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Abstract

Spatial-phase-locked electron-beam lithography (SPLEBL) is a method that tracks and
corrects the position of an electron-beam in real-time by using a reference grid placed
above the electron-beam resist. In this thesis, the feasibility of spatial-phase-locked low-
voltage electron-beam lithography is investigated. First, the feasibility of low-voltage
electron-beam lithography (LVEBL) is experimentally verified using the resists
hydrogen silsesquioxane (HSQ) and polymethyl methacrylate (PMMA). Unlike electron-
beam lithography at higher voltages, LVEBL has minimal proximity effects and is not
resolution-limited by these effects. The fabrication of ultra-thin photoresist grids is
investigated and the secondary electron signal levels of these grids are measured.
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Chapter 1

Introduction

Lithography is the art of creating desired patterns on a substrate. In the semiconductor industry,

the dominant lithographic method is optical-projection lithography (OPL). A radiation-sensitive

material, commonly denoted as a resist, is first coated on the surface of substrate. The image of

a mask, which contains all the desired patterns, is projected onto an ultraviolet (UV)-sensitive

resist layer. These patterns are subsequently transferred to the underlying substrate by etching

into the substrate or depositing material onto the substrate, as depicted in Figure 1 [1][2].

Although OPL continues to dominate the integrated-circuit (IC) industry due to its high

throughput, the photomasks employed cannot be reliably fabricated solely with diffraction-

limited optical methods [3]. Instead, electron-beam lithography (EBL) is used to make these

photomasks, and also high-performance devices with ultra-small features [3].

1.1 Scanning-Electron-Beam Lithography (SEBL)

Scanning-electron-beam lithography (SEBL) generates patterns by focusing a beam of electrons

onto a resist layer and scanning in a sequential manner. A schematic of a generic SEBL system is

depicted in Figure 2. The electron column consists of an emitter that produces a steady stream

of electrons that are then accelerated, focused and deflected to the desired location using lenses

and deflectors. The electrons are typically accelerated to energies between iokeV and iookeV;
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and can be focused into spot sizes <1onm [4]. A beam blanker switches the beam on and off,

while deflectors shift the location of the beam as desired. Most of the lenses and deflectors

currently employed in SEBL

electrostatically controlled [3].

are magnetically controlled, while most blankers are

UV ra iqtion

photomask

.resist

substrt

I
etch

c)) substrate

d)

Figure 1. The fabrication process: a) Resist is

exposed to UV radiation with a photo-mask. The

deposit

Osubstrate

'I
IL ubtrat

uniformly spin-coated at high speeds then

radiation produces a chemical change in the

resist. b) The chemically-altered areas in the resist dissolve at diferent rates in a developer

compared to the unexposed regions, c) subtractive (etching) or additive (deposition) pattern

transfer, d) removal of unwanted material such as etch masks and residue photoresist. [2].

.... .... .. . ................................... ....................................... ................. ...............



Information about the desired pattern is entered into a pattern generator that directs the

deflectors and blankers to position the electron beam at the desired locations on the substrate.

The substrate itself is placed on a stage with interferometric feedback that allows highly precise

(-nm) stage movements.

Electron Column
*Electron source
e Lenses
* Deflectors
-Blankers

Electron-sensitive Resist

Vibration Isolation

Figure 2. A schematic of a scanning-electron-beam-lithography system. The electron column,

combined with the pattern generator and beam blanker, produces a tightly focused beam at

desired locations on the electron-sensitive resist on the sample. The sample is placed on a stage

controlled with laser interferometers to enable nanometer-precise stage movement. The entire

chamber operates under high vacuum and with vibration isolation.

Very small working distances (- few millimeters) are typically used because spherical-

aberrations increase rapidly with distance. Thus, although small electron-beam spot-sizes can be

achieved, this is only true over a very limited field. This limited 'write' field poses a serious

limitation in electron-beam-lithography, where resolution often must be maintained over



millimeters. Lithographers have partially solved this problem by stitching, whereby a pattern

larger than a write field is exposed in multiple write fields by translating the highly precise

interferometric-controlled stage as necessary.

Thus SEBL, with its sub-nm wavelength and nanometer spot-size, is able to reliably

produce patterns with excellent resolution far surpassing the optical diffraction limit. Features

as small as 2nm holes at periods of 4nm have been written on metal halides at 1ookeV [5]. It is

also important to note that resists in SEBL systems are exposed directly by the moving beam

without the need of any physical masks [4]. The direct-write style of SEBL makes it an excellent

research tool as pattern modifications are easily programmed in software.

Although capable of extremely high resolution, all electron-beam systems suffer from a few

specific disadvantages compared to OPL. Its slow speed and serial exposure, coupled with the

need for high vacuum and high voltage systems, makes SEBL relatively expensive. Another

drawback is the proximity effects inherent at the voltages commonly used by SEBL. Proximity

effects are created by scattering of the electron beam inside the resist and back from the

substrate, thereby exposing the resist at unintended locations. In particular, backscattered

electrons have relatively wide distribution in space and can cause pattern distortion and loss of

resolution around dense features [4][3].

In practice, complex and computationally-intensive programs are used to simulate and

correct proximity effects by varying the dose and pattern design. It is interesting to note that

proximity effects can actually be reduced at either very high voltages (iookeV) or very low

voltages around 1keV [6]. At the higher voltages the penetration depth of the electrons is very

high, and most of the scattering occurs deep in the substrate, far away from the resist. This

reduction in proximity effects comes at a price: the high-energy electrons increase the possibility

of substrate damage. Moreover, the effect of backscattered electrons is not eliminated but is just

spread out.



At very low voltages (e.g. ikV), the electrons do not have sufficient energy to generate

backscattered electrons. Not only that, the lower electron energy the more of the electron energy

is transferred to the resist. This results in a more efficient electron-resist energy transfer and

lower chance of substrate damage [7]. Chapter 2 of this thesis investigates the possibility of low-

voltage electron-beam-lithography.

1.2 Spatial-Phase-Locked Scanning-Electron-

Beam Lithography

Another key problem facing the SEBL community is the poor pattern placement accuracy of EBL

systems. Conventional electron-beam tools are fundamentally open-loop systems, and therefore

lack the capability to accurately monitor the electron-beam's position relative to the substrate.

Laser-interferometer-controlled stages and electro-magnetic deflection systems are insufficient

in completely correcting for distortion and drift errors in the system. It is predicted that pattern-

placement and field-stitching accuracy will become the limiting factor integrating photonic

devices with electronic devices.

Spatial-phase-locked electron-beam lithography (SPLEBL) improves pattern-placement

accuracy and field stitching by referencing an electron-transparent periodic grid placed above

the resist, as depicted in Figure 3 [8]. The grid provides a real-time feedback signal that enables

SPLEBL systems to determine the beam position relative to the substrate. Because secondary-

electron detectors are available on some SEBL systems, the secondary-electron signal is

preferred as the reference signal. An algorithm determines the actual placement error, and a

correction signal is then applied to the deflection system to eliminate positional errors. Pattern-

placement as accurate as inm has been previously demonstrated via SPLEBL [9].

The requirements for the reference grid itself are fairly stringent: 1) The grid must not

interfere with the actual process of resist exposure, 2) The grid must be highly accurate and

13



precise, 3) The grid must provide a strong enough feedback signal, and 4) the grid must not

affect the final resist development process. Currently, the pattern-placement precision of

SPLEBL systems is limited by the signal-to-noise ratio (SNR) of the secondary-electron signal

from the reference grid. Various materials, such as copper, aluminum, fullerenes and self-

assembled monolayers have been investigated in the search for a higher SNR grid [8].

electron column

signal processing

electrons

reference signal
Reference gr'd

substrate

Figure 3. Spatial-Phase-Locked Electron-Beam-Lithography. A reference grid is fabricated on

top of the electron-beam resist using interference lithography. Interference lithography is used

instead of other lithographic methods due to its accuracy and lack of distortion over long

ranges. The radiation that exposes the resist generates a reference signal, usually the

secondary electron (SE) signal, when passing through the electron-transparent reference grid

to the resist. This signal is recorded by a detector (usually, the SE detector) and then processed

to extract information about the electron beam location. The displacement of the actual beam

position from the desired position is then calculated and a correction signal is applied to the

beam deflection system.

Recently, micro-column-based scanning-electron-beam microscopes have been developed,

including the Novelx that was recently purchased by the NanoStructures Laboratory. These

systems operate at low voltages (1-2keV), and are fairly low-cost compared to state-of-the-art

high-voltage electron-beam lithography systems. Low-voltage systems, combined with spatial-

14
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phase-locking technology, can potentially be transformed into low-cost lithographic tools with

good resolution and pattern-placement accuracy. Apart from low-voltage EBL, this thesis also

investigates the possibility of using ultra-thin photoresists as a SPLEBL reference grid.
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Chapter 2

Low-Voltage Scanning-Electron-

Beam Lithography

Limited research has been published in the field of low-voltage electron-beam lithography.

Despite that, it is generally accepted that proximity effects are negligible at energies of 2keV and

below, and is unlikely to be the limiting factor in achieving high resolution at those energies.

Instead, resolution seems to be limited by multiple factors: forward scattering, film type, resist

thickness and the intrinsic beam diameter [10][n][12].

Resist thickness plays a particularly important role in determining resolution due to the

small penetration depth of the low-energy electrons. Thin resist modeling suggests that ultra-

thin resists are necessary for lithography at 2keV or below [io]. Figure 4 and Figure 5 are Monte

Carlo simulations of electron trajectory using 100 electrons entering polymethyl-methacrylate

(PMMA) at energies 3okeV and ikeV, respectively. Note that the vertical scale in Figure 4 is

forty times the scale in Figure 5. All the ioo electrons that entered PMMA at 1keV were stopped

less than 3onm from the surface, while the electrons at 3okeV were able to penetrate more than

ipm of PMMA easily. Therefore, resists 2onm or thinner are explored in this thesis for low-

voltage electron-beam lithography.
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Figure 4 Monte Carlo simulation of electron trajectory with 100 electrons at energy 3okeV in

PMMA. Forward scattering widens the beam as it traverses through the resist. Note that the

vertical scale in this figure is forty times the vertical scale in Figure 5.
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Figure 5 Monte Carlo simulation of electron trajectory with 100

PMMA. Note that all the electrons have been stopped in 30nm of
Figure 4 have successfully traversed at least 1oonm of resist.
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2.1 Thin-film Measurements via Ellipsometry

Ellipsometry has been used widely to characterize thin films. It is capable of measuring

nanometer-thick uniform films on a bulk substrate [13][14]. Spectroscopic ellipsometry, which

characterizes films using multiple wavelengths, is capable of collecting a range of useful data

about a sample [14]. These data can then be used to fit known material models and measure film

thicknesses with enhanced accuracy.

Ellipsometers operate by detecting the change in the phase of a polarized beam of light

reflected from a sample surface [14]. Two values related to the Fresnel reflection coefficients are

R

measured; psi (MI) and delta (A). They are related byp - = tan(W)eA, where R, and Rs are

the reflection coefficients for p- and s-polarized light.

After the T and A are measured, a model based on the Kramers-Kronig relations is then

constructed using the known parameters, including incident wavelength, angle of incidence and

polarization state. The ellipsometer software then simulates the model and obtains a best-fit

value for the film-thickness. Sometimes, tabulated optical constants of known materials may be

used. Because diluted materials were extensively used in this investigation, function-based

models (Cauchy model and general oscillator model) were used to model the film thickness and

optical constants of the thin films. All ellipsometric measurements in this thesis of film

thicknesses and optical constants were obtained using the J. A. Woollam spectroscopic

ellipsometer at the Institute of Soldier Nanotechnologies (ISN) at MIT. Figure 6 is a plot of

experimental and simulated psi and delta values of a hydrogen silsesquioxane (HSQ) layer.



Simulated and Experimental Psi and Delta

- Experimental Psi

Experimental
Delta

- - - Simulated Psi

- - - Simulated Delta

150 250 350 450 550 650

Wavelength (nm)

750 850 950 1050

Figure 6. Simulated and experimental psi and delta. Dotted lines indicate the fitted psi and

delta values using a Cauchy model. The film thickness parameter was determined by finding

the minimum of the mean squared error (MSE) between the modeled and experimental values.

In this figure, the experimentally-determined psi and delta overlap with the modeled values,

indicating a good fit and hence a good estimation of the film thickness.

2.2 Patterning of Nested L-lines with Low-Voltage

Scanning-Electron-Beam Lithography

Many different materials have been explored as electron-beam resists over the past decades.

Commonly used electron-beam resists for scanning-electron-beam lithography (SEBL) include

organic resists such as polymethyl methacrylate (PMMA), calixarene and poly (a-chloro-acylate-
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co-a-methyl styrene), also commercially known as ZEP520; and inorganic resists such as

hydrogen silsesquioxane (HSQ) [1][15]. Metal halides and metal oxides have also been used as

SEBL resists, with 2nm diameter holes at 4nm pitch fabricated on 8onm thick AlFs film at

energy of iookeV. Although metal halides and oxides have the highest resolution reported to

date, they suffer from problems like reproducibility and pattern instability. Hence, metal halides

and oxides will not be explored further in this thesis. All the electron-beam lithography reported

in this thesis was done with the Raith 150 at the Scanning-Electron-Beam Lithography Facility

(SEBL).

Materials such as HSQ, PMMA, calixarene and ZEP-52o have been used as resists for low-

voltage scanning-electron-beam lithography [10][11][12][1]. In terms of pushing the resolution

limits at low voltages, Jamieson et. al. patterned 3onm lines at 6onm periods using 24nm-thick

HSQ at 2keV [16]. Lines, 4onm wide, have been also patterned in PMMA, while ionm wide lines

have been patterned with calixarene at 2keV [1o][11].

Nested L's are used in this thesis instead of single lines to investigate the resolution of

scanning-electron-beam lithography because proximity effects become evident with dense

patterns. L-shaped lines, shown in Figure 7, are used to indicate lithographic capabilities in

orthogonal directions.
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Figure 7. A pattern file of nested L-lines used in some of the resolution tests in this thesis. The

period between the lines is decreasing from left to right, while the changing color from green

to red indicates an increasing dose.

2.2.1 Lithography with Polymethyl Methacrylate (PMMA)

PMMA, a commonly used polymer in everyday life, is a positive-tone electron-beam resist that

has been used reliably for decades [17]. When exposed to electron radiation, its long polymeric

chains undergo scissation. These fragmented sections of the polymer dissolve more readily than

the unexposed polymer chains in certain solvents, usually methyl isobutyl ketone (MIBK).

Under extremely high electron dose, the fragmented sections of the exposed polymer cross-link

and PMMA becomes a negative-tone resist.

PMMA of molecular weight 950,000 was used in the following experiments. The polymer

was first dissolved in anisole to 0.5 wt %, and then spin-coated at 5krpm on a silicon wafer to a

thickness of roughly 11nm. Prior to spin-coating, the wafer was exposed to UV-ozone for 10

minutes. This step is performed because steam nucleation tests indicate the presence of organic

NNW



residue on new silicon wafers used in these experiments. Because adhesion of very thin films to

silicon wafers is sensitive to the surface cleanliness, it is important to ensure that the silicon

wafers are contaminant-free prior to spin-coating. Exposure to UV-Ozone removes the organic

contaminants from the silicon surface.

After spin-casting, the wafer was then baked at 18o0 C for 90s to remove the anisole solvent.

After patterning via SEBL, the sample was then developed in MIBK and isopropanol (IPA)

solution at 21"C for 30s. The ratio of MIBK to IPA was 1:3. Development was stopped by

spraying IPA onto the sample, followed by blow drying with nitrogen. A thin conducting gold

layer was then sputtered onto the developed structures to facilitate the SEM imaging process.

Nested L-lines were patterned into PMMA at energies 2keV, 1.5keV and 1keV. An initial

dose-matrix test indicated that the dose required for exposure at the mentioned voltages was

very low, indicating a very efficient energy transfer between the electron beam and PMMA. An

electron dose of 45pA/cm was applied for all exposures. Sets of seven nested L-lines were

patterned at 2keV electron energy with varying pitch. As seen in Figure 8, the lines were well

defined and easily patterned at 1oonm pitch.



Figure 8. Nested L-lines at 1oonm pitch in 11nm thick PMMA on silicon using an electron beam

of energy 2keV. Resist was developed in MIBK: IPA ratio of 1:3 for 30s, and the developed L-

lines are well-defined. Samples were sputter-coated with gold-palladium to improve image

contrast.

At pitches between 25nm and gonm, sets of five shorter nested L-lines were also patterned

at 2keV. Lines at pitches gonm, 8onm and 7onm were successfully resolved, as shown in Figure

9. The white specks observed in Figure 9 are redeposited contaminants from colloidal gold that

. .. ....................... ................. ............ ..... ................. .................................................... ............................ ............. .



was used for focusing during the electron-beam exposure. It was not possible to resolve lines at

6onm or below. Although lowering the delivered dose may possibly result in denser patterns,

this was not possible as 45pA/cm is the smallest dose the Raith 150 SEBL system is capable of

delivering to any resist at low voltages.

Similar results were obtained from exposures at electron energies of 1.5keV and 1keV. At

both energies, nested L's at 7onm pitch were resolvable but not at 6onm pitch. Figure 10 and

Figure 11 show micrographs of nested lines at varying pitches at energies of 1.5keV and ikeV,

respectively.



Figure 9. Nested L-lines at pitches of a) gonm, b) 8onm, c) 7onm and d) 6onm patterned at

energy 2keV on inm-thick PMMA on silicon. Resist was developed in MIBK:IPA ratio of 1:3
for 30s and then gold-palladium sputtered for image contrast. L-lines as close as 7onm could

be resolved.



Figure 10. Nested L's patterned in 11nm-thick PMMA on silicon at electron energy 1.5keV with

pitches of a) 9onm, b) 7onm and c) 6onm. L-lines with periods of 9onm and 7onm were

resolvable. Variations in the background of the images originate from carbon deposition on

the sample during imaging.

Figure 11. Nested L's patterned in 1inm-thick PMMA on silicon at 1keV electron energy with

pitches of a) 9onm, b) 7onm and c) 6onm. L-lines with periods of 9onm and 7onm were

resolvable.

2.2.3 Lithography with Hydrogen Silsesquioxane (HSQ)

Hydrogen silsesquioxane (HSQ) is a negative-tone electron resist that was first investigated in

1998 [18]. HSQ contains elements silicon, oxygen and hydrogen in a network of partially formed



cages. A schematic of the cage-like structure is shown in Figure 12 [1]. After electron-beam

exposure, HSQ undergoes chemical changes and reorganizes as silicon dioxide.

Figure 12. Cage structure of HSQ, a spin-on glass manufactured by Dow Corning. HSQforms

a network of partially-formed cages when spin-coated onto a substrate.

Of all the resist materials, HSQ seem to hold the most promise as a high-resolution, low-

voltage, electron resist, due to its high contrast, low sensitivity relative to PMM1A and thin film

uniformity [1]. HSQ, 24nm thick, was patterned to 3onm lines at 60nm period at 1keV by

Jamieson et. al. [16]. This result is currently the best resolution reported for dense features at

2keV or below [16].

The HSQ (1% diluted in MIBK) used in the following experiments was obtained from Dow

Corning Corporation. A silicon wafer was first subjected to UV-ozone treatment for 10 minutes

to remove organic contaminants from the surface. After the surface was certified clean by a

steam nucleation test, HSQ was spin coated onto the surface at 5000 rpm. The HSQ layer was

found to be 14.6nm thick via ellipsometry. Nested L's were then patterned into the resist via

SEBL and subsequently developed using salty developer, consisting Of 4% sodium chloride and 1%



sodium hydroxide in de-ionized (DI) water [19]. Unexposed regions are highly soluble in the

sodium-chloride/sodium-hydroxide mixture, while the radiation-exposed regions (silicon

dioxide) are insoluble. Samples were immersed in the salty developer for one minute, rinsed

with DI water, and then blown dry with nitrogen.

Nested L's were patterned in HSQ on silicon at energies 2keV, 1.5keV and ikeV; the same

energies that were used to pattern PMMA, as reported in the previous section. The clearing dose

required for HSQ is an order of magnitude higher than that of PMMA, but a higher resolution

was achieved for dense features. Dose matrices of nested L's, from 400pA/cm to 900pA/cm

were written at 2kV voltage, as shown in Figure 13, using the test pattern shown in Figure 7. The

lines have reducing periods from left to right, with the leftmost nested L-lines having a pitch of

9onm and the rightmost with a pitch of 2onm.

Dense lines with pitches that were challenging to resolve in PMMA could be easily resolved

when written in HSQ. Figure 14 shows micrographs of the nested L's that were written at

6oopA/cm with periods of 3onm, 25nm and 2onm respectively. Thus, dense features with

2onm periods can be written at 2kV voltage. Nested L-lines of 2onm period were also

successfully written at 1.5kV while the smallest period possible at ikV was 25nm. Figure 15 and

Figure 16 are micrographs of the nested L-lines exposed at 1-5kV and ikV, respectively.



Figure 13. Dose matrix of nested L-lines from 6oopA/cm (lowest row) to goopA/cm (highest

row) in steps of 6opA/cm.

Figure 14. Nested L-lines of pitch 3onm, 25nm and 2onm written with energy 2keV in almost

15nm thick HSQ on silicon, developed using salty developer for one minute.



Figure 15. Nested L's with 2onm and 25nm pitch exposed at 1.5kV in ~15nm of HSQ on silicon

(developed with salty developer). The smallest pitch attainable at this voltage is 2onm.



Figure 16 Nested L's with 25nm and 30nm pitch exposed at 1kV in ~15nm of HSQ on silicon

(developed with salty developer). The smallest pitch attainable at this voltage is 25nm, slightly

worse resolution compared to the 2onm pitch achieved using a beam energy of 2keV and

1.5keV.

2.3 Monte-Carlo Simulations

This section focuses on simulations of interactions between the exposing electron beam and the

resist at voltages of ikV, 1.5kV and 2kV. Point-spread functions plot the spatial distribution of

the energy deposited into a material by a beam of electrons exposing a stationary spot. In

contrast, line-spread functions plots the cross-sectional spatial distribution of energy deposited

when a beam of electrons exposes a resist with a continuous line-scan. Point-spread functions,

line-spread functions and the dose distribution of multiple lines were simulated to model the

energy transfer from the electron to the resist. The simulation codes in C used were written by

Ray Ghanbari and subsequently modified by Juan Ferrera [20].

The interaction between an electron beam and the resist at low energies is described by the

modified Bethe's equation



dE 2re4nNf (E) 1.166E
- = -In

dl E Ieff (E)

where E = electron energy, 1 = path length along electron trajectory, p = density of the resist,

n = number of atoms or molecules per unit volume, Neff(E) = number of electrons involved in

the inelastic interaction, Ieff (E) = effective mean ionization potential of resist or average energy

lost per interaction [21].

The substrate layer used to model the electron-resist interaction was 14nm-thick HSQ on

a 20pm-thick silicon substrate. Two million electrons with an incoming beam diameter of 8nm

(similar to the actual beam diameter in the Raith 150) were tracked as they traversed through

the sample. Secondary electrons generated by the incident beam were also considered in the

model. The electrons were considered to have been stopped by the sample when the incident

energy fell to 50eV.

Point-spread functions (PSF) at the HSQ-silicon interface for incident energies of ikeV,

1.5keV and 2keV are shown in Figure 17. The full-width half-maximum (FWHM) of the PSF

widens with decreasing incident energy. At distances far away from the beam entry location the

amount of energy deposited is inverted: higher (2keV) incident-energy electrons deposit more of

their energy compared to lower (1keV) incident-energy electrons. This is consistent with the fact

that proximity effects become more evident as the incident electron energy increases. Line-

spread functions, depicted in Figure 18, also show a similar trend.

Line-spread function of an incoming 2keV electron beam was used as the basis to model the

energy distribution of five lines written on 14nm-thick HSQ on silicon, conditions that were used

experimentally in the previous section of this thesis. This line-spread function was convolved

with five discrete impulses at intervals of 2onm to produce the energy profile shown in Figure 19.

The red horizontal line indicates the amount of energy necessary for the HSQ resist to convert to



silicon dioxide. This value was determined by comparing single-pass lines experimentally

written in HSQ at 2keV with the line-spread function generated under similar conditions. The

width of the lines was experimentally determined to be approximately 9nm, which was then

used to establish the minimum amount of energy necessary to crosslink HSQ. In this figure, the

amount needed for crosslinking is slightly higher than the energy deposited in between the lines,

and is consistent with experimental results (minimum resolvable pitch of 2onm).
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Figure 17. Normalized point spread function with incident energies of 1keV, 1.5keV and 2keV.

The electrons were incident on a 14nm thick HSQ layer on silicon, with an input beam

diameter of 8nm. Two million incoming electrons, including the generated secondary electrons

were tracked as it passed through the sample. The 2kV PSF has the smallest full width half

maximum, and the 1kV PSF has the widest. This is consistent with experimental results, with

the smallest pitch of dense lines patternable at 2kV being 2onm and the smallest pitch possible

at 1kV increasing to 25nm.
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Figure 18. Normalized line spread function with incident energies of ikeV, 1.5keV and 2keV on

a layer Of z4nm thick HSQ on top of silicon. The 2kV LSF has the smallest fulil width half

maximum, and the ikV LSF has the widest. Note that proximity effects at distances far away

from the center of the cross-section are more evident at higher electron energies. This is

consistent with the PSF simulations and experimental results.
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20nm intervals. The red horizontal line is the minimum amount of energy required for HSQ to
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lines, which is consistent with experimental results.
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2.4 Pattern Transfer with HSQ as Etch Mask

This section focuses on using reactive-ion etching (RIE) to transfer patterns in HSQ into an

underlying anti-reflection coating (ARC) layer. As described in the first chapter, and depicted in

Figure 1, the fabrication process does not end when the desired patterns have been successfully

developed in the resist. The subsequent challenge is to transfer this pattern into the actual

desired material via etching.

A reactive-ion etching system consists of a chamber with two electrodes, as depicted in

Figure 20. The etching is carried out under low pressure, with the chamber filled with the

etching gas. A radio-frequency (RF) power is applied to the electrode where the substrate is

mounted. This RF power generates a plasma that contains ions and chemically reactive species

in the form of atoms and radicals. These species can chemically react with the substrate surface

to form volatile products. The volatility of these byproducts enables them to quickly desorb from

the surface and be removed from the chamber by the vacuum pumping system. Apart from the

etching gas, an inert gas such as argon or helium is sometimes added to the gas flow. Positive

ions formed from the etching gas and the inert gas bombard the substrate surface, enhancing

the vertical etch rate. Hence, an increased directionality and anisotropy can be achieved with ion

bombardment [22].

A layer of XHRiC i-line anti-reflection coating polymer (Brewer Science) is first spun on a

UV-Ozone-pre-cleaned silicon wafer at 5krpm. The coating was measured by spectroscopic

ellipsometer to be 1oonm thick. After a post-bake at 150 "C for 90s, HSQ was spun on at 5krpm

resulting in an approximately 14nm thick layer. Scanning-electron-beam lithography at 2kV was

used to expose a pattern of long lines, as shown in Figure 21, into HSQ. HSQ was subsequently

developed using salty developer for one minute at room temperature. The sample was then

rinsed with DI water to stop the development, and blown dry with nitrogen.
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Figure 20. Schematic of a reactive-ion etching chamber. The substrate is placed on the

electrode connected to the RF signal while the other electrode (RIE chamber) is grounded. The

chamber operates under low pressure and is filled with etching and inert gases. A RF power

applied across the electrodes generates a plasma, which contains chemically reactive species.

These reactive species react with the substrate surface to produce gases that are removed from

the chamber by the vacuum pumping system.

This HSQ line pattern served as an etch mask for the reactive-ion etching process. The

polymer XHRiC layer was patterned using RIE in gases oxygen and helium for 50s. A RF power

of 145W was applied to generate the plasma, with the dominant etching species being oxygen

atoms. These atoms react with the XHRiC layer to produce volatile products such as carbon

monoxide and carbon dioxide, which were then removed from the chamber.

.......... ........ ... .........................
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Figure 21. Sketch of pattern used to expose the resist and to demonstrate pattern transfer. The

pattern was first written at energy of 2keV into HSQ and developed via salty developer. Next,

the pattern acts as etch mask for RIE etching. Long lines (>1oom) were used to facilitate

cleaving and cross-section imaging.

Figure 22. Scanning-electron micrograph (top down view) of 4onm pitch lines patterned into

1oonm ARC using 14nm HSQ as mask, etched at 145W for 5os. Note that all etched lines are

straight.
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A top down view of a set of etched XHRiC lines is shown in Figure 22. Note that all etched

lines are straight. Special attention has to be paid not to over-etch the lines to prevent structural

collapse. After characterizing the etched substrate using top-down imaging, the sample was

cleaved across the center of the pattern and the cross-section investigated. The finest pitch of

nested lines that could be transferred from a HSQ mask into XHRiC layer was 3onm. Figure 23

shows etched XHRiC lines with pitches of 3onm and 4onm. The lines, measured in the Raith

150, are roughly 9nm thick while the ARC is 6onm high. In the figure, slight bending of the lines

is observed. This probably originated from the cleaving process as it was not seen prior to

cleaving when imaged top-down.



Figure 23. Scanning-electron micrographs of XHRiC cross-sections after reactive-ion-etching

for 50s. Electron-beam lithography at energy of 2keV was used to pattern HSQ with lines,

which was used as a mask to transfer the pattern into XHRiC. Top micrograph shows the

successful pattern transfer with lines at a 3onm pitch, and the bottom micrograph is a cross-

section of lines at 4onm pitch. The lines are roughly 9nm wide and the XHRiC approximately

6onm thick. Slight bending of the lines observable in both micrographs probably originated

from the cleaving process or charging.
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Chapter 3

SPLEBL Reference Grid Fabrication

and Signal Contrast Measurements

The reference grid is an essential component of SPLEBL, providing a feedback signal for the

electron-beam position correction. The fabrication process of SPLEBL reference grid for low

voltages has to satisfy multiple requirements. First, the reference grid fabrication process should

not expose or affect the electron-beam resist. Second, the periodic reference grid must have

long-range spatial-phase coherence (i.e. free from distortion). Lastly, the fabrication steps

should be relatively simple.

Previously, a PDMS stamp was used to print grids of aminopropyl-triethoxy-silane (APTES)

[23]. Although this method is quick and simple, stamping introduces distortions in the reference

grid. Interference lithography has been shown to produce periodic grids and gratings with long-

range coherence-phase coherence in a reliable manner. This chapter investigates the possibility

of fabricating a photoresist reference grid for low-voltage SPLEBL with interference lithography,

and also compares the secondary-electron signal of this photoresist grid with respect to a

reference sample. A schematic of the proposed photoresist grid on top of electron-beam resist

with a thin conducting aluminum interlayer is depicted in Figure 24.
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electron-beam resist
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Figure 24. Schematic of the proposed photoresist grid on top of electron-beam resist with a

thin, conducting aluminum interlayer. The reference grid is fabricated using interference

lithography, which provides the reference grid with long-range spatial-phase coherence. A

thin aluminum interlayer is used to prevent charging during the exposure process.

There is also an additional requirement on the reference grid: it must have a minimal

impact on the resolution of low-voltage scanning-electron-beam lithography. Due to the short

penetration depth of low-energy electrons, this implies that the reference grid and the

aluminum interlayer must be thin enough to avoid significant electron scattering.

The accuracy of the feedback loop depends heavily on the strength of the feedback signal

relative to the noise in the signal; the important metric is the signal-to-noise ratio (SNR). This

SNR depends on multiple factors: secondary-electron yield of the material, dwell time or

scanning speed of the beam, and noise in the secondary-electron detectors. Apart from

secondary-electron yield, the other factors are dependent on the exposure conditions and

lithography system itself. These will not be explored further.
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The secondary-electron yield (SEY) is defined as the number of secondary electrons emitted

per incident electron. Secondary-electron yield depends on the material and its thickness.

Generally, a higher atomic number (Z) material provides a higher secondary-electron yield,

while a thicker reference grid increases the possibility of electron interaction and hence

increased signal, until the thickness exceeds the secondary electron diffusion length. Figure 25

is a compilation of secondary electron yield values in the literature with an incoming electron

energy of 3okeV. Note that even for the same material there is a significant variation in the

measured secondary-electron yield and it is unclear what value to choose. This variation

probably originates from sample processing (e.g. thickness of oxide layer or contamination),

how the secondary-electron yield was measured, and chamber conditions. Thus for the purpose

of investigating the strength of the secondary-electron signal, signal levels between the photo-

resist grid and a reference sample is used as elaborated further in other sections of this chapter.
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Figure 25. Compilation from literature of experimentally-measured secondary electron yield

versus atomic number at an electron energy of 30keV.

3.1 Lloyd's Mirror Interference Lithography

Interference lithography is used to fabricate grids and gratings with long-range spatial-phase

coherence. This method generates a standing wave pattern by interfering two coherent beams,

with the period of the standing wave determined by the angle between the two beams. A

photoresist layer sensitive to the radiation wavelength is exposed to the standing wave pattern,

and the irradiated areas undergo chemical changes that change the dissolution rate of the resist.

Subsequent immersion of the sample in these solutions selectively removes the photoresist.
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Lloyd's Mirror interference lithography was chosen instead of Mach-Zehnder interference

lithography due to the relative simplicity (single beam, minimal alignment) of the Lloyd's Mirror

setup, which is depicted in Figure 26. A He-Cd laser with 325nm wavelength produces a TEMoo

Gaussian beam with 30cm coherence length. This beam is passed through a spatial filter to

remove high-frequency noise, and then expanded for roughly 2m to fill the area containing the

aluminum holder, substrate, and mirror. A highly-reflective aluminum mirror (flat to X/4 )

placed normal to the substrate reflects the laser light, which interferes with the unreflected

incident light to form a standing wave pattern at the substrate. The angle between the light and

the setup determines the period of the standing wave pattern. Spatial periods as fine as 18onm

can be fabricated using the Lloyd's Mirror setup. The substrate is held in place on the holder by

vacuum for mechanical stability. Single exposures produces gratings, while double exposures

(with the substrate rotated 900 after first exposure) produces grids in a quick and reliable

manner.



Mirror

Incident light

Figure 26. Schematic of a Lloyd's Mirror interference-lithography setup. A highly-reflective

aluminum mirror (flat to A/4) placed normal to the substrate reflects the laser light. This

reflected light interferes with the unreflected incident light to form a standing wave pattern at

the substrate, which is coated with a radiation-sensitive resist. The substrate is attached to the

aluminum holder by vacuum for mechanical stability. The angle between the laser light and

the setup determines the period of the standing wave pattern.

A highly-absorbing anti-reflection coating (ARC) is almost always placed under a

photoresist to reduce the amount of light reflected from the substrate back into the photoresist.

This eliminates undesired additional standing wave patterns in the resist in the vertical

direction (normal to the resist). For SPLEBL, an ARC cannot be used as the photoresist layer

needs to be placed directly on top of either a conducting, low-Z interlayer or directly on top of

the electron-beam resist. Fortunately, due to the thinness of the resist used in the experiments
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(<5onm), relative to the incident wavelength, this standing wave problem can be neglected.

However, without an ARC layer, the amount of back-reflected light is very sensitive to thickness

and type of material below the photoresist, as well as the photoresist itself. The amount of back-

reflected light should be calculated, and the exposure time adjusted accordingly, for any specific

resist stack.

Sumika photoresist PFI-88 A2 was used in the experiments in this section. Undiluted PFI-

88 achieves a thickness of -225 nm when spun at 3krpm. This is far thicker than desired. To

obtain thinner resists, PFI-88 was diluted with heptanone at ratios ranging up to 1:10. A plot of

the resist thickness versus dilution ratio is shown Figure 27. The final resist thickness was

determined using atomic-force microscope on grids or gratings exposed by interference

lithography, as shown in Figure 28. The minimum resist thickness obtained at dilution ratio1:1o

was 11nm thick.

Silicon wafers were first cleaned with UV-Ozone to remove organic residue on the substrate

surface, with the cleanliness of the surface verified using the steam nucleation test. This

confirmed the presence of a thin oxide, i.e. wetting. The adhesion promoter,

hexamethyldisilazane (HMDS) was spin-coated at 2krpm. The presence of HMDS on the silicon

wafer was confirmed with the steam nucleation test (i.e. non-wetting). PFI-88 was then spin-

coated onto the HMDS-primed wafer at 3krpm, followed by a pre-bake at 900 C for 9os. The

resist was then exposed with Lloyd's Mirror interference lithography with incident energies per

cm2 between iomJ and 3omJ, depending on the film thickness. The sample is then immersed in

Shipley's Microposit MF CD-26 developer for 6os, rinsed with DI water and blown dry with

nitrogen. A scanning-electron micrograph of a developed grid is shown in Figure 29.
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Figure 27. Plot of thickness of photoresist PFI-88 at a range of dilution ratio. The black dots

are data points that were experimentally determined using the atomic-force microscope. The

blue line is an exponential fit to the data points.
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Figure 28. Atomic-force microscope scan of a 44 nm thick PFI-88 grid on silicon. The substrate

was first UV-Ozone cleaned for 10 minutes. HMDS was then spun on at 2krpm followed by

photoresist PFI-88(PFI-88:heptanone=1:2) at 3kprm. The sample was then baked at go" Cfor

90s and exposed to 325nm light using Lloyd's Mirror interference lithography. Subsequently,

the sample was developed in CD-26 for 6os, cleaned with DI water and blown dry with

nitrogen. The period of the grid is 6oonm.



Figure 29. Scanning-electron micrograph of photo-resist PFI-88 imaged at an electron energy

of 2keV. The dark spots are the photoresist, and the lighter areas are silicon. The period of the

grid is 6oonm.

3.2 Signal-Contrast Measurements with sub-2keV

Electrons

The secondary electron yield (SEY) is defined as the number of secondary electrons emitted for

an incoming electron. It was depicted in Figure 25 that the SEY increases with increasing atomic

number (Z). For a given material, the SEY also varies as the incident beam energy changes. Most

materials exhibit a peak, usually at voltages less than 5ooeV, as depicted in Figure 30.



Unfortunately, it is very difficult to accurately measure the secondary-electron yield of a

particular material as it is influenced by many parameters. The crystallinity of the material, the

method which the material was deposited, the surface conditions of the material, vacuum

conditions and measurement conditions affect the SEY of a material.

0

Incident electron energy

Figure 30. The characteristic secondary-electron yield (SEY) curve for many materials. The

SEY initially increases as the energy increases, but then decreases with further increase in

incident electron energy. The peak generally occurs at incident electron energy of less

than500eV

A partial goal of this thesis is to investigate the possibility of using photoresist to provide

a secondary-electron signal for SPELBL. Currently, the only material that has been investigated

for low-voltage SPLEBL is aminopropyl-triethoxy-silane (APTES), a silane-based self-assembled

monolayer. Thus, it is sufficient to compare the relative strength of the signal from photoresists

to signal obtained from aminopropyl-triethoxy-silane (APTES).

Signal-level relative to a reference sample is the important metric. Since the photoresist

was spin-coated on a silicon wafer, it is logical to use similar silicon wafers as the reference



sample. Photoresists at different thicknesses was imaged at ikV, 1.5kV and 2kV in the presence

of a Faraday Cup and the reference sample, as shown in Figure 31. The Faraday Cup signal

establishes the zero level. This value is then subtracted from the signal of the photoresist-on-

silicon sample and the reference sample. The reference-sample signal is then scaled to a fixed

value and signal from the photoresist-on-silicon sample scaled accordingly. This ensures

accurate comparisons from sample to sample. This approach is also used to measure the signal

level from aminopropyl-triethoxy-silane (APTES). All measurements were conducted using the

Raith 150.

A plot of the signal level for photoresists of various thicknesses as a function of incident

electron energy is shown in Figure 32. The signal level of APTES with respect to a reference

sample is also shown. A signal level of one corresponds to the signal from the reference silicon

sample. The photoresist samples and the APTES samples all show similar trends, with the signal

level increasing with increasing incident electron energy. The APTES signal level is much higher

than the signal from photoresist samples. Interestingly, the signal level from a 17nm-thick

photoresist is lower than that from a 1inm-thick and a 24nm-thick photoresist samples. A plot

as a function of photoresist thickness is in Figure 33. The signal level is not linear with

increasing photoresist thickness for all incident electron energies measured. Currently, it is

unclear why the signal contrast varies in such a manner.



Figure 31. Scanning-electron micrograph of a photoresist-on-silicon, Faraday-Cup and the

reference sample. The Faraday Cup provides the zero signal level, which is then subtracted

from the signal strength of the photoresist and reference sample. The signal level of the

reference sample is then scaled to a fixed value, and the signal from the photoresist-on-silicon

is scaled similarly. This ensures accurate measurements from sample to sample. The reference

sample is U V-Ozone cleaned just before imaging to ensure surface cleanliness.
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Figure 32. Plot of signal level vs incident electron energy for photoresist at various thickness
and also amino-propyl-triethoxysilane (APTES), with silicon as reference sample. All samples
show a similar trend, where the signal contrast increases with increasing incident electron
energy. A signal contrast of one corresponds to the signal level of the reference silicon sample.
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Chapter 4

Conclusion

The research in this thesis has confirmed that good resolution for dense patterns is achievable

with low-voltage scanning-electron-beam lithography. Nested L's with pitches as fine as 2onm

can be patterned in HSQ at incident electron energy of 2keV and 1.5keV, while the smallest pitch

achieved at ikeV is 25nm. Monte-Carlo simulations of energy distributions in a resist caused by

low-voltage electrons agree with the experimental results.

The signal contrast of photoresist at varying thickness with respect to a reference silicon

sample was measured. Signal contrast of APTES, the only material previously used for low-

voltage SPLEBL, was also measured. The signal contrast of APTES is higher than the signal

contrast from photoresist at all voltages and thickness measured.
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