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ABSTRACT

Optical communication through the atmospheric channel is commonly known as
free-space optical (FSO) communication. When communicating through a clear FSO
channel, not only is there atmospheric turbulence which results in fading of the
received signal, but there may also be interference that scatters into the receiver and
deteriorates performance. In this thesis, we consider mitigating the fading and
interference with diversity coherent and diversity incoherent detection. We derive
the performance of diversity coherent and diversity incoherent receivers in the
presence of fading and various worst case interference types. Diversity coherent
detection provides significant power gain over diversity direct detection, and most of
the benefit can be achieved with a moderate amount of diversity. Moreover, diversity
always improves the performance of coherent detection, whereas diversity improves
the performance of direct detection only until an optimal diversity value, beyond
which it degrades the performance. We also derive the improvement in expected
outage length with diversity, and quantify the amount of interference that the system
can handle while still achieving a given outage probability.

Although signal fades or ‘outages’ in an FSO link can be mitigated on the Physical
Layer, they cannot be completely eliminated. In a free-space optical network, these
outages affect the performance and design of the Transport Layer. The effect of
outages on the TCP sender is to diminish its throughput significantly due to drastic
reduction of its rate when its packets do not get received through the outage. We
consider a class of TCP-based protocols that is better suited for free-space optical
networks. In particular, the protocols in this class have the sender distinguish
whether a packet loss is due to an outage or congestion and not reduce its rate if the



loss was due to an outage. We analyze, using an approximate channel model for FSO
links, the maximum performance that can be achieved by a sender in this class, and
compare the performance against a TCP sender’s performance. The protocols in this
class can gain back the performance loss in TCP due to link outages and they are
particularly beneficial when the path has FSO links with strong turbulence and large
bandwidth-delay product. We discuss a possible way to implement the distinguishing
of packet loss due to congestion from packet loss due to link outage.

Thesis Supervisor: Vincent W.S. Chan
Title: Joan and Irwin M. Jacobs Professor of Electrical Engineering & Computer
Science
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Chapter 1

Introduction

Atmospheric optical communication, commonly known as free-space optical
communication (FSO), is communication using optical waves (produced by lasers)
through the atmosphere. FSO communication provides a means to communicate at
high data rates (Gb/s), over distances of tens of meters to tens of thousands of
kilometers (even up to a geosynchronous satellite) without being bound to fibers or
cables. See Figure 1.1. Since there is no need for fibers to be laid into the ground,
faster setup and lower cost is achieved in some applications. Additionally, for long
enough distances, the inverse square law of free-space propagation loss [18] has an
advantage over fiber which has exponential losses and non-linearities that limit
launched optical power [40]. Another appealing feature of FSO communication is
that it is physically directed; the transmitter is pointed at the receiver and the signal

has a much smaller divergence angle compared to radio frequency communication.



Figure 1.1: Example Free-Space Optical Communication Scenario

Possible applications for FSO communication include remote areas where it is too
expensive to lay down cables, urban settings such as between two office buildings
where quick setup times are required, and communication to satellites or between

aircraft or moving vehicles where it is infeasible to have wired communication.

However, when communicating through the free-space optical channel, the received
signal is susceptible to attenuation due to weather conditions. Even in the absence of
rain, fog, hail, or snow, the signal undergoes fading due to atmospheric turbulence
[19,27,44]. The cause of the fades is the mixing of eddies of air that have slightly
different temperatures and hence slightly different refractive indices. As predicted by
the Kolmogorov turbulence model, temperature changes in the air on the order of 1°
Kelvin cause slight refractive index changes on the order of 10¢. Although these
fluctuations may seem small in magnitude, they have an impact on the optical wave
that passes through the air (due to the wave’s short wavelength) by causing the
atmosphere to act as small lenses. The phase front of the transmitted wave undergoes
changes as it propagates to the receiver(s), resulting in constructive and destructive

interference at the receiver which results in fluctuations in the received signal
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amplitude and phase. The durations of the fades roughly equal the time it takes for
crosswinds or thermally induced air moments to move the air turbules across the laser
beam [44]. It is typical for the fades to be fairly deep (sometimes deeper than 10 dB)
and to last anywhere from a few milliseconds to a tenth of a second. When
communicating at high data rates (Gb/s), the fades can lead to a loss of a large number
of consecutive bits. For example, when communicating at a data rate of 10 Gb/s, a
single fade, as seemingly benign as 1 millisecond, can lead to the loss of 10 million

consecutive bits (10° Gb/s x 103 s=107 bits).

When communicating through the free-space optical channel, in addition to
atmospheric turbulence, one may also need to deal with interference that degrades
communication. The interference may be from a multi-access user or an intentional
interferer and, even if off-axis, the interference can couple into the receiver through
scattering by the receiving equipment. Moreover, this interference may be able to
impose a worst case setup for our system and thus have a great detrimental impact on

the communication.

A seemingly attractive technique to mitigate fading and interference is to use
interleaving with error correction. However, this requires large interleavers (on the
order of 1 Gb for a 1 Gb/s channel) and results in long link delay (>1s) which seriously
affects the performance of protocols in the Network and Transport Layers of the
network. Thus, there is a definite need to mitigate the effects of atmospheric
turbulence and possible interference at the Link Layer. Although increasing the
transmit power by amounts on the order of 10-20 dB is a simple solution to mitigate
the fading and interference, this method requires very expensive optical amplifiers,
and may not be suitable for cost-sensitive applications. A sensible technique to

mitigate the fades and interference is to use spatial diversity (multiple transmitters or
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receivers) and coherent detection. In order to properly evaluate the type of receiver,
incoherent versus coherent, and the amount of diversity to use, it is important to
understand how diversity direct detection and diversity coherent detection perform

in the presence of interference.

Although fades and interference can be mitigated using diversity detection, they
cannot be completely eliminated. In a free-space optical network, atmospheric
turbulence and interference affect not only the performance of the Physical Layer,
but also hurt upper layer performance as well. If not designed to deal with the FSO
link properties, the upper layers will perform poorly. For example, we show later in
this thesis that TCP’s congestion control does not perform well in high bandwidth-
delay product FSO networks. It is important to re-consider the Transport Layer’s
congestion control mechanism and how it can be designed to be suited for FSO

networks.

This thesis has two main areas of study of free-space optical networks: the Physical
Layer and the Transport Layer. Regarding the Physical Layer, we analyze the
performance of diversity coherent detection and diversity incoherent detection for
communication through the clear atmospheric channel in the presence of various
interference types, and quantify the gain of diversity coherent detection over
diversity direct detection (both in the presence of and absence of interference and if
we mistakenly assume interference is present or absent). We also derive the expected
outage length when diversity direct detection is used and when diversity coherent
detection is used. On the Transport Layer, we consider a modified TCP congestion
control scheme for better sender throughput in free-space optical networks. We

analyze the throughput, in steady state and prior to steady state, of TCP’s and the
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modified TCP’s congestion control when operated over free-space optical links with

various atmospheric turbulence strengths and congestion loss probabilities.
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Chapter 2

Preliminaries

In this Chapter, we describe the fading model and channel model used in this thesis.

We also give a brief review of TCP’s congestion control algorithm.

2.1 Fading Model

If an optical wave propagates through a vacuum, there is no attenuation or fading.
When it propagates through the free-space optical channel within the Earth’s
atmosphere, however, weather impairments such as rain, snow, hail, and fog cause
absorption (irretrievable loss of energy which is absorbed by the particles) and
scattering (redirection of the energy) of the optical wave; this is seen as signal
attenuation at the receiver [44]. This attenuation is generally modeled as non-
random, and a function of the amount of precipitation or fog [26]. Even in the
absence of particles in the air, atmospheric turbulence is present, which results in
random fading of the optical wave at the receiver. A communication channel that has
only atmospheric turbulence without rain, fog, snow, hail or other absorbing particles

is called the clear atmospheric channel. In this thesis, we consider optical

15



communication through the clear atmospheric channel. As described in the previous
chapter, in clear atmospheric turbulence, the mixing of eddies of air that have slightly
different temperatures results in refractive index changes in the air that change the
phase front of the wave and cause constructive and destructive addition of the wave
fluctuations at the receiver. This phenomenon results in random fading seen at the
receiver. Atmospheric turbulence is what causes twinkling of stars and shimmering

above pavement or sand on a hot sunny day.

The Extended Huygens-Fresnel Principle [44] describes the propagation of an optical
wave through atmospheric turbulence. Before describing this principle, we first state
the non-extended Huygens-Fresnel Principle. The Huygens-Fresnel Principle is
based on the scalar wave equation and allows us to represent an optical wave after it
has traveled through a vacuum from one plane to another parallel plane a distance Z
away. Given a quasi-monochromatic optical field of complex envelope Ui(3,?) in the

plane z=0, the field, after it has propagated to the plane z=1, is given by

oA’

— 1 ., L .
Up(Pst)=—= || Ui(p,t - ) expljk(L +——)]| dp
AL ¢ c 2L

/ (2.1)
where 5 and p’ are the coordinate vectors in the z=0 and z=L planes respectively, 1

is the wavelength, ¢is time, cis the speed of light, & is the wave number (k=27/1) and

R:is the transmitting pupil area as shown in Figure 2.1.
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R;

Figure 2.1: Physical Setup for Huygens-Fresnel Principle

The Extended Huygens-Fresnel Principle extends the Huygens-Fresnel Principle to

take into account atmospheric turbulence. It states that the field at z=L is given by
Uo(P ==~ L U, (p,r——>eprk<L+ Pl - ol Nexplx(p', p.t)+ j6(p'. 1)l } dp (2.2)

where y and 6 are random variables that model the amplitude and phase fluctuation
as the field travels through atmospheric turbulence. If we consider a point source or
source that is much smaller than the atmospheric coherence length, then the
turbulence factor exp(y+j6) can be factored out of the integral in (2.2). Thus, the

output field can be written as

— 1 — = ., L .
Up(B'0)=— expl(P.1)+jOP' D) || U(Pot —=)explik(L+ -l )]} dp (23)
JAL 1 c
and the fading reduces to a multiplicative amplitude and phase factor.

In our multiple receiver atmospheric optical communication system, which we
describe in more detail in Chapter 3, we assume that each receiving pupil is separated

by more than an intensity coherence length so that the intensity fading seen by each
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receiver is approximately independent. This spatial receiver separation can be
realistically achieved since the coherence length for communication across distances
on the order of tens of kilometers is on the order of centimeters [44] i.e. the multiple
receivers only need to be placed centimeters apart to see approximately independent
channel fades. Note that for space/ground systems, spatial diversity may be available
only at the ground segment due to large coherence lengths in space. Provided that
each receiver’s pupil size is less than a coherence length, the amplitude fading
experienced by each receiver can be modeled as log-normal distributed [44], and the
random phase can be modeled as Gaussian distributed [34] with variance so large that
the distribution can be practically modeled as uniform over [0, 2r). We assume the
phase at each receiver is approximately uniform and can be tracked by the coherent

receivers.

Let us denote the random multiplicative fading factor seen by receiver i by e* /%
where the amplitude fading portion €* is log-normal distributed, y: is distributed as

N (m 190';24)’ and the random phases 6: are not necessarily independent and are tracked

in the coherent detection system. o, is the log-amplitude variance and is a measure
of the amount of atmospheric turbulence. For a horizontal path, the log-amplitude

variance is approximately given by

o2 =min{0.124k7/5C21" 0.5} 2.4)

[42] where k is the wave number, Cf is the refractive index structure constant and
usually lies between 1016 m?? (weak turbulence) and 102 m?3 (strong turbulence),

and L is the link distance in meters. The variance 0')2[ saturates at approximately 0.5

(which is why there is a min{ } and 0.5 in (2.4)). When the variance is this high, we
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are said to be in the strong fluctuation regime and the log-normal model becomes
suspect because the detailed mathematics from which the log-normal distribution is
derived does not apply [2,44]. See Figure 2.2 for a plot of this log-amplitude variance

for various turbulence levels.

[=]
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Figure 2.2: Log Amplitude Variance for a horizontal path that uses an optical wave
with wavelength 1550 nm

The power fading factor is the square of the amplitude fading factor i.e. the power

fading factor is e*% . Thus it is also log-normal distributed where the exponent 2y

has Gaussian distribution N(Zmz,tlo—;). Due to energy conservation, the received
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signal is not amplified or attenuated on average i.e. E[¢** ]=1. This leads to

m, = —O'; [34]. For use in later chapters, we define @, = ¢** to be the time-varying

log-normal power fading factor seen by receiver i.

In this thesis, we make the assumption that the fading coherence time is much longer
than the symbol interval time (realistic for Gb/s communication). Thus, the fading

factors a: can be accurately modeled as constant over each symbol interval time T

2.2 Outages and Channel Model

In this section, we define an outage and describe our channel model®.

The usual performance metric in analyzing communication systems is the probability
of bit error. In the absence of fading, this is a fine performance metric, and we use it
when considering the performance of diversity direct and diversity coherent
detection systems in the absence of fading. However, when communicating through
atmospheric turbulence at high data rates, error probability is not the best
performance metric. Even with a respectable average error probability, the received
signal can suffer long and deep fades and cause a large number of consecutive bits to
be corrupted. Bit errors due to fades are clearly not independent. This channel
memory is not captured by the performance metric of error probability. Since fade
lengths (and non-fade lengths) are typically many orders of magnitude longer than bit
times for high data rate communication, it makes sense to use the concept of an

outage. An outage is defined as follows: if we have a maximum tolerable error

probability of P/"" =¢%m (see Figure 2.3), an outage occurs when the short term

! We described the channel model in our paper [23].
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bit error rate over a duration less than the channel coherence time (the operating

point) goes above P/

Operating

Signal
strength

Figure 2.3: Diagram showing that outage occurs when operating point moves above
an error probability threshold

Outage probability is the probability that the short-term bit error rate is above the

thresh
F,

required value ie.

Pr(outage) = Pr(Pe > pihr eSh) (2.5)

Outage probability describes the fraction of time during which the system is below a
performance threshold. We use outage probability as the performance metric when

analyzing diversity direct and diversity coherent detection in atmospheric turbulence.

Describing the channel as being either in the state of an outage or non-outage is a
reasonable description of the channel. Consider a communication system that uses a
forward error correction code and has additive white Gaussian noise at the receiver.
As seen in Figure 2.4, the probability of error curve shifts from sloping gradually, to
sloping steeply since the code can correct almost all bits in error if the received signal
is above threshold. The communication link can accurately be viewed as out-of-

service if the signal is below the threshold (since the error probability is so high), and
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in-service with perfect transmission when the signal is above the threshold (since the
error probability is so low). The concept of an outage is important as outages and
non-outages can have associated time durations (which we call outage length and
non-outage length). These durations allow the channel memory to be captured.
Outage length and non-outage length are captured in the channel model which we

discuss next.

P. No code

Forward
error
correction
code

Signal
strength

Figure 2.4: Probability of error curve with and without Forward Error Correction (as
shown in our paper [28])

We model the channel as a two-state continuous time Markov process, as shown in
Figure 2.5, where the two states represent whether we are in an outage or non-outage
respectively. The 2-state Markov channel model is justified as an extension of the RF
case, in which the channel can be modeled as Markov since the spectrum of the log
amplitude factor can be approximated by a 1-pole filter [9]. In the optical case, the
log-amplitude fading factor spectrum has a slope of -8/3 [27]. Since a 1-pole filter has
slope -2, the log-amplitude fading process in the optical case can be approximated
with a 1-pole filter. The 2-state Markov channel model is experimentally confirmed

as a reasonable model in the next sub-section.
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Figure 2.5: Two-state continuous-time Markov channel model

In the two-state channel model, the length of time spent in states 1 and 2, namely the
non-outage and outage lengths respectively, are exponentially distributed (as a direct
consequence of Markov processes). Letting Y'and Z be the outage and non-outage

lengths respectively, their probability density functions are given by

Sr(Y)=vy eXP("’zly)a yz0

2.6
f(2)=vexp(-v,z), 220 (2.6)
where
1
Vo1 =
Eloutage length] 27
and
1
Vi2 =
E[non - outage length] 2.8)

The symbols received during an outage are assumed to be lost, and symbols received
during a non-outage are assumed to be received correctly. We use this channel model
when analyzing the performance of the Transport Layer. This treatment of the
outages is especially important when the link is part of a larger network running
network protocols because it captures the channel’s memory of the current channel

state.
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Letting Pouage and 1- Pouage represent the probabilities of being in an outage and non-

outage respectively, we obtain the following global balance equation.

P outagev21 = (1 -P outage )V 12 (2 9)

Substituting (2.7) and (2.8) into (2.9) gives

P

outage

S el 7 2.10)
E [outage length] E [non - outage length]

This equation provides a relationship between the expected non-outage and outage
lengths in terms of the outage probability. In Chapter 3, we derive expressions that
can be used to calculate outage probability and expected outage length for a diversity

direct detection or diversity coherent detection system.

Rearranging (2.9), we can express the outage probability and non-outage probability

as a function of the transition rates.

Y12
Poutage - (2.11)
V12 +V21
Moreover,
P non—outage 1-P outage
_ V21 (2 12)
V12 V21

As derived in Appendix A using the Kolmogorov Backward Differential Equations
[17], the probability of going from state 1 at time O to state 1 at time ¢ (with any

combination of transitions during time (0,7)) is
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Vv v
P — 21 12 ; =
11(‘) v 4V, + vtV exp{ (Vlz +V21}} (2.12)

and the probability of going from state 1 at time 0 to state 2 at time ¢ (with any

combination of transitions during time (0,2)) is

Via

Plz(t)_ - ‘GXP{_(VU"'VNH (2:13)

Via tVy Vi tVy

These probabilities are used in deriving the throughput of TCP in Chapter 6.

2.3 Experimental Confirmation of Channel Model

We experimentally confirmed [29] that the two-state continuous-time Markov model

is a reasonable channel model in the setup shown in Figure 2.6.

e

250 m separation 41GHz
. filter

Transmitter i | Record

A=1.550nm, FAS b2 Laptop

0.6mW, diode Computer

unmodulated Post processing
to obtain outage
and non-outage
lengths

Figure 2.6: Experimental system used to verify two-state channel model

The transmitted optical wave was directed through a telescope and over an outdoor
125 meter path through clear air. The beam was then reflected off a mirror, traveled

back 125 meters, and entered the receiving telescope which was coupled into a single

25



mode fiber. The received signal was optically amplified, filtered, and photo-detected.
Since turbulence changes over time, in order to take samples under the same
turbulence conditions, the data needed to be taken for limited time segments.
Samples of the PIN diodes’ output current were taken every millisecond for three
minutes, and were used with the power fading factor threshold set at 0.5 to obtain
histograms of the outage and non-outage lengths (given in Figure 2.7) [29]. The
histograms are plotted together with an exponential probability density function with
the same mean. The log amplitude variance was derived from the data to be 5,=0.15.
As seen in this figure, the outage and non-outage lengths are approximately

exponential.

300 T T T 3 v v
—— Euxponential —— Exponential
I Experimental 7 I Experimental
250 B
B -
200 B
5 -
Mean=3.7ms Mean=0.14 s
150 4 y
3 =
100
2 -
a0
1 d
o 0 e
a 5 10 15 20 25 ] 0.5 1 1.5
Outage Length (ms) Non-Outage Length (s)

(a) (b)

Figure 2.7: Histogram of measured a) outage length and b) non-outage length plotted
together with exponential distribution with same mean (as shown in our paper [29])
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2.4 Transmission Control Protocol (TCP)’s Congestion Control

In this section, we briefly review TCP’s congestion control algorithm [1]. The TCP
source and destination nodes are the main active players in controlling the number of
packets the senders release into the network. In order to allow the sender to
determine if its packets are received by the destination node, TCP uses end-to-end
packet acknowledgements (ACKs). The TCP sender includes a packet sequence
number (SN) in each packet that it sends to the destination node. If the destination
node receives a packet with SN n, it returns an ACK for packet n. If the sender
receives this ACK for packet n, it knows that packet n was received. If the next
packet the destination node receives is a packet with SN n+b, where b1, the
destination node returns an ACK for packet n again (thereby signaling that it did not
receive packet (n+])). This ACK with the same SN as the previous ACK is called a
duplicate ACK. In addition to tracking ACKs, the TCP sender also maintains a value
called a window. This window, which we also call “window size”, is the maximum
number of packets the sender releases into the network for which it has not yet
received acknowledgements. The TCP sender dynamically changes its window size

and uses the window size to control how many packets it sends into the network.

Before we provide the details of how the TCP sender changes its window size, let us
first discuss the basic idea that drives the algorithm. The TCP sender, instead of
blasting all of its data at its highest possible transmission rate and possibly causing
severe congestion in the network, acts more conservatively. It gradually increases its
window as it learns that the packets it sent got received by the destination. If the
TCP sender believes there is congestion in the network, it throttles back the amount
of data it will release into the network. There are many proposed “variants” of TCP,

each of which has a different window update scheme. Since TCP Reno has been
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widely employed, we provide on a high level, the details of the TCP Reno’s

congestion control protocol below:

The TCP sender operates in one of two phases: the Slow Start phase during which the
sender increases its window size exponentially, and the Congestion Avoidance phase
during which the sender increases its window size linearly. In the Slow Start phase,
every time the sender sends a window worth of packets and receives the
corresponding ACKs, the sender doubles its window size. In the Congestion
Avoidance phase, every time the sender sends a window worth of packets and
receives the corresponding ACKs, the sender increases its window size by one packet.
The TCP sender starts in the Slow Start phase until the window reaches a threshold
(ssthresh). After this point, it enters congestion avoidance phase. A TCP sender
discerns that a packet was lost in one of two ways: 1) Regardless of what phase the
sender is in, if the sender receives three duplicate ACKs (with the same SN), then it
assumes that a packet was lost due to congestion and it reduces its window by half
(we say the window is closed by a factor half), and goes into or stays in the
Congestion Avoidance phase. 2) The other way the TCP sender discerns a packet loss
is by setting a timer for each packet, called the retransmission timer (RTO). If the
ACK is not received by the time the RTO expires, the sender assumes there must be
severe congestion and reduces its window to one packet (we say the window is closed
to one packet). It also sets ssthresh to half the current window size before the
window is reduced, and enters the Slow Start phase. The RTO value is set to be the
round-trip time estimate plus four times the standard deviation of the round-trip time
estimate. If the RTO expires, we say that a “timeout” occurs, or that the sender “times

»

out .
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TCP which has served the users of the Internet well for roughly two decades has been
successful in preventing congestion collapse of the network. However, TCP’s
efficiency decreases as the path’s round-trip time increases because after a packet or
many packets are lost due to congestion or link errors, TCP window closing is
triggered and it takes the TCP sender a long time to ramp up the window size due to
the long round-trip times. This causes the throughput to decrease by significantly
more than just the bits that are lost. If FSO links are used in the network, they add a
different dynamic to the network over that of communication with fiber optics or
radio frequency: outages on the links cause a large number of consecutive packet
losses rather than occasional single packet losses. In Chapter 6, we discuss the
negative effect of outages on TCP and consider a class of TCP-based congestion
control protocols that improve sender throughput over high bandwidth-delay product

FSO paths.
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Chapter 3

Diversity Direct Detection and Diversity
Coherent Detection in Absence of
Interference

In this chapter, we derive the performance of diversity direct detection and diversity
coherent detection in the absence of interference (we published these results in [30]
and [33]). We start out by describing the setup of the diversity direct detection and
diversity coherent detection systems. Then we derive the outage probability,
expected outage length, and effective log-amplitude fading variance of the two

systems and provide discussions of each.

One of the original motivations for using coherent detection was to detect a weak
signal in the presence of thermal noise [16]. In coherent detection, the mixing of a
local oscillator (LO) with the signal raises the signal far above the thermal noise of the
electronics and thus the detection process is limited by quantum effects. We will see

in this chapter that diversity coherent detection provides additional benefit over
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diversity direct detection (that does not use adaptive optics) by selectively filtering

out interference and background noise.

3.1 Overview of Diversity Systems

See Figures 3.1 and 3.2 for block diagrams of the diversity direct detection and
diversity coherent detection systems that we consider in this thesis. In both diversity
systems, each of the N receivers has pupil area A/N so that the total receiving pupil
area is A and the total average received signal power is the same regardless of the

amount of diversity used.

area A/N photodetector

O_—‘" fiter —>

area A/N
O filter {>9 Maximum
. Likelihood
. Detector
area A/N

<> —> filter l/

Figure 3.1: Block diagram of multi-aperture incoherent detection (direct detection)
with N diversity receivers

32



photodetector

arca A/N LO <-4 Phase & . _:_
(v fading
estimator
area A/N "
<> /T —| > @—) filter
. LO < -1 Phase & - 5 4
¥2) fad_mg
estimator
area A/N Maximum

Likelihood
O ﬁ —> ’ T Detector
LO <-4 Phase & l¢---
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Figure 3.2: Block diagram of multi-aperture coherent detection with N diversity
receivers

The diversity direct detection system does not use any adaptive optics such as a
rubber mirror to achieve pre-detection coherent combining. In the diversity direct
detection system, we assume that the optical filter bandwidth equals the signal
bandwidth and that diffraction-limited receivers are used so the minimum amount of
interference and background noise is detected. For diffraction-limited receivers, only
one of the interference and background noise spatial modes is in the diffraction-
limited field of view. Larger field-of-view receivers would not be attractive in the
presence of large and multi-spatial-mode interference because all background noise
modes in the receiver’s field-of-view are detected. Nowadays, the use of diffraction-
limited receivers is quite realistic since spatial tracking of the signal is well
established. Note that the diffraction-limited solid angle of each receiver in the
diversity-N system is N times as large as that of a single receiver system (since the
diffraction-limited solid angle is inversely proportional to pupil area). Since the

interference and background noise detected is proportional to the pupil area times the
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diffraction-limited solid angle [16], each of the N diffraction-limited receivers detects
the same average interference and background noise power as the receiver in the
single diffraction-limited receiver system. Thus, the N-receiver system detects a total
of N times more average interference and background noise than the single receiver

system.

In the coherent detection system, each receiver’s local oscillator (LO) signal is
matched to the incoming signal spatial mode. The local oscillators’ angular frequency
is denoted by wr = wo+cir where av is the optical carrier’s angular frequency and wr»
is the intermediate angular frequency (IF). We consider the two types of coherent
detection, heterodyne detection and homodyne detection. In heterodyne detection,
the IF is non-zero and the filter is band-pass. In homodyne detection, the IF is equal
to zero and the filter is low-pass. The total power of the N local oscillators is 2,

regardless of the diversity value. The exact value will not affect performance as long

as the power is high enough. Receiver i, 1<i<N, has local oscillator power ;/l.zPL

where 7 is receiver i’s local oscillator power scaling factor, and where

N
D oyt=1 3.1)
i=]

The sum of the y/’s is set equal to a constant as a way to set the relative local

oscillator powers. The signal phase and amplitude are tracked by each coherent
receiver and we assume this tracking can be done even if there is interference. The
coherent detection system coherently combines the received signals with optimal
weighting. As we will see later in this chapter and in the next chapter, the total
average interference and background noise detected in diversity coherent detection is

the same regardless of the amount of diversity (due to the single spatial mode
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detectors tracking the signal phase and amplitude and coherently combining the N
signals with optimal weighting). The diversity-N coherent detection system detects
essentially a single spatial mode and thus detects 1/N times less total interference and

background noise than does the diversity-N direct detection system.

We will use binary modulation for the direct detection and coherent detection
systems. In the absence of background noise, the best performing binary modulation
scheme for coherent detection is Binary Phase Shift Keying (BPSK) [7] and for direct
detection is On-Off Keying [7). However, On-Off Keying requires a time-varying
threshold?. We will consider Binary Pulse Position Modulation (BPPM) for direct
detection due to the simple optimum receiver which compares the detector output in

the first and second half symbol intervals.

3.2 Derivation of Diversity Direct Detection Performance

We now derive the outage probability of the diversity direct detection system when
the signal propagates through the atmospheric channel and there is no interference.
In [43] we derived the outage probability of the diversity direct detection system in
the absence of interference without explicitly including an error probability
threshold value and where all noise was modeled as Gaussian. Modeling the noise as
Gaussian is applicable when the noise is large. In this thesis, we find the outage
probability as an explicit function of error probability threshold and use the Poisson

detection model, which does not make an assumption of large noise.

2 Note that for very high data rates, it is possible to track the optimum threshold of an OOK system with direction detection
accurately.
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3.2.1 Single Direct Detection Receiver

Consider first the single receiver direct detection system. Appendix B shows (with
plots) that the Poisson detection model [16] for the photodetector is a good
approximate model for small background noise (for an average number of detected
background noise photons per symbol of less than one). Using the Poisson detection

model for the photodetector, conditioned on the power fading factor o, we have that

N
. Y10 —(alNS +—2ﬁ)
[alNS + —2” ] e

p(No=ng| Ho.o)=

no
Nn
[ﬂ)"l 2
2
p(Ny=n | Hp,a)=~—4——
n
Nn
(&)"" e 2
2
p(No =ng | H,op)=>"4——
ng
’ n - O‘INS“L&
Ny 2
alNS +T e
(N1 =m | Hy )= . (3.2)

for ny >0 and n >0 where N, and N, are the number of photons received in the
first and second half symbol intervals, Ng and N, are the average number of
detected signal and noise photons per symbol, and the hypothesis Ho and Ho represent
symbol values of ‘0’ and ‘1’ being sent by the sender corresponding to transmission

occurring in the first or second half of the symbol interval. It can be derived [28] that

the Maximum Likelihood detector decides a ‘0’ was sent if N, > N, and that a ‘1’ was

sent otherwise. If a ‘0" and a ‘1’ being sent are equally likely, the error probability

conditional on the power fading factor a: is
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1 1
PDD,noInterference,N=l(e | al): EP(e | H09a1)+ EP(el Hl’al)
= Ple| Hp. 1)
=P(N, > N, | Hy, ;)
< min E[eS(NI_NO) | HO’aI]

§20

= 1—?21(1)1 E[E[eS(NrNO) | H09a19N0]l Ho,O‘l] (33)

= r?zlél E[e‘SN"E[eSN1 | Ho,al]l Ho,al]

=min exp{]\;" (es —1)}E[e_SN° | HO,aI]

520

= min exp{(ale + A;” )(e's - 1)+ %(es - l)}

5§20

where the inequality is the Chernoff bound and the two last equalities are true
because for a Poisson random variable with rate parameter A4, £ leSX ]= exp{ﬂ(es - 1)}

Optimizing over s (by taking the first derivative of the exp{ } expression in the last

line in (3.3) and setting equal to zero) gives

(3.4)

Substituting this into the last line of (3.3) and taking the error probability to be well

approximated by the Chernoff bound, the conditional error probability is

2
‘ Nn ’ Nn
PDD,noIntetference,N:l (e ‘ a, ) = exp{_( al Ns + 2 - TJ } (3'5)

(3.5) is the same as in [8] but where N, for us denotes the total average received

background noise photons in both half symbol periods.

37



3.2.2 Multiple Direct Detection Receivers

Consider the N-receiver direct detection system, where the receivers are separated by
more than one coherence length. The sum of N independent Poisson random
variables with rate parameters A;, Az...,Av is a Poisson random variable with rate
parameter Ar+Az+...+An. Thus, in deriving the error probability conditioned on the

fading for multiple receiver direct detection, we can use the same analysis that we did

N
for the single receiver system, but where we replace a,N, with [Lzal_ ] N, and Ny
2

i=1

with N]2V n. The conditional error probability of the diffraction-limited N-receiver

system is then

2 2

i=1

1< NN, |NN
PDD,noImerference (e | Q): exp - J[—]\?Zal JNS + = — = (3'6)

where a=(2,,...2,). If the error probability threshold is P = ™%resh  ysing

(3.6), the outage probability is

= ~Othresh )
P, - P r(P DD ,nolnterference (e I g_) >e e

outage, DD
2

1 < NN NN 4
expy—| .||l =) & [Ny +—=* - Lo| b > e hresh

1 NN, [NN, ’ ) 3.7
}Vzai NS+ 2 - 2 < thresh

i=1

=P

g

=P

—

N

o{ 150 < - T
N

i=1
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N B S .
The expression T\I—Za, is the sum of log-normal random variables. For a moderate

p

number (tens or less) of these log-normal random variables, the sum is better
approximated by a log-normal random variable [35,43], than by a Gaussian, as we
would do by applying the Central Limit Theorem. This is due to the asymmetry of
the log-normal probability distribution which requires a large number of random
variables to converge to a Gaussian. We approximate the sum of our log-normal

random variables to be log-normal, i.e. we let
e U
—Zai =e (3.8)
N i=1

where U is a Gaussian random variable. In [43], we derived the mean and variance

of U tobe

e4o' e4cr 7 _1
my =—0.51In| 1+ and of =In| 1+ (3.9
respectively. Substituting (3.8) into (3.7), the outage probability becomes
1
F, outage, DD, nolnterference — Pr(eU < N_ [gthresh + W 26threshN N, n ]J
s
= PI‘LU < h‘{NL [ethresh + v 2ethresh]wv n UJ
s
(3.10)

1
my — ln(N— [ethresh + /201NN, ]j
s

Ou

1 |:m _ ln{ [ethresh + v 20threshNNn ]J}z}
0, v Ny
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where g(y)= O]‘ﬁ ¢ /24 and we have approximated Q(x) by its upper bound % S,

3.3 Derivation of Diversity Coherent Detection Performance

In this section, we derive the outage probability of diversity coherent detection when
the signal propagates through the atmospheric channel and there is no interference.
In doing so, we first describe the received field and spectrum as in [16] but where
random fading and phase factors due to propagation through atmospheric turbulence

are included.

Heterodyne detection is analyzed first (for single and multiple receiver systems)

followed by analysis of homodyne detection.
3.3.1 Single Heterodyne Detection Receiver

In a single heterodyne receiver system, the intermediate frequency (IF) is non-zero
and the filter in Figure 3.2 is band-pass. The received signal in the detector plane is

given by
U,0.7) = ara 0 0B 7)1, )y 7 @11

where s(t)=a,(t)e’ %) s the signal in the absence of fading, b(f) is the complex
noise envelope of the background noise of the i mode, ¢ (7) is the Airy pattern of
the i** mode on the detector plane. Let us denote the LO field on the detector plane

by U, (t,7) = a,e’“"*%)g, (7) where ¢, (F) is the LO field Airy pattern in the detector
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plane. We assume the LO field Airy pattern is exactly matched to the first Airy

pattern (¢r=¢1), that it is spatially orthogonal to the other Airy patterns (¢2, ¢s,...), and

that L I#, (?de? = A (where Aqd is the photodetector area). The average count rate
d

n(¢) out of the photodetector [16] is given by

n(0) =T L|Ud(t,;)+UL(,,;)|2 &
_n ~y2 N2 N
- hv[LdlUd(t,r] dr + L|UL(t,r)| dr +2Re{ ldU"(t’r)(]L(t’r)d?H
- Ll Janay (e a0 4, (t* +al+ 2Re{(\/&_l o, (/@090 4y (t)}]Le J— (1))}]

hv

1 [Naa, @0 b (0f + a2 +20, Jara, Ocos{(@ — 0, )+0,0+ 8,06, (t))}

hv |+2a, Re{b1 (r)e/(e0-on k-0 }

(3.12)

where 7 is the photodetector’s quantum efficiency, A is Planck’s constant and v is the
frequency of the optical wave. The random fading and phase factors ¢, and 6, are
included in (3.12). Note that because the LO field is matched to one Airy pattern,
only one mode of background noise is actually detected (which is desired). The time

average of n(t) is

e 4 [alls(tlz AP + aﬂ
hv (3.13)
=%[061Ps +Ppo +PL]

where the average signal, background noise, and local oscillator powers are given

by P, = A|s(t12 , Py = A’bl(txz ,and P, = AaL2 respectively. Let
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t) = a,(t)cos(@, -, ¥ +6,(c) +6,()-6,, (1)). (3.14)

The average intensity of y(t), when a,(f)=a, is I, =a?/2. The two-sided
background noise spectrum of Re{b,.(t)ej (n-or)-00 [ } is Ny, /4 (the b in the

subscript represents background noise). Ignoring dark current and thermal noise
(valid if the local oscillator power is large enough), for the average photon count rate

of (3.12), the spectral density of the detector output current [16] is given by

S.(@)=4’5,(»)

2 2
N 2
:al[%']-AaL) Sy(a))+ (thj aL] A4 :” + qhg [alPs +Py+ P ]+ (terms at O frequency)

2 2 2
=a, (—] P AS, () + (Z—Z] PN, + % [a,Ps + P, + PL]+ (terms at O frequency)

(3.15)
The first three terms in the last equality correspond to the signal-LO cross signal,
background-LO cross noise, and shot noise. The background-only noise term and
signal-only term are omitted since they are negligible compared to the signal-LO and
background-LO terms. Note that the shot noise is dominated by the local oscillator

contribution (i.e. P, >>a P, + F,;) and the zero frequency terms are filtered out.

Thus, the spectral density is

2 2 2
S, (0)= al(zq_n) P, 4S (o) + [ﬂ] PN, + 211 p (3.16)
hv hv hv

From (3.16), the squared output signal strength conditioned on the fading is given by

42



2 2
Pt = [—hq—’lj PAI,

s,output
2q77 PLPs
= (hv] - (3.17)

We now find the probability of symbol error when BPSK is used. Using detection
theory in Additive White Gaussian Noise (AWGN), the optimal detector uses a
matched filter [38]. The corresponding probability of symbol error for BPSK is

Ple)= Q(\/%} = %exp(— 7\%} (3.18)

where the signal has energy £and the AWGN has variance No'2. In our case,

2
E= P T =20 £2] P27 and (3.19)
N qn ?
S0_27p PN,
0L (2] py 3.20)

where T is the symbol time and (3.20) reflects the noise terms from (3.16). Thus,

given the fading factor ¢, the error probability is
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2
a ﬂj P,PT
1 hv
PHet,no]merference,N=l(elal)zgexp T 2
4 p ﬂj PN
hV L hV LAY 0b
n
@ AT 3.21
=—;-exp ___hnv— ( . )
1+ —N,
hV 0b
1 o N,
=—exp| - ——
2 1+N,

The last equality is true because the average number of detected signal and

background noise photons per symbol is given by

n
N, =—PT .
s=505 (3.22)
and
N, = %Psz h”—VNObBOT (3.23)

respectively, where B, is the receiver’s optical bandwidth and where we assume

ByT =1 so there is only one temporal mode.

Note that the error probability for heterodyne detection is the same whether
diffraction-limited or fixed field-of-view receivers are used. This is because the local
oscillator is matched to just one spatial mode and thus the receiver ignores all other

spatial noise modes.
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3.3.2 Multiple Heterodyne Detection Receivers

Consider the N-receiver heterodyne system where the receivers are separated by
more than an intensity coherence length. Recall that the average received signal
power in each of N receivers is 1/N times the received signal power in the single

receiver system and that the i®* LO amplitude is weighted by factor y;,. The i®

receiver’s average photodetector count rate is the same as the single receiver system’s

ag (1)
N

where @, 6, and 6, are replaced with @;, 6, and 6, (to represent the i® receiver in

average count rate (3.12) but where we replace ag (r) with

with y,a;, and

the N-receiver system rather than the one receiver in the single receiver system).

Thus, the it receiver’s average photodetector count rate is

n,-(t)=iv [ VeleP)+ 1.67Y
N R A gy WA A

_1 oy
hv

\/—a GO0 +bl(* +yia’ + \/—aLa 4 cos((a)o o, ¥ +6,()+6,()-6 ())

+2y,a, Re{b1 (t)ej(wo_mL)l—gLi }

(3.24)

which includes random fading and phase factors «; and §,. The total average count

rate is the sum of the count rates of each of the photodetectors, namely
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N ,as(t)}as, a0 1 p (1) + J_aL t)
m0-La S b 0] +riat+ 2B o) 0,)+00)-6,0)

+2y,a, Re{b1 (t)e/(wo_mL i }

_ 2
N a;a (t) JOs()}+6; (1)) ( N ] [ . . (t)
#e s i\ +b t + 7,2 02+ }/i a‘_ LYs cos((@ —a +95t
=1 4 ; JN 1() ,Z:; L g r 5 ((0 L)t ())
hv N |
+Z 2}/,0L Re{b1 (t)e/(“’o—wL)r_gLI_ (,)}
L i=1
- N las(t) 1(8 ;)+g [ jzaL ()
N i s\ i h; +a Vi cosllw. —w +6S g
B e [E el ank+0.0)
hv N
+ z 2}’, a; Re{b1 (tkj(wkoL)"aL, (,)}
L i=1

(3.25)

Similar to how the spectral density (3.15) was found from the count rate in (3.12) in
the single receiver system, the total spectral density for the output average photon

count rate of (3.25) given the fading factors ¢;, 1<i<N, is

2 2
2qn 297 Ny
Ada, | S (0)+| ZLLa, | A=
hv aLJ y(a)) ( hv % 4

P, + NF,, + P, |+(terms at O frequency)

(3.26)

_[m ](‘]UJPAS w)+[q )

hv W

+ = ——N—Ps + NP, + P, {+(terms at 0 frequency)
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where the first three terms correspond to the signal-LO cross signal, background-LO
cross noise, and shot noise. Again, the background-only noise terms and signal-only
terms are omitted since they are negligible compared to the signal-LO and
background-1.O terms. Compared to the single receiver case, the multiple receiver

noise level remains the same for the following reasons:

1) The background-LO cross noise remains the same. Although each local oscillator is

matched to one spatial mode so that each receiver sees one diffraction angle worth of
background noise, each receiver’s noise variance is then reduced by a factor 7z

Since the sum of these N factors is 1, the overall background-LO cross noise level

remains the same.

2) The shot noise level is approximately the same. This is true when the LO is large

enough that

‘PS << PL and NPbO << PL (3.27)

such that the shot noise due to the LO dominates the shot noise due to the signal and

background noise.

One may want to apply a similar thought process as that of point one above to the
signal and say that in the absence of fading, since the signal power received by each
receiver is Ps/N, and since each receiver’s power is reduced by a factor 7> and the
sum of these N factors is 1, that the overall signal power is only Ps/N (1/N times less
the signal power received by the single heterodyne receiver system). However, this
reasoning is not correct because the signal portion of the detector output current is

proportional to the square root of the received power by that receiver (not
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proportional to the received power). In the absence of fading, ; =1 and the optimal
LO weights are y, =1/J/N (as we will see later). Substituting these values of e, and ,

into the first term in (3.26), we see that the total signal power of the multiple
heterodyne receiver system is indeed the same as the single heterodyne receiver

system.

In Section 3.3.1, we derived the error probability for a single receiver heterodyne
detection system that uses Maximum Likelihood detection. Following the same
development, but using the spectrum for the diversity-N system (3.26) instead of the
spectrum for the single receiver system (3.15), the error probability for the multiple

receiver system, given the fading factors (a;,@;,....ay )= a is

P

e,Het ,nolnterference

(elg)=%eXP -

=—exp| —

(3.28)
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where again, the last equality is true because the average number of detected signal

and background noise photons per symbol are given by (3.22) and (3.23).

The value of the i* local oscillator’s scaling factor yi that minimizes the error

probability is
i
7i ~ (3.29)
P
k=1
(see Appendix C for derivation). When there is no fading, a; =1 foralliand y, = _«/1=
N

(found by substituting ; =1 into (3.29)). In other words, when there is no fading,

the error probability is minimized when all the local oscillators are weighted equally.
Substituting the optimal weighting (3.29) of the N local oscillator powers, into the

spectral density (3.26) and error probability (3.28), the spectral density becomes

[ o (3o 2

i=l

(3.30)

z|~

2 N
K Za ]P +NP,, + P, } +(terms at 0 frequency)
i=1

and the error probability becomes

(%ia,]Ns
s (3.31)

P Het,nolnterference (e I g) = Eexp - 1+ Nn
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Just as in the single heterodyne receiver case, this error probability is the same
whether diffraction-limited or fixed field-of-view receivers are used because the local
oscillators are each matched to just one spatial mode. Note also that the total amount

of background noise detected is the same regardless of the amount of diversity.

If the error probability threshold is P™#" =g %t using (3.31), the outage
P ty e g g

probability for the heterodyne detection diversity system is given by

P

- ~bthresh
outage, Het nolnterference — Pr(P (e | g) >e e )

Het ,nolnterference

1 N
(ﬁ E a; }N s
1 i=l ~bihresh '
- —_— - . |>
2P TN, ¢ (3.32)

=P

-

— 1 N (1+Nnx—1n2+0thresh)
=Pr Za,.< Y

i=1 5

N
. . . 1 © o 1 U
Again, approximating —ﬁZa,. to be log-normal, and substituting ﬁz% =e  into

i<l i=1

(3.32), the outage probability becomes

})(mtage,Hel,nolme'fewnCe = Pr[eU < (1 i Nn X_ ]1\;1 2+ ethreSh)J

s

=Pr[U <ln((1+N X 1““9""“")D (3.33)

N

s

my, — ln[ (1 + Nn X_ In2+ elhresh)J
N,
=0

Oy
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3.3.3 Multiple Homodyne Detection Receivers

Consider an N-receiver homodyne receiver system. The local oscillator frequency is

wo (i.e. wr=0) and the filter is low-pass rather than band-pass.

The analysis for homodyne detection is the same as for heterodyne detection except
the IF is 0. As a result, the signal power after the filter is twice that in heterodyne
detection (seen by setting wi=wo in (3.14)), while the received noise power is the
same. Equivalently, if we scale the signal and noise power after the filter by a factor
of 1/2, the signal power is the same as for heterodyne, but the noise power half that of
heterodyne. All the results of heterodyne detection remain the same for homodyne
detection except the noise power is halved. Thus, from (3.31), the conditional error

probability of diversity homodyne detection is

1
P =— -
Homo nolnterference (e | g) 2 CXp| 1+ Nn (3.34)
and from (3.33) the outage probability is
my - ln( (1 + NnX_ In2 + ethresh)}
2N,
F, outage, Homo,nolnterference =0
oy
(3.35)

1 1 (1+ N, X=1n2 + Eren) 2
NoEXPYT 5 mu—ln( + ANt thresh\]
2 20'U 2Ns
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Since homodyne detection performs better than heterodyne detection, we will

assume that the coherent system uses homodyne detection in the remainder of this

thesis.

3.4 Performance of Diversity Direct and Homodyne Detection

See Figure 3.3 for a plot of the error probability of diversity direct detection and
diversity homodyne detection in the absence of any interference and fading. The
curves correspond to (3.6) and (3.34) with the fading factors «; set equal to 1. In
homodyne detection, the error probability curve is the same regardless of how much
diversity is used. This is due to the same amount of background noise detected being
regardless of diversity value. In direct detection, however, the curves shift right as

diversity increases due to the extra background noise detected.
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Figure 3.3: Error probability in the absence of interference and fading when Nn=1
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See Figures 3.4 and 3.5 for plots of the outage probability of diversity direct detection

and diversity homodyne detection when P/*"=0.1 and Presh 10+ respectively. The

curves correspond to (3.10) and (3.35). Consider an outage probability of 102
Adding diversity in direct detection initially helps to reduce the amount of signal
power needed to achieve this outage probability, but then begins to increase the
power needed as diversity is increased further. This is because the diversity improves
the fading statistics but also adds more background noise. For direct detection, there
is a threshold diversity value at which the improvement in outage statistics with

diversity begins to be overpowered by the added background noise.
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Figure 3.4: Outage probability in the absence of interference when r"*" =0.1,
o,=0.3, Na=1
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We derive in Appendix D, the diversity value for direct detection in the absence of
interference that minimizes the required sender signal level for a desired outage
probability. This optimal direct detection diversity value, which we denote by N,

is the root (that is >1) of the equation

0= asNS;’!Z & azNopl + a]N(l)é,z +dy (336)
where
ay =42N,
2
a, = —2\j— N, (6’46’ = 1) In(zpomagv)
= 3.37
a, = _‘/_ gfhrcxh (6’4 - ]J [n(ZPD,,,w) ( )

thresh 2
ao s 9 (e%rl, *lJ
2
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2
4o
e % -1

and where we assumed <<1 (reasonable for mild turbulence). In cases where

N, is not an integer, one should check if rounding up or down yields the best

diversity value.

As seen in Figures 3.4 and 3.5, for homodyne detection, increasing diversity always
improves the outage probability. This is because diversity improves the fading
statistics while the amount of background noise stays the same. In fact, for large

diversity, the improvement in outage probability with diversity goes as

1
F outage, Homo,nolnterference ™ Eexp {_ cN } (3 38)

[m (1+ N, X-In2+ 9,,,,es,1)ﬂ2

2Ny

2
2(e4"l —1j

(found in Appendix E using (3.35) and (3.9)). We can also see from Figures 3.4 and

where c¢=

3.5 that for any given diversity N, homodyne detection has lower outage probability

than direct detection. Moreover, the difference increases with increasing diversity.

3.5 Effect of Diversity on Average Outage Length

The motivation for using diversity is that it improves fading statistics. Intuitively, if
we average many diversity branches, it is unlikely that the sum is faded as often as a
single branch. But how much statistical improvement does diversity provide? It

would be beneficial to understand how the average outage length improves with

55



diversity. In Appendix F, we derive, using Gaussian level crossing theory, the
expected outage length for the diversity direct detection system and for the diversity
homodyne detection system. We now state the results of Appendix F and then
provide plots and discussion of the expected outage length. Approximating the sum

of N log-normal random variables as log-normal, i.e. letting

1
e =7V—(ezl’ +eh +...ezl”)

: (3.39)

the expected outage length is given by

E[outage length]= (Pmageﬂ)\/i:g exp{g_z—igyi} . (3.40)

where we now summarize each variable (detailed derivations are in Appendix F).
Pousge is the outage probability and is given by (3.10) for direct detection and (3.35) for
homodyne detection. E[ W] is the expected value of Wand is given by

40?2
Ew]- —iln[n ¢ “IJ

N
(3.41)
¢is the level that ¥ goes below to be considered in an outage and is given by
2
( d_lnipgthresh i+ ’szvn J _ szvn
1
¢ =§1n (1+Nn) (342)

—m . ln(2 }-;ethresh)
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for homodyne detection and

e %m(ij (3.43)

for direct detection where m is the power link margin the system provides beyond

the signal power of a single receiver homodyne system that achieves phh Y and

A7 are the O and 2" moment of the spectral density of Wand are given by

2 =—ln(ﬁe><p(4%‘ )+ NN 1} (3.44)
and
X = ’1:2[ f"p(“g (3.45)
e 0L N-1
where
- 2(0.15)(;/}{ 30 48)} ~(114) >[ e ] (3.46)
and

2

M=k {(2;:)2015)( )[l 3. 48)} (27} (114) 1* )[ s ]} (3.47)

27AL

and v, is the transverse wind speed, 4 is the wavelength, Z is the path distance, and

Jeuwo = gf, (where g>>1).

The expected outage length is inversely proportional to the transverse wind speed.

This is because none of the variables in the expected outage length expression (3.40)

. Wi s : 2
are a function of v, except for A4, which is proportional to v’ .
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The expected non-outage length is given by

1-P
E [non —outage length] = [—o—"ﬁgﬁJE [outage length]- (3.48)

outage

See Figure 3.6 for a plot of the expected outage length versus link margin for various
amounts of diversity and link margin. The curves are calculated using (3.40). The
link margin corresponds to additional power over that needed by a one-receiver
homodyne detection system that achieves the threshold error probability P in
absence of fading. As seen in Figure 3.6a, the expected outage length decreases as we
increase diversity or link margin. In Figure 3.6b, we see that if we fix the link margin
to the reasonable amount of 5 dB, increasing diversity from 1 to a reasonable value of
25 reduces the expected outage length in the homodyne system from 10 milliseconds
to 0.5 milliseconds. However, the smaller expected outage length still results in a
large number of consecutive bits to be lost when operating at high data rates.
Increasing the diversity to larger values reduces the outage length further as seen
Figure 3.6c. However, such large diversity values may not be practical or possible due
to the limited footprint of the optical signal and the need to put receivers more than a
coherence length apart. The exact values in Figure 3.6c may not be accurate since we
used the approximation that the sum of the N fading factors is log-normal, and this
may not apply for such large N. In Figure 3.6b where the link margin is fixed to be 5
dB, the expected outage length for direct detection decreases gently with diversity
compared to homodyne. This is because the error probability curve for direct
detection is higher than for homodyne detection and with a limited link margin of 5
dB, the operating point (in the absence of fading) for direct detection is closer to the
error probability threshold that for homodyne detection. If the link margin is fixed to

a higher value (8 dB for example), direct detection’s expected outage length decreases
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more steeply with diversity (as does homodyne detection’s expected outage length).
This can be seen in Figure 3.6a and also in Figure 3.6d which shows the expected
outage length when 8 dB of link margin is used. Using a higher link margin puts the
error probability operating point (in the absence of fading) of direct detection and
homodyne detection at a lower value. Thus, this operating point is farther away from

the error probability threshold and results in reduced outage lengths.
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Figure 3.6 (a) link margin on the x-axis
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Figure 3.6 (c) fixed link margin of 5 dB
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Expected outage length

Diversity N

Figure 3.6 (d) fixed link margin of 8 dB

Figure 3.6: Expected outage length a) versus link margin for various amounts of
diversity, b), c) versus diversity for fixed link margin of 5 dB, d) versus diversity for
fixed link margin of 8 dB. For all three plots, 5,7=0.5, Pct"=0.1, No=10", transverse
wind speed is 10 km/hr, path distance=20km.

See Figure 3.7 for plots of the expected outage length versus diversity for large
background noise. The direct detection curve actually arcs upward as diversity gets

large due to the large amount of background noise that is detected with increasing

diversity.
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Figure 3.7: Expected outage length versus diversity for fixed link margin of 5 dB when
0,°=0.5, Pereh=(0.1, No=1, transverse wind speed is 10 km/hr, path distance=20km

As we summarized in the mathematics of this section, the expected outage length is
inversely proportional to the transverse wind speed. See Figures 3.8a and 3.8b for
plots of the expected outage length when the wind speed is increased to 20 km/hr and
40 km/hr respectively (with all other parameters kept constant compared to those in
Figure 3.6b). Comparing Figure 3.6b with Figure 3.8, one can see that increasing the
wind speed from 10 km/hr to 20 km/hr and 10 km/hr to 40 km/hr reduces the
expected outage length by factor 1/2 and 1/4. This is consistent with the expected

outage length being proportional to the transverse wind speed.
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Figure 3.8: Expected outage length versus diversity for fixed link margin of 5 dB when
0,7=0.5, Petresh=(.1, Nn=106, path distance=20km and a) transverse wind speed is 20
km/hr b) transverse wind speed is 40 km/hr
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See Figure 3.9 for a plot of the expected non-outage length versus link margin for
various amounts of diversity and link margin (plotted using (3.48)). Recall that 0 dB
of link margin corresponds to the power needed by a single homodyne detection
receiver to achieve the error probability threshold in the absence of fading. We see
that for homodyne detection, the expected non-outage length increases as we increase
link margin or diversity. This is because increasing link margin moves the operating
point on the error probability curve, in the absence of fading, further away from the
error probability threshold and diversity tightens the fluctuation due to fading around
that point. For direct detection, if enough link margin is not provided, the expected
non-outage length increases with diversity. This because for small link margins the
operating point on the error probability curve in the absence of fading is above the
error probability threshold, and increasing diversity tightens the fluctuation around
this point. In direct detection, provided enough link margin is used, the non-outage
length also increases with diversity and link margin. For both homodyne detection
and direct detection, significant amounts of link margin and diversity are required to

increase the expected outage length substantially (for the large log-amplitude

variance of 0')2( =0.5). For example, for homodyne detection, in order to increase the

expected outage length by an order of magnitude, 11 dB of link margin and a diversity

of 25 are required.
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Figure 3.9: Expected outage length versus link margin for various amounts of
diversity. 0,%~0.5, Peeh=0.1, No=10¢, transverse wind speed is 10 km/hr, path
distance=20km

3.6 Intuitive Understanding of Improvement with Diversity

One way of looking at the improvement in fading statistics with diversity is that
diversity has the net effect of reducing the average or pseudo log-amplitude variance
experienced i.e. diversity provides a net improvement in link conditions. Specifically,

for a diversity-N system with a given amount of turbulence in the atmospheric path

to each receiver (represented by log-amplitude variance of,), the same outage

probability is achieved by a single receiver system with log-amplitude variance

where o2

2
o . pseudo

2 ; ;
% st <o,. We now find, for coherent detection and direct

detection, the value of 0'; pseudo @5 @ function of the amount of diversity N and the

log-amplitude variance ai, seen by each of the N diversity receivers.
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Earlier in this chapter, we found the outage probability of a diversity-N homodyne

detection system to be given by (3.35), namely

2 2 2N

N

2
1 1 1+ N, {—-In2+86,
B)utage, Homo,nolnterference =2 ¢€X {— F {mU - In(( . )( thresh )ji| }

The outage probability of a diversity-N homodyne system (where each receiver sees a
log-amplitude variance of O'f,) equals that of a system with no diversity (where the

. . . 2 .
receiver sees a log-amplitude variance of &7, .4, ) if

X, pseudo,Homo 2N s

2 2
1 = my, ~In (1+Nnx_ ln2+ethresh) — = 1 m, ~In (1+NnX_ 1nz-i_ethresh)
207 2N, 2040 )| Heee

(3.49)

The left-hand side of this equation is the outage probability exponent of a diversity-N
homodyne detection system and the right-hand side is the outage probability

exponent of a “pseudo” single receiver system. As we mentioned in Section 2.1, due

to conservation of energy, the power fading factor e** has m, = —0'% Thus,

myy =-20%. Substituting m,, . =-202,,,, into (3.49) gives

2 2
O_Lz|:mU _ ln[ (1 + Nn X_z‘ll\l;z + ethresh )]:I - (40-21 )|:_ 20-;,pseudg,]-[omo _ ln( (1 + Nn X_ ln 2 + ethresh )J:|
U

K X,pseudo 2 N

s

(3.50)

Isolating for o7 ..., gives
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2 2N,

41 1+ N, X-102+8,) )
O-;,pseudo,Homa=_—__—2_\/A2_(ln( TV T B e ]\] (351)

2
where Ae ln( (+N,)X-In2+ a,hm,,)J oL {m(] B ln( (1+N,)-In2+ gmh)ﬂ .

2N, o2 2N

s

For a diversity-N direct detection system, the outage probability is given by (3.10),

namely

outage, DD,nolnterference = Eexp - P

2
P 1 1 |:mU _ h’l( [ethresh + ‘V]zvathreshN N n ]]:l

U

. 2 . 2
Similar to how we found &, 4, above for homodyne detection, we find % pseudo

for direct detection to be

2
2 E l B2 _ [h]( elhresh + ' 261hreshNn jJ (3.52)

O' —_—
N

,pseudo, DD =-
x 2 2 .

2
_ gthresh + v 2ex‘hresh]v n 1 gthresh + ‘\/ zethreshN N, n
where B=In + my; —In .

2
oy Ns

s

We show in Figure 3.10 the pseudo log-amplitude variance for homodyne and direct
detection for o,2 values of 0.5, 0.3 and 0.1. Diversity improves the net amount of
turbulence and homodyne detection is more effective at reducing it than direct
detection is. This is due to the extra background noise detected as diversity is

increased.
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68



Chapter 4

Diversity Direct Detection and Diversity
Coherent Detection in Presence of
Interference

In this chapter, we consider various types of interference and derive the performance
of the diversity direct detection and the diversity coherent detection systems in the
presence of each of these interference types (we published much of these results in
[31]-[33]). Specifically, for each interference type, we derive the interference duty
cycle that causes the highest error probability in the absence of fading, the
interference duty cycle that causes the highest outage probability in the presence of
fading, and the corresponding error and outage probabilities when the interference
uses the worst case duty cycle. We also quantify the amount of interference that the
diversity system can tolerate and discuss a sensible way to choose the amount of

diversity and link margin.

69



4.1 Interference Types

The interference we consider in this thesis arrives off-axis® from the receiver and is
scattered by the receiving optical equipment so that the interference impinging on
the receiving telescope is multi-spatial-mode. @We assume the interference is
idealized and worst-case in that it has the worst possible setting for the intended
user’s communication system (including the user’s modulation scheme, transmit
power, receiver type, amount of receiver diversity, and receiver location). Worst-case
interference is useful to analyze as it provides an upper bound on system
performance. We consider five types of interference in the diversity direct detection
system, and two types of interference in the diversity coherent detection system.
These interference types are described in the next section and are representative of
those that might cause the maximum performance degradations. Some of the
interference types are symbol synchronized with the communication signal. This
assumption is not unreasonable because the interference could sweep its symbol
boundary slowly over time compared with the sender’s symbol time to eventually be
aligned with the sender’s symbol boundary. Some of the interference types cancel the
communication signal. This is not unreasonable because the interference could sweep
its phase gradually over 2w phase change so that the mode in the same spatial mode as
the communication signal eventually cancels the communication signal. This would
dislodge the communication system synchronization and the communication system

would have to re-acquire time synchronization and likely also spatial tracking.

For all the interference types, we assume that the interference is average power

constrained. We allow the interference to have a partial duty cycle, where duty cycle

* On-axis interference which is not the focus of this thesis can be much stronger and must be treated
separately using other techniques such as frequency hopping. The performance in the presence of on-axis
interference is expected to be very poor and will not be of interest as an operating scenario.
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is the fraction of symbols for which the interference is on. The duty cycle is denoted
as B, where 0<f<1. The interference can cause more damage if it is in a burst mode,
and has partial duty cycle and we derive the worst case duty cycle. We denote the
average number of received interference photons per symbol per receiver as N;. If
the interference has a duty cycle of 4 then during the symbols for which the
interference is on, the average number of received interference photons per symbol

per receiveris N;/f.

The communication system should, at the very least, be functional in the absence of
interference (in the presence of only background noise). We consider the effect of
interference on performance when the interference is larger than the background
noise ie. we assume that when the interference is on, the average received
background noise photons per symbol is much less than the average received

interference photons per symbol (¥, <<N,/p).

4.1.1 Interference Types in Direct Detection (Incoherent Detection)

Recall that the modulation scheme used in the direct detection system is BPPM. In
BPPM, if the sender sends a ‘0’, its signal is on during the first half of the symbol and
if it sends a ‘1’, its signal is on during the second half of the symbol. The first of five
types of interference that we consider in the diversity direct detection system is one
that masks the communication signal when the sender sends a ‘1’: the interference is
on as a constant signal only during the first half of the symbol for fraction f of the
symbols. See Figure 4.1 for a visualization of the communication and interference
signals. The communication and interference signals are shown in white and grey

respectively.  If the sender sends a ‘I, then the interference masks the
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communication signal, but if the sender sends a ‘0", then the interference actually

helps by adding to the communication signal.

Signal ‘0 Signal
amplitude amplitude S fe
envelope envelope

T2 7T L7

Figure 4.1: Visualization of signals in direct detection when the interference is on as a
constant signal for only the first half of the symbol. The communication and
interference signals are shown in white and grey respectively. ‘T’ is the symbol
duration.

When the interference and communication signals are received in the same half
symbol, we assume their powers add. (This assumes that either the interference is 90
degrees out of phase from the communication signal or that the interference phase
fluctuates rapidly relative to the communication signal’s phase.) This type of
interference has symbol synchronization with the communication system since its

signal is time-aligned to be in the first half of the symbol.

In some cases, a more ‘random’ interference may inflict more damage to the
communication performance. The second type of interference that we consider for
diversity direct detection has random amplitude with (2-sided) Gaussian distribution
and is on during the entire symbol. The third type of interference also has random
amplitude with Gaussian distribution but is on only during the first half of the
symbol.  This type of interference has symbol synchronization with the
communication system since its signal is time-aligned to be in the first half of the
symbol. For the second and third interference types, we assume for a worst case

analysis that the interference at the N receivers are in phase.
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The fourth type of interference we consider is on for the entire symbol and is
received with opposite phase from the communication signal such that the
communication signal is cancelled. See Figure 4.2 for a visualization of the
communication and interference signals and the net signal after cancellation. Again,
the communication and interference signals are shown in white and grey
respectively. This type of interference causes errors by canceling the communication
signal when either a ‘0’ or ‘1’ is sent. This type of interference has phase
synchronization with the communication system since the interference cancels the

communication signal.

Signal ‘0 Signal “q’
amplitude amplitude
envelope envelope

2 T HZ2 T

(a) communication and interference signals

Signal Signal

amplitude, ‘0’ amplitude L
envelope :‘ envelope F
TR 7T

T2 T

(b) net signal

Figure 4.2: Visualization of a) communication and interference signals and b) net
signal in direct detection when the canceling interference is on for the entire symbol.
The communication and interference signals are shown in white and grey
respectively. ‘T’ is the symbol duration.

The fifth type of interference, like the fourth type, is received with opposite phase
from the communication signal, but it is on only during the first half of the symbol.

It is also a canceling interference type, but only cancels the communication signals
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that correspond to a ‘0. See Figure 4.3 for a visualization of the communication and
interference signals. This type of interference has symbol and phase synchronization
with the communication system since it is time-aligned to be in the first half of the

symbol and its signal cancels the communication signal.

Signal Signal
amplitude] amplitude
envelope envelope

Signal ‘0 Signal

amplitude amplitude

envelope envelope
T2 7T

(b) net signal

Figure 4.3: Visualization of a) communication and interference signals and b) net
signal in direct detection when the canceling interference is on for only the first half
of the symbol. The communication and interference signals are shown in white and
grey respectively. “I” is the symbol duration.

4.1.2 Interference Types in Coherent Detection

Recall that the modulation scheme used in coherent detection is BPSK. In BPSK, if
the sender sends a ‘0’, there is a 180 degree phase difference in its signal compared to
when the sender sends a ‘1. The first of two types of interference that we consider in

diversity coherent detection is one that is Gaussian noise.
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The second type of interference that we consider for coherent detection is one that is
on as a ‘0’ signal and cancels the communication signal when the sender sends a ‘1".
See Figure 4.4 for a visualization of the communication and interference signals. If
the sender sends a ‘1’, then the interference cancels the communication signal, but if
the sender sends a ‘0", then the interference actually helps by adding to the
communication signal. This type of interference is phase synchronized with the
communication system since the interference cancels the communication signal. We
did not consider the other three interference types one, three and five as in direct

detection since these others correspond to transmission in only half of the symbol and

are not as performance degrading to coherent detection with BPSK.

Signal 0 Signal
amplitude amplitude ‘0

Figure 4.4: Visualization of communication and signals in coherent detection when
the interference is on as a ‘0’. The communication and interference signals are shown
in white and grey respectively.

4.2 Power Margin to Mitigate Interference

Consider that we have a given outage probability requirement, £,z equired =P - In

the absence of interference, the necessary average received signal photons per symbol

that homodyne detection requires to achieve outage probability p (given the

turbulence level, background noise level, error probability threshold, and diversity N)

is given by
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« (L4 NpX-1n2+6mresh) 4% 1] 1 4o} -1
Ng = L 5 thresh exp —21n(2p)ln 1+e_ﬁ_ +Eln 1+e——]—v— (4.1)

This is found by rearranging (3.35), the outage probability of homodyne detection in
the absence of interference. (4.1) gives the baseline minimum signal power needed to
achieve the performance requirement. We use a homodyne detection system for the
baseline because it requires less power than direct detection to achieve any given

outage probability.

In the presence of interference, we must provide extra power margin m >1 such that
we can meet the outage probability requirement despite the presence of interference.
Thus, in the presence of interference, we will denote the average received signal
photons per symbol by mN, instead of N, to emphasize that a power margin is

needed to mitigate the interference.

We discuss the amount of link margin required by the system to achieve the given

outage probability requirement in the presence of interference in Section 4.8.

4.3 Quantities Derived for Diversity Direct Detection and Diversity
Coherent Detection in the Presence of Interference

In the next two sections, we derive the following quantities for diversity direct
detection and diversity homodyne detection in the presence of the various types of

interference:
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a) the error probability in the absence of fading

b) the interference worst case duty cycle in the absence of fading (that maximizes
the error probability)

c) the outage probability in the presence of fading

d) the interference worst case interference duty cycle in the presence of fading

(that maximizes the outage probability)

In deriving the error probability, P(e), and outage probability, Pouse, we make the

following simplifying approximations:

Pe)= (1 - B)P(e | interference is not on)+ ,BP(e | interference is on)
= [P(e| interference is on)

(4.2)

and

P..= (1 - ,B)P(outage | inteference is not on)+ ﬂP(outage | interference is on)

outage ( 4 . 3)

= ,BP(outage | interference is on)

These assumptions are reasonable if the contribution to error and outage probability
when the interference is on is much larger than the contribution when the
interference is not on i.e. when the average received interference power is not much
smaller than the average received signal power. When deriving the worst case
interference duty cycle, we assume the duty cycle is a positive number not greater
than one (this is true by definition of a duty cycle that is non-zero). We assume that

the sender sends a ‘0’ or a ‘1’ symbol with equal probability.

As we did in Chapter 3, we will assume that the sum of the N log-normal random

N
. . . 1 . .
variables ,@,,....&y is log-normal i.e. ~ E a;=¢ where U is a Gaussian random

i=1

variable with mean and variance given in (3.9).
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If the interference is assumed to experience independent fading from the sender, the
analysis of outage probability becomes unwieldy and it does not lend itself to closed
form solutions or a form that provides intuition. Thus, when it simplifies the analysis
of diversity coherent and incoherent detection in the presence of interference, we
assume that the interference signal does not go through fading (or goes through the
same fading as the communication signal). This assumption does not have an
appreciable effect on outage probability as we will explain. Consider the following

four scenarios:

(1) the communication signal is not faded and the interference is faded
(2) the communication signal is not faded and the interference is not faded
(3) the communication signal is faded and the interference is faded

(4) the communication signal is faded and the interference is not faded

The system is not in an outage in scenario (1). Outages will occur in the other three
scenarios (2), (3) and (4). Assuming the interference does not go through fading (or
goes through the same fading as the communication signal) has no effect on the sum
probability of scenarios (3) and (4), and has little effect on the probability of scenario
(2) provided the probability of the interference being faded is small. Thus, the
assumption that the interference does not go through fading (or goes through the
same fading as the communication signal) does not have an appreciable effect on

outage probability.

4.4 Derivation of Diversity Direct Detection Performance

A block diagram of the diversity direct detection system is shown in the previous

chapter in Figure 3.1.
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Let us define the quantities used in this section. N, and N, represent the total
number of received photons in the first and second half symbol intervals. N, and N,
represent the average number of received background noise photons and interference
photons per symbol per receiver. The hypothesis Ho and Hi represent symbol values

of ‘0’ and ‘1’ being sent by the sender. a=(e;,a,,....ay) is a vector of power fading

factors. N; is the average number of received signal photons per symbol that
homodyne detection requires to achieve a required outage probability (see Section

4.2). m is the power link margin.

4.4.1 Direct Detection in Presence of Constant Interference That is On for First Half

of Symbol

Let us first consider the performance of diversity direct detection in the presence of
interference that is on for only half the symbol as a constant signal. As mentioned
previously, when the communication signal and interference are on during the same
half symbol, their powers are assumed to add. If the interference is on and the sender
sends a ‘0", the average photon counts in the first half and second half symbol

intervals are

NN,

N, =mNg + +E]2£ and (4.4)

N, = M (4.5)

respectively. If the interference is on and the sender sends a ‘1, the total average

photon counts in the first and second half symbol intervals are
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NN, . NN,

N, =
B

and (4.6)

*

N, =mN, + % 4.7)

respectively. The error probability in the absence of fading is given by

P(e)= ﬂP(e | interference is on)
= —2ﬁ—P(e | interference is on, H, ) + gP(e | interference is on, H, )

= gP(NI > N, | interference is on, H0)+ gP(NO > N, | interference is on, Hl) (4.8)
< g mion E[es(Nl—No)linterference ison, H, ]+ gmion E [e'(NO—Nl)‘ | interference is on, Hl]
52 12

The fourth line is the Chernoff Bound where the value of § and ! are to be
optimized to get the tightest bound. We find the tightest upper bound in Appendix
G. Taking the error probability to be well approximated by this tightest bound, the

error probability is

P(e)sgexp{_[‘/mN;+Ngl +N12V,, _\/sz\’,,J }+§exp{—[\/mN;+N]2v" _\/Ng’, +N]2V"J }

(4.9)

Notice that if we increase the receiver diversity from 1 to N, the total average
received signal photons does not change from the one receiver system but the total
received average background noise and interference increase by a factor of N. Taking

the derivative of (4.9) with respect to f and assuming that errors when the

S . . .. N
communication and interference signals add are negligible, N,<<—L, and
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mNg >> NN, (reasonable since the received signal should be much larger than the
received background noise for decent operation of the system), the interference duty

cycle that maximizes the error probability is

_ MV,
mN;

Bue (4.10)

See Appendix G for the derivation. With this duty cycle, when the interference is on

and the sender sends a ‘1’, the average received interference photons in the first half

symbol is NN, _ mN; and the average received signal photons in the second half

we

*
symbol is also mNg. Thus, when the interference is on and the sender sends a ‘1’, the

average received energy is constant across the symbol. In other words, the
interference worst case duty cycle is such that the interference puts just enough
energy into the symbols (during which it is on) to cause the average received energy
across the symbol to be constant. The error probability is dominated by errors that
occur when the sender sends a ‘1’, and the average error probability when the sender

sends a ‘1’ is sent is ¥2. Thus, the resulting error probability is

Pe)= e -Pr{Et)

_Bue 1
=Fe 2
_ NN,

~ 4mN;

(4.11)

In the presence of fading of only the communication signal, the error probability

when the interference is on is
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This is simply (4.9) with a multiplying fading factor for the communication signal

included and the B factor in front of the two terms removed. The outage probability

is given by

Ptage = ,BP(outage | interference is on)

= pP (P (| @, interference is on) > ¢ %resh )

N

pP [1 >
—_ . r
Nia ' mNg

2
1 1N . NN, [NN, NN »
P\ —expy—| .|| =2 a; |mNg +—= - Ly | L g Cthresh
ﬁ2xp{(\/(N5’) ST \//3 2]}6

2
N-In2+6,,., + NN, (AN, | NN,
8 2 2
<

2
025 G + | 2N AN, | NN,
2 2
<

pri e’ d
mNg
NN; NN ’ NN,
{1}—-ln2+0,hmh + ﬂl + 2"] - 2"
s
2 2)
inz2+g, ., + M NN, | DN, (4.13)
B 1 B 2 2
—expy——— | my —In - s
2 207, mNg
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where, in the third line, we assumed that errors when the communication and
interference are both on during the first half symbol are negligible i.e. that the first

term in (4.12) is negligible compared to the second term. In the second last line,

ox)= I \/—;; exp(—t2 / 2)dt and in the last line, we have approximated O(x) by the upper

bound %exp(— x*/2). Taking the derivative of the last line of (4.13) with respect to /3

and assuming N, << % and

% >>—In2+6,., (4.14)

(reasonable since —In2+8,,,, =1.6 for an error probability threshold of 0.1 and N,/

is much larger than 1 in scenarios where the interference is much larger than worst

case background noise of Nn=1), the value of B that maximizes the outage probability

is

NN 40§ 13/2
IR A
Buc mN;{+ . ] (4.15)

See Appendix G for the derivation. Substituting this worst case duty cycle into the
outage probability expression in the last line of (4.13), the outage probability when

the interference uses this worst case duty cycle is approximately

2
NN e*r 1
B)utage = m 1$ (1 + ] (4. 16)

83



The worst case duty cycle and corresponding outage probability expressions are valid

when (4.14) is true for the worst case duty cycle i.e. when the power margin is large

2
e4ol -1

3/2
enough that mn; >>(-In2+4,,.,, {H ] . For example, for N =4, P"*" =0.1, and

0'}2( =0.3, any power margin greater than 3.2 is large enough to satisfy the

approximation.

442 Direct Detection in Presence of Gaussian Interference That is On for Entire

Symbol

Next, let us consider the performance of diversity direct detection in the presence of
interference that is on for fraction f of the symbols as a randomly Gaussian signal.
Because the field impinging on the receiving pupils is not constant, the output of each
photodetector is a doubly stochastic Poisson process where the rate parameter varies
with the impinging Gaussian field. For a high power incoming field, the
photodetector output can be modeled as Gaussian. Assuming background noise is
negligible compared to the interference, we derive in Appendix G, the mean and
variance of the sum of the N photodetector outputs in each of the first and second

half symbol intervals (when the interference is on) to be

m= AZ}’ and (4.17)
2_NNj | NNy 2

respectively. The last term in the variance is due to the added randomness of the

varying rate parameter in the Poisson detection. Since each diversity receiver detects
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the same average interference power as the receiver detects in the single receiver
system, the sum of the N photodetector outputs has N times the mean of the
photodetector output of a single receiver system. The variance of the N-receiver
system is more than N times that of the single receiver system because we assumed,
for a worst case analysis, that the received Gaussian fields cause the N rate parameters
to vary together. In general, due to independent scattering, the phases of the fields

are actually independent. The error probability in the absence of fading is given by

P(e) = P(e| interferenceis on,H,)
= ,BP(mN; +n, < n, | interference is on, HO)

= ,BP(n1 —n, >mNy | interference is on, HO)

mN
—ﬂQ[ 202]

gexp{__(’"m } (419)

4c?

n

.| (i)

= -exp -

2 NN, (NN,]
2 ——+
A5

where n, and n represent the total interference signal received in the first and

NN, (NN; Y
second half symbol intervals respectively. Assuming TI << [TIJ , the value of

that maximizes the error probability is

_ NN,
mN;v

Bue (4.20)

See Appendix G for the derivation. If the interference uses this worst case duty cycle,

the resulting error probability is
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Ple)= V112 (4.21)
2mNS

(found by substituting the worst case duty cycle expression (4.20) into the last line of
the error probability expression (4.19) and assuming mNg >>1). In the presence of

fading of only the communication signal, the error probability becomes

(4.22)

P(e| a,interference is on) = Eexp -

This is (4.19) with a multiplying fading factor for the communication signal included
and the S factor in front of the term removed. The outage probability of the

diversity direct detection system in the presence of the Gaussian interference is given

by
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P

outage

= P(P(e | &, interference is on)

= BPr(outage | interference is on)

> ¢ %resh | interference is on)

2
NNI j ](_ ln 2+ chresh)

In2+86

)

thresh

.
In2+6

thresh

)

(4.23)

2
&] J(_ In2+ gthresh)

B
mN

(0]
EVE. a; imiNg
:ﬁP lexp — N > > e‘gthresh
: o VN, (NN,J
—+
B B
1x 1 NN,
= pP Fga,. mN;.\/z[ 5 +( 3
P D N NN,J{NN,] 2
mN yé) B
o NN, +(NN, J"' ‘
B 1 . B B
_:BQ ;U_ my — mN;
|
;ﬁexp<— 12 my, —In
2 20y

2
. . NN NN ..
Assuming again that _/3]—« (le , the value of B that maximizes the outage

probability is

NN,
,ch =—*\/2_(—1n2+9thresh)

mNS

3/2
( 640% -1
Ll + (4.24)
N

See Appendix G for the derivation. The outage probability when the interference

uses this worst case duty cycle is
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2
40
NN, e % -1
P outage = * 2\-In2+ ethresh I+ (425 )
2mNS N

(found by substituting the worst case duty cycle expression (4.24) into the last line of

outage probability expression (4.23)).

443 Direct Detection in Presence of Gaussian Interference That is On for First Half

of Symbol

Now we consider diversity direct detection in the presence of interference that is on
for the first half of the symbol for fraction B of the symbols as a randomly Gaussian
signal. Again, for a worst case analysis, we assume that the N Poisson rate parameters
vary together. Modeling the sum of the N photodetector outputs as Gaussian and
assuming background noise is negligible compared to the interference, the mean and
variance of this Gaussian signal in the half symbol interval that the interference is on

is

m=2N1 and (4.26)
B
2 NN NN 2
ot =221 z[_fj (4.27)
B B

respectively. (This is the same as the mean and variance in (4.17) and (4.18) but

NN,
2p

where

is replaced with N_jﬂVL .) The error probability in the absence of fading is

given by
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P(e) = BP(e] interference is on)

B

= ?P(e | interference is on, H, )

B

* . .
=L Prin, > mN _| interference is on
2 U $

B
= gexp B 2 (4.28)
of NN, | Z(NN,j
B B

where in the second line, we assumed the error probability is dominated by errors
NN, (NN; Y
when sender sends a ‘1’. Assuming 7’« (TIJ , the value of £ that maximizes

the error probability is

_2NN;
mN;

Bue

(4.29)

See Appendix G for the derivation. If the interference uses this worst case duty cycle,

the resulting error probability is

P(e)=M{—exp(— _J (4.30)

(found by substituting the worst case duty cycle expression (4.29) into the last line of
the error probability expression (4.28) and assuming mTNS»l). In the presence of

fading of the communication signal, the error probability when the interference is on
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is given by

P(e| a,interference is on) =

(4.31)

—eX] —
5 p

This is the last line of (4.28) with a multiplying fading factor for the communication

signal included and the A factor in front of the term removed. The outage

probability is given by

P

o1

wiage = BP(outage | interference is on)

= ﬂP(P(e | @, interference is on) > e %resh )

I

B

PP

AP

(SYReY

~

2

N izl

U

e <

e, <

16

a,
Vi

v -

B

J >e ~Othresh

o MY

i

5]

NN,

B

i

NN,

B

)

In2+86, NN,

thresh

)+

20y

my; —1In

n
mNg

NN,
B

NN,

3 (4.32)

i

2
+ 2{]\%—’—} J(— n2+6,,,)+

0
mNg
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NN nN Y
Assuming —ZL «<| 221 | the value of B that maximizes the outage probability is
g B B gep ty

3/2
2
40;(

NN e
B = £(21/—ln2+6,h,esh +1) 1+ <

mNS

-1

(4.33)

See Appendix G for the derivation. The outage probability when the interference

uses this worst case duty cycle is

2
NNI(zv—lnz'Hgthresh +1) 1+e4dl -1 (4.34)

2mN g N

P outage =

(found by substituting the worst case duty cycle expression (4.33) into the last line of

the outage probability expression (4.32)).

444 Direct Detection in Presence of Canceling Interference That is On for Entire

Symbol

Let us consider diversity direct detection in the presence of interference that is on for
the entire symbol of fraction B of the symbols, during which it cancels the
communication signal. As discussed previously, it may be difficult for interference to
be aligned to exactly cancel the communication signal, so this type of canceling
interference is a worst case type of interference. If the sender sends a ‘0, as we show
in Appendix G, the average number of received photons in the first half and second

half symbol times are given by
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2
_ v |NN, NN, .« NN, fsz;NN, NN,
N, [,/mNS 25 J += mNg + 27 5 - and (4.35)
NN, NN
N — I n
Y = (4.36)

respectively. If the sender sends a ‘I’, the average number of received photons in the
first half and second half symbol intervals are reversed from (4.35) and (4.36). If the
interference is on for fraction f of the symbols, the error probability in the absence of

fading is given by

P(e) = ,BP(e | interferer is on)
= BP(N, > N, | interfereris on, H,)
< min SE [es(N 1=No) | interfereris on, Ho] (4.37)

520

2
_ Bexpl-| mn: 4 NN [2NNymNG NN, [NN, MN,
28 B 2 2 2

where the third line is the Chernoff Bound and the last line uses the optimal s to get

the tightest bound (derived in Appendix G). Assuming N, <<]2v—'é, and taking the

error probability to be well approximated by the tightest Chernoff bound, the error

probability is

i ﬁexP{_ m'\! ];];1 -\/%%-J } (4.38)

=ﬁexp{— JmNg - 2]\;N’} }
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Assuming mN. ; >>4 | the value of B that maximizes the error probability is

_ 2NN,
mN;

Buwe (4.39)

See Appendix G for the derivation. With this worst case duty cycle, when the
interference is on, the average number of received photons in the two half symbol
intervals are equal. This is seen by substituting (4.39) into (4.35) and (4.36). The
average received photon count in the half symbol interval with the communication

signal is

2
— |NN NN. mN. NN
N — ! no— S n
[ s 2ﬂsc] B s 2 (4.40)

and in the other half symbol interval is

NN, NN, _ mNg LM,
2B, 2 4 2

(4.41)

Thus, the interference worst case duty cycle is such that the interference puts just
enough energy into the symbols (during which it is on) to cause the average received
energy across the symbol to be constant. The resulting error probability when the

interference uses the worst case duty cycle is thus

_NN;

P(e)zﬂwc '%" N

(4.42)

Uy *

(found by substituting (4.39) into (4.38)). Assuming that the interference goes
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through the same fading as the communication signal (as we described near the start
of Section 4.3, this assumption does not have an appreciable effect on performance),

the error probability when the interference is on is becomes

2
N /mN* 2N
interf: i = - L 2Ys 2
P(e| a,interferenceis on) exp{ (Ea,j{ N 7 ] }
2
1 X » szN
= exp{—(ﬁi%aijlqus - 5 I ] }

This is (4.38) with the same multiplying fading factor included for the communication

(4.43)

signal and interference and the S factor in front of the term removed. The outage

probability is

94



Page = BP(outage | interference is on)

O

=p Pr(P(e | at, interference is on) > e resh )

o {( S - [ ” ]

= ,BPr Z a < thresh

N (W 2NN]

— ﬂPI‘ eU thresh

[W 2NNJ

=pBPr|U<In O

G

0 L in O

Oy (\/’mT 2NN ] (444)

Its

ﬁ 1 thresh
2

exXpl ——
[W 2NN]

20'U

It is difficult to find a closed form expression for the duty cycle that maximizes this
outage probability, so we assume the worst case duty cycle is the same as the duty

cycle that maximizes error probability i.e.

Bue =—— (4.45)
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This assumption is reasonable for large error probability thresholds because it is the
detection noise, background noise and fading that push the system into outage. If the
interferer spreads its energy across much more than this fraction fBwc of symbols, the
efficacy of the noise and fading in causing outages will be reduced (due to moving the
error probability operating point further away from the error probability threshold).
However, this duty cycle is an approximation since it does not include an atmospheric

turbulence parameter.

When the interference uses this value of duty cycle, the resulting outage probability
is
2NN,

Poutage =Bwec =——" (446)

mNS

445 Direct Detection in Presence of Canceling Interference That is On for First

Half of Symbol

Now consider diversity direct detection in the presence of interference that is on for
only the first half of the symbol for fraction f of the symbols, during which it cancels
the communication signal. Again, it would be difficult for the interference to be
aligned to exactly cancel the communication signal, so this type of interference is also
a worst case type of interference. If the sender sends a ‘0’, as we show in Appendix G,
the average number received photons in the first and second half symbol times are

given by

o= 2 B, V[

2
NN/] M and (447)
7 2
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N, = (4.48)

If the sender sends a ‘1’, the average number of received photons in the first and

second half symbol intervals are given by

N, = %Jr NN, (4.49)
N, = mN, + NJZV E (4.50)

The error probability in the absence of fading is given by

P(e)= ,BP(e | interference is on)

=§ (elmterference ison, H0)+ b P(elmterference ison, H )

oxp _[\/;nN +NN ’NN mNs (NN ] @.51)
+£exp{_(‘/mN;+NN,, _\/NN, +NN,,J }
2 2 5 2

~

(SRR

where we again used the tightest Chernoff Bound. Assuming Ezi «M and

B

NN . o
5 ™ <<mNg, this error probability reduces to

2
P(e) = ﬂexp{-[,/mNg - ﬂNg I ] } (4.52)

This error probability is the same as the error probability for diversity direct detection
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in the presence of canceling interference that is on for the entire symbol except that
2NN, /B is replaced with NN,/ . Maximizing this error probability over f, the

interference worst case duty cycle is

NN,
=—Fs 453

See Appendix G for the derivation. Substituting this worst case duty cycle into (4.47)-
(4.50), the average number of received signal photons in the first and second half

symbol intervals are equal when the interference is on. Specifically, when the sender

sends a ’0’, the average number of received photons in both half symbols is % and

when the sender sends a ‘1’, the average received photons in both half symbol

. . « NN . .1 .
intervals is mNg + > The resulting error probability when the interference uses

this worst case duty cycle is thus

1_ NN,
2 2mNg

P(e)= B - (454)

when the average number of background noise photons is much smaller than the
average number of interference photons. Assuming that the interference experiences
the same fading as the communication signal (as we described near the start of Section
4.3, this assumption does not have an appreciable effect on performance), the error

probability becomes
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(4.55)

This is (4.52) with the same multiplying fading factor included for the communication

signal and interference and the S factor in front of the term removed. Assuming that

the interference goes through the same fading as the communication signal, the

outage probability is

P

O

utage = ,BP(outage| interference is on

fe {40 oo

ﬂPr lg chresh
N i=1 ,—
— ﬁPI’ e thresh

R

SJASY

=]

L my — Inl ethresh

oy (m NN,J

(4.56)

1
expy— 5 my,; — lhresh

20y ( s - [, j

This is the same as the outage probability of diversity direct detection in the presence
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of canceling interference that is on for the entire symbol except that 2NN,/f is
replaced with NN,/f. Again, it is difficult to find a closed form expression for the

duty cycle that maximizes this outage probability, so we assume that the worst case

duty cycle is the same as the duty cycle that maximizes error probability i.e.

NN
ﬂwc = 5 (45 7)
mN S

Again, as we explained in the previous section, this assumption is reasonable for large
Pshresh. When the interference uses this value of duty cycle, the resulting outage

probability is

NN
P outage = Bwe = i (4.58)

mNS

(found by substituting (4.57) into the third line of (4.56)).

4.5 Derivation of Diversity Coherent Detection Performance

A block diagram of the diversity coherent detection system is shown in the previous
chapter in Figure 3.2. As discussed in Chapter 3, homodyne detection results in lower
error probability than heterodyne detection. Thus, we will assume that the coherent
detection system uses homodyne detection in our analysis in this section.

45.1 Homodyne Detection in Presence of Gaussian Interference

Let us consider the performance of diversity homodyne detection in the presence of
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interference that transmits Gaussian noise for fraction £ of the symbols. In Section
3.3.3, we found the error probability of diversity homodyne detection in the absence

of interference to given by (3.34), namely

1 N
[ﬁ;ai J2Ns

1
by Homo,nolnterference (e i Q) = —2'eXp - 1+ Nn

In the presence of Gaussian interference, assuming the background noise is negligible
compared to the interference, the error probability (when the interference is on) is
the above error probability where N, is replaced with N,/f. Thus, in the presence

of Gaussian interference and the absence of fading, the error probability is given by

P(e) = ,BP(e | interference is on)

B 2mNg (4.59)
2

As we discussed in Chapters 2 and 3, the total detected interference does not increase
with diversity due to single spatial mode detectors coherently combining the signals

with optimal weights. In essence, diversity coherent detection only sees a total of one
spatial mode. Assuming 1<< % , the value of S that maximizes the error probability
is

__M
2mN;

B (4.60)

See Appendix G for the derivation. The error probability when the interference uses
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this worst case duty cycle is approximately

Ple)= 45]’\,. e (4.61)
S

(found by substituting (4.60) into (4.59) and assuming 2mNg >>1). In the presence of

fading of only the communication signal, the error probability when the interference

isonis

1 N
, [N;a, ]ZNS

fomo,nolterference (e] a,interference is on) = hei T (4.62)
n

This is the error probability in the absence of interference (3.34) but where N, is

replaced with N,/ /. The outage probability is given by
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Ptage = ﬂP(outage | interference is on)

= ,BP(P(e | ,interference is on) > e*g'h'“”)

1 N *
(— pN-4 j2mNs

1 i=1 )
= ﬁP —eXp _ >e ‘thresh
2 1+&
N *
—%a,- 2mN g
= pP| - ~—— 5 >1n(2e“"'hmh)
1+—L
B

*

1w (1 + %J(— In2+ 9thresh)
= AP (FZOZ,)< 2mNg

(1 + %J(_ In2+ glhresh)
In|

B 1
= —expi———| my — :
2 207y 2mN
(4.63)
Assuming 1<< %, the value of B that maximizes the outage probability is
w2 )2
N;(-In2+6 % _
B = 1( n +* thresh) 1+£ 1 (4.64)
2mNS N

See Appendix G for the derivation. The outage probability when the interference

uses this worst case duty cycle is

2
4
N](_]n2+9thresh) 1+e Ki -1

4mN ;

(4.65)

P outage ~

(found by substituting the worst case duty cycle expression (4.64) into the last line of
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outage probability expression (4.63)).

45.2 Homodyne Detection in Presence of Canceling Interference

Finally, we consider the performance of diversity homodyne detection in the
presence of interference that has symbol and phase synchronization with our system,
and whose signal cancels the communication signal. Recall that symbol and phase
synchronization may occur if the interference slowly sweeps its phase and symbol
boundary so that the interference signal is symbol and phase aligned with the
communication signal. This is a worst case interference analysis. Let the received
signal amplitude (after photodetection and filtering) in the absence of interference be
denoted by as if the sender sends a ‘0’, and —a if the sender sends a ‘1’ (see Figure
4.5a). Since the interference always sends a ‘0’, its signal subtracts from the sender’s
signal if the sender sends a ‘1’ (and adds to the sender’s signal if the sender sends a ‘0).
We denote the amplitude (after the filter) of the canceling interference by ar. As
depicted in Figure 4.5b, the total received signal amplitude is as+arif the sender sends

a ‘0’ and —as+arif the sender sends a ‘1’.

51’ 609
L4 | A d

-ag as

(a) in the absence of any interference

‘1’ ‘0°

-agtag agtay

(b) in the presence of a canceling interference

Figure 4.5: Received signal constellation
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The error probability is given by

P(e) = ﬂP(e | interference is on)

=ﬂBPr(n >(ag - a,)| H1)+%Pr(n <{a; +a,)] HO)}

B | a;-a ag +a; ] (4.66)

_B B
- ZQ[,/NO/Z}- 2Q[,/N0/2
—f—exp{— (aS]:]:JI) }+§exp{— (as;o"I) }

I

where 7 is the total local oscillator and background noise at the output of the filter,

and has variance N;/2. Using (3.19) in the analysis of heterodyne detection but

scaling the noise by factor 2 to adjust for homodyne detection, the signal and

interference amplitude and noise variance are given by

2
as =Es = Z[Z—g) PLEST (4.67)
P
ar = JE; = 2(%’5) PL-éT (4.68)
N, & 1(gqnY
—22 = ZEI;%PL + 5(‘2%) PN o background (4.69)

where E is the average energy of the communication signal after the filter, E, is the
average energy of the interference signal after the filter, P, is the average received
signal power, P, is the average received interference power, T is the symbol time, g

is the charge of an electron, N uugmma 1S the one sided spectral density of the

background noise, 7 is the photodetector’s quantum efficiency, A is Plank’s constant,

and v is the frequency of the optical wave. Substituting (4.67)-(4.69) into (4.66), the
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error probability reduces to

+ exp

- W,
s 'Z(M‘\E J
Ple)=~=] exp N (4.70)

—2(1/mN; +\/]—TI‘;J
1+N,

Assuming that the second term is negligible (reasonable since the second term

represents errors when the signal and interference add constructively) and that
2(1+N,)<<mNg (reasonable since the received signal should be much larger than the

worst case received background noise for decent operation of the system), we find the

value of £ that maximizes the error probability to be

Ny
*
mNS

Bye = (4.71)

See Appendix G for the derivation. The error probability when the interference uses

this worst case duty cycle is

P(e) =

N]
N:

™= (4.72)

N

(found by substituting (4.71) into (4.70) and again taking the second term to be
negligible compared to the first term). In the presence of fading of the

communication signal, the error probability when the interference is on is
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2 2
- /i” c_ N - fi” ce N
2[ Ngla,.mNs \/;] 2( Nga”mNS‘F\/;)

+ exp
1+N, 1+N,

P(e| a,interference is on) = 7 exp

4.73)

This is the error probability (4.70) with a multiplying fading factor for the

communication signal included and the B factor in front of the term removed. The

outage probability is given by

Page = ,BP(outage| interferenceis on)

= ,BP(P(e | &, interference is on) > e e )

2
o [ gy - [N A g+ [N
. 2( Ng,a,mNs ,B] 2[ NE}a,mNs+ ﬂ]
1+N,

= [ Pr] 7 exp TN +exp

2
>e ~thresh

Nz - p

~ ﬂ Pr| Zexp > e‘gthresh

(4.74)

where in the fourth line, we assumed that the second term in the error probability
(due to a symbol error when the sender sends a ‘0’ i.e. when the sender’s and
interference signal add constructively) is negligible. This is a reasonable assumption
since most errors will occur due to the communication and interference signals

canceling. Assuming
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N o> (1+ Ny =104 + Eppresh)
p 2

(4.75)

(reasonable since —In4 + 6,4, = 0.9 for an error probability threshold of 0.1, ¥, =1 in

. N . . .
worst case scenarios, and 7’ is much larger than N, in scenarios where the

interference is much larger than worst case background noise), the worst case duty

cycle that maximizes the outage probability is

3/2

Bye =—| 1+ (4.76)

See Appendix G for the derivation. The outage probability when the interference

uses this worst case duty cycle is

N e*r
P =—1_I1+ 477
outage 2mNS [ N ] ( )

(found by substituting the worst case duty cycle expression (4.76) into the last line of
outage probability expression (4.74)). The worst case duty cycle and corresponding

outage probability are valid when (4.75) is true for worst case duty cycle i.e. when the

- e 1 r
power margin is large enough that mN >> 5(1 +N, \-1n4+86,,, {1 +£ ¥ ] )
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4.6 Tables Summarizing Worst Case Duty Cycle, Error Probabilities and
Outage Probabilities for Various Interference Types

In Sections 4.4 and 4.5, we derived for the various interference types, the worst case
duty cycle in the absence and presence of fading and the corresponding error and
outage probabilities. The worst case interference duty cycle for the various
interference types is summarized in Table 4.1 and the corresponding error and outage
probabilities are summarized in Table 4.2. For direct detection, the duty cycle, error
probability, and outage probability increase linearly with increasing diversity for all
the interference types. With increasing diversity, more interference is detected per
symbol, and the interference can thus increase its duty cycle to cause more damage to
more symbols. This causes the corresponding error probability and outage probability
to increase. For coherent detection, increasing diversity does not cause an increase in
duty cycle, error probability or outage probability due to detecting the same amount

of interference regardless of the amount of diversity.
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Interference type

Worst case duty cycle in
absence of turbulence

Worst case duty cycle in
presence of turbulence

(correspondini to P(e)) (correspondini to Pourage)

Constant on for half | MV; w2 Y
- NN |, €% -1
symbol mN g | 1
mN s
Gaussian on for NN, 4% e
entire symbol mN NN{ 2CI0 2+ Bgeqn)| 142 =
mN =
Gaussian on for half | 2NN, ik T
symbol mNg N—N;'(z L il # 1] 1E =l
mN S
Canceling on for 2NNy 2NN
entire symbol mN mN g
(approximated to be the same as
in the absence of fading)
Canceling on for NN, NN,
half symbol mN g mN g

(approximated to be the same as

in the absence of fadi.nii

342

Gaussian Ny 40}
v N -1
2mN g L (cin2+80 ) 145
szS N
: 352
Canceling N L - oy,
mNS I* T e -
mNS N

Table 4.1: Worst case interference duty cycle for various interference types
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Interference type

Error probability (in absence
of turbulence)

Outage probability (in presence
of turbulence)

Constant on for half | MV 2
bol 4 NI‘ Ny | €%
symbo mN g
P 2mNg N
Gaussian on for NNy 12 - e4a§ .
i . L J2(-1n2+ G| 1 —
entire symbol 2mN g 2 2+ Chresh)) 1+ —
Gaussian on for half | NV; /4 402
« ¢ NV {3 i By +1] 45—
Symbol mN s mNE thresh
Canceling on for NN 2NN;
entire symbol mN mN g
Canceling on for half| NV, NN
symbol mNg
Gaussian Ny A " 402 .
4mN;v g ¥ (_ In2+Gppesn ) 1+
4mN i N

1i N 2

Canceling I ( 402
4mN': i Y Mkt
3 2mNg L N

Table 4.2: Error probability and outage probability for various interference types

when the interference uses the worst case duty cycle.

4.7 Performance Plots of Diversity Coherent and Incoherent Detection
in Presence of Various Interference Types

In this section, we use the expressions that we derived for worst case interference

duty cycle, error probability, and outage probability to present various plots and make

some observations.
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4.7.1 Performance in Non-Fading Channel

First, let us discuss the performance of diversity direct detection and diversity
homodyne detection in the presence of interference but in the absence of fading. See
Figure 4.6 for a plot of the interference worst case duty cycle in a non-fading channel
for the various interference types, and the corresponding error probability when the
interference uses this worst case duty cycle. As seen in Figure 4.6a, for each of the
interference types, the interference worst case duty cycle increases with increasing
interference power. In other words, if the interference spreads its larger power over
more symbols, it causes more damage; adding more interference to the same fraction
of symbols does not increase the error probability as much as adding the additional
interference to additional symbols. Also, as expected, we see in Figure 4.6b that for
each interference type, the error probability increases as the ratio of interference to
communication signal power increases. In direct detection, the interference type that
causes the highest error probability is the canceling interference that is on for the
entire symbol followed by the Gaussian interference that is on for only the first half
of the symbol. For homodyne detection, we have an analogous scenario: the
canceling interference causes higher error probability than the Gaussian interference.
If we use direct detection, the interference can take on a strategy that causes worse

error probability than if we use coherent detection.

Note that for direct detection, canceling interference that is on for the entire symbol
causes higher error probability than if it is on for just half the symbol, whereas the
direct detection Gaussian interference that is on for the entire symbol causes lower
error probability than if it is on for just half the symbol. This seems inconsistent at
first glance, but there is a logical explanation. Recall from Sections 4.4.4 and 4.4.5
that the worst case duty cycle for each of the canceling interference types in direct

detection is such that the interference power in each symbol is the amount that
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causes the net energy level to be constant across the entire symbol. (See Figures 4.3
and 4.4 for a visualization of the communication and interference signals for the
canceling interference types in direct detection and the net signal after cancellation.)
It takes the canceling interference that is on for the entire symbol half the energy to
make the net signal level across the symbol as compared to the canceling interference
that is on for only the first half of the symbol. This is because the canceling
interference that is on for the entire symbol only has to use enough energy to subtract
half the amplitude in the first half symbol (and use this same amount of energy in the
second half symbol interval), whereas the canceling interference that is on for only
the first half of the symbol has to subtract the entire amplitude in the first half
symbol. Thus, the canceling interference that is on for the entire symbol can spread

its energy across more symbols and cause more damage overall.

-2 , R I =
10| -7 —e— DD, BPPM, Constant Interference on half symbol |

= —&— DD, BPPM, Gaussian Interference always on
—&— DD, BPPM, Gaussian Interference on half symbol
—+— DD, BPPM, Cancelling Interference always on
—&— DD, BPPM, Cancelling Interference on half symbol | |
wec. 000 === Homodyne, BPSK, Gaussian Interference
' —&— Homodyne, BPSK, Cancelling Interference

Bopt for emor probability

10° 10" 10°

N,/ (mNg)

Figure 4.6 (a)
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----- Homodyne, BPSK, Gaussian Interference
—=&— Homodyne, BPSK, Cancelling Interference

1074_ . L - — p—— — — —Y —
102 10" 10°
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Figure 4.6 (b)

Figure 4.6: a) Interference worst case duty cycle and b) Error probability of direct
detection and homodyne detection in the presence of interference that uses the worst

case duty cycle in the following conditions: no fading, N=1, Nu=1. mNy is the average
number received signal photons per symbol. (Recall from Section 4.2 that Ny is the

baseline number of average received signal photons per symbol needed by homodyne
detection to achieve a given required outage probability and m is the link margin

provided beyond Ng.) Note that the error probability on the left side of Figure 4.6b

where N, /(mNg)=10"" is not accurate when the average received signal photons

mN’g is less than roughly seven'. This is because the contribution to error probability
when the interference is not on is not negligible compared to the contribution when
the interference is on, and the approximation (4.2) is not a good one. As N, /(mNy)
becomes smaller, and in the limit when it approaches zero, the error probability
would approach the error probability value that corresponds to no interference i.e.
the error probability due to just background noise and receiver detection noise.

In the case of the two Gaussian interference types that use their worst case duty cycle,

* For an average received signal photons per symbol of 7 and average received noise photons per symbol of 1, direct detection’s
error probability in the absence of interference is 1.6x107 (by (3.6)) and homodyne detection error probability in the absence of
interference is 5x107 (by (3.34)).
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when the interference is on, it turns out that the mean average photon count per half
symbol due to the interference is the same for the two Gaussian interference types
and the variances are the same also (this can be found by substituting the worst case
duty cycle into the expressions for the mean and variance in Sections 4.4.2 and 4.4.3).
The error probability for the Gaussian interference that is on for the first half symbol
is dominated by errors that occur when the sender sends a ‘1’, during which the
average received photon difference between the two half symbol intervals is Ns/2 (see
Appendix G). In the presence of the Gaussian interference that is on for the entire
symbol, the average received energy difference between the two half symbol intervals
is Ns (see Appendix G). Moreover, the worst case duty cycle for the Gaussian
interference that is on for the first half of the symbol is twice that of the Gaussian
interference that is on for the entire symbol. Therefore, the error probability for the
Gaussian interference that is on for the first half of the symbol is higher than the

error probability for the Gaussian interference that is on for the entire symbol.

4.7.2 Performance in Atmospheric Log-Normal Fading Channel

Next, we discuss the performance of the direct detection and homodyne detection
systems in the presence of interference when we have log-normal fading due to clear
atmospheric turbulence. As mentioned, the performance metric we use in the

presence of fading is outage probability.
See Figure 4.7 for plots of the interference worst case duty cycle and the

corresponding outage probability for the various interference types when the signal

experiences fading and the error probability threshold is 0.1.
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Figure 4.7: a) Interference worst case duty cycle b) outage probability of direct
detection and homodyne detection in the presence of interference that uses the worst
case duty cycle in the following conditions: log-normal fading with o,=0.3,

Perhresh :0.1 ; N=1 Y Nnil

Just as in the absence of fading, the interference can hamper performance more if we

use direct detection than if we use coherent detection. For direct detection in the

116



presence of fading, Gaussian interference that is on for the first half of the symbol
causes higher outage probability than canceling interference that is on for the entire
symbol (where we approximate the canceling interference worst case duty cycle to be
the same as in the absence of fading). For homodyne detection, the canceling
interference causes higher outage probability than the Gaussian interference. By
comparing the outage probability expressions of homodyne detection in the presence
of the Gaussian interference and canceling interference ((4.65) and (4.77)), the
canceling interference causes higher outage probability than the Gaussian

interference does roughly when

—In2+ ethresh
2

1> (4.78)

which reduces to

pihresh %e_z =0.068 (4.79)
In general terms, canceling interference, though hard to implement, is the more
damaging type of interference when the error probability threshold is high. This is
because the canceling interference focuses its energy to reduce the amplitude of the
desired signal thereby putting the error probability operating point in the absence of
fading close to the error probability threshold (background noise and turbulence take
care of causing outages after that). The Gaussian interference moves the operating

point in the absence of fading farther from the error threshold (and its variance is

what pushes the operating point above threshold).
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Conversely, the Gaussian interference is more damaging when the error probability
threshold is low. With a lower error probability threshold, the threshold is closer to
the operating point in the absence of fading for both interference types. Thus, for the
Gaussian interference, its variance pushes the point above threshold often. For the
canceling interference, the background noise and atmospheric turbulence do not push

the operating point above threshold as often as the Gaussian interference.

The plots shown thus far were for no-diversity direct detection and no-diversity
homodyne detection in the presence of various interference types. In Figure 4.8, we
show the outage probability when the diversity is increased to 4. Comparing Figure
4.7b and 4.8, we observe that when diversity is increased to 4, direct detection’s
outage probability curves become higher than those with no diversity. In other
words, increasing diversity to 4 made the outage probability worse. In contrast,
homodyne detection’s outage probability with N=4 is lower than with no diversity.
Homodyne detection’s outage probability improves with diversity because the fading
statistics improve with diversity while the total interference and background noise
detected remains the same. Direct detection’s outage probability worsens because
although the fading statistics improve with diversity, the total interference and
background noise detected increases with diversity. In direct detection, the increase

in detected interference overpowers the improvement in fading statistics.
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Figure 4.8: Outage probability (in the presence of fading) of direct detection and
homodyne detection in the presence of interference that uses the worst case duty
cycle in the following conditions: log-normal fading with o,=0.3, P/""=0.1, N=4,

Nn= 1

Let us consider the effect of increasing diversity in direct detection when the worst
interference type is present. Among the interference types we considered, the
interference that causes the worst performance in direct detection (for large error
probability thresholds) is the Gaussian interference that is on for the first half symbol.
We show in Figures 4.9 and 4.10, for various diversity values, the error probability
and outage probability of direct detection in the presence of the Gaussian interference
that is on for the first half of the symbol. We see that increasing diversity only
worsens the performance rather than improving it. We prove in the next section that
this is true for diversity direct detection in the presence of a Gaussian interference
&f

that is on for the first half of the symbol, provided % <<[ 3
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Figure 4.9: Error probability (in the absence of fading) of direct detection in the
presence of Gaussian interference that turns on for only the first half symbol, and that
uses the worst case duty cycle in the following conditions: Nn=1
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Figure 4.10: Outage probability (in the presence of fading) of direct detection in the
presence of interference that turns on for only the first half symbol, and that uses the
worst case duty cycle in the following conditions: log-normal fading, o,=0.3,

ptresh —0.1, Na=1
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4.8 Optimal Diversity of Direct Detection in Presence of Interference

We now show that the optimal diversity value for direct detection in the presence of

N,

2
.. . . N. NN
Gaussian interference that is on for the first half symbol is one when 5 << (—L) .

B
The outage probability of direct detection in the presence of Gaussian interference

that is on for the first half symbol (and uses the worst case duty cycle) is given by

(4.34), namely

2
4
e -1

iVN—I*(z,/— N2+ Bppeqn +1] 1+ (4.80)

2mN S

outage =

when the background noise is negligible compared to the interference and

2
_Ai];_l« (%} . Isolating for mNy gives

) —In2+Bppeg +1 z
v Ny 1025 s + )[mew _1] (4.81)

2P outage

Since this expression increases with increasing diversity value N, the diversity value
that minimizes the amount of required signal power for a desired outage probability is
one. Denoting the optimal direct detection diversity value in the presence of the
Gaussian interference that is on for the first half of the symbol as

N

opt GaussianHdfSymbollnterference

N, opt GaussianHdfSymbollrterference = 1 (4'82)
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In other words, for direct detection in the presence of Gaussian interference that is on
. NN; (NN, Y o
for the first half the symbol, if v << wak adding diversity only degrades the

outage probability; the lowest outage probably is achieved if no diversity is used.

4.9 Amount of Interference the System Can Tolerate

Since coherent detection outperforms direct detection, if we are interested in better
performance (all other factors aside), we would like to use a coherent detection
system. In this section, we discuss the amount of interference the homodyne system
can tolerate while still achieving the required outage probability. We also describe a
sensible way to select the amount of diversity and power link margin to deal with

atmospheric turbulence and interference.

If we provide a factor m of power margin and diversity N, the outage probability of a
diversity homodyne system in the presence of canceling interference (the worst of the

types we considered) is given by (4.77), namely

P =
outage m NS N

Thus, the amount of interference, N, that the system can tolerate to still meet an

outage probability requirement of Poutsge required is

2mN*})oua e require
N, = 205" ouagerequired (4.83)

2
40
e * -1

N

1+
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(found by re-arranging the outage probability above). Phrased another way, the
maximum ratio of average received interference to signal photons that achieves the

required outage probability is

N I 2P, outage,required
T (4.84)
e *-1
1+

N

For the case when no diversity is used (N=1), in the presence of interference, the

minimum link margin that is needed to achieve Poursge.required is

2
. N,e**
Ny =t
mNs = (4.85)

outage,required

(found by substituting N=1 into (4.84)). So, for example, if we have a required outage

. Ne
probability of 102 and 03 =05, we need mNj =?11832369N1 to tolerate the

interference. The power margin reduces outages due to both turbulence and
interference. Depending on the level of interference we wish to be able to tolerate,

we can increase the power margin appropriately.

Note that if, instead of adding power margin, we increase the diversity from Nto /V;
the amount of MV we can tolerate increases as well (as we can see in (4.83)). However,
as diversity increases to larger values, the benefit of added diversity becomes smaller.
Even if it were possible to increase diversity to an infinite value, as we can see by
taking (4.83) to the limit as in N — o, the amount of N: we can tolerate is limited to

2mNgP,

outage,required *

This is because diversity helps reduce outages due to atmospheric
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turbulence (as opposed to outages due to interference), and there is a limit to this
benefit. Thus, it makes sense to set the diversity to the value that provides adequate
performance in the absence of interference and add enough link margin to tolerate

the interference.
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Chapter 5

Comparison of Diversity Direct Detection and
Diversity Coherent Detection

It is apparent from the previous chapters that diversity homodyne detection provides
better performance than diversity direct detection. In this chapter, we will quantify
the amount of performance gain (we published these results in [33]). We define the
power gain of homodyne detection over direct detection as the factor increase in
power required by direct detection compared to homodyne detection to achieve

outage probability Pousge. The power gain will be plotted as a function of diversity N.
We will first derive the following power gains in the absence of interference:

(1) power gain of homodyne detection with diversity N over direct detection with
diversity N
(2) power gain of homodyne detection with diversity N over direct detection with

diversity fixed to be N, (recall from Chapter 3 that N, is the optimal direct

detection diversity in the absence of interference)
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(3) power gain of homodyne detection with diversity N over direct detection with

diversity fixed to be N,

pt,GaussianHal/SymbolInerference=1) (recall from Chapter 4 that

N opt, GaussianttalfSymbolinerference =1 18 the optimal direct detection diversity in the

presence of Gaussian interference that is on for the first half of the symbol if

B B

We fix the direct detection diversity value in (2) and (3) above because in direct
detection, it is not optimal to continue to increase the diversity past its optimal value;
we want to consider selecting the best possible diversity value for direct detection and
compare the performance against diversity homodyne detection. Moreover, we may
not know if interference is present or absent, and may select the optimal diversity
value to be either in the presence or absence of interference. These different power
gains allow us to compare the performance of homodyne detection over direct
detection from the different perspectives of when the direct detection system’s

diversity varies and when it is fixed to the optimal value.

We will also derive the above three power gains in the presence of interference. In
deriving the power gain in the presence of interference, we will assume that the
diversity direct detection and diversity homodyne detection systems are operating in
the presence of their corresponding worst interference type (of the types we
considered). We will let direct detection be in the presence of Gaussian interference
that is on for the first half of the symbol and will let homodyne detection be in the

presence of canceling interference.
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5.1 Power Gain in Absence of Interference

5.1.1 Power Gain of Homodyne Detection with Diversity N Over Direct Detection
with Diversity N

Direct detection with diversity N achieves the same outage probability as homodyne

detection with diversity N when

F, outage,DD,nolnterference (N ) outage,Homo,nolnterference (N ) (5 . 1)

S, Homo

mU(N)—ln[ T T ) o 2P, n

O'U(N)

my (N ) - ln( N [ethresh + Y 2'ethresh]v N ]]

¢ O'U(N)

=0

(1+N =102 +6,,.)
6 20 tnres
N S, DD( )[ thresh " ’h’eSh ] s Homo(N )

where in the second line, we used the outage probabilities of diversity direct
detection and diversity homodyne detection in the absence of interference given in
(3.10) and (3.35) and we explicitly show which variables are a function of N. For an

error probability threshold of phresh — g~0uresn | the power gain is

Ns,DD (N)
Ns,Homo (N)

(5.2)
=2 ethresh + v 201hresh N, N

(1 + Nn X_ IIl 2 + ethresh)

Power Gain =
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(found by re-arranging (5.10)). When N is taken to approach oo, the first term in the
numerator of (5.8) is negligible compared to the second term in the numerator. Thus,

the asymptotic power gain, as N becomes large, increases as

Power Gain = c\/ﬁ

Now

2\l 2ethresh N n

(1 + Nn )(_ In2+ gthresh)

where ¢ = (5.3)

5.1.2 Power Gain of Homodyne Detection with Diversity N Over Direct Detection
with Diversity Nopt
Direct detection with diversity N,, achieves the same outage probability as

homodyne detection with diversity N when

B)utage,DD,noInterference (N =N, opt ) =P, outage, Homo ,nolnterference (N )

my (N)—ln[ )[e,,,m,, + 328476k NN, ]J

O'U(N)

( opt) [mjv—)[ethresh + \! 2ethresh]v opIN ]]
opt

Oy (N opt)

S Homo

9

=0

my; (Nopt )—' In [‘(]\/_)[ thresh + v 2ethreshNopt]v ] my (N)_ ll’l( NS omo (N)[ thresh T v 2Gthresh]v}\[ ]]

N S,DD\'Y opt -
Oy (N opt ) oy (N )

(5.5)
where in the second line, we used the outage probabilities given in (3.10) and (3.35).

This is similar to (5.1) except that in the direct detection outage probability

expression, we set N =N,,. The power gain is given by
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Ns‘DD (Nopt )

Power Gain = (5.6)
N s,Homo (N )
Isolating for Ny pp, (Nop, )/ N tomo(N) in (5.5)°, the resulting power gain is given by
o1 1 e'% —1
Power Gain =k, expy— [~ 21n(2Pomge )ln 1+ s Eln 1+ m (5.7)

2 2
gthresh + b t9thresh Nopt N, e4o- 7 _1 e4o- 71
where =2 1+ -expy |—2 111(2P outage)ln 1+

(1+Nn)(— ln2+9thmh) Nopt Nopt

2
We now find the asymptotic power gain as N becomes large. When N >> ' —1,

2
Sy

N

—1 and (5.7) becomes

. . 40?( -1
we can use the approximation | | + £ =£

. 1 o2
Power Gain = k, exps — \/ - —]\72(e4 z 1)1n(2Pou,age ) - — (5.8)

As N — o, the second term in the exponent in (5.8) is much smaller than the first

term. Thus, the asymptotic power gain, as N —> 0, increases as

Power Gain = & exp(— k,/ JN )

No®

where f, = \/_ z[e“"§ -l)ln(ZPoumge) (5.9

and approaches the limit £, for large N.

5 We make the resulting expression independent of Ng Homo(N) by substituting (4.1) into our
expression (where p is the outage probability Poutage).

129



5.1.3 Power Gain of Homodyne Detection with Diversity N Over Direct Detection
with Diversity Nopt,GaussianHalfSymbolInterference (=1)

Direct detection with diversity NoptGaussianHalfSymbolinterference=1 achieves the same outage

probability as homodyne detection with diversity N when

P, outage, DD ,nolnterference (N = 1) = Poutage,Homo,noInterference (N )

1 1
my (N = 1)_ ln[_—‘—_— [chresh + 291hreshN opt N, n ]] my (N )_ 111[—**— [ethresh + 20xhreshN N, n U
P CE ] ;

N Homo v )
Oy (N = 1) Oy (N )

9 9

(5.10)

This is the same as (5.5) except N,

¢ is replaced with 1. Thus, the power gain and the

asymptotic power gain are the same as in (5.7) and (5.9) except N,,, is replaced with

1i.e. the power gain is

402 402
(o3 {od
, ( ) 111 ! 511

Power Gain = ¢; exp3— |- 2In{2P,, 140 JIn| 1+ —Eln 1 I (5.11)

ethresh + ;2 gthresh N 202
where ¢ =2 2y le Zexp{ -2mn{2P, 0'2}
1 [(1 + N, ) In 2+ gresh 200 g
and the asymptotic power gain, as N becomes large is
Power Gain = ¢, exp(— ky/NN ) (5.12)

N

outage) )

2
where k, = \/— 2(e4"1 —l)ln(2P
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5.2 Power Gain in Presence of Interference

We now find the power gain of homodyne detection over direct detection when
interference is present. As we discussed at the start of this chapter, in direct
detection, the interference type is assumed to be the Gaussian interference that is on
for the first half symbol and in homodyne detection, the interference type is assumed

to the canceling interference.

5.2.1 Power Gain of Homodyne Detection with Diversity N Over Direct Detection
with Diversity N

When both direct detection and homodyne detection have diversity N, they achieve

the same outage probability in the presence of interference when

F, outage, DD ,GaussHalfSymbollnterference (N ) =P, outage, Homo ,CancellingInterference (N ) (5 13)
640'% 1 e4o-§ -1
NN, (2N 24 8y, +1] 14 N1+
_ (5.14)
* *
2N, SmDD,GaussHalfSymbolInte;ference (N ) 2N SM Homo CancellingInterference (N

where in (5.14), we used the outage probability of diversity direct detection in the
presence of Gaussian interference that is on for the first half of the symbol given in
(4.34) and the outage probability of diversity homodyne detection in presence of

canceling interference given in (4.77). Rearranging (5.14), the power gain is

mDD,GaussHalf.S)/mbollnte(ference (N )

Power Gain =
mHomo,Cancelling]ntetfereme (N ) (5 15 )

:(2\/m+1)1\’ xN
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5.2.2 Power Gain of Homodyne Detection with Diversity N Over Direct Detection
with Diversity Nopt

When direct detection’s diversity is N,, instead of N, we find the power gain of
homodyne detection with diversity N over direct detection with diversity N,, in the
presence of interference by letting N=N,,, in the left side of (5.14). Doing so and re-

arranging the resulting equation, the power gain is

m DD ,GaussHalfSymbolinterference (N opt )

Power Gain =
m Homo Cancellinginterference (N )
'F 1 (5.16)
N,y (224 Oy +1) 1+ :
N, opt 1
- 402 x 4072( 1
e * -1 e * -
1+ I+
N N

5.2.3 Power Gain of Homodyne Detection with Diversity N over Direct Detection
with Diver Sity Nopt,GaussianHalfSymbolInterference (=1)

When direct detection’s diversity is 1 instead of N, we find the power gain of
homodyne detection with diversity N over direct detection with diversity 1 in the
presence of interference by letting N=1 in the left side of (5.14). Doing so and re-

arranging the resulting equation, the power gain is

mDD,GaussHaljS)meolInteU%rence (N optGaussianHalfSymbolInterference — 1 )

Power Gain =
mHomo,Cancelling]nterference (N )
2
24 +1f o (5.17)
e40‘ /% _ 1 640'% _ 1
R PR
N N
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5.3 Power Gain Summary, Plots, and Observations

Table 5.1 summarizes the power gain of homodyne detection over direct detection
both in the absence of and presence of interference. The interference type in direct
detection is the Gaussian interference that is on for the first half of the symbol and

the interference type in homodyne detection is the canceling interference.

We show in Figures 5.1 and 5.2, the power gain when the outage probability is 0.01
and 0.1 respectively. Consider the power gain in the absence of interference where
direct detection’s diversity blindly increases together with homodyne detection’s
diversity, even though increasing direct detection’s diversity without bound actually
hurts its performance. As diversity increases to large values, the power gain increases
proportionally to the square root of the amount of diversity. This boundless gain is
due to the boundless increase in background noise seen by direct detection as
diversity increases. Note that part of the power gain is due to direct detection using
BPPM rather than OOK (the amount due to suboptimal modulation is less than the
gain seen at a diversity of one — the left most point on the curve). One may argue that
since direct detection’s performance worsens if diversity is increased beyond an
optimal value, and homodyne detection’s performance always improves with
diversity, a fairer comparison of the two systems occurs if direct detection’s diversity

is fixed to the optimal value N, (the value at which direct detection has its best

performance in the absence of interference), and homodyne detection’s diversity is
allowed to vary. This power gain approaches a constant as diversity increases because
there is a limit to the amount of outage statistical improvement that can be achieved
with diversity. We see, though, that the power gain is significant. For example, at an
outage probability of 0.01, the power gain approaches 10 dB. Most of the power gain

is attained when homodyne detection uses a moderate amount of diversity. In the
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Diversity in direct detection and

Direct detection and homodyne
detection use diversity N

Power Gain
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Table 5.1: Power gain of homodyne detection (in the presence of canceling
interference) over direct detection (in presence of Gaussian interference that is on for

the first half of the symbol)
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Figure 5.1: Power Gain of homodyne detection over direct detection (if interference is
present and it uses the worst case duty cycle) for outage probability of 0.01 when
0,=03, P"*"=0.1, N,=1. N,,=6.
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Figure 5.2: Power gain of homodyne detection over direct detection (if interference is
present and it uses the worst case duty cycle) for outage probability of 0.1 when
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absence of interference, homodyne detection clearly offers better performance over

direct detection.

In the presence of interference, if direct detection’s and homodyne detection’s
diversities are allowed to increase together, the power gain actually increases
proportionally to the diversity. The power gain is even larger than in the absence of
interference. The reason for the larger rate of increase in power gain with diversity is
due to the increase in unwanted interference detected by direct detection as diversity
increases, together with the fact that the interference duty cycle is worst case (and a
function of the communication system including diversity). Note that when both
systems have a diversity of one, the additional power gain when interference is
present over when interference is absent is due to direct detection’s Gaussian
interference affecting the detected signal variance at the receiver. Consider the case
when direct detection’s diversity is fixed to be Nopt, GaussianHalfSymbolInterference=1 (the value at
which direct detection, in the presence of interference, has its best performance), and
homodyne detection has arbitrary diversity. Again, the power gain approaches a
constant whose value is significant (at an outage probability of 0.01, the power gain
approaches 7 dB), and most of that power gain is achieved even when homodyne
detection uses a small amount of diversity. In the presence of interference, diversity
homodyne detection offers significant performance improvement over diversity

direct detection.

Note that if we assume no interference is present and set direct detection’s diversity

value to be N,,, but interference is actually present, then the power gain of

homodyne detection over the fixed diversity direct detection is significantly higher
(several dB) than if the actual optimum diversity is used for direct detection in the

presence of the interference. On the other hand, if we assume interference exists and
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set direct detection’s diversity to one, and interference is actually not present, then

the power gain is a little higher (a few dB) than if direct detection used N,,. These

differences in power gain, if we mistakenly assume no interference exists, or
mistakenly assume interference does exist, are due to direct detection having a
different optimal diversity value in the presence of and in the absence of interference.
Homodyne detection is advantageous in that it is not subject to worse performance if

too large of a diversity value is chosen, as is true with direct detection.

Overall, homodyne detection always outperforms direct detection where direct
detection was not allowed to use rubber mirror technology to achieve homodyne pre-
detection combining. In the presence of worst case interference and turbulence, not
only does single receiver homodyne detection perform better than single receiver
direct detection, but diversity improves homodyne detection’s performance even

further, while actually degrading direct detection’s performance.
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Chapter 6

Transport Layer

In this part of the thesis, we will focus on the Transport Layer’s congestion control in

a network with free-space optical links.

6.1 TCP Shortcomings in FSO Networks and Motivation for Modified
TCP

TCP’s congestion control® which has been used in the Internet for roughly two
decades has been successful in preventing congestion collapse. However, when data
rates and geographic spans increase, and communication links without wires or cables
(such as satellite and free-space optical links) are added into the network, TCP has
performance issues leading to low throughput. This is partly due to the TCP sender’s
limited rate of window increase. It is also due to the TCP sender unnecessarily
reducing its window upon link losses (it assumes every packet loss is due to

congestion and that it should thus reduce its window to relieve the congestion).

6 See Chapter 2 for a summary of the TCP sender’s congestion control algorithm.
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FSO optical links are different from fiber optic and radio frequency (RF) wireless
links because they have long fades. It is typical for an outage to last tens of
milliseconds even when reasonable amounts of link margin and diversity are used, as
discussed in Chapter 3. These long link outages cause a large number of consecutive
packets to be dropped and can cause the TCP sender’s retransmission timer (RTO) to
expire thereby resulting in reduction of the sender’s window to one packet in flight
without acknowledgement. In fiber optic and RF wireless links, the typical losses are
of single packets which usually cause three duplicate ACKs and window halving
rather than timeouts. The fact that FSO outages can cause timeouts is an observation
that has not been considered before. TCP throughput plots in Section 6.5 show that
when high bandwidth-delay product paths are combined with FSO links with
atmospheric turbulence, the outages cause severe throughput degradation. The
throughput degradation is severe because after a long outage occurs and the sender’s
window is reduced to one packet in flight, it takes the sender a long time to increase
the window to a size large enough to make good use of the available rate in the

network.

Others have considered modified versions of TCP to improve throughput. However,
none of these variants fix the problem of link losses causing timeouts and drastic
window reduction to one packet. Some of the variants try to address link losses that
cause only window halving rather than the window being closed to one packet (for
example, TCP Westwood [34] which instead of cutting the window in half, cuts the
window only to the bandwidth estimate). One variant, TCP Veno [15], monitors the
congestion level and reduces the window less drastically if it makes an educated guess
that the loss is not due to congestion. TCP Veno will have poor throughput if several
outage packet losses occur in a row. Some other TCP variants [6,14,22,25] provide

improved additive increase and multiplicative decrease parameters or faster window
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increase methods to improve the slow window increase and conservative window
halving that occurs after a packet loss. None of these variants address outages causing

timeouts.

Sending larger packet sizes helps the slow window increase problem by improving the
window increase rate by a factor of b>1, for packets that are a factor b larger than
normal. However, this benefit comes at the cost of possibly more frequent and larger
oscillations in the network. Moreover, with larger packet sizes, the sender is also still
susceptible to drastic window reduction upon a link outage. The congestion control
algorithm Explicit Congestion Protocol (XCP) [23,24] improves the slow window
increase problem as we discuss in Chapter 8. However, the XCP sender is also
susceptible to window reduction upon timeout, although it has the advantage over
other the TCP variant sender in that its window can be increased to larger values

within two round-trip times.

The congestion control algorithms proposed in the literature generally assume
timeouts are used, just as in TCP, and that the window is closed to one packet upon
timeout. Since timeouts cause reduced throughput in FSO networks, let us consider
why timeouts are used in congestion control algorithms. Timeouts provide a way for
senders to determine if the network has severe congestion. TCP senders assume that
all timeouts (and packet losses) are due to congestion and that they should
immediately relieve the congestion by reducing their sending rate. Drastic window
reduction is an appropriate response to congestion but not to link losses. Thus, in
order for senders to achieve a higher throughput, they need to distinguish whether a

packet loss is due to link outage or congestion and respond appropriately.
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There is a whole class of possible protocols that distinguish whether a packet loss is
due to link outage or congestion and thereby help the problem of FSO link outages
causing window reduction. In this thesis, we analyze the maximum performance
benefit, in the framework of TCP, that can be achieved if the sender distinguishes
outage versus congestion losses and reacts appropriately. The analysis gives the best
performance that can be attained because it is idealized in the following ways: a) it
assumes the sender has perfect knowledge of whether a packet loss is due to outage or
congestion, and b) it does not consider the overall impact on network performance
caused by any additional packets that are fed back to the sender to help it distinguish
outage loss versus congestion loss. In a real network, the performance of a protocol
that distinguishes outage loss from congestion loss will be less than the performance
shown in the analysis due to imperfect sender knowledge of the cause of a packet loss
and the effect of any explicit feedback packets on network congestion. In this thesis,
we also consider one possible approach to accomplish the distinguishing of an outage
loss from a congestion loss. We discuss this particular design to a moderate level of
detail to show what level of complexity is added to the system to support it. Itis nota
full protocol proposal, but rather is an example of how we may build such a protocol.
Our performance analysis of throughput applies not only to the particular design
implementation we discuss, but to the entire class of TCP-based protocols that do not

reduce their window upon packet loss due to link outage.

Other proposals in the literature that try to improve TCP’s performance on wireless
or FSO links include Snoop [3], Spoofing [3] and Split-Connection [37]. These
schemes have a device in the middle of the path to deceive the TCP sender in a way
that prevents the sender from seeing link losses. Snoop does local retransmissions to
hide link packet losses from the sender. Snoop would have a problem when used for

long distance, high data rate FSO links (for example up to satellite): it would cause
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the TCP sender to timeout due to the long retransmission time. Spoofing has a local
device in the middle of the path, just prior to the wireless link, send fake
acknowledgements to the TCP sender while performing the packet transmissions to
the destination itself. Spoofing has the general problem/concern of not having the
desired end-to-end semantics of the Transport Layer; they tell the user that packets
have been received even if they have not yet been received (and may never be
received) by the destination. Split-Connection terminates the TCP sessions before
and after the worst error-prone link so as to create consecutive, shorter distance TCP
sessions. When a path includes a long distance satellite link, there are devices called
performance enhancing proxies (PEPs) that terminate the sessions just prior to and
just after the satellite link. However, PEPs have unresolved issues and complexities
regarding how to handle/handoff all the incoming and stored packets of the TCP

senders if a link coming into or going out of the PEP fails.

6.2 Modification to TCP

Let us consider a modified version of TCP that does not have the problem of reduced
throughput due to outages causing window reduction to one packet. Specifically, the
Modified TCP does not respond to a large number of outage losses by timing out.
Rather, it is able to distinguish whether the packet loss is due to congestion or link
outage. One way this can be accomplished is by having the router feed back a
‘Congestion Loss’ message to the sender for each packet the router drops (and
optionally try to guarantee that this feedback gets to the sender by having routers

give priority to these feedback messages or by using out-of-band feedback)’. If a

7 In-band ‘Congestion Loss’ feedback in which the router does not do any extra work to give priority to the feedback packets
simplifies the amount of processing needed by the router to handle the ‘Congestion Loss’ feedback. However, it is possible for
the network to try to guarantee that the ‘Congestion Loss’ feedback gets to the sender by having routers give priority to feedback
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‘Congestion Loss’ feedback packet is received, the sender responds to the congestion
by reducing its window. If no ‘Congestion Loss’ feedback packet is received and the
RTO expires, the sender assumes the timeout is due to a link outage and the sender
does not cut its window. In other words, the sender distinguishes outage loss from
congestion loss by explicit feedback for each congestion loss, and assumes any other
loss (causing timeout) is due to link outage. For this particular implementation of
Modified TCP, see Figure 6.1 for a state diagram of the sender’s actions and events
that occur to trigger the actions. The events and actions of the Modified TCP that

differ from TCP are shown in red.

For the proposed Modified TCP implementation, the reason for considering explicit
‘Congestion Loss’ feedback packets rather than explicit ‘Outage Loss’ notification
packets to avoid window reduction upon outage is two-fold. Firstly, if outage lengths
are long, the ‘Outage Loss’ feedback may not be generated quickly enough to avoid
timeouts. Since outage link losses occur on the link, not at the router, it is only after
the outage is over and more packets are getting through that the routers can
determine that an outage occurred and which senders’ packets were lost in the
outage. When outages are long, by the time the sender receives the ‘Outage Loss’
feedback, the sender may have already timed out. Secondly, it is simpler to generate
the ‘Congestion Loss’ feedback because a router can easily determine which sender’s
packet it is dropping by looking at the address in the header. Although possible, it is
practically more challenging for the network to discern outage losses and feed back to
the appropriate senders. In order for a router to determine whose packet was

dropped in a link outage, the router at the end of the link would need to keep track of

packets or by using a dedicated out-of-band channel (with lower rate) for the feedback packets. Giving priority to feedback
packets increases the processing required by routers. Using a dedicated out-of-band channel requires a separate channel and
processing of that channel and is generally not desirable.
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how many packets were missing in the link and communicate with the router at the

sending end of the link which would track the sender’s address of each packet?.

This scheme that we propose of feeding back a ‘Congestion Loss’ message for each
packet that is dropped due to congestion is different from Explicit Congestion
Notification (ECN) [39]. ECN is a congestion avoidance scheme in which the router
sets the ECN bit in packets if congestion is building at the router. The idea is that the
router backs off TCP senders before congestion becomes severe enough that the
router drops packets. But when routers actually drop packets, no explicit feedback
goes to the senders (unlike the Modified TCP implementation we propose in which
explicit feedback is sent to the sender if the router drops a packet). In TCP with ECN,
senders react to any loss or ECN-marked packet by cutting their window. If
congestion starts mildly then gradually gets severe, a congestion loss is usually
preceded by some ECN bits being set in the returned ACKs. However, it has been
shown that ECN is not a good predictor of congestion losses [5], and thus trying to
differentiate outage loss from congestion loss based on the recent history of ECN bits

being set may not provide desired results.

The Modified TCP sender’s ability to distinguish outage losses and congestion losses
(and respond appropriately) improves sender throughput, as we show in this thesis.
For the analysis in Sections 6.3 to 6.5, we assume perfect feedback of the ‘Congestion
Loss’ messages to find the maximum performance that is possible if the sender is
always able to correctly distinguish whether a packet loss is due to outage or
congestion (and respond appropriately). We will discuss the effect of the loss of the

‘Congestion Loss’ feedback packets on the protocol design next.

# Although more complex, a scheme similar to this is discussed in Chapter 7 in the context of deploying only a few specialized
devices (with significant complexity) in a heterogeneous network to provide the ‘Congestion Loss’ feedback rather modifying all
routers to provide the ‘Congestion Loss’ feedback.
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Consider what happens if the explicit ‘Congestion Loss’ feedback is not guaranteed to
be received by the sender. In the extreme case that severe congestion causes all of a
sender’s packets to be dropped, and all of the ‘Congestion Loss’ feedback packets are
lost, the sender will not reduce its window. However, the sender should have a way
to reduce its rate drastically in this case. We propose the sender have an additional
timer which we call the “Backup-Timer”. Upon expiration of the Backup-Timer, the
sender assumes there is severe congestion and reduces its window size to one packet.
The Backup-Timer duration should be large enough that when a link outage occurs, it
does not expire and gives the sender enough time to retransmit the packet, receive an
acknowledgement and increase the window (thereby preventing Backup-Timer from
expiring). If a link outage causes the loss of a series of packets but subsequent packets
get through after the outage, there will be no received packets for a round-trip time
plus the outage length. Thus, the Backup-Timer duration should be at least the RTO
plus the outage length in order for it to not expire due to the outage. The RTO is used
instead of the estimate of RTT in order to allow for variability in the round-trip time,
just as the RTO does. In order to allow the sender to retransmit the packet and

receive an acknowledgement before Backup-Timer expires, the Backup-Timer

duration should be at least 2 RTO. Thus, we should have

Backup-Timer = RTO + max( E[outage length] + yGoutsge length, RTO )

where Goutage lengn is the standard deviation of the outage length and vy is to be
optimized. If the value of y is selected appropriately, the expected value of the
outage length plus y times the outage length standard deviation would capture most
of the outage lengths. As discussed, the performance analysis of the Modified TCP in

Sections 6.3 to 6.5 assumes a perfect feedback channel in order to show how much
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performance gain can be achieved by differentiating outage losses versus congestion

losses. Thus, in the analysis, the Backup-Timer is not used and \ is not optimized.

The Backup-Timer will expire if all the ‘Congestion Loss’ feedback packets and ACKs
are lost for the duration of the Backup-Timer. We discuss in Chapter 7, the effect of
the Backup-Timer expiring on network congestion. We also discuss in Chapter 7 the
effect of providing ‘Congestion Loss’ feedback packets on network congestion and

router design.

The expected outage length and standard deviation used in the Backup-Timer can be
estimated by the Link Layer at the routers and reported to the senders. If the
expected outage length plus y times the standard deviation is larger than the RTO,
this estimation allows the Backup-Timer to have a smaller value when the link
conditions are such that the expected outage length is smaller. Consider that, for
simplicity, instead of having the mean and standard deviation of the outage lengths
estimated, the senders set the Backup-Timer to a value on the large end of possible
outage lengths for all turbulence conditions (0.5 seconds, for example). This could
make the Backup-Timer unnecessarily long and cause longer response times to actual

severe congestion in the event that all the ‘Congestion Loss’ feedback packets and

ACKs are lost.

In order to decrease the expected outage length (and thus the length of the Backup-
Timer if E[outage length] + 4Goutage length > RTO), one may add receiver diversity on the
free-space optical links. We have shown in Chapter 3 that diversity detection reduces
the expected outage length. We show Figure 3.6b again below. In this figure, we plot
the expected outage length for a reasonable amount of link margin of 5 dB and for

diversity values up to a reasonable value of 25. For coherent detection systems,
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increasing diversity to 25 decreases the outage length by more than an order of

magnitude.
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Figure (reproduction of Figure 3.6b): Expected outage length versus diversity for
fixed link margin of 5 dB when 0,%=0.5, Pe#*h=0.1, Nin=1, transverse wind speed is 10
km/hr, path distance=20km

If it were possible to increase the link margin to very large values (more than several
dB) and/or the transverse wind speed were large enough (perhaps due to non-
stationary link endpoints that move at high speeds), the expected outage length may
be decreased such that outages typically cause single or a few consecutive packet
losses. In this case, outages would typically cause TCP to cut its window in half
instead of to one packet (provided subsequent packets result in ACKs to be received).
However, TCP would still suffer from reduced throughput due to the window being
reduced by half. In this case, the Modified TCP sender could additionally include the

functionality of not halving its window upon three duplicate ACKs unless a
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‘Congestion Loss’ message was first received for the missing packet. We do not study

this variant in this thesis.

For the Modified TCP implementation we discussed, if packets are dropped in an
outage and the window is not reduced, the sender continues to transmit packets
(using the same window size) every RTO. However, even though the window is not
reduced, the sender is able to respond to congestion and reduce its window if a
‘Congestion Loss’ feedback packet or three duplicate ACKs are received or the

Backup-Timer expires (see Figure 6.1).

In the analysis in Sections 6.3-6.5, we use the words “Modified TCP” to refer to the
TCP-based protocol that perfectly distinguishes outage loss from congestion loss and
does not reduce its window in response to an outage loss. The analysis gives the best
case performance of the class of TCP-based protocols that distinguish outage loss from

congestion loss.

6.3 Steady State Analysis (Average Throughput)

In this section, we analyze TCP’s and Modified TCP’s throughput over atmospheric
optical links. In the literature, TCP throughput is analyzed assuming packets are lost
with independent probability. However, as discussed in Chapter 2, this is not a good
assumption for atmospheric optical links. For atmospheric links operating at high
data rates, the loss probabilities of consecutive packets are highly correlated i.e. the
channel has memory. In order to obtain more realistic results of TCP’s throughput in
a network that uses atmospheric optical links, it is essential that the channel model
incorporates the channel’s memory. In Chapter 2, we described an appropriate FSO

channel model (for a no-diversity system), namely a two-state continuous-time
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Markov process where the states represent the channel as being in an outage, or not
in an outage. For links with diversity, this Markov channel model may only be a
crude approximation; an appropriate channel model needs further investigation.
Assuming we have a peak power constraint, there is little hope for communicating
through an outage. In our analysis, we assume that packets received during an outage

are lost, and packets received during a non-outage are received correctly.

We analyze the throughput (number of bits or packets sent per unit time) of TCP and
Modified TCP over atmospheric optical links rather than analyzing the actual number
of correctly received bits per unit time, commonly known as goodput. This is in
order to analyze the performance of the window closing mechanism in atmospheric
optical channels and the loss in throughput that it causes. Although not the focus in
this thesis, the loss in goodput due to retransmitted packets may be significant in the
Go-Back-N style retransmissions of TCP but may be improved by using select repeat

retransmissions.

In order to derive the TCP and Modified TCP throughput bounds, we first define the

following quantities:

Rmex = sender’s maximum transmission rate [bits per second]
G = packet size [bits per packet]
Toke = time to transmit a packet [s]

RTT =round-trip time [s]
M = the maximum possible number of packets in flight
RTO =TCP’s retransmission timeout value

— estimated RTT + 4 x (estimated standard deviation of RTT)
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Then

Tpkt = and (6.1)
max
M @th‘ﬂ 6.2)

For high data rate communication over physically long optical channels, even if there
are no packet errors, TCP’s standard maximum window size (Wma) of 26 bytes
severely limits the throughput. This is because the sender is not able to send enough
packets to fully use the link while waiting for ACKs. For example, at a data
transmission rate of 1 Gb/s over a GEO satellite link, in a vacuum, the average
throughput is limited to 2 Mb/s. We assume that a simple fix called TCP window
scaling [21] is used so that the maximum window size is not the cause of reduced
throughput in TCP over the long links. Moreover, we assume that the maximum

window size is set to be the maximum possible number of packets in flight®.

6.3.1 TCP Throughput

In actual operation, as described in Section 2.4, TCP is sometimes in the Slow Start
(exponential increase) phase and sometimes in the Congestion Avoidance (linear
increase) phase. Linear window increase allows for fewer packets to be sent per unit
time compared to exponential window increase. Thus, letting the window increase
be linear yields a lower bound on TCP throughput, and letting the window increase

be exponential yields an upper bound.

® Whether the maximum window size is set to the maximum possible number of packets in flight, M, or to a value larger than this,
the throughput bounds we find in this thesis are roughly the same. The difference if we allow the maximum window size to be larger
than M is the value to which the window cuts upon window halving when the window is larger than M. For small round-trip times,
the throughput does not change much since the window increases back up to M (or higher) quickly. For long and medium RTTs, the
throughput does not change much since the window rarely reaches M or beyond due to getting closed as a result of congestion or
outage losses.
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In this thesis (and as we published in [29]), we model TCP’s window evolution by a
discrete time Markov chain in which transitions occur every round-trip time', and
the states represent a measure of the window size. We depict in Figures 6.2 and 6.3,
Markov chains that assume linear window increase and exponential window increase
respectively. For linear window increase, state n represents a window size of n, and
the maximum number of states in the Markov chain is nma=M. In the case of
exponential window increase, state n represents a window size of 2»! and the

maximum number of states is nma=log2(M)+1.
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Figure 6.2: TCP linear increase (lower bound) Markov chain. Timeouts (and thus

window reduction to one packet) are represented by dotted transitions. The dotted
transitions leaving states 2 and 3 also include window halving.

1 'pc,Z(l -p 0,2)'p 0,2 1 -pC,“( 1 P 0»4)-p 0,4 1 =Pe.nmax-1 ( 1- P o,nmax-l)'p o, nmax-1

1-pei(1-po,1)-Po x Pe3(1-po3)-p 0,3\ 1-pes(1-Pos)Pos >\

p Nimax 3 1 'pc,nmax-l( 1 ‘p o,nmax)
- o”qmax

Pe3(1-po3) Peall-Pos) Pes(l-Pos) DPenmax{ 1-P o,nmax)

Figure 6.3: TCP exponential increase (upper bound) Markov chain. Timeouts (and
thus window reduction to one packet) are represented by dotted transitions. The
dotted transition leaving state 2 also includes window halving.

19 we discuss this model of transitions occurring every round-trip time in detail is Section 6.3.1.1.
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The probability of congestion packet loss and outage packet loss of any of the
transmitted packets while in state n are denoted by pcs and pon respectively. If no
outage or congestion loss occurs in the packets sent in any particular window, the
window size increases (by one for linear window increase and by a factor of two for
exponential window increase). In Figures 6.2 and 6.3, this is represented by the
transitions from state n to n+1 for n=1 to nmax-1. For state nmax, if there is no outage or
congestion loss in the packets sent in the window, there is a self transition. We
assume that if a congestion loss occurs with no outage loss, the window is halved!!,
and if an outage loss occurs, the RTO expires and the window is reduced to one

packet!2.

There are many different possibilities for modeling congestion losses in the network.
In one extreme, we can model each packet as being dropped due to congestion with
independent probability. This may be a reasonable model if there are a large number
of users in the network. In the other extreme, we can model the probability of
congestion loss as 0 below a given window size and 1 above the window size. i.e
model congestion losses by a step function. This is a reasonable model if there is only
one sender going over links with possibly different rates. Provided there is enough
buffer space to queue up the packets due to the different link rates, there will be no
packet losses due to congestion while the sender is sending at a window size that the
smallest rate link can handle. However, as the sender increases its window to larger
values, it will ultimately cause packet drops by the router prior to the smallest rate

link. We take these two extremes in modeling congestion losses (where in the latter

' To include the probability that a congestion loss causes a timeout, one would add an additional probability to all of the transitions
that correspond to a timeout.

"> An outage would cause a timeout if it causes the loss of the last packet(s) in a window or the loss of all packets in a window
such that the sender does not receive any ACKS for an RTO. An outage would also cause a timeout if the outage causes the loss
of a series of consecutive packets in the beginning (or middle) of the window and either a) the outage is longer than RTO-RTT or
b) the subsequent packets encounter delay such that the outage plus delay is longer than RTO-RTT and they cannot return triple
duplicate acknowledgements before a timeout occurs. In case b), if the outage is less than RTO-RTT i.e. RTO-RTT is not small,
then congestion must be building to cause it to not be small, thereby making it likely for there to be additional delays in the
subsequent packets.
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case, the threshold window size that causes the congestion packet loss is nmax). In the
former case where each packet is dropped with independent probability, the

probability of congestion loss in state n is given by

Den = Pr(at least one of the packets sent in state n is dropped due to congestion)

=1- Pr(none of the packets sent in stage n is dropped due to congesiton) (6.3)
1- (1 - pwngpe,pk,)" for linear window increase Markov chain

= n-1
1- (l - ])mgperp,a\)2 for exponential window increase Markov chain

where peongperpie is the probability that any given packet is dropped due to congestion.

We derive the value of pos, the probability of outage loss in state n, in Section 6.3.1.1
using the 2-state channel model discussed in Chapter 2. Incorporating the channel’s
memory into the analysis of the Transport Layer performance is one of the unique

aspects of this work.

The average throughput of TCP in steady state is given by

E [window size]

steady state TCP throughput =
y ghp RIT

(6.4)

Using the linear window increase Markov chain, we obtain a lower bound on TCP

throughput at steady state

m:
linear
g nmw n

steady state TCP throughput > %ﬁ— packets/sec (6.5)
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where the superscript “linear” denotes the linear window increase Markov chain, and
7in is the steady state probability of being in state n. Using the exponential window

increase Markov chain, we obtain an upper bound on TCP throughput at steady state

"max

n-1__exp
S

steady state TCP throughput < —""‘T packets/sec (6.6)

where the superscript “exp” denotes the exponential window increase Markov chain.

The global balance equations for the (lower bound) TCP linear increase Markov chain

of Figure 6.2 are

Pmax
”iinear[ (pc IXI Po ) 2, 1]_ linear [(pc,Z Xl ~Po )+ Po ]+ ”;inear [(pc’3 Xl — Do3 )+ Do3 ]+ 24 ﬂﬁlnearpa’i
i=

Imear llneﬂ" [1 (pc n-1 Xl po n-1 ) Do - 1]+ ”[mear (pc,2nX1 - pO,z” )+ ﬂ-lzi:ifr (pc 2n+1 Xl P 2n+1)

forn=2,.. /2-1

max

linear _ lmear linear
7 a2 [1 (Pc,nm /2-1X1 = Dot /2-1)— po,nmax/2—1]+ 7 (pc,nmax Xl = Ponpye )

Pmax /2

linear _ fo‘” [1 (pc,n,l Xl - Po,n—l)_ po,n—l] forn=n_,/2+1,.n,,, -1

plinear [(pc - X ~ Do ) +p, s ] linear [ (pc — Xl Po g - ) Do nax —1]

"max -1

(6.7)

linear -

where 7, is the steady state probability of being in state n in the Markov chain of

Figure 6.2. The sum of the steady probabilities is 1 i.e.
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1=y gl 6.8)
n=1

Solving for the nmat+1 equations in (6.7) and (6.8) gives the steady state probabilities of
the TCP linear increase Markov chain as a function of the outage and congestion loss

probabilities.

Similarly, the global balance equations for the (upper bound) TCP exponential

increase Markov chain of Figure 6.3 are

Pmax
ﬂ-?xp [1 - (pc,l Xl - po,l)_ po,l] = ”pr (pc,Z Xl - po,2)+ Z ﬂfxppo,i
i=3

ﬂ:xp = ”f:? [1 - (pc‘,n—lxl - po,n—l)_ po,n—l]+ 7 (pC,n+1 Xl - pO,n+1) forn = 2’""9nmax -1 (69)

n+l

exp

”::Zx [(pc,nmax Xl =~ Po,nmax )+ Ponpax ]: ”"max_l [1 B (pc,nmax -1 Xl ™ Pome -1 )_ po’nm_l]

and
1= =2 (6.10)
n=1
where 7P is the steady state probability of being in state n in the Markov chain of

Figure 6.3. Solving for the nm+1 equations in (6.9) and (6.10) gives the steady state
probabilities of the TCP exponential increase Markov chain as a function of the

outage and congestion loss probabilities.

157



6.3.1.1 Outage Transition Probabilities for the Markov Chains that Model the TCP
Sender’s Window Progression

In this sub-section, we use the 2-state channel model discussed in Section 2.2, to
derive the outage transition probabilities pon in the TCP Markov chains in Figure 6.2
and 6.3. These outage transition probabilities are found as a function of channel
parameters assuming outages occur only on the forward links (on the links going
toward the destination node). If outages also occur on the backward links, the outage
transition probabilities would be larger than those derived here, and the throughput

bounds would also be lower.

The TCP Markov chain models in Figures 6.2 and 6.3 assume that state transitions
occur every RTT i.e. if we think of time as being the concatenation of discrete
multiples of round-trip times, all window halving and reductions to one packet occur
at the round-trip time boundaries. In other words, the model assumes that the sender
has perfect and immediate knowledge of whether its transmitted data is lost (without
knowing the cause). So if packet losses occur due to congestion or outage in any RTT
time segment, the window is reduced at the start of the next RTT. We believe this is
a reasonable approximation of the operation of TCP for purposes of calculating steady
state throughput. TCP senders find out about packet losses one round-trip time (or
RTO) later, and window halving and timeouts may not occur exactly at round-trip
time boundaries, but rather in the middle of the boundaries. Assuming that the
window reductions occur at the boundaries means we are ignoring the time from the
boundary to the actual detection of packet loss. Provided these timeouts and window
halving do not occur every round-trip time, but rather infrequently, the assumption
that the window reductions occur at the boundaries does not have an appreciable

effect on the calculation of throughput.
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Let conceptualize time as the concatenation of round-trip time segments or ‘stages’
and term the round-trip time segments corresponding to state n as ‘stage n’. Let Sa
represent whether stage n starts in an outage or non-outage. The outage transition

probabilities are given by
po,n = (po,n|Sn=outage )Pr(Sn = Outage) + (po,n\Sn=non—outage )Pr(Sn =hon-— Outage) Vn. (6 1 1)

By random incidence, we approximate Pr(S1 = non— outage) =1-P, - Since we
assume that outages are long such that when packets are lost in an outage, a timeout
occurs, the probability of a timeout in stage n given that stage n starts in an outage is

approximately 1. i.e.

= Pr(outage in stage n causes timeout|S, = outage)
=1

pa,n|S,, =outage

(6.12)

Given that stage n starts in a non-outage, for linear window increase, the probability

of a timeout in stage n is given by

Pons,=non-outage = Pr(outage in stage n causes timeout | S, =non - outage)
= Pr(non - outage length <n rph)
Tpkt

= [ Via exp(— vlzz)dz

=1- exp(— vlzn‘rpk,)

(6.13)

If stage n starts in a non-outage, from (6.13) we can see that for larger n i.. larger
window sizes, the probability of a timeout increases. Now let us find the probability
that stage n starts in a non-outage. If stage n is reached, then the previous stage was

stage n-1 and there was no outage in that stage n-1 that caused packet loss and
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timeout. If there was an outage that caused packet losses in stage n-1, then the next
stage would be stage 1 not stage n. Thus, for stage n, we know that at the end of the
last packet in the previous stage (stage n-1), the system was in a non-outage. Using
the 2-state Markov channel model, we derive in Appendix A that the probability that
the channel is in a non-outage (or outage) t time units in the future given that the

process is currently in a non-outage is given by

f)ll (t) =1- Poutage + Poutage €Xp {_ (VIZ +Va )t} and (614)

1)12 (f) = Poutage - Poutage ’ exp {_ (V12 + V21 )t} (6'15)

respectively. Thus,

Pr(Sn = non — outage)z P, (RTT - (n - 1)1pk,)
=1-P +(P -exp{— V12 +v21)[RTT—(n—1)z'pk,]} )

outage outage

(6.16)

and

Pr(S, = outage) = P,(RTT ~(n-1)r ,,)
=]- P(Sn = non — outage) (6.17)
=P  — (P . exp{— v, + VZI)[RTT —-(n-Dr,,

= % outage outage

for n>2. Substituting (6.12), (6.13), (6.16) and (6.17) into (6.11), the transition

probabilities are given by

po,l =1- (1 - Poutage )exp(— vl2Tpk1)

Pon =1= (1= Pree ) exp(-vin7,, )] 6.18)
- [P -exp{— Vi (RTT +7T )—vz1 [RTT —(n-Dr,, ]} ] forn>2

outage

Similarly, for exponential window increase,
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Do S, =non-outage = Pr(outage in stage n causes timeout | S, = non - outage)

=1- exp(— v, 2" z'pk,) forn=1,2,....0,,, (6.19)

and

Pr(S, = outage) = P, (1 —expl- (v, +v,)(RIT =277, )} ) forn=2,3,...n,,, (6.20)

outage

So the transition probabilities are given by

B {l - (1 = Prtage ) exp(— VT pk,) forn=1
Por =112 [(l ~Priage )exp(— Vvip 2" T )]— [Pou,age : exp{— (v, + VZI)(RTT +2"%7 )}] forn=2,..,n_,
(6.21)

6.3.2 Modified TCP Throughput

We depict in Figures 6.4 and 6.5 the Markov chains for Modified TCP assuming linear
window increase and exponential window increase respectively. The transitions
occur every RTT and the states represent a measure of the window size. Just as for
TCP, for the Modified TCP linear window increase chain in Figure 6.4, state n
represents a window size of n, and the maximum number of states in the Markov
chain is nma=M. Also, for the Modified TCP exponential window increase chain in
Figure 6.5, state n represents a window size of 2! and the maximum number of states

is nmax=log2(M)+1. The pex are the same as in the TCP Markov chains.

1 “Pe.1 1 “Pe2 1 “Pe3 1 “Pea 1 “Pes 1 ~Pe,nmax-1

-\ A
pc,l @ 1 'pc,nmax-l

Figure 6.4 Modified TCP linear increase Markov chain
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'pc 1 'Pc 2 1- pc 3 'Pc 4 1 'pc,nmax-l
N
@ 1 'pc,nmax
V —
Pe.nmax

Figure 6.5 Modified TCP upper bound (exponential increase) Markov chain

If no outage or congestion loss occurs in the packets sent in any particular window,
the process transitions from state n to n+1 for n=1 to nma-1 and self transitions when
in state nma. If a congestion loss occurs, the window is halved. The key difference
between the Modified TCP and TCP Markov chains is that if an outage occurs, the
window is not reduced at all in the Modified TCP chains since the sender knows the

loss is not due to congestion.

The steady state throughput of the Modified TCP is given by

E[window size]

steady state Modified TCP throughput =
RTT

(6.22)

Using the Modified TCP linear window increase Markov chain, a lower bound of

Modified TCP steady throughput can be calculated using

Mmax

z n ﬂ_lmear

steady state Modified TCP throughput > "‘IRT (6.23)

linear

where 7, is the steady state probability of being in state n in the Modified TCP

Markov chain of Figure 6.4. Without timeouts due to outages, and assuming

congestion losses cause window halving rather than RTO timeouts, in steady state,
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Modified TCP is always in linear window increase except at the start of the session.
Thus, the lower bound is a tight lower bound. The global balance equations for the

Modified TCP linear increase Markov chain are

linear linear

7, '(1 P 1) hnearpc 277 Pes

linear _ __linear linear linear _ nmax
T =r -(1 Den- 1)+ /4 (pc’2n)+ o (pc,2n+1) forn= 2,...,(——2 -1

(6.24)

linear _ _linear [ _ ] linear ( )
ﬂ.nmaXIZ _”nmax/z—l 1 pc’”max/z'1 +ﬂnm Pe > Pmax

ﬂ,lninear — ”iifar . (1 _ pc,n—l) forn = (Ilné;ax + 1),..., (nmax - 1)

linear Imear

T pc’nmax_ [1 pcnmax ]

Pmax nmax 1

and the sum of the steady state distributions is 1.
1= Z ﬂ,linear (6.25)

Solving for the steady state probabilities using the equations in (6.24) and (6.25), we
can calculate the lower bound on Modified TCP’s steady state throughput using

(6.23).

The detailed balance equations for the Modified TCP exponential increase Markov

chain are

7% (1= p,, )= 7% p,, forn=2,3,....nme (6.26)

n-1
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where 7,® is the steady state probability of being in state n in the Modified TCP

Markov chain of Figure 6.5. Again, the sum of the steady state distributions is 1.

1= 7% (6.27)

The solution to this system of equations given in (6.26) and (6.27) is found in closed

form in Appendix H and gives the following steady state equations

n-1 1_ )
7P = 70 [ P ”] (6.28)

Using the Modified TCP exponential window increase Markov chain, we can

calculate a gross upper bound of the Modified TCP steady state throughput as

Mmax

exp
E nrw,

Modified TCP throughput < =——— )
odifie roughpu RTT (6.29)

This is a loose upper bound because the Modified TCP sender is almost always in

linear window increase when congestion losses and outage losses do not cause

timeouts.

In the next section, we continue with deriving the throughputs of TCP and Modified

TCP, but we find the throughput prior to steady state rather than in steady state.
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Plots and discussion of TCP’s and Modified TCP’s throughput in steady state and prior

to steady state are given in Section 6.5.

6.4 Transient Analysis

When a user sends a small or moderate sized file (for example <1 MB), TCP is not
necessarily in steady state for most of the file transfer, particularly if the round-trip
distance is long. Thus, steady state throughput does not give an accurate estimate of
the time it takes to send the file. In this section, we find the transient throughput of

TCP and Modified TCP after session initiation.
The expected number of packets sent in the m™ round-trip time is given by

"’“za" ) ( ) for linear increase(lower bound) of both
Ip.\m
P Modified TCP and TCP

i=l

E|number of packets sentin m™ RTT] =

”'“Za" i ( ) for exponential increase (upper bound) of
Am
PA¥™) oth Modified TCP and TCP

L=t

(6.30)

where pi(m) is the probability of being in state i in the m® RTT. The pi(m) can be

obtained from the following evolution of probability distribution across the states:

p(m) = plm-1)P

)P (6.31)

where p(m) is a row vector of probabilities of being in the nma states in the m™ RTT,

P is the probability transition matrix for the Markov chain, and P™? is the matrix
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product of P with itself (m-1) times and represents the transition matrix from any

given RTT to (m-1) RTTs later. TCP starts with an initial window size of 1. Thus,

pl)=01 0 0 .. o],

The expected number of packets sent in K round-trip times is given by:

K
E [number of packets sent in K RTTS] = ZE [number of packets sent in m™ RTT] (6.32)

m=1

Thus, we can calculate the expected number of packets sent in the m™ RTT and in K
RTTs if we know the transition matrix of the Markov chain. Using Figures 6.2-6.5,

the corresponding transition matrices of the:
1) TCP linear increase Markov chain
2) TCP exponential increase Markov chain
3) Modified TCP linear increase Markov chain

4) Modified TCP exponential increase Markov chain

are given below.
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L91

Transition matrix of TCP linear increase Markov Chain:

[ P (1 - po,l)+ Poy V- pc,l(l - po,l)“ Doy 0 0 0
pc,Z(l - po.2)+ Po 0 1- Pc,z(l - pa,Z)_ Do 0
Pes (1 - po,3)+ Pos 0 0 1-p.; (1 - po,})_ Poy O
Pos Pm(l - P0,4) 0 0
Pos pc,s(l - pu,s) 0
p= . 0 pMEl - po‘sg
Pea l=P,s
0
0 Prrerll = Prsman2) 0 0
. 0 Pepet\l= Pompn 1 0 1- pc,n,m,.(l - po,"m_l)— Po -1
I Ponma 0 0 Dena (1 - po,nmx) 0.. 0 1-p, =Py ) Pona

nmax

where the p_, (l ~ P ) entry in the last row is in column -




Transition matrix of TCP exponential increase Markov Chain:

i Pea (1 - po,l)+ Doy 1-p,, (1 - po,l)_ Po
Pc,z(l —po,2)+ Do 0
Po3 2% (1 - Po,s)
Poa 0
P .
Po, e 0

891

0

1-p., (1 - po,Z)_ Do
0

Pea (1 - po,4)

0

0 0 i
0
1- Pes (1 - Po,3)_ 2% 0
0
0 0
0 1= Pep (1 = Po a1 )— Lo e -1
0 P (=P ) 17 Pennge 0= Ponne )~ Ponne




Transition matrix of Modified TCP linear increase Markov Chain:

—pc,l (1 - pc,l)
D> 0
P.s 0
0 Dy
D5
P= 0
| 0

where the p.,  entry in the last row is in column

0

(1 - Pc,z)

0

0

0
Pes
2%
0

(1 - Pc,a)

0

pc,nmax -2

pc,nmax—l

0

0
0

pCJlmax

0 ]

0
0 .. 0 (l_pc,nmax—l)
0 (l_pc,nmax 4

nmax

2

Transition matrix of Modified TCP exponential increase Markov Chain:

_pc,l (1 - pc,l)
Pco 0
0 Pcs
0 0
P=
0 0

0

(1 - Pc,z)
0

pc,4
0

0
0

0

(1 - Pc,3) 0

0 pc,nmax—l

Plots of the expected number of packets sent as time progresses give us an estimate of

how long it takes, on average, to send a file of a given size. We show plots of the

expected number of packets sent in the K* RTT and in the first K RTTs in Section

6.5.2.
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Below are analytic expressions for the approximate expected number of packets sent

in the K* round-trip time and in the K round-trip times.

For Modified TCP linear increase Markov chain:

E[number of packetssentin K™ RTT]z Kﬁ (1 - pc’,.) (6.33)

i=1

For Modified TCP exponential increase Markov chain:

K-l
E|number of packets sent in K™ RTT]z 2K’1H(1 - pc,i) (6.34)

i=1

For TCP linear increase Markov chain:

E|number of packets sentin K™ RTT]z K ﬁ (1 ~ P, (1 - po,,.)— po,,) (6.35)

i=1

For TCP exponential increase Markov chain:

Elnumber of packets sentin K™ RTT] ~ 2K'lﬁ(1 - P (1 - po,,-)— po,,.) (6.36)

i=1
where the pei and po.i correspond to the probabilities in the applicable Markov chain.

These approximate expressions represent only the contribution of the probability that
transitions from state 1 to state K by progressing from state 1 to each higher state until
reaching state K (without window halving or window cutting to 1 in the process). In
other words, the expressions omit the contribution of the probability distribution in
the states lower than K. As we will see in plots in Section 6.5.2, these approximate
expressions are good for the first few time steps for both Modified TCP and TCP

particularly for small congestion probabilities and packet loss due to turbulence.
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6.5 Performance of TCP and Modified TCP

6.5.1 Steady State Throughput of TCP and Modified TCP

In this section, we show plots of and discuss the steady state throughput of TCP and
Modified TCP. Using the Markov chain analysis in Section 6.3, we show in Figures
6.6-6.40 the TCP and Modified TCP throughput bounds for a wide range of
congestion loss probabilities'® and atmospheric turbulence levels. The throughput is
scaled to have a maximum value of one. i.e. in the figures, throughput efficiency =
throughput{packets/s] x G[bits/packet] / Rma[bits/s]. The plots use a maximum
transmission rate of 10 Gb/s, packet size of 1500 bytes, 8 dB of link margin, error
probability threshold of 0.1, transverse wind speed of 10 km/hr and background noise
photons per symbol per mode of one'*. When plotting the throughput lower bounds,
we extended the curves for round-trip times longer than 10 milliseconds as the curves
could practically not be calculated for large RTTs using the same method described in
Section 6.3 (due to computer memory constraints)’>. The extended parts of the curves
are shown in red. In extending the curves, we used the following intuition and
assumption: as round-trip times increase to very large values, the change in steady
state distribution is small since outage and congestion losses prevent the window from

increasing to higher values (or at least make the probability of going to high values

13 The throughput plots where congestion loss probability per packet is 107 may not be accurate since the model of transitions
occurring at the round-trip boundaries may not be a good approximation for calculating throughput.

4 A transmission rate of 10 Gb/s is a typical current rate, 1.5 kB is the maximum packet size for Ethernet, 8 dB is a significant
amount of link margin (a few dB is very realistic), error probability threshold of 0.1 is aggressive for powerful forward error
correction codes, and 10 km/hr is a gentle breeze which causes longer outages than a fast wind, and background noise photons of 1 per
bit is a large amount. These values are selected to represent a current system with unfavorable link conditions and significant extra
transmit power to mitigate the fading.

!> As round-trip distances increase, the number of states in the linear Markov chains becomes very large. We use the program
MATLAB on a 32 bit Windows machine to calculate the steady state distribution of the Markov chain. For a large number of
states in the Markov chain, MATLAB runs out of memory (Applications in 32 bit Windows have a memory limit of 2 GB per
application) and thus cannot calculate the throughput lower bound.
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very small). We confirmed that the change in steady state distribution in fact
becomes smaller and smaller as RTT increases (see Figure 6.41). We plotted the
change in steady state distribution for every combination of turbulence and
congestion loss probability for which we plotted the throughput curves, but we
elected to include only one of the figures in the thesis because the others are similar.
Since the change in the steady state distribution gets small as RTT increases close to
10 milliseconds, in extending the throughput lower bound curves, we assumed that
the steady state distribution does not change for round-trip times above 10
milliseconds (above M=9000). Note that the throughput lower bound is proportional
to 1/RTT for long round-trip distances since the numerator of (6.5) and (6.23)

becomes a fixed value when the steady state distribution does not change for larger

RTTs.

TCP throughput efficiency

. —— Mod. TCP Linear S =
" —H8— Mod. TCP Exponential I
10 . - —©— TCP Lower Bound, Homo, 0§=0.5 L

—=&— TCP Upper Bound, Homo, c;i=0.5 :

10° 10° 10 10° 10% 10" 10°
Round trip time (s)

Figure 6.6: Throughput efficiency for congestion loss per packet of 0 and ¢,=0.5
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Figure 6.7: Throughput efficiency for congestion loss per packet of 10 and 5,=0.5
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Figure 6.8: Throughput efficiency for congestion loss per packet of 10+ and 5,><0.5
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Figure 6.9: Throughput efficiency for congestion loss per packet of 103 and ¢,2=0.5
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Figure 6.10: Throughput efficiency for congestion loss per packet of 10 and 5,?=0.5
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Figure 6.15: Throughput efficiency for congestion loss per packet of 10 and ¢,>=0.3
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Figure 6.19: Throughput efficiency for congestion loss being modeled as a step
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Figure 6.20: Throughput efficiency for congestion loss per packet of 0 and 5,>=0.1
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Figure 6.24: Throughput efficiency for congestion loss per packet of 102 and ¢,>=0.1
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Figure 6.28: Throughput efficiency for congestion loss per packet of 10 and 5,?=0.01
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Figure 6.34: Throughput efficiency for congestion loss per packet of 0 and c,’=0

186



TCP throughput efficiency

10- Ffl::::::-;-::-i--'--' = =¥ v T B 7—77777777741 a3ss :'AI—'E—Z—'—ZZ'—Z ~SIF33FFSIIILTIIEIIIESASAT
{| =#— Mod. TCP Linear '
. —B— Mod. TCP Exponential

-5
10"~/ —e— TCP Lower Bound, Homo, °§=0 it
—9— TCP Upper Bound, Homo, g§=0

10 — ___'_.____.4___ I L L
j 10 10 10 107 10 10

Round-trip time (s)

Figure 6.35: Throughput efficiency for congestion loss per packet of 10 and &,?=0

TCP throughput efficiency

10- HEE R A R A AR A A R
—— Mod. TCP Linear -
|.. =B Mod. TCP Exponential . .. _
-5 ]
10 -~ —©— TCP Lower Bound, Homo, c§=0 e
- —&— TCP Upper Bound, Homo, Gi=0 [EiEi et
10'5,,6; REREIHT : R i,,,;f*,ff.. 3 f.__.....__z 1
10 10 10 10° 10 10 10°

Round-trip time (s)

Figure 6.36: Throughput efficiency for congestion loss per packet of 10+ and &,%=0

187



10
>
S ‘
= [
m +
32107,
= ‘
=5
o
.5 L
E') 10-41 zzz3zzzazeiiic aszizsidzmeereszzzazsazceaccriis
i ~ —#— Mod. TCP Linear SRS bt Rttt
—B— Mod. TCP Exponential 2 WA
10_5;-_:_; —©— TCP Lower Bound, Homo, fo esstrizesadatn il iber ittt g

| —0— TCP Upper Bound, Homo, c§= i

10 —— il HESS 8 0 S0 ) N 1 5| Nt
10° 10° 10 10° 107 10” 10°
Round-trip time (s)

Figure 6.37: Throughput efficiency for congestion loss per packet of 10? and 6,*<0

100 SN R mm o -

TCP throughput efficiency

[ .| =—B— Mod. TCP Exponential N
10" -:: —@— TCP Lower Bound, Homo, ci=0 lisi e

1 —&@— TCP Upper Bound, Homo, G§=°

10 O O O N O A Y 5 1
10° 10° 10" 10° 10° 10" 10°
Round-trip time (s)

Figure 6.38: Throughput efficiency for congestion loss per packet of 102 and c,’<0
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As we can see in Figures 6.6-6.40, as expected, the steady state TCP throughput goes
down when atmospheric turbulence increases. This is because packet losses due to
link outages cause the sender to timeout and reduce its window size to one packet,
and higher turbulence means more frequent window reduction. Furthermore, for
long round-trip time sessions (such as a path from the Earth to a geosynchronous
satellite with round-trip time of a quarter of a second), the throughput is very low
when turbulence and congestion losses exist. This is because after each window
reduction, the window size is increased gradually (every quarter of a second), and it
takes the TCP sender a large number of round-trip times to increase its average rate.
Even if the window increase is exponential, the rate of increase is still slow due to the
long round-trip time. Moreover, before the window builds up to full value, another
outage will cut the window again preventing the TCP sender from reaching the

maximum possible number of packets in flight. For large round-trip time links
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through the atmosphere (and large sender transmission rate), TCP congestion control

is far from ideal as a congestion control protocol.

Modified TCP gains back the performance loss due to outages. This is because
Modified TCP does not cut its window in response to outage losses and thus also does
not have to suffer the slow increase in its window after the outage. Over large round-
trip time free-space optical links, Modified TCP performs significantly better than
TCP when the turbulence is strong such that the outages dominate the congestion
losses. However, as previously mentioned, TCP and Modified TCP have an issue of
slow window increase over high bandwidth-delay products, which we do not address
in this thesis. Moreover, this slow window increase over high bandwidth-delay
product paths results in unfairness to sessions with large round-trip times because the
sessions with small round-trip times increase their window more quickly (due to
ACKs returning more quickly) and are able to use up more of the available network
capacity. See Chapter 8 for other ways that have been suggested to improve the slow
window increase, and why we suggest that adding the ‘Congestion Loss’ feedback to

the existing proposed schemes may allow for better performance over FSO networks.

For short round-trip times (less than a 10 microseconds), the throughput of TCP and
Modified TCP is nearly optimal. This is because the maximum number of packets in
flight is small so when an outage causes the window to be reduced, the window can
increase to full value in only a few round-trip times. For example, for a round-trip
time of 10 microseconds, packet size of 1.5 kilobytes, and a maximum transmission
rate of 10 Gb/s, the maximum number of packets in flight is 9. So even if the window
increases linearly starting from a window size of one packet, TCP could increase its
window size to the maximum possible packets in flight in only 9 round-trip times (90

microseconds). Since TCP performance is good for short round-trip time paths, the
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marginal performance increase of Modified TCP in this regime may not be worth the
effort. It is over long round-trip time paths that the Modified TCP provides

significant and worthwhile benefit.

We depict in Figure 6.42 the regions of atmospheric turbulence and round-trip times
over which it is worthwhile to use Modified TCP rather than TCP (for the parameters
given in the figure caption, which correspond to the parameters of Figures 6.6-6.40).
These regions are determined by inspection of the throughput plots of Figures 6.6-
6.40. The areas labeled “TCP” indicate regions where TCP performance is sufficient
without using Modified TCP. “Sufficient” is taken to be when the TCP linear increase
throughput efficiency is >10%. Modified TCP is worthwhile to use over TCP when
the turbulence is not weak and round-trip times are large, and these regions are
labeled “Modified TCP”. For large round-trip times, even though Modified TCP
offers improvement over TCP, the throughput is still not high due to the limited rate
of window increase, as we discussed. In the figure, we labeled regions where
Modified TCP throughput efficiency is less than 10% as “Other” to denote that
another congestion control protocol that allows for faster window increase would
provide improved sender throughput compared to Modified TCP. The points with an

‘X’ or ‘0 are points that are determined by inspection of the steady state throughput
plots, and the lines that connect these markers are interpolated. For o, =0.1, TCP
and Modified TCP’s throughput is roughly the same. This is why we extrapolated the
boundary between the TCP and Modified TCP regions to level off above o, =0.1. As

the congestion loss probability increases, the TCP and Modified TCP throughputs
decrease. Thus, the boundaries between “TCP” and “Modified TCP” and between
“Modified TCP” and “Other” get squeezed to the left. The pairs of numbers shown as
(numberl, number2) are the expected outage length and outage probability

corresponding to the ‘X’ marker points.
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Figure 6.42: Diagram of regions, in steady state, where it is worthwhile to use
Modified TCP rather than TCP when probability of congestion loss per packet is (a)
106 (b) 10* and (c) 10? and where Rmax=10Gb/s, G=1.5kbytes, m=8dB, P.*="=0.1,
vi=10km/hr, Nn=1, outages cause timeouts. The boundaries indicate that the
algorithm on the left has throughput lower bounds of less than 10% to the right of the
boundary. The pairs of numbers shown as (numberl, number2) are the expected
outage length and outage probability corresponding to the ‘x’ marker points.

As we saw in Chapter 3, adding diversity in the Physical Layer decreases the expected
outage length and outage probability. However, for high data rate, stationary FSO
links with reasonable link margins (a few dB) and diversity values (<25), and under
typical wind speeds (<40 km/hr), the expected outage length is still multiple orders of
magnitude larger than packet sizes; it is typical for outages to cause TCP senders to
timeout. For a diversity-N channel where N>1, it is not clear that the channel is well
modeled by a 2-state continuous-time Markov process. Thus, we did not calculate the
throughputs for N>1 for the range of atmospheric turbulence and congestion

parameters as we did for N=1. The appropriate model for a diversity-N channel is an
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area for future exploration. Assuming that a diversity-16 channel is well modeled by
a 2-state continuous-time Markov process, we show in Figure 6.43, the TCP
throughput upper bound when a diversity of 16 is used. Even with a diversity of 16,
the TCP throughput is poor for long round-trip distances. This is again due to outages
causing window reduction to one packet and the slow window increase afterwards.
For long round-trip distances, diversity alone is not enough to allow TCP to achieve
high throughputs, and Modified TCP or another protocol is needed. The plot assumes

strong turbulence (o) =0.5) because we want to show that if we communicate

through strong atmospheric turbulence, the throughput is low even with a significant

amount of diversity.
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Figure 6.43: TCP throughput efficiency for zero congestion loss probability, R=10
Gb/s, G=1.5 kbytes, m=8 dB, Peteh=0.1, vi=10km/hr, Nn=10¢
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6.5.2 Transient Throughput of TCP and Modified TCP

In this section, we show plots of and discuss the expected number of packets sent in
the K* and in the first K round-trip times after session initiation. We also provide
expressions of the value to which the expected number of packets sent in the K RTT
converges and discuss the files sizes for which Modified TCP provides significant

benefit over TCP.

See Figures 6.44-6.113 for plots of the amount of data transmitted in the K* RTT and
up to the K* RTT by TCP and Modified TCP for various congestion loss probabilities
and turbulence levels. These plots use the same parameters as used for the steady
state throughput plots but where the round-trip time is fixed to 0.3 seconds's. The
dotted curves (approximate curves) correspond to the expressions given in (6.33)-
(6.36). These approximate curves are good for the first few time steps for both
Modified TCP and TCP and are particularly good for small congestion probabilities
and turbulence. The approximate curves diverge from the actual curves as time
increases to higher values because as window sizes increase, it becomes more likely
that congestion or outages cause the window to be reduced. We cut off the
approximate curves after they diverge from the actual curves since they are no longer
useful and are visually distracting. When plotting the linear increase curves, in order
to reduce the computer memory and calculations required (especially important for
long round-trip distances), we cut off the number of states at the maximum number
of time units (in RTTs) for which we plotted? i.e. K=2000. This elimination of states

has no effect on the final calculated throughput value because the states that are cut

' A significant round-trip time of 0.3 seconds is chosen to highlight that a) if the window increase is always linear, it takes a large
number of round-trip times to reach steady state, and b) for typical congestion loss probabilities and when link fading exists, the
expected window size never reaches a value large enough to achieve full link rate

7 We plotted up to the 2000™ RTT because the program we used, MATLAB on a 32-bit Windows machine, runs out of application
memory when doing matrix multiplications for K>2000.
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off are unoccupied up from the first RTT to the K=2000®» RTT; when the window
increases linearly, it cannot increase to a value larger than the current time (measured

in RTTs) and thus cannot be larger than the maximum time.
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Figure 6.44: Expected number of packets sent in the K™ round-trip interval for
congestion loss per packet of 0 and 0,*=0.5 and M=2'8 (RTT=0.3 sec)
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Figure 6.46: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 10 and 0,?=0.5 and M=2'® (RTT=0.3 sec)
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Figure 6.47: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10¢ and 0*=0.5 and M=218 (RTT=0.3 sec)
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Figure 6.48: Expected number of packets sent in the K™ round-trip interval for
congestion loss per packet of 10 and 6;?=0.5 and M=2'¢ (RTT=0.3 sec)
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Figure 6.49: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10 and 0,*=0.5 and M=2'® (RTT=0.3 sec)
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Figure 6.50: Expected number of packets sent in the K® round-trip interval for
congestion loss per packet of 10 and 0x>=0.5 and M=2® (RTT=0.3 sec)
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Figure 6.51: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 103 and 6*=0.5 and M=2'8 (RTT=0.3 sec)
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Figure 6.52: Expected number of packets sent in the K round-trip interval for
congestion loss per packet of 102 and 0,*=0.5 and M=2'® (RTT=0.3 sec)
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Figure 6.53: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 102 and 0,*=0.5 and M=2!® (RTT=0.3 sec)
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Figure 6.54: Expected number of packets sent in the K® round-trip interval for
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Figure 6.55: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10! and 6y>=0.5 and M=2 (RTT=0.3 sec)
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Figure 6.56: Expected number of packets sent in the K® round-trip interval for
congestion loss per packet being modeled as a step function and 6y*=0.5 and M=218
(RTT=0.3 sec)
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Figure 6.57: Expected number of packets sent in K round-trip intervals for congestion
loss per packet being modeled as a step function and 0,*=0.5 and M=2'¢ (RTT=0.3 sec)
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Figure 6.58: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 0 and 6:’=0.3 and M=2'¢ (RTT=0.3 sec)
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Figure 6.59: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 0 and 0*=0.3 and M=2" (RTT=0.3 sec)
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Figure 6.60: Expected number of packets sent in the K® round-trip interval for
congestion loss per packet of 10 and 0¥’=0.3 and M=2'8 (RTT=0.3 sec)
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Figure 6.61: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10 and 0,*<0.3 and M=2'8 (RTT=0.3 sec)
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Figure 6.65: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10 and 0,*=0.3 and M=2'¢ (RTT=0.3 sec)
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Figure 6.67: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 102 and 0y’=0.3 and M=2"8 (RTT=0.3 sec)
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Figure 6.68 (b) zoomed in on vertical axis for better resolution
Figure 6.68: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 10! and 0y?=0.3 and M=2'8 (RTT=0.3 sec)

210



TCP Mod Linear
TCP Mod Exponential
TCP Linear
TCP Exponential
TCP Mod Linear Approx. |

— TCP Mod Exp. Approx.
’.D:: _ TCP Linear
| TCP Exp. Approx.
< 10 g
=

Q

W

[22]

=

[=%

3,

w

10 10 10 10°

Figure 6.69: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10! and 0y’=0.3 and M=2"® (RTT=0.3 sec)
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Figure 6.70: Expected number of packets sent in the K™ round-trip interval for
congestion loss per packet being modeled as a step function and 6,*=0.3 and M=2®
(RTT=0.3 sec)
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Figure 6.71: Expected number of packets sent in K round-trip intervals for congestion
loss per packet being modeled as a step function and 0,?=0.3 and M=2' (RTT=0.3 sec)
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Figure 6.72: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 0 and 0,?=0.1 and M=2'® (RTT=0.3 sec)
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Figure 6.73: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 0 and 0*=0.1 and M=2" (RTT=0.3 sec)
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Figure 6.74: Expected number of packets sent in the K™ round-trip interval for
congestion loss per packet of 10¢ and 6,?=0.1 and M=2'® (RTT=0.3 sec)
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Figure 6.75: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10-¢ and 0y’=0.1 and M=2'® (RTT=0.3 sec)
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Figure 6.76: Expected number of packets sent in the K®* round-trip interval for
congestion loss per packet of 10 and 0,’=0.1 and M=2'¢ (RTT=0.3 sec)
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Figure 6.77: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10 and 0x*=0.1 and M=2' (RTT=0.3 sec)
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Figure 6.78: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 10 and 6,2=0.1 and M=2'¢ (RTT=0.3 sec)
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Figure 6.79: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10 and 5,*=0.1 and M=2'8 (RTT=0.3 sec)
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Figure 6.80: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 102 and oy?=0.1 and M=2'® (RTT=0.3 sec)
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Figure 6.81: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10? and 0*=0.1 and M=2" (RTT=0.3 sec)
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Figure 6.82: Expected number of packets sent in the K™ round-trip interval for
congestion loss per packet of 10! and 0)?=0.1 and M=2'® (RTT=0.3 sec)
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Figure 6.83: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10! and 0,?=0.1 and M=2'8 (RTT=0.3 sec)
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Figure 6.84: Expected number of packets sent in the K™ round-trip interval for

congestion loss per packet being modeled as a step function and 0,>=0.1 and M=2'®
(RTT=0.3 sec)
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Figure 6.85: Expected number of packets sent in K round-trip intervals for congestion
loss per packet being modeled as a step function and 0,’=0.1 and M=2'® (RTT=0.3 sec)
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Figure 6.86: Expected number of packets sent in the K® round-trip interval for
congestion loss per packet of 0 and 0x*=0.01 and M=2'¢ (RTT=0.3 sec)
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Figure 6.87: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 0 and 0y’=0.01 and M=2'8 (RTT=0.3 sec)
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Figure 6.88: Expected number of packets sent in the K™ round-trip interval for
congestion loss per packet of 10 and 0x*=0.01 and M=2'¢ (RTT=0.3 sec)

220



TCP Mod Linear [
« TCP Mod Exponential -

TCP Linear &
: TCP Exponential =
e TCP Mod Linear Approx. - -
§ e TCP Mod Exp. Approx. |
| m—— TCP Linear £g
C mm——— TCP Exp. Approx. f3

E[# pkts sent in K RTTs]

2 103

Figure 6.89: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10¢ and 0,*>=0.01 and M=2' (RTT=0.3 sec)
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Figure 6.90: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 10 and 0,?=0.01 and M=2" (RTT=0.3 sec)
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Figure 6.91: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10 and 0,*=0.01 and M=2'8 (RTT=0.3 sec)
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Figure 6.92: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 10 and 0¥*=0.01 and M=2'8 (RTT=0.3 sec)
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Figure 6.93: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 102 and 0,=0.01 and M=2"® (RTT=0.3 sec)
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Figure 6.94: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 10? and 0y?=0.01 and M=2'¢ (RTT=0.3 sec)
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Figure 6.95: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 102 and 6,>=0.01 and M=2'® (RTT=0.3 sec)
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Figure 6.96: Expected number of packets sent in the K™ round-trip interval for
congestion loss per packet of 10! and 5,>=0.01 and M=2'8 (RTT=0.3 sec)
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Figure 6.97: Expected number of packets sent in K round-trip intervals for congestion
loss per packet of 10! and 0y*>=0.01 and M=2" (RTT=0.3 sec)

TCP Mod Exponential

TCP Linear

TCP Exponential I
TCP Mod Linear Approx. | -
TCP Mod Exp. Approx.
TCP Linear

E[# pkis sent in K" RTT]

Figure 6.98: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet being modeled as a step function and 0,*=0.01 and M=2"
(RTT=0.3 sec)
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Figure 6.99: Expected number of packets sent in K round-trip intervals for congestion
loss per packet being modeled as a step function and 0,’=0.01 and M=2'® (RTT=0.3 sec)

TCP Mod Exponential
TCP Linear

TCP Exponential

TCP Mod Linear Approx. |
TCP Mod Exp. Approx. |
TCP Linear

E[# pkts sent in Kth RTT]

Figure 6.100: Expected number of packets sent in the K™ round-trip interval for
congestion loss per packet of 0 and 0y>=0 and M=2'® (RTT=0.3 sec)
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Figure 6.101: Expected number of packets sent in K round-trip intervals for
congestion loss per packet of 0 and 0,*=0 and M=2'® (RTT=0.3 sec)
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Figure 6.102: Expected number of packets sent in the K® round-trip interval for
congestion loss per packet of 10-¢ and 0y>=0 and M=2'® (RTT=0.3 sec)
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Figure 6.103: Expected number of packets sent in K round-trip intervals for
congestion loss per packet of 10 and 0x*>=0 and M=2'% (RTT=0.3 sec)
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Figure 6.104: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 10* and 0y*=0 and M=2'® (RTT=0.3 sec)
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Figure 6.105: Expected number of packets sent in K round-trip intervals for
congestion loss per packet of 10 and 0x*=0 and M=2"8 (RTT=0.3 sec)
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Figure 6.106: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet of 102 and ox*=0 and M=2'® (RTT=0.3 sec)
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Figure 6.107: Expected number of packets sent in K round-trip intervals for
congestion loss per packet of 10 and 0,’=0 and M=2"® (RTT=0.3 sec)
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Figure 6.108: Expected number of packets sent in the K round-trip interval for
congestion loss per packet of 10? and 0;?<0 and M=2" (RTT=0.3 sec)
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Figure 6.109: Expected number of packets sent in K round-trip intervals for
congestion loss per packet of 10 and oy’=0 and M=2'® (RTT=0.3 sec)
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Figure 6.110 (b) zoomed in on vertical axis for better resolution
Figure 6.110: Expected number of packets sent in the K round-trip interval for
congestion loss per packet of 10! and ¢,?<0 and M=2'® (RTT=0.3 sec)
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Figure 6.111: Expected number of packets sent in K round-trip intervals for
congestion loss per packet of 10! and 0,?=0 and M=2" (RTT=0.3 sec)
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Figure 6.112: Expected number of packets sent in the K* round-trip interval for
congestion loss per packet being modeled as a step function and 0*=0 and M=2"*
(RTT=0.3 sec)
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Figure 6.113: Expected number of packets sent in K round-trip intervals for

congestion loss per packet being modeled as a step function and oy’=0 and M=2'®
(RTT=0.3 sec)
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For long round-trip distances, when packet losses due to congestion occur with

independent probability p.,ugenw > the value at which the expected number of packets

sent in the K* RTT levels off is approximately

Enumber of packets sent in Kt RTT] — min| M ,L (6.37)
Pcongperpkt

for Modified TCP exponential increase, and approximately

E|number of packets sent in K™ RTT]—) min[M , ’——2——] (6.38)
p congperpkt

for Modified TCP linear window increase. M is the maximum possible number of
packets in flight for the given RTT. The reasoning of why the expected number of

packets sent in the K* RTT levels off at the above values follows:

The Modified TCP sender only reduces its window upon a packet loss due to
congestion. If packet losses due to congestion occur with independent probability

Deongperpia » then on average, the number of packets that are sent before a congestion
. -1 _
loss 0ccurs i Ppgperts - FOr example, fOr pouepemic =107, Poogperms =10,000 packets are

sent on average before the congestion loss is experienced. For exponential window

. . . . . -1
increase, when we start at a window size of 1, the window increases t0 P gt DY

. -1 . . . .
the time p_,,g.« packets are sent. On average, this window is cut in half, and on

. . . |- . .
average, no loss occurs with a window size of 5 Deongrerpia a0d the window increases
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again to p;,’,,gpe,pk, in the next RTT. At the new window size, the window is cut in half
again and so forth. Thus, the expected window size is thus roughly 0.75 pc'olngpe,pk, CIf
the maximum packets in flight M is less than 0.75 p;;ngpe,pk, , then the expected

number of packets in the K RTT would not be larger than M. For linear window

. . . . . 2 .
increase, when starting at a window size of 1, it takes roughly n= / round-trip

p congperpkt

n(n - 1)

times (actually a little less) to send p;,l,,gpe,,,k, packets (since 1+2+3+..+n == for

any integer n, n>1). So on average, when the window size reaches n, the window gets
cut in half. The window will on average, hover around n. If the window size is less

than or equal to n after the window cut, then it will increase on average, to a value

between n and (\/5 —1)1 before getting cut again. (See Appendix I for the calculation

that the window reaches size (\/5 —1)1 before it is cut if the window starts at size n
and increases linearly.) Thus, it makes sense that the average window size is roughly

2
n=

. Again, if the maximum packets in flight M is less than / 2 then
congperpkt

P, congperpkt

the expected number of packets in the K RTT would not be larger than M.

For large M (large RTT), we can see from (6.37) and (6.38) that for a packet
congestion loss probability of less than or equal to 102, there is at least an order of
magnitude difference between the steady state level of the expected number of
packets sent in the K* RTT for exponential increase and that for linear increase. This
is confirmed in Figures 6.44-6.113. For example, in Figure 6.62 which corresponds to
a packet congestion loss probability of 10+, the curve for Modified TCP with
exponential window increase levels off at roughly 10* packets and the curve for

Modified TCP with linear window increase levels off at roughly 10? packets. Thus, in
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this example, there are two orders of magnitude difference between the values at

which the two curves level off.

In the plots of expected number of packets sent in the K* RTT, when the congestion
loss probability is low or zero, the TCP exponential curve oscillates prior to reaching
steady state. See Figure 6.74 for example. We now explain the reason for the
oscillation. For low congestion loss probabilities, the window is rarely reduced due to
congestion loss. Outage losses are the dominant cause of window reduction. At the
start of the session, as the window starts to build up, the probability of packet loss is
low due to the small window size and large round-trip time. As time progresses from
time 0, only a small portion of the probability distribution moves down to state 1 and
starts to increase again. The remainder and majority of the probability distribution
follows the exponential window increase. However, as the majority of the
distribution increases to larger window values at the exponential rate, it suddenly
becomes very probable (due to packets occupying a large fraction of the RTT) that an
outage causes packet loss and the window reduces to one packet. This sudden
increase in outage loss probability is due to the window size doubling every RTT.
Thus, there is a sudden decrease in the average number of packets sent. The
oscillation in the figure does not go down to one because the expected number of
packets is averaged with some of the probability that had previously moved down to
state 1 and had subsequently increased to higher window sizes. The large amount of
probability weight that went to state 1 increases to higher window values, and then
the same window cutting happens again. This is why we see the oscillation. Each
time the majority portion of the probability increases to larger window sizes, it gets
smaller because some of it moves to state 1. Eventually the probability distribution
settles on the steady state distribution. However, the individual sample functions of

the state of the protocol still oscillate. The TCP linear increase curves do not exhibit
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this oscillation because as the window increases linearly, the probability of outage loss
increases gradually, and the probability distribution across the states shifts up more

evenly.

The time at which the expected number of packets sent in the K* RTT levels off
signifies that the system has reached steady state. After this time, the steady state
throughput, as given in Section 6.3, applies. In the absence of congestion loss and
atmospheric turbulence, the exponential window increase curves take l+log:M
round-trip times to reach steady state and the linear window increase curves take M
round-trip times. If congestion loss probability is added, it takes all of the curves less
time to reach steady state because the congestion losses cause the majority of the
probability distribution to occupy a lower number of states. If atmospheric
turbulence is added, it again takes the linear increase chain less time to reach steady
state because the probability distribution occupies a lower number of states.
However, the exponential curves take longer to reach steady state with than without
atmospheric turbulence because the oscillation that we discussed in the previous

paragraph takes time to settle down.

As we can see from Figures 6.44-6.113, in the transient time frame prior to steady
state, when communicating through a large amount of atmospheric turbulence, it
takes Modified TCP less time to transmit a moderate sized file than it takes TCP. The
reason is the same as for steady state: the Modified TCP sender distinguishes outage
loss from congestion loss and does not reduce its window upon outage losses. The
benefit of Modified TCP is greatest when the turbulence level is strong and the file

size is moderate to large.
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We depict in Figure 6.114 the regions of atmospheric turbulence and file sizes in
which it may be worthwhile to use Modified TCP rather than TCP (for the
parameters given in the figure caption). These regions are determined by inspection
of Figures 6.44-6.113. The areas labeled “TCP” indicate regions where Modified TCP
offers little benefit over TCP. The threshold of when Modified TCP offers significant
benefit over TCP is taken to be when Modified TCP that increases its window
linearly takes half the time to send the file that TCP that increases its window

linearly takes. At a packet congestion loss probability of 10 (which corresponds to
Figure 6.114a), when o, = 0.1, it takes TCP and Modified TCP roughly the same time
to transmit a file. This is why, in Figure 6.114a, we extrapolated the boundary

between the TCP and Modified TCP regions to level off above o, =0.1. Similarly, at

a packet congestion loss probability of 10 and 10?2, when o, =v0.1 =0.3, it takes

TCP and Modified TCP roughly the same time to transmit a file. Thus, in Figures
6.114b and 6.114c, we extrapolated the boundary between the TCP and Modified TCP
regions to level off above o, = J0.1=03. Modified TCP offers the most benefit
when the turbulence is large and file sizes are moderate to large, and these regions are
labeled “Modified TCP”. However, since the round-trip time is large (0.3 seconds),
the rate of window increase is not very high for TCP or Modified TCP; all regions in

Figure 6.114 could benefit from another congestion control protocol that allows for

faster window increase.
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Figure 6.114: Diagram of regions where it is worthwhile to use Modified TCP over
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Chapter 7

Modified TCP Deployment, ‘Congestion Loss’
Feedback Generation and Processing, and
Drawbacks

In the previous chapter, we analyzed the throughput that can be achieved by a class
of TCP-based protocols whose senders distinguish whether a packet loss is due to an
FSO link outage or due to congestion and react appropriately. We discussed an
implementation in which routers provide ‘Congestion Loss’ feedback packets to the
senders to help them distinguish outage loss from congestion loss. In this chapter, we
discuss at a high level a possible direction that can be taken to deploy this
implementation with ‘Congestion Loss’ feedback packets but without modifying all
existing routers. We also discuss the impact on the network of generating
‘Congestion Loss’ feedback packets, and of the senders releasing extra packets into the

network when the ‘Congestion Loss’ feedback packets are lost.
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7.1 Deployment of Modified TCP in Subset of Routers

One of the concerns about a new Transport Layer protocol, or even a slightly
modified Transport Layer protocol, is that it is expensive to change or modify all of
the existing routers and senders to incorporate the new protocol. The Modified TCP
implementation we considered in Chapter 6 requires routers and senders to be
modified: routers have to have the functionality of providing ‘Congestion Loss’
feedback when they drop packets; senders have to have a different window update
algorithm and possibly get feedback from the network about the mean and standard

deviation of outage lengths!®.

In this section, we introduce at a high level, a possible direction that can be taken to
deploy a Modified TCP protocol in a heterogeneous network without replacing all
routers. The network for which this deployment is useful is one in which there are
only a few FSO links and the remainder of the links are highly reliable. Instead of
adding the functionality of generating ‘Congestion Loss’ feedback packets to all of the
routers, entities which we call special gateways can be deployed around the reliable
sub-networks. The special gateways act as routers but with the added functionality of
creating ‘Congestion Loss’ feedback packets when they drop packets, as well as some
other functionality and complexity, which we will discuss. There are many
challenges associated with this deployment. We identify a few of the key ones as we
discuss the deployment details. However, the intricacies of the deployment are really

a subject for future work.

Consider the network shown in Figure 7.1 which consists of two sub-networks, A and

B, with highly reliable links (such as fiber links) connected to each other via a

18 As we discussed in Section 6.2, the senders, instead of getting feedback about the outage length statistics to set the Backup-
Timer value, can set the Backup-Timer to a value that is larger than most outage lengths at all turbulence conditions. However, this
leads to an unnecessarily large Backup-Timer duration.
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satellite sub-network C. The up and down links to and from the satellite network
suffer outages due to atmospheric turbulence. Within the satellite sub-network itself,
there are highly reliable links due to communicating through space. Congestion can
occur anywhere in the network i.e. in the ground sub-networks or in the satellite
network. The source and destination pairs reside outside of the network described

and traverse through the network to get from source to destination.

Satellite sub-network
with possible
congestion

Sub-network
with possible

congestion congestion

Figure 7.1: Diagram of a network that consists of two sub-networks (A and B) with
highly reliable links connected via a satellite sub-network (C). The source and
destination nodes are denoted by S and D respectively.

Special gateways can be placed around the edges of the satellite sub-network and the
two fiber sub-networks as shown in Figure 7.2. The special gateways are denoted by
M1-M6. The job of the special gateways, in addition to routing, is to discern when a
congestion loss occurs within any of the sub-networks (or at itself) and to feed back a
‘Congestion Loss’ message to the sender of the packet. This feedback helps the sender
to distinguish whether a packet loss is due to a link outage or congestion. If a
congestion loss occurs at a special gateway rather than within a sub-network, the

gateway can easily determine whose packet it is dropping by looking at the header of
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the packet before dropping it. It would then feed back a ‘Congestion Loss’ packet to

the sender.

Satellite sub-network
with possible
congestion

B
Sub-network Sub-network
@—— M1 | with possible M5 [ with possible
congestion congestion

Figure 7.2: Diagram of a network that consists of two sub-networks (A and B) with
highly reliable links connected via a satellite sub-network (C) and where special
gateways (M1-M6) are placed around the sub-networks. The special gateways
provide ‘Congestion Loss’ feedback to the sender if they detect a congestion loss in a
sub-network. The source and destination nodes are denoted by S and D respectively.

The special gateways at the entrance and exit of a sub-network work together to
determine when a congestion loss occurs in the sub-network by doing the following;:
the special gateway at the entrance to the sub-network encapsulates the incoming
packet, adds a sequence number (SN), and tunnels the packet to the special gateway at
the exit of the sub-network i.e. packets are tunneled between M1-M2, between M3-
M4, and between M5-M6 in Figure 7.2. Using one set of SNs between the special
gateway at the entrance and exit of the sub-network is simpler than using a separate
set of SNs for each TCP flow because using a separate set for each TCP flow would
require the special gateways to keep track of each flow’s last SN. If a sequence

number is missing in the received tunneled packets by a special gateway (by M2, M4
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or M6 in Figure 7.2), then the receiving special gateway can assume the missing
packet is due to congestion and feedback a ‘Congestion Loss’ message to the sending
gateway (M1, M3 or M5 in the figure) with the missing SN. The sending gateway
would forward this ‘Congestion Loss’ message to the source (the sender of the packet).
In order for the gateway to determine which source to which it should forward the
‘Congestion Loss’ message, (i.e. which source’s packet was dropped in the sub-
network), the sending gateway stores the source addresses and SNs of all packets that
it sends. By doing so, if the sending special gateway receives a ‘Congestion Loss’
feedback message from the receiving special gateway with the SN of the packet that
was dropped in the sub-network, it can look up the sender of the missing packet and
forward the ‘Congestion Loss’ feedback back to the sender. The sending special
gateway has to store the SNs and addresses of the packets that it sends to the receiving
special gateway until the packets have cleared the sub-network. If ACKs are
implemented between the special gateways, the sending gateway can discard an SN
and address upon receiving the corresponding ACK. If ACKs are not used between
the special gateways, the sending gateway can discard the SN and address of the
earliest packet it sent when its memory gets full. In either case, the sending gateway
memory size should be large enough that it can hold the SNs and addresses of packets
that it released into the sub-network and for which a ‘Congestion Loss’ message may
return to the sending gateway. If a packet already has the maximum size allowed by
the sub-network before being encapsulated, the special gateway would need to be
fragment the packet before encapsulating it. The reassembly could be done either by

the receiving gateway or the destination node.
This deployment scheme has added complexity compared to the simple modification

that would be done to all routers in order to provide ‘Congestion Loss’ feedback.

However, this complexity is in the special gateways rather than in all routers. This
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method of determining the sender of the packet dropped in the sub-network due to
congestion is similar to the method that would be needed to provide ‘Outage Loss’
feedback to senders instead of ‘Congestion Loss’ feedback. However, if ‘Outage Loss’
feedback is provided instead of ‘Congestion Loss’ feedback, as we discussed in Chapter

6, the feedback may not arrive at the sender early enough to avoid a timeout.

If a packet is lost within one of the sub-networks due to link loss rather than
congestion, the gateway at the exit of the sub-network assumes the loss is due to
congestion, and feeds back a ‘Congestion Loss’ message to the source. This would
cause the TCP sender to unnecessarily reduce its window (just as in regular TCP)
thereby reducing its average throughput. However, for links in the sub-network with
very low packet loss rate, such as fiber or space, this unnecessary window reduction is

rare and the average TCP sender throughput reduction is small.

In Figure 7.2, for simplicity, we showed only one source and destination and two
special gateways surrounding each reliable sub-network. In actuality, there can be
many senders whose packets are aggregated and enter the sub-networks at different
physical locations. In order to provide ‘Congestion Loss’ feedback to these senders
when their packets are lost due to congestion in one of the sub-networks, there
should be multiple special gateways placed around the sub-networks, one at each
point where senders’ packets can enter the sub-networks. There needs to be a
separate SN between the gateways that surround each sub-network. In addition,
there can be “other” ground sub-networks that are also connected to any of the sub-
networks shown in Figure 7.2. To provide senders with the benefit of ‘Congestion
Loss’ feedback if a congestion loss occurs within one of the “other” sub-networks,

special gateways should be placed around the “other” sub-networks. These special
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gateways would work together to determine if a congestion loss occurs in the “other”

sub-network and provide ‘Congestion Loss’ feedback to the sender.

Let us briefly discuss an incremental deployment of the special gateways. In
particular, consider the effect of the “other” sub-networks not having special
gateways placed around them. The senders whose packets enter the network of
Figure 7.2 (which has special gateways) from the “other” sub-networks can still
benefit from the ‘Congestion Loss’ feedback that the network in Figure 7.2 provides.
However, there may be negative effects on network congestion if congestion losses
occur in the “other” sub-networks to cause the Modified TCP sender to timeout. This
is because the sender, upon timeout, will not cut its window and will release more
packets into the congested network until the Backup-Timer expires. The challenges
related to an incremental deployment need to be considered carefully and they are a

subject that requires further exploration.

Another issue that needs further investigation in this deployment is how to re-route

the TCP flows to another less congested gateway if a particular gateway is congested.

7.2 Generation of ‘Congestion Loss’ Feedback Packets and Loss of
‘Congestion Loss’ Feedback packets— Impact on Network Congestion

In this section, we re-consider the Modified TCP implementation in which the router
(or specialized gateway) generates and feeds back ‘Congestion Loss’ packets to the
sender, and the sender keeps a Backup-Timer. Specifically, we discuss the effect of

this implementation on network congestion.
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The ‘Congestion Loss’ feedback messages are separate packets that are generated and
fed back to senders. The feedback packets do not need to carry the original payload,
but rather, only a header (with a single bit of the header being used to signify
‘Congestion Loss’). If the feedback is in-band, one can think of the router congestion
drops and creation of feedback messages as dropping some data packets and replacing
them with smaller feedback packets. Although replacing a data packet with a
‘Congestion Loss’ feedback packet reduces the total bytes in the network immediately
when the network is congested, the total number of packets (including both data
packets and ‘Congestion Loss’ feedback packets) is not immediately reduced. This
puts extra load on routers when they are congested and dropping packets compared to
when the feedback packets are not generated. Since routers’ processing of incoming
packets depends heavily on the number of packets (and a little on the size of the
packets), and the number of packets is not reduced upon congestion loss, routers do
not achieve congestion relief until the feedback packets get back to the sender. The
router will only get relief after at least one RTT to the sender. Under the most
extreme case, window closing (possibly to one packet) may occur for every flow
through the congested router. Thus, in order to avoid this situation, the router should
aggressively drop packets before the buffer gets as full as it would if the ‘Congestion
Loss’ feedback message were not generated. For example, if Random Early Discard
(RED) [13] is used, it should be tuned so that drops occur at an earlier buffer size
threshold and with higher probability. Alternatively, in order to have the
functionality of providing ‘Congestion Loss’ feedback but also immediately reduce the
number of packets in addition to the number of bytes when congestion losses occur,
the router (or specialized gateway) can create a ‘Congestion Loss’ feedback message
for every few packets that it drops rather than for every packet that it drops. Further

analysis of the effectiveness of this scheme needs to be carried out.
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The network congestion is not only affected by the added ‘Congestion Loss’ feedback
packets, but also by extra packets that the sender releases into the network if the
‘Congestion Loss’ feedback packets continuously get lost. Consider the situation
where severe congestion is dropping all of the sender’s packets but none of the
‘Congestion Loss’ feedback packets are received by the sender (due a return link that
is down for example). The Backup-Timer will expire and the sender’s response time
to congestion is longer than in TCP since the Backup-Timer duration is longer than
the RTO. During this longer period, the Modified TCP sender will send more packets
into the network than a TCP sender. This will affect the length of time for which the
congestion persists and may cause additional packets of other sessions to be dropped.
However, provided the chance that the sender’s packets are all dropped and the
return link is down for the entire Backup-Timer duration is small, the Backup-Timer
will expire infrequently, even when severe congestion exists”. If there is severe
congestion, the sender would likely receive at least one of the ‘Congestion Loss’
feedback packets that are generated and fed back to the sender by the router in the

congested region that is closest to the sender.

19 Let us consider in detail on a packet level why the Backup-Timer will not expire often. If the ‘Congestion Loss’ feedback
corresponding to packet number i is lost and the RTO expires, the packet is retransmitted an RTO after the original transmission.
If the congestion improves, the sender may receive an ACK corresponding to the retransmitted packet and the corresponding
Backup-Timer is turned off and will not expire. If the congestion persists and the retransmitted packet is dropped, there is
another chance for the sender to receive the (new) ‘Congestion Loss’ feedback and respond to the congestion. Moreover, the
sender has the chance to receive duplicate ACKs for packet i corresponding to any of packets i+1,i+2,... that also try to get
through the network before the retransmission of packet i. If packets i+1, i+2... are dropped in congestion, the sender has the
chance to receive the corresponding ‘Congestion Loss’ feedbacks. It is when no ACKs and no ‘Congestion Loss’ feedback
messages are received for an entire Backup-Timer duration that the backup-timer will expire.
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Chapter 8

Future Transport Layer Work

In this chapter, we discuss aspects of the Transport Layer’s congestion control for FSO

networks that we did not consider in this thesis, but that still need to be addressed.

In this thesis, we addressed the problem of free-space optical links causing sender
timeouts that lead to reduced throughput. We derived the performance that can be
achieved if a Modified TCP sender is able to correctly distinguish outage loss from
congestion loss and not reduce its window in response to an outage loss. Moreover,
we compared the performance to that of a TCP sender and found the performance
gain of the Modified TCP sender to be significant for paths with strong atmospheric

turbulence and large bandwidth-delay product.

In this thesis, we did not address the issue of the TCP sender being slow to grab
available rate on high bandwidth-delay product paths. TCP’s linear window increase
during the Congestion Avoidance phase is not aggressive enough for high bandwidth-

delay links. Even exponential increase is not fast enough for high bandwidth-delay
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product paths as we showed in throughput plots. It takes the TCP sender a very long
time to increase its window to a value high enough to utilize the available rate on the
path to the destination. The TCP sender’s slow window increase causes its

throughput over these high bandwidth-delay product paths to be poor.

As discussed in Chapter 6, this slow rate increase may be improved by congestion
control algorithms such as XCP [23,24] or TCP variants which allow for faster
window ramp up for longer RTT sessions [6,14,22,25,34]. XCP is a congestion control
algorithm in which the routers monitor their queue size and incoming traffic rate and
feed back to each sender the amount by which the sender can increase or should
decrease its window. XCP requires a new header format which includes the sender’s
window size, round-trip time and router feedback. The router, for each packet that
goes through it, looks at the sender’s window size and round-trip time. The router
uses the sender’s window size and round-trip time to calculate the sender’s feedback,
and enters the feedback in the header of the packet. Note that because of the explicit
feedback of allowed window increase to senders, XCP allows senders to increase their
window faster than TCP variants whose senders gradually increase their window over
many round-trip times. The XCP sender’s faster window increase is at the cost of
routers having to do additional calculations every time they process a packet, and a

new header format being needed.

All of these congestion control algorithms (TCP variants and XCP) however, include
an RTO timer as a way to detect and respond to long gaps in missing packet
acknowledgements (meaning severe congestion). For the TCP variants, the sender’s
response to a timeout is to cut its window to one packet. For XCP, the appropriate
response to a timeout needs to be investigated since a drastic window cut may be

unnecessarily extreme and a less extreme response may be sufficient [24]. An XCP
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sender’s default method to detect and react to congestion loss is to reduce its window
to one packet if the RTO expires. Although the XCP sender has an advantage over
the TCP variant sender in being able to increase its window to a larger value more
quickly (within two round-trip times) after window reduction, it still suffers from the

timeout.

Since the ‘Congestion Loss’ feedback discussed in this thesis helps the problem of
outages causing timeouts, using such feedback together with a TCP variant or XCP
may allow for fast window ramp up over FSO networks that have high bandwidth-
delay product together with senders not cutting their window upon outage loss. It
would be worthwhile to investigate the performance of the ‘Congestion Loss’
feedback with TCP variants and with XCP. In the case of XCP, whether the timeout
response is changed to a less drastic cut or left as cutting to one packet, the
‘Congestion Loss’ feedback would still improve throughput by preventing timeouts
due to outages. However, there would be less to be gained by adding the ‘Congestion
Loss’ feedback if the timeout response is less drastic than cutting the window to one

packet.

Another issue to explore is allowing the congestion control algorithm to take into
account users with different demands rather than assuming all senders are equal and
that they should be given equal rate. The rate allocation aspect of Asynchronous
Transfer Mode (ATM) [12] was designed to take into account senders with different
throughput demands. However, ATM’s rate allocation scheme tracks per flow
information and is very burdensome on the routers, especially for a large number of
flows and as data rates increase. TCP is good in that low demand senders do not have
the unused rate in the network allocated to them; they simply do not send at a rate

higher than the packet rate their application has to send. TCP self regulates the
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different demand users. However, TCP and the TCP variants do not allow senders to
grab available rate as quickly as XCP. Although XCP allows senders to increase their
rate quickly, it tries to give equal rate to all users thereby leaving unused capacity on
the network when there are senders with widely different demands. Thus, it would
be worthwhile to explore an alternative and simpler congestion control algorithm
that that takes into account different sender demands. An algorithm similar to XCP
but one that includes demand in the packet headers and where routers allocate to
senders a rate proportional to the fraction of total demand (as in [10]) may be a useful
avenue to pursue. This would require routers to keep track of the total incoming rate
and demand. Also, there would have to be a way to prevent senders from artificially

inflating their true demand.
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Chapter 9

Conclusions

When communicating optically through the atmospheric channel, in addition to
fading due to atmospheric turbulence, there may be interference whose signal
deteriorates communication performance. We evaluated the mitigation of fading
(due to clear atmospheric turbulence) and off-axis interference by use of diversity
direct detection and diversity coherent detection. Using a log-normal fading model
for the clear atmospheric channel, we derived the error probability and outage
probability of diversity direct detection and diversity coherent systems in the
presence and absence of turbulence and interference. We also derived the worst case
interference duty cycle. The worst case duty cycle, error probability, and outage
probability are proportional to the ratio of interference to signal photons. In direct
detection, increasing diversity beyond an optimal value actually begins to degrade
performance because, as diversity increases, the amount of interference and
background noise detected increases. This optimal diversity degree for direct
detection occurs when the improvement in fading statistics from diversity is
counterbalanced by the added background noise and /or interference signal. We

derived this optimal diversity degree both in the absence of and presence of
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interference. In coherent detection, increasing diversity always improves the

performance.

In order to compare diversity coherent detection with diversity direct detection from
different perspectives, we analyzed the power gain of diversity coherent detection
over diversity direct detection in the presence of and absence of interference, and
where direct detection’s diversity is fixed to its optimal value and where it varies. See
Figures 5.1 and 5.2 for plots of the power gains. If direct detection’s diversity is the

same as coherent detection’s diversity, then for large diversity values N, the power

gain increases proportionally to JN in the absence of interference, and
proportionally to N in the presence of interference that uses the worst case duty
cycle. If direct detection’s diversity is fixed to its optimal value, the power gain
approaches a constant. This is due to the limit in average fading improvement that
diversity provides. The use of diversity coherent detection receivers is a valuable way
to mitigate fading in an atmospheric optical communication system with interference.
Diversity coherent detection provides significantly better performance over diversity
direct detection receivers due to its ability to limit the amount of unwanted
background noise and interference detected. Moreover, most of the performance gain
of coherent detection can be achieved with a moderate amount of diversity.
However, if the received interference signal is strong and becomes comparable to the
strength of the received communication signal, power link margin may be required to

mitigate the interference.

Although diversity systems can help with the outages due to atmospheric turbulence
and interference, they cannot completely eliminate outages. While we have obtained
the expected outage lengths of diversity receivers, the full statistics of the diversity

channel is still an open question. Outages on the link affect upper layers such as the
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Transport Layer and cause significantly worse performance in them if they are not
designed for free-space optical networks. In TCP, since FSO link outages are many
orders of magnitude longer than packet transmission times, they can unnecessarily
cause the sender to drastically reduce its window to one packet. We derived the
maximum performance gain that can be achieved by a class of TCP-based protocols in
which the sender distinguishes outage loss from congestion loss and does not reduce
its window upon an outage loss. This class of protocols can gain back the
performance loss to TCP that link outages cause. Moreover, for high bandwidth-
delay product FSO networks with atmospheric turbulence, the class of protocols has
significant sender throughput improvement compared to TCP. We discussed a
possible way to implement a TCP-based protocol that allows the sender to distinguish
outage loss versus congestion loss. Specifically, the router provides an explicit
‘Congestion Loss’ feedback packet to the sender for each packet the router drops in
order to help the sender determine if a packet loss was due to an outage or congestion.
The sender also has a Backup-Timer as a way to detect congestion if the ‘Congestion
Loss’ feedback packets and ACKs are continuously dropped. The implementation we
discussed is not a full protocol proposal; not all of the details and effects on the
network were analyzed. The discussion of this implementation is a means to show
the feasibility of providing feedback to the sender to help it distinguish outage loss
from congestion loss. Although the class of TCP-based protocols that we discussed
has improved throughput over TCP, the sender throughput can be further improved

if a congestion control algorithm with improved rate of window increase is used.
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Appendix A

Derivation of Probability that Channel is in
Outage (or Non-Outage) in t Time Units

In this appendix, we use the 2-state Markov channel model described in Chapter 2 to
derive the probability that the process is in an outage (or non-outage) state at time t,
given it is in a non-outage state (or outage) at time 0. This appendix is referenced in
Sections 2.2 and 6.3.1.1. The 2-state Markov process is allowed to transition between

the two states any number of times or no times between time interval (0,t).
The Chapman-Kolmogorov equations of an n-state Markov Process are given by

B

()= Bi(s)Pi(t - s) (A1)

k

where Pij(t) is the probability that the Markov process is in state j at time t given that
it was in state i at time 0, and the summation is over all n states [17]. The
Kolmogorov backward differential equations, which are derived by letting s—0, are

given by
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dP

ciijt(t) = S lawpy O-viry 0 (4.2

k=i

where vi is the rate of exiting state i and qu is the rate of transition to state k given

that the process is in state i [17]. These equations can be compacted written in matrix

notation as

Z[P0l=lo] [} i>0 (A.3)

where the i,j® element of [P(t)] is Py(t), and the i,j* element of [Q] is gj for i#j and —vi

for i=j. The initial condition at time t=0 is the [P(t)]=identity matrix.

For our channel model, the 2-state Markov chain given in Chapter 2, the

corresponding Kolmogorov backward differential equations are given by

_51_[1’11('?) P12(t):|=|:—"12 V12 }[Pll(’) PlZ(t)} (A.4)

dt| Py (t) Pt var —vay | Pal(t) Pyt

In expanded form, the equations are

L) =viaPu()-m2P () (A5)
L Py 0)= =21 Pu (4 vr B 1) (A.6)
£ Rol)=—n2Ba ()i P ) (A7)
L Pi(0) =P (0)-v21 Pl (A.8)
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with initial condition P11(0)=P22(0)=1, P12(0)=P21(0)=0. The first two differential
equations can be solved simultaneously, and likewise for the next two differential

equations. Let us proceed in solving the first two differential equations.

vz times (A.5) plus vi2 times (A.6) yields

d d
Va1 zPll(t)"’VIZ EPZI@:O (A.9)
Integrating, we get
v P () +via Py (f)=c (A.10)

Using the initial conditions P11(0)=1 and P21(0)=0, this reduces to

Vo = (A.11)

so (A.10) becomes

varP () +via Py (8)= vy (A.12)

Rewriting (A.6) using (A.12) yields

d
szl (t)=-v21 Py (6)+ vy —vi2Poy (£)
=vy —(i2 +v21 )P (t)

d
EPZI(t)"'(VlZ +va )Py (t)=va (A.13)

We solve this first order differential equation (A.13) by multiplying both sides by

exp(viz+va)t first.
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d
dt

Then we integrate and isolate for P2i(t) as follows

a [p21 (W22 ]= vyeli2tvarl

Py (et12v21¥ — ,,z.lje("lzﬂ@l)td,

Py ()=

V21

1 4
21,
V2tV

Vi2 +V2)

Using the initial condition P21(0)=0 gives us

Therefore,

We can also solve for Pu(t) by substituting the above equation into (A.12).

V21Pll(t)+"12(

(2tvark 4 o

sete- 2tk

oY
Vi2 tV21
le (t)= Vol _ Vo1 e—(V12+V2])t
Vi tvar Vizg tVva

Y12 -(zvvark o

Va1 _ Va1 e~(v12+V21)t]= Va1
VitV Vip +Va
V12
Py(t)=- +
Vig tVar Vi2 tVp
|4 14 _
Pll(t)‘ 21 + 12 e (V12+V21)t
Vi2 +Va1 Vi V3
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(B.15)

(A.16)

(A.17)

(A.18)



Similarly, we can solve for the other two differential equations (A.7) and (A.8) and

yield

14 1% _
PlZ(t _ 12 _ 12 e (V12+V21)t and
Vip Vo Vi2 V)

P22 (t)= Vi2 + Va1 e—(v12+v2])t
VigtVvar V2 tVa

(A.19)

(A.20)

Note that these solutions used the Kolmogorov backward differential equations and

did not assume that there are no transitions between time (0,t). i.e. they only stipulate

the states at times 0 and t.

Substituting (2.11) and (2.12) into (A.17)-(A.20) gives

P21 (t)= (1 - Poutage )— (1 _Poutage )3_("12'“/21)‘

Pl 1 (t) = (l - Poutage )+ Poutagee_(V12+V2])t

—(vio+
P]Z(t)zpoutage"Poulagee branank

Py (1)= Poutage + (1= P ge)e—(vmvz])z
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(A.22)
(A.23)

(A.24)
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Appendix B

Accuracy of the Poisson Detection Model

In this appendix, we show when the Poisson detection model is a good approximate

model for single mode detection. This appendix is referenced in Section 3.2.1.

For single mode detection in the presence of only background noise, the photon

count is typically modeled by the Bose-Einstein probability distribution [16], namely

Nk

Pr(count =k)=— 12—
(Np + 1)k+l

(B.1)

where Ni is the average number of received noise photons. We can approximate the
photon counting in the presence of a single mode of background noise with the

Poisson distribution

B N,Ife—N”

Pr(count = k) m

(B.2)
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Figure B.1 plots the Bose-Einstein and Poisson distributions for various amounts
average background noise photon counts. The Poisson model is a good approximation
when the count is low (0, 1 or 2), and up to an average received background noise

photons of 1.

10 , - —
—— Bose-Einstein |
—&— Poisson \
10‘5 I : 5 . . . T
o : : ‘
1]
IS
3
(]
o
8 oo [N, )
5 :
E
[0}
0
o
L -15 : d
R e e it e
10% ‘ -
0 0.5 1 1.5 2 2.5 3
Count k

Figure B.1 (a) 0.5x10¢average received photons in the half bit time
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- | —©— Poisson
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Figure B.1 (b) 0.05 average received photons in the half symbol time

0w ———————— - :

""""" +--------| —w— Bose-Einstein E

=k

Probability that count

10

0 0.5 1 1:5 2 25 3
Count k

Figure B.1 (c) 0.5 average received photons in the half symbol time
Figure B.1: Photon count probability in a half symbol time using Bose-Einstein and
Poisson distributions when the average received photons in the half symbol time is (a)
0.5x10¢ (b) 0.05 (c) 0.5
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For single mode detection in the presence of background noise and a constant signal,
the photon count per symbol is modeled by the Laguerre probability distribution [16],

namely

k
k)= Nn - Ny — Ny
Pr(count = k) (Nn N 1)k+] exp( N JLk(Nn (Nn N l)) (B.3)

where Lj(x)= z (2 B j] (_.x)

j=0

and Ns and Nn are the average received signal and background noise photons per
symbol respectively. We can approximate the photon counting in the presence of a

single mode of constant signal with the Poisson distribution

(Vs +Nn)ke_(Ns+Nn)

Pr(count = k) = o

(B.4)

Figures B.2 and B.3 plot the Laguerre and Poisson distributions for various amounts
average background noise photon counts where N is fixed to be 10 and 5 respectively.
The distributions are very close to each other when the average received background
noise photons per symbol is less than 1. Thus, when the signal photons per symbol is
on the order of 10, the Poisson counting model is a good approximation for detection
of single mode background noise and constant signal when the average background

noise photon count is less than 1.
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Figure B.2 (c) 10 average received signal photons and 0.5 average received
background noise photons in the half symbol time

Figure B.2: Photon count probability in a half symbol time using Laguerre and
Poisson distributions when the average received signal photons in the half symbol
time is 10 and the average received background noise photons in the half symbol time
is (a) 0.5x10¢ (b) 0.05 (c) 0.5
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Figure B.3 (c) 5 average received signal photons and 0.5 average received background
noise photons in the half symbol time

Figure B.3: Photon count probability in a half symbol time using Laguerre and
Poisson distributions when the average received signal photons in the half symbol

time is 5 and the average received background noise photons in the half symbol time
is (a) 0.5x10¢ (b) No=0.05 (c) N=0.5

In using the Poisson detection model, the value of importance is the error probability.

In Direct Detection with BPPM, the probability of symbol error is given by

Ple)=Ple| Ho)

Pr(Ny < Ng | Ny =i)Pr(Ny =) (B.5)

M

0

e,
I

Pr(N1 = i)Pr(Nl = i)

o

I
=
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where Ho denotes a ‘0’ being sent by the sender corresponding to signal transmission
in the first half symbol, and No and Ni are the counts in the first and second half
symbol intervals. Under hypothesis ‘0’, N1 is modeled by Laguerre probability and No
is modeled by Bose-Einstein probability. Table B.1 tabulates this symbol error
probability when Ni and No are modeled by Laguerre and Bose-Einstein probabilities,
and when they are modeled by Poisson probabilities. When Ns=<10, the Poisson
approximation is good when Nn is less than one, and when Ns=5, the Poisson

approximation is fairly good when Nh is less than or equal to one.

Nn N; Symbol error probability Symbol error probability
P(e) when using Laguerre P(e) when using Poisson
and Bose-Einstein model model

10 10 4.5x10° 4.5x10°

0.1 10 1.1x10+ 0.67x10+

1 10 5.1x103 0.38x103

106 5 6.7x103 6.7x103

0.1 5 1.0x102 0.8x102

1 5 6.2x102 2x102

Table B.1 Error probability values when using the Laguerre and Bose-Einstein model
and when using the Poisson model

273




274



Appendix C

Derivation of Optimal Local Oscillator
Weights in Diversity Coherent Detection

In this appendix, we derive local oscillator weights yi of the diversity coherent
detection system that minimize the error probability. This appendix is referenced in
Section 3.3.2. The conditional error probability of the diversity heterodyne system is

given by (3.28), namely

The weights that minimize the error probability are the weights that maximize the

N
exponent. In order to incorporate the fact that Z 7} =1, we re-write the weights as

i=]
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Vi = : (Cl)

~.
n

where k; 20. Substituting (C.1) into the above error probability, we get

2

N
P(ela,,az,...,a,v)=%exp— k"‘/_ ( Ns ) (C.2)

a;

N N{U+N
Sy | M)
=

We now take the derivative of the exponent with respect to k, and set it equal to 0.

(C.3)

- —k,an/a—,.+1/a_,l:ﬁ:kf —kf}
j=1

il

=k, Y koo oo Yk

il i#l

Isolating for &, we get
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Vo Sk
ki =W (C4)

il

To find the values of %;, for all i, that satisfy the above equation, let us start with the

simple case where N=2. For N=2, (C.4) is

2
ky = ia_'l'k_z = J;T ky (C4)
ke, \/;2—

of which the solution is &; = \/Z by inspection. For general values of N, let us
postulate that the solution is also &, = JZ . Substituting this solution into (C.4), we
indeed find that the equation (C.4) is satisfied. Thus, k; = \/;,._ minimizes the error

probability. Substituting this solution &; = Je, into (C.1), the optimal weights 7, are

given by
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Appendix D

Derivation of Direct Detection Optimal
Diversity in Absence of Interference

In this appendix, we derive the optimal diversity value (an integer >1) in direct
detection that minimizes the amount of signal power required to achieve a given
outage probability Pouasgeop in the absence of interference. This appendix is referenced
in Section 3.4. Isolating for N: in the outage probability expression for direct

detection (given in the last line of (3.10)) gives

40';2( _ 40% _
NS,DD = (grhresh + ZV NNnethresh )\' 1+ ¢ N 1 ’ CXP{— J— 2111[1 + ¢ N lJln(zR)umge,DD )} (D' 1)

Rearranging, we get
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2 2

e4a'l —l e40'l ‘_1
NS,DD = elhresh 1 + : exp Y 2 In 1 + N 1n(zfzmtage,DD)
(D.2)
> 40'% _
+2yN 8, AN +e"F —lexpl— —211{1 + £ " 1J1n(2Pamge,DD)
Taking the derivative with respect to N and setting equal to zero, we get
- gthreshaN_Zv - l11(21::;utage,DD ) _ eth,esha
a a 2 a
1+—. [2In[1+—= 2N ‘/1_+—
% _1 \/ NJ "( N) N
0=exp—_ [-2Inf 1+ 10(2P 00 ) 4 2 . (D.3)
N _ ZJNngthreshN‘J- ln(szmge,DD hN_ + Nnethresh
v N+a

e )5

where a=¢'% -1 Multiplying both sides by

Nz‘jZIn[HiJJH—a—
N N
40'2

x _
expy — —211’1{1"' e N ljln(zpoumge,DD)

results in

- grhresha‘\/ - 11'1 (21)outage,DD ) - gLr;h_‘_I_ 2 ln(l + %J

0= (D.4)
- 2(1_‘/— Nnethresthn(zpoutage,DD) + N3/2 \/2Nn ethre.vh ln(l + —1%,_)
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2
4al

LSS (reasonable for mild turbulence) allows us use the

Approximating % =

. . a
approximation ln(l + —ﬁj =

,—(———} 6.9 |~ a
thresh
- ethresha In 2Paulage DD ) 2 ﬁ

0=
- 20\/— N elhre\hN ln( outage, Dl.))+ N3/2 V 2N 6’1’”“" N

(D.5)

Multiplying both sides by f& N gives
hresh@

= \/ lhresha In outage [)I)) avgth%sh - 2N\/— aN ln(zj)oulage DD) N3/2 Y 2Nn (D'6)

Let us denote the optimal direct detection diversity value in the absence of as N,

Then re-writing (D.6), Nop is the root (that is >1)* of
0= 013N3 . +aN, t+a1N1/,2 +ay

a, =4/2N,

n

a, = _2J_ Nn( —1)10( oulage)
where a :_\/jerhresh(e4 2 jll’l(z outage)

thresh 5
ao - 0 (640'1, _1)
2

2 When the roots of (D.6) were found for a wide range of outage probabilities, background noise and turbulence, only one of

the roots was a real number.
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2

40

e
and where

<<1. In cases where N,, is not an integer, it is sufficient to check

if rounding up or down yields the best diversity value. This is because the second
derivative with respect to N of (D.2) is positive, as we now summarize. Taking the

second derivative with respect to N of (D.2) is straightforward but tedious, and results

in
- glhresha\f - In(ZPoulage,DD ) a + a _ 4N7
4 a a 1+£)ln(l+i) (1+3]
2N \/Z(H-NJIH(H—N] [ N N N
_ erhrexha a -2
N3 ,/1 + 4 1+4
N 2N| 1+ N
2 a,/—- Nng res) In 2Poua e
6N—2NS = exp{— \/— 2 ln(l + il/—] ln(zpoumge,[)l) )} - ‘/ et ( o ‘DD) a a -3N

+
712 a ARSI I 1) 142
e | R (R

V N n thresh a

+
2N3/2\/1+ < N[H%j
- a\/_ ln(zpomage,I;’(\/alhresh + ZN/NNN)
_ a\/_ glhresh ln(2 })uutage‘l)l)) \/2 ln[l + i)
N
N“(Hi)\/zl (1+i]
N ' N —-a \) elhresh + ‘\/—]\':]\/3/2

+1

(D.7)

2
where a=e4o‘l —1. By careful and tedious inspection, for 0';2[ €[0,0.5], the second

derivative can be seen to be positive.
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Appendix E

Asymptotic Outage Probability of Homodyne
Detection for Large Diversity

In this appendix, we derive the asymptotic outage probability of diversity homodyne
detection as a function of N. This appendix is referenced in Section 3.4. From (3.35),

the outage probability of homodyne detection is

1 1 1+~ Y-1n2+6, N
TN, A—In + res
ﬂutage,Homo,nolnrerference EECXP{_ 20_2 |:mU _ln[ IN resh )} }
U

s

Substituting m, and o (as given in (3.9)) into the above outage probability,
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1 1 (+N,X-n2+6,. )\
+ 2 AT IR + res
Poumgz, Homo nolnterference = -z‘exp{— 20_(2/ |imU - ln( 2 NS thresh ]:I ]

e
40’% _ .
:lexp .____—1____ _lln 1+e l __ln (1+NIIX ln2+0thresh)
2 i) 2 N 2N,
2In 1+
N
40'% _ 40'% _
For large N, In| 1+ < =€ Ly Thus,
N N
2 2
21 1 1| "% -1 o[ 0+ N, N-In2+6,.,)
outage, Homo ,nolnterference =Eexp -T _5 N — o N
e -1 s
2
N

- 2
Lol L eF 1] 1 12 [IH[(HN,,)(—ln2+9,,m,,)ﬂ Nl (E2)
_1)

2 8| N 2 2(e4al 2N,
2
1 e -1 1
=—expy—— —-—-cN
2 8 N 2

{h{ (1+ N )12+ 0,,1,23,1)]}2

2N

2
2[5’"1 —1J

Thus, for large N, the outage probability of homodyne detection goes as

where in the last line we let ¢ =

1
Poutage, Homo,nolnterference ™~ ECXP {— cN }
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2
In (1 + NnX— In2+ ethresh)
2N

where c¢=

2
2[640_1 - 1]
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Appendix F

Derivation of Expected Outage Length

This appendix is referenced in Section 3.5. As found in Chapter 3, the outage
probability of an N receiver diversity direct detection system is given by (3.10),

namely

my — ln(_]\;— [Bthresh +420,,4 NN, ])

N

P

=0
outage, DD ,nolnterference —

Oy

2
oo
N

2
20y

(F.1)

and the outage probability of an N receiver diversity homodyne detection system is

given by (3.35), namely
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my, — ln( (1 + Nn X_len 2+ 0threxh )J

Oy

2
‘l_eXp - 1 > my, —In| (1+Nn X-— ln2+9rhresh)
2 20} 2N,

P =

outage, Homo,nolnterference

(F.2)

n

Using level crossing theory [11], a Gaussian process W, has an expected outage length

of

P outage
Elout length|= F3
[outage leng ] E[C; 0.0] (F.3)

where Pousge is probability of the Gaussian process W being below level ¢ (and is given
by (F.1) for direct detection and (F.2) for homodyne detection), and £/C;(0,1)] is the

mean number of (-level crossings of the Gaussian process W per second and is given

by

E[C;(o,n]%‘% exp{_(_;;z%w_])z} (F.4)

where 4 = zi I S, (@)dw = I S, (f)df = K(0) (F.5)

/4

and 2 = ij @S, (w)do = (27) j 28, (Ndf = -K,,(0) (F.6)
2

Sy(f) and K, (r) denote the power spectral density (psd) and covariance function of

the Gaussian process W.

The power fading factor e of a single transmitter, single receiver system is modeled

as a log-normal (as described in Chapter 2) where yis Gaussian with mean E[y]=-0,2.
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For an N receiver system, the fading factor is (ezx‘ +e272 4 ot )/N and we
approximate this sum of log-normal random variables to be log-normal [35,43]. We

further define this factor to be

e = %(ez"l +e’n +...e2“’) (F.7)

where W is a Gaussian random. Finding the expected outage length of the log-
normal process ¥ is equivalent to the expected outage length of W. Since we know
Pouage is given by (F.1) for direct detection and (F.2) for homodyne detection, if we
can find the mean E[ W], 0t spectral moment As and second spectral moment Az of W,
then given level §, we can use (F.3)-(F.6) to determine the expected outage length of

the averaged diversity branches.

N
In Chapter 3, we defined &' = -IIVZa,. =%(e2’“ +e' +...e2”") and quoted the mean of Uas
i=1

40%
being m, = —-;—ln[l+ ¢ N—IJ (derived in [43]). Then W=U/2, and the mean of Wis half

the mean of U, namely

40?2

E[W]=—%ln(l+ d ;‘1J

(F.8)

Now derive the 0t and second spectral moment of y (4{ and %) and then express
the Oth and second moment of the spectral density of W (A% and 43 ) in terms of A}

and 4. The psd of y for a plane wave propagating through a medium with refractive

index spectrum given in [27] to be
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4/3
Sl(f)=0.15(12).}_[“0.48(}!(—) } for f<<f,
0

0

-8/3
Sl(f)=1.14(;(2>;—;5-/—3— for > f,

0 (F.9)

where f; =v, [V27iL at wavelength A, path distance Z and transverse wind speed v;.

We approximate this psd by

1 1 4/3
0.15<Zz>f_[1+0.48[fi] } for f < £,
0 .

0
-8/3
2\ S

S, (f)={1.14(x >W for fo < /' < fouop

0
0 for ]f :’.f;utqtf

(F.10)

The value 1/fo is the time it takes for a turbule of width equal to the first Fresnel zone

to cross the path of the optical wave at speed v,. The psd is cutoff above frequency

Fuor to ensure that I F28(f)df is not infinite. Fuwrris taken to be much larger than fo.

Substituting (F.10) into the definition of the 0* and 2™ spectral moment (F.5) and
(F.6) (where we replace W by x) and performing the simple integration, 4 and %

are given by

-20152) 14208 a >{(f”"’ﬁ)5/3-1} (F.11)

and

g =2 013(2") 3+ 0 lrPlask ) - ] 1)
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The correlation function of ¥ is

- 27(1) ,2x(t+7)
R,y on (r)- E[e e ]

= II ezyl+2)’2 exp{—‘ (yl —mz)zo-; - 2()’1 _mzxyz -m, )PO'; + ()/2 ——ml)zo-i }dyldyz (F13)

271'0';\/1—p2 20—;(1"102)

By using the fact that y(z)and y(t+t) are jointly Gaussian with correlation coefficient

p=Kal) (F.14)
O‘l
and that
N (F.15)

we can simplify (F.13) by expanding all terms in the integrand and substituting (F.14)

and (F.15). After some simple and tedious algebra, we get

R ()= E[e2l(t) 621(t+r)]= exp[4 K, (r)] (F.16)

The covariance function of e is then
Ko ()= R,y (r)- mjzl = exp(4Kﬂ (r))-— 1 (F.15)

Assuming that the fading factor seen by each receiver is independent, the covariance

function of €% is
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1
Kezwezw ()= FKezlezz (T)

- ogler ()1 .16

v

where the last line is of the form of (F.15) but where the expression inside of the

= exp{ln[—exp[élK @)+ ¥

exponent is different. Thus,

(F.17)
and
14 _KWW(O)z—ln(iexp(ug )+ 1)
N (F.18)
y Kult | et

& =_KWW(0)—— 4K, (r) N-1 T N -1

x _ 0 4 -
A P (F.19)

where the second last equality is true because we assumed that process y(z) does not
have an infinite number of u-level crossings (X,,’(0)=0). Thus, we have found E[ W],

45 and 27 interms if o2, 47 and 4% .

We now describe the level ¢ at which Wis in an outage. From (3.6) and (3.34), the
average number of detected signal photons per symbol needed by an N-receiver direct

detection and homodyne system to achieve Pe=h in the absence of fading are

2
,_(—‘) ’NN NN,
N:{'SB?N :[ ~In 1_—,ethresh + _2_"] - 5 u (F20)

and
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Noron = —(1—+2N—")1n(zghm")= N (F.21)
respectively. If the system provides a link margin of m beyond Ny (the signal
P y y P g y s g

hotons needed by a single receiver homodyne system to achieve P**"), the system is
P Y g yne sy e Yy

in outage if

2
'_ lniPthresh i+ NN" _ NN"
¢ d 2 2

o N oy Ly (F.22)
mNS 2 _m(l+Nn)ln(213elhresh)
2
in direct detection and
Nthresh
W  oflomoN  _y py <imn —1—) (F.23)
mN 2 \m
in homodyne detection. Thus,
2
[ ,_lnighresh j+ N]2V,, ] _ N;\/,,
1 v
¢=—In (F.24)
2 -m (l + Nn ) ln(zfzthresh)
in direct detection and
1 1
=—In| —
5 ( - J (F.25)

in homodyne detection.
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We can now calculate the expected outage length of W (i.e. the expected outage
length when diversity is used) as a function of diversity N, link margin m,
transmitter-receiver separation I, wavelength A, turbulence strength o, and
transverse wind speed v, by substituting (F.1) (or (F.2)), (F.8), (F.18), (F.19) and
(F.24) (or (F.25)) into (F.3) and (F.4).

Now let us show that the expected outage length is inversely proportional to the
transverse wind speed ie. E[outage length]ecl/v:. The expected outage length

expression (F.3) consists of Pousee which is not a function of v: and E[C;(O,l)j. All
variables in the expression for E|C,(0,)] (in (F.4)) are not a function of v except for

possibly 47 and ). Let us now see the dependency of 2 and 4/ on w. Let the

cutoff frequency be a multiple of f of fo. Substituting f,,, =gf, (where g>>1) into

(F.11), we get

=2(0.15)x )[ 3(048)] 6114)( )[ 53 ] (F.26)

which does not change with v.. Thus, from (F.18), 4 does not change with v

Substituting /., = gf, and f, =v, /\27AL into (F.12), we get

2 =207)(0.15)z )F 3(048)% +6(2z ) (L1a) 7)e" 12 - 1]

{ (0. 15)( l 20 48)]+6(2”)2(1-14)(zz)[g”3—l]} (F.27)

-MZL{ (27 (015X x )[l %;’”}+6(zﬂ)2(1.14)<12>[gw_l]}
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which is proportional to the square of the transverse wind speed. As we can see from

(F.19), since 4% is not a function of v,and 2 is proportional to the square of v, A is
proportional to v;. Thus, from (F.4), E|c,(0,p] is proportional to v, and from (F.3),

the expected outage length is inversely proportional to the transverse wind speed.
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Appendix G

Derivations of Various Expressions in Chapter
4

In this appendix, we provide derivations for various expressions in Chapter 4. We
summarize in Table G.1 descriptions of the quantities derived, the section numbers in
this appendix in which they are derived, the sections in the thesis to which the
derivations apply, and the corresponding equation numbers in the thesis. When

deriving the optimal duty cycles, we assume NN, <mNg. This is reasonable for off-

axis interference that is scattered into the receivers.

297



Quantity derived Section | Section in | Equation
in this thesis to | derived
appendix | which

derivation
applies

The tightest upper bound for error probability of G.1 44.1 49

direct detection in the presence of constant

interference that is on for the first half symbol

The worst case duty cycle for constant interference G.2 441 4.10,4.15

that is on for the first half of the symbol in direct

detection

The mean and variance of the photodetector output G.3 4.4.2 4.17,4.18

for direct detection in the presence of Gaussian

interference that is on for the entire symbol

The worst case duty cycle for Gaussian interference G.4 4.4.2 4.20, 4.24

that is on for the entire symbol in direct detection

The worst case duty cycle for Gaussian interference G5 443 4.29,4.33

that is on for the first half of the symbol in direct

detection

The average photon count for canceling interference | G.6 444 4.35, 4.36

that is on for the entire symbol in direct detection

The tightest upper bound for error probability of G.7 444 4.37

direct detection in the presence of canceling

interference that is on for the entire symbol

The worst case duty cycle for canceling interference G.8 444 4.39

that is on for the entire symbol in direct detection

The average photon count for canceling interference G.9 4.45 4.47,4.48

that is on for the first half of the symbol in direct

detection

The worst case duty cycle for canceling interference G.10 445 4.53

that is on for the first half of the symbol in direct

detection

The worst case duty cycle for Gaussian interference in | G.11 45.1 4.60, 4.64

homodyne detection

The worst case duty cycle for canceling interference G.12 45.2 471,4.76

in homodyne detection

The average photon count difference between the first | G.13 471 N/A

and second half of the symbol in direct detection with
Gaussian interference that is on for first half symbol
and with Gaussian interference that is on for entire

Table G.1 Quantities derived in Appendix G and corresponding section numbers
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G.1 Tightest Upper Bound for Error Probability of Direct Detection in
Presence of Constant Interference that is on for First Half Symbol

In this section, we find the tightest Chernoff Bound of (4.8), namely of

B

P(e) < _Emi n E[e‘(N‘ ~No)|interference is on, H0]+ gmion E[e’(No—N|)| | interference is on, H,]
52 12

We introduced, in Section 4.4.1, that if the sender sends a ‘0’, the average photon

NN, +—-N]2v" and

counts in the first half and second half symbol intervals are mN; +

NN, : . <> .
- respectively and if the sender sends a ‘1’, the total average photon counts in the

first and second half symbol intervals are —]YZ—’%]% and mNg+ szv" respectively.

Thus,
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Ple) < g_ migl E[E[es(/"l‘NO)IinterfefemeiS on, HO,NO] |interferenceis on, HO]
KP4

+ gmin E [E [e’ (No-M )’interference ison, H,, No] |interference ison, H, ]
20

= —’g- mié] E L‘SN °E [eSN !interference is on, H, ] ,interference 1son, Ho]
5§

+ gmin Ele™E [e”'N 1 linterference ison, H, ] Iinterference ison, H, ]
120

- NN
: E SNO n S _1
nig ol csp 2o -1
+ 2 min E[e’N 0 exp{(mN; + Y, )(e" - l)}
2 =20 2

min exp{ NIZV" (eS - 1)}E [e*SN 0 ‘interference is on, HO]

interference is on, HO}

interference is on, H, :|

+£min exp{[mN; + NN, J(e‘t —l)}E [e’N ®interference is on, H1]
2 20 2
B . NN, [, . NN, NN,Y. (G.1)
=?r§121(§1exp > (e —l) expy| mNg + 2’+ 2 (es—l)

+ grglgn exp{(mN; + szv” )(e“ - 1)} exp{( N]2V1 + —]%vl](e‘ - 1)}

where in the second and fourth equality, we used the fact that for a Poisson random

variable with rate parameter A, E [eSX ]= exp{l(e‘ - 1)} Optimizing over s (by taking the

e s N . .
first derivative of exp{(mNs + ;V’ +—]%V”—)(e'f ~1)+ N12V,, (e —1)} and setting it equal to

zero), gives us

mNy + N]2V, + sz"
e’ = WV . (G.2)
2
Optimizing over t (by taking the first derivative of
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exp{(mN; + lev" )(e" - 1)+ (_]\.’]2\/_'+ N_;VL)(e’ - 1)} and setting it equal to zero), gives us

(G.3)

Substituting (G.2) and (G.3) into the last line of (G.1), the tightest upper bound is

p@)sgexp{”wmmﬂgz ) }+gexp{_[J;N;+Ng’n i M;MZVJ} G4

G.2 Worst Case Duty Cycle for Constant Interference that is on for First
Half Symbol in Direct Detection

Worst case duty cycle in absence of fading

From (4.9), the error probability of direct detection in the presence of interference

that is on for the first half of the symbol as a constant signal and has duty cycle Sis

2 2
P(e)gﬁexp{_[JmN;+ NN, NN, _\/NN"J }+£exp{_(\/mN; LN, [, +NNn] }
2 5 2 2 2 2 B 2

Assuming that errors which occur when the communication and interference signals
are in the same half symbol are negligible i.e. the first term in the above equation is

negligible, the error probability is approximately
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Ple) = gexp{—[JmN; + N;V” —JN;V’ + NQ/,, ) } (G.5)

To find the duty cycle that maximizes error probability, we take the first derivative of

the error probability with respect to fand set it equal to 0,

2
0=_c’5_{£exp{_[\/mN;+NN,, B NN,+NNnJ H
B 2 R

2
=_/_>’_exp_ \/mN;+NNn_ NN, , NN, 2 ‘/mN;+NN,,_ NN, , NN, NN,
2 2 B 2 2 V] 2 22 NN, , MN,

)
2
+lexp{—(JmN;+ NN, _‘/NN, +NNHJ }
2 2 B 2
(G.6)
Assuming N, << iv—’-,
B
(G.7)
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Thus,

\[NN,(mN; + N‘;V" ) + J;V,(mN; + N]ZV")—4NN,
JB = - (G.8)

For large mN; and N,, the only possible root that is in (0,1] is the one that
corresponds to using the negative sign rather than the positive sign. The other root is

>1. The root that is in (0,1] is

‘FVN,(mN; + NJZV" ] —\[NN,(mN; + NN")—4NN,
JB - 2 (G.9)
2
2
B= %(‘/NN,(mN; + Ng’] —\/NN,(mN; + N;v" )— 4NN,]

2
NN,mNy( [ NN NN, 4
=15 N+—2 - 1+—2-—
4 k mN mNg  mNg

Assuming mNg >> NN, -4, we can use the approximation that J1-6 = 1—5;; for small J,

. 2
= NN (1+ NN, (HNN,, —4)]

4 2mNy \ 2mNy
NNy 2 Y (G.10)
4 mNg
_ N,
mN;

NN,

If NN, <mNy, for
mNg

< p <1, the first derivative of (G.5) is negative and for

303



NN,

mNg

0<p<

it is positive. Thus, the worst case duty cycle is

Bwe = * (G 1 1)

Worst case duty cycle in presence of fading

From (4.13), the outage probability of direct detection the presence of interference

that is on for the first half symbol as a constant signal and has duty cycle £ is

1

1N

W=

outage
U

expy———

my —In

2
2
NN
J-In2+0, . + NN, + NN, | _ N,
5 2 2
mN

To find the duty cycle that maximizes the outage probability, we take the first

derivative of the outage probability with respect to /8 and set it equal to 0.
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2
( T [N, +NN,,) _MN
olp 1 B 2
mN

=—| L exp{———|m, —In
op| 27" 252 | ™

(V -In2+ ethresh NN NN
B 1 V
2 mN s

mU—

Oy

2
- ln 2 + chresh + NNI + NNn - NN"
V s 2 2

. —_71 my —In 5
oy mNg

—mNS [ ][,/— In2+ 6, + NN’ LMY, J
LN, | _N mN 2
,/— 240, ., + : -

O i ””’J
2 NN, NN B
B T2
r | — [~N, NN, M ’
-1n2+ethresh + N ! + . - .
1 1 p 2 2
+—expy———; my —In " v
2 20y mNg
NN, NN ’ NN
'\'_ln2+61hresh + L + . -
NN, B 2
=———-{my —In :
Poy mNg
Fn2+a, o+ | M NNy (G.12)
p 2 1

NN, NN

) 2
————— [NN, NN, NN,
[ —1n2+9,hmh + ﬂl + 2 ] "N]V,l J ﬂ + 2

+1
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. N . .
Assuming TBL» N, and Ng’ >>-In2+6,,, (the latter is reasonable since

-In2+46,,, =1.6 for an error probability threshold of 0.1 and % is much larger than 1

in scenarios where the interference is much larger than worst case background noise

of Ni=1), the above equation reduces to

(G.13)

where in the last line, we substituted in for m, and o} given in (3.9). Thus, the

value of f# that maximizes the outage probability is

N 40,% 1 3/2
g, - 5[“‘* - ] (G.14)

G.3 Mean and Variance of Photodetector Qutput for Direct Detection in
Presence of Gaussian Interference that is on for Entire Symbol

As discussed in Section 4.4.2, the output of the photodetector in the presence of a
random Gaussian field is a doubly stochastic Poisson process where the rate parameter

varies with the impinging field.
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Let the random variable K denote the photodetector’s photon count over the duration
of half a symbol time 7/2. For a given rate parameter of the doubly stochastic
Poisson process, the distribution of K is Poisson. Let us denote this Poisson random
variable’s mean by A. Since K is Poisson distributed, it has mean A and variance A.

The expected count K is given by

E[K]= j:(ki)k Pr(K = k| 1)) p(A)dA
= j: E[K | Alp(A)dA (G.15)

= [“ap(A)dA
- £[1]

In Chapter 4, when the interference is on, we denote the average received

interference photons per symbol by N,/f. Thus, the expected count over the
duration of half a symbol is N, /(2/) (for symbols during which the interference is

on). Thus,
N
ElK|=E|A|=—%
Oy (G.16)
The second moment of the count K is given by

E[x?]= I:(ikz Pr(K = k| /1)] p(2)dA
= [” [ | Alp(a)aa (G-17)
= [*(a+ 2)p(a)ar

- B[]+ E[#]
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where the second line is true because £ [K 2]= or +(E[K]f = 4+ 2% (for Poisson random

variable K). Let us define x to be a Gaussian variable representing a scaled version of

the envelope of the received interference field. Specifically, let x = , 7:7—% where f;
14

is the envelope of the received interference field. Since the interference is Gaussian

with 0-mean, x has 0-mean. The rate parameter A is then given by
A=x? (G.18)
Substituting (G.18) into (G.17),
E|k?]= B[]+ E[x*] (G.19)

For a Gaussian random variable x with 0-mean, E [x4]= 3(E [x2])2 . Thus,

E|x?]= E{a]+ 3(E[2]f
= E[a]+3(E[2]} (G.20)
= E[K]+3(E[K])

The variance of K is given by

ot = E|*|- (B[’
= E[K]+3(E[K]’ - (E[K ]}
= E[K]+2(E[K])
= E[A]+2(E[2]

:&.}.2 lv_]. ’
28 28

(G.21)

N
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Modeling the output of the photodetector as Gaussian, this Gaussian random variable

2
has mean '~ and variance N, 2(&J (from (G.16) and (G.21)).
2B 28 \28

For an N receiver system where the rate parameters vary together,

ﬂa]:% and (G.22)
ol = E[A]+ 2(E[A)}

ﬂ"_z(ﬂN_) (G.23)
2B T\ 28

G.4 Worst Case Duty Cycle for Gaussian Interference that is on for
Entire Symbol in Direct Detection

Worst case duty cycle in absence of fading

From (4.19), the error probability of direct detection the presence of Gaussian

interference that is on for the entire symbol and has duty cycle £ is

P(e) = —’B-exp - (mN; )2

2 NN, (NN,]2
2 ——+| —
[ 5B

To find the duty cycle that maximizes the error probability, we take the first

derivative of the error probability with respect to / and set it equal to 0.
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0|8 (mN;)z
NN, +(&T
B\ B

IR
2

MJ_+(M)2 ’ NN, NN, Y
S VAV

(mvs

1
+—expy— :
2 Z(NN, +(%J J

[\

s B

E&(1+2Ni]
= (mN;)Z p B y

| [%Jr(&nz (G.24)

;
2NN
= _(mN;)2 [HTLJ
2

A’&[H@/_,T
B B

+1

: NN
Assuming —ﬂ—’ >>1,

0= (@] [2]\,?]])

> +1
2

B\ B
! (G.25)
B
NN,
ﬂ B mN;

Thus, the value of g that maximizes the error probability is
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Bre =L (G.26)

Worst case duty cycle in presence of fading

From (4.23), the outage probability of direct detection the presence of Gaussian

interference that is on for the entire symbol and has duty cycle S is

— | 2 \
2
Z(N_N,+ (_&J ](—— n2+6,,.,)
, 1 B B !
utage = €Xpy——— | my —In 0
- 707 mNg
NN NN :
Assuming —* << (__]J ’
B B

PmN

2
Prge = ﬁexp{— ! {mu - ln([ NN, - ],/2{— In2+4,,, )JJ } (G.27)
o

To find the duty cycle that maximizes the outage probability, we take the first

derivative of the outage probability with respect to S and set it equal to 0.
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NN,

2
0 1 / ( )
0= % —;ZCXP{“ZT._Z‘I:’”U —ln(( ﬂmN* J 2-In2+ ethresh ]:| }

U N

2
=£exp ———1—2— my —In NN’, 2-In2+6,,.., ;21— my —In NN’,, 1/2i—ln2+t9thmhi
2 20 pmNg oy PmNg
ﬂmN; NNI 2 ~ln2+9thresh
NNI\/Z(_ln2+91hresh) ﬂsz;

2
+-1—exp _Lz my, —1n NN’,, J2(-n2+6,..,)
2 2 BmN

1% N

N

- -(;—2—|:mu -hﬂ 2::’\; ),/2(—1n2+9,,m,, )H 1

(G.28)
Rearranging, we get
ln(( N];]\;, ),IZi—an + Oppresh )] =my -0
pmNs (G.29)
NN 405 . 3/2
e p—
B= mNé 2Em2+g,,,) 1+ ¥ J
Thus, the value of g that maximizes the outage probability is
(w2 V7
Pue =L [T Z g )Ll ! (G.30)
mNg
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G.5 Worst Case Duty Cycle for Gaussian Interference that is on for First
Half Symbol in Direct Detection

Worst case duty cycle in absence of fading

From (4.28), the error probability of direct detection the presence of Gaussian

interference that is on for the first half symbol and has duty cycle S is

To find the duty cycle that maximizes the error probability, we take the first

derivative of the error probability with respect to f and set it equal to 0.
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o
i3]
0=—i —éexp £ 5
o8| 2 NN, (NN,)
4 —=+2 —+
B B
2
o5
=£ex - B
2

2
2—]1/&+2(NN’]
B B
__2[mN._NN,)2 MNP NN,+2(NN,J2 mN*—&\JNN’—

B )L g B B ST )

2\2
4 _1@’_14,2(1\’_&)
s\ B

2\? 2 2 2
=2 ﬂ]ﬁ+2(&] -[mN;-NN') NN’+4(NN’J -2 5@42(&) mN;—J—V—]YL]NN’
B B B B B B B B ) B

(G.31)
Assuming NTN’- + 2(—]%]2 ,
{5 o
p 7 p B B
=2[N2/ ! T — (N} + m; N'];f, (G.32)

Thus,
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Y, iJ[NNi)ZH{NNiJZ
mN mNg mN
p= 5 (G.33)
zi(ﬁfxi_ﬁﬂq
2{mNg;  mN;

The root that corresponds to using the negative sign rather than the positive sign is

negative. The other root is

B= 2N]\( ! (G.34)
mN
If 2NN, < mNy, for 2@14 < f <1, the first derivative of (G.33) is negative and for
mNg
0< B < 2NN, , it is positive. Thus, the value of g that maximizes the error probabili
B I p P ty
miNg
is
2NN
ﬂ wc = *1 (4'35 )
mN S

Worst case duty cycle in presence of fading

From (4.32), the outage probability of direct detection the presence of Gaussian

interference that is on for the first half symbol and has duty cycle /S is

2 ﬂz[‘w—} (- 1024 Gy) + 20
1 F / ’

m,, — In|
2 (4 *
207y mN

P =

outage

SYRY

expy—
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2
. N NN
Assuming Nﬂ’ <<[ ’]

2
- ﬁ 1 B NN, —
Pourage = D) CXP{ 20_5 {mu ln[|:——'—ﬁmN; :|<2 In2+ G,hresh + 1))] } (G‘.36)

To find the duty cycle that maximizes the outage probability, we take the first

derivative of the outage probability with respect to S and set it equal to 0.

0= %{gexp{— 2;2 {mu - ln[[——w—"]&,ﬂ— n2+8,,.,)+ l)ﬂ H (G.37)

PmN

After straightforward algebra, this reduces to

B= fn"x V") 6, + Lexplo? - m,) (G.38)

N

Substituting in for m, and o/ given in (3.9), this becomes

3/2
40% _
B= in )+ o, +1{1+e = 1] (G.39)
m

N

Thus, the value of g that maximizes the outage probability is

3/2
40)2( _
B.. = NN{( -n2+84,,, +1{1+ ¢ I l] (G.40)

mN
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G.6 Average Photon Count for Canceling Interference that is on for
Entire Symbol in Direct Detection

If the sender sends a ‘0’ in the presence of canceling interference, then in the first half

symbol, the average number of received photons by receiveri, 1<i<N is

Nn

A
Ny, = LZUg -U | + 5

" hoN

_n A{ } N,
= Usl* +|U,[* -2RelUsU, ] +o

n Af.2 ;2 N
Ak y2 oy, bt
44207 20,12
_mNg N;_, |mNgN, N,
N 2p BN 2

where U and U, are the envelopes of the received signal and interference field, and

(G.41)

where in the second last line U, and U, are taken to be real. The total average

photon count is the sum of the average counts from each receiver. Thus,

N0=N m_N§_+&_2 M.{_&

N 25 N 2y T2 (G.42)
i, o N 2NN NG N,
28 8 2

The average received photon count in the second half symbol by receiver i is

Ny =ot+ e (G.43)

Thus the total average received photon count in the second half symbol is

317



_NN, NN,
28 2

(G.44)

G.7 Tightest Upper Bound for Error Probability of Direct Detection in
Presence of Canceling Interference that is on for Entire Symbol

In this section, we find the tightest Chernoff Bound of (4.8), namely of

P(e) < min SE les(N 1=No) | interferer is on, HO]
520

We introduced, in Section 4.4.4, that if the sender sends a ‘0’, the average photon

counts in the first half and second half symbol intervals are

2 *
Noz[,/—mN; _ {fgf;z] e iy 20 /M;NN, A a2

respectively and if the sender sends a ‘1’, the total average photon counts in the first

and second half symbol intervals is reversed.

P(e)< fminE|E [es(N 1=Vo)linterference is on, H,, No] linterference ison, HOJ
520 -

=fBminEle N E [eSN linterference is on, Ho] |interference is on, HO]

s20

= fmin E| e *Mexp M-’r NN, (eS —1)
520 Zﬂ 2

= fmin CXP{[% + szv,, ](e - l)}E [e"SNO

. NN, NN, Y, « NN ;2 N¢NN, NN, |(
=ﬂ1}12151exp{( 2ﬂ1+ 2n](e —1)}exp{{mNs+ 2/;_ m; Ly ;V](e —l)}

interference is on, Ho} (G.45)

interference is on, Ho]
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where in the third and fifth equality, we used the fact that for a Poisson random
variable with rate parameter A, E[eSX ]= exp{l(e‘ - 1)} Optimizing over s (by taking the

first derivative of

exp{(]g];’ +%)(es —1)}exp{[mN; + 1\;1}; I_ ,/2mN/;3NN’ + szv” ](e's —l)}

and setting it equal to zero), gives us

N+ NN, ’ZmNSNN, LN,
s 2p B 2 . (G.46)

NN, NN,
28 2

Substituting (G.46) into the last line of (G.45), the tightest upper bound is

2
Ple) < foxple| |y + NN [2NNmNS NN, _ NN, NN,
25 B 2 25 2

G.8 Worst Case Duty Cycle for Canceling Interference that is on for
Entire Symbol in Direct Detection

Worst Case Duty Cycle in Absence of Fading

From (4.38), the error probability of direct detection the presence of canceling

interference that is on for the entire symbol and has duty cycle / is

P(e) = ﬁexp{— [,/mN; - ZA;N’ ] }
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Taking the derivative with respect to g and setting equal to 0, we get

ozﬂexp{ (W 2NNJ} {J— ZNNJ[MJW{ (W zNN”

287
(J— 2NNJ\@Jrl
IJW(‘/—— 2NN]

B= 2NN, (,/ fBmN; — 2NN, )
0=48- ,/zNN,mN; B + 2NN,

(G.47)
Thus,
V2NN, mN§ £2NN,mN;, ~8NN,
E 2
2
= %(JZNN,mN; + 2NN, mN;, - 8NN, )
2
=L} aNNmN; = 2NNy - (G.48)
4 mN

where the last line is true if mNj>>4. For mN;>>1, the only possible root that is in

(0,1] is the one that corresponds to using the negative sign rather than the positive

sign. The other root is >1. The root that is in (0,1] is

5= (G.49)
mNg
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If NN, <mNy, for ML < B <1, the first derivative of the error probability (4.38) (and

mNg
re-stated at the start of this section) is negative and for ¢ < g < N_Nﬁ. , it is positive.
mNg
Thus, the worst case interference duty cycle is approximately
B =k (G.50)

mNg

G.9 Average Photon Count for Canceling Interference that is on for First
Half Symbol in Direct Detection

Average Photon Counts in First and Second Half Symbols

If the sender sends a ‘0", the average photon counts in the first half and second half of
the symbol is the same as in the presence of the presence of the canceling interferer

that is on for the entire symbol except that NN, /(2f) is replaced with NN, /5.

If the sender sends a ‘0, the communication signal is in the first half symbol and the
interference is in the second half symbol. Thus, the average received photon count

per receiver in the first and second half symbol intervals is

N
N, =—L4=n G.51
B (G3D)

and the total average received photon count in the first and half symbol intervals is
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No=NN,, =N ™s N |_y2 NN,
’ N 2 2
N =N N Mo | NN, NN, (G.52)
g2 B 2

G.10 Worst Case Duty Cycle for Canceling Interference that is on for
First Half Symbol in Direct Detection

Worst Case Duty Cycle in Absence of Fading

From (4.52), the error probability of direct detection the presence of canceling

interference that is on for the first half symbol and has duty cycle £ is
)

This is the same as the error probability of diversity detection in the presence of

NN,
s

P(e) = ﬂexp{— [\me; -

canceling interference that is on for the entire symbol except 2NN,/f is replaced
with NN,/p. The worst case duty cycle is calculated with the same equations except
where 2NN,/fB is replaced with NN,/f. Thus, the worst case duty cycle is

approximately

~ mN; (G.53)
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G.11 Worst Case Duty Cycle for Gaussian Interference in Homodyne
Detection

Worst Case Duty Cycle in Absence of Fading

From (4.59), the error probability of homodyne detection in the presence of Gaussian

interference that has duty cycle £ is

P(e) = —f—exp -

To find the duty cycle that maximizes the error probability, we take the first

derivative of the error probability with respect to f and set it equal to 0.

_&_ l 3 2mN
5 ]+ 5 eXp N, (G.54)

i (G.55)
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Thus, the value of g that maximizes the error probability is

N
IBWC= I*
szS

(G.56)

Worst Case Duty Cycle in Presence of Fading

From (4.63), the outage probability of homodyne detection in the presence of

Gaussian interference that has duty cycle p is

[l + &)(— ln2 + ethresh)
b LB 5
outage = —exp - 2 mU - ln *

52 20y, 2mN

To find the duty cycle that maximizes the outage probability, we take the first

derivative of the outage probability with respect to S and set it equal to 0.
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(l + %)(_ 111 2+ athresh)

= exps ——=-| my —In| <
Bl 2 P 202" 2mNy
N 2
1 (1 + fl)(_ In2+ elhresh )
=£exp ——|my—-In £ :
2 20y 2mNg
N
1+—L {(~In2+6, .
( 1 J m Inl ( ﬂ )( 'h"e-‘h) szS (— NI X— In2+ ethresh)
12" * * 22
%y 2mNs 1V Cn24g,,,) 2P
ﬂ thresh
N -2
1 (1 + _I_J(_ In2+6),.0 )
+—expy——— | my —In p :
2 20y 2mNg
- (G.57)
N [1 + &J(_ In2+ ethresh)
=————1N—' mU—ln ﬂ ) N* +1
Bo (1 + —’) s
B
Assuming - :
ssuming i >>1, this reduces to
0=—_L my ~In N[(—lnztgthresh) 1 (G.58)
o 2mNgf
Substituting in for m, and of given in (3.9), this reduces to
4 2 3/2
- % _
f= N ln2+‘91hmh) 148 1 (G.59)
2mN N

Thus, the value of g that maximizes the outage probability is

325



4 2 3/2
Bue = N, (_ ln2+fthresh)[l+ e * "IJ (GGO)

G.12 Worst Case Duty Cycle for Canceling Interference in Homodyne
Detection

Worst Case Duty Cycle in Absence of Fadin

From (4.70), the error probability of homodyne detection in the presence of canceling

interference that has duty cycle £ is

- 2[,/mN; - \/EJ - 2[,/m1v; + ‘/EJ
i A i
P(e)_ exp TN

+ €X
4 P 1+ N,

Assuming that errors when the communication and interference signals add are

negligible,

Gas
v (G.61)

-2
P(e); exp

NS

To find the duty cycle that maximizes the error probability, we take the first

derivative of the error probability with respect to £ and set it equal to 0.
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=—2(W—J—N77N%+1

=(1+nN,)p- 2,/mN;N, B +2N,

From the above,

J- 2[mN;N, +\[4mN;N, - 4(1+ N, 2N,

2(1+N,)
JNoN, £ mNoN, [1-2 ;‘;\IN " ]2
h- A
JmNN, £/mN;N, [1—(1—;]\7,—")D2
B (1+n,) :

(G.63)

where in the last line we assumed mN; >>(1+N,). For large mNg and N,, the only

possible root in (0,1] is the one that corresponds to using the negative sign rather than

the positive sign. This root is

t+n,)Y
( mN?NIW‘"—J N
]

—1 S —1
=y -
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If N, <mNy, for N B <1, the first derivative of the error probability in (4.70)

*

mN
(which is re-stated at the start of this section), is negative and for g < g < N L_,itis
mN
positive. Thus, the value of g that maximizes the error probability is
Ny
Bue =— (G.65)
mN S

Worst Case Duty Cycle in Presence of Fading

From (4.74), the outage probability of homodyne detection in the presence of

canceling interference that has duty cycle £ is

2
Ptmla e E'éexp - l mU - ln 1 < (J(l-l- N"X— 1n4+01hrexh) + &
s = 20} mNy | 2 B

To find the duty cycle that maximizes the outage probability, we take the first

derivative of the outage probability with respect to S and set it equal to 0.
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2
0= ig p{———l——[ U—ln{ 1‘( ﬁ+N,,X—ln4+9,;,,esh)+ &)2}:“
op| 2 207, mN 2 B
2
Bl _inl ! \/(1+N,,)(—ln4+0,hm,,)+ V)
2 200 0|mNg 2 ;
[__zlJlimU—ln{ (1+N X ln4+0threxh) NI\J }}
oy mNS 2 yij
. _‘/N_l J(1+Nnx_ln4+gthresh)+‘/]_v_l‘ "
2ﬂ3/2 2 ,B
2
+—1-GXP[—-1—2[mU—ln{ 1‘(\/(1+N,,)(—In4+9,hmh)+ ﬁ)ZH }
2 20y mN 2 Yij
By L7 \/1+N Y-1n4+6,..,) \/E i \/(1+N")(—1n4+9,,,,esh)+\/__1v_,‘ —l+1
O_Lzl B mNs g 2 B

(G.66)

Assuming J 1+ N, )X 1;4 + o) << ’% , this reduces to

N
= —eexpl-m, + ;) (G.67)

4 2 3/2
Bre =—L [H i _1] (G.68)
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G.13 Average Photon Count Difference Between First and Second Half
of Symbol in Direct Detection with Gaussian Interference that is on for
First Half Symbol and with Gaussian Interference that is on for Entire

First, let us assume background noise is negligible compared to the interference.

When the Gaussian interference that is on for the first half symbol uses the worst case
duty cycle, and the sender sends a ‘1", the average count in the first half symbol

during which the interference is on is

NN, _mNg (G.69)
ﬁWC 2

where PBw represents this interference type’s worst case duty cycle (4.29). The

average photon count in the second half symbol is mNg. Thus, the difference in the

average count of the two half symbols intervals is mN;/2 .

For the Gaussian interference that is on for the entire symbol and uses the worst case
duty cycle, the average count due to interference in any half symbol during which

the interference is on is

NN, _mNg (G.70)

2By 2

where Pwe represents this interference type’s worst case duty cycle (4.20). Thus, the

average photon count in the half symbol without the communication signal is mNg/2
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*

mNg 3mNy

and in the other half symbol is +mNg = . Thus, the difference in average

count of the two half symbol intervals is mN;.

If background noise is not negligible compared to the interference, then for each half

symbol intervals, the average photon count would increase by NJZV" and the average

photon count difference between the two half symbols would not change.
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Appendix H

Solution of Steady State Probability
Distribution for Modified TCP Exponential
Window Increase Markov Chain

In this appendix, we derive the steady state probability distribution of the Modified
TCP exponential increase Markov chain of Figure 6.5. The detailed balance equations
of the Markov Chain of Figure 6.5 (which models the window progression of the

Modified TCP assuming exponential window increase) are given by (6.26), namely
i (1 = Pe,i-1 )= iPej for i=2,3,. .+, Jlmax

Thus,

-z l“pc,i—Z l_pc,i—l
=iy
! De,i-1 Dei (Hl)
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Since the sum of the steady state probabilities equals 1,

Mmax
1= Z ﬂi
i=l

=m[l+"’§‘ﬁ[——"”” D (H2)

izl j=1\ Pe,j+l
-l
Pmax i-1(]— i
izl j=1\  Pec,j+

Thus, the closed form solution for the steady state probability distribution of the

Markov chain of Figure 6.5 is given by

g -1
= [1+"’§* ﬁ(ﬂD and (H.3)

. _ﬂln[ pc,]

Pe,j+
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Appendix I

Derivation of Number of Round-trip Times to
Send (1/peongrene) packets if Window Increase is
Linear and Starts at Value n

In this appendix, we show that if a TCP sender’s window starts at size n packets

2 B . . . .
where »___ 1 | and the window increases linearly, then the window will

2 p congperpkt

increase to a size of approximately (\/5 - l}: by the time 1/ p e Packets have been

sent. This appendix is referenced in Section 6.5.2.

. . . 2
Consider a window size that starts at n packets where 7" __ 1 and let the
2

P congperpkt
window size increase by one packet every round-trip time. Let m denote the number

of round-trip times until 1/ p,,,g.w packets have been sent. Then
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1 =(n+1)+(n+2)+.(n+m)

pcongperpkt
=14+2+...+m+nm
m(m —1)
== tmn (L3)
2
= m(m - 1)+ 2mn
pcongperpkt
0=m’ +m(2n _.1)_L
pcongperpkt
Thus,
—(2;1—1)1‘/(211—1)2 8
m= p congperpkt
2
_—(2n-1)t J@n -1} +4n?
- 2
2
=-—n+-l—i \/4n —4n+1+4n°
2 2
2 pa—
=_n+li\/8n 4n+1 (1.3)
2 2
=-n+ % + ﬁn

zn(«/E—l)

where in the second last line, we used the fact than for very large n, 8n> —4n+1=8n’,
and in the last line we assumed that the term of 1/2 in the second last line is

negligible compared to n(ﬁ -l).
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