x-velocity (u) mis u
y-velocity (v) m/s v
z-velocity (w) m/s w.

6.8. Application Mode: PDE, General Form (g2)

Application mode type: PDE, General Form

Application mode name: g2

6.8.1. Application Mode Properties

5/12/2010 9:25 PM
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Prope Value
Default element ype Lagrane - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.8.2. Variables

Dependent variables: avgv, avgv_t

Shape functions: shlag(2,'avgv')

Interior boundaries not active

6.8.3. Boundary Settings

IBoundaryl 1-8
T pe Dirichlet bounda conditlon

6.8.4. Subdomain Settings

Subdomain i
Source term (f) vo00)Conservative flux source term (ga) {{0;0;O))

6.9. Application Mode: PDE, General Form (g)

Application mode type: PDE, General Form

Application mode name: g

6.9.1. Application Mode Properties

Prope Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.9.2. Variables

Dependent variables: psi, psi.t

Shape functions: shlag(2,'psi')

Interior boundaries not active

6.9.3. Boundary Settings

Boundary 1-8
Tpe I Dirichlet boundary condition
(r) -psi~potential

6.9.4. Subdomain Settings

Subdomain1
Damping/Mass coefficient (da)
Source term (f) -d(Mxx)-d(My,y)-d(Mz,z)

12 of 19 5/12/2010 9:25 PM
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7. Solver Settings

Solve using a script: off

Analysis type Stationary
Auto select solver On
Solver Time dependent
Solution form Automatic
Symmetric auto
Adaptive mesh refinement Off
Optimization/Sensitivity Off
Plot while solving Off

7.1. Direct (PARDISO)

Solver type: Linear system solver

Parameter Value
Preordering algorithm Nested dissection
Row preordering On
Bunch-Kaufmann Off
Pivoting perturbation 1.OE-8
Relative tolerance 1.OE-6
Factor in error estimate 400.0
Check tolerances Off

7.2. Time Stepping

Parameter Value
Times range(0,0. 1,2)
Relative tolerance 0.001
Absolute tolerance 0.00010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrb Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Emclude algebraic
Allow complex numbers Off

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling
Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
Mass constant On

5/12/2010 9:25 PM
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Dampina (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

. Postprocessing

T~=2 h*O. Vaay,

9. Variables

9.1. Boundary

Name Daecription Unit Expression
K x ns Viscous force per area. x Pa eta-ns * (2 * nxns * ux+nyns * (uy+v)+nz-ns * (uz+wx)

component

T x ns Total force per area. x Pa -nx ns * p+2 * nxns * eta-ns * ux+nyns * etans*
component (uy+vy+nz ns * etans * (uz+vo)

K y_ns Viscous force per area. y Pa etans * (nxns * (vx+uy)+2* nyns * vy+nz.ns * (vz+wy))
component

T_y_ns Total force per area, y Pa -nyns * p+nx_ns * etans * (vx+uy)+2 * nyjis * eta-ns
component vy+nz ns * eta ns *(vz+wy)

K zfns Viscous force per area. z Pa eta ns (nxLns * (wx+uz)+nyns * (wy+%)+2 * nz-ns * wz)
component

T z ns Total force per area. z Pa -nzjns * p+nx_ns * eta_ns * (wx+uz)+nyns * eta ns * (wy+vz)+2
component * nz ns *eta ns * wz

ndflux s di Normal diffusive flux, mol/(m2*s) nx di * dflux sax di+nydi * dfluxsd_y_di+nz di * dflux s z di
ndflux M-x cd Normal diffusive flux, Mx mol/(m^2*s) nx cd * dfMuxM x x cd+ny_cd * dux_M_x y_cd+nz-cd *

dflux M x z cd

ncfux M-x cd Normal convecive flux M-x mol/(mA2*s) nx cd * cfluxM x x cd+nycd * cfluxM_xycd+nz-cd *
I oflux M x z cd

ntflux_M x cd Normal total Au, M x mol/(mA2*s) nx-cd * tfluxMxxcd+nycd * tAuxM_x y_cd+nzcd*
Itflux M x z ad

5/12/2010 9:25 PM
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ndflux_M_y_cd2 Normal diffusive flux, My mol/(m^2*s' nx cd2 * dfluxM_y_x_cd2+nycd2 * dfluxMjyjycd2+nz_cd2 *
dflux M y z cd2

ncflux_M_y_cd2 Normal convective flux, My mol/(mA2*s' nxcd2 * cflux_M_y_xcd2+nycd2 * cflux_M_y_y_cd2+nz_cd2 *
cflux M y z cd2

ntflux_M_y_cd2 Normal total flux, M_y mol/(mA2*s: nxcd2 * tfluxM_yxcd2+nycd2 * tfluxM_y_y_cd2+nzcd2 *
tflux M y z cd2

ndflux M z cd3 Normal diffusive flux, Mz mol/(mA2*s) nx_cd3 * dfluxM z x cd3+nycd3 * dfluxM_z_y_cd3+nzcd3
dflux M z z cd3

ncflux M z cd3 Normal convective flux, Mz mol/(mA2*s) nxcd3 * cflux_M z x cd3+nycd3 cflux_M_z_y_cd3+nz_cd3 *
cflux M z z cd3

ntfluxM z cd3 Normal total flux, Mz mol/(mA2*sj nx_cd3 * tflux_M zxcd3+nycd3 * tfluxM-zy cd3+nz_cd3 *
I tflux M z z cd3

9.2. Subdomain

Name Description Unit Expression
U ns Velocity field m/s sqrt(uA2+v^2+wA2)
Vx_ns Vorticity, x 1/s wy-vz

component

Vy_ns Vorticity, y 1/s uz-wx
component

Vz_ns Vorticity, z 1/s vx-uy
component

V ns Vorticity 1/s sqrt(Vx_nsA2+VynsA2+V~znsA2)
divUns Divergence of 1/s ux+vy+wz

velocity field

cellRens Cell Reynolds 1 rhons * Uns * h/eta_ns
number

res_u_ns Equation N/mA3 rhons * (u * ux+v * uy+w * uz)+px-F-x-ns+if(gmg jevel>0, 0,-eta ns * (2 *
residual for u uxx+uyy+vxy+uzz+wxz))

resvns Equation N/mA3 rhons * (u * vx+v * vy+w * vz)+py-F_y_ns+if(gmgjevel>0,0,-eta ns *
residual for v (vxx+uyx+2 * vyy+vzz+wyz))

res_w_ns Equation N/mA3 rhons * (u * wx+v * wy+w * wz)+pz-Fjz-ns+lf(gmgjlevel>0,0,-etans *
residual for w (wxx+uzx+wyy+vzy+2 *wzz))

beta x ns Convective kg/(mA2*s) rho-ns * u
field, x
component

beta_y_ns Convective kg/(mA2*s) rho-ns * v
field, y
component

beta z ns Convective kg/(mA2*s) rho-ns * w
field, z
component

Dmns Mean Pa*s eta_ns
diffusion
coefficient

dans Total time kg/mA3 rhons
scale factor

taumns GLS mA3*s/kg nojac(1/max(2 * rho ns * sqrt(emetric(u,v,w)),48 * eta ns/hA2))
time-scale

tauc ns GLS mA2/s 0.5 * noJac(if(uA2+vA2+w^2
time-scale

res_p-ns Equation kg/(mA3*s) rho-ns * divUns
residual for p

grad.s-x_di Concentration mol/mA4 sx
gradient, s, x

I component

dflux s x di Diffusive flux, mol/(mA2*s) -Dxx s di * sx-Dxy_s_di * sy-Dxz_s_dl *sz
s, x

_component

5/12/2010 9:25 PM
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grad_s_y_dl Concentration
gradient, s, y
component
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dflux s_y_di Diffusive flux, mol/(mA2*s) -Dyx.s;di * sx-Dyy..s-di * sy-Dyz..sdi * sz
S, y
component

gradszdi Concentration mol/mA4 sz
gradient, s, z
component

dflux s z dl Diffusive flux, mol/(mA2*s) -Dzx s di * sx-Dzys_di * sy-Dzz~sdi * sz
S, z
component

grad.s-di Concentration mol/mA4 sqrt(grads-x-dl^2+grad-s_y_di^2+gradszdiA2)
gradient, s

dflux s di Diffusive flux, mol/(mA2*s) sqrt(dflux_s_x_diA2+dflux_s_y_diA2+dflux s z-di2)
s

gradMx x cd Concentration mol/mA4 Mxx
gradient,
Mx, x
component

dflux_M x x cd Diffusive flux, mol/(mA2*s) -Dxx_M x cd * M xx-Dxy_M_xcd * Mxy-DxzM x cd * M_xz
Mx, x
component

cflux_M x x-cd Convective mol/(mA2*s) M_x * uM x cd
flux, Mx, x
component

tfluxM x x cd Total flux, mol/(mA2*s; dflux_M x x cd+cfluxM x x cd
Mx, x
component

grad_M_x_y_cd Concentration moI/mA4 M-xy
gradient,
Mx, y
component

dfluxM_x_y_cd Diffusive flux, mol/(mA2*s) -Dyx_M_xLcd * Mxx-DyyMxcd * Mx-Dyz_M_xcd * M_xz
Mx, y
component

cflux_M_x_y_cd Convective mol/(mA2*s) M_x * v_M x cd
flux, Mx, y
component

tfluxM_x_y_cd Total flux, mol/(mA2*s) dflux_M_x_y-cd+cfluxMxycd
Mx, y
component

gradM-x z cd Concentration mol/mA4 M_xz
gradient,
Mx, z
component

dflux M x z cd Diffusive flux, mol/(mA2*s; -DzxM x cd * MLxx-DzyMxcd * Mx-Dzz_M-x-cd * Mjxz
Mx, z
component

cflux M x z cd Convective mol/(mA2*s) M_x * wM x cd
flux, MRx, z
component

tflux M x z cd Total flux, mol/(mA2*s) dflux M x z cd+cflux M x z cd
MRx, z
component

beta M x x cd Convective m/s u M x cd
field, M_x, x
component

beta_Mxcd Convective m/s vM-x-cd
field, Mnx y

component
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beta_M x z Cd Convective
field, Mx, z
enmnnnant

wM-x-cd

gradM x cd Concentration mol/mA4 sqrt(grad_M x x cdA2+grad_M_x_.cdA2+gradM-x-z-cd2)
gradient, M x

dflux M x cd Diffusive flux, mol/(mA2*s) sqrt(dflux_M x x cdA2+dfluxMx_y_cdA2+dflux_M x_z-cdA2)
M x

cflux M X cd Convective mol/(mA2*s) sqrt(cflux_M x x cdA2+cfluxMx_y_cdA2+cfluxM x_z-cdA2)
flux, M x

tfluxM x cd Total flux, mol/(mA2*s) sqrt(tfluxM x xcdA2+tfluxMx_y_cdA2+tflux_M x_z.cd^2)
M 'x

cellPeM x cd Cell Peclet 1 h * sqrt(betaM x xcdA2+betaMxy_cdA2+beta_M_x-z-cdA2)/DmM x cd
number, M x

Dm_M-x_cd Mean mA2/s (DxxM x cd * u M x_cdA2+DxyMxcd * u_Mx_cd*
diffusion v_M-x cd+Dxz_Mx cd * u_M-x cd * wM-x-cd+DYxM x cd * v M x cd*
coefficient, u_M x cd+DyyMxcd * vM x cdA2+DyzMxcd * v_M x cd *
M-x wMx-cd+DzxM-x-cd* wM-xcd * uM-x-cd+DzYM-x-cd * wM x cd*

v_M x cd+DzzM x cd *
w M x cdA2)/(u M x cdA2+v M x cdA2+w M x cdA2+eps)

res_M_x cd Equation mol/(mA3*s) -Dxx M x cd * Mxxx-DxyM-xLcd * M xxy-DxzM x cd * Mxxz+M_xx*
residual for u_M x cd-DyxMx_cd * Mxyx-DyyMxcd * Mxyy-DyzMx_cd *
M_x Mxyz+Mxy * vM x cd-DzxM x_cd * M-xzx-DzyM-xcd * M-xzy-

Dzz M x cd * M xzz+M xz * w M x cd-R M x cd
resscM xcd Shock mol/(mA3*s) Mxx * uM-x-cd+M xy*v_M-x cd+M_xz * w_M x cd-RM x Cd

capturing
residual for
M x

daM-x-cd Total time 1 DtsM-x-cd
scale factor,
M x

gradM-y-xLcd2 Concentration mol/mA4 M-yx
gradient,
M-y, x
component

dflux_M_y_x_cd2 Diffusive flux, mol/(mA2*s) -Dxx_M_y_Cd2 * Mjx-DxyM_y_Cd2 * Myy-DxzM_y_Cd2 * Myz
Mjy, x
component

cflux_M_y_xcd2 Convective mol/(mA2*s) My * u_M_y_cd2
flux, Mjy, x
component

tflux_M-y-x-cd2 Total flux, mol/(mA2*s) dflux_M_y_x_cd2+cflux_M_y_xLcd2
Mjy, x
component

grad_M_y_y_cd2 Concentration mol/mA4 M-yy
gradient,
Mjy, y
component

dfluxM_y_y_Cd2 Diffusive flux, mol/(m^02*s) -Dyx_M_y_cd2 * M_yx-Dyy_M.y cd2 * M_yy-DyzM_y_cd2 *M_yz
M-y, y
component

cfluxM_y_.Cd2 Convective mol/(mA2*s) My * v_M_y_cd2
flux, M-y, y
component

tflux_M_yjcd2 Total flux, mol/(mA2*s) dfluxM_y_y_cd2+cflux_M_y_y_Cd2
MLy, y
component

gradM_y_z_cd2 Concentration mol/mA4 Mjyz
gradient,
Mjy, z
component

dflux_M_y_z_cd2 Diffusive flux, mol/(mA2*s) -DzxM_y_cd2 * M_yx-DzyM_y_cd2 * M.yy-Dzz_M-ycd2 * Myz
MJy, z
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component

cfluxMJy3zcd2 Convective mol/(mA2*s: My * w_Mycd2
flux, M-y, z
component

tfluxMjz-cd2 Total flux, mol/(mA2*s dfluxM_y_zcd2+cfluxM-yz.cd2
M-y, z
component

betaMjjxcd2 Convective m/s u_M_y_cd2
field, My, x
component

beta_M_yjcd2 Convective m/s v._M_y_cd2
field, My, y
component

betaMjy z cd2 Convective m/s w_Mycd2
field, M_y, z
component

grad_M_y_cd2 Concentration mol/mA4 sqrt(grad_M_y_xLcd2A2+grad_M_y_y_cd22+grad_M_yzcd2A2)
gradIent, M y

dfluxMjycd2 Diffusive flux, mol/(mA2*s) sqrt(dflux_M_y_xcd2A2+dflux_M_y_y_cd2^2+dfluxMyzcd2A2)
M Y

cfluxM_cd2 Convective mol/(mA2*s: sqrt(cfluxM_y-xcd2A2+cfluxM_y_y_.cd2A2+cfluxM_yzcd2A
2)

flux, MY

tfluxMy_cd2 Total flux, mol/(mA2*s) sqrt(tfluxM_y_x_cd22+t+tfMJJ.cd2A2+flux._M_y_z._cd2A2)
M Y

cellPeM_ycd2 Cell Peclet I h *
number, Mjy sqrt(beta M y x cd2A2+beta M y y cd2A2+beta M y z cd2A2)/Dm M y cd

DmM_y_cd2 Mean mA2/s (Do_M_y_cd2 * uM.cd2A2+Dxy_Mjycd2 * u_M_y_cd2 *
diffusion v_M_y_cd2+Dxz_M_y_cd2 * u_M_y_cd2 * w_M_y_cd2+DyxM_y_cd2 *

coefficient, v_M_y_cd2 * u_M_y_cd2+Dyy_M_y_cd2 * v_M_y_cd2A2+Dyz_M_y_cd2 *

M- yv_M_y_cd2 * w_M_y_cd2+Dzx)_M_y_d2 * w_MJcd2 *
u_M_y_cd2+Dzy_M_y_cd2 * w_M_y_jcd2 * v_M_y_cd2+Dzz_M_y_cd2 *
w M y cd2A2)/(u M y cd2A2+v M y cd2A2+w -My cd2A2+eps)

res My cd2 Equation mol/(mA3*s) -Dxx_M_y_cd2 * M_yxx-Dxy_M_y_cd2 * Mxy-Dxz_Mjcd2 * Myxz+M_yx *

residual for u_M_y_jcd2-Dyx_M_y_cd2 * Myyx-DyyMycd2 * Myyy-DyzMy.cd2 *

My Mjyyz+M_yy * v_M_y_cd2-Dzx_M_y_cd2 * M_yzx-Dzy_M_y_cd2 * Mjyzy-
Dzz My cd2 * M yzz+M yz * w M y cd2-R M Y cd2

res_sc_M_y_cd2 Shock mol/(mA3*s) M_yx * u_M_y_cd2+M_yy * v_Mycd2+Myz * w_M_y_c2-RMy-cd2
capturing
residual for
M y

da_M_y_cd2 Total time 1 Dts,_M_ycd2
scale factor,
M y

gradMz x cd3 Concentration mol/mA4 Mzx
gradient,
M-z x
component

dflux_M z x cd3 Diffusive flux, mol/(mA2*s -Dxx_M_z-cd3 M-zx-Dxy_Mzcd3 M_zy-DxzM-z-cd3 M_zz
M-z, x
component

cflux_M z x cd3 Convective mol/(mA2*s) Mz * uM z cd3
flux, M-z, x
component

tfluxM z x cd3 Total flux, mol/(mA2*s) dflux_M z x cd3+cfluxM z x cd3
M-z x
component

grad_M_zjcd3 Concentration mol/mA4 M-zy
gradient,
M-z, y
component

dflux_M_zjcd Diffusive flux, mol/(mA2*s; -Dyx_M_zcd3 * M-zx-DyyM zcd3 * M_zy-Dyz_M_z_cd3 * M_zz
M-z, y
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component

cflux_M zy cd3 Convective mol/(mA2*s) Mz * v_M z cd3
flux, Mz, y
component

tfluxM_z_y_cd3 Total flux, mol/(mA2*s) dflux_M_z_y_cd3+cflux_M z_y-cd3
M-4, y
component

gradM z z cd3 Concentration mol/mA4 M_zz
gradient,
M-z, z
component

dflux_M z z cd3 Diffusive flux, mol/(mA2*s) -Dzx_M z cd3 * Mzx-Dzy_M_z-cd3 * Mzy-DzzM-z-cd3 * M_zz
M-z, z
component

cflux_M z z cd3 Convective mol/(mA2*s) Mz * wM z cd3
flux, M z, z
component

tfluxM z z cd3 Total flux, mol/(mA2*s) dflux_M z z cd3+cfluxM z z cd3
Mz, z
component

betaM-z-x cd3 Convective m/s uM-z-cd3
field, M_z, x
component

beta_Mz_ycd3 Convective m/s v_M z cd3
field, M-z, y
component

betaM-z-z-cd3 Convective m/s wM-z-cd3
field, M_z, z
component

gradM z cd3 Concentration mol/mA4 sqrt(grad_M z x cd3A2+grad_M_z_y_cd3A2+gradM-z-z-cd3A2)
,gradient, M z

dflux M z cd3 Diffusive flux, mol/(mA2*s) sqrt(dflux_M z x cd3A2+dfluxMz_y_cd3A2+dflux_M_zzcd3A2)
M z

cfluxM z cd3 Convective mol/(mA2*s) sqrt(cflux_M z x cd3A2+cflux_M_z_y_cd3A2+cflux_M_z-zcd3A2)
flux, M z

tfluxM z cd3 Total flux, mol/(mA2*s) sqrt(tfluxM z x cd3A22+tfluMz +tfluxMzzcd3A2)
M z

cellPeM z cd3 Cell Peclet I h *
number, M z sqrt(beta M z x cd3A2+beta M z y cd3A2+beta M z z cd3^2)/Dm M z cd3

Dm_M z cd3 Mean MA2/s (DxxM z_cd3 * u M z cd3A2+Dxy_M_z_cd3 * u M z cd3 *
diffusion vM z cd3+Dxz M z cd3 * uM z cd3 * w_M z cd3+DyxMz3 *
coefficient, v_M z cd3 * u M z cd3+DyyM z cd3 * vM z cd3A2+DyzM-z-cd3 *
M z vMzcd3 * wMz-cd3+DzxM z-cd3 * wMzcd3*

u_M z cd3+DzyM-z-cd3 * wM z cd3 * vM z cd3+DzzM z cd3*
w M z cd3A2)/(u M z cd3A2+v M z cd3A2+w M z cd3A2+eps)

res_M_z-cd3 Equation mol/(mA3*s) -Dxx_M z cd3 * Mzxx-DxyM_z_cd3 * Mjzxy-DxzM-z_cd3 * Mzxz+M zx
residual for u_M z cd3-DyxMzcd3 * Mzyx-Dyy M z cd3 * M_zyy-Dyz_M_zcd3 *
M_z Mzyz+Mzy * vM-zcd3-Dzx_M z cd3 * Mzzx-DzyMzcd3 * Mzzy-

Dzz M z cd3 * M zzz+M zz * w M z cd3-R M z cd3
res sc M z cd3 Shock mol/(mA3*s) Mzx * uM-zcd3+Mzy * v_M z cd3+M zz * w_M z cd3-RM z cd3

capturing

residual for
M z

daM-z-cd3 Total time I DtsM-z-cd3
scale factor,
M z

absavavx g2 larad(avav)l sgrt(avgvx^2+avqvyA2+avgvzA2)
absgagx_g2 |ga9x| - sqrt(ga9x^(2+ga9yA2+ga9zA2)

abspsixg |grad(psi)l sqrt(psix^2+pslyA2+pslzA2)
absga1x g ga1 sqrt(ga1x^2+ga 2+gaz2)
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1. Table of Contents

* Title - Ferroluid in 3D Cylinderwith mtating H field
e Table of Contents
* Model Properties
* Constants
* Global Expressions
e Geometry
* Geoni
* Solver Settings
* Postprocessing
SVadlables

2. Model Properties

Property Value
Model name Ferrofluid in 3D Cylinder with mtating H field
Author Shahriar
Company MIT
Department EECS
Reference

URL

Saved date May 12 2010 9-40:54 PM
Creation date Oct 6. 2008 11:21:14 PM
COMSOL version COMSOL 3.5.0.608

File name: F:lResearch FilesXSoftware Data Files\Comsol Files\Good3DSpherefiles
\3Dease-sphereMSGW11_sclarpatentialmethod-etaprime0_luxball_100G.mph

Application modes and modules used in this model:

a Geom1 (3D)
o Incompressible Nevier-Stokes
o Diffusion
" Convection and Diffusion
o Convection and Diffusion
" Convection and Diffusion
o PDE. General Form
o PDE. General Form

2.1. Model descripton

Model is with a rotating magnetic field in a cylinder with ferrofluid with no boundary condition since etaprime=0 there is no flow
as a result

Parameters picked are similar to those from Chaves's papers normalized. Look at
CalculIation-normalized-velocityalexchaves.:ds

5/12/2010 9:41 PM
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3. Constants

Name Expression Value Description
Xi 0.56 0.56
omega 2*pi*f 596.902604
f 95 95
zeta 0.0003125 3.125e-4
eta 7.58e-3 0.00758
etaprime 0 0
HO 1 1
Tau 1.39e-5 1.39e-5

omegatau omega*Tau 0.008297
RO 0.05 0.05

4. Global Expressions

Name Expression Unit Description
FMx M x(d(Hxx))+M-y*(d(Hxy))+M z*(d(Hx,z))
FMy - M,-y(d(Hy,x))+M~y*(d(Hy,y)).M z*(d(Hy,z)) _____

FMz M x*(d(Hz,x))+M_y*(d(Hz,y))+M z*(d(Hz,z))
T M x*Hy-M_y*Hx
M_eqx Xi*Hx
M_eqy Xi*Hy
Meqz Xi*Hz
Hx -psix-M-x/3
Hy -psy-My/3
Hz -psiz-M z/3
potential H0*(x*cos(t)+y*sin(t))

5. Geometry

Number of geometries: I

5.1. Geom1

5/12/2010 9:41 PM
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&.1. Point mode
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5.12. Edge mode
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.1.3. Boundary mode

5 of 19 5/12/2010 9:41 PM

613

4-.

Ferrofluid in 3D Cylinder with rotatinig H field



file:///F:hResearch/o20Oiles/Software%2OData%2OPiles/Conol/ 2OiL.

5.1.4. Subdomain mode
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6. Geom1

Space dimensions: 3D

independent variables: x, y, z

6.1. Scalar Expressions

Name Expresion Unit Description
r sqrt(x^2+y^2+A m
phi atan2(y. rad
theta aban2(x,z rad

6.2. Mesh

6.2.1. Mesh Statistics

Number of degrees of freedom 123448
Number of mesh points 1867
Number of elements 9156
Tetrahedral 9156
Prsm 0
Hexahedral 0
Number of boundary elements 1240
Tdangular 1240
Quadrilateral 0
Number of edge elements 95
Number of vertex elements 6
Mnimum element quality 0.36
Element volume ratio 0.079
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.3. Application Mode: Incompressible Navier-Stokes (ns)

Application mode type: Incompressible Navier-Stokes

Application Mode name: ns

6.3.1. Scalar Variables

Name Variable Values Uni Description
visc vel fact visevelfact_ns 10 1 cVisous velocity facto

6.3.2. Application Mode Properties

Property Value
Default element type Lagrange - P2 Pj
Analysis type Stationary
Corner smoothing Off
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.3.3. Variables

Dependent variables: u. v. w, p. nxw, nyw. nzw

Shape functions: shlag(2.'u'). shlag(2,v'), shlag(2,'W), shlag(l,'p')

Interior boundaries not active

6.3.4. Point Settings

5/12/2010 9:41 PM
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IPoint 11-4, 6151
pnton 0 1

6.3.5. Boundary Settings

Boundary 1-8
1Type I Walli

6.3.6. Subdomain Settings

Subdomain 1
Integration order (gporder) - 4442
Constraint order (cporder) 2 2 2 1
Density (rho) kg/m 3 0

Dynamic viscosity (eta) Pa-s sta~zeta
Volume force, x dir. (FAx) N/m3 2*zeta*sy+FMx

Volume force, y dir. (F_y) N/m3 -2*zeta*sx+FMy

Volume force, z dir. (F-z) N/m3 FMz

cdon 0

6.4. Application Mode: Diffusion (di)

Application mode type: Diffusion

Application mode name: di

6.4.1. Application Mode Properties

Prope Value
Default element type Lagrange - Quadratic
Analysis type Stationary
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.4.2. Variables

Dependent variables: s

Shape functions: shlag(2,'s')

Interior boundaries not active

6.4.3. Boundary Settings

Bounda71-8
IType IIInsulation/Symmet

6.4.4. Subdomain Settings

Subdomain 
1

Diffusion coefficient (D) m2/s etaprime

Reaction rate (R) mol/(m3-s) T+2*zeta*(vx-uy-2*s)

6.5. Application Mode: Convection and Diffusion (cd)

Application mode type: Convection and Diffusion
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Application mode name: cd

6.5.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.5.2. Variables

Dependent variables: M_x

Shape functions: shlag(2,'Mx)

Interior boundaries not active

6.6.3. Boundary Settings

B1oundary 11-8
IType II nsulation/Symmetr

6.5.4. Subdomain Settings

Subdomain 1

Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3.s) -s*M-y-((M.x-M_eqx)/(omegatau))
x-velocity (u) m/s u
y-velocity (v) m/s v
z-velocity (w) m/s w

6.6. Application Mode: Convection and Diffusion (cd2)

Application mode type: Convection and Diffusion

Application mode name: cd2

6.6.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.6.2. Variables

Dependent variables: M_y

Shape functions: shlag(2,'M_y')

Interior boundaries not active

6.6.3. Boundary Settings

5/12/2010 9:41 PM
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lBoundary 11-8
Type Insulation/Symmet

6.6.4. Subdomain Settings

Subdomain I
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3.s) s*Mx-(My-M ey)lomegatau)
x-velocity (u) m/s u
y-velocity (v) m/s v
z-velocity (w) m/s Iw

6.7. Application Mode: Convection and Diffusion (cd3)

Application mode type: Convection and Diffusion

Application mode name: cd3

6.7.1. Application Mode Properties

Propert Value
Default element type Lagrange - Quadratic
Analysis tpe Transient
Equation form Non-conservative
Frame IFrame (ref)
Weak constraints IOff
Constraint type IIdeal

6.7.2. Variables

Dependent variables: M_z

Shape functions: shlag(2,'Mz')

Interior boundaries not active

6.7.3. Boundary Settings

B1oundary 11-8
IType IIInsulation/Symmetry

6.7.4. Subdomain Settings

Subdomain I
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3.s) -((Mz-Meqz)Iomegatau)
x-velocity (u) m/s u
y-velocity (v) m/s I
z-velocity (w) m/s I w

6.8. Application Mode: PDE, General Form (g2)

Application mode type: PDE, General Form

Application mode name: g2

6.8.1. Application Mode Properties
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Property Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.8.2. Variables

Dependent variables: avgv, avgv_t

Shape functions: shlag(2,'avgv')

Interior boundaries not active

6.8.3. Boundary Settings

IBoundaryl 1-8
Type Dirichlet bounda condition

6.8.4. Subdomain Settings

Subdomain i
Source term (f)
Conservative flux source term (ga) {(O;O;o))

6.9. Application Mode: PDE, General Form (g)

Application mode type: PDE, General Form

Application mode name: g

6.9.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Wave extension Off
Frame Frame (ref)
Weak constraints Off

6.9.2. Variables

Dependent variables: psi, psi-t

Shape functions: shlag(2,'psi')

Interior boundaries not active

6.9.3. Boundary Settings

rBoundary 11-8
IType I IDirichilet boundary condition]
(r) -psi~potential

6.9.4. Subdomain Settings

Subdomain 1
Damping/Mass coefficient (da) 0
Source term (f) -d(M x,x)-d(My,y)-d(M z,z)
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7. Solver Settings

Solve using a script: off

Analysis type Stationary
Auto select solver On
Solver Time dependent
Solution form Automatic
Symmetric auto
Adaptive mesh refinement Off
Optimization/Sensit'v' Off
Plot while solving Off

7.1. Direct (PARDISO)

Solver type: Linear system solver

Parameter Value
Preordering algorithm Nested dissection
Row preordering On
Bunch-Kaufmann Off
Pivoting perturbation 1.OE-8
Relative tolerance 1.0E-6
Factor In error estimate 400.0
Check tolerances Off

7.2. Time Stepping

Parameter Value
Times range(0,0.1,2)
Relative tolerance 0.001
Absolute tolerance 0.00010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy E~clude algebraic
Allow complex numbers Off

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling
Row equillbration On
Manual control of reassembly Off
Load constant On
Constraint constant On
Mass constant On
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Damping (mass) constant On
Jecobian constant On
Constraint Jacobian constant On

8. Postprocessing

Tma-2 kw h.e4 %W~

9. Variables

1. Boundary

Name Description Unit Expression
K x ns Mscous force per area. x Pa eta-ns * (2 * nxns * ux+nyns * (uy+vx)+nz.ns * (uz+wx)

component

T x_ns Total force per area. x Pa -nxns * p+2 * nxns * eta_ns * ux+nyns * eta_ns*
component _ (uy+4+nzns *etans *(uz+wx)

K y_ns Mscous force per area. y Pa etans * (nxns * (vx+uy)+2 * nyns * vy+nzjns * (vz+wy))
component

T_y_ns Total force per area, y Pa -nyns * p+nx_ns * eta_ns * (vx+uy)+2 * ny_ns * etans *
component vy+nz ns * eta ns *(vz+wy)

K z ns Mscous force per area, z Pa eta-ns * (nxns * (wx+uz)+nyns * (wy+z)+2 * nzns * wz)
component

T z ns Total force per area. z Pa -nz-ns * p+nx_ns * eta_ns * (wx+uz)+nyns * eta ns * (wy+vz)+2
component * nz ns * eta ns * wz

ndflux s di Normal diffusive flux, s mol/(m^2*s) nx di * dfux s x di+nydi * dfluxs_y_di+nz di * dflux s z di
ndflux M x cd Normal diffusive flux, M x mol/(m^2*s) nx cd * deuxM-x x-cd+ny_cd * dIux_M_x_y_cd+nz cd *

deux M x z cd
ncluxM x cd Normal convective flux, Mx mol/(m2*s) nx cd * ofluxM x x cd+ny_cd * cfluxM_xy cd+nzcd *

cflux M x z cd

ntflux_M x cd Normal total fu, M x mol/(m^2*s) nx-cd * tfluxM-x-x cd+ny_od * tflux_M_x y_cd+nz-cd *
tflux M x z cd

5/12/2010 9:41 PM
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ndfluxM_y_cd 1 Normal diffusive flux, M_y

file:///F:/Research%2OFiles/Software%2Data%2Files/Comsol%2Fi.

mol/(mA2*s nxcd2 * dfluxM_yxcd2+nycd2 * dfluxMjyy-cd2+nz-cd2 *i dflux M v z cd2
ncflux_M_y_cd2 Normal convective flux, My mol/(m^2*s nxcd2 * cfluxxM cd2+nycd2 * cuxM~yycd2+nzcd2 *

cflux M y z cd2

ntflux_Mjcd2 Normal total flux, M_y mol/(mA2*s nxcd2 * tflux_M_y_x_cd2+ny cd2 * tfluxM_y_y_cd2+nzcd2 *
I _tflux M y z cd2

ndfluxMzcd3 Normal diffusive flux, Mz mol/(mA2*s nxcd3 * dflux M z x cd3+nycd3 * dfluxMz_yLcd3+nzcd3 *
dflux M z z cd3

ncflux_M_z-cd3 Normal convective flux, M_z mol/(mA2*s nx-cd3 * cflux M z x cd3+nycd3 * cfluxMz_y_cd3+nzcd3 *
cflux M z z cd3

ntflux_M_z-cd3 Normal total flux, Mz mol/(mA2*s nx_cd3 * tflux_M_z_x_cd3+nycd3 * fflux_M_z_y_cd3+nzcd3 *
I I tflux M z z cd3

9.2. Subdomain

Name Description Unit Expression
Uns Velocity field m/s sqrt(uA2+v^2+wA2)
Vx_ns Vorticity, x 1/s wy-vz

component
Vyns Vorticity, y 1/s uz-wx

component

\z_ns Vorticity, z 1/s vx-uy
component

V_ns Vorticity 1/s sqrt(Vx_nsA2+VynsA2+V/z nsA2)
divU_ns Divergence of 1/s ux+vy+wz

velocity field

cellRens Cell Reynolds I rhons * Uns * h/etans
number

res_u_ns Equation N/mA3 rho-ns * (u * ux+v * uy+w * uz)+px-F-x-ns+1f(gmgjevel>0,0,-eta-ns * (2 *
residual for u uxx+uyy+vxy+uzz+wxz))

res v ns Equation N/mA3 rho-ns * (u * vx+v * vy+w * vz)+py-F_y_ns+if(gmg jevel>0,0,-eta ns *
residual for v (vxx+uyx+2 * vyy+vzz+wyz))

res_w_ns Equation N/mA3 rho-ns * (u * wx+v * wy+w * wz)+pz-F-zns+if(gmgjevel>0,0,-etans *
residual for w (wxx+uzx+wyy+vzy+2 wzz))

beta x ns Convective kg/(mA2*s) rho-ns * u
field, x
component

beta_y_ns Convective kg/(mA2*s) rho-ns * v
field, y
component

beta z ns Convective kg/(mA2*s) rho-ns * w
field, z
component

Dm ns Mean Pa*s etans
diffusion
coefficient

dans Total time kg/mA3 rhons
scale factor

taumns GLS mA3*s/kg nojac(1/max(2 * rho ns * sqrt(emetric(u,vw)),48 * eta-ns/hA2))
time-scale

tauc ns GLS m^2/s 0.5 * nojac(f(uA2+v^2+wA2
time-scale

res_p_ns Equation kg/(mA3*s) rho-ns * divUns
residual for p

grads-xdi Concentration mol/mA4 sx
gradient, s, x
component II

dflux sxdl Diffusive flux, mol/(mA2*s) -Dxxsdi * sx-Dxysdi * sy-Dxzsdi *sz
s, x
component
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grad-sydi Concentration
gradient, s, y
conmnnt~
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olI/mA4
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dflux_s_y_di Diffusive flux, mol/(mA2*s) -Dyx_sdi * sx-Dyy_sdi * sy-Dyz_s_di * sz
s, y
component

grad-s z di Concentration mol/mA4 sz
gradient, s, z
component

dflux s z di Diffusive flux, mol/(mA2*s) -Dzx s di * sx-Dzysdi * sy-Dzzsdi * sz
s, z
component

grad-s_di Concentration mol/mA4 sqrt(grad-s-x-diA2+grads_y_di2+grads-z-di^A2)
gradient, s

dflux s di Diffusive flux, mol/(mA2*s) sqrt(dflux s x diA2+dfluxs_y_diA2+dflux s-z-di2)
s

grad_M_x_x_cd Concentration mol/mA4 Mxx
gradient,
M-x, x
component

dflux_M x x cd Diffusive flux, mol/(mA2*s) -Dxx_M x cd * Moc-DxyMxcd * Mxy-DxzM-x-cd * M_xz
Mx, x
component

cfluxM x-x cd Convective mol/(mA2*s) M_x * u_M-x_cd
flux, Mx, x
component

tflux M x x cd Total flux, mol/(mA2*s) dfluxM-x x cd+cfluxM x x_cd
M-x, x
component

gradM_x_y_cd Concentration molImA4 Mxy
gradient,
M_x, y
component

dfluxM_x_y_cd Diffusive flux, mol/(mA2*s) -DyxMx_cd * M_xx-Dyy_)xcd * Mxy-Dyz_M_xcd * Mxz
M_x, y
component

cflux_M_x_y_cd Convective mol/(mA2*s) M x * vM x cd
flux, Mx, y
component

tflux_Mx_y_cd Total flux, mol/(mA2*s) dfluxM_x_y_cd+cfluxMx_y_cd
M_x, y
component

gradM x z cd Concentration mol/mA4 M_xz
gradient,
Mx, z
component

dflux_M x z cd Diffusive flux, mol/(mA2*s) -Dzx_M_x cd * M-xx-Dzy_M_xcd * M_-DzzMxcd * M_xz
Mx, z
component

cflux_M x z cd Convective mol/(mA2*s) Mx * wM x cd
flux, Mx, z
component

tfluxM x z cd Total flux, mol/(mA2*s) dflux_M x z cd+cfluxM x z cd
Mx, z
component

beta_M x x cd Convective m/s u_M x cd
field, Mx, x

I component

beta_Mx-ycd Convective m/s v_M x cd
field, Mx, y
component
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beta_M x z Cd Convective
field, Mx, z
component

wM-x-cd

gradM.x.cd Concentration mol/mA4 sqrt(gradM-x-x cdA2+grad_M_x_y_cA2+gradMxzcd2)
gradient, M x

dflux_M x cd Diffusive flux, mol/(mA2*s) sqrt(dfluxM x x cd^2+dfluxMxjy.cdA2+dflux M x z cd^2)
M x

cfluxM x cd Convective mol/(mA2*s) sqrt(cfluxM x x cdA2+cfluxM_x_ycdA2+cflux_M x z cdA2)
flux M x

tfluxM x cd Total flux, mol/(mA2*s) sqrt(tfluxM x x cdA2+tfluxMx_y cdA2+tfluxM x z cdA2)
M x

cellPeM_xcd Cell Peclet 1 h * sqrt(betaM x xcd A2+beta_M.x_y_cdA2+beta M-x zcdA2)/DmMx cd
number, M x

Dm M x cd Mean mA2/s (DxxM x cd * uM x cd^2+DxyMxcd * uMx cd *
diffusion v_M-x_cd+Dxz_M_xcd *u_M-x_cd * w_M x-cd+DyxMx_cd * v_M_x cd*
coefficient, u_M x cd+DyyM xLcd * vM x cdA2+DyzMxcd * vM x cd *
Mx W M x cd+Dzx M x cd *wM x cd * u_Mjx)cd+DzyMxcd * wM-x cd*

vM x cd+Dzz M x cd *
w M x cdA2)/(u M x cdA2+v M x cdA2+w M x cdA2+eps)

resM x cd Equation mol/(mA3*s) -Do_M x cd * M xx-Dxy_M_xcd * M_xxy-DxzM x cd * M xxz+M xx*
residual for u_M_xcd-DyxMxcd * Mxyx-DyyMxcd * Mxyy-DyzMxcd *
M_x Mxyz+Mxy * vM-x-cd-Dzx_M x cd * M xzx-DzyM x cd * M_xzy-

Dzz M x cd * M xzz+M xz * w M x cd-R M x cd
res scM xcd Shock mol/(mA3*s: Mxx* u_M-x-cd+M-xy * vM x cd+M-xz * w_M x cd-RM x Cd

capturing
residual for
M x

da-M x cd Total time I Dts M x cd
scale factor,
M x

gradM_y_x_cd2 Concentration mol/mA4 Myx
gradient,
M-y, x
component

dfluxMjx_cd2 Diffusive flux, mol/(mA2*s -Do_M_y_cd2 * M_yx-Dxy_M_y_cd2 * M_yy-Dxz_M_y_cd2 * M_yz
Mjy, x
component

cflux_M_yx cd2 Convective mol/(mA2*s) My * u_M_y_cd2
flux, Mjy, x
component

tflux_M~y_xCd2 Total flux, mol/(mA2*s) dflux_M_y_x_cd2+cflux_M_y_xcd2
Mjy, x
component

grad_M_y_y_cd2 Concentration mol/mA4 Mjyy
gradient,
Mjy, y
component

dflux_Mj_y_cd2 Diffusive flux, mol/(mA2*s) -Dyx_M_y-cd2 * M_yx-DyyMcd2 M_yy-Dyz_M_y_cd2 * Myz
Mj, y
component

cflux_M_y_y_cd2 Convective mol/(mA2*s) My *v_M_y_cd2
flux, Mjy, y
component

tfluxMy_y_cd2 Total flux, mol/(mA2*s) dflux_M_y_y_Cd2+cflux_M_y_y_cd2
Mjy, y
component

grad_M_y_zcd2 Concentration mol/mA4 M-yz
gradient,
Mjy, z
component

dfluxM_y_ z_cd2 Diffusive flux, mol/(mA2*s) -Dzx_M_ycd2 * Mjx-)zyMy_02 * M_yy-Dzz_M_y_cd2 * Myz
M-y, z
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component

cflux_Myzcd2 Convective mol/(mA2*s) My * w_Mycd2
flux, M-y, z
component

tflux_M_y_zcd2 Total flux, mol/(mA2*s) dflux_M_y_zcd2+cfluxMjzcd2
MLy, z
component

beta_Myxcd2 Convective m/s u_M_y_cd2
field, My, x
component

betaM_y_y_.cd2 Convective m/s v_Mjcd2
field, My, y
component

beta_M_y_zcd2 Convective m/s wM_y_cd2
field, M_y, z
component

grad_M_y.cd2 Concentration mol/mA4 sqrt(grad_M_y_xcd2A2+grad_M_y-y_cd2A2+gradM-y.zcd2A2)
gradient, M y

dflux_M_y_cd2 Diffusive flux, mol/(mA2*s) sqrt(dfluxMyxcd2A2+dfluxMy_y_cd2^2+dfiuxM_y_zcd2A2)
M -Y

cflux_M_y_cd2 Convective mol/(mA2*s) sqrt(cflux_M_yx_cd2A2+cfluxM-y-y_cd2A2+cflux_M_y_zcd2A2)
flux M y

tflux_M_y_cd2 Total flux, mol/(mA2*s) sqrt(tfluxMJx_cd2A2+tfluxM-y-y_cd2A2+tfluxM-y_zcd2A2)
M -y

cellPe_M_y_cd2 Cell Peclet I h *
number, My sqrt(beta M y x cd2^2+beta M y y cd2A2+beta M y z cd2^A2)/Dm M y cd2

DmM-y_cd2 Mean mA2/s (DxxM-y_cd2 * uMycd2A2+Dxy_M_y_cd2 * u_M_y-cd2 *
diffusion v_M-y-cd2+DxzM_y_cd2 * u_M_y_cd2 * w_M_y_cd2+DyxM_y_cd2 *
coefficient, vM.y-cd2 * uM_y_cd2+Dyy_M_y_cd2 * v_M_y_cd2A2+Dyz _M_y cd2 *
M-y vM_y_cd2 * w_M_y_cd2+DzxMy cd2 * w_Mjcd2 *

uMjycd2+Dzy_M_y_cd2 * wMjcd2 v_M_y_cd2+Dzz_M_y_cd2 *
w M y cd2A2)/(u M y cd2A2+v M y cd2A2+w M y cd2A2+eps)

res_M_y_cd2 Equation mol/(mA3*s) -Dxxo_M_y_cd2 * M_yxx-Dxy_M_y_cd2 * Mxy-Dxz_M_y_cd2 * M.yxz+M_yx *
residual for u_M_y_cd2-Dyx_M_y_cd2 * M_yyx-Dyy_M_y_cd2 * Myyy-DyzM_y_cd2 *
M-y Myyz+Myy * v_M_y_cd2-DzxM_y_cd2 * M_yzx-Dzy_M_y_cd2 * Mjyzy-

Dzz M y cd2 * M yzz+M yz * w M y cd2-R My cd2
ressc_M_y_cd2 Shock mol/(mA3*s Myx * u_M_y_cd2+Myy * v_M_y_cd2+M_yz * w_M_y_cd2-R_M_y_cd2

capturing
residual for

da_M_y_cd2 Total time I Dts_M_y_cd2
scale factor,
M y

gradM z xcd3 Concentration mol/mA4 Mzx
gradient,
M-z, x
component

dflux_M z x cd3 Diffusive flux, mol/(mA2*s) -DxxM z cd3 * M_zx-Dxy_M_zcd3 *Mzy-DxzM-z-cd3 M_zz
M-z, x
component

cfluxM z x cd3 Convective mol/(mA2*s) Mz * uM z cd3
flux, M_z, x
component

tfluxM z x cd3 Total flux, mol/(mA2*s) dflux M z x cd3+cfluxM z x cd3
M-z, x
component

gradM_z_y_cd3 Concentration mol/mA4 Mjzy
gradient,
Mz, y
component

dfluxM_z_y_cd Diffusive flux, mol/(mA2*s) -DyxM-z_cd3 * M_zx-Dyy_M-z-cd3 * Mzy-Dyz_M_zcd3 * M_zz
M-z, y
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componernt
cflux_M_z_y_cd3 Convective mol/(mA2*s Mz * v_M_zcd3

flux, Mz, y
component

tflux_M_zycd3 Total flux, mol/(m^2*s: dfluxM_z_ycd3+cfluxMz_y_cd3
M~z, y
component

gradMzzcd3 Concentration mol/m^4 M-zz
gradient,
Mz z
component

dflux_M z Z cd Dffusive flux, mol/(mA2*s: -Dzx_M_zcd3 * M zx-Dzy_M_zcd3 Mjzy-DzzM z cd3 M_zz
Mz, z
component

cfluxM zz cd2 Convective mol/(mA2*s: Mz * w_M_zcd3
flux Mz, z
component

tfluxM _z_zcd3 Total flux, mol/(mA2*s: dfluxMz z cd3+cfluxM z z cd3
MRz, Z
component

betaM-z-xxcd3 Convective rn/s uM-z-cd3
field, Mz, x
component

betaM_z_cyd3 Convective rn/s v_M z-cd3
field, M-z, y
component

betaM-z-z-cd3 Convective rn/s w_M_z_cd3
field, M-z, z
component

gradM-z-cd3 Concentration mol/m^4 sqrt(grad_M_z xLcd3^2+grad_M_z_y_cd3^2+gradM-z-z-cd3^2)
gradient, M z I

dflux_M z cd3 Diffusive flux, rnol/(m^2*s: sqrt(dflux_Mz-x cd3A2+dfluxMz_y_cd3^2+dfluxM.z_z_cd3^2)
M Z

cfluxM z cd3 Convective mol/(m^2*s sqrt(cflux_M z x cd3^2+cfluxM_zcd3^2+cfluxM_lz_z_cd3^2)
flux M z

tfluxM z cd3 Total flux, mol/(m^2*s sqrt(tfluxM zxcd3^2+tfluxM_z_y_.cd3^2+tfluxMzzcd3^2)
M Z

cellPeM z cd3 Cell Peclet 1 h*
number. M z sqrt(beta M z x cd3^2+beta M zy cd3^2+beta M z z cd3^2)/Dm M z cd

DmM z cd3 Mean m^2/s (DoMz_Cd3 * uM z cd32+Dxy_M_zcd3 * uM zcd3 *
diffusion v_Mz cd3+Dx_Mzcd3 * u_Mz cd3w M z cd3+DyxMz-cd3
coefficient, v_Mz xcd3 * u_Mzcd3+Dyy MCd3 * vM zcd3^2+Dyz_M_z_cd3
M-z vMxzfcd3 * wM-z-cd3+DzxM-z-cd3 * wM-z-cd3 *

uM z-cd3+DzyMJzJcd3 * w_Mz-cd3 * v_M_zcd3+Dzz_Mxz cd3
w M z cd3A2)/(u M z cd3A2+v M z cd3A2+w M z cd3A2+eps)

res M z cd3 Equation mol/(m^3*s: -DxxM-z-cd3 * M zxx-Dxy_M_z_cd3 * M_zxy-Dxz_Mz_cd3 * M_zxz+Mzx
residual for uM z Cd3-DyxMxz-Cd3 * M.zyx-DyyjLzcd3 * M zyy-DyzM3zcd3
M-z M_zyz+M_zy * vM_z cd3-Dzx_M z-cd3 * M_zzx-Dzy_M_z_cd3 * Mzzy-

Dzz M z cd3 * M zzz+M zz * w M z cd3-R M z cd3
ressc_Mzcd3 Shock rnol/(mA3*s Mzx * uM-z-cd3+M_zy * v_Mzcd3+M-zz * w_M z-cd3-RMzcd3

capturing
residual for
M Z

da_Mzcd3 Total time 1 Dts_M_z_cd3
scale factor,
M Z

absavovx 2 lrad(avgv)l sort(avavx^2+avy^W2+avavz^2)
absga9xg2 Igagx sqrt(ga9x^2+ga9yA2+ga9z^2)
abspslx g lrad(psi)l sqrt(psLx^2+psiy^2+psiz^2)
absgal0x g lga10x sart(ga10x^2+ga10yA2+ga10z^2)
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These files are identical to those for the MSGW1 1 cases in this Appendix except with

different normalized variables used as described in Table 6-5.
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Appendix G : Experimental Results with Non-Uniform

Fields Generated Using Third Coil (Section 6.4)

GI. EFH1 Filled Sphere with Third Coil Oscillating at Same

Frequency as Rotating Field at 95Hz

Ch1 95Hz EFH1 Clockwise Rotating Field 3rdcoil phase=O
0.01 -- ----- ----- -- --------- --- ----- ------------

0.008 --------- -- ---- --- --- - - - - --

0.006 --------- -- ---- O - _- - ------ - -- ---- ----- --- --

0 . 0 4 - -- -- - - ---- -- - --- - -

0.002 ------- --- -- --- - - -- -- ---------- ----- --- baseline
-0.006--- -------- 50.6G Fluxball no 3rdcoil

0 50.6G Fluxball 169.6G 3rdcoil
8 -v- 101.2G Fluxball 169.6G 3rdcoil
> -0.002 ------ 50.6G Fluxball 296.8G 3rdcoil

101.2G Fluxball 296.8G 3rdcoil
-0 .0 0 4 ----------1 ------I -----1 ---- 1- ----1 -----* --

-0 .0 0 6 -- ---------I- ----------------------- --

-0 .0 0 8 -- - ---- --- - - - - - - -- -- - - - - --- - - --- - - - -- - - - -

-0.01 I I
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)
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Ch1 95Hz EFH1 Counter-clockwise Rotating Field 3rdcoil phase=0

+-baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
101.2G Fluxball 169.6G 3rdcoil

->-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

-0.011 1 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

Ch2 95Hz EFH1 Clockwise Rotating Field 3rdcoil phase=0
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Ch3 95Hz EFH1 Counter-clockwise Rotating Field 101.2G Fluxball
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Ch3 95Hz EFH1 Counter-clockwise Rotating Field 50.6G Fluxball
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Ch2 95Hz EFH1 Counter-clockwise Rotating Field 101.2G Fluxball
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Ch1 95Hz EFH1 Counter-clockwise Rotating Field 50.6G Fluxball
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Ch3 95Hz EFH1 Counter-clockwise Rotating Field 50.6G Fluxball
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Ch4 95Hz EFH1 Counter-clockwise Rotating Field 50.6G Fluxball
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Ch1 95Hz EFH1 Counter-clockwise Rotating Field Baseline Cases
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Ch2 95Hz EFH1 Counter-clockwise Rotating Field Baseline Cases
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Ch3 95Hz EFH1 Counter-clockwise Rotating Field Baseline Cases
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Ch4 95Hz EFH1 Counter-clockwise Rotating Field Baseline Cases
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95Hz EFH1 50.6G Fluxball Counter-clockwise Rotating Field 169.6G 3rd coil Flow profile scale=10
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95Hz EFH1 101.2G Fluxball Counter-clockwise Rotating Field 169.6G 3rd coil Flow profile scale=10
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95Hz EFH1 50.6G Fluxball Counter-clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10
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95Hz EFH1 101.2G Fluxball Counter-clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10
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G2. EFH1 Filled Sphere with Third Coil Oscillating at

Frequency as Rotating Field at 47Hz
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Ch1 47Hz EFH1 Clockwise Rotating Field 3rdcoil phase=-120
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Ch3 47Hz EFH1 Clockwise Rotating Field 50.6G Fluxball
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* 101.2G Fluxball OA 3rdcoil
+ OA Fluxball 169.6G 3rdcoil
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Ch2 47Hz EFH1 Clockwise Rotating Field Baseline Cases
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-0.004 -
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-0.008 -

-0.01-
0.01

0.01 -

0.0081-

0.006

0.004

0.00

-0.00

2

2

-0.004
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Ch3 47Hz EFH1 Clockwise Rotating Field Baseline Cases
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-0.006-
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Ch4 47Hz EFH1 Clockwise Rotating Field Baseline Cases

-- - - - - - - -- - - -- -- -- - -- -- - -- -
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z distance from Probe 4 (m)

Ch4 47Hz EFH1 Counter-clockwise
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Rotating Field Baseline Cases
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- baseline
T 50.6G no 3rdcoil

- 101.2G no 3rdcoil
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-- OA Fluxball 169.6G 3rdcoil
-OA Fluxball 296.8G 3rdcoil
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47Hz EFH1 50.6G Fluxball Clockwise Rotating Field 169.6G 3rd coil Flow profile scale=20

0.1 F
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47Hz EFH1 50.6G Fluxball Counter-clockwise Rotating Field 169.6G 3rd coil Flow profile scale=20
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47Hz EFH1 101.2G Fluxball Clockwise Rotating Field 169.6G 3rd coil Flow profile scale=20
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47Hz EFH1 50.6G Fluxball Clockwise Rotating Field 296.8G 3rd coil Flow profile scale=20
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47Hz EFH1 101.2G Fluxball Clockwise Rotating Field 296.8G 3rd coil Flow profile scale=20
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G3. EFH1 Filled Sphere with Third Coil Oscillating at Same

Frequency as Rotating Field at 15Hz

Ch1 15Hz EFH1 Clockwise Rotating Field 3rdcoil phase=0
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0.006 -
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0.00
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> -0.00
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-0.006

-0.008

-0.01 L
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x f1 15Hz EFH1 Counter-clockwise Rotating Field 3rdcoil phase=0
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-e- 75.90 FluxbalI no 3rdcoil

50.60 Fluxball 169.6G 3rdcoil
* 75.9G Fluxball 169.6G 3rdcoil
0 50.6G Fluxball 296.8G 3rdcoil
A 75.9G Fluxball 296.8G 3rdcoil
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- 50.6G Fluxball no 3rdcoil

- 75.9G Fluxball no 3rdcoil
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--- 50.6G Fluxball 296.8G 3rdcoil
75.9G Fluxball 296.8G 3rdcoil
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Ch2 15Hz EFH1 Clockwise Rotating Field 3rdcoil phase=0
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-75.9G Fluxball 296.8G 3rdcoil
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Ch3 15Hz EFH1 Clockwise Rotating Field 3rdcoil phase=0
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Ch4 15Hz EFH1 Clockwise Rotating Field 3rdcoil phase=0
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Ch1 15Hz EFH1 Clockwise Rotating Field 3rdcoil phase=-120
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x 10-Ch2 15Hz EFH1 Clockwise Rotating Field 3rdcoil phase=-120
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Ch4 15Hz EFH1 Clockwise Rotating Field 3rdcoil phase=-120
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Ch1 15Hz EFH1 Clockwise Rotating Field 3rdcoil phase=+120
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Ch3 15Hz EFH1 Clockwise Rotating Field 3rdcoil phase=+120
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15Hz EFH1 50.6G Fluxball Clockwise Rotating Field 169.6G 3rd coil Flow profile scale=10
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15Hz EFH1 75.9G Fluxball Clockwise Rotating Field 169.6G 3rd coil Flow profile scale=10
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15Hz EFH1 50.6G Fluxball Clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10
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15Hz EFH1 75.9G Fluxball Clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10
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+90

-90

-0.02

0.08-

0.06-

0.04--

0.02F-

0.02



G4. MSGW1 1 Filled Sphere with Third Coil Oscillating at

Frequency as Rotating Field at 95Hz

Ch1 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=0
0.01 r - -

0.008

0.006

0.004

0.002

-0.006

-0.008

-0.01L
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

Ch1 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil phase=0
0 .0 1 r - -- - - - - - - - - - - - - - - - - - - -- - - - -
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Same

--- baseline

50.6G Fluxball no 3rdcoil
-+-- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
-+-- 101.2G Fluxball 169.6G 3rdcoil
-+- 50.6G Fluxball 296.8G 3rdcoil

101.2G Fluxball 296.8G 3rdcoil

0.008

0.006

0.004

0.002
-- baseline

50.6G Fluxball no 3rdcoil
-e- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
* 101.2G Fluxball 169.6G 3rdcoil

- -50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

-0.01 ' ' ' ' 1 1 ' '
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)



Ch2 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=0

--- -- - - -- - - - -- - -- - ----- - -- -- - -- -

- 4 - - - 4 - --- 4 -I - -- I

- - - - - - - - - - - - -- - p

- - - - -

0.02 0.03 0.04 0.05 0.06
x2 distance from Probe 2 (m)

0.07 0.08

Counter-clockwise Rotating Field 3rdcoil phase=0

- - - - - - - - - - - - - - -

I I I I I I I

0.2 .0 -00 - 0-0- 5 - 0-0-6 - 0-0-7 0.08 -

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x2 distance from Probe 2 (m)
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* baseline

- 50.6G Fluxball no 3rdcoil

* 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
+-- 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

0.01 -

0.008 -

0.006 -

0.004 -

0.00

-0.00

2

2

-0.004 -

-0.006 -

-0.008-

-0.01
0.01

-U--- baseline

50.6G Fluxball no 3rdcoil
----- 101.2G Fluxball no 3rdcoil
--- 50.6G Fluxball 169.6G 3rdcoil

* 101.2G Fluxball 169.6G 3rdcoil
--- 50.6G Fluxball 296.8G 3rdcoil

101.2G Fluxball 296.8G 3rdcoil

95Hz MSGW11

0.008

0.006

0.004

0.00

-0.00

2

2

-0.004-

-0.006-

-0.008 -

-0.01
0.01

-7

- - - - - -

s,- - - -

4 - - - - a

I I

I I

T, - -

-- - - - - - - - -



Ch3 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=0

-0.005

-0.01

-- baseline

50.6G Fluxball no 3rdcoil
+ 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
-- +--- 101.2G Fluxball 169.6G 3rdcoil
-- 50.6G Fluxball 296.8G 3rdcoil

. 101.2G Fluxball 296.8G 3rdcoil

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z3 distance from Probe 3 (m)

Ch3 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil phase=0

0.005 F

L At , - -
OL -

-0.005

-0.01 -

0.08 0.09
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- -baseline

50.6G Fluxball no 3rdcoil
- - 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
-+---- 101.2G Fluxball 169.6G 3rdcoil
----- 50.6G Fluxball 296.8G 3rdcoil

101.2G Fluxball 296.8G 3rdcoil

0.02 0.03 0.04 0.05 0.06 0.07
z3 distance from Probe 3 (m)



Clockwise Rotating Field 3rdcoil phase=0

0.02 0.03 0.04 0.05 0.06 0.07
z distance from Probe 4 (m)

95Hz MSG W11 Counter-clockwise Rotating Field 3rdcoil phase=0
------- -- --- -- -- - - - -- - - -

| A

0.02 0.03 0.04 0.05 0.06 0.07
z distance from Probe 4 (m)

0.015 -

0.01 -

0.005 -

i N

Ch4 95Hz MSGW1 1
- - - - - - - - - - -

-0.005 --

-0.01 --

-0.015-
0.01

0.015-

0.01 -

0.005 -

0.08 0.09

-0.005 -----

-0.01 F

-M- baseline
v 50.6G Fluxball no 3rdcoil

-0- 101.2G Fluxball no 3rdcoil
--- 50.6G Fluxball 169.6G 3rdcoil

--- 101.2G Fluxball 169.6G 3rdcoil

--- 50.6G Fluxball 296.8G 3rdcoil
-s- 101.2G Fluxball 296.8G 3rdcoil

-0.015L-
0.01 0.08 0.09
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r ----- - - - Tr - - - - r - - -- - - - -7
-I--- baseline

- 50.6G Fluxball no 3rdcoil
a 101.2G Fluxball no 3rdcoil

---- 50.6G Fluxball 169.6G 3rdcoil
---- 101.2G Fluxball 169.6G 3rdcoil
----- 50.6G Fluxball 296.8G 3rdcoil
----- 101.2G Fluxball 296.8G 3rdcoil



Ch1 95Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=-120
0.01 r -

0.008

0.006

0.004

0.002

0'
00

> -0.002

-0.004 -

-0.006 -

-0.008 - -

-0.01 L
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

Ch1 95Hz MSGW 11 Counter-clockwise Rotating Field 3rdcoil phase=-120
0.01

0.008-

0.006 - -

0.004

0.002 - - -

00

0 0

> -0.002- -- -- -- -
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-U-- baseline

50.6G Fluxball no 3rdcoil
--- 101.2G FluxbaI no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
* 101.2G Fluxball 169.6G 3rdcoil

-+- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

baseline
50.6G Fluxball no 3rdcoil

--- 101.2G Fluxball no 3rdcoil
50.6G Fluxball 169.6G 3rdcoil
101.2G Fluxball 169.6G 3rdcoil

-+- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

-0.01' 1 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)



-0.004--

-0.006--

-0.008--

-0.01 -
0.01

Ch2 95Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=-120

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x2 distance from Probe 2 (m)

Ch2 95Hz MSGW1 1
0.01 - -

0.008 -

0.006-- -- -

Counter-clockwise Rotating Field 3rdcoil phase=-120

- - - --- - - - -- - - - -- - - - --- - - -- - - -_

--- - -- - - -- - - - - - -

0.004

0.00

-0.00

2

2

-0.004-

-0.006 -

-0.008 -

-0.01'
0.0 1 0.08
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0.01 -

0.008-

0.006-

0.004 -

20.00

-0.002

-U-- baseline

- 50.6G Fluxball no 3rdcoil
-- 101.2G Fluxball no 3rdcoil
-- 50.6G Fluxball 169.6G 3rdcoil

- *- 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

baseline

-- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball 169.6G 3rdcoil
101.2G Fluxball 169.6G 3rdcoil

-o- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

'

- - - - - - - - - -

-- - - - - - - - --

-- - - - - - - - - - - - - - -

- - -



-0.015'
0.01

Ch3 95Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=-120

+ baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
+-- 101.2G Fluxball 169.6G 3rdcoil

->--- 50.6G Fluxball 296.8G 3rdcoil
A 101.2G Fluxball 296.8G 3rdcoil

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z3 distance from Probe 3 (m)

Ch3 95Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil phase=-120
0.015 - -

-0.015 L0.01 0.02 0.03 0.04 0.05 0.06 0.07
z3 distance from Probe 3 (m)

0.015 -

0.01 -

0.005 -

0

-0 .0 0 5 -- - -- -- - - - - - - - - - - - - - - - - - - - - -

-0.01

0.01

0.005 k

-0.005 F

-0.01 F

- -baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

--- 50.6G Fluxball 169.6G 3rdcoil
101.2G Fluxball 169.6G 3rdcoil

---- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

0.08 0.09
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0.015 -

0.01 -

0.005-

-0.005--

-0.01 -

-0.015-
0.01

Clockwise Rotating Field 3rdcoil phase=-120

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
zdistance from Probe 4 (m)

Ch4 95Hz MSGW1 1

0.01

0.005 - -

-0.005 -

-0.01|

Counter-clockwise Rotating Field 3rdcoil phase=-120

- --- - --- - - - - ----- - - - - -
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Ch4 95Hz MSGW1 1

---- baseline

-- ' 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

--- 50.6G Fluxball 169.6G 3rdcoil
-+-- 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
- 101.2G Fluxball 296.8G 3rdcoil

-0 .0 15 ' ' ' ' ' ' ' 1-
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z4 distance from Probe 4 (m)

04M IIIIII I IRMIlmoom WIMMO

N baseline
- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

--- 50.6G Fluxball 169.6G 3rdcoil
--- 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil



0.01 -

0.008 -

0.006 -

0.004 -

0

2TR

-0.004

-0.006-

-0.008

-0.01 L-

0.01

Chi 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=+120

0.02 0.03 0.04 0.05 0.06
x distance from Probe 1 (m)

0.07 0.08

Chi 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil phase=+120
0.01 r - -

0.008

0.006 -

0.004 -

2 -- -- - -- -- - --

0

2 -- -- - -- - - -- - -

4.0 -.2 00 4 005 00 .7 00

x distance from Probe 1 (m)
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E

0
0

> -0.00

-- baseline
50.6G Fluxball no 3rdcoil
101.2G Fluxball no 3rdcoil
50.6G Fluxball 169.6G 3rdcoil
101.2G Fluxball 169.6G 3rdcoil

50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

0.00

>-0.00

- -baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
101.2G Fluxball 169.6G 3rdcoil

--- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

-0.0



Clockwise Rotating Field 3rdcoil phase=+120
--- - - - -- - - - -- - - - -- - - - -- - -

---------------------

---- ---- ---- ---- ----

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x2 distance from Probe 2 (m)

Ch2 95Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil phase=+120

0.01 -

0.008 -

0.006 -

0.004-

.)
0

> -0.00 2

-0.004

-0.006-

Ch2 95H1z MSGW1 1

1

0.01 -

0.008 -

0.006 -

0.004 -

20.00

E

> -0.00 2

-0.004 --

-0.006 --

-0.008 -

-0.01 --
0.01

M baseline
T 50.6G Fluxball no 3rdcoil

- 101.2G Fluxball no 3rdcoil
- 50.6G Fluxball 169.6G 3rdcoil

-+-- 101.2G Fluxball 169.6G 3rdcoil

--- 50.6G Fluxball 296.8G 3rdcoil

-A 101.2G Fluxball 296.8G 3rdcoil

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x2 distance from Probe 2 (m)
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'

717

-- l--baseline

50.6G Fluxball no 3rdcoil

- 101.2G Fluxball no 3rdcoil

- 50.6G Fluxball 169.6G 3rdcoil
--- 101.2G Fluxball 169.6G 3rdcoil
----- 50.6G Fluxball 296.8G 3rdcoil

101.2G Fluxball 296.8G 3rdcoil

2e

-0.008-

-0.01
O.0

I I



Ch3 95Hz MSGW 11 Clockwise Rotating Field 3rdcoil phase=+120
0.015 r- -

0.01 k

0.005

-0.005

-0.01 -

-0.0151
0.01 0.02 0.03 0.04 0.05 0.06 0.07

z3 distance from Probe 3 (m)
0.08 0.09

Ch3 95Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil phase=+120
0.015 r - - - - -

0.01 -

0.005 -

L0 . . .

0.02 0.03 0.04 0.05 0.06 0.07
z3 distance from Probe 3 (m)

- -baseline

50.6G Fluxball no 3rdcoil
-U--- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
----- 101.2G Fluxball 169.6G 3rdcoil
-o-- 50.6G Fluxball 296.8G 3rdcoil

101.2G Fluxball 296.8G 3rdcoil

0.08 0.09
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__ _-- baseline

50.6G Fluxball no 3rdcoil
---- 101.2G Fluxball no 3rdcoil

--- 50.6G Fluxball 169.6G 3rdcoil
--- 101.2G Fluxball 169.6G 3rdcoil
+-50.6G Fluxball 296.8G 3rdcoil
A 101.2G Fluxball 296.8G 3rdcoil

-0.005

-0.01

-0.015-
0.01

[U -_~~~~~ ~~~~~ ._ - _ _ _ ._--_.I-._

I I



0.015

0.01

0.005

0

-0.005--

-0.01 --

-0.015-
0.01

Ch4 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=+120

0.02 0.03 0.04 0.05 0.06 0.07
z distance from Probe 4 (m)

Counter-clockwise

--- - - - - - --- -

Ch4 95Hz MSGW1 1
0.015 - - - - - -

0.01

0.005 - -

-0.005 --

-0.01 --

-0.015-
0.01

- baseline

- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

--- 50.6G Fluxball 169.6G 3rdcoil
- 101.2G Fluxball 169.6G 3rdcoil

---- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

0.08 0.09

Rotating Field 3rdcoil phase=+120

- + - - - - - - - - -- - - - + ---

784

-- baseline

- 50.6G Fluxball no 3rdcoil
a 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
*--- 101.2G Fluxball 169.6G 3rdcoil

--- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z, distance from Probe 4 (m)

. .. ...x . ...... i ... . .... - .



Ch1 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=+60
0.01 r- - -

0.008

0.006--

0.004--

0.002- -

04

-0.002--

-0.004-

-0.006-

-0.008 -

-0.01 -
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

xi distance from Probe 1 (m)

Ch1 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil phase=+60
0.01 r , .

0.008

0.006 -

0.004-

I
~U~1~E1T

-U

-0.004 - -

-0.006 - -

-0.008 -

-0.01
0.01 0.02 0.03 0.04 0.05 0.06 0. 07 0.08

x distance from Probe 1 (m)
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-- baseline
- 50.6G Fluxball no 3rdcoil

--- 101.2G Fluxball no 3rdcoil
50.6G Fluxball 169.6G 3rdcoil

---- 101.2G Fluxball 169.6G 3rdcoil
-- 50.6G Fluxball 296.8G 3rdcoil

A 101.2G Fluxball 296.8G 3rdcoil

.UU

0

> -0.002

----- baseline

50.6G Fluxball no 3rdcoil
---- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
* 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

2

- -- -



Ch2 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=+60
0.01- - --- - --- -- - - - --- - - -- --- -

0.008- - - - -- -- ---- -I-

0.006 -- - - -

0.004- - -- - -- -I

0002- - -

0

- 0.002-----

-0.006 - -- -I - -- I---- I------ ----- --- --- I ---0 I |

-0.008-- -I-

-0.01
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x2 distance from Probe 2 (m)

Ch2 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil phase=+60
0.01- ------ --- - ---- - - - -- - --- -0.011

0.008---- --- ----- -

0.006 - I

0.004 ---- -- --- -- ---- I

0.002 - - - - - - - - - - - - - - - - - - -

E
2 0 -

> -0.002 - -- - - - - - - - - - - - - - - - -
01

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
x2 distance from Probe 2 (m)
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= baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-5---50.6G Fluxball 169.6G 3rdcoil
- 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

--- baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
* 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil



0.015

0.01 -
0 .0 05 - - - - - - - - - - - - - -

0F

-0.005 -

-0.01 -

-0.015 -
0.01

Ch3 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=+60

0.02 0.03 0.04 0.05 0.06 0.07
z3 distance from Probe 3 (m)

0.08 0.09

Ch3 95Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil phase=+60
0.015 r -

0.01 k

0.005 - - - - -

.. AL. . e

-0.005 -

-0.01 - -

-0.015 -
0.01 0.02 0.03 0.04 0.05 0.06 0.07

z3 distance from Probe 3 (m)
0.08 0.09

787

baseline
50.6G Fluxball no 3rdcoil

-0--- 101.2G Fluxball no 3rdcoil
50.6G Fluxball 169.6G 3rdcoil

-+- 101.2G Fluxball 169.6G 3rdcoil
-o 50.6G Fluxball 296.8G 3rdcoil

101.2G Fluxball 296.8G 3rdcoil

U-baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
* 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil
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0.015 -

0.01 -

0.005 -

0

-0.005 --

-0.01 --

-0.015 -
0.01

Ch4 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=+60

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z distance from Probe 4 (m)

Ch4 95Hz MSGW1 1
0.015

0.01 - - - - + -

Counter-clockwise Rotating Field 3rdcoil phase=+60

--- -- - -- -- -- - -- - -- -- - - -- -

0.005 F

0 I M . . . -. . 1. ..

-0.005 --

-0.01 --

-0.015-
0.01

0.2 .0 004 005 0.6 .0 00 0.0

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z distance from Probe 4 (m)
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N baseline

v 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
- *-- 101.2G Fluxball 169.6G 3rdcoil

50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

* baseline

- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

- 50.6G Fluxball 169.6G 3rdcoil
+-- 101.2G Fluxball 169.6G 3rdcoil

50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

l

- - r - - - - 1- - - - -

- - - - -

I I



0.008

0.006

0.004

0.002

0

> -0.0021

Ch1 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=-60

-0.004- - - - - - - - - - - -

-0.006 -

-0.008 - - - - - - - -

-0.01,
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

Ch1 95Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil phase=-60
0.01 -- - - - -

0.008 -

0.006 - -

0.004 -
-- baseline

0.002 -- - - - - - -- 50.6G Fluxball no 3rdcoil
E--- 101.2G Fluxball no 3rdcoil

0 ----- 50.6G Fluxball 169.6G 3rdcoil
--- 101.2G Fluxball 169.6G 3rdcoil

-0.002 - - - - - - - - - 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil
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-- baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil

---- 50.6G Fluxball 169.6G 3rdcoil
--- 101.2G Fluxball 169.6G 3rdcoil

-c-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

-0.01'
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)



Ch2 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=-60
0.01 - - - - -- -- --- ---- - ------

0.008 - - -- - I--- --

0.006 - - - -

0.004---- --I--- - --- -- - - - -

0

-0.002 ---- 0.03 -- 0.05 0.06 ------ 0. --

-0 .0 0 4 - - - - - - - - - - - - - - - - -

-0.006 -- - --- - - - - -- - - - -- - - -

-0.01,
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x2 distance from Probe 2 (m)

Ch2 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil phase=-60
0.01---- - - - --- ----- - ------ - - ---

0.008 - - - - - - - - - -

0.006--- - -

0.004 - - - --- -- -- -- I - -

0 002 - - - - - - - - - - - - - - - - - 0.08

79

-0.004- - - - -- - - - - -

-0.006 - --- -- -- -- -- - - -- -- -----

-0.008 - - - - - - - - - - - - - - - - -

-0.01,
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x2 distance from Probe 2 (m)
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--- baseline

-- 50.6G Fluxball no 3rdcoil
a 101.2G Fluxball no 3rdcoil

--- 50.6G Fluxball 169.6G 3rdcoil
-+-- 101.2G Fluxball 169.6G 3rdcoil
---- 50.6G Fluxball 296.8G 3rdcoil

101.2G Fluxball 296.8G 3rdcoil

- baseline
- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

5---50.6G Fluxball 169.6G 3rdcoil
--- 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil



Ch3 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=-60

z3 distance from Probe 3 (m)

- -baseline

50.6G Fluxball no 3rdcoil
-+-101.2G Fluxball no 3rdcoil
---- 50.6G Fluxball 169.6G 3rdcoil

---- 101.2G Fluxball 169.6G 3rdcoil
----- 50.6G Fluxball 296.8G 3rdcoil

A 101.2G Fluxball 296.8G 3rdcoil

0.08 0.09

Ch3 95Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil phase=-60
0 .0 15 r - - - -- - - - - - - - - - _ , - - - - - - - -

0.02 0.03 0.04 0.05 0.06 0.07
z3 distance from Probe 3 (m)

0.08 0.09
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0.015

0.01

0.005

0

-0.005

-0.01

0.01 -

0.005~

.,.0 - .. - - . .

-0.005 k

-0.01

-- baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
---- 101.2G Fluxball 169.6G 3rdcoil

-+-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

-0.015 L-
0.01

- a



Ch4 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=-60
0.015- ------ - -- --- ---- -

0.01 - - - - ------ - -- - --- - - - - - -+ - - - - - - -

0.005 - -- --- - - - - - -- - - - -

E

0

-0.005 -- -- ----- -- - - - - ----- - -

-001FI

-0.015
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z4 distance from Probe 4 (m)

Ch4 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil phase=-60
0.015 - - - - - - - - - - --- - - - - - - - - - - -

0.01 - - - - -- - - - - - - - - - - - - - - - - - +- - - - - - - - - -

0.005 - ---- r

E

~| |

01

71I |
|2 1 II |

E
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-U--baseline

- 50.6G Fluxball no 3rdcoil
-- 101.2G Fluxball no 3rdcoil
- -50.6G Fluxball 169.6G 3rdcoil
--- 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

-- baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-*-50.6G Fluxball 169.6G 3rdcoil
--*- 101.2G Fluxball 169.6G 3rdcoil

---- 50.6G Fluxball 296.8G 3rdcoil
-- 101.2G Fluxball 296.8G 3rdcoil

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z4 distance from Probe 4 (m)



Chi 95Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=+180

2 ------- -

-0.004 -

-0.006 -

-0.008 --

-0.01 -
0.01 0.02 0.03 0.04 0.05 0.06

x distance from Probe 1 (m)

I 6

0.07 0.08

Chi 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil phase=+180
0.01 c - -

0.02 0.03 0.04 0.05 0.06
x distance from Probe 1 (m)

0.07 0.08
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0.01 -

0.008 -

0.006 -

0.004-

0.00

-0.002

---- baseline

50.6G Fluxball no 3rdcoil
101.2G Fluxball no 3rdcoil
50.6G Fluxball 169.6G 3rdcoil

--- 101.2G Fluxball 169.6G 3rdcoil
-+- 50.6G Fluxball 296.8G 3rdcoil

101.2G Fluxball 296.8G 3rdcoil

0.008 -

0.006 -

0.004-

0.002

0

> -0.002

-0.004

+-baseline

- 50.6G Fluxball no 3rdcoil
---- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
101.2G Fluxball 169.6G 3rdcoil

-o-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

-0.006 -

-0.008-

-0.01-
0.01

- - - -- - - - - ~ ~ I- 11 - - ,- - - - - - - - - -



Ch2 95Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=+180
0.01 r

0.008

0.006 -

0.004 F

0.002

E
0

0

> -0.002

-0.004--

-0.006--

-0.008--

-0.01-
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x, distance from Probe 2 (m)

0.01 -

0.008-

0.006-

0.004

0.002-

0

> -0.002

Ch2 95Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil phase=+180

-0.004 -

-0.006-

-0.008 -

-0.01-
0.01

794

---- baseline

V- 50.6G Fluxball no 3rdcoil
9 101.2G Fluxball no 3rdcoil

- 50.6G Fluxball 169.6G 3rdcoil
- -101.2G Fluxball 169.6G 3rdcoil
----- 50.6G Fluxball 296.8G 3rdcoil

A 101.2G Fluxball 296.8G 3rdcoil

E

-- baseline

50.6G Fluxball no 3rdcoil

-.- 101.2G Fluxball no 3rdcoil
-- 50.6G Fluxball 169.6G 3rdcoil
-+- 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
101.2G Fluxball 296.8G 3rdcoil

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x, distance from Probe 2 (m)

----- - - - - - - - - -

-- - - - - - - - -

-



Ch3 95Hz MSGW 11 Clockwise Rotating Field 3rdcoil phase=+ 180
0.015 r

0.01 r

0.005 -

-0.005

-0.01

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z3 distance from Probe 3 (m)

Ch3 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil phase=+180
0.015 r - - -

0.01

0.005~

.,j.rr- .. . . .

-0.005

-0.01 -

-0.015'
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z3 distance from Probe 3 (m)

795

-- baseline

50.6G Fluxball no 3rdcoil
+-101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
----- 101.2G Fluxball 169.6G 3rdcoil
-- 50.6G Fluxball 296.8G 3rdcoil

A 101.2G Fluxball 296.8G 3rdcoil

---- baseline

50.6G Fluxball no 3rdcoil
-e- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 169.6G 3rdcoil
* 101.2G Fluxball 169.6G 3rdcoil

-- 50.6G Fluxball 296.8G 3rdcoil
.' 101.2G Fluxball 296.8G 3rdcoil



0.015 -

0.01 -

0.005 -

-0.005 --

-0.01 -

-0.015'-
0.01

Ch4 95Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=+180

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z distance from Probe 4 (m)

Ch4 95Hz MSGW1 1
0.015 - - -- - - - -

0.01 - - - - + -

0.005 - -

U I

-0.005 --

-0.01 -

-0.015-
0.01

Counter-clockwise Rotating Field 3rdcoil phase=+180

I I I

796

- -baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball 169.6G 3rdcoil
-b-- 101.2G Fluxball 169.6G 3rdcoil
-- 50.6G Fluxball 296.8G 3rdcoil
-+-- 101.2G Fluxball 296.8G 3rdcoil

---- baseline

- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball 169.6G 3rdcoil
--- 101.2G Fluxball 169.6G 3rdcoil
---- 50.6G Fluxball 296.8G 3rdcoil
-101.2G Fluxball 296.8G 3rdcoil

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z4 distance from Probe 4 (m)

... ....... --- -- -------

I
-T

AIL

T



0.01

0.008

0.006

0.004

0.002

01

-0.002

-0.004 -

-0.006 --

-0.008 --

-0.01 -
0.01

Chi 95Hz MSGW11 Clockwise Rotating Field 101.2G Fluxball

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x distance from Probe 1 (m)

Ch1 95Hz MSGW 11 Counter-clockwise Rotating Field 101.2G Fluxball
0.01 - - -

0.008

0.006

0.002 - - -

-0.002 - --

-0.006- - -------

0.01
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

+-baseline

no 3rdcoil
-- 169.6G 3rdcoil phase=0

169.6G 3rdcoil phase=-120
169.6G 3rdcoil phase=-60

> 169.6G 3rdcoil phase=60
169.6G 3rdcoil phase=120
169.6G 3rdcoil phase=180
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--- baseline

no 3rdcoil
--- 169.6G 3rdcoil phase=0

+ 169.6G 3rdcoil phase=-120
-*-- 169.6G 3rdcoil phase=-60

o 169.6G 3rdcoil phase=60
169.6G 3rdcoil phase=120
169.6G 3rdcoil phase=180



Ch2 95Hz MSGW11 Clockwise Rotating Field 101.2G Fluxball

-r

0.02 0.03 0.04 0.05 0.06
x2 distance from Probe 2 (m)

h2 95Hz MSGW11 Counter-clockwise Rotating Field 101.2G Fluxball

_ _ I _

0.01 -

0.008 -

0.006 -

0.004 -

20.00

-0.00

U

2-----

- baseline

no 3rdcoil
- 169.6G 3rdcoil phase=0

- -169.6G 3rdcoil phase=-120
-- 169.6G 3rdcoil phase=-60

--- 169.6G 3rdcoil phase=60
169.6G 3rdcoil phase=120
169.6G 3rdcoil phase=180-0.004 -

-0.006 --

-0.008 --

-0.01
0.01

C
0.01 -

0.008-

I T

0.07 0.08

0.006 -

0.004

20.00

-0.00 2

-0.004 --

-0.006 --

-0.008-

-0.01,
0.01

- baseline

no 3rdcoil
- 169.6G 3rdcoil phase=0

----- 169.6G 3rdcoil phase=-120
-*-- 169.6G 3rdcoil phase=-60

---- 169.6G 3rdcoil phase=60
169.6G 3rdcoil phase=120
169.6G 3rdcoil phase=180

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x distance from Probe 2 (m)
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S - ---- - -- - ---- - ---a - -- --

' ' ' ' I I I

4 - - - - -

|

-- - -I
- - - - -- - - - - - - 1

T
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Ch3 95Hz MSGW11 Clockwise Rotating Field 101.2G Fluxball

+-baseline

no 3rdcoil
-- +-- 169.6G 3rdcoil phase=0

169.6G 3rdcoil phase=-120
169.6G 3rdcoil phase=-60
169.6G 3rdcoil phase=60
169.6G 3rdcoil phase=120
169.6G 3rdcoil phase=180

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z3 distance from Probe 3 (m)

h3 95Hz MSGW11 Counter-clockwise Rotating Field 101.2G Fluxball

-0.0151 '
0.01 0.02 0.03 0.04 0.05 0.06

z3 distance from Probe 3 (m]
0.07 0.08 0.09

799

0.015

0.01

0.005

-0.005 --

-0.01 --

-0.015-
0.01

C
0.015 -

0.01 -

0.005 -

cIU~

-0.005-

-0.01 -

- baseline

no 3rdcoil
+ -169.6G 3rdcoil phase=0

169.6G 3rdcoil phase=-120
* 169.6G 3rdcoil phase=-60

-c-169.6G 3rdcoil phase=60
A 169.6G 3rdcoil phase=120
- 169.6G 3rdcoil phase=180



Ch4 95Hz MSGW1 1 Clockwise Rotating Field 101.2G Fluxball
--- - - - -- - - - -- - - - -- - - - -- - - - - - - - - -

| |

I 1

II |

I I I I|
- I r - - - -I -I - I - - - - - -

I I I-I

-- baseline

no 3rdcoil
---- 169.6G 3rdcoil phase=0

169.6G 3rdcoil phase=-120

169.6G 3rdcoil phase=-60
169.6G 3rdcoil phase=60

169.6G 3rdcoil phase=120
-169.6G 3rdcoil phase=180

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z distance from Probe 4 (m)

Ch4 95Hz MSGW1 1
0.015 -

0.01 -

0.005 - - - - -

Counter-clockwise Rotating Field 101.2G Fluxball

- - - - - - - --- - -- - - - -- - - - - - - - -

I -I

I I I .

800

0.015 -

0.01 -

0.005 -

-0.005-

-0.01 -

-0.01
0.01

- baseline

no 3rdcoil
- 169.6G 3rdcoil phase=0

- - 169.6G 3rdcoil phase=-120
---- 169.6G 3rdcoil phase=-60
-<--- 169.6G 3rdcoil phase=60

* 169.6G 3rdcoil phase=120
- 169.6G 3rdcoil phase=180

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z distance from Probe 4 (m)

-0.01 - - - -

II5



Chi 95Hz MSGW1 1 Clockwise Rotating Field 50.6G Fluxball

0.008- -

0.006-

0.004 - --- baseline
no 3rdcoil

-0.002 - - 169.6G 3rdcoil phase=0

- 169.6G 3rdcoil phase=-120
0 -- *- 169.6G 3rdcoil phase=-60

-- 169.6G 3rdcoil phase=60
-0.002 - - - 169.6G 3rdcoil phase=120

169.6G 3rdcoil phase=180

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
xdistance from Probe 1 (m)

Chi 95Hz MSGW 11 Counter-clockwise Rotating Field 50.6G Fluxball
0.01 -

0.008 -

-0.01

0.004 -U- - baseline

no 3rdcoil
0.002 - - - -- - --- 169.6G 3rdcoil phase=0

Pw -- ~--i- 169.6G 3rdcoil phase=-120
01

- 0 -*--- 169.6G 3rdcoil phase=-60

----- 169.6G 3rdcoil phase=60
> -0.002 - - - - 169.6G 3rdcoil phase=120

-0.004 - - - - - - 169.6G 3rdcoil phase=180

-0.01'
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

801



Ch2 95Hz MSGW1 1 Clockwise Rotating Field 50.6G Fluxball

- I I

I~w -

I I

I ~ -

-4 - -- -

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x2 distance from Probe 2 (m)

Ch2 95H-z MSGW1 1 Counte
0.01 - -

0.008--- - --- ----

0.006 ----- --

0.004--- -

0.002 - - -

-0.002

-0.004

-0.006

-0.008

r-clockwise Rotating Field 50.6G Fluxball
- --- - --- -- --- - -----

- - - - -- - - - -- - - - -

1~

802

0.01 -

0.008 -

0.006 -

0.004-

20.00

-0.002

-0.004

-0.006-

- baseline
T no 3rdcoil

- 169.6G 3rdcoil phase=0
169.6G 3rdcoil phase=-120
169.6G 3rdcoil phase=-60

--- 169.6G 3rdcoil phase=60
169.6G 3rdcoil phase=120
169.6G 3rdcoil phase=180

-0.008

-0.01-
0.01

- baseline

no 3rdcoil
169.6G 3rdcoil phase=0
169.6G 3rdcoil phase=-120

- 169.6G 3rdcoil phase=-60
-o->- 169.6G 3rdcoil phase=60
-- 169.6G 3rdcoil phase=120

169.6G 3rdcoil phase=180

-0.01 ' 1 1 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x2 distance from Probe 2 (m)



Ch3 95Hz MSGW1 1 Clockwise Rotating Field 50.6G Fluxball

- - baseline

no 3rdcoil
---- 169.6G 3rdcoil phase=0

169.6G 3rdcoil phase=-120
---- 169.6G 3rdcoil phase=-60
---- 169.6G 3rdcoil phase=60

A 169.6G 3rdcoil phase=120

169.6G 3rdcoil phase=180

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z3 distance from Probe 3 (m)

Ch3 95Hz MSGW11 Counter-clockwise Rotating Field 50.6G Fluxball

0.04 0.05 0.06
z3 distance from Probe 3 (m

- - baseline

no 3rdcoil
e--- 169.6G 3rdcoil phase=0

169.6G 3rdcoil phase=-120
- 169.6G 3rdcoil phase=-60

-<>- 169.6G 3rdcoil phase=60
A 169.6G 3rdcoil phase=120
- 169.6G 3rdcoil phase=180

0.07 0.08 0.09

803

0.015 -

0.01 -

0.005 -

-0.01 F

1
-0.015,

0.0

0.015 -

0.01 -

0.005 -

-0.005 -

-0.01 -

-0.015 -

0.0 1 0.02 0.03

01

-0 .0 0 5 - - - - - - - - - - - - - - - - - --

I I

I I I I I I



Ch4 95Hz MSGW1 1 Clockwise Rotating Field 50.6G Fluxball
0.015 r-

0.01 - - - - --

0.005 - - - - - - ----- ------- --- baseline
I no 3rdcoil

I 169.6G 3rdcoil phase=0
E ..-... ..-- 169.6G 3rdcoil phase=-120

169.6G 3rdcoil phase=-60

169.6G 3rdcoil phase=60

169.6G 3rdcoil phase=120
-0.005 --- - -- ----- --- - -- - -- --- - -- -- -- -

- 169.6G 3rdcoil phase=180

-0.01 --
I I | I

II | |

-0.015
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z4 distance from Probe 4 (m)

Ch4 95Hz MSGW1 1 Counter-clockwise Rotating Field 50.6G Fluxball
0.015 ---- - --------- ------ --- - ---- ------ - ---- -

0.01
I I| 1

0.01 - -I - - - - - - - - - -

0.005 - - - - - --- baseline
T no 3rdcoil
- 169.6G 3rdcoil phase=0E

-I*.- 169.6G 3rdcoil phase=-120
0

)-+- 169.6G 3rdcoil phase=60

169.6G 3rdcoil phase=120

169.6G 3rdcoil phase=180

-0.01 --- -- -- - - - - - - - -- - - - -- - - - -
I I

-0.015'
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z4 distance from Probe 4 (m)

804



Ch1 95Hz MSGW11 Clockwise Rotating Field 101.2G Fluxball

0.008 -

0.006

0.004

0.002

0
0

-0.002

-0.004 -

-0.006--

-0.008-

-0.01
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

Ch1 95Hz MSGW11 Counter-clockwise Rotating Field 101.2G Fluxball
0.01 -

0.008 - -

0.006 -

0.002 -

0

>-0.002

-0.004 - -

-0.006 -

-0.008

-0.01
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

805

---- baseline

no 3rdcoil
----- 296.8G 3rdcoil phase=0

296.8G 3rdcoil phase=-120
---- 296.8G 3rdcoil phase=-60

296.8G 3rdcoil phase=60
296.8G 3rdcoil phase=120
296.8G 3rdcoil phase=180

-U- baseline

no 3rdcoil
296.8G 3rdcoil phase=0
296.8G 3rdcoil phase=-120

-+- 296.8G 3rdcoil phase=-60
o 296.8G 3rdcoil phase=60

296.8G 3rdcoil phase=120
296.8G 3rdcoil phase= 180



0.01 -

0.008 -

0.006 -

0.004-

-0.004 --

-0.006 --

-0.008 --

-0.01 -
0.01

Ch2 95Hz MSGW11 Clockwise Rotating Field 101.2G Fluxball

2 __-_- __-_- __-_-_-__-_- - F

0.02 0.03 0.04 0.05 0.06
x2 distance from Probe 2 (m)

0.07 0.08

Ch2 95Hz MSGW1 1 Counter-clockwise Rotating Field 101.2G Fluxball
0

.01 r - - -

0.008 -

0.006-

0.004-

-0.004

-0.006-

-0.008-
-0.01'

0.01

806

-0 .0
E
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Ch3 95Hz MSGW11 Clockwise Rotating Field 101.2G Fluxball
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Chi 95Hz MSGW1 1 Clockwise Rotating Field 50.6G Fluxball
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Ch2 95Hz MSGW1 1 Clockwise Rotating Field 50.6G Fluxball
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Ch3 95Hz MSGW1 1 Clockwise Rotating Field 50.6G Fluxball
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Ch4 95Hz MSGW1 1 Clockwise Rotating Field 50.6G Fluxball
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Ch1 95Hz MSGW11 Clockwise Rotating Field Baseline Cases
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Ch3 95Hz MSGW1 1 Clockwise Rotating Field Baseline Cases
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Ch4 95Hz MSGW1 1 Clockwise Rotating Field Baseline Cases
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95Hz MSGW11 50.6G Fluxball Clockwise Rotating Field 169.6G 3rd coil Flow profile scale=10
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95Hz MSGW11 101.2G Fluxball Clockwise Rotating Field 169.6G 3rd coil Flow profile scale=10
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95Hz MSGW11 50.6G Fluxball Clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10
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95Hz MSGW11 101.2G Fluxball Clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10
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G5. MSGW1 1 Filled Sphere with Third Coil Oscillating at Same

Frequency as Rotating Field at 47Hz
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Ch3 47Hz MSGW1 1 Clockwise Rotating field 3rdcoil phase=0
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Ch4 47Hz MSGW1 1 Clockwise Rotating field 50.6G Fluxball
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Ch1 47Hz MSGW1 1 Clockwise Rotating field Baseline Cases
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Ch2 47Hz MSGW1 1 Clockwise Rotating field Baseline Cases
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Ch3 47Hz MSGW1 1 Clockwise Rotating field Baseline Cases

*
.. V e * _ - ... .; -- . .

06TI~y~

0.02 0.03 0.04 0.05 0.06 0.07
z3 distance from Probe 3 (m)

Ch3 47Hz MSGW1 1 Counter-clockwise Rotating field Baseline Cases

0.015 -

0.01 -

0.005 -

-0.005 [-

Stm

-0.01

-- baseline

50.6G no 3rdcoil
---- 101.2G no 3rdcoil

+-- 50.6G Fluxball OA 3rdcoil
+- 101.2G Fluxball OA 3rdcoil

---- OA Fluxball 169.6G 3rdcoil
O OA Fluxball 296.8G 3rdcoil

-0.0151
0.0

0.015 r-

0.08 0.09

0.01

0.005 F

2 -. -

-0.005 -

-0.01 -

-0.015-
0.01

___--- baseline

50.6G no 3rdcoil
-+-- 101.2G no 3rdcoil

50.6G Fluxball OA 3rdcoil
-- +-- 101.2G Fluxball OA 3rdcoil
- -OA Fluxball 169.6G 3rdcoil

OA Fluxball 296.8G 3rdcoil

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z3 distance from Probe 3 (m)

863

'

1

- * Wa



Ch4 47Hz MSGW1 1 Clockwise Rotating field Baseline Cases
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47Hz MSGW 11 50.6G Fluxball Clockwise Rotating field 169.6G 3rd coil Flow prolle scale=20
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47Hz MSGW11 101.2G Fluxball Clockwise Rotating field 169.6G 3rd coil Flow profile scale=20
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47Hz MSGW1 1 50.6G Fluxball Clockwise Rotating field 296.8G 3rd coil Flow profile scale=20
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47Hz MSGW11 101.2G Fluxball Clockwise Rotating field 296.8G 3rd coil Flow profile scale=20
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G6. MSGW1 1 Filled Sphere with Third Coil Oscillating at

Frequency as Rotating Field at 15Hz
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Ch2 15Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=0
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Ch3 15Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=0
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Ch4 15Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=0
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Chi 15Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=-120
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Ch3 15Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=-120
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Ch4 15Hz MSGW1 1 Clockwise Rotating Field 3rdcoil phase=-120

0.02 0.03 0.04 0.05 0.06 0.07
z distance from Probe 4 (m)

15Hz MSGW11
- - -- - - - - -

Counter-clockwise
----- -- --

------ - - -- - -- -- - -- -
LI

0.02 0.03 0.04 0.05 0.06 0.07
z distance from Probe 4 (m)

0.08 0.09

Rotating Field 3rdcoil phase=-120
------- -- - - -

0.08 0.09

876

0.015 -

0.01 -

0.005 -

I

-0.005-

-0.01 -

- baseline
- 50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

- 50.6G Fluxball 169.6G 3rdcoil
-*-75.9G Fluxball 169.6G 3rdcoil
-- 50.6G Fluxball 296.8G 3rdcoil
-A- 75.9G Fluxball 296.8G 3rdcoil

-0.01
0.01

Ch4
0.015 --

0.01 --

0.005 --

0

-0 .005 I- - - - - - - - - - - - - - - - -

- baseline
v 50.6G Fluxball no 3rdcoil

- 75.9G Fluxball no 3rdcoil
---- 50.6G Fluxball 169.6G 3rdcoil

75.9G Fluxball 169.6G 3rdcoil
---- 50.6G Fluxball 296.8G 3rdcoil

A 75.9G Fluxball 296.8G 3rdcoil

-0.01 F

-0.015-
0.01

I I I I I I I I I

- - -



Ch1 15Hz MSGW11 Clockwise Rotating Field 3rdcoil phase=+120
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-o
Ur)0 0.06 - - - - - - - - --- - -- --- -- -- -- - - -- -- --

o 0.04-- ----
E
2

S 0 .0 2 - - - - --- - -- -- - -- --- -- - -- -- - -- -- -- -- - --
0)9

0 --- -- -- - - -- -- -- -- -- - - - - - - -- - -- -

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Ch1 and Ch2 Probes (m)

15Hz MSGW1 1 50.6G Fluxball Counter-clockwise Rotating Field 169.6G 3rd coil Flow profile scale=10

0.1 ---- - - - - -- - - - -

+90

0.08 -- - -- -- --- - -- - - - - - - - - -- -

0 0.06 -- - -- -- -- - - --- - --- - --- -- - -- - - - -- -- - - -- - -- -- -- -

0 0 .0 4 - - - --- -- -- - -- - -- -- - --- - -- -- -- -- - -- -- --- - - - - - - - - - - - - 4

E

S 0.02 -- -- -- -- -L -- - -- -- - --- - - - -- - - - - - - - - - -- - - -

-90

0 - - - - - - - - -------

o0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Chi and Ch2 Probes (m)

913



15Hz MSGW11 75.9G Fluxball Clockwise Rotating Field 169.6G 3rd coil Flow profile scale=10

0.1 - --- -- - - - - - --- - -------- ----- - -

+90

0.08-- ------ - ---- -- -- -------- -
-Ch1

0 0.06 - - - - - - - - - - - - - - - - ------ - - - - - - - - -- -

cci
CY,
C 0.04 - - - -- - --- -- - - - - - ---- - - - -

E

-D- Ch2
c,' 0.02 - -- - -- - --L - - - - - -- - - - - - - - --L- - - ----- L ----- ------ ---An09

0 --- -- -- - - - - -- -- - - - -- - -- -

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Ch1 and Ch2 Probes (m)

15Hz MSGW11 75.9G Fluxball Counter-clockwise Rotating Field 169.6G 3rd coil Flow profile scale=10

0.11
0.1 - -- -- - - - - - -- - -- - - - - - - - - --------------------- A

0+90

0.08-- - - - - - - - - - - - -
-Chl

c 0.04- - - --- - --- -- - - - - - -- --

E
-- - Ch2

S 0.02 -- - -- -- - - -- - -- - - - - -- - -- - - - - -----

-90

I Ch3
-0.02

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
Distance from Ch1 and Ch2 Probes (m)

914



15Hz MSGW1 1 50.6G Fluxball Clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10

+90

-0.1 -0.08
- I I -

-0.06 -0.04
Distance from Ch1 and Ch2 Probes (m)

-0.02 0

15Hz MSGW1 1 50.6G Fluxball Counter-clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10

0.1k

+90

-0.02-
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

Distance from Ch1 and Ch2 Probes (m)
0.02

915

0.08

0.06-

0.04-

0.02-

-0.02'
-0.12 0.02

0.08

0.06-

0.04-

0.02



15Hz MSGW11 75.9G Fluxball Clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10

0.1
0.1 --- - - - - - - - - -- - -- -- - -- - - -- ---- - -- -- -- - -- -- -- - -

0+90

0.08- -- -- -- -- - -- -- - -- -- -- - ----- - - - -- - -- - -- --- -4
2 Ch1

o 0.06- - ----- -- --- - - -- - - - - - - - - - - - --

al

o 0.04- - -- -- -- - - - - -- - - - --- - - ----- ---- --
E

Ch2

-90

0 -- -- --- --I--- ---- -- -- -- ---- --- - 7 -
I 'Ch4 C h3

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Ch1 and Ch2 Probes (m)

15Hz MSGW11 75.9G Fluxball Counter-clockwise Rotating Field 296.8G 3rd coil Flow profile scale=10

0.1-- - ----- -- - - - - - - -- - - --- -- - -

+90

a) 0.08--- - - - - -- - - -- -- - -
MI - I- - Ch1

C 0.06 -- -- - - -- - - - - -- -- - - -- --- - - - -- - --- --------- L----- --

C

o 0.04- - - - - -- -- -- - - - - ----- - - - -- ---
E

Ch

Cc 0.02 - - - - - - -- - - - - -- -- -- -- - ----L - - - --- - - -------- --- --- -

-90

0 - - - -- - -- - - - - - -- - - - - -----

Ch4 Ch3
-0.02

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
Distance from Ch1 and Ch2 Probes (m)

916



G7. EFH1 Filled Sphere with Third Coil Imposing DC Field

X 10- Ch1 95Hz EFH1 Clockwise Rotating Field 3rdcoil DC

.01 0.02 0.03 0.04 0.05
x distance from Probe 1 (m)

0.06 0.07

x 1(h1 95Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC

917

-- baseline

- 50.6G Fluxball no 3rdcoil
------ 101.2G Fluxball no 3rdcoil

-+- 50.6G Fluxball +339.2G 3rdcoil
* 101.2G Fluxball +339.2G 3rdcoil

---- 50.6G Fluxball -339.2G 3rdcoil

101.2G Fluxball -339.2G 3rdcoil

- -baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
-+---- 101.2G Fluxball +339.2G 3rdcoil
-c 50.6G Fluxball -339.2G 3rdcoil

A 101.2G Fluxball -339.2G 3rdcoil

5L
0.01 0.02 0.03 0.04 0.05 0.06 0.07

x distance from Probe 1 (m)



x 103 Ch2 95Hz EFH1 Clockwise Rotating Field 3rdcoil DCF|

0.01 0.02 0.03 0.04 0.05 0.06 0 07
xdistance from Probe 2 (m)

x 1(ch 2 95Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC

--- --- ---- - - - - --- ---

414------- ---I- -- ---|

2

1

0

> -

-2

-3

-4

- -

-5 1
0.01 0.02 0.03 0.04 0.05

x2 distance from Probe 2 (m)
0.06

918

- baseline
v 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

----- 50.6G Fluxball +339.2G 3rdcoil
--- 101.2G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
-A 101.2G Fluxball -339.2G 3rdcoil

- baseline

- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
---- 101.2G Fluxball +339.2G 3rdcoil
- -50.6G Fluxball -339.2G 3rdcoil

101.2G Fluxball -339.2G 3rdcoil

- - - - - - - - - - - - - -- -- -- -



x 10-
3 Ch3 95Hz EFH1 Clockwise Rotating Field 3rdcoil DC

& 0

-2 -- -- -- -- - -- -- -- -- - - -- -- -

-6
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z3 distance from Probe 3 (m)

x 1(ph3 95Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC

4 ----- - --- ---- ------ - - - - -

4|

2 - - ---- - - - - - -

E 1

0

-2 - - -- -- -- - - - - - - - - -

-4 J

-61
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z3 distance from Probe 3 (m)

919

---- baseline

50.6G Fluxball no 3rdcoil
0---- 101.2G Fluxball no 3rdcoil

-+- 50.6G Fluxball +339.2G 3rdcoil
-+- 101.2G Fluxball +339.2G 3rdcoil

50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxball -339.2G 3rdcoil

-baseline

50.6G Fluxball no 3rdcoil
+ 101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
-+-- 101.2G Fluxbal +339.2G 3rdcoil

50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxbal -339.2G 3rdcoil



103 Ch4 95Hz EFH1 Clockwise Rotating Field 3rdcoil DC
I |I I |

I |

----- [----

r I

z distance from Probe 4 (m)

Counter-clockwise Rotating Field 3rdcoil DC

| |

_ P _ I _ A _ _ _

0.04 0.05 0.06 0.07 0.08 0.09
z distance from Probe 4 (m)

920

E
0

0

> -

baseline

50.6G Fluxball no 3rdcoil
6 101.2G Fluxball no 3rdcoil

---- 50.6G Fluxball +339.2G 3rdcoil
- -101.2G Fluxball +339.2G 3rdcoil
-- 50.6G Fluxball -339.2G 3rdcoil

101.2G Fluxball -339.2G 3rdcoil

baseline

- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
-*-101.2G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxball -339.2G 3rdcoil

At



104 Ch1 47Hz EFH1 Clockwise Rotating Field 3rdcoil DC

xi distance from Probe 1 (m)

1Cp1 47Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC

921

-- baseline

50.6G Fluxball no 3rdcoil
---- 101.2G Fluxball no 3rdcoil

- -50.6G Fluxball +339.2G 3rdcoil
+ -101.2G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxball -339.2G 3rdcoil

-- baseline
- 50.6G Fluxball no 3rdcoil

-- +-- 101.2G Fluxball no 3rdcoil
50.6G Fluxball +339.2G 3rdcoil

--*-- 101.2G Fluxball +339.2G 3rdcoil
---- 50.6G Fluxball -339.2G 3rdcoil

101.2G Fluxball -339.2G 3rdcoil

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07
x, distance from Probe 1 (m)



x 103 Ch2 47Hz EFH1 Clockwise Rotating Field 3rdcoil DC
7 - -

3K

4 - -4

-N--- baseline

IV 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball +339.2G 3rdcoil
101.2G Fluxball +339.2G 3rdcoil

_-_ 50.6G Fluxball -339.2G 3rdcoil
A 101.2G Fluxball -339.2G 3rdcoil

-r T

0.02 0.03 0.04 0.05
x2 distance from Probe 2 (m)

0.06

x1 ph2 47Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC

--------------I -----I ----7

- baseline
T 50.6G Fluxball no 3rdcoil
9 101.2G Fluxball no 3rdcoil

-*-- 50.6G Fluxball +339.2G 3rdcoil
-*-101.2G Fluxball +339.2G 3rdcoil
-o-- 50.6G Fluxball -339.2G 3rdcoil
-A- 101.2G Fluxball -339.2G 3rdcoil

922

E
0 - - - - - -

0

-1 -- -- -- - -- -- -

0

-2 -- - -- - --- -- - - - -- -I- - -- - - - - -

-4 - -- -- -- --- -- - - - - - - - - - - - - - - -

-5
0.01 0.02 0.03 0.04 0.05 0.06 0.07

x2 distance from Probe 2 (m)

1 1
-4

-------------



x 104 Ch3 47Hz EFH1 Clockwise Rotating Field 3rdcoil DC
4 r -- --- -- -- -- - - -- - -- -- - -- -- -- -- -- --

> 01

-1 --- - -- -- - - - --- -

-3 -- - - -

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z3 distance from Probe 3 (m)

x 1Ph3 47Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC

8 - - - - -- - - - - - - -

6 - - - - - - - -

2- - - - - - --- - -- - -- - -

E dI

08
20

0

-6 - - -

-81
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Zdistance from Probe 3 (in)

923

---- baseline
50.6G Fluxball no 3rdcoil

---- 101.2G Fluxball no 3rdcoil
----- 50.6G Fluxball +339.2G 3rdcoil

--- 101.2G Fluxball +339.2G 3rdcoil
>-- 50.6G Ffuxball -339.2G 3rdcoil

101.2G Fluxball -339.2G 3rdcoil

----- baseline

- 50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil
-- 50.6G Fluxball +339.2G 3rdcoil

* 101.2G FluxbaII +339.2G 3rdcoil

-o 50.6G Fluxball -339.2G 3rdcoil
- 101.2G Fluxball -339.2G 3rdcoil



x 10-3 Ch4 47Hz EFH1 Clockwise Rotating Field 3rdcoil DC

8 - - - -- -| - - --

6 - - - - - - - c - - - - - - - - - - - - - - - - - - - - -

4 I FI

E
0

-2 - -- -- -- ---- --- i -- -- T

-4 - - - - -

-6 - -- - -

-8 L --- --- ---

0.02 0.03 0.04 0.05 0.06 0.07
z4 distance from Probe 4 (m)

x 4 47Hz

0.08 0.09

EFH1 Counter-clockwise Rotating Field 3rdcoil DC

I I I I |

-- - - - - - - - - - - - - - -

- F

0.08 0.09

924

M baseline
T 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

---- 50.6G Fluxball +339.2G 3rdcoil
101.2G Fluxball +339.2G 3rdcoil
50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxball -339.2G 3rdcoil

--- baseline

- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

----- 50.6G Fluxball +339.2G 3rdcoil
-- +--- 101.2G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
A 101.2G Fluxball -339.2G 3rdcoil

0.01 0.02 0.03 0.04 0.05 0.06 0.07
z distance from Probe 4 (m)

. .



Chi 15Hz EFH1 Clockwise Rotating Field 3rdcoil DC
- -- - - - - - - ------ -0.015

0.01 - - - - -05 - - - -

0.005 - - - - - - - --- baseline
50.6G Fluxba no 3rdcoil

E 75.9G Fluxbal no 3rdcoil
0 50.6G Fluxba +339.2G 3rdcoi

o* 75.9G Fluxba +339.2G 3rdcoi
0>

50.6G Fluxball -339.2G 3rdcoil

-0.005-- - - 75.9G Fluxball -339.2G 3rdcoil

-0.01 75-9G -- + - rdcoi-

F0.015
0.02 0.03 0.04 0.05 0F06 0.07 0.08

xi distance from Probe 1 (m)

x 10th1 15Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC
8 - - ---- - - - - -- - - -- -- -- - - -

6 - - --- --

4 - - - --- --------
-- -baseline

50.6G Fluxbal no 3rdcoil

21 -- - -- - - 0- 75.9G Fluxbal no 3rdcoil
& 50.6G Fluxbal +339.2G 3rdcoil

.2~ 75.9G Fluxbal +339.2G 3rdcoil

> F 0-->- 50.6G Fiuxbal -339.2G 3rdcoil
75.9G Fluxbal -339.2G 3rdcoil

925

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07
x distance from Probe 1 (m)



x 10- Ch2 15Hz EFH1 Clockwise Rotating Field 3rdcoil DC

0.01 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

x 108h2 15Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC
5 -- - -- -- - - -- --- -- - --- -- -- -- ---------- ---

4 -- -- ------------ - -- - - - -- - -- - - - ---- -

3 - ------------------ -- - - -- -- - -- - - - - - -

0

-3 -- --------------- -- -- - -- -- -- -- - -- - - -

-50.01 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

- baseline

50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

-+-- 50.6G Fluxball +339.2G 3rdcoil
-*-- 75.9G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
75.9G Fluxball -339.2G 3rdcoil

926

5

4

3

2

0

> -

-2

-3

- baseline
- 50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

- 50.6G Fluxball +339.2G 3rdcoil
---- 75.9G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
75.9G Fluxball -339.2G 3rdcoil- - - - - -

- - - - - - - - - - - - - - -

-WA 0

------------------------



Ch3 15Hz EFH1 Clockwise Rotating Field 3rdcoil DC

0.01

0.005

01

-0.005

-0.01

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z3 distance from Probe 3 (m)

x 10Gh3 15Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC

8 - - - - - -

2 - -- -- - --- - -

-2 - -- - - - - - -

-6 - - - -

-81
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z3 distance from Probe 3 (m)

927

---- baseline

50.6G Fluxball no 3rdcoil
--- 75.9G Fluxball no 3rdcoil
-- 50.6G Fluxball +339.2G 3rdcoil
--- 75.9G Fluxball +339.2G 3rdcoil
-- 50.6G Fluxball -339.2G 3rdcoil

- 75.9G Fluxball -339.2G 3rdcoil

baseline

50.6G Fluxball no 3rdcoil
--- 75.9G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
+-- 75.9G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
75.9G Fluxball -339.2G 3rdcoil



x 1 Ch4 15Hz EFH1 Clockwise Rotating Field 3rdcoil DC

- ~ ~ - | - - - - - - - - - -

baseline
2- - --M 50.6G Fluxball no 3rdcoil

E 75.9G Fluxball no 3rdcoil
>,50.6G Fluxball +339.2G 3rdcoil

-- 75.9G Fluxball +339.2G 3rdcoil

-2 - - - - --- 50.6G Fluxball -339.2G 3rdcoil
75.9G Fluxball -339.2G 3rdcoil

-4 - -- - - - -- --- - - --

I I 1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
24 distance from Probe 4 (m)

x 108h4 15Hz EFH1 Counter-clockwise Rotating Field 3rdcoil DC
5 -- - - - - - -- - - - ----- - - - ---------------- - -

4I I 1
1 14 --- - -- - - -- - - -- - - - --

3 - - - - -- - - - - - -

-3- -- -- - - -- - baseline

-4-- ---- 50.6G Fluxball no 3rdcoil
E --- 75.9G Fluxball no 3rdcoil

- 50.6G Fluxball +339.2G 3rdcoil
- 75.9G Fluxball +339.2G 3rdcoil

--- 50.6G Fluxball -339.2G 3rdcoil
75.9G Fluxball -339.2G 3rdcoil

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z4 distance from Probe 4 (m)

928



0.015

0.01

Chi 95Hz EFH1 Clockwise Rotating Field Baseline Cases

0.005 - - - - - - - - - - - - -

---- baseline

50.6G Fluxball no 3rdcoil
0----- 101.2G Fluxball no 3rdcoil

-+-- 50.6G Fluxball OA 3rdcoil
----- 101.2G Fluxbal OA 3rdcoil

-0.005 - - - - - - - -

-0.01 F

-0.015
0.02 0.03 0.04 0.05 0.06

x9 distance from Probe 1 (m)

x 1(A~1 95Hz EFH1
8 -- - -

6-

4- - - -

0.07 0.08

Counter-clockwise Rotating Field Baseline Cases

---- baseline

- 50.6G Fluxball no 3rdcoil
- - 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
* -- +-- 101.2G Fluxball OA 3rdcoil

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075
xi distance from Probe 1 (m)

929



x 10- Ch2 95Hz EFH1 Clockwise Rotating Field Baseline Cases
5 -- - - - - - -- -

5- -- -- T----- - -

3 ------ -- -- - -

2 ------ - ----

M baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball OA 3rdcoil
-- *- 101.2G Fluxball OA 3rdcoil

0

-2 -- -- -- -- -- -- -- --- -- - -- -- - - - - - - - -- - - - -

-3 - -- -- - L - - - -- --- -- ---- - - - - -- - - - - - - -- - - - -

0.01 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

x 1(fh2 95Hz EFH1 Counter-clockwise Rotating Field Baseline Cases
5 -------- - -- --- ----- -- -- --- -- -- --- ---

2 -- ---- -- -- ---- ---- - - - - - - - - - - -- -- - -- -3------ ------------ -- -

2 I

2- - - -0---- --- -- 00- 4 ----- 0 .6 -

- - - - - -- - -- - Po b e 2

-4 -- - - - T - - - - - - - -- -- -11 - - --- ---- -- - -

-51
0.01 0.02 0.03 0.04 0.05 0.06 0.07

x 2 distance from Probe 2 (m)

- -baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

----- 50.6G Fluxball OA 3rdcoil

-*- 101.2G Fluxball OA 3rdcoil

930



x 103 Ch3 95Hz EFH1 Clockwise Rotating Field Baseline Cases

----- baseline
50.6G Fluxball no 3rdcoil

S -101.2G Fluxball no 3rdcoil
50.6G Fluxball OA 3rdcoil

-+-- 101.2G Fluxball OA 3rdcoil

z3 distance from Probe 3 (m)

x 1(Ph3 95Hz EFH1 Counter-clockwise Rotating Field Baseline Cases

0

-2 -

-4

-6

-8
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

2 distance from Probe 3 (m)

-U- baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil
----- 50.6G Fluxball OA 3rdcoil
-- +-- 101.2G Fluxball OA 3rdcoil

931



x 10 3 Ch4 95Hz EFH1 Clockwise Rotating Field Baseline Cases

|[ T-I - - T - -*--- baseline

v 50.6G Fluxball no 3rdcoil
-0- 101.2G Fluxball no 3rdcoil

---- 50.6G Fluxball OA 3rdcoil
101.2G Fluxball OA 3rdcoil-2 - - - - - - - --- -- - -T- - - -

|4 |

-6 -- - - -- - - -- - - - - - - --- - -

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z4 distance from Probe 4 (m)

x 1(Ph4 95Hz EFH1 Counter-clockwise Rotating Field Baseline Cases

- -

0

-1 - - - ' - - - ---- -- -- - - --- - - - - - - -
21 1

-5 '
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z4 distance from Probe 4 (m)

-- baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

---- 50.6G Fluxball OA 3rdcoil

- 101 .2G Fluxball OA 3rdcoil

932

I I



Ch1 47Hz EFH1 Clockwise Rotating Field Baseline Cases

baseline
50.6G Fluxball no 3rdcoil

0~ 101 .2G Fluxball no 3rdcoil
50.6G Fluxball OA 3rdcoil
101.2G Fluxball OA 3rdcoil

0.02 0.03 0.04 0.05 0.06
x distance from Probe 1 (m)

0.07 0.08

x 1(ph1 47Hz EFH1 Counter-clockwise Rotating Field Baseline Cases

8 - - -

6-

4|
4- - - - - - - - -

2- -
,

----- baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
-+-- 101.2G Fluxball OA 3rdcoil
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0.015 -

0.01 -

0.005 -

-0.005 -

-0.01 -

-0.015 -

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075
x distance from Probe 1 (m)

0



x 10-3 Ch2 47Hz EFH1 Clockwise Rotating Field Baseline Cases
5rF------- - - - - --------- - - - - - - - -- ----- - -

4--

3--

2-

E
0

0
->

.. -1
-2

-3

-4--

.01 0.02 0.03 0.04 0.05 0.06 0
x2 distance from Probe 2 (m)

x 1(ph2 47Hz EFH1 Counter-clockwise Rotating Field Baseline Cas

--- baseline

- 50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil
- -- 50.6G Fluxball OA 3rdcoil

-- 101.2G Fluxball OA 3rdcoil

.07

es

N baseline
v 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball QA 3rdcoil
-- 101.2G Fluxball OA 3rdcoil
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-t

-50

0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

------ -- ------- --- - ---- ------
- - - - - - - - - - - - --- - --- - -- - - - - - - - - - - - - - -

------------------------

I



X 1043 Ch3 47Hz EFH1 Clockwise Rotating Field Baseline Cases
4-

0

-2- -

-41
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.(

z3 distance from Probe 3 (m)

x 1(ph3 47Hz EFH1 Counter-clockwise Rotating Field Baseline Cases8

---- baseline

50.6G Fluxball no 3rdcoil
-4- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
+ 101.2G Fluxball OA 3rdcoil

-- n-- baseline
50.6G Fluxball no 3rdcoil

-- 101.2G Fluxball no 3rdcoil
50.6G Fluxball OA 3rdcoil

-- 101.2G Fluxball OA 3rdcoil
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0

-2 -- -- -

-4 - -- -- -- -- --

-6-

-8
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

z distance from Probe 3 (m)

09



x 10-3 Ch4 47Hz EFH1 Clockwise Rotating Field Baseline Cases

8----- -- - - - - - -- - - -

2 - - -1 -

2 -- -- - - - -- --- -- -- -- - -- - --- - -- ---T -

-2 --- - - -- -- - -- - - -- -- --- -- -

-2 - - -F

-6-- - F

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z4 distance from Probe 4 (m)

x 1(Oh4 47Hz EFH1

5--- -- - -

3 F F

| F
2- - -

-ik

--- baseline

- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
- 101.2G Fluxball OA 3rdcoil

Counter-clockwise Rotating Field Baseline Cases

-- F------- -- - --- -- - -

- - - - - - - --- - - - - - - - - - -

- -baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball OA 3rdcoil
----- 101.2G Fluxball OA 3rdcoil

-2 - - - F F

-3 - - -- --

-4 - - - - - - - -

|

-5 '
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

A distance from Probe 4 (m)
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Ch1 15Hz EFH1 Clockwise Rotating Field Baseline Cases
0.015

0.01

0.005 -

---- baseline

50.6G Fluxball no 3rdcoil
0---+-- 75.9G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
+-- 75.9G FluxbaI OA 3rdcoil

-0.005

-0.01

-0.015
0.02 0.03 0.04 0.05 0.06

x distance from Probe 1 (m)
0.07 0.08

x 10th1 15Hz EFH1 Counter-clockwise Rotating Field Baseline Cases
8

6-

4- ---

S 2- - - -

."o

MO I

-4

I I I)

baseline

50.6G Fluxball no 3rdcoil
--- 75.9G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
75.9G Fluxball OA 3rdcoil

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075
x distance from Probe 1 (m)

937



X 10-3 Ch2 15Hz EFH1 Clockwise Rotating Field Baseline Cases

-*-- baseline
50.6G Fluxball no 3rdcoil

---- 75.9G Fluxball no 3rdcoil
50.6G Fluxball OA 3rdcoil

--- 75.9G Fluxball OA 3rdcoil
--- --------------

.01 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

x 108h2 15Hz EFH1 Counter-clockwise Rotating Field Baseline Cases

Nis I i

I

.01 0.02 0.03 0.04 0.05 0.06 0.07
xdistance from Probe 2 (m)

- baseline
T 50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

---- 50.6G Fluxball OA 3rdcoil
- 75.9G Fluxball OA 3rdcoil
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-- -- ------ -
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x 10-3 Ch3 15Hz EFH1 Clockwise Rotating Field Baseline Cases

- -baseline

50.6G Fluxball no 3rdcoil
-- 75.9G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
-+-- 75.9G Fluxball OA 3rdcoil

0.04 0.05 0.06
z3 distance from Probe 3 (m)

10th3 15Hz EFH1 Counter-clockwise Rotating Field Baseline Cases

---- baseline

50.6G Fluxball no 3rdcoil
-- 75.9G Fluxball no 3rdcoil
-+- 50.6G Fluxball OA 3rdcoil
-+- 75.9G Fluxball OA 3rdcoil
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
z3 distance from Probe 3 (m)



8 - - -

6 - -

2 -- - --4 ------

-2 -

4

X 10-3 Ch4 15Hz EFH1 Clockwise Rotating Field Baseline Cases

- -baseline

50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

50.6G Fluxball DA 3rdcoil
- 75.9G Fluxball OA 3rdcoil

I I I I I I

0.02 0.03 0.04 0.05 0.06 0.07
z4 distance from Probe 4 (m)

0.08 0.09

x 10th4 15Hz EFH1 Counter-clockwise Rotating Field Baseline Cases

-U-- baseline

* 50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

---- 50.6G Fluxball DA 3rdcoil
---- 75.9G Fluxball OA 3rdcoil

I I

)1 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z4 distance from Probe 4 (m)
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-8

0.01

5

4

3

2

E

0

-1

-2

-3

-4

- - - - - -

--------- --- --- ------ --- --

----

- - -



95Hz EFH1 50.6G&101.2G Fluxball Clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

0.1 - -- - - - - -------

+90

0.08 -- -- - - -- -- - -- -

O 0.06 - - - - - - - -

C
Cl)

o 0.04 - - - - - - - - - - - - - - - -
E

cc 0 .0 2 - --- -- -- -L -- - - - - --- -- - -- -- -- -- -- -- --L -- -- -- --L -- - -- -

-90

0 -- -- -- -- - - -- - -- -- --

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Ch1 and Ch2 Probes (m)

95Hz EFH1 50.6G&101.2G Fluxball Clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0.1 - - - -

0+90

0.08 - - - - - - - -

0 0.06 - - - - - - - - -

C
Cu) c--
0 0.04 + - -
E
2

CO
cc 0 .0 2 - - L- - --- --L -- - -- - - -- - -- -- -- - -- -- -- - - -- - --

-90
0 - - -- - - -

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Ch1 and Ch2 Probes (m)
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95Hz EFH1 50.6G&101.2G Fluxball Counter-clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

0.1--- - - -- -------- - - -

E+90

0.08 -- - - -- --- -- ---- -- - -- -- -- - - - - - - - - -
- -2 Ch1

fL

o 0.06--------- -------- - - - - --- - -----

C

o 0.04--------- --- - -- -- - -- ------
E

0)~- C---h2 ,
S 0.02 - - - - - - - --L - -- - - --L -- - -- -- -I- ---- - - -- -L - - - - - - -

0-90

0 -- -- -- - -- -- -- -- - - - - ----

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Ch1 and Ch2 Probes (m)

95Hz EFH1 50.6G&101.2G Fluxball Counter-clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0.1--- - - - ------- - - - - -------- - -

E +90

CD 0.06 - - -- -- - - - - - -- -- -- - - - - -- -- - - - -- - - -- -

0 0.04 ---- - -- - - - ---- L -- - -- - -- - ---- - -
C

E

S 0.02 -- ----- - L-- - ---- ---- - - - -- -- -- -- - - -- -- - -- - -- ---

-90

0 ------------ - - -- - -- - - - - - -

'Ch4Ch
-0.02

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
Distance from Ch1 and Ch2 Probes (m)
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47Hz EFH1 50.6G&101.2G Fluxball Clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

0.1 F-
+90

0.06 -

0.04t-

-0.1 -0.08 -0.06 -0.04
Distance from Chi and Ch2 Probes (m)

-0.02 0

47Hz EFH1 50.6G&101.2G Fluxball Clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0.1 -

+90

-0.02L_
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

Distance from Ch1 and Ch2 Probes (m)
0.02

943

-0.12 0.02

0.08-

0.06-

0.04-

0.02-



47Hz EFH1 50.6G&101.2G Fluxball Counter-clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

0.11-

-0.02'-
-0.12 0.02-0.1 -0.08 -0.06 -0.04 -0.02 0

Distance from Ch1 and Ch2 Probes (m)

47Hz EFH1 50.6G&101.2G Fluxball Counter-clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0.1

0.08

0.06-

0.04--

0.02--

~Zz
+90

-0.021
-0.12 -0.1 -0.08

Ch3

-0.06 -0.04
Distance from Ch1 and Ch2 Probes (m)

944

0.08-

0.06-

0.04-

0.02 -

-90

-0.02 0.02

-



15Hz EFH1 50.6G&75.9G Fluxball Clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

0.1 F

0.08

0.06-

0.04-

0.02-

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04

Distance from Ch1 and Ch2 Probes (m)

- 0

-0.02 0

15Hz EFH1 50.6G&75.9G Fluxball Clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

021
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

Distance from Ch1 and Ch2 Probes (m)
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0.02



15Hz EFH1 50.6G&75.9G Fluxball Counter-clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

+90

-F
-F-

---
0.1--

0.08--

0.06--

0.04--

0.02-

0--

-0.02 -
-0.12 -0.08 -0.06 -0.04

Distance from Ch1 and Ch2 Probes (m)

I I I

-0.02

15Hz EFH1 50.6G&75.9G Fluxball Counter-clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

+90

--- - -- 
-- --- Ch1

-- - --- --- ---- --- --- --- - -- ----- --- --- --- -

- - - - - - - - --- - -- - -- -- - - - - -- -- --- r - - - - - - -- - - - - ---

Ch2
--- --- - -- - ------ - --- -- --- - -- - ---- - - --

-90

Ch4 Ch3

-0.08 -0.06 -0.04 -0.02 0
Distance from Ch1 and Ch2 Probes (m)
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-90

0.08-

0.06-

0.04-

0.02-

-0.02
-0.12 0.02

Ch4Ch



G8. MSGW1 1 Filled Sphere with Third Coil Imposing DC Field

X 10-
3Ch1 95Hz MSGW1 1 Clockwise Rotating Field 3rdcoil DC

-- baseline
- 50.6G Fluxball no 3rdcoil
+ 101.2G Fluxball no 3rdcoil

- 50.6G Fluxball +339.2G 3rdcoil
-*- 101.2G Fluxball +339.2G 3rdcoil

+ 50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxball -339.2G 3rdcoil

0.03 0.04 0.05 0.06
x distance from Probe 1 (m)

x 95Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil DC
5 r-

947

-+-- baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
-+- 101.2G Fluxball +339.2G 3rdcoil
-- 50.6G Fluxball -339.2G 3rdcoil

A 101.2G Fluxball -339.2G 3rdcoil

-51
0.01 0.02 0.03 0.04 0.05 0.06 0.07

x distance from Probe 1 (m)



x 10-3Ch2 95Hz MSGW11 Clockwise Rotating Field 3rdcoil DC

I u.n
0

-3 -- -- -- -- -- -- ---- -- - - -- - - -- - - -

-4 ---- -- - -- - - --- - - - -- - -

-5
0.01 0.02 0.03 0.04 0.05 0.06 0.07

x2 distance from Probe 2 (m)

xb2 95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil DC
5 - ------------- ----------- - - -- - - ---

4 - - - - -- -- -- - - -- -- -- -
3 -- - - - - - - ------ - - --- -

-3 - - - - - -- - ---

I

-2---- -- - ------------- - - - --- -

-3- --- - --- - --- -- - -- -

-4 - -- - - - - -- - - -- -

-5
0.01 0.02 0.03 0.04 0.05 0.06 0.07

x2 distance from Probe 2 (m)

--- baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball +339.2G 3rdcoil
-+-- 101.2G Fluxball +339.2G 3rdcoil
-- 50.6G Fluxball -339.2G 3rdcoil
-A 101.2G Fluxball -339.2G 3rdcoil

- -baseline

50.6G Fluxball no 3rdcoil
a 101.2G Fluxball no 3rdcoil

----- 50.6G Fluxball +339.2G 3rdcoil
----- 101.2G Fluxball +339.2G 3rdcoil
-<>-- 50.6G Fluxball -339.2G 3rdcoil

101.2G Fluxball -339.2G 3rdcoil

948



x 10
3Ch3 95Hz MSGW11 Clockwise Rotating Field 3rdcoil DC

1 0.04 0.05 0.06 0.07
z3 distance from Probe 3 (m)

95Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil DC

949

-- baseline

50.6G Fluxball no 3rdcoil
-O+-- 101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
--+-- 101.2G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
- 101.2G Fluxball -339.2G 3rdcoil

0.09

---- baseline

50.6G Fluxball no 3rdcoil
+--101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
101.2G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxball -339.2G 3rdcoil

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z3 distance from Probe 3 (m)



X 10-3Ch4 95Hz MSGW11 Clockwise Rotating Field 3rdcoil DC
5 - - -

3 - -

2 - - -

0

-1 - - - - -

-2-

-3 - -

0.02 0.03 0.04 0.05 0.06
z distance from Probe 4 (m)

q4 95Hz

950

M baseline

T 50.6G Fluxball no 3rdcoil
6 101.2G Fluxball no 3rdcoil

----- 50.6G Fluxball +339.2G 3rdcoil
--- 101.2G Fluxball +339.2G 3rdcoil

- -50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxball -339.2G 3rdcoil

0.07 0.08

E

0D

--- baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

- 50.6G Fluxball +339.2G 3rdcoil
- - 101.2G Fluxball +339.2G 3rdcoil
------ 50.6G Fluxball -339.2G 3rdcoil

- 101.2G Fluxball -339.2G 3rdcoil

)1 0.02 0.03 0.04 0.05 0.06 0.07 0.08
z distance from Probe 4 (m)



10
3Ch1 47Hz MSGW11 Clockwise Rotating Field 3rdcoil DC

------- ---------- - - - - - --

E

0

-1 - - - -- - - - - - - -

-2 -- ------

-4 - - - - - - T - --- - - -- - - - - - -

-5
0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

x distance from Probe 1 (m)

x qyf 47Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil DC
8 - - - --- - - - - - - - - - - - -

6|

6 - -- -- - -
4I

4 - -- -- -- - ---- - - - - - -

>I 0

-4 - - - - -

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07
x distance from Probe 1 (m)
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-- baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil
- 50.6G Fluxball +339.2G 3rdcoil
---- 101.2G Fluxball +339.2G 3rdcoil
---- 50.6G Fluxball -339.2G 3rdcoil

A 101.2G Fluxball -339.2G 3rdcoil

--- baseline

50.6G Fluxball no 3rdcoil
-- 4-- 101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
--- 101.2G Fluxball +339.2G 3rdcoil
0 50.6G Fluxball -339.2G 3rdcoil
A 101.2G Fluxball -339.2G 3rdcoil



x 10 
3Ch2 47Hz MSGW11 Clockwise Rotating Field 3rdcoil DC

-- j

I I - I L
I I I I
I I I F
F I I I

---- baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball +339.2G 3rdcoil
101.2G Fluxball +339.2G 3rdcoil

-- 50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxball -339.2G 3rdcoil

L4 1

T

0.02 0.03 0.04 0.05
x2 distance from Probe 2 (m)

0.06 0.07

x 47Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil DCF|
F I
I I
I F F

A 'L *aA~&~.

N baseline

- 50.6G Fluxball no 3rdcoil
t 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball +339.2G 3rdcoil
- 101.2G Fluxball +339.2G 3rdcoil

--- 50.6G Fluxball -339.2G 3rdcoil
A 101.2G Fluxball -339.2G 3rdcoil

952

2

.01

CD
>-1

-2

-3

-4

0.01 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

I



X 10-3Ch3 47Hz MSGW11 Clockwise Rotating Field 3rdcoil DC

0.02 0.03 0.04 0.05 0.06 0.07 0.08
z3 distance from Probe 3 (m)

x 47Hz MSGW 11 Counter-clockwise Rotating Field 3rdcoil DC

2 --- - - -- - - - - - - -- - - -- - -- - - -- -- --

0-

-2 - - - - -- -- - -- - - - ---- - - --

-4 -----

-6 -- --

-81
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

z3 distance from Probe 3 (m)

-- baseline

50.6G Fluxball no 3rdcoil
-- 101.2G Fluxball no 3rdcoil

---- 50.6G Fluxball +339.2G 3rdcoil
101.2G Fluxball +339.2G 3rdcoil

--- 50.6G Fluxball -339.2G 3rdcoil
A 101.2G Fluxball -339.2G 3rdcoil
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-- baseline

50.6G Fluxball no 3rdcoil
+ -101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
--- 101.2G Fluxball +339.2G 3rdcoil

--- 50.6G Fluxball -339.2G 3rdcoil
- 101.2G Fluxball -339.2G 3rdcoil

-41
0.01



x 10 
3Ch4 47Hz MSGW11 Clockwise Rotating Field 3rdcoil DC

4 --2

1- -r

I I I
- baseline

* 50.6G Fluxball no 3rdcoil
a 101.2G Fluxball no 3rdcoil

--- 50.6G Fluxball +339.2G 3rdcoil
-*--- 101.2G Fluxball +339.2G 3rdcoil
-o-- 50.6G Fluxball -339.2G 3rdcoil

101.2G Fluxball -339.2G 3rdcoil
-2 - - - - - - - - - - - - - -

T1

-6 - - - - - - - - - - - - - - - - -

-8 -- - - - - - - - - --L -

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
z4 distance from Probe 4 (m)

Counter-clockwise Rotating Field 3rdcoil DC

- - - --- - 4 - -

E1
0

0

-2 - - - - -

-3 - - - - - - - - - - - - - -

-4- - - - -- - - - - - -

-5
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

z distance from Probe 4 (m)

-*-- baseline

50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball +339.2G 3rdcoil
101.2G Fluxball +339.2G 3rdcoil
50.6G Fluxball -339.2G 3rdcoil
101.2G Fluxball -339.2G 3rdcoil
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b4 47Hz MSGW11
5

|



0.015 -

0.01 -

0.005 -

-0.005 -

-0.01 -

-0.015-

Ch1 15Hz MSGW11 Clockwise Rotating Field 3rdcoil DC

0.02 0.03 0.04 0.05 0.06
x, distance from Probe 1 (m)

0.07 0.08

x Wi1 15Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil DC8 r - --- --

6 - - -- -- -- - - - - - - - --- -

0A- , ,I
~JL~
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__-- baseline

- 50.6G Fluxball no 3rdcoil
---- 75.9G Fluxball no 3rdcoil
-- 50.6G Fluxball +339.2G 3rdcoil

---- 75.9G Fluxball +339.2G 3rdcoil
--- 50.6G Fluxball -339.2G 3rdcoil

A 75.9G Fluxball -339.2G 3rdcoil

--- baseline

50.6G Fluxball no 3rdcoil
--- 75.9G Fluxball no 3rdcoil
- -50.6G Fluxball +339.2G 3rdcoil
-*--- 75.9G Fluxball +339.2G 3rdcoil
---- 50.6G Fluxball -339.2G 3rdcoil

75.9G Fluxball -339.2G 3rdcoil

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07
x distance from Probe 1 (m)

I I I I I



x 104 Ch2 15Hz MSGW1 1 Clockwise Rotating Field 3rdcoil DC

- ~ ~ - -p - - - - - - - - - - - - - - - - -

- baseline

--v----50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

------ 50.6G Fluxball +339.2G 3rdcoil
75.9G Fluxball +339.2G 3rdcoil

- ----- 50.6G Fluxball -339.2G 3rdcoil
75.9G Fluxball -339.2G 3rdcoil

.01 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

x Ji! 15Hz MSGW11 Counter-clockwise Rotating Field 3rdcoil DC

--I - - - -

--- baseline
50.6G Fluxball no 3rdcoil

- 75.9G Fluxball no 3rdcoil
50.6G Fluxball +339.2G 3rdcoil

-- 75.9G Fluxball +339.2G 3rdcoil
--- 50.6G Fluxball -339.2G 3rdcoil
-75.9G Fluxball -339.2G 3rdcoil

0

-2 - - - - - - - - -- - -- -- -- --- -- --- - -- - -- - - - - -

I I-3 --- -- -- ------ - - -- -- -- -- -- -- - - --- - - -

-4 -- - - - - -- -- -- - --- - -- - --- - - - -- -- - - - - - -

0.01 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)
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0

-1 -

-2)-

-4-

5

0

-- - -- -- - - -- - -



Ch3 15Hz MSGW1 1 Clockwise Rotating Field 3rdcoil DC

0.005 P

05 -- -

0.01 0.02 0.03 0.04 0.0O5 0.06 0.0O7 0.08 0.109
zdistance from Probe 3 (m)

x J 15Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil DC
05 - - - -

6- 1

4-1

0

-2 - - - - - - - - - - - -

-4 - - - - - -

-6 - -

-8
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

z3 distance from Probe 3 (m)
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--- baseline
50.6G Fluxball no 3rdcoil

---- 75.9G FluxbaI no 3rdcoil

-- 50.6G Fluxball +339.2G 3rdcoil
---- 75.9G Fluxball +339.2G 3rdcoil
-<>-- 50.6G FluxbaI -339.2G 3rdcoil

A 75.9G Fluxball -339.2G 3rdcoil

---- baseline

50.6G Fluxball no 3rdcoil
75.9G FluxbaI no 3rdcoil
50.6G FluxbaI +339.2G 3rdcoil
75.9G Fluxball +339.2G 3rdcoil

- -50.6G Fluxball -339.2G 3rdcoil
75.9G FluxbaI -339.2G 3rdcoil

0.01

-0.0



x 10-3 Ch4 15Hz MSGW1 1 Clockwise Rotating Field 3rdcoil DC

---|-

-I I

~.aLa
0 no

-6 - - - - - - - - - - - - - --L- - - -

-8 - - - - - - - - - - - - - - - - -

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

zg4 distance from Probe 4 (m)

x r 15Hz MSGW1 1 Counter-clockwise Rotating Field 3rdcoil DC
5r -I-

- baseline

* 50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

- 50.6G Fluxball +339.2G 3rdcoil
-- 75.9G Fluxball +339.2G 3rdcoil
- -50.6G Fluxball -339.2G 3rdcoil
-75.9G Fluxball -339.2G 3rdcoil

-- baseline

50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

-+-- 50.6G Fluxball +339.2G 3rdcoil
-+- 75.9G Fluxball +339.2G 3rdcoil
-o- 50.6G Fluxball -339.2G 3rdcoil

75.9G Fluxball -339.2G 3rdcoil

958

I I I
T -1

.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
z distance from Probe 4 (m)

............



0.015-

0.01 -

Ch1 95Hz MSGW1 1 Clockwise Rotating Field Baseline Cases

0.005 -

baseline

- 50.6G Fluxball no 3rdcoil
0-+- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
---- 101.2G Fluxbal OA 3rdcoil

-0.005 - - - - - -

-0.01 V

-0.015
0.02 0.03 0.04 0.05 0.06

x distance from Probe 1 (m)
0.07 0.08

xI 95Hz MSGW 11 Counter-clockwise Rotating Field Baseline Cases

8

baseline

2 - - - - - - - 50.6G Fluxball no 3rdcoil
-- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
0 101.2G Fluxball OA 3rdcoil
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0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075
x distance from Probe 1 (m)

1 1 1 1 1 1 1



X 10 -3 Ch2 95Hz MSGW11 Clockwise Rotating Field Baseline Cases
--- I

- baseline

50.6G Fluxball no 3rdcoil
-e--- 101.2G Fluxball no 3rdcoil

-6 50.6G Fluxball OA 3rdcoil
- 101.2G Fluxball OA 3rdcoil

7

0.02 0.03 0.04 0.05
x2 distance from Probe 2 (m)

0.06 0.07

p 95Hz MSGW11 Counter-clockwise Rotating Field Baseline Cases

- baseline
T 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
* 101.2G Fluxball OA 3rdcoil

0

-2 - -- - -- - ----- - --- - - -- -

-3------- L--- ------ ------ I----- ------ -__

-4-- -- - ---- - - - - - - - - - -- -

5
0.01 0.02 0.03 0.04 0.05 0.06 0.07

x2 distance from Probe 2 (m)
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0
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x 104 Ch3 95Hz MSGW1 1 Clockwise Rotating Field Baseline Cases

-U-- baseline

50.6G Fluxball no 3rdcoil
-- e-- 101.2G Fluxball no 3rdcoil

50.6G Fluxball 0A 3rdcoil
-+--- 101.2G Fluxball OA 3rdcoil

0.02 0.03 0.04 0.05 0.06
z3 distance from Probe 3 (m)

0.07 0.08

x W1p 95Hz MSGW 11 Counter-clockwise Rotating Field Baseline Cases
8 - -- -- - --- - -- -- -- -

6!

4!

6--- baseline

50.6G Fluxball no 3rdcoil
0 - 101.2G Fluxba no 3rdcoil

50.6G Fluxball OA 3rdcoil

2---- --- - - -101.2G Fluxball OA 3rdcoil

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
z3 distance from Probe 3 (m)
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X 10 -3 Ch4 95Hz MSGW11 Clockwise Rotating Field Baseline Cases

I F F F

2 F 2

o

-4----- - - ------ - ---

-6--- - - - --- - -- - - -

-8 -F - L -

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
z4 distance from Probe 4 (m)

- baseline
- 50.6G Fluxball no 3rdcoil

- 101.2G Fluxball no 3rdcoil
-- 50.6G Fluxball OA 3rdcoil

- 101.2G Fluxball OA 3rdcoil

x %14 95Hz MSG5 - --

4 -------

Vii Counter-clockwise
-- ---- - --- -

--- --- -

Rotating Field Baseline Cases
----------------

-- -- -- -- -- -- -- --

- baseline

- 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

-- 50.6G Fluxball OA 3rdcoil
---- 101.2G Fluxball OA 3rdcoil-1 - - - -I

-2 - - -

-5 1 1 1 I F F 1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
z distance from Probe 4 (m)
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-- -- -- - - -- -

-3-



Ch1 47Hz MSGW1 1 Clockwise Rotating Field Baseline Cases

U-baseline

r 50.6G Fluxball no 3rdcoil
+-101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
-+-- 101.2G Fluxball OA 3rdcoil

0.02 0.03 0.04 0.05 0.06
x distance from Probe 1 (m)

0.07 0.08

47Hz MSGW1 1 Counter-clockwise Rotating Field Baseline Cases

8- -

6-

4--

---- baseline

2 -- - - 50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil

0 - . -+- 101.2G Fluxball OA 3rdcoil

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075
x distance from Probe 1 (m)
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0.015 -

0.01 -

0.005 -

-0.005 -

-0.01 -

-0.015-

r-..

I I I I I I I



x 10-3 Ch2 47Hz MSGW11
5r - -

Clockwise Rotating Field Baseline Cases

----- -- - - - -- - --- - - --

---- baseline

T 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

---- 50.6G Fluxball OA 3rdcoil
101.2G Fluxball OA 3rdcoil

.01 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

gly 47Hz MSGW1 1 Counter-clockwise Rotating Field Baseline Cases
F TI - -- -- -- I - -- -- -F --

F -- 4- --- - - - - - - - - - - - - - - - - - - - - - -

-- - - - - - - - - - - - - - ----- -- - - - -

--- - - - - --- - - -

31 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

"M baseline

50.6G Fluxball no 3rdcoil
---- 101 .2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
- 101.2G Fluxball OA 3rdcoil
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x 10-3 Ch3 47Hz MSGW 11 Clockwise Rotating Field Baseline Cases

- -baseline

- 50.6G Fluxball no 3rdcoil
---- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
---- 101.2G Fluxball OA 3rdcoil

0.04 0.05 0.06
z3 distance from Probe 3 (m)

x I 47Hz MSGW1 1 Counter-clockwise Rotating Field Baseline Cases
F - -- - - - i- - - - I - - - - - - - - I- - - - - -I

0 1

-2- - -- - - -- -

-- 4-6 - - - - --- --- -

-8
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

z3 distance from Probe 3 (m)

+-baseline

50.6G Fluxball no 3rdcoil
--- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
-*-101.2G Fluxball OA 3rdcoil
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X 10-3 Ch4 47Hz MSGW1 1 Clockwise Rotating Field Baseline Cases

8 F----

6- - - - ---

4 - - - ----- - --

2 --- - --- - --- - -

F F F
F F

H I- -"

- baseline

v 50.6G Fluxball no 3rdcoil
- 101.2G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
-*- 101.2G Fluxball OA 3rdcoil

2 L 2

0.01 0.02 0.03 0.04 0.05 0.06
24 distance from Probe 4 (m)

0.07 0.08

Counter-clockwise Rotating Field Baseline Cases

-I-- - --------------

0I7. o I I is O N

-1--- - - - - --- - - - - -

-2 - - - - - - - - - - - - - - - - - - - - -

-51
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

2 4 distance from Probe 4 (m)

- baseline
T 50.6G Fluxball no 3rdcoil
0 101.2G Fluxball no 3rdcoil

-+- 50.6G Fluxball OA 3rdcoil
- 101.2G Fluxball OA 3rdcoil
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x%4 47Hz MSGW11

-- -- -- --

... . .... ........... ........ .



Ch1 15Hz MSGW1 1 Clockwise Rotating Field Baseline Cases
0.015-

0.01 -

0.005 - - - -

baseline

50.6G Fluxball no 3rdcoil

-MM" 75.9G Fluxball no 3rdcoil
50.6G Fluxball OA 3rdcoil

-+- 75.9G FluxbaI OA 3rdcoil

-0.005 - - - - - - - - - - -

-0.01 F

-0.015
0.02 0.03 0.04 0.05 0.06

x distance from Probe 1 (m)
0.07 0.08

x Wi 15Hz MSGW1 1 Counter-clockwise Rotating Field Baseline Cases
8-- - - - - - - - -

46 - -- ---- ---------------

- -baseline

50.6G FluxbalI no 3rdcoil
--- 75.9G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
-*- 75.9G Fluxball OA 3rdcoil
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0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075
xi distance from Probe 1 (m)

1m .. . --!61m . -



x 10' Ch2 15Hz MSGW11 Clockwise Rotating Field Baseline Cases

I I I I
I I I

-4 F -~ -"- baseline

50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

--- 50.6G Fluxball OA 3rdcoil
-*-75.9G Fluxball OA 3rdcoil

1 - - - -- - - - - - -- - - - - - - - -- - - - - - - -

).01 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)

x 2 15Hz MSGW11 Counter-clockwise Rotating Field Baseline Cases
F ~I

3 -~ -- - - - - - - - - - - - - - - - -

- - - - - - - - - - - - -

-5
0.0

- -baseline

50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

- .- 5.6G Fluxball OA 3rdcoil
-*--- 75.9G Fluxball OA 3rdcoil

1 0.02 0.03 0.04 0.05 0.06 0.07
x2 distance from Probe 2 (m)
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x 103 Ch3 15Hz MSGW11 Clockwise Rotating Field Baseline Cases
4 - -- --- - - - - - - - - - - - - - -

3I

2!
3 -- - - - - - --

2 - -- - --- - --------- -

---- baseline

- 50.6G Fluxball no 3rdcoil

+-75.9G Fluxbal no 3rdcoil
50.6G Fluxball OA 3rdcoil

-+- 75.9G Fluxball OA 3rdcoil

0 -

- 1 - -- -- ---- - - - -

-3 -- - - -

-4
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

z3 distance from Probe 3 (m)

x it 15Hz MSGW1 1 Counter-clockwise Rotating Field Baseline Cases8 ---I-- -------
6 --- - - -- - -- -

4 - - - - -

0

-2 - - - - - - - - - - - - - -

-4-

-81
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

z3 distance from Probe 3 (m)

-i-baseline

50.6G Fluxball no 3rdcoil
-4--75.9G FluxbaI no 3rdcoil

50.6G Fluxball OA 3rdcoil
---- 75.9G Fluxball OA 3rdcoil

969



x 10- Ch4 15Hz MSGW11 Clockwise Rotating Field Baseline Cases

F

I I

F

0t

-2 - - -- ---- --- - - ---- - - - - - - - - - -
-2 I

-6-- - - - - -- - -

-8 - - - - - -

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
z distance from Probe 4 (m)

x (id 15Hz MSGW11 Counter-clockwise Rotating Field Baseline Cases
5----- -- ------ --- --- -- - ---- ----- - - -

4 - - |

4- -- - - --- --- --- - - - - - -- -

3- - - -- - -- - -- - -- --

2- ----- - - --- - - -- - --3 -I - -

2

1 -- - - -I

0

-2 - - - - - -

-5
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

z4 distance from Probe 4 (m)

- baseline

50.6G Fluxball no 3rdcoil
--- 75.9G Fluxball no 3rdcoil

50.6G Fluxball OA 3rdcoil
-- 75.9G Fluxball OA 3rdcoil

"- baseline

- 50.6G Fluxball no 3rdcoil
- 75.9G Fluxball no 3rdcoil

--- 50.6G Fluxball OA 3rdcoil
-*- 75.9G Fluxball OA 3rdcoil

970



95Hz MSGW11 50.6G&101.2G Fluxball Clockwise Rotating Field +339.2G DC3rd coil Flow profile scale=10

0.1 F-
+90

I- 1

-0.08 -0.06 -0.04
Distance from Ch1 and Ch2 Probes (m)

-0.02 0.02

95Hz MSGW11 50.6G&101.2G Fluxball Clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0.1 F-

I - |

-0.08 -0.06 -0.04 -0.02 0
Distance from Ch1 and Ch2 Probes (m)

0.02
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0.08

0.06-

0.04-

0.02-

-0.02'
-0.12

0.08

0.06-

0.04-

0.02-

-0.02L_
-0.12



95Hz MSGW11 50.6G&101.2G Fluxball Counter-clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

0.08-

0.06-

0.04-

0.02

0 - ------ ------ - -

-0.02
-0.12 -0.1 -0.08

+90

-o - Ch1

--- - -Ch2

-90

ELlil!Il |3-Ch

-0.06 -0.04
Distance from Ch1 and Ch2 Probes (in)

-0.02 0 0.02

95Hz MSGW11 50.6G&101.2G Fluxbail Counter-clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0.1 F-

+90

- - - - - -- - - - -- - - - - -- -

-- -- - - - - - - - - - --- - - - - - - -

- -- - - - --- - - -- - - - - - L - - - -- - - -

Ch4 Ch3

-0.08 -0.06
Distance from Ch1 and Ch2 Probes (m)

-0.02
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0.08-

0.06-

0.04-

0.02--

0--

-0.02-
-0.12

-90

-f

0.02



47Hz MSGW11 50.6G&101.2G Fluxball Clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

+90

0.04-

0.02 -

-0.02'
-0.12 -0.1 -0.08

- I I 1

-0.06 -0.04 -0.02 0
Distance from Ch1 and Ch2 Probes (m)

0.02

47Hz MSGW11 50.6G&101.2G Fluxball Clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0.1 k

0.08

0.06-

0.04-

0.02-

-0.021-
-0.12 L~ - I I--0.08 -0.06 -0.04 -0.02 0

Distance from Ch1 and Ch2 Probes (m)
0.02
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47Hz MSGW 11 50.6G&101.2G Fluxball Counter-clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

0.1 F

0.08-

0.06--

0.04-

0.02-

-0.02
-0.12 -0.08 -0.06 -0.04 -0.02

Distance from Ch1 and Ch2 Probes (m)
0.02

47Hz MSGW1 1 50.6G&101.2G Fluxball Counter-clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0.1 F

0.08-

0.06-

0.04-

0.02-

-0.02' 1
-0.12 -0.1 -0.0E 0.02

Distance from Ch1 and Ch2 Probes (m)
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15Hz MSGW11 50.6G&75.9G Fluxball Clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

0.1
0.1 --- -- - -- -

0 +90

0.08 -- - - - - - -

a.

o 0.06- - - - - - - -
C
Cu)

o 0.04 - - - -
E
2

8 0.02 - - - - - - - - - - - -

-90

0- - - - - - - --- -

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Ch1 and Ch2 Probes (m)

15Hz MSGW1 1 50.6G&75.9G Fluxball Clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0 .1 - - - - -- - - - - -- --- --- - -- -- -- - - - --- -

.+90

(C

Cu 0.08 - --- -- - - - -

0.04 - - - - - - - - - - - - - -- - -- - - - - - --- - - - - - - - --
E

2

0.02 - -- -- L - - -- - -- -- L - - - - - - - - - -

-90

0 - - -- --- - - - - - -- --- - - - -

o0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Ch1 and Ch12 Probes (m)
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15Hz MSGW1 1 50.6G&75.9G Fluxball Counter-clockwise Rotating Field +339.2G DC 3rd coil Flow profile scale=10

0.1-

0.08-

0.06-

0.04-

0.02--------- -- ----

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

Distance from Ch1 and Ch2 Probes (m)

15Hz MSGW1 1 50.6G&75.9G Fluxball Counter-clockwise Rotating Field -339.2G DC 3rd coil Flow profile scale=10

0.1 -

0.08-

0.06-

0.04-

0.02-

-n00
-0.12

-F

-0.08 -0.06 -0.04 -0.02 0
Distance from Ch1 and Ch2 Probes (m)
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G9. Comparison of Different Fluids with Third Coil Oscillating at

Different Frequencies with Phase Difference=O with Respect to Inner

Coil

Ch1 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=0
0.01 -- - --- - -

0.008 - - - -- - --

0.006 - - - - - - -

0.004- - - - -

-. uiu:

:t, I
0 0

> -0.002

-0.004

-0.006

-0.008

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x distance from Probe 1 (m)

Ch1 Counter-clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=0

0.008 -

0.006-

0.004 -

0.002

-0.00

-0.00

-0.00

-0.00

-0.0

U1

2 - -

4-

6 -- ---- --

8 --- -- --- --

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x distance from Probe 1 (m)
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+ 50.6G Fluxball EFH1 95Hz
50.6G Fluxball EFH1 47Hz

---- 50.6G Fluxball EFH1 15Hz

50.6G Fluxball MSGW1 1 95Hz
50.6G Fluxball MSGW1 1 47Hz
50.6G Fluxball MSGW1 1 15Hz

-U-- 50.6G Fluxbal EFH1 95Hz
- 50.6G FluxbaI EFH1 47Hz

---- 50.6G Fluxbal EFH1 15Hz
50.6G FluxbaI MSGW1 1 95Hz

0 50.6G Fluxbal MSGW1 1 47Hz
A 50.6G FluxbalI MSGW1 115Hz



Ch2 Clockwise Rotating Field 3rdcoil

0.004 F

-0.004 --

-0.006 --

-0.008 -

-0.01
0.01

0.01 -

0.008 -

0.006 -

0.004 -

-0.004 --
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G10. Comparison of Different Fluids with Third Coil Oscillating at

Different Frequencies with Phase Difference=60 with Respect to Inner

Coil
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Ch3 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=60
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Ch4 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=60
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Ch2 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=60
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Ch3 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=60
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GI1. Comparison of Different Fluids with Third Coil Oscillating at

Different Frequencies with Phase Difference=-60 with Respect to Inner

Coil
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Ch3 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=-60
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Ch1 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=-60
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G12. Comparison of Different Fluids with Third Coil Oscillating at

Different Frequencies with Phase Difference=120 with Respect to Inner

Coil
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Ch3 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=120
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Ch4 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=120
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Ch1 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=120
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Ch2 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=120
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Ch3 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=120
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Ch1 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=120
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Ch2 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=120
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Ch3 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase=120
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Ch4 Clockwise Rotating Field 3rdcoil 296.8G 3rdcoil phase= 120
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G13. Comparison of Different Fluids with Third Coil Oscillating at

Different Frequencies with Phase Difference=-120 with Respect to Inner

Coil
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Ch2 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=-120
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Ch3 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=-120
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Ch1 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=-120

0
2 --- - -- - - - - - - - - - - - - - - - - -

0.02 0.03 0.04 0.05 0.06
x distance from Probe 1 (m)

Ch1 Counter-clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=-120
0.01 --

0.008 -

0.006 -

0.004 -

- uu

,

,
0

> -0.00

-0.00

-0.00

-0.00

-0.0

1045

0.01 -

0.008 -

0.006 -

0.004 -

20.00

-0.00

-0.004-

-0.006-

-0.008 -

U 101.2G Fluxball EFH1 95Hz
101.2G Fluxball EFH1 47Hz

+ 75.9G Fluxball EFH1 15Hz
101.2G Fluxball MSGW1 1 95Hz

- 101.2G Fluxball MSGW11 47Hz
-- 75.9G Fluxball MSGW11 15Hz

-0.01
0.07 0.08

+-101.2G Fluxball EFH1 95Hz
101.2G Fluxball EFH1 47Hz

+ 75.9G Fluxball EFH1 15Hz

* 101.2G Fluxball MSGW11 95Hz
101.2G Fluxball MSGW11 47Hz
75.9G Fluxball MSGW1 1 15Hz

0

2 -- - - -- -

4 -- - - - - - --- - -- - --- - - - -

8-

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x distance from Probe 1 (m)

-2



Ch2 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=-120
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G14. Comparison of Different Fluids with Third Coil Oscillating at

Different Frequencies with Phase Difference=180 with Respect to Inner

Coil
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Ch3 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=180
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Ch1 Clockwise Rotating Field 3rdcoil 169.6G 3rdcoil phase=180
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G15. Comparison of Different Fluids with Third Coil at DC
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Ch3 Clockwise Rotating Field 3rdcoil +339.2G DC
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Ch3 Clockwise Rotating Field 3rdcoil +339.2G DC
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Ch3 Clockwise Rotating Field 3rdcoil -339.2G DC
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Appendix H : Experimental Results with Non-Uniform

Fields Generated Using Permanent Magnets (Section

6.4)

HI. EFH1 Filled Sphere with South Pole Facing Magnets on Top of
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H2. EFH1 Filled Sphere with South Pole Facing Magnets on Top of

Sphere at 47Hz
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47Hz EFH1 S POLE 50.6G Fluxball Counter-clockwise Rotating Field Flow profile scale=5
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47Hz EFH1 S POLE 101.2G Fluxball Counter-clockwise Rotating Field Flow profile scale=3
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H3. EFH1 Filled Sphere with South Pole Facing Magnets on Top of

Sphere at 15Hz
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Ch2 15Hz EFH1 S POLE 50.6G Fluxball Counter-clockwise Rotating Field
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15Hz EFH1 S POLE 50.6G Fluxball Counter-clockwise Rotating Field Flow profile scale=5
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15Hz EFH1 S POLE 75.9G Fluxball Counter-clockwise Rotating Field Flow profile scale=3
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H4. EFH1 Filled Sphere with North Pole Facing Magnets on Top of

Sphere at 95Hz
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95Hz EFH1 N POLE 50.6G Fluxball Clockwise Rotating Field Flow profile scale=5
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95Hz EFH1 N POLE 101.2G Fluxball Clockwise Rotating Field Flow profile scale=3
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H5. EFH1 Filled Sphere with North Pole Facing Magnets on Top of

Sphere at 47Hz
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Ch2 47Hz EFH1 N POLE 50.6G Fluxball Clockwise Rotating Field
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Ch4 47Hz EFH1 N POLE 50.6G Fluxball Clockwise Rotating Field
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47Hz EFH1 N POLE 50.6G Fluxball Clockwise Rotating Field Flow profile scale=7
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47Hz EFH1 N POLE 101.2G Fluxball Clockwise Rotating Field Flow profile scale=3
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H6. EFH1 Filled Sphere with North Pole Facing Magnets on Top of

Sphere at 15Hz
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Ch1 15Hz EFH1 N POLE 75.9G Fluxball Clockwise Rotating Field
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Ch2 15Hz EFH1 N POLE 50.6G Fluxball Clockwise Rotating Field
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Ch2 15Hz EFH1 N POLE 75.9G Fluxball Clockwise Rotating Field
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Ch3 15Hz EFH1 N POLE 50.6G Fluxball Clockwise Rotating Field
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Ch3 15Hz EFH1 N POLE 75.9G Fluxball Clockwise Rotating Field
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Ch4 15Hz EFH1 N POLE 50.6G Fluxball Clockwise Rotating Field
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15Hz EFH1 N POLE 50.6G Fluxball Clockwise Rotating Field Flow profile scale=7
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15Hz EFH1 N POLE 75.9G Fluxball Clockwise Rotating Field Flow profile scale=3
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H7. MSGW1 1 Filled Sphere with South Pole Facing Magnets on Top

of Sphere at 95Hz
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Ch1 95Hz MSGW11 S POLE 101.2G Fluxball Clockwise Rotating Field
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Ch2 95Hz MSGW1 1 S POLE 50.6G Fluxball Clockwise Rotating Field

0

-0.005 -

-0.01 -

-0.015-
0.01

0.015 r

0.01 k

- - No Magnet
S1601 G

- 2952G
---- 3309G

- 4667G
----- 5233G

I I I
I I I I

0.02 0.03 0.04 0.05 0.06
x2 distance from Probe 2 (m)

0.07 0.08

Ch2 95Hz MSGW11 S POLE 50.6G Fluxball Counter-clockwise Rotating Field
-- ---- --- -- ---- - - - - - - - - - - - -- - - - - - - -

- - - --- - - - - - -

0.005 -------- --- - - - - - - - - - - - - - - - - - - -

-0.005-

-0.01 K - - - - - - - - - - - - - - - - -

I I

N No Magnet
1601G

0 2952G

-+3309G
- 4667G

- 5233G

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x2 distance from Probe 2 (m)

1154

0.015 -

0.01 -

0.005 -

-0.015
0.01

6-65pff W07



Ch2 95Hz MSGW11 S POLE 101.2G Fluxball Clockwise Rotating Field
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Ch3 95Hz MSGW1 1 S POLE 50.6G Fluxball Clockwise Rotating Field
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Ch3 95Hz MSGW11 S POLE 101.2G Fluxball Clockwise Rotating Field

U-No Magnet
1601G

+-2952G
3309G

* 4667G
----- 5233G

0.02 0.03 0.04 0.05 0.06 0.07 0.08
z3 distance from Probe 3 (m)

Ch3 95Hz MSGW1 1 S POLE 101.2G Fluxball Counter-clockwise Rotating Field
- - - -- - - - - - -- - - - - - - - - -- - - -

- - - - - No Magnet

- 1601G

--- 2952G
3309G

%low- 4667G
-0--5233G

0.02 0.03 0.04 0.05 0.06
z3 distance from Probe 3 (m)

0.07 0.08

1157

0.02

0.015

0.01

0.005

01

-0.005

-0.01

-0.015--

-0.02 -
0.01

0.02

0.015

0.01 -

0.005-

0

-0.005-

-0.01 -

-0.015 -

-0.02 -
0.01

I ~ ~~ '



Ch4 95Hz MSGW11 S POLE 50.6G Fluxball Clockwise Rotating Field
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Ch4 95Hz MSGW11 S POLE 101.2G Fluxball Clockwise Rotating Field

-m- No Magnet
1601G

-- 2952G

- 3309G

-- 4667G

-- 5233G

0.02 0.03 0.04 0.05
z distance from Probe 4 (m)

0.06 0.07 0.08

Ch4 95Hz MSGW11 S POLE 101.2G Fluxball Counter-clockwise Rotating Field

-- No Magnet
1601G

-- 2952G

3309G
* 4667G

-5233G

I I 1 1

0.02 0.03 0.04 0.05
z4 distance from Probe 4 (m)

0.06 0.07 0.08

1159

0.02-

0.015 -

0.01 -

0.005 -

-0.005

-0.01 -

-0.015-

-0.02
0.01

0.02 --

0.015 --

0.01 --

0.005 --

-0.005

-0.01 F

-0.015

-0.021
0.01

.... i

I



95Hz MSGW1 1 S POLE 50.6G Fluxball Clockwise Rotating Field Flow profile scale=10
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95Hz MSGW11 S POLE 101.2G Fluxball Clockwise Rotating Field Flow profile scale=5
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H8. MSGW1 1 Filled Sphere with South Pole Facing Magnets on Top

of Sphere at 47Hz
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47Hz MSGW11 S POLE 50.6G Fluxball Clockwise Rotating Field Flow profile scale=10
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47Hz MSGW11 S POLE 101.2G Fluxball Clockwise Rotating Field Flow profile scale=5
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H9. MSGW1 1 Filled Sphere with South Pole Facing Magnets on Top

of Sphere at 15Hz
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Ch3 15Hz MSGW11 S POLE 50.6G Fluxball Clockwise Rotating Field
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15Hz MSGW11 S POLE 50.6G Fluxball Clockwise Rotating Field Flow profile scale=10
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15Hz MSGW11 S POLE 75.9G Fluxball Clockwise Rotating Field Flow profile scale=10
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H10. MSGW1 1 Filled Sphere with North Pole Facing Magnets on Top

of Sphere at 95Hz
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Ch3 95Hz MSGW11 N POLE 101.2G Fluxball Clockwise Rotating Field
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H 11. MSGW 11 Filled Sphere with North Pole Facing Magnets on Top

of Sphere at 47Hz
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47Hz MSGW1 1 N POLE 50.6G Fluxball Clockwise Rotating Field Flow profile scale=10
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47Hz MSGW11 N POLE 101.2G Fluxball Clockwise Rotating Field Flow profile scale=5
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H12. MSGW 11 Filled Sphere with North Pole Facing Magnets on Top

of Sphere at 15Hz
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15Hz MSGW11 N POLE 50.6G Fluxball Clockwise Rotating Field Flow profile scale=20

0.1- - - - -- - -- - --- - - ----- - -

+90

o 0.08----- ---- -- --- -
2 -Ch

U 0.06 -- -- - -- -- - - - - ---- - - - --- - -- - --- --

as

o 0.04---- - --- ----- - - -- - - - - --- - - - -
E

2I
(D Ch2

S 0 .0 2 -- - --- - - - - - - - - - - - - - - - - - - - - - -

-90

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Chi and Ch2 Probes (m)

15Hz MSGW11 N POLE 50.6G Fluxball Counter-clockwise Rotating Field Flow profile scale=20

0.11
0.1- ----- -- - -- --- -- - -- - -- -- - -- - - - -- - --

+90

o 0.08 --- -- -- ----- -- -- ---- - - - - - -- -- -- - -- --
0 Ch1

-

L 06- - -- - - --- - - - -- - - - - - --------

C

O 0.04
E
2

-_ 0.2 - 0.1---- -------- -.0 -00 -0.0 - 2 0 -0.02-

ca

1210

-0.02
-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Distance from Chi and Ch2 Probes (in)

1210



15Hz MSGW1 1 N POLE 75.9G Fluxball Clockwise Rotating Field Flow profile scale=20
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H13. Comparison of Different Fluids with 1601G Magnet with South

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths

Ch1 1601G S POLE 50.6G Fluxball Clockwise Rotating Field
0.015 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.01 - - - - - - - - - - - - - - - - - - -- - - - -

0.005 - - - - - - r - - - - - - - - - - - - - - - - - - - - - - - - -- - - -

EFH1 50.6G 95Hz

EFH1 50.6G 47HzEi I

0 EFH1 50.6G 15Hz

IMSGW1 1 50.6G 95Hz
D I ~ MSGW1 1 50.6G 47Hz

---- MSGW11 50.6G 15Hz
-0.005-- -- - -

-0.015' 1 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)

1212
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Ch2 1601G S POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch3 1601G S POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch4 1601G S POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch2 1601G S POLE Fluxball Counter-clockwise Rotating Field
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Ch3 1601G S POLE Fluxball Counter-clockwise Rotating Field
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H14. Comparison of Different Fluids with 1601G Magnet with North

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths
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Ch1 1601G N POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch2 1601G N POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch3 1601 G N POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch4 1601G N POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch1 1601G N POLE Fluxball Counter-clockwise Rotating Field
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Ch2 1601G N POLE Fluxball Counter-clockwise Rotating Field
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Ch3 1601G N POLE Fluxball Counter-clockwise Rotating Field
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Ch4 1601G N POLE Fluxball Counter-clockwise Rotating Field
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H15. Comparison of Different Fluids with 2952G Magnet with South

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths
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Ch1 2952G S POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch2 2952G S POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch3 2952G S POLE 50.6G Fluxball Counter-clockwise Rotating Field

+-EFH1 50.6G 95Hz
EFH1 50.6G 47Hz

--- EFH1 50.6G 15Hz
-+- MSGW1 1 50.6G 95Hz

MSGW1 1 50.6G 47Hz
-o- MSGW11 50.6G 15Hz

0.02 0.03 0.04 0.05 0.06
z3 distance from Probe 3 (m)

0.07 0.08

Ch4 2952G S POLE 50.6G Fluxball Clockwise Rotating Field

--- EFH1 50.6G 95Hz
- EFH1 50.6G 47Hz

-0- EFH1 50.6G 15Hz
-+ MSGW1 1 50.6G 95Hz

MSGW1 1 50.6G 47Hz
0 MSGW11 50.6G 15Hz

0.02 0.03 0.04 0.05 0.06
z distance from Probe 4 (m)

0.07 0.08

1233

0.015 -

0.01 -

0.005.-

-0.005

-0.01 -

-n ni
0.01

0.015 -

0.01 -

0.005 -

-0.005 -

-0.01 -

-0.015
0.01

' _ _ _



Ch4 2952G S POLE 50.6G Fluxball Counter-clockwise Rotating Field
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Ch1 2952G S POLE Fluxball Counter-clockwise Rotating Field
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H16. Comparison of Different Fluids with 2952G Magnet with North

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths
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H17. Comparison of Different Fluids with 3309G Magnet with South

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths
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H18. Comparison of Different Fluids with 3309G Magnet with North

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths
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0.005

01

-0.005

-0.01

-0.015'
0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

x distance from Probe 1 (m)



Ch1 3309G N POLE Fluxball Counter-clockwise Rotating Field
0.015 --- -

0.04 0.045 0.05 0.055
x distance from Probe 1 (m)

-U-EFH1 101.2G 95Hz

y EFH1 101.2G 47Hz
- -EFH1 75.9G 15Hz
-- MSGW11 101.2G 95Hz

- MSGW11 101.2G 47Hz
-- MSGW11 75.9G 15Hz

0.07

N POLE Fluxball Clockwise Rotating Field
|-- - - - - - - - - - --

-| -- -
-- -

- EFH1 101.2G 95Hz

IF EFH1 101.2G 47Hz
- EFH1 75.9G 15Hz

---- MSGW11 101.2G 95Hz

*-MSGW11 101.2G 47Hz
-- MSGW11 75.9G 15Hz

Ch2 3309G

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
x2 distance from Probe 2 (m)

1262



Ch2 3309G N POLE Fluxball Counter-clockwise Rotating Field

-- EFH1 101.2G 95Hz
EFH1 101.2G 47Hz

---- EFH1 75.9G 15Hz
--- MSGW11 101.2G 95Hz

* MSGW11 101.2G 47Hz
--- o- MSGW11 75.9G 15Hz

.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
x2 distance from Probe 2 (m)

Ch3 3309G N POLE Fluxball Clockwise Rotating Field

0.03 0.04 0.05 0.06
z3 distance from Probe 3 (m)

--- EFH1 101.2G 95Hz
- EFH1 101.2G 47Hz

----- EFH1 75.9G 15Hz
--- MSGW11 101.2G 95Hz

*- MSGW11 101.2G 47Hz
MSGW11 75.9G 15Hz

0.07 0.08
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0.015-

0.01-

0.005-

0

-0.005 - - - - -

-0.01 -

-0.015
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0.015

0.01

0.005

Fluxball Counter-clockwise Rotating Field
---- - - - - - - - --- - - - - -- - -

-- EFH1 101.2G 95Hz
EFH1 101.2G 47Hz

0 - -0-EFH1 75.9G 15Hz

MSGW11 101.2G 95Hz
MSGW11 101.2G 47Hz
MSGW11 75.9G 15Hz

-0.005 - -- - - - -- - - - - - -I I I-

-0.01 -- -- - - -- ----- ---- ----- -- - - -- - - -- - -- -- -

-0.015
0.02 0.03 0.04 0.05 0.06 0.07 0.08

z3 distance from Probe 3 (m)

Ch4 3309G N POLE Fluxball Clockwise Rotating Field
0.015 - -- - ----------- - - --- - - - - - - - -- - - - - -- - - -

0.01 ------------------------------- - ------

0.005 - F------ - - -f- - - - - - - - - -

-N--- EFH1 101.2G 95Hz
T EFH1 101.2G 47HzE

0. -0 EFH1 75.9G 15Hz

2 -- MSGW11 101.2G 95Hz
*) MSGW11 101.2G 47Hz

0.0 -- -MSGW11 75.9G 15Hz
-0 .0 0 5 - - - - - - - - - - - -_-_-_-- - - -_-- - - - - - -

I I

-0.01----- ------ --- ------ - -- - --

-0.015,
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

z4 distance from Probe 4 (m)
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Ch4 3309G N POLE Fluxball Counter-clockwise Rotating Field

0 .0 1 - -- - -- -

0.005 --
--- EFH1 101.2G 95Hz

y- EFH1 101.2G 47Hz
E --- EFH1 75.9G 15Hz

-+- MSGW11 101.2G 95Hz
0

-- MSGW11 101.2G 47Hz
--- o-- MSGW11 75.9G 15Hz

-0.005 -

-0.01

0.02 0.03 0.04 0.05 0.06 0.07 0.08
z4 distance from Probe 4 (m)
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H19. Comparison of Different Fluids with 4667G Magnet with South

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths

Ch1 4667G S POLE 50.6G Fluxball Clockwise Rotating Field

---- EFH1 50.6G 95Hz

T EFH1 50.6G 47Hz
- EFH1 50.6G 15Hz

- MSGW1 1 50.6G 95Hz

---- MSGW1 1 50.6G 47Hz

-- MSGW11 50.6G 15Hz

0.02 0.03 0.04 0.05 0.06 0.07 0.08
x, distance from Probe 1 (m)
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0.015



Ch1 4667G S POLE 50.6G Fluxball Counter-clockwise Rotating Field

-- EFH1 50.6G 95Hz
EFH1 50.6G 47Hz

-e- EFH1 50.6G 15Hz
- MSGW1 1 50.6G 95Hz

# MSGW1 1 50.6G 47Hz

-- o- MSGW1 1 50.6G 15Hz

0.025 0.03 0.035 0.04 0.045 0.05 0.055
x distance from Probe 1 (m)

0.06 0.065 0.07

Ch2 4667G S POLE 50.6G Fluxball Clockwise Rotating Field
- - - - -- -

-U-- EFH1 50.6G 95Hz
y EFH1 50.6G 47Hz

-+-- EFH1 50.6G 15Hz
--- MSGW1 1 50.6G 95Hz

* MSGW1 1 50.6G 47Hz

-0- MSGW11 50.6G 15Hz
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Ch2 4667G S POLE 50.6G Fluxball Counter-clockwise Rotating Field

0.005 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-M-- EFH1 50.6G 95Hz

--- EFH1 50.6G 47Hz
-0-EFH1 50.6G 15Hz

- -MSGW1 1 50.6G 95Hz

--- MSGW1 1 50.6G 47Hz

--- MSGW11 50.6G 15Hz

ni 5 I I I I I

0.02 0.03 0.04 0.05
x2 distance from Probe 2 (m)

ffi~

0.06 0.07 0.08

Ch3 4667G S POLE 50.6G Fluxball Clockwise Rotating Field

0=

-0.005 --

-0.01 --

-0.015 -
0.01

- EFH1 50.6G 95Hz

v EFH1 50.6G 47Hz

0 EFH1 50.6G 15Hz
MSGW1 1 50.6G 95Hz
MSGW1 1 50.6G 47Hz

-0- MSGW1 1 50.6G 15Hz

-L - - I

0.02 0.03 0.04 0.05 0.06 0.07 0.08
23 distance from Probe 3 (m)
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Ch3 4667G S POLE 50.6G Fluxball Counter-clockwise Rotating Field
- --- - - - - - - - - - - -

--- EFH1 50.6G 95Hz
EFH1 50.6G 47Hz

- EFH1 50.6G 15Hz
6 MSGW1 1 50.6G 95Hz

MSGW1 1 50.6G 47Hz
--- MSGW11 50.6G 15Hz

0.02 0.03 0.04 0.05 0.06 0.07 0.08
z3 distance from Probe 3 (m)

Ch4 4667G S POLE 50.6G Fluxball Clockwise Rotating Field

----- EFH1 50.6G 95Hz
EFH1 50.6G 47Hz

- EFH1 50.6G 15Hz
- -MSGW1 1 50.6G 95Hz

-- MSGW11 50.6G 47Hz
-+- MSGW11 50.6G 15Hz

0.02 0.03 0.04 0.05 0.06
z distance from Probe 4 (m)

0.07 0.08
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Ch4 4667G S POLE 50.6G Fluxball Counter-clockwise Rotating Field

-- - - - - - -

I I
I I I

I I I I I
I I I I I
I I I I

I I I

0.02 0.03 0.04 0.05 0.06
24 distance from Probe 4 (m)

-U-- EFH1 50.6G 95Hz

- EFH1 50.6G 47Hz

EFH1 50.6G 15Hz

---- MSGW11 50.6G 95Hz

MSGW11 50.6G 47Hz
MSGW11 50.6G 15Hz

0.07 0.08

0.02- -

0.015----

0.01 - - - -

0.005- ---

-0.015

Ch1 4667G S POLE Fluxball Clockwise Rotating Field

-0.02'
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

x distance from Probe 1 (m)

1270

0.015 -

0.01 -

0.005 -

-0.005 -

-0.01 F

-0.015 '
0.01

M EFH1 101.2G 95Hz
v EFH1 101.2G 47Hz

---- EFH1 75.9G 15Hz

-- MSGW11 101.2G 95Hz
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Ch1 4667G S POLE Fluxball Counter-clockwise Rotating Field

--- EFH1 101.2G 95Hz

-- EFH1 101.2G 47Hz
-4--- EFH1 75.9G 15Hz
-- MSGW11 101.2G 95Hz

* MSGW11 101.2G 47Hz

--- MSGW11 75.9G 15Hz

0.025 0.03 0.035 0.04 0.045 0.05 0.055
x distance from Probe 1 (m)

0.06 0.065 0.07

Ch2 4667G S POLE Fluxball Clockwise Rotating Field

0.03 0.04 0.05 0.06
x2 distance from Probe 2 (m)

+-EFH1 101.2G 95Hz

EFH1 101.2G 47Hz

-4--- EFH1 75.9G 15Hz
---- MSGW11 101.2G 95Hz

MSGW11 101.2G 47Hz
MSGW11 75.9G 15Hz

0.07 0.08
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0.015

0.01

0.015 -

0.01 -

0.005 -

-0.005

-0.01 k

-0.015'
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Ch2 4667G S
0.015 ------ -

0.01- ----- - -

0.005- ------

POLE Fluxball Counter-clockwise Rotating Field
- - - - - - - - - - - - - - - - - - - - -

rI~|

Cd,

E
0

-000----- ---7 -- ---
-0.005 -- - -

| 1

-0.01 ------

-0.015'
0.02 0.03 0.04 0.05 0.06 0.07

x2 distance from Probe 2 (m)

Ch3 4667G S POLE Fluxball Clockwise Rotating FiE
0.015 ----- ----- - - -- --- -----

0.01 - H---- - --------- + --F----- -

0.005 ---------- T----- - -----------

E
0

-0.005 ------

-0.01 ---- - -- ------

-0.015,
0.01 0.02 0.03 0.04 0.05 0.06

z3 distance from Probe 3 (m)
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0.08

eld

0.07 0.08

- EFH1 101.2G 95Hz

W EFH1 101.2G 47Hz

0 EFH1 75.9G 15Hz

MSGW11 101.2G 95Hz

MSGW11 101.2G 47Hz
---- MSGW11 75.9G 15Hz

M EFH1 101.2G 95Hz

-- EFH1 101.2G 47Hz

- EFH1 75.9G 15Hz

- -MSGW11 101.2G 95Hz
MSGW11 101.2G 47Hz

---- MSGW11 75.9G 15Hz



Ch3 4667G S POLE Fluxball Counter-clockwise Rotating Field

---- EFH1 101.2G 95Hz

EFH1 101.2G 47Hz
---- EFH1 75.9G 15Hz

- MSGW11 101.2G 95Hz

* MSGW11 101.2G 47Hz
---- MSGW11 75.9G 15Hz

0.02 0.03 0.04 0.05 0.06 0.07 0.08
z3 distance from Probe 3 (m)

Ch4 4667G S POLE Fluxball Clockwise Rotating Field

EFH1 101.2G 95Hz

y-EFH1 101.2G 47Hz

-+- EFH1 75.9G 15Hz

MSGW11 101.2G 95Hz

MSGW11 101.2G 47Hz
-o-- MSGW11 75.9G 15Hz

0.02 0.03 0.04 0.05
z4 distance from Probe 4 (m)

0.06 0.07 0.08
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0.01
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0
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Ch4 4667G S POLE Fluxball Counter-clockwise Rotating Field
0.015 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.01 - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -

0.005 - - - - - - r - - - - - r - - - - - - - - - - - - - - - - - - - -

EFH1 101.2G 95Hz

EFH1 101.2G 47HzE
0 1- EFH1 75.9G 15Hz

MSGW11 101.2G 95Hz

--- MSGW11 101.2G 47Hz
MSGW11 75.9G 15Hz

-0.005 - - - - - - - - - - - - - - -- - - -

-0.01 ------ -------

-0.015
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

24 distance from Probe 4 (m)
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H20. Comparison of Different Fluids with 4667G Magnet with North

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths

Chi 4667G N POLE 50.6G Fluxball Clockwise Rotating Field

--- EFH1 50.6G 95Hz
EFH1 50.6G 47Hz

-4-- EFH1 50.6G 15Hz
-- MSGW1 1 50.6G 95Hz

---- MSGW1 1 50.6G 47Hz
- MSGW11 50.6G 15Hz

0.03 0.035 0.04 0.045 0.05 0.055
xi distance from Probe 1 (m)

0.06 0.065 0.07
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0.005 -

-0.005 F
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-0.01
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25



Ch1 4667G N POLE 50.6G Fluxball Counter-clockwise Rotating Field
0.015 - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -

I I I

0.01 -- - - - -- - - - - --+ - - - - -- - --

0.005 - - - - - - - - -- - - - - - - - - - - - - - - - -

EFH1 50.6G 95Hz

EFH1 50.6G 47HzE
0-+- EFH1 50.6G 15Hz

0 .. .... .. . ... .. . .. . ..5 1 1-1 1 MSGW11 50.6G 95Hz
(D I IMSGW11 50.6G 47Hz

MSGW11 50.6G 15Hz
-0.005 - - - --- -------- - - - -- - - - -- - ---- - -- --

-0.05

-0.015
0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

x distance from Probe 1 (m)

Ch2 4667G N POLE 50.6G Fluxball Clockwise Rotating Field
0.015 ---- - - - -.--- -------- - ----- - - -

0.01 ------ ------------ ------ --- I-------------

0.005 -- -- - - - - - - - - - - - - - - - - - - - - - - - - - -

--- EFH1 50.6G 95Hz

v EFH1 50.6G 47HzE
*-- EFH1 50.6G 15Hz

5 - MSGW1 1 50.6G 95Hz
0

Q MSGW1 1 50.6G 47Hz
MSGW1 1 50.6G 15Hz

-0.005 -- - - - - - - - - - - - - - - ---- -

-0.01 - ----- --- ----- ---- - ------ -- -- --

-0.015,
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

x 2 distance from Probe 2 (m)
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Ch2 4667G N POLE 50.6G Fluxball Counter-clockwise Rotating Field

-+- EFH1 50.6G 95Hz
EFH1 50.6G 47Hz

--- EFH1 50.6G 15Hz
MSGW1 1 50.6G 95Hz

* MSGW1 1 50.6G 47Hz
- MSGW11 50.6G 15Hz

0.02 0.03 0.04 0.05
x2 distance from Probe 2 (m)

0.06 0.07 0.08

Ch3 4667G N POLE 50.6G Fluxball Clockwise Rotating Field

+-EFH1 50.6G 95Hz
EFH1 50.6G 47Hz

-9-- EFH1 50.6G 15Hz
MSGW1 1 50.6G 95Hz

*- MSGW11 50.6G 47Hz
---- MSGW11 50.6G 15Hz

0.02 0.03 0.04 0.05 0.06
z3 distance from Probe 3 (m)

0.07 0.08

1277
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Ch3 4667G N POLE 50.6G Fluxball Counter-clockwise Rotating Field
----- - ----- --- - -I------- ---- ---F --

- + - - - I -I -I

1

M EFH1 50.6G 95Hz

- EFH1 50.6G 47Hz
0 EFH1 50.6G 15Hz

-*- MSGW1 1 50.6G 95Hz

I- MSGW11 50.6G 47Hz
--- MSGW11 50.6G 15Hz

0.03 0.04 0.05 0.06
z3 distance from Probe 3 (m)

0.07 0.08

Ch4 4667G N POLE 50.6G Fluxball Clockwise Rotating Field

M EFH1 50.6G 95Hz
- EFH1 50.6G 47Hz

- EFH1 50.6G 15Hz

- MSGW1 1 50.6G 95Hz
- MSGW1 1 50.6G 47Hz

0 MSGW11 50.6G 15Hz

0.02 0.03 0.04 0.05 0.06 0.07 0.08
z distance from Probe 4 (m)
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Ch4 4667G N POLE 50.6G Fluxball Counter-clockwise Rotating Field

+-EFH1 50.6G 95Hz
y EFH1 50.6G 47Hz

--- EFH1 50.6G 15Hz

MSGW1 1 50.6G 95Hz
* MSGW1 1 50.6G 47Hz

-- MSGW11 50.6G 15Hz

0.02 0.03 0.04 0.05 0.06 0.07 0.08
z distance from Probe 4 (m)

Ch1 4667G N POLE Fluxball Clockwise Rotating Field
--- - - -- - - - -- - - - - - -

--- EFH1 101.2G 95Hz
-- EFH1 101.2G 47Hz

---- EFH1 75.9G 15Hz
-- MSGW11 101.2G 95Hz

*- MSGW11 101.2G 47Hz
-o- MSGW11 75.9G 15Hz

1279
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0.01
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x distance from Probe 1 (m)



0.015

0.01

0.005

-0.005

-0.01

0.035 0.04 0.045 0.05 0.055
x distance from Probe 1 (m)

0.07

Ch2 4667G N POLE Fluxball Clockwise Rotating Field
--- -- -- -- -- -- --- - -- -- -- - --

-0.015 ' ' ' ' ' ' ' ' 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

x2 distance from Probe 2 (m)
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+--EFH1 101.2G 95Hz

y- EFH1 101.2G 47Hz
- -EFH1 75.9G 15Hz

- - MSGW11 101.2G 95Hz
* MSGW11 101.2G 47Hz

-MSGW11 75.9G 15Hz

- EFH1 101.2G 95Hz

- EFH1 101.2G 47Hz

--- EFH1 75.9G 15Hz

-- MSGW11 101.2G 95Hz

n MSGW1 1101.2G 47Hz

-- MSGW11 75.9G 15Hz



Ch2 4667G N POLE Fluxball Counter-clockwise Rotating Field
-- - -- -0.015

0.01 -----+

0.005 - - - -- --
EFH1 101.2G 95Hz
EFH1 101.2G 47Hz

--- EFH1 75.9G 15Hz

------ MSGW11 101.2G 95Hz
MSGW11 101.2G 47Hz

----- MSGW11 75.9G 15Hz
-0.005 -

-0.01 - - - - - -

-0.015
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

x2 distance from Probe 2 (m)

Ch3 4667G N POLE Fluxball Clockwise Rotating Field
0.015 --

0.01 -

0.005 - -- - - -- -
EFH1 101.2G 95Hz

1-EFH1 101.2G 47Hz
E

EFH1 75.9G 15Hz
0

--- MSGW11 101.2G 95Hz8
lii * MSGW11 101.2G 47Hz
->- SW17.G1H

-0.005

-0.01

0.03 0.04 0.05 0.06
z3 distance from Probe 3 (m)

0.07 0.08
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Ch3 4667G N POLE Fluxball Counter-clockwise Rotating Field

-----------------------------

0.03 0.04 0.05 0.06
z3 distance from Probe 3 (m)

0.07 0.08

N POLE Fluxball Clockwise Rotating Field
- -- -- ------- ------ -

-M-- EFH1 101.2G 95Hz

- EFH1 101.2G 47Hz
-*- EFH1 75.9G 15Hz

-*- MSGW11 101.2G 95Hz
+ MSGW11 101.2G 47Hz

-- MSGW11 75.9G 15Hz

1282

M EFH1 101.2G 95Hz
W EFH1 101.2G 47Hz

- EFH1 75.9G 15Hz
MSGW11 101.2G 95Hz
MSGW11 101.2G 47Hz

--- MSGW11 75.9G 15Hz

Ch4 4667G
0.015

0.005

-0.005

-0.015 L_
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z distance from Probe 4 (m)



Ch4 4667G N POLE Fluxball Counter-clockwise Rotating Field
----- ---------
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0.015

0.01

0.005

0

-0.005

-0.01

-0015

--- EFH1 101.2G 95Hz
-- EFH1 101.2G 47Hz
+-EFH1 75.9G 15Hz

-+-MSGW11 101.2G 95Hz
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-M---MSGW11 75.9G 15Hz
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z distance from Probe 4 (m)
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H21. Comparison of Different Fluids with 5223G Magnet with South

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths

Ch1 5233G S POLE 50.6G Fluxball Clockwise Rotating Field
0.015 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.01 - - - - -- - - - - - - - - - - - -- - - - - - - - - - - - -

0.005 - - - - - - - - - - - - - - - - - - - - -- - - - - - - -

-I-- EFH1 50.6G 95Hz

I EFH1 50.6G 47Hz

0_ I EFH1 50.6G 15Hz

I--MSGW11 50.6G 95Hz
( MSGW1 1 50.6G 47Hz

-5 --- MSGW11 50.6G 15Hz

-0.0 15 - - - -- - - - - - - - -- -- - -- -

-0.015,
0.02 0.03 0.04 0.05 0.06 0.07 0.08

x distance from Probe 1 (m)
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Ch1 5233G S POLE 50.6G Fluxball Counter-clockwise Rotating Field

- EFH1 50.6G 95Hz
V EFH1 50.6G 47Hz

---- EFH1 50.6G 15Hz
MSGW1 1 50.6G 95Hz

* MSGW1 1 50.6G 47Hz
-MSGW11 50.6G 15Hz

0.025 0.03 0.035 0.04 0.045 0.05 0.055
x distance from Probe 1 (m)

0.06 0.065 0.07

Ch2 5233G S POLE 50.6G Fluxball Clockwise Rotating Field
- - - --- --- - - -- - -

-+-- EFH1 50.6G 95Hz
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H22. Comparison of Different Fluids with 5223G Magnet with North

Pole Facing Ferrofluid Filled Sphere at Different Frequencies and Field

Strengths
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Appendix I : COMSOL Simulations



I1. EFH1 Filled Cylinder with Magnetic Field Strength of Permanent

Magnet 20 Times Stronger than Rotating Field Strength

2Dcase cy4inder sur ecumrrt fbreeincluded etaprimeO BFH1 airga... file:///FJRsearchh%2OPil/Software%2aData%20Filea/Comnso%20Fil...

COMSOL Model Report

1. Table of Contents

" Title - COMSOL Model Report
" Table of Contents
" Model Properties
" Constants
" Global Expressions
" Geometry
" Geom1
" Solver Settings
" Postprocessing
" Variables

2. Model Properties

Property Value
Model name
Author

Company
Department
Reference

URL

Saved date May 12, 2010 11:22:55 PM
Creation date Sep 19, 2008 9:32:16 PM
COMSOL version COMSOL 3.5.0.608

File name: D:\My Dropbox\Research Files\Software Data Files\Comsol Files\Good2DMagnetcases
\2Dcase cylindersurfacecurent_forcencluded_etaprme0EFH1_airgap_R10_magnetMz20.mph

Application modes and modules used in this model:

* Geom1 (2D)
o Incompressible Navier-Stokes
o Diffusion
o Convection and Diffusion
o Convection and Diffusion
o Perpendicular Induction Currents, Vector Potential (AC/DC Module)

5/1.2/2010 11:26 PM1 Of29
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2Dcasecylinder surfacecirrentforceincluded-etaprimeOEFH1_airga... file:///F:/Research%2OFiles/Software%2OData%2OFiles/Comsol%2OFi...

2.1. Model description

Rotation of Ferrofluid in a rotating magnetic field in an infinitely long cylinder with non-uniform field
imposed magnet placed on top of cylinder with etaprme=O

Using parameters for EFH1

Excited with surface current on boundary Includes force terms

3. Constants

Name Expression Value Description
Xi 1.59
omega 2*pi*f
zeta 0.0031
eta 0.027
etaprime 0
f 95
tau 7.16e-6
omegatau omega*tau

RO 0.027

1 2/3

Ms 4.21

4. Global Expressions

Name Expression Unit Description
FMx M x*(Azyx-M )+M_y*(Azyy-Mxy) \

FMy Mx*(-Azxx-M_yx)+M_y*(-Azxy-M_yy)
T Mx*Hy-M_y*Hx A*mol/mA4
M_eqx Ms*(coth(alpha)-1/alpha)*Hx/(normHemqa+1e-20)
M_eqy Ms*(coth(alpha)-1/alpha)*Hy/(normH.emqa+1e-20)
Hx Hx-emqa A/m
Hy Hyemqa A/m

phi atan2(y,x) rad

alpha 67.182*normH emqa+1e-20 A/m

5. Geometry

Number of geometries: 1

5.1. Geom1

5/12/2010 11:26 PM2 of29
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2Dcms cylinder surfaoecTert fireeincluded etaprhimeO EPHi airga.. fill:///I~fResearchA20Piles/Socta%2OData2OFileCoro2OFiL..

5.1.1. Point mode

3 of 295/1=/010 11:26PM
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2Dcase cylinder surfacecurrent frceincluded etaprime EFH1 airga... file:///F:/Researchl/2OFile/Sftware%20Data%2oiles/Cornsol%2oFil.

4ja

a -

-15 -1 -05 0 0.5 1.5

5.1.2. Boundary mode

4 of 29 5/12/2010 11:26 PM
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Mucse Wyinder surlkcemuiert tircicluded etapriineO EHI airga... f~~/:sac%0ieSfwr%0aa2Fl~CfU12PL

03

-LI 1 -5 0 .1 L5

5.1.3. Subdomaln mode

5 of 29 5/12/010 11:26PM

1307

file:H/F:/Research*/o2GFiles/Software/p2GDate/o2GFiles/CDmsoP/o2DFiL-



2Dcase cylinder surfacecurrent brceincluded etaprineG EFH1 airga. file:///F:/Research/2OFiles/Software%2Data%2Files/Comsol%2Fil...

-L5 -1 -03 0 0.5 1 1.5

6. Geom1

Space dimensions: 2D

Independent variables: x. y, z

6.1. Mesh

6.1.1. Mesh Statistics

5/12/2010 11:26 PM6 of29
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Number of degrees of freedom 275352
Number of mesh points 3898
Number of elements 7734
Triangular 7734
Quadrilateral 0
Number of boundary elements 204
Number of vertex elements 12
Minimum element quality 0.784
Element area ratio 0



2Dease cylmder surfaceurret fbrcsincluied etaprime EPH1 airga... fileJ//lPfRsearcM20Files/Software%20Data%20FilesCormol%20FiL-

6.2. Application Mode: Incompressible Navier-Stokes (no)

Application mode type: Incompressible Navier-Stokes

Applicaion mode name: ns

6.2.1. Scalar Variables

Name Varable Valuel Unt Description
vAsc vel fact visc vel fact ns 10 1 Viscous velocity facto

6.2.2. Application Mods Properties

Property Value
Default element type Lagrange - P2 Pi
Analysis type Transient
Corner smoothing Off
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

5/12/2010 11:26 PM7 of29
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2Dcasecylinder surfacecurrentforceincluded etaprimeO EFH1_airga... file:///F:/Research%2OFiles/Software%2OData%2OFiles/Comsol%2OFi...

6.2.3. Variables

Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,'V), shlag(1,p')

Interior boundaries not active

6.2.4. Point Settings

Point 11, 3-122

pnton0 1

6.2.5. Boundary Settings

Boundary 17-8, 10--11
Type Wall

6.2.6. Subdomain Settings

Subdomain 3
Integration order (gporder) 4 4 2
Constraint order (cporder) 2 2 1
Density (rho) kg/m 3 0

Dynamic viscosity (eta) Pa-s eta+zeta
Volume force, x dir. (Fx) N/m3 2*zeta*wy+FMx

Volume force, y dir. (Fy) N/m3 -2*zeta*wx+FMy

cdon 0

6.3. Application Mode: Diffusion (di)

Application mode type: Diffusion

Application mode name: di

6.3.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Stationary
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.3.2. Variables

Dependent variables: w

Shape functions: shlag(2,w'), shlag(5,'W)

8 of29 5/12/2010 11:26 PM
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2Dcasecylindrsurfacecurrentforceincluded-etaprime0_EFH1_airga... file:///F:/Research%2Files/Software%2Data%2Files/Comsol%
2OFil...

Interior boundaries not active

6.3.3. Boundary Settings

Boundaryl 17-8, 10-11
Type Insulation/Symmetry

6.3.4. Subdomain Settings

Subdomain 3

Shape functions (shape) shlag(2,'w') shlag(5,'w')
Integration order (gporder) 10
Constraint order (cporder) 5
Diffusion coefficient (D) m2/s etaprime
Reaction rate (R) mol/(m3 -s) T+2*zeta*(vx-uy-2*w)

6.4. Application Mode: Convection and Diffusion (cd3)

Application mode type: Convection and Diffusion

Application mode name: cd3

6.4.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.4.2. Variables

Dependent variables: M_x

Shape functions: shlag(2,'M.x), shlag(5,'Mx)

Interior boundaries not active

6.4.3. Boundary Settings

Boundaryl 17-8, 10-11
Type Insulation/Symmetry

6.4.4. Subdomain Settings

Subdomain 13
Shape functions (shape) shiag(2,'M x') shlag(5,'M x')
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Integration order (gporder) 10
Constraint order (cporder) 5
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m 3.s) -w*M_y((M_ x-M.eqx)/omegatau)
x-velocity (u) m/s u
y-velocity (v) m/s v

6.5. Application Mode: Convection and Diffusion (cd)

Application mode type: Convection and Diffusion

Application mode name: cd

6.5.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.5.2. Variables

Dependent variables: M_y

Shape functions: shlag(2,'My'), shlag(5,'My')

Interior boundaries not active

6.5.3. Boundary Settings

Boundaryl 7-8, 10-11
Type insulation/Symmetry

6.5.4. Subdomain Settings

Subdomain 3

Shape functions (shape) shlag(2,'My') shlag(5,'My')
Integration order (gporder) 10
Constraint order (cporder) 5
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3 .s) w*M_x-((My-M_eqy)omegatau)

x-velocity (u) m/s u
y-velocity (v) m/s v

6.6. Application Mode: Perpendicular Induction Currents, Vector Potential (emqa)
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Application mode type: Perpendicular Induction Currents, Vector Potential (AC/DC Module)

Application mode name: emqa

6.6.1. Scalar Variables

Name I Variable I Value I Uni Description
epsilonO epsilon0_emqa 8.854187817e-12 F/rm Permittivity of vacuum

Imuo ImuoQemqa I I Il/mIPermeability of vacuumI

6.6.2. Application Mode Properties

Property Value
Default element type Lagrange - Quintic
Analysis type Transient
Bias application mode None
Solve for Total potential
Background field Magnetic vector potential
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.6.3. Variables

Dependent variables: Az, redAz

Shape functions: shlag(5,'Az')

Interior boundaries active

6.6.4. Boundary Settings

Boundary 1-4, 7-8, 10-11 5-6,9,12
Type Continuity Surface current
Surface current density (JsOz) A/m l*(3I2)*cos(t-phi)*flc2hs(t-1,0.05) l*(3/2)*cos(t-phi)*flc2hs(t-1,0.05)

6.6.5. Subdomain Settings

Subdomain 1 2 3
magconstrel B = JOPrH B = pOH + poM B = poH + poM1

Magnetization (M) A/m {0;0} {0;20*fic2hs(t-1,0.05)} {Mx;My}

7. Solver Settings

Solve using a script: off

Analysis type Transient
Auto select solver On
Solver Time dependent
Solution form Automatic
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Symmetric auto
Adaptive mesh refinemeni -Off
Optimization/Sensitivity Off
Plot while solving Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver

Parameter Value
Pivot threshold 0.1
Memory allocation factor 0.7

7.2. Time Stepping

Parameter Value
Times range(0,0. 1,10)
Relative tolerance 0.01
Absolute tolerance 0.0010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Include algebraic
Allow complex numbers On

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling
Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
Mass constant On
Damping (mass) constant On
Jacobian constant On
Constraint Jacobian constant On

12 of 29
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8. Postprocessing

2

LI

LA

L4

L2

9. Variables

9.1. Boundary

9.1.1. Boundary 1-6, 9, 12

Name Deacription Unit Expression
K x ns Viscous force Pa

per area. x
component

T x ns Total force per Pa
area. x
component

Ky-ns Viscous force Pa
per area, y
component

Tyjis Total force per Pa
area. y
component

13 of 29 5/12/2010 11:26PM

1315

.................. ......................................................................................................... ........................................................................................................................................... ::- :: ................ I



2Dcase cylinder surfacecirrentforceincludedetaprime0_EFH1_airga...

ndflux_w_di Normal di
flux. w

ndfluxM-x-cd3 Normal
Iflux, M

ncflux_M_x_cd3 Normal
convective flux,
M x

ntfluxM-x-cd3 Normal total
I flux, M x

ndfluxMjycd

ncflux_M_y_cd

ntfluxM-y-cd

dVolbnd-emqa

Normal diffusi
flux. M v
Normal
convective flux,
M y
Normal total
flux, M v
Area integration
contribution

murbnd-emqa Relative 1 murbndxx-emqa
permeability

Jszemqa Surface current A/m unx * (Hyemqadown-Hyemqa up)-uny *
density (Hx emqa down-Hx emqa up)

unTxemqa Maxwell surface Pa -0.5 * (Bxemqaup * Hx..emqa up+Byemqa up *
stress tensor, x Hyemqajup) * dnx+(dnx * Hx-emqa_up+dny *
component Hy emqa up) * Bx emqa up

dnTx-emqa Maxwell surface Pa -0.5 * (Bxemqa_down *
stress tensor, x Hx emqadown+Byemqadown * Hyemqa down) *
component unx+(unx * Hx-emqadown+uny * Hy_.emqa down) *

Bx emqa down
unTyemqa Maxwell surface Pa -0.5 * (Bx.emqaup * Hxemqa~up+Byemqaup *

stress tensor, y Hyemqa_up) * dny+(dnx * Hx.emqaup+dny *
component Hy emqa up) * By emqa up

dnTyemqa Maxwell surface Pa -0.5 * (Bxemqa-down *
stress tensor, y Hx -emqadown+Byemqa-down * Hyemqa down) *
component uny+(unx * Hx.emqa-down+uny * Hyemqa.down) *

By emqa down
Qsemqa Surface W/mA2 Jsz.emqa * Ez.emqa

resistive heating
nPo emqa Power outflow W/mA2 nx emqa * Pox emqa+ny emqa Poy emqa
FsLtzx-emqa Lorentz surface Pa -Jsz-emqa * Byemqa

force
contribution, x
component

FsLtzyemqa Lorentz surface Pa Jsz-emqa * Bx.emqa
force
contribution, y
component

normFsLtzemq Lorentz surface Pa sqrt(abs(FsLtzx-emqa)A2+abs(FsLtzyemqa)2)
force
contribution,
cycle average,

I norm
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9.1.2. Boundary 7-8, 10-11

Name Description Unit Expression
K x-ns Viscous force Pa eta-ns * (2 * nx_ns * ux+nyns * (uy+vx))

per area, x
component

T-x-ns Total force per Pa -nx-ns * p+2 * nxns * etans * ux+nyns * eta-ns *
area, x (uy+vx)
component

K_y_ns Viscous force Pa eta-ns * (nx-ns * (vx+uy)+2 * nyns * vy)
per area, y
component

T_y_ns Total force per Pa -nyns * p+nxns * eta-ns * (vx+uy)+2 * nyns * eta ns *

area, y vy
component

ndflux w-di Normal diffusive mol/(mA2*s) nx di * dfluxwxdi+nydi * dfluxw y_di
flux, w

ndflux_M x cd3 Normal diffusive mol/(mA2*s) nxcd3 * dflux_M x x cd3+nycd3 * dflux_M_x_y_cd3
flux, M x

ncfluxMx_cd3 Normal mol/(mA2*s) nx-cd3 * cflux_M x x cd3+nycd3 * cfluxM_x_y_cd3
convective flux,
M :-x

ntfluxM x cd3 Normal total mol/(mA2*s) nxcd3 * tflux_M_x_x_cd3+nycd3 * tfluxM.x_y-cd3
flux, M x

ndflux_M_y_cd Normal diffusive mol/(mA2*s) nxcd * dfluxM-y-x-cd+ny-cd * dfluxM_y_y_cd
flux, M.y

ncflux_M_y_cd Normal mol/(mA2*s) nxcd * cfluxM_y_xcd+nycd * cfluxM-y-y-cd
convective flux,
M-y

ntfluxM_y_cd Normal total mol/(mA2*s) nx-cd * tfluxM_y_xcd+nycd * tfluxMjyycd
flux, Mjy

dVolbnd-emqa Area integration 1 1
contribution

murbnd-emqa Relative 1 murbndxxemqa
permeability

Jsz-emqa Surface current A/m unx * (Hyemqadown-Hyemqa-up)-uny *
density (Hx-emqa down-Hx emqaup)

unTxemqa Maxwell surface Pa -0.5 * (Bx-emqaup * Hxemqaup+Byemqaup *
stress tensor, x Hyemqa-up) * dnx+(dnx * Hxfemqa_up+dny *

component Hyemqa up) * Bxemqaup

dnTxemqa Maxwell surface Pa -0.5 * (Bxemqa down *
stress tensor, x Hx emqa~down+Byemqa-down * Hyemqa_down) *
component unx+(unx * Hx emqadown+uny * Hyemqadown) *

Bx emqadown

unTyemqa Maxwell surface Pa -0.5 * (Bxemqa_up * Hxemqaup+Byemqaup
stress tensor, y Hyemqajup) * dny+(dnx * Hx-emqaup+dny *

component Hyemqa-up) * Byemqaup

dnTyemqa Maxwell surface Pa -0.5 * (Bx_emqadown *
stress tensor, y Hx emqadown+Byemqadown * Hyemqadown) *
component uny+(unx * Hx emqa~down+uny * Hyemqa_down) *

1 1 By emqa down
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Surface
resistive heatine

W/mA2 Jsz-emqa * Ez.emqa

nPo emqa Power outflow W/mA2 nx emqa * Pox emqa+ny_emqa * Poy_emqa
FsLtzx-emqa Lorentz surface Pa -Jsz-emqa * Byemqa

force
contribution, x
component

FsLtzyemqa Lorentz surface Pa Jsz-emqa * Bx-emqa
force
contribution, y
component

normFsLtz-emqa Lorentz surface Pa sqrt(abs(FsLtzx-emqa)A2+abs(FsLtzyemqa)A2)
force
contribution,
cycle average,

_ _ norm

9.2. Subdomain

9.2.1. Subdomain 1

Name Description Unit Expression
U ns Velocity field m/s
V ns Vorticity 1/s
divUns Divergence of velocity 1/s

field
cellRens Cell Reynolds number 1

res-u ns Equation residual for u N/mA3

res v ns Equation residual for v N/m^3
beta x ns Convective field, x kg/(m^2*s)

component

beta_y_ns Convective field, y kg/(mA2*s)
component

Dm ns Mean diffusion coefficient Pa*s
da ns Total time scale factor kg/mA3
taumns GLS time-scale mA3*s/kg

tauc-ns GLS time-scale mA2/s
res_p_ns Equation residual for p kg/(mA3*s)
grad-w_x_di Concentration gradient, mol/m^4

w, x component

dflux_w_x_di Diffusive flux, w, x mol/(mA2*s)
component

gradw_y_di Concentration gradient, mol/mA4
w, y component

dflux_w_y_di Diffusive flux, w, y mol/(mA2*s)
component

grad-w_di Concentration gradient, mol/mA4
w

dflux w di Diffusive flux, w mol/(mA2*s)

grad_M_x_x_cd3 Concentration gradient, mol/mA4
M x, x component
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1318

Qsemqa

5/12/2010 11:26 PM



2Dcasecylinder surfacecurrentforceincluded etaprime OEFH1_airga... file:///F:/Research%20Files/Software%2OData%20Files/Comsol%20Fil...

dfluxM-x x-cd3 Diffusive flux, M_x, x
comoonent

mol/(m^2*s)

cflux_M x x cd3 Convective flux, M_x, x mol/(mA2*s)
component

tflux_M x x cd3 Total flux, M_x, x mol/(mA2*s)
component

grad_M_x_y_cd3 Concentration gradient, mol/mA4
M x, y component

dfluxM_xy_cd3 Diffusive flux, Mx, y mol/(mA2*s)
component

cfluxM_pxy_cd3 Convective flux, M-x, y mol/(mA2*s)
component

tfluxM_x_y_cd3 Total flux, M_x, y mol/(mA2*s)
component

beta_M_x_x_cd3 Convective field, Mx, x m/s
component

beta_M_x_y_cd3 Convective field, Mx, y m/s
component

gradM_x_cd3 Concentration gradient, mol/mA4
M x

dflux M x cd3 Diffusive flux, M x mol/(mA2*s)

cflux M x cd3 Convective flux, M x mol/(mA2*s_
tflux M x cd3 Total flux, M x mol/(mA2*s)

cellPe M x cd3 Cell Peclet number, M x 1

DmM x cd3 Mean diffusion mA2/s
coefficient, M x I

res_M_x-cd3 Equation residual for mol/(mA3*s)
M x

res-scM-x-cd3 Shock capturing residual mol/(mA3*s)
for M x

daM-x-cd3 Total time scale factor, 1
M x

grad_M_yxcd Concentration gradient, mol/mA4
M y, x component

dflux_M_y_xcd Diffusive flux, M_y, x mol/(mA2*s)
component

cflux_M_y_x...cd Convective flux, My, x mol/(mA2*s)
component

tfluxM_y_xcd Total flux, M_y, x mol/(mA2*s)
component

grad_Mj_y_cd Concentration gradient, mol/mA4
M y, y component

dfluxM_y_y_cd Diffusive flux, My, y mol/(mA2*s)
component

cfluxM_y_y_.cd Convective flux, My, y mol/(mA2*s)
component

tfluxM_y_y_cd Total flux, Mjy, y mol/(mA2*s)
component

beta_M_y_xcd Convective field, M_y, x m/s
I component I

5/12/2010 11:26 PM

1319

17 of 29



2Dcase cylinder surfacecurrentforceincludedetaprimeOEFH1_airga... file:///F:/Research%2OFiles/Software%2Data%2OFiles/Comsol%2Fil.

beta_M_y_y_cd Convective field, My, y
component

m/s

grad_M_y_cd Concentration gradient, mol/mA4
M y

dflux M y cd Diffusive flux, M y mol/(mA2*s)
cflux M-y cd Convective flux, M y mol/(mA2*s)
tflux M y cd Total flux, M y mol/(mA2*s)

cellPe M y cd Cell Peclet number, M y 1
Dm_My_cd Mean diffusion mA2/s

coefficient, M y

res_M_y_cd Equation residual for mol/(mA3*s)
M y

res-scMjy-cd Shock capturing residual mol/(mA3*s)
for M-y

da_M_y_cd Total time scale factor, 1
M y

drguess-emqa Width in radial direction m 0
default guess

RO qguess emqa Inner radius default m 0
guess

Sx-emqa Infinite element x m x
coordinate

SOx-guess-emqa Inner x coordinate m 0
default guess

Sdx-guess-emqa Width in x direction m 0
default guess

Syemqa Infinite element y m y
coordinate

SOy_guess-emqa Inner y coordinate m 0
default guess

Sdyguess-emqa Width in y direction m 0
default guess

curlAx-emqa Curl of magnetic T Azy
potential, x component

curlAyemqa Curl of magnetic T -Azx
potential, y component

dVolemqa Volume integration 1 detJ-emqa
contribution

Bxemqa Magnetic flux density, x T curlAx-emqa
component

Byemqa Magnetic flux density, y T curlAyemqa
component

Hxemqa Magnetic field, x A/m Bx.emqal(mur-emqa * mu0_emqa)
component

Hyemqa Magnetic field, y A/m Byemqa/(mur-emqa * mu0_emqa)
component

mu emqa Permeability H/m muO emqa * mur emqa
muxx-emqa Permeability, xx H/m muO-emqa * murxx-emqa

component

muxyemqa Permeability, xy H/m muOemqa * murxyemqa
component
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Permeability, yx
comDonent

H/m mu0_emqa * muryx_emqa

muyyemqa Permeability, yy Him muO-emqa * muryyemqa
component

Jpzemqa Potential current density, AImA2 sigma-emqa * deltaV emqa/Lemqa
z component

Ez-emqa Electric field, z V/m -d(Az,t)
component

Jzemqa Total current density, z A/mA2 Jpzemqa+Jizemqa+Jezfemqa
component

Pox emqa Power flow, x component W/mA2 -Ez emqa * Hy emqa
Poy emqa Power flow, y component W/mA2 Ez emqa * Hx emqa
normE emqa Electric field, norm V/m abs(Ez emga)
Jiz-emqa Induced current density, A/mA2 sigma-emqa * Ez-emqa

z component
Q emqa Resistive heating W/mA3 Jz emqa * (Ezemqa+deltaV emga/L emqa)
W emqa Total energy density J/mA3 Wm emqa
dW emqa Integrand for total energy Pa dVol emqa * W emqa
Wm-emqa Magnetic energy density J/mA3 0.5 * (Hx.emqa * Bx emqa+Hyemqa

By emga)

FLtzx emqa Lorentz force N/mA3 -Jz-emqa * Byemqa
contribution, x
component

FLtzyemqa Lorentz force N/mA3 Jz.emqa * Bx-emqa
contribution, y
component

normFLtz emqa Lorentz force N/mA3 sqrt(abs(FLtzx.emqa)A2+abs(FLtzy emqa)A2)
contribution, norm

normM emqa Magnetization, norm Alm sqrt(abs(Mx emga)A2+abs(My emga)A2)
normBremqa Remanent flux density, T sqrt(abs(Brxemqa)A2+abs(Bry_.emqa)2)

norm

normH emqa Magnetic field, norm Alm sqrt(abs(Hx emqa)A2+abs(Hyemqa)A2)
normBemqa Magnetic flux density, T sqrt(abs(Bx.emqa)A2+abs(Byemqa)A2)

norm

normJemqa Total current density, NmA2 abs(Jz-emqa)
norm

Evz-emqa Lorentz electric field, z V/m d(xt) * Byemqa-d(y,t) * Bxemqa
component

normEv-emqa Lorentz electric field, V/m abs(Evzemqa)
norm

normPo-emqa Power flow, time W/mA2 sqrt(abs(Poxemqa)A2+abs(Poyemqa)A2)
average, norm

9.2.2. Subdomain 2

Name Description Unit Expression
Uns Velocity field m/s
V ns Vorticity 1/s
divU-ns Divergence of 1/s

velocity field
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cellRe_ns Cell Reynolds
number

resuns Equation residual N/mA3
for u

res v ns Equation residual N/mA3
for v

beta_x-ns Convective field, x kg/(mA2*s)
component

beta_y_ns Convective field, y kg/(mA2*s)
component

Dm_ns Mean diffusion Pa*s
coefficient

dans Total time scale kg/mA3
factor

taum ns GLS time-scale mA3*s/kg

tauc ns GLS time-scale mA2/s
res_p_ns Equation residual kg/(mA3*s)

for p
grad-w_x_di Concentration mol/mA4

gradient, w, x
component

dflux_w_x_di Diffusive flux, w, x mol/(mA2*s)
component

gradw_y_di Concentration mol/mA4
gradient, w, y
component

dflux_w_y_di Diffusive flux, w, y mol/(mA2*s)
component

grad-w_di Concentration mol/mA4
gradient, w

dflux w di Diffusive flux, w mol/(mA2*s_

gradM x x cd3 Concentration mol/mA4
gradient, Mx, x
component

dflux_M_x_x_cd3 Diffusive flux, Mx, mol/(mA2*s)
x component

cflux_M_x_x_cd3 Convective flux, mol/(mA2*s)
M x, x component

tflux_M x_x cd3 Total flux, Mx, x mol/(mA2*s)
component

grad_M_x_y_cd3 Concentration mol/mA4
gradient, Mx, y
component

dflux_M_x_y_cd3 Diffusive flux, Mx, mol/(mA2*s)
y component

cfluxMxycd3 Convective flux, mol/(mA2*s)
M x, y component

tfluxM_x_y_cd3 Total flux, M-x, y moV(mA2*s)
component

betaM_x_x_cd3 Convective field, m/s
I M x x component -
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betaM_x_y_cd3 Convective field,
M x. v comDonent

m/s

grad_M x-cd3 Concentration mol/mA4
gradient, M x

dflux M x cd3 Diffusive flux, M x mol/(mA2*s)
cflux_M_x_cd3 Convective flux, moV(mA2*s,

M x

tflux M x cd3 Total flux, M x moV(mA2*s)
cellPe M x cd3 Cell Peclet 1

number, M x

Dm M x cd3 Mean diffusion mA2/s
coefficient, M x

resM-x-cd3 Equation residual mol/(mA3*s'
for M x

ressc_M-x-cd3 Shock capturing moV(mA3*s)
residual for M x

da M x cd3 Total time scale 1
factor, M x

gradMjy-xcd Concentration moVmA4
gradient, My, x
component

dfluxM_yxcd Diffusive flux, My, mol/(mA2*s'
x component

cflux_M_y_xcd Convective flux, mol/(mA2*s'
M y, x component

ffluxM_y_xcd Total flux, My, x moV(mA2*s)
component

grad_M_y_y_cd Concentration mol/mA4
gradient, M_y, y
component

dfluxM_y_y_cd Diffusive flux, My, mol/(mA2*s)
y component

cfluxM_y_y_cd Convective flux, mol/(mA2*s'
M y, y component

tfluxM_y_y_cd Total flux, M_y, y mol/(mA2*s)
component

beta_M_y_xcd Convective field, m/s
M-y, x component

beta_M_y_y_cd Convective field, m/s
M y, y component

grad_M_y_cd Concentration mol/mA4
gradient, M y

dflux M y cd Diffusive flux, M y mol/(mA2*s)
cfluxM..ycd Convective flux, mol/(mA2*s,

M y

tflux M v cd Total flux, M y mol/{mA2*s)
cellPe_M_y_cd Cell Peclet 1

number, M y

DmMjy.cd Mean diffusion mA2/s
_coefficient, M v I
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res_M_y_cd Equation residual
for M v

mol/(mA3*s:

resscM_y_cd Shock capturing mol/(mA3*s)
residual for M y

da_M_y_cd Total time scale 1
factor, M y

drguess-emqa Width in radial m 0
direction default
guess

ROQguess emqa Inner radius m 0
default guess

Sxemqa Infinite element x m x
coordinate

SOx-guess-emqa Inner x coordinate m 0
default guess

Sdx-guess-emqa Width in x m 0
direction default
guess

Syemqa Infinite element y m y
coordinate

SOy_guess-emqa Inner y coordinate m 0
default guess

Sdyguess-emqa Width in y m 0
direction default
guess

curlAxemqa Cur of magnetic T Azy
potential, x
component

curAyemqa Cur of magnetic T -Azx
potential, y
component

dVolemqa Volume integration 1 detJemqa
contribution

Bxemqa Magnetic flux T curlAx-emqa
density, x
component

Byemqa Magnetic flux T curlAyemqa
density, y
component

Hxemqa Magnetic field, x A/m Bxemqa/mu0_emqa-Mx-emqa
component

Hyemqa Magnetic field, y A/m Byemqa/muO-emqa-Myemqa
component

mu emqa Permeability H/m mu0 emqa * mur emqa
muxxemqa Permeability, xx H/m muOemqa * murxx-emqa

component

muxyemqa Permeability, xy H/m muO-emqa * murxyemqa
component

muyxemqa Permeability, yx H/m mu0_emqa * muryxemqa
component

muyyemqa Permeability, yy H/m muOemqa * muryyemqa
component III
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Potential current
density, z
iom nrant

Am^2 sigma-emqa * deltaV emqa/L.emqa

p
Ez.emqa Electric field, z V/m -d(Az,t)

component

Jz-emqa Total current NmA2 Jpzema+Jizemqa+Jezemqa
density, z
component

Pox-emqa Power flow, x W/mA2 -Ezemqa * Hyemqa
component

Poyemqa Power flow, y W/mA2 Ezemqa * Hx.emqa
component

normE emqa Electric field, norm V/m abs(Ez emga)
Jiz-emqa Induced current A/mA2 sigma-emqa * Ez-emqa

density, z
component

Q emqa Resistive heating W/mA3 Jz emqa * (Ez emga+deltaV emga/L emga)

W-emqa Total energy J/mA3 Wm-emqa
density

dW-emqa Integrand for total Pa dVol-emqa * W-emqa
energy

Wm emqa Magnetic energy J/mA3 0.5 * (Hxemqa * Bx-emqa+Hyemqa *

density Byemqa+Mx-emqa * Bx-emqa+Myemqa
By emga)

FLtzxemqa Lorentz force N/mA3 -Jz-emqa * Byemqa
contribution, x
component

FLtzyemqa Lorentz force N/mA3 Jz-emqa * Bx-emqa
contribution, y
component

normFLtz.emqa Lorentz force N/mA3 sqrt(abs(FLtzx-emqa)A2+abs(FLtzyema)A2)
contribution, norm

normMemqa Magnetization, A/m sqrt(abs(Mx._emqa)A2+abs(Myemqa)A2)
norm

normBr-emqa Remanent flux T sqrt(abs(Brx-emqa)A2+abs(Bryemqa)A2)
density, norm

normHemqa Magnetic field, A/m sqrt(abs(Hx_emqa)A2+abs(Hy_emqa)A2)
norm

normB-emqa Magnetic flux T sqrt(abs(Bx_emqa)^2+abs(By_emqa)^2)
density, norm

normJ-emqa Total current NmA2 abs(Jz-emqa)
density, norm I

Evz-emqa Lorentz electric V/m d(x,t) * Byemqa-d(y,t) * Bx-emqa
field, z component

normEv-emqa Lorentz electric V/m abs(Evz-emqa)
field, norm II

normPo-emqa Power flow, time W/mA2 sqrt(abs(Poxemqa)A2+abs(Poyemqa)A2)
1 average, norm III

9.2.3. Subdomain 3
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Name Description Unit Expression
U ns Velocity field m/s sqrt(uA2+v^2)
V ns Vorticity 1/s vx-uy
divU ns Divergence of 1/s ux+vy

velocity field

celiRens Cell Reynolds 1 rhons * Uns * h/etans
number

res_u_ns Equation N/mA3 rho-ns * (ut+u * ux+v * uy)+px-F-x-ns-eta ns * (2 *
residual for u uxx+uyy+vxy)

res-v ns Equation N/mA3 rho-ns * (vt+u * vx+v * vy)+py-F_y_ns-eta ns * (vxx+uyx+2
residual for v * vyy)

beta x ns Convective kg/(mA2*s) rhons * u
field, x
component

beta_y_ns Convective kg/(mA2*s) rho-ns * v
field, y
component

Dmns Mean Pa*s etans
diffusion
coefficient

dans Total time kg/mA3 rhons
scale factor

taum-ns GLS mA3*s/kg nojac(1/max(2 * rho-ns * sqrt(emetric(u,v)),48 *
time-scale eta ns/hA2))

tauc-ns GLS mA2/s 0.5 * nojac(if(u^2+v^2
time-scale

res_p_ns Equation kg/(mA3*s) rho-ns * divUlns
residual for p

grad-w_x_di Concentration mol/mA4 wx
gradient, w, x
component

dflux_w_x_di Diffusive flux, mol/(mA2*s) -Dxx-w-di * wx-Dxywdi * wy
W, X

component

grad w_y_di Concentration mol/mA4 wy
gradient, w, y
component

dflux_w_ydi Diffusive flux, mol/(mA2*s) -Dyx.wdi * wx-Dyy.wjdi * wy
w, y
component

grad-w_di Concentration mol/mA4 sqrt(grad-w-x-diA2+gradw_yjdiA2)
gradient, w

dflux_w-di Diffusive flux, mol/(mA2*s) sqrt(dflux-w x diA2+dflux_w_y_diA2)
w

gradM x x cd3 Concentration mol/mA4 M-xx
gradient, M,
x component

dfluxM_x_x_cd3 Diffusive flux, mol/(mA2*s) -DxxM-x cd3 * Myxx-Dxy_M_xcd3 * Mxy
M-x, x

I component I
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cfluxM_xxcd3 Convective
flux, M -x, x
component

mol/(mA2*s)| Mx * uM-x-cd3

tflux_M_x-x cd3 Total flux, mol/(mA2*s) dfluxM-x-x-cd3+cfluxM-x-x-cd3
M-x, x
component

grad_M_x_y_cd3 Concentration mol/mA4 Mxy
gradient, Mx,
y component

dfluxM_x_y_cd3 Diffusive flux, mol/(mA2*s) -DyxMx-cd3 * M-xx-Dyy_M_x_cd3 * Mxy
M-x, y
component

efluxM_x_y_cd3 Convective mol/(mA2*s) Mx * vM-x-cd3
flux, M-x, y
component

tfluxM_x_y_cd3 Total flux, mol/(mA2*s) dfluxM-xy:cd3+cflux_M-xy-cd3
Mx, y
component

betaM x x cd3 Convective m/s uM x cd3
field, M-x, x
component

betaM_x_y.cd3 Convective m/s vM-x-cd3
field, M x, y
component

grad_M x cd3 Concentration mol/mA4 sqrt(gradM-x-x-cd32+grad_M_x_y_cd32)
gradient, M x

dflux M x cd3 Diffusive flux, mol/(mA2*s) sqrt(dfluxM-xx cd3A2+dfluxM x y-cd3A2)
M x

cflux M x cd3 Convective mol/(mA2*s) sqrt(cfluxM-x-x.cd32+cflux_M_.x y_cd3A2)
flux, M x

tflux M x cd3 Total flux, M x mol/(mA2*s) sqrt(tflux M x x cd32+tflux M x y cd32)
cellPeM x-cd3 Cell Peclet 1 h *

number, M x sqrt(beta M x x cd3A2+beta M x y cd3A2)/Dm M x cd3
Dm M x cd3 Mean mA2/s (DxxM-x-cd3 * u_M_x_cd32+Dxy_M_x cd3 * uM x_cd3

diffusion * v_M_x_cd3+DyxM x cd3 * v_M_x_cd3*
coefficient, uM x-cd3+Dyy_Mxcd3 *
M x v M x cd3A2)/(u M x cd3A2+v M x cd3A2+eps)

resMxcd3 Equation mol/(mA3*s) -DxxM-x-cd3 * M-xxx-DxyMxcd3 * Mxxy+Mxx *
residual for u_M_x_cd3-DyxM-x-cd3 * M xyx-Dyy_M_xcd3 *
M x M xyy+M xy *v M x cd3-R M x cd3

ressc_M x cd3 Shock mol/(m^3*s) M_xx * u_M_xcd3+Mxy * v_Mjxcd3-RM x cd3
capturing
residual for
M x

daM-x cd3 Total time 1 Dts_M_x_cd3
scale factor,
M x

grad_M_yxcd Concentration mol/mA4 Myx
gradient, My,
x component

dfluxM_yjxcd Diffusive flux, mol/(mA2*s) -DxxMjy.cd * M_yx-Dxy_M_y_cd * M_yy
M-y, x
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component

cflux_M_y_xcd Convective mol/(mA2*s) My * u_M_y_cd
flux, M-y, x
component

tflux_M_y_xcd Total flux, mol/(mA2*s) dfluxM_y_xcd+cflux_M_yjxcd
M-y, x
component

grad_M_y_y_cd Concentration mol/mA4 M-yy
gradient, My,
y component

dfluxM_y_y_cd Diffusive flux, mol/(mA2*s) -Dyx_Mjcd * M_yx-Dyy_M_y_cd * Myy
Mjy, y
component

cfluxM_y_y_cd Convective mol/(mA2*s) My * v_M_y_cd
flux, M-y, y
component

tfluxM_y_y_cd Total flux, mol/(mA2*s) dfluxM_yy_cd+cfluxM_y_y_cd
MLy, y
component

beta_M_y_xcd Convective m/s uM_y_cd
field, My, x
component

beta_M_y_y_cd Convective m/s vM-y-cd
field, My, y
component

grad_M_y_cd Concentration mol/mA4 sqrt(grad_M_y.xcdA2+gradM_y_y_cdA2)
gradient, M y

dflux_M_y_cd Diffusive flux, mol/(mA2*s) sqrt(dflux_M_y_xcd2+dfluxM_y_y_cd2)
M y

cflux_M_y_cd Convective mol/(mA2*s) sqrt(cfluxM_y_xcd2+cfluxM_y_y_cd2)
flux My

tflux M y cd Total flux, M v mol/(mA2*s) sqrt(tflux M y x cdA2+tflux M y y cdA2)
cellPeM_y_cd Cell Peclet 1 h *

number, M y sqrt(beta M y x cdA2+beta M y-y cdA2)/Dm M y cd
DmM_y_cd Mean mA2/s (DxxM_y_cd * u_M_y_cdA2+Dxy_M_y_cd * u_M_y_cd *

diffusion v_M_y_cd+Dyx_M_y_cd * v_M_y_cd *
coefficient, u_M_y_cd+Dyy_M_y_cd *
M y v M y cdA2)/(u M y cdA2+v M y cdA2+eps)

res_M_y_cd Equation mol/(mA3*s) -DxxM_y_cd * M_yxx-Dxy_M_ycd * Myxy+Myx *
residual for u_M_y_cd-Dyx_M_y_cd * M-yyx-Dyy_M_y_cd *
My M yyy+M yy * v M y cd-R M y cd

resscMjycd Shock mol/(mA3*s) M_yx * u_M_y_cd+My * v_M_y_cd-R_M_y_cd
capturing
residual for
M y

da_M_y_cd Total time 1 Dts_M_y_cd
scale factor,
M y

drguess-emqa Width in radial m 0
direction
default quess
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RO_guess-emqa Inner radius
default guss

Sx-emqa Infinite m x
element x
coordinate

SOx-guess-emqa Inner x m 0
coordinate
default guess

Sdxguess-emqa Width in x m 0
direction
default guess

Syemqa Infinite m y
element y
coordinate

SOyguess-emqa Inner y m 0
coordinate
default guess

Sdyguess-emqa Width in y m 0
direction
default guess

curlAx-emqa Curl of T Azy
magnetic
potential, x
component

curlAyemqa Cur of T -Azx
magnetic
potential, y
component

dVolemqa Volume 1 detJ-emqa
integration
contribution

Bx emqa Magnetic flux T cudAx-emqa
density, x
component

Byemqa Magnetic flux T curlAyemqa
density, y
component

Hx-emqa Magnetic field, A/m Bx.emqa/mu0_emqa-Mx-emqa
x component

Hy_.emqa Magnetic field, A/m Byemqa/mu0_emqa-Myemqa
y component

mu emqa Permeability H/m mu0 emga * mur emqa
muxx emqa Permeability, H/m mu0_emqa * murxx-emqa

xx component
muxyemqa Permeability, H/m muOemqa * murxyemqa

xy component
muyxemqa Permeability, H/m muOQemqa * muryxemqa

yx component
muyyemqa Permeability, H/m muOQemqa * muryyemqa

vy component I
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Jpzemqa Potential
current
density, z
component

NmA2 sigma-emqa * deltaV emqa/L-emqa

Ezemqa Electric field, V/m -d(Az,t)
z component

Jz-emqa Total current AmA2 Jpzemqa+Jiz-emqa+Jez-emqa
density, z
component

Poxemqa Power flow, x W/mA2 -Ez-emqa * Hyemqa
component

Poyemqa Power flow, y W/mA2 Ez-emqa * Hx emqa
component

normE-emqa Electric field, V/m abs(Ezemqa)
norm

Jiz.emqa Induced NmA2 sigma-emqa * Ez-emqa
current
density, z
component

Q_emqa Resistive W/mA3 Jzemqa * (Ez-emqa+deltaV emqa/L-emqa)
heating

W emqa Total energy J/mA3 Wm-emqa
density

dWemqa Integrand for Pa dVol-emqa * W-emqa
total energy

Wmemqa Magnetic J/mA3 0.5 * (Hx emqa * Bx emqa+Hyemqa *
energy Byemqa+Mx-emqa * Bx-emqa+Myemqa * Byemqa)
density

FLtzx-emqa Lorentz force N/mA3 -Jz-emqa * Byemqa
contribution, x
component

FLtzyemqa Lorentz force N/mA3 Jzemqa * Bx-emqa
contribution, y
component

normFLtz-emqa Lorentz force N/mA3 sqrt(abs(FLtzx-emqa)A2+abs(FLtzyemqa)2)
contribution,
norm

normM-emqa Magnetization, Aim sqrt(abs(Mxemqa)A2+abs(Myemqa)2)
norm

normBr-emqa Remanent flu> T sqrt(abs(Brx-emqa)A2+abs(Bryema)2)
density, norm

normH-emqa Magnetic field, Alm sqrt(abs(Hx-emqa)A2+abs(Hyemqa)2)
norm

normB-emqa Magnetic flux T sqrt(abs(Bx-emqa)A2+abs(Byema)2)
density, norm

normJemqa Total current NmA2 abs(Jz-emqa)
density, norm

Evz-emqa Lorentz V/m d(x,t) * Byemqa-d(y,t) * Bxemqa
electric field, z

I__component
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normEv-emqa Lorentz V/m abs(Evzemqa)
electric field,
norm

normPo-emqa Power flow, W/mA2 sqrt(abs(Pox.emqa)A2+abs(Poyfimqa)A2)
time average,
norm

29of29 5/12/2010 11:26 PM
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12. MSGW1 1 Filled Cylinder with Magnetic Field Strength of

Permanent Magnet 40 Times Stronger than Rotating Field Strength

2Dcase cylinder sur~ceure breeincluded etprhm MSGW1I aL.. fi1e-//F-Resea%20Files/Sotwre%2Data%2lesWComsol%2FiL.

COMSOL Model Report

1. Table of Contents

" Title - COMSOL Model Report
" Table of Contents
" Model Properties
" Constants
" Global Expressions
" Geometry
" Geom1
" Solver Settings
" Postprocessing
* Variables

2. Model Properties

Propety Value
Model name
Author

Company

Department

Reference
URL

Saved date May 13. 2010 10:55:28 PM
Creation date Sep 19. 2008 9:32:18 PM
COMSOL version COMSOL 3.5.0.808

File nane: F:Research File\Software Data Files\Comsol Files\Good2DMagnetcases
\2Dcasecylindersurfacecurrentforceincludedetaprme_MSGW11_airgapR10_magnetMz40.mph

Application modes and modules used in this model:

* Geom1 (2D)
o Incompressible Navier-Stokes
o Diffusion
o Convection and Diffusion
o Convect on and Diffusion
o Perpendicular Induction Currents, Vector Potential (AC/DC Module)

5/13/2010 1056 PM

1332

1 of29

...........- -- - 3 - - - ................................................ . ............... 0 .............................................. .. ....... N101111111 1111 .................... 1. - -i-NiWORM". M0 0 0 -



2Dcasecylinder surfacecurrentforceincluded etaprimeO_MSGWI_ai... file:///F:/Research%2OFiles/Software%2Data%2Files/Comsol%20Fi...

2.1. Model description

Rotation of Ferrofluid in a rotating magnetic field in an infinitely long cylinder with a ferrofluid inner smaller
cylinder that has a magnet put on top of it generating a non-uniform field. Etaprime is 0. The magnet is 40
times stronger than the rotating field

MSGWI1 is used

Using my normalization scheme outlined in VeryfyingShihabsmethod_081205.doc

Etaprime 0 case

3. Constants

Name Expression Value Description
Xi 0.56
omega 2*pi*f

zeta 0.000313

eta 7.58e-3
etaprime 0
f 95
tau 1.39e-5
omegatau omega*tau
RO 0.027
1 12/3

Ms 1.54

4. Global Expressions

Name Expression Unit Description
FMx M_.$*(Azyx-M"xx)+M_y*(Azyy-Mxy) \
FMy M.x*(-Azxx-M_yx)+M_y*(-Azxy-M_yy)
T Mx*Hy-M_y*Hx A*mol/mA4
M_eqx Ms*(coth(alpha)-1/alpha)*Hx/(normH emqa+1e-20)
M_eqy Ms*(coth(alpha)-1/alpha)*Hy/(normH.emqa+1e-20)
Hx Hx emqa A/m

Hy Hyemqa A/m

phi atan2(yx) rad

alpha 27.8*normHemqa+1e-20 A/m
divH d(Hx,x)+d(Hy,y) A/m^2

curlM d(Myx)-d(Mx,y)

Fx 0.5*(Bxemqa*divH)-0.5*(Hy*curlM)

Fy 0.5*(Byemqa*divH)+0.5*(Hx*curM)

5. Geometry

Number of geometries: 1

5.1. Geom1

2 of 29 5/13/2010 10:56 PM
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0-5 1 Ls

5.1.1. Point mods
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5.1.2. Boundary mods
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-13 -I

5.1.3. Subdom ain mode
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6. Geom1

Space dimensions: 2D

Independent variables: x, y, z

6.1. Mesh

6.1.1. Mesh Statistics

Number df degrees of freedom 275352
Number of mesh points 3898
Number of elements 7734
Trangular 7734
Quadrilateral 0
Number of boundary elements 204
Number of vertex elements 12
Mnimum element quality 0.784
Element area ratio 0

5/13/2010 1056 PM
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6.2. Application Mode: Incompressible Navier-Stokes (na)

Application mode type: Incompressible Navier-Stokes

Application mode name: ns

6.2.1. Scalar Variables

Name Variable IValue UnitjDescription
visc vel fact visc vel fact ns 10 1 Viscous velocity factor

6.2.2. Application Mode Properties

Property Value
Default element type Lagrange - P2 Pi
Analysis type Transient
Comer smoothing Off
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal
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6.2.3. VarIables

Dependent variables: u, v, p, nxw, nyw

Shape functions: shlag(2,'u'), shlag(2,'V), shlag(1,'p')

Interior boundaries not active

6.2.4. Point Settings

Point 1, 3-12 2
pnton 0 1

6.2.5. Boundary Settings

Boundary 7-8, 10-11
Type Wall

6.2.6. Subdomain Settings

Subdomain 3
Integration order (gporder) 44 2
Constraint order (cporder) 2 2 1
Density (rho) kg/m 3 0

Dynamic viscosity (eta) Pa-s eta+zeta
Volume force, x dir. (Fx) N/m3 2*zeta*wy+FMx

Volume force, y dir. (Fy) N/m3 -2*zeta*wx+FMy

cdon 0

6.3. Application Mode: Diffusion (di)

Application mode type: Diffusion

Application mode name: di

6.3.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Stationary
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.3.2. Variables

Dependent variables: w

Shape functions: shlag(2,'w'), shlag(5,'W)
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Interior boundaries not active

6.3.3. Boundary Settings

Boundary 7-8, 10-11
Type Insulation/Symmetry

6.3.4. Subdomain Settings

Subdomain 3
Shape functions (shape) shlag(2,'w) shlag(5,'w')
Integration order (gporder) 10
Constraint order (cporder) 5
Diffusion coefficient (D) m2/s etapnme
Reaction rate (R) mol/(m3 .s) T+2*zeta*(vx-uy-2*w)

6.4. Application Mode: Convection and Diffusion (cd3)

Application mode type: Convection and Diffusion

Application mode name: cd3

6.4.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.4.2. Variables

Dependent variables: M_x

Shape functions: shlag(2,'M x'), shlag(5,'Mx')

Interior boundaries not active

6.4.3. Boundary Settings

Boundary 17-8, 10-11
Type Insulation/Symmetry

6.4.4. Subdomain Settings

Subdomain 3
Shape functions (shape) shl 2,'M x' shla 5,'M x'
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Integration order (gporder) 10
Constraint order (cporder) 5
Diffusion coefficient (D) m2/s 0

Reaction rate (R) mol/(m3.s) -w*My((M_ x-Meqx)/omegatau
x-velocity (u) m/s u
y-velocity (v) m/s v

6.5. Application Mode: Convection and Diffusion (cd)

Application mode type: Convection and Diffusion

Application mode name: cd

6.5.1. Application Mode Properties

Property Value
Default element type Lagrange - Quadratic
Analysis type Transient
Equation form Non-conservative
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.5.2. Variables

Dependent variables: M_y

Shape functions: shlag(2,'M_y'), shlag(5,'M-y')

Interior boundaries not active

6.5.3. Boundary Settings

Boundaryl 17-8, 10-11
Type Insulation/Symmetry

6.5.4. Subdomain Settings

Subdomain 3
Shape functions (shape) shlag(2,'My') shlag(5,'My')
Integration order (gporder) 10
Constraint order (cporder) 5
Diffusion coefficient (D) m2/s 0
Reaction rate (R) mol/(m3 .s) w*M_x-((My-M_eqy)Iomegatau)

x-velocity (u) m/s u
y-velocity (v) m/s v

6.6. Application Mode: Perpendicular Induction Currents, Vector Potential (emqa)
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Application mode type: Perpendicular Induction Currents, Vector Potential (AC/DC Module)

Application mode name: emqa

6.6.1. Scalar Variables

Name Variable Value Unit Description
epsilonO epsilonO emqa 8.854187817e-12 F/m Permittivity of vacuum
muO muO_.emqa 1 H/m Permeability of vacuum

6.6.2. Application Mode Properties

Property Value
Default element type Lagrange - Quintic
Analysis type Transient
Bias application mode None
Solve for Total potential
Background field Magnetic vector potential
Frame Frame (ref)
Weak constraints Off
Constraint type Ideal

6.6.3. Variables

Dependent variables: Az, redAz

Shape functions: shlag(5,'Az')

Interior boundaries active

6.6.4. Boundary Settings

Boundary 1-4, 7-8, 10-11 5-6, 9, 12
Type Continuity Surface current
Surface current density (JsOz) A/m l*(3/2)*cos(t-phl)*flc2hs(t-1,0.05) l*(3/2)*cos(t-phl)*fic2hs(t-1,0.05)

6.6.5. Subdomain Settings

Subdomain 1 2 3
magconstrel B = poprH B = poH + poM ~ B - p0H + poM~
Magnetization (M) Am {0;0} (0;40*fic2hs(t-1,0.05)) {M.x;M_y)

7. Solver Settings

Solve using a script: off

Analysis type Transient
Auto select solver On
Solver Time dependent
Solution form Automatic
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Symmetric auto
Adaptive mesh refinemen Off
Optimization/Sensitivi Off
Plot while solving Off

7.1. Direct (UMFPACK)

Solver type: Linear system solver

Parameter alu
Pivot threshold 0.1
Memory allocation factor 0.7

7.2. Time Stepping

Parameter Value
Times range(O,0.1, 10)
Relative tolerance 0.01
Absolute tolerance 0.0010
Times to store in output Specified times
Time steps taken by solver Free
Maximum BDF order 5
Singular mass matrix Maybe
Consistent initialization of DAE systems Backward Euler
Error estimation strategy Include algebraic
Allow complex numbers On

7.3. Advanced

Parameter Value
Constraint handling method Elimination
Null-space function Automatic
Automatic assembly block size On
Assembly block size 5000
Use Hermitian transpose of constraint matrix and in symmetry detection Off
Use complex functions with real input Off
Stop if error due to undefined operation On
Store solution on file Off
Type of scaling Automatic
Manual scaling

Row equilibration On
Manual control of reassembly Off
Load constant On
Constraint constant On
Mass constant On
Damping (mass) constant On
Jacobian constant On
Constraint Jacobian constant On
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8. Postprocessing

40; a.oJ
mo01

9. Variables

9.1. Boundary

9.1.1. Boundary 1-6, 9, 12

Name Description Unit Expression
K x ns Viscous force Pa

per area, x
component

T x ns Total force per Pa
area, x
component

K_y_ns Viscous force Pa
per area, y
component

T-y-ns Total force per Pa
area. y
component

5/13/2010 1056PM
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ndflux-wdi Normal diffusive
flux. w

mol/(mA2*s)

ndfluxM-xcd3 Normal diffusive mol/(mA2*s)
flux, M x

ncflux_M_x_cd3 Normal mol/(mA2*s)
convective flux,
M x

nffluxM-x-cd3 Normal total mol/(mA2*s)
flux, M x

ndfluxM_y_cd Normal diffusive mol/(mA2*s)
flux, M y

ncflux_M_y_cd Normal mol/(mA2*s)
convective flux,
M y

nffluxM_y_cd Normal total mol/(mA2*s)
flux, M y

dVolbnd-emqa Area integration 1 1
contribution

murbnd-emqa Relative 1 murbndxxemqa
permeability

Jsz-emqa Surface current A/m unx * (Hyemqadown-Hyemqa-up)-uny *
density (Hx emga down-Hx emqa up)

unTxemqa Maxwell surface Pa -0.5 * (Bx emqa_up * Hxemqaup+Byemqa~up *
stress tensor, x Hyemqaup) * dnx+(dnx * Hx-emqa_up+dny *

component Hy emqa up) * Bx emqa up

dnTx-emqa Maxwell surface Pa -0.5 * (Bxemqadown *
stress tensor, x Hx emqadown+Byemqa_down * Hy_emqa~down) *
component unx+(unx * Hx-emqa~down+uny * Hyemqadown) *

Bx emqa down

unTyemqa Maxwell surface Pa -0.5 * (Bxemqaup * Hxemqaup+Byemqaup *
stress tensor, y Hyemqaup) * dny+(dnx * Hx-emqa~up+dny *
component Hy emqa up) * By emqa up

dnTyemqa Maxwell surface Pa -0.5 * (Bxemqadown *
stress tensor, y Hx emqadown+Byemqa_down * Hyemqadown)
component uny+(unx * Hx-emqa_down+uny * Hyemqajdown) *

By emqa down

Qs-emqa Surface W/mA2 Jsz.emqa * Ez-emqa
resistive heating

nPo emqa Power outflow W/mA2 nx emqa * Pox emga+ny emqa * Poy emqa
FsLtzxemqa Lorentz surface Pa -Jsz-emqa * Byemqa

force
contribution, x
component

FsLtzyemqa Lorentz surface Pa Jsz-emqa * Bx-emqa
force
contribution, y
component

normFsLtz-emqa Lorentz surface Pa sqrt(abs(FsLtzxemqa)A2+abs(FsLtzyemqa)A2)
force
contribution,
cycle average,
norm

1345

14 of 29 5/13/2010 10:56 PM

2Dcase_cylinder-surfacecurrent-forceincluded,_etaprime0_MSGW1 1_ai...



2Dcasecylinder surfaceciurrentforceincludedetaprimeOMSGW11_ai... file:///F:/Research%2OFiles/Software%2Data%2Files/Comol%2FiL...

9.1.2. Boundary 7-8, 10-11

Name Description Unit Expression
K x-ns Viscous force Pa eta-ns * (2 * nx-ns * ux+nyns * (uy+vx))

per area, x
component

T-x-ns Total force per Pa -nx-ns * p+2 * nx-ns * eta-ns * ux+ny-ns * etans *

area, x (uy+vx)
component

K_y_ns Viscous force Pa eta-ns * (nx.ns * (vx+uy)+2 * nyns * vy)
per area, y
component

T_y_ns Total force per Pa -nyns * p+nxns * eta-ns * (vx+uy)+2 * nyns eta-ns *

area, y vy
component

ndflux_w_di Normal diffusive mol/(mA2*s) nx-di * dflux_w_x_di+nydi * dflux_w_ydi
flux, w

ndfluxM x cd3 Normal diffusive mol/(mA2*s) nx-cd3 * dflux_M x x cd3+nycd3 * dfluxM_x_y_cd3
flux, M x

ncfluxM.xcd3 Normal mol/(mA2*s) nx-cd3 * cflux_M_x_x_cd3+nycd3 * cfluxMxjy-cd3
convective flux,
M x

ntfluxM x cd3 Normal total mol/(mA2*s) nx-cd3 * tflux_M_x_x_cd3+nycd3 * tflux_M_x_ycd3
flux, M_x

ndfluxM_y_cd Normal diffusive mol/(mA2*s) nx-cd * dfluxM_y_xcd+ny_.cd * dfluxM_ycd
flux, M-y

ncflux_M_y_cd Normal mol/(mA2*s) nxcd * cflux_M_y_xcd+nycd * cfluxM_y_y_cd
convective flux,
M-y

ntfluxM_y_cd Normal total mol/(mA2*s) nx-cd * tfluxM_y_xcd+nycd * tfluxM_y_y_cd
flux, M-y

dVolbnd-emqa Area integration 1 1
contribution

murbnd-emqa Relative 1 murbndxx-emqa
permeability

Jszemqa Surface current A/m unx * (Hyemqadown-Hy_.emqaup)-uny *
density (Hx-emqa_down-Hx emqa~up)

unTxemqa Maxwell surface Pa -0.5 * (Bxemqaup * Hx_emqa-up+Byemqaup
stress tensor, x Hyemqa-up) * dnx+(dnx * Hx-emqaup+dny *

component Hyemqa up) * Bxemqaup

dnTxemqa Maxwell surface Pa -0.5 * (Bxemqa-down *
stress tensor, x Hx emqa~down+Byemqa-down * Hyemqa~down) *
component unx+(unx * Hx-emqa_down+uny * Hyemqa-down) *

Bx emqadown

unTyemqa Maxwell surface Pa -0.5 * (Bx emqa_up * Hxemqa~up+Byemqa~up *

stress tensor, y Hyemqa-up) * dny+(dnx * Hx-emqa~up+dny *
component Hyemqa up) * Byemqa_up

dnTyemqa Maxwell surface Pa -0.5 * (Bxemqadown *
stress tensor, y Hx emqa~down+Byemqadown * Hyemqa.down) *

component uny+(unx * Hx-emqa-down+uny * Hyemqa_down) *

1_ 1 By emga down
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Surface
raisiuti hat*in

W/mA2 Jszemqa * Ez.emqa

g
nPo emqa Power outflow W/mA2 nx emqa * Pox emqa+ny emqa * Poyemqa

FsLtzx-emqa Lorentz surface Pa -Jsz-emqa * Byemqa
force
contribution, x
component

FsLtzyemqa Lorentz surface Pa Jsz-emqa * Bx-emqa
force
contribution, y
component

normFsLtz-emqa Lorentz surface Pa sqrt(abs(FsLtzx-emqa)A2+abs(FsLtzyemqa)A2)
force
contribution,
cycle average,
norm

9.2. Subdomain

9.2.1. Subdomain 1

Name Description Unit Expression
U ns Velocity field m/s
V ns Vorticity 1/s

divUns Divergence of velocity 1/s
field

cellRens Cell Reynolds number 1

res-uns Equation residual for u N/mA3

res v ns Equation residual for v N/mA3
beta_x_ns Convective field, x kg/(mA2*s)

component

beta_y_ns Convective field, y kg/(mA2*s)
component

Dm ns Mean diffusion coefficient Pa*s
dans Total time scale factor kg/mA3
taumjns GLS time-scale mA3*s/kg

tauc ns GLS time-scale mA2/s
res_p ns Equation residual for p kg/(mA3*s)

grad-w_x_di Concentration gradient, mol/mA4
w, x component

dflux_w_x_di Diffusive flux, w, x mol/(mA2*s)
component

gradw_y_di Concentration gradient, mol/mA4
w, y component

dfluxw_ydi Diffusive flux, w, y mol/(mA2*s)
component

grad.w_di Concentration gradient, mol/mA4
w

dflux.w di Diffusive flux, w mol/(mA2*s)
grad_M_x_x_cd3 Concentration gradient, mol/mA4

M x, x component II
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dflux_M x x_cd3 Diffusive flux, M-x, x
component

mol/(mA2*s)

cflux_M x x cd3 Convective flux, M_x, x mol/(mA2*s)
component

tflux_M x x cd3 Total flux, Mx, x mol/(mA2*s)
component

gradM_x_y_cd3 Concentration gradient, mol/mA4
M x, y component

dflux_M_x_y_cd3 Diffusive flux, M-x, y mol/(mA2*s)
component

cflux_M_x_y_cd3 Convective flux, M-x, y mol/(mA2*s)
component

tfluxM_x_y_cd3 Total flux, Mx, y mol/(mA2*s)
component

beta_M_x_x_cd3 Convective field, Mx, x m/s
component

beta M_x_y_cd3 Convective field, Mjx y m/s
component

gradM x cd3 Concentration gradient, mol/mA4
M x

dflux M x cd3 Diffusive flux, M x mol/(mA2*s)
cflux M x cd3 Convective flux, M x mol/(mA2*s)
tflux M x cd3 Total flux, M x mol/(mA2*s)

cellPe M x cd3 Cell Peclet number, M x 1

Dm_M x cd3 Mean diffusion mA2/s
coefficient, M x

res_M x cd3 Equation residual for mol/(mA3*s)
M X

ressc_M x cd3 Shock capturing residual mol/(mA3*s)
for M x

da_M x cd3 Total time scale factor, 1
M X

grad_M_yxcd Concentration gradient, mol/mA4
M y, x component

dflux_M_yjxcd Diffusive flux, My, x mol/(mA2*s)
component

cflux_M_y_x_cd Convective flux, M_y, x mol/(mA2*s)
component

tflux_M_y_xcd Total flux, My, x mol/(mA2*s)
component

grad_M_y_y_cd Concentration gradient, mol/mA4
M y, y component

dflux_M_y_y_cd Diffusive flux, My, y mol/(mA2*s)
component

cfluxM_y_y_cd Convective flux, M-y, y mol/(mA2*s)
component

tfluxM_y_y_cd Total flux, M_y, y mol/(mA2*s)
component

beta_M_y_xcd Convective field, M_y, x m/s
I component I II
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betaM_y_y_Ad Convective field, My, y
conm nnan

grad_M_y_cd Concentration gradient, mol/mA4
M y

dflux M y cd Diffusive flux, M-y mol/(mA2*s)

cflux M y cd Convective flux, M-y mol/(mA2*s)_

tflux M y cd Total flux, M y mol/(mA 2*s

cellPe M y cd Cell Peclet number, M y 1

DmM.y_ad Mean diffusion mA2/s
coefficient, My

resM-ycd Equation residual for mol/(mA3*s)
MY

res-scM_y_cd Shock capturing residual mol/(mA3*s)
for My

daM-y-cd Total time scale factor, 1
___ _8 My

drguess-emqa Width in radial direction m 0
default guess

RO_guess-emqa Inner radius default m 0
guess

Sx-emqa Infinite element x m x
coordinate

SOxguess-emqa Inner x coordinate m 0
default uess

Sdxguessemqa Width in x direction m 0
default guess

Syemqa Infinite element y m y
coordinate

SOy_guessemqa Inner y coordinate m 0
default guess

Sdyguessemqa Width in y direction m 0
default guess

curlAxemqa Curl of magnetic T Azy
potential, x component

curlAyemqa Curl of magnetic T -Azx
potential, y component

dVolemqa Volume integration 1 detJ-emqa
contribution

Bx-emqa Magnetic flux density, x T curlAx.emqa
component

Byemqa Magnetic flux density, y T curAyemqa
component

Hx-emqa Magnetic field, x A/m Bx.emqa/(mur-emqa * muOemqa)
component

Hyemqa Magnetic field, y A/m Byemqa/(murfemqa * muOemqa)
component

mu emqa Permeability H/m muO emqa * mur emqa
muxx.emqa Permeability, xx H/m muO-emqa * murxx.emqa

component

muxyemqa Permeability, xy H/m muO-emqa * murxyemqa
component
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Permeability, yx
component

H/m muOemqa * muryxemqa

muyyemqa Permeability, yy H/m muOQemqa * muryyemqa
component

Jpzemqa Potential current density, A/mA2 sigma-emqa * deltaV emqa/L-emqa
z component

Ez-emqa Electric field, z V/m -d(Az,t)
component

Jzemqa Total current density, z A/mA2 Jpzemqa+Jiz-emqa+Jez-emqa
component

Pox emqa Power flow, x component W/mA2 -Ez emqa * Hy emqa
Poy emqa Power flow, y component W/mA2 Ez emqa * Hx emqa
normE emqa Electric field, norm V/m abs(Ez emga)
Jizemqa Induced current density, A/mA2 sigma emqa * Ez-emqa

z component
Q_emqa Resistive heating W/mA3 Jz _emqa * (Ezemqa+deltaV emga/L emqa)
W emqa Total energy density J/mA3 Wm emqa
dW emqa Integrand for total energy J/mA3 dVol emqa * W emqa
Wmemqa Magnetic energy density J/mA3 0.5 * (Hxemqa * Bx-emqa+Hyemqa *

By emga)
FLtzxemqa Lorentz force N/mA3 -Jz-emqa * Byemqa

contribution, x
component

FLtzyemqa Lorentz force N/mA3 Jz-emqa * Bxemqa
contribution, y
component

normFLtzemqa Lorentz force N/mA3 sqrt(abs(FLtzxeemqa)A2+abs(FLtzyema)A2)
contribution, norm

normM emqa Magnetization, norm A/m sqrt(abs(Mx emqa)A2+abs(Myemga)A2)
normBr-emqa Remanent flux density, T sqrt(abs(Brxemqa)A2+abs(Bryemqa)A2)

norm

normH emqa Magnetic field, norm A/m sqrt(abs(Hx emga)A2+abs(Hyemga)A2)
normBemqa Magnetic flux density, T sqrt(abs(Bx-emqa)A2+abs(Byemqa)2)

norm

normJemqa Total current density, A/mA2 abs(Jz-emqa)
norm

Evz_emqa Lorentz electric field, z V/m d(x,t) * Byemqa-d(y,t) * Bxemqa
component

normEv-emqa Lorentz electric field, V/m abs(Evz-emqa)
norm

normPoemqa Power flow, time W/mA2 sqrt(abs(Poxemqa)A2+abs(Poyemqa)A2)
average, norm

9.2.2. Subdomain 2

U_ns Velocity field m/s
V ns Vorticity 1/s
divU ns Divergence of 1/s

velocity field
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cellRe.ns Cell Reynolds
number

1

res_u_ns Equation residual N/m^3
for u

res v ns Equation residual N/mA3
for v

beta-x-ns Convective field, x kg/(mA2*s)
component

beta_y_ns Convective field, y kg/(mA2*s)
component

Dm ns Mean diffusion Pa*s
coefficient

dans Total time scale kg/mA3
factor

taum ns GLS time-scale mA3*s/kg

tauc ns GLS time-scale mA2/s
res_p_ns Equation residual kg/(mA3*s)

for p

grad-w-x-di Concentration mol/mA4
gradient, w, x
component

dflux-w_x_di Diffusive flux, w, x mol/(mA2*s
component

gradw_y_di Concentration mol/mA4
gradient, w, y
component

dflux_w_ydi Diffusive flux, w, y mol/(mA2*s)
component

grad-w_di Concentration mol/mA4
-gradient, w

dflux w di Diffusive flux, w mol/(mA2*s_

grad _M x x cd3 Concentration mol/mA4
gradient, M.x, x
component

dfluxM-x-xcd3 Diffusive flux, M-x, mol/(mA2*s)
x component

cfluxM-x-x-cd3 Convective flux, mol/(mA2*s'
M x, x component

tflux_M x x_cd3 Total flux, M-x, x mol/(mA2*s)
component

grad_M_x_y_cd3 Concentration mol/mA4
gradient, M_x, y
component

dfluxM_x_y_cd3 Diffusive flux, M-x, mol/(mA2*s)
y component

cfluxM_x_y_cd3 Convective flux, mol/(mA2*s)
M x, y component

tfluxM_x_y_cd3 Total flux, M.x, y mol/(mA2*s)
component

betaM.x-xcd3 Convective field, m/s
________ M x, x component I I
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beta_M_x_y_cd3 Convective field,
M x. v comDonent

gradM x cd3 Concentration mol/mA4
gradient, M x

dflux M x cd3 Diffusive flux, M x mol/(mA2*s)

cflux_M-x-cd3 Convective flux, mol/(mA2*s)
M x

tflux M x cd3 Total flux, M x mol/(mA2*s_

cellPe M x cd3 Cell Peclet I
number, M x

DmM x cd3 Mean diffusion mA2/s
coefficient, M x

res_M x cd3 Equation residual mol/(mA3*s)
for M x

ressc_M x cd3 Shock capturing moV(mA3*s)
residual for M x

da M x cd3 Total time scale 1
factor, M x

grad_M_y_xcd Concentration mol/mA4
gradient, M_y, x
component

dflux_M_y_x_cd Diffusive flux, M_y, mol/(mA2*s)
x component

cflux_M_y.xcd Convective flux, mol/(mA2*s)
M y, x component

tflux_M_yjxcd Total flux, My, x mol/(mA2*s)
component

grad_M_y_y_cd Concentration mol/mA4
gradient, My, y
component

dfluxM_y_y_cd Diffusive flux, My, mol/(mA2*s)
y component

cfluxM_y_y_cd Convective flux, mol/(mA2*s)
M y, y component

tflux_Myy-cd Total flux M ~y, y mol/(mA2*s)
component

beta_M_y_xcd Convective field, m/s
M y, x component

betaM_y_y_cd Convective field, m/s
M-y, y component

grad_M_y_cd Concentration mol/mA4
gradient, M y

dflux M y cd Diffusive flux, M y mol/(mA2*s)
cfluxM_y_cd Convective flux, mol/(mA2*s)

M y
tflux M y cd Total flux, My mol/(mA2*s
cellPeM_y_cd Cell Peclet 1

number, M y

DmM_y_cd Mean diffusion mA2/s
coefficient, M y I I
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resMjy..cd Equation residual
forM v

moV(mA3*s)

ressc_M_y_cd Shock capturing mol/(mA3*s)
residual for M y

daMjy-cd Total time scale 1
factor, M y

drguess-emqa Width in radial m 0
direction default
guess

RO_guess-emqa Inner radius m 0
default guess

Sx.emqa Infinite element x m x
coordinate

SOx_guess-emqa Inner x coordinate m 0
default guess

Sdxguess-emqa Width in x m 0
direction default
guess

Syemqa Infinite element y m y
coordinate

SOy_guess-emqa Inner y coordinate m 0
default guess

Sdyguess-emqa Width in y m 0
direction default
guess

curlAx-emqa Curl of magnetic T Azy
potential, x
component

curlAyemqa Curl of magnetic T -Azx
potential, y
component

dVolemqa Volume integration 1 detJemqa
contribution

Bx-emqa Magnetic flux T curLAx-emqa
density, x
component

Byemqa Magnetic flux T curlAyemqa
density, y
component

Hx-emqa Magnetic field, x A/m Bx-emqa/mu0_emqa-Mx emqa
component

Hyemqa Magnetic field, y A/m Byemqa/muOCemqa-Myemqa
component

mu emqa Permeability H/m muO emqa * mur emqa
muxx_emqa Permeability, xx H/m mu0_emqa * murxx-emqa

component

muxyemqa Permeability, xy H/m mu0_emqa * murxyemqa
component

muyxemqa Permeability, yx H/m muOQemqa * muryxemqa
component

muyyemqa Permeability, yy H/m mu0_emqa * muryyemqa
component _ _ _ _ _
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Potential current
density, z
component

A/mA2 sigma-emqa * deltaV-emqa/L-emqa

Ezemqa Electric field, z V/M -d(Az,t)
component

Jzemqa Total current A/mA2 Jpzemqa+Jiz-emqa+Jez-emqa
density, z
component

Pox-emqa Power flow, x W/mA2 -Ezemqa * Hyemqa
component

Poyemqa Power flow, y W/mA2 Ezemqa * Hx.emqa
component

normE emqa Electric field, norm V/m abs(Ez emga)
Jizemqa Induced current A/mA2 sigma-emqa * Ez-emqa

density, z
component

Q emqa Resistive heating W/mA3 Jz emqa * (Ez emga+deltaV emga/L emga)
W_emqa Total energy J/mA3 Wmemqa

density
dWemqa Integrand for total Pa dVol-emqa * W-emqa

energy
Wmemqa Magnetic energy J/mA3 0.5 * (Hxemqa * Bx emqa+Hyemqa *

density Byemqa+Mx-emqa * Bx emqa+Myemqa *
By emga)

FLtzxemqa Lorentz force N/mA3 -Jzemqa * Byemqa
contribution, x
component

FLtzyemqa Lorentz force N/mA3 Jz-emqa * Bx-emqa
contribution, y
component

normFLtz-emqa Lorentz force N/mA3 sqrt(abs(FLtzx.emqa)A2+abs(FLtzyemqa)A2)
contribution, norm

normM-emqa Magnetization, A/m sqrt(abs(Mxemqa)A2+abs(Myemqa)A2)
norm

normBr-emqa Remanent flux T sqrt(abs(Brx-emqa)A2+abs(Bryemqa)2)
density, norm

normH-emqa Magnetic field, A/m sqrt(abs(Hx-emqa)A2+abs(Hyemqa)2)
norm

normB-emqa Magnetic flux T sqrt(abs(Bxemqa)2+abs(Byemqa)A2)
density, norm

normJ.emqa Total current ANmA2 abs(Jz.emqa)
density, norm

Evzemqa Lorentz electric V/m d(x,t) * Byemqa-d(y,t) * Bx-emqa
field, z component

normEv-emqa Lorentz electric V/m abs(Evz.emqa)
____________field, norm

normPo-emqa Power flow, time W/mA2 sqrt(abs(Pox-ema)A2+abs(Poyemqa)2)
average, norm

9.2.3. Subdomain 3
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Name Description Unit Expression
U ns Velocity field m/s sqrt(uA2+vA2)
V ns Vorticity 1/s vx-uy
divU-ns Divergence of 1/s ux+vy

velocity field

cellRejns Cell Reynolds 1 rho-ns * U-ns * h/eta-ns
number

res-u-ns Equation N/mA3 rho-ns * (ut+u * ux+v * uy)+px-F-x-ns-etans * (2 *
residual for u uxx+uyy+vxy)

res.v.ns Equation N/mA3 rho-ns * (vt+u * vx+v * vy)+py-F_y_ns-eta-ns * (vxx+uyx+2
residual for v * vyy)

beta-x-ns Convective kg/(mA2*s) rho ns * u
field, x
component

beta_y_ns Convective kg/(m^2*s) rho-ns * v
field, y
component

Dmns Mean Pa*s etans
diffusion
coefficient

dans Total time kg/mA3 rhons
scale factor

taum-ns GLS mA3*s/kg nojac(1/max(2 * rho-ns * sqrt(emetric(u,v)),48 *
time-scale eta ns/hA2))

tauc ns GLS mA2/s 0.5 * nojac(if(uA2+v^2
time-scale

res_p-ns Equation kg/(mA3*s) rho-ns * divUJns
residual for p

grad.w-x-di Concentration mol/mA4 wx
gradient, w, x
component

dflux-w_x_di Diffusive flux, mol/(mA2*s) -Dxx_w_di * wx-Dxywdi * wy
w, X

_____________ component

gradw_y_di Concentration mol/mA4 wy
gradient, w, y
component

dflux w__ydi Diffusive flux, mol/(mA2*s) -Dyxwdi * wx-Dyywji * wy
w, y
component

gradwdi Concentration mol/mA4 sqrt(gradwx di2+gradw_ydi^2)
gradient, w

dflux_w_di Diffusive flux, mol/(mA2*s) sqrt(dflux-w-x_diA2+dflux_w_yjdiA2)
w

grad_M-x-x-cd3 Concentration mol/mA4 Mxx
gradient, M x,
x component

dfluxMxx.cd3 Diffusive flux, mol/(mA2*s) -Dxx_M_x_cd3 * Mxx-Dxy_M_xcd3 * Mxy
M-x, x
component
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cflux_M x x cd3 Convective
flux, M_x x
comDonent

mol/(mA2*s)| M_x * uM-x_cd3

tflux_M x x cd3 Total flux, mol/(mA2*s) dfluxM-x-x_cd3+cflux_M-x-x-cd3
M-x, x
component

grad_M_x_y_cd3 Concentration mol/mA4 Mxy
gradient, M-x,
y component

dfluxM_x_y_cd3 Diffusive flux, mol/(mA2*s) -Dyx_M-x-cd3 * M xx-Dyy_M.x-cd3 * Mxy
Mx, y

____________component_________________________

cflux_M_x_y_cd3 Convective mol/(mA2*s) Mx * v_M_x_cd3
flux, M-x, y
component

tfluxM_x_y_cd3 Total flux, mol/(mA2*s) dflux_M_x_y_cd3+cfluxM_x_y_cd3
M-x, y
component

beta_M-x-x-cd3 Convective m/s u_M-x-cd3
field, M_x, x
component

beta_M_x_y_cd3 Convective m/s v_M x cd3
field, M-x, y
component

gradM_x_cd3 Concentration mol/mA4 sqrt(gradM_x_x_cd3A2+grad_Mx_y_cd32)
gradient, M x

dflux_M x cd3 Diffusive flux, mol/(mA2*s) sqrt(dfluxM-x-x cd3A2+dflux_M_xycd32)
M x

cfluxM x cd3 Convective mol/(mA2*s) sqrt(cfluxM x x_cd3A2+cflux_M_x_y_cd3A2)
flux, M X

tflux M x cd3 Total flux, M > mol/(mA2*s) sqrt(tflux M x x cd32+fflux M xy cd3A2)
cellPe_M_x_cd3 Cell Peclet 1 h *

number, M x sqrt(beta M x x cd3A2+beta M x y cd3A2)/Dm M x cd3
DmM x cd3 Mean mA2/s (Dxx_M x cd3 * u_M_x_cd3A2+Dxy_M_xcd3 * u_M_x_cd3

diffusion * vM x:cd3+DyxM-x-cd3 * vM-x-cd3 *
coefficient, u_M_x_cd3+Dyy_M-x-cd3 *
M x v M x cd3A2)/(u M x cd3A2+v M x cd32+eps)

resM x cd3 Equation mol/(mA3*s) -DxxM-x-cd3 * M-xxx-Dxy_M_xcd3 * Mxxy+M xx *
residual for u_M_x_cd3-DyxM-x-cd3 * M_xyx-DyyM-x-cd3 *
M x M xyy+M xy * v M x cd3-R M x cd3

res scM x cd3 Shock mol/(mA3*s) Mxx * uM-x-cd3+Mxy * vM-x-cd3-RM-x-cd3
capturing
residual for
M X

daM-x-cd3 Total time 1 DtsM-x-cd3
scale factor,
M X

grad_M_yxcd Concentration mol/mA4 M-yx
gradient, My,
x component

dflux_M_y_xcd Diffusive flux, mol/(mA2*s) -Dxx_M_y_cd * M_yx-Dxy_M_y_cd * M_yy
M-y, x
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component

cfluxM_y_xcd Convective mol/(mA2*s) My * u_M_y_.cd
flux, M-y, x
component

tfluxM_y_x.cd Total flux, mol/(mA2*s) dflux_M_y_x_cd+cflux_M_y_xcd
M-y, x
component

grad_M_y_y_.cd Concentration mol/mA4 Myy
gradient, My,
y component

dfluxM_y_y_cd Diffusive flux, mol/(mA2*s) -DyxM_y_cd * Myx-Dyy_M_y.cd * Myy
Mjy, y
component

cfluxM_y_y_cd Convective mol/(mA2*s) My * v_M_y_cd
flux, Mjy, y
component

ffluxM_y_y_cd Total flux, mol/(mA2*s) dfluxM_y_y_cd+cfluxM_y_y_.cd
M-y, y
component

beta_M_y_xcd Convective m/s u_M_ycd
field, My, x
component

betaM_y_y_cd Convective m/s vM_y_cd
field, M_y, y
component

grad_M_y_cd Concentration mol/mA4 sqrt(grad_M_y_xcdA2+gradM_y_y_cdA2)
gradient, M y

dfluxM_y_cd Diffusive flux, mol/(mA2*s) sqrt(dflux_M_y.xcdA2+dfluxM_y_y_cdA2)
M y

cfluxM_y_cd Convective mol/(mA2*s) sqrt(cfluxM_y_xcdA2+cfluxM_y_y_.cdA2)
flux, M y

tflux M y cd Total flux, MV mol/(mA2*s) sqrt(tflux M y x cdA2+tflux M y y cdA2)
cellPe.M_ycd Cell Peclet I h *

number, M-y sqrt(beta Mjy x cdA2+beta M y y-cd^2)/Dm M y cd

DmM_cd Mean mA2/s (DxxM_y_cd * u_M_y cdA2+Dxy_M_y_cd * u_M.y_cd *

diffusion v_M_y_cd+DyxM_y_cd * v._M_y_cd *

coefficient, u_M_y_cd+Dyy_M_y_.cd *

M y v M y cdA2)/(u M y cdA2+v M y cdA2+eps)

resMjycd Equation mol/(mA3*s) -Dxx_M_y_cd * M_yxx-Dxy_M_y_cd * Myxy+Myx *
residual for u_M_y_cd-DyxM._y_cd * M_yyx-Dyy_M_y_cd *

M y M yyy+M yy * v M y cd-R M y cd

res-scM_y_cd Shock mol/(mA3*s) Myx * u_M_y_cd+My * v_M_y_cd-RM_y_cd
capturing
residual for
M y

daMjycd Total time 1 Dts_M_y_cd
scale factor,
M y

drguess-emqa Width in radial m 0
direction

I default auess
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ROguess-emqa Inner radius m
default guess I

Sxemqa Infinite m x
element x
coordinate

SOxguess-emqa Inner x m 0
coordinate
default guess

Sdx-guess-emqa Width in x m 0
direction
default guess

Sy-emqa Infinite m y
element y
coordinate

SOyguess-emqa Inner y m 0
coordinate
default guess

Sdyguess-emqa Width in y m 0
direction
default guess

curlAx-emqa Curl of T Azy
magnetic
potential, x
component

curlAyemqa Curl of T -Azx
magnetic
potential, y
component

dVolemqa Volume 1 detJ-emqa
integration
contribution

Bxemqa Magnetic flux T curlAx emqa
density, x
component

Byemqa Magnetic flux T curlAyemqa
density, y
component

Hxemqa Magnetic field, A/m Bx-emqa/muOemqa-Mx-emqa
x component

Hy_emqa Magnetic field, A/m Byemqa/muO-emqa-Myemqa
y component

mu emqa Permeability H/m mu0 emqa * mur emqa
muxx-emqa Permeability, H/m mu0_emqa * murxx.emqa

xx component

muxyemqa Permeability, H/m muO-emqa * murxyemqa
xy component

muyxemqa Permeability, H/m muO-emqa * muryxemqa
yx component

muyyemqa Permeability, H/m muO-emqa * muryyemqa
yy component_

5/13/2010 10:56 PM

1358

27 of29



2Dcasecylinder surfacecirrentforceincluded etaprimeOMSGW1 Iai... file:///F:/Research%2OFiles/Software%2Data%2OFiles/Comsol%2Fi...

Jpzemqa Potential
current
density, z
component

Nm^2 sigma-emqa * deltaV-emqa/L-emqa

Ez-emqa Electric field, V/m -d(Az,t)
z component

Jz-emqa Total current AmA2 Jpzemqa+Jiz-emqa+Jez-emqa
density, z
component

Pox-emqa Power flow, x W/mA2 -Ez-emqa * Hyemqa
component

Poyemqa Power flow, y W/mA2 Ez-emqa * Hx-emqa
component

normE-emqa Electric field, Vim abs(Ezemqa)
norm

Jiz-emqa Induced NmA2 sigma-emqa * Ez-emqa
current
density, z
component

Q.emqa Resistive W/mA3 Jz-emqa * (Ez-emqa+deltaV emqa/L-emqa)
heating

Wemqa Total energy J/mA3 Wm-emqa
density

dW-emqa Integrand for Pa dVol-emqa * W-emqa
total energy

Wm-emqa Magnetic J/mA3 0.5 * (Hx.emqa * Bxemqa+Hyemqa *

energy Byemqa+Mx-emqa * Bx-emqa+Myemqa * By_.emqa)
density

FLtzx-emqa Lorentz force N/mA3 -Jz-emqa * Byemqa
contribution, x
component

FLtzyemqa Lorentz force N/mA3 Jz-emqa * Bx-emqa
contribution, y
component

normFLtz-emqa Lorentz force N/mA3 sqrt(abs(FLtzxemqa)A2+abs(FLtzyemqa)A2)
contribution,
norm

normM-emqa Magnetization, Aim sqrt(abs(Mx_emqa)A2+abs(Myemqa)A2)
norm

normBr-emqa Remanent flu> T sqrt(abs(Brx-emqa)2+abs(Bryemqa)A2)
density, norm

normH-emqa Magnetic field, Alm sqrt(abs(Hxemqa)A2+abs(Hy_emqa)A2)
norm

normBemqa Magnetic flux T sqrt(abs(Bxemqa)A2+abs(Byemqa)A2)
density, norm

normJemqa Total current AimA2 abs(Jzemqa)
density, norm

Evz.emqa Lorentz V/m d(x,t) * Byemqa-d(y,t) * Bxemqa
electric field, z
component
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normEv.emqa Lorentz V/m abs(Evzemqa)
electric field,
norm

normPo-emqa Power flow, W/mA2 sqrt(abs(Poxemqa)A2+abs(Poy_..mqa)A2)
time average,
norm
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: LabVIEW Program

Fluxball Machine (Chapters 5 & 6)
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Switches to turn on/off Inner, Outer Fluxballs and Third Coil
Switching outer fluxball phase from +90 (ClockwiseV Front Panel (Inouts)

Voltage outputs from

DAQ card for Inner
Voltage outputs from

DAQ card for Outer

Voltage outputs from

DAQ card for Third

Switches signal to
Third Coil to DC
from AC

Can individually set the

RMS current to Inner and

Outer Fluxballs ( if switch

Fluxball and third coiL..l=

frequency can be set here

Setting phase of third coil

with respect to phase of

Waveform charts of

7Inner, Outer and third

- Copy Parameters to

Text File

B - PID Gains Tuner with

displayed values for the

various gains to control

the phases and magnitudes

-Text to name file that

contains parameters

Emergency Stop
Measured phase of current

through outer fluxball with

Measured phase of current

through third coil with respect1362



C - Measured output

waveforms from 2 GMW

sensors. Each sensor has

three axes corresponding to

3 plots each. The RMS

magnetic flux is calculated

for each sensor along with

the RMS magnitude of the

This button saves all the

measured RMS sensor

values for the magnetic

flux density along

different axes. It also

Pront ranei uinputtuutput unannei ,etings)
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This window sets the

devices and the

channels necessary for

all the measurements

taken by the program.

The range of voltages

measured by the
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Proesin oll nu hnest

IT_ ____

Takes measured values from

calculate RMS values. If Copy Stats .
-- -put channels and using the

or Take Sensor Data is clicked the
PID control toolkit adjusts the

output channels to reach the

"Control timing of the two DAQ cards (PCI

6036E and 6035E) used so that both cards

I - - - - - - - - . - - . - ... - - ..
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