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Abstract

In this thesis, I revisit the issue of the utility of the FitzHugh-Nagumo (FHN) model
for capturing neuron firing behaviors. It has been noted (e.g., see [8]) that the FHN
model cannot exhibit certain interesting firing behaviors such as bursting. I will
illustrate that, by allowing time-varying parameters for the FHN model, one could
overcome such limitations while still retaining the low order complexity of the FHN
model. I also highlight the utility of the FHN model from an estimation perspective
by presenting a novel parameter estimation method that exploits the multiple time
scale feature of the FHN model, and compare the performance of this method with the
Extended Kalman Filter through illustrative examples. Then, I apply this proposed
extension to the FHN model to model cortisol secretion, which is controlled by the
hypothalamic pituitary adrenal axis (HPA).
Existing mathematical models for cortisol secretion do not include the entire cortisol
secretion process, from the neural firing of cortopin releasing hormone(CRH) in the
hypothalamus to cortisol secretion in a deterministic manner. I lay the groundwork to
construct a more comprehensive model, relating CRH, Adrenocorticotropic hormone
(ACTH), and cortisol. I start with one of the existing cortisol mathematical models,
and add to it a simplified neural firing model to describe the CRH and ACTH release.
This simplified neural firing model is obtained using the FHN model with time-varying
spiking threshold. Moreover, I include a feedback in this model and model the cortisol
secretion as a tracking problem.
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Chapter 1

Introduction

1.1 Dynamical Modeling of Neural Spiking

Hodgkin-Huxley (HH) could be considered as the most successful dynamical model

in computational neuroscience for capturing neural firing behaviors. Although this

model is capable of generating all the behaviors of neuron spiking, it is a highly

nonlinear model with many coefficients. In this thesis, I will show that most of the

neural firing activities of interest that are possible by well-known dynamical systems

models (such as the HH model) could be obtained using low complexity dynamical

models. In the first part of this thesis, I will propose an extension to the FitzHugh-

Nagumo model that includes a time-varying spiking threshold, which is physiologically

programmed within the neuron. Then, I will discuss some of the interesting neural

spiking activities that this low complexity dynamical model can generate.



1.2 Parameter Estimation of a Low Complexity

Neural Spiking Dynamical Model

Considering the low complexity of the FHN model and the proposed extension to

it, one could investigate the slow and fast dynamics of the FHN model to estimate

its parameters. In the second part of this thesis, I will propose an algorithm for

estimating the spiking threshold of the FHN model and compare the performance

of this method with the Extended Kalman Filter (EKF) for fixed spiking threshold.

Then, I will extend this algorithm to the case that the FHN model has a time-varying

firing threshold, and again compare the performance of this algorithm to EKF.

1.3 An Application to Feedback Control Modeling

of Cortisol Secretion

Existing mathematical models for cortisol secretion do not include the entire cortisol

secretion process, from the neural spiking in the hypothalamus to cortisol secretion

in a deterministic manner. The proposed extension to the FHN model could be used

to model the spiking activity that results in cortisol secretion. In the last part of

this thesis, I start with one of the existing cortisol mathematical models, and add

to it a neural firing model. Then, I extend the existing model by including the

negative feedback effect of cortisol level on cortisol secretion, and propose a more

comprehensive model.
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Chapter 2

FitzHugh-Nagumo Model with

Time-varying Spiking Threshold

2.1 Dynamical Models in Computational Neuro-

science

Since the seminal work of Hodgkin and Huxley, there has been a continued interest

in the dynamical systems viewpoint of a neuron. Hodgkin-Huxley (HH), Hindmarsh-

Rose (HR), and FitzHugh-Nagumo (FHN) models are among the most successful

dynamical models in computational neuroscience for capturing neural firing behav-

iors. A detailed explanation of these and several other models can be found in [8].

The HH model consists of four differential equations with a high number of coef-

ficients. Although this model is capable of generating all the behaviors of neuron

spiking, it is a highly nonlinear model. The HR model, on the other hand, consists of

three differential equations, which are highly coupled, and it can exhibit all the firing

modes obtained from the HH model except for biophysically meaningful behaviors [7].

Finally, the FHN model consists of two differential equations, and is simpler than the

HH and HR models, though it is unable to exhibit important firing behaviors such



as bursting. In fact, it has been noted [7] that without using a reset or adding noise,

the FHN model can not exhibit bursting. The focus of this thesis is on low complex-

ity dynamical models that can exhibit most of the neural firing activities of interest

that are possible by well-known dynamical systems models (such as the HH model)

but are nevertheless of low complexity. Here, we use the term complexity to refer to

the presence of redundancies in the model on top of its capability to capture neural

firing behaviors, difficulty in parameter estimation and from the control viewpoint.

With this in mind, we propose an extension of the FHN model with time-varying

parameters, where the hypothesis is that the time variations of these parameters are

either physiologically programmed within a neuron or are coupled to the output of

the typical hormone generating systems that are triggered by the neural firings, e.g.

the negative feedback effect of cortisol level on the neurons in the hypothalamus [3].

2.2 The FitzHugh-Nagumo Model

As mentioned above, a simplified version of the HH model is the FHN model:

dv- = a(-v(v - 1)(v - b) - w + I)
dt

dw

dt =V -cm

where v is the membrane potential, w is the recovery variable, a and c are scaling

parameters, and I is the stimulus current. Moreover, b is an unstable equilibrium

that corresponds to the threshold between electrical silence and electrical firing [1].
It is recommended to choose a >> 1 [14], 0 < c and small enough [18]. Also, b should

be between zero and one, and to obtain suitable supra-threshold behavior, usually

b < 0.5 is chosen [24]. For appropriate constant parameters, it is possible to generate

tonic firing using FHN, where tonic firing is referred to as a firing behavior in which

the neuron spikes in a periodic manner.



0.8 -

0.6

> 0.4

0.2

0

-0.2 -

-0.4 L L L L L L L
2 4 6 8 10 12 14 16 18 20 22 24

t

Figure 2-1: Tonic Firing

Considering that conventionally the parameters in the FHN model are kept constant,

certain firing behaviors such as bursting can not be obtained using this model[8].

Since I is an external input, it can externally control the firing mode observed in

the output (v), and result in firing behaviors such as bursting [23]; on the other

hand, the parameters a, b, and c are governed by the mechanisms internal to the

neuron, and their variations can be associated to some internal physiological system.

Hence, it is more interesting to vary those parameters to generate behaviors such as

bursting because this method adds a totally internal firing capability to the system.

In this project, we consider variations in b because b is the threshold between electrical

silence and neural firing, and physiologically, it might be the case that this threshold

is varying throughout the day, causing the neurons to switch on and off, and generate

bursting. Since b can control both the firing frequency and amplitude, we propose

that by varying b in FHN, it is possible to obtain firing modes such as bursting.



2.3 The FitzHugh-Nagumo Model with Time-Varying

Threshold

Since b can control both the firing frequency and amplitude, we propose that by

varying b in FHN, it is possible to obtain firing modes such as bursting. Hence,

we will vary b using different functions, and discuss the observed behaviors through

illustrative examples. In other words, our proposed model adds to FHN another

differential equation d = g(t), where g(t) is a function of time that is determined

based on the physiology of the neuron.

The following is our proposed extension to FHN model, which includes the time-

varying threshold:
dv
- = a(-v(v - 1)(v - b) - w + I)

dt

dw_

dt - -

db
= g(t)dt

In the following subsections, we will show that using this approach, spiking patterns

such as tonic bursting, mixed mode firing, neural firing with non-increasing frequency,

and varying frequency neural firing can be obtained. The simulations were performed

in Simulink.

2.3.1 Tonic Bursting

Tonic bursting is a firing behavior in which a neuron fires a certain number of spikes

and is silent for a certain amount of time. Then, it repeats this pattern in a periodic

manner. To simulate tonic bursting using FHN, we keep a, I, and c at constant values

10n, 1, and 0.2, respectively, and vary b using two different method as follows:



1. First, b was varied using a sinusoidal function b(t) = 0.5 + 0.5sin(it) and tonic

bursting was obtained as observed in Fig. 2-2.
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Figure 2-2: Tonic Bursting using a sinusoidal b

2. Then, b was varied using:

b(t) =

(t-6)
2

36
(t-18)

2

36

t < 12

12 < t < 24

where this function could be repeated periodically with a period of 24. Tonic

bursting was obtained as observed in Fig. 2-3.

These are two possible ways of varying b in order to obtain tonic bursting. Different

sinusoidal functions, triangular waves, or combinations of polynomials could also be

used for obtaining tonic bursting.
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Figure 2-3: Tonic Bursting using a polynomial b

2.3.2 Mixed Mode Firing

Mixed mode is a firing mode in which the neuron fires a single burst when the stimulus

is applied and then switches to tonic spiking [7]. To simulate mixed mode firing using

FHN, we keep a, I, and c at constant values 10', 1, and 0.2, respectively, and vary b

in the beginning using a sinusoidal function followed by keeping it at a constant value

as follows:
(

b(t) 0.5 + 0.5sin(2t) t < 6.5

0.1464 6.5 < t < 24

where this function could be repeated periodically with a period of 24. As observed

in Fig. 2-4 a mixed mode firing pattern was obtained using this method. This is one

possible way of generating mixed mode. Another way could be to use a triangular

wave or a sinusoidal function at the beginning, and then keep the value of b constant.
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Figure 2-4: Mixed Mode Firing

2.3.3 Neural Firing with Non-increasing Frequency

Neural firing with non-increasing frequency is another possible firing mode obtained

by varying b. To simulate a neural firing mode with non-increasing frequency, we

keep the parameters a, I, and c fixed at constant values 10', 1, and 0.25, respectively,

and first start with slowly increasing b using a linear function, and then keep b at a

constant value. For the simulation in Fig. 2-5, b was varied as follows:

_-t t < 12
b(t) = 24

0.5 12 < t < 24
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Figure 2-5: Neural Firing with Non-increasing Frequency

2.3.4 Varying Frequency Neural Firing

Finally, we will illustrate that neural firing with varying frequency can be obtained

using FHN. To simulate this firing mode, we keep the parameters a, I, and c fixed

at constant values 105, 1, and 0.3, respectively, while varying b using two different

methods as follows:

1. First, b was varied using a two-harmonic function as observed in Fig. 2-6. For

this simulation, we defined b as:

b 1t=i--cos(L't)+3.5sin(2-t)-3.scos( L't)-1.1720Sin(4,t)b~t)= 24 2430 244

However, it is possible to use other two-harmonic functions to obtain the desired

behavior.

2. Then, b was varied a follow: b(t) = (t - 12) 2 /144, t < 24, and a firing mode

with varying frequency was obtained as observed in Fig. 2-7. This function can
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Figure 2-6: Varying Frequency Neural Firing using a two-harmonic b

be repeated periodically with a period of 24.

These are two possible ways of varying b in order to obtain varying frequency neural

firing. Other combinations of sinusoidal or polynomial functions could also be used

for obtaining such behavior.

These examples suggest that by varying the parameters that are internal to FHN,

one could obtain richer set of behaviors.
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Chapter 3

Estimation Algorithm for Constant

Spiking Threshold in

FitzHugh-Nagumo Model

3.1 Parameter Estimation in Computational Neu-

roscience

In computational neuroscience, parameter estimation for dynamical models such as

Hodgkin-Huxley (HH), Hindmarsh-Rose (HR), and FHN is usually done using stan-

dard methods such as Simulated Annealing, Genetic Algorithms, Differential Evo-

lution [4], Adaptive Observer, or Extended Kalman Filter (EKF) [22]. However,

in principle, if the model has relevant structure, one could exploit it to formulate

a parameter estimation method customized to that model and tune it to get better

performance than the standard methods. By investigating the slow and fast dynamics

of the FitzHugh-Nagumo model, one could estimate the parameters of FHN. In this

chapter, we will employ the dynamics of the FHN model to propose a novel estimation

algorithm for estimating the threshold between electrical firing and electrical silence.



Then, we will compare the performance of this method with the Extended Kalman

Filter (EKF) for the fixed parameter case through illustrative examples. The ex-

amples demonstrate that this estimation method outperforms EKF when the sensor

covariance is large or when the sampling rate is low.

3.2 Estimating b Using Fast-Slow Dynamics of the

FitzHugh-Nagumo Model

The phase portrait shows that, in case of tonic firing mode, the trajectories switch

between slow scale dynamics and fast scale dynamics. Considering the dynamics of

the FHN model, we propose to develop a novel estimation algorithm that exploits

the multiple time-scale feature of FHN. To do so, we will start with a time-series plot

of action potentials v that are firing in a tonic manner, and develop an algorithm to

estimate b. We will only look at the time scale features of one firing that occurs on

the limit cycle. Fig. 3-1 is a representation of the slow and fast dynamics of FHN on

the wv-plane and its corresponding behavior with respect to the time-series plot of v.

refractory (v2,w) v, rtpolarization
fast manifild

repolarization
W=v c slow manifold

depolarizationUsrk rfatr
slow manifold w=-v(v-1)(v-b)'-

upustrokeo

vi epnarzaio

3 depolarization

VV

Figure 3-1: Phase Portrait (left) and Time-series Plot (right): a=1369, b=0.2, 1=1,
c=0.3



Since v does not change much when the system is following the slow time scale

dynamics of FHN, we will approximate its derivative as zero. 0 w

-v(v - 1)(v - b) + I. Then, define f as:

f(v, b,I) = -v(v - 1)(v - b) + I

Let v2 and vo be the values of v that maximize and minimize f.

1
vo -(b+1 - Vb 2 -b+ 1),

3
1

v2 =-(b+1+ /b 2 -b+1)
3

As observed in Fig. 3-1, w2 and wo do not exactly correspond to maximum and

minimum values of f, however, we can approximate w2 and wo by plugging in the

values of v2 and vo in f(v, b, I), as shown below:

2 1

27 9
27

+-b b2 -b+1+
27

rI2 3 1 2
w2 -b - -b2

27 9
2
-b b2 -b+1+

27

2 b1- b b b2 b 1 -b
27 9

2 2
_ b2 - b+I1I

27 27

2 1
+ -b 2b 2 - b+ 1 - -b

27 9
2 2
-- +- b2 -b+1 + I

27 27

Let ho(b) = wo - I and h2 (b) = W2- I. Then,

ho(b) - h2(b) = - ,/(b 2 - b + 1)3 ~~ -0.21b 2 + 0.21b - 0.15
27

From the time series data of membrane potentials, it is possible to obtain the maxi-

mum and minimum values of v, vi and v3, respectively. As observed in Figure 3-1:

f (vjI, b, I) ~ wo =: -v1 (vi - 1) (v1 - b) + I ~-' wo ~- ho (b) + I



f (v3 , b, I) ~ w2 =- -V3(V3 - 1)(v 3 - b) + I e W2 ~ h2 (b) + I

Hence, we obtain:

-v1(vi - 1)(vi - b) ~ ho(b)

-v3(V3 - 1)(v 3 - b) ~ h2(b)

Since there are two equations and one unknown, the system might not have a solution;

in cases that the system has a solution, the solution can be obtained using equation

(3.1):

-vI(vi - 1)(vi - b) + v3 (v3 - 1)(v 3 - b)
4 (3.1)

=ho(b) - h2(b) -- 4 (b2 - b+ 1)3
27

For simplicity in the computation, we use the following approximation to equation 3.1:

-v1(v1 - 1)(vi - b) + v 3 (v 3 - 1)(v 3 - b)

= ho(b) - h2(b) -0.21b 2 + 0.21b - 0.15

Let hb --vi(vi - 1)(vi - b) + v3(v3 - 1)(V3 - b) + 0.21b 2 - 0.21b + 0.15. Setting

hb = 0, two values for b are obtained, and considering that b takes on a value between

zero and one, the value of b that satisfies this bound is the desired solution. In the

cases that both solutions satisfy the bound, we plug both values of b into equation

(3.1), and the value that minimizes the absolute value of the difference between the

two sides of equation (3.1) is the desired value of b. If a b value is not obtained using

this approach, we will find the value of b that minimizes hb. If this value still does

not satisfy the bound, one could plug in values zero and one into equation (3.1), and

the value that minimizes the absolute value of the difference between the two sides

of equation (3.1) is the desired value of b.

Using parameters a=105 , 1=1, c=0.3 for the FHN model, and starting with b=0.05

and increasing the b value in 0.05 increments until the system does not have a tonic

behavior (b=0.75), we obtained different time-series plots of membrane potentials.

Then, for each of these time-series plots, we estimated b using the method described



above; the estimated values as well as the percent errors are shown in Table 3.1. As

observed in Table 3.1, the error varies between 0.42% and 5.20%.

Table 3.1: Estimates of b using the FSD method

b bestimate percent error
0.05 0.0526 5.2000
0.1 0.1034 3.4000

0.15 0.1540 2.6667
0.2 0.2044 2.2000

0.25 0.2546 1.8400
0.3 0.3048 1.6000

0.35 0.3552 1.4857
0.4 0.4064 1.6000

0.45 0.4612 2.4889
0.5 0.5021 0.4200

0.55 0.5378 2.2182
0.6 0.5929 1.1833

0.65 0.6441 0.9077
0.7 0.6944 0.8000

3.3 Comparison with Extended Kalman Filter

In the previous section, a novel approach for estimating b was proposed. In this sec-

tion, we compare the b estimates given by the Fast-Slow Dynamics (FSD) estimation

algorithm and EKF. In order to compare our estimation method with EKF, process

noise and sensor noise were incorporated into the simulations using the following

model:
dv

= a(-v(v - 1)(v - b) -w + I) + N(0,o)

dw

di
=v - cw + N(0,o )

- = N(0, or)
dt I N

vobs = v + N(01,o-2)



where orp and o-, represent the standard deviation in the process noise and the sensor

noise, respectively. Moreover, Vb, is the observed membrane potential. In order

to implement EKF, we discretized the system using Euler forward method with a

sampling rate A. For this comparison, v was simulated using a=105 , I=1, c=0.3,

b = 0.5 while adding a zero-mean normal process noise with a standard deviation

of 0.1 (o-=0.1), and the sampling rate and sensor noise were varied as discussed in

the following three examples. Moreover, we averaged the data for 24 tonic firings to

run FSD and implemented EKF while using the actual initial condition values as the

initial guess, and an initial covariance estimate of zero.

1. A zero-mean sensor noise with o-=0.001 was added to the simulated membrane

potentials for A=10- 5 . Using our method, a b estimate of 0.5079 (1.58% error)

was obtained. Then, EKF was implemented on the data, and the estimated

value of b after one limit cycle was 0.5001 (0.02% error). In this simulation,

the sampling rate was very high and the sensor noise was very low, putting

EKF in an advantage. However, by increasing the sensor noise or decreasing

the sampling rate, our method performed better than EKF.

2. By adding zero-mean sensor noise with u,=0.01 to the simulated action po-

tentials, and using A=10-5, a b estimate of 0.5253 (5.06% error) was obtained

using our method while b estimates for EKF did not converge and varied be-

tween 0.1358 and 1.47.

3. For A=10-3, and a zero-mean sensor noise with u,=0.001, we implemented both

FSD and EKF. Using FSD a b estimate of 0.5175 (3.5% error) was obtained,

while EKF diverged.

Hence, comparing the two methods, EKF is more sensitive to sampling rate than

our method. This could be because our method only requires the knowledge of the

maximum and minimum voltage values, and when we decrease the sampling rate, the

maximum and minimum values obtained are close to the actual ones. Moreover, EKF



does not converge if the sensor noise covariance is large.

In the next chapter, we will extend this algorithm to the case when this threshold

is varying and one has more knowledge about the structure of the variations (e.g.,

oscillatory, impulsive, etc.) of this parameter. To do so, we will use some standard

statistical methods such as multiple regression in addition to our estimation method.
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Chapter 4

Estimation Algorithm for

Time-varying Spiking Threshold in

FitzHugh-Nagumo Model

In the previous chapter, an algorithm for estimating b was proposed. In this chapter,

using examples, we will illustrate that the Fast-Slow Dynamics (FSD) estimation

algorithm for constant b can be employed on the neural firing data that is generated

by time-varying b. To implement the algorithm on the data, first one should obtain

multiple datasets, and use the average of these datasets in order to estimate the

parameters to reduce the effect of noise. In order to run FSD for time-varying b, one

could find the membrane potential peaks, and break the data into smaller data sets,

in a way that each smaller dataset starts at one peak and ends at the following peak

(in other words, one could break the data points in a way that each of these smaller

datasets goes through the limit cycle once). Then, using our algorithm for estimating

constant b, one could estimate b for each of these smaller datasets, and associate

each of these estimates with the time that the second peak is observed. Then, if

one has prior knowledge about the structure of b, one could implement multiple or

linear regression (depending on the structure of b) to fit a function to the b estimates



obtained using FSD method. In the cases that b follows two (or more) different

functions as a function of time, one could break the data into two (or more) parts

at the the point(s) that the variations in the function occur, and depending on the

kind of function b is following, linear or multiple regression could be used to fit the b

estimates for each part of the data. In the following two sections, we will implement

FSD method on neural firing with non-increasing frequency and varying frequency

neural firing. Then, we will implement our estimation method on tonic bursting, and

compare its performance with EKF.

4.1 Parameter Estimation for Neural Firing with

Non-increasing Frequency

Neural firing with non-increasing frequency was obtained by incorporating process

noise and sensor noise into the simulations using the following model:

dv
-- = a(-v(v - 1)(v - b) - w + I) + N(0

dw
=v - cw + N(,u )

db a + a±N(0,) t < 12

dt N (0, 2) 12 < t < 24

Voob =v + N(O, o-2)

where up and a. represent the standard deviation in the process noise and the sensor

noise, respectively. Moreover, Vobs is the observed membrane potential. b first starts

increasing as a linear function with slope a, and then remains constant. In other



words, b is of the form:

b(t) = at + B

ato +

t < to

to < t < 24

We simulated 5 datasets using this system of equations by letting a=105 , 1=1, c=0.25,

o-=10-2, and o-=10-3, and averaged the five datasets. Then, we broke the dataset

into smaller parts and implemented FSD algorithm to obtain a vector of b estimates.

Then, by plotting these b estimates as a function of time, and inspecting the b es-

timates, we obtained the b value at which b remains constant. Then, we broke the

b estimates into two sets. One set included the b estimates that were following the

linear function, and the other set included the approximately constant b estimates.

We estimated a and # by implementing linear regression on the first dataset, and

obtained an estimate for the constant b by taking the mean of the second dataset.

Then, to was obtained by letting the constant b estimate equal to ato + # and solving

for to. Fig. 4-1 is a plot of b and its estimate.

0.5

0.4

0.

0.3

0.

0.2

0.

0.1

0.

0.0

2 4 6 8 10 12 14 16 18 20 22

Figure 4-1: Parameter Estimation for
Using FSD Algorithm

Neural Firing with Non-increasing Frequency

5 -

5-

4 -

5 --

3 -

2-

1-/ b

5-



4.2 Parameter Estimation for Varying Frequency

Neural Firing

Neural firing with non-increasing frequency was obtained by incorporating process

noise and sensor noise into the simulations using the following model:

dv
-=a(-v(v - 1)(v - b) -w+I) +N(O,oU)

dt

dw
- =v-cw+N(0,1)

dt

db 2 7 2 7 2 7 2 7 2w 2 1 2w 2 7
4sin(-t) + -ycos(-t) - -(sin(-t) + -cos(-t) + N(O, of )dt 24 24 24  24 12 12 12 12

Vobs= v + N(0,o2)

where o- and o-s represent the standard deviation in the process noise and the sensor

noise, respectively. Moreover, Vobs, is the observed membrane potential. b is a two-

harmonic function with periods 24 and 12 (e.g. b could be governed by the circadian

rhythm). In other words, b is of the form:

b(t)=a + Ocos(2) + -ysin(2) + (cos(9) + isin(9)

We simulated 5 datasets using the above system of equations by letting a= 105, I=1,

c-=0.3, lO=10-2, and o-,=10-3, and averaged the five datasets. Then, we broke the

dataset into smaller parts and implemented FSD algorithm to obtain a vector of b

estimates. Then, knowing that b was a two-harmonic function, we estimated a, #, -y,

(, and r, by implementing multiple regression. Fig. 4-2 is a plot of b and its estimates.
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4.3 Comparison of FSD and EKF Performance for

Tonic Bursting

We will compare FSD estimation algorithm with EKF for tonic bursting, which can

be obtained using a sinusoidal b. For this comparison, process noise and sensor noise

were incorporated into the simulations using the following model:

dv
-- = (-t - 1)(o - (asi*n(At +#0) +7) w + I) + N(0

dw
dt =v -cw+ N(0,o )

dty N(O, o )dt P

da_
dt N(O, or)dt P

dA N(0, or

dt P)



d/3

dt N(0,oP)

Vobs= v + N(0, o2)

o-, and o, represent the standard deviation in the process noise and the sensor noise,

respectively. Moreover, Vobs is the observed membrane potential. In order to imple-

ment EKF, we discretized the system using Euler forward method with a sampling

rate A. For this comparison, v was simulated using a=105 , I=1, c=0.3, b = 0.5 while

adding a zero-mean normal process noise with o-,=0.1, and the sampling rate and

sensor noise were varied as discussed in the following three examples. We simulated

five datasets using this method for each of the following examples, and used the av-

erage of these datasets in order to estimate the parameters. In order to run FSD

for time-varying b, we found the membrane potential peaks, and broke the data into

smaller data sets, in a way that each smaller dataset started at one peak and ended

at the following peak (in other words, we break the data points in a way that each of

theses smaller datasets goes through the limit cycle once). Then, using our algorithm

for estimating constant b, we estimated b for each of these smaller datasets. Then, we

associated each of these estimates with the time that the second peak was observed.

Let A = z. Knowing that b was a sinusoid of the form asin(2t+#0)+ y, we found the

period by looking at the time series plot of the b estimates, and then using the trigono-

metric identity, we rewrote this problem as asin(-t)cos(3) + acos(2t)sin(3) + -y,

and implemented multiple regression to find the coefficients a, #, and -y. In order to

implement EKF, we used the actual initial condition values as the initial guess, and

an initial covariance estimate of zero.

1. After adding a zero-mean sensor noise with a-s=0.001 to data with A=10~', we

implemented FSD and EKF. The parameter estimates and the corresponding

percent error for each of the parameters is reported in Table 4.1. In reporting the

EKF estimate, we ignored the estimates for which the error covariance matrix

becomes very high.

2. By adding a zero-mean sensor noise with o>=0.1, and using A=10, we im-



Table 4.1: Comparison of parameter estimation obtained by FSD and EKF for ex-
ample 1 for time-varying b

FSD estimate FSD error EKF's estimate EKF's error

oz0.5 0.4926 1.48% 0.5 0%
T=12 11.933 0.5583% 12 0%

cos(#)=1 0.9804 1.9558% 1 0%
-y=0.5 0.4937 1.26% 0.5 0%

plemented FSD and EKF. The EKF parameter estimates became very noisy;

however, the average value of the noisy parameter estimates obtained by EKF

had a small error, and here we are reporting the average value of the noisy

estimates as the EKF parameter estimate. The parameter estimates and the

corresponding percent error for each of the parameters is reported in Table 4.2

Table 4.2: Comparison of parameter estimation obtained by FSD and EKF for ex-
ample 2 for time-varying b

FSD estimate FSD error EKF's estimate EKF's error

a=0.5 0.5708 4.72% 0.5045 0.9%
T=12 11.933 0.5583% 12.1461 1.2176%

cos(#)=1 0.9944 0.56% 1 0%
-=0.5 0.5602 12.04% 0.5062 1.24%

3. For A=10-3, and a zero-mean sensor noise with u,=0.001, using our method

parameter estimates reported in Table 4.3 were obtained, while EKF diverged.

Table 4.3: Comparison of parameter estimation obtained by FSD and EKF for ex-
ample 3 for time-varying b

FSD estimate FSD error EKF's estimate EKF's error

a=0.5 0.4638 7.24% Diverged NA
T= 12 12.029 0.2417% Diverged NA

cos(#)=1 0.9215 7.8511% Diverged NA
7=0.5 0.4996 0.08% Diverged NA

In this chapter, through three examples, we showed how one could implement the FSD

method for the case that b is a time-varying function. Then, comparing this algorithm



with EKF, we showed that this parameter estimation method performed better than

EKF when the sampling rate was low. Another advantage of this estimation method

over EKF is that for cases that the structure of b is unknown e.g. the underlying

structure of b that governs the release of the cortopin releasing hormone, discrete b

estimates can be obtained using our method to add insight to the underlying structure.

On the other hand, EKF can not estimate the coefficients if the underlying structure

of b is not known.

A physiological application of the FHN model with time-varying b could be the neural

spiking that results in cortisol secretion. In the next chapter, we will discuss the

mathematical models for cortisol. Then, we will propose a model for cortisol secretion

that utilizes FHN model with time-varying b.
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Chapter 5

Mathematical Modeling of Diurnal

Cortisol Patterns

5.1 Hormones

Hormones could be considered as chemical messengers, relaying signals from one group

of cells to another; hormone secretion is governed by circadian rhythm, which is a

biological clock with a period of 24 hours [5]. Hormone secretion can be stimulated

by neurons in the hypothalamus. In neurons, oscillatory changes in the membrane

potentials as well as the intracellular Ca2+ oscillations result in neurosecretion in a

pulsatile manner [21]. Neurosecretion is the coupling of electrical activity to hormone

release, and the amount of hormone released by spiking increases as the frequency

of spikes increases [17]. In other words, the periodic increase in hormone release is a

consequence of synchronization in hormone generating neurons as well as increase in

firing activity in individual neurons instead of using new neurons [21]. Pulsatile neu-

rosecretion results from synchronized bursting activity of neuroendocrine cells[17],

and intracellular chemical concentrations play an important role in releasing hor-

mones. For example, in Luteinizing Hormone-Releasing Hormone (LHRH) neurons,



high K+ results in neurosecretion, which is followed by an increase in Ca2+ , and

oscillatory changes in membrane potentials. Moreover, Nitric Oxide (NO) meditates

the release of the LHRH [21]. This chapter provides an introduction to cortisol, a

steroid hormone, and cortisol secretion, from neural firing to cortisol concentration in

the plasma and discusses a selection of the mathematical models of cortisol patterns.

5.2 Cortisol Secretion

Cortisol is a steroid hormone that regulates the metabolism and body's reaction to

stress and inflammation [3]. Stress can be physical, such as infection, thermal expo-

sure, and dehydration, or psychological, such as fear and anticipation [9]. Cortisol

relays rhythmic signals from the suprachiasmatic nucleus (SCN), the circadian pace-

maker, to synchronize bodily systems with environmental variations [19]. Cortisol

secretion can be stimulated by calcium oscillations and changes in the membrane po-

tential of the hypothalamus neurons. Moreover, ultradian analysis of cortisol shows

significant periods of 24 hours, 12 hours, and 2 hours. The first two significant periods

(24 hours and 12 hours) correspond to the circadian pattern. As a result, in addition

to the circadian pattern, there is a shorter periodicity in the observed cortisol pattern

[12]. Moreover, the 24-hour plasma cortisol profile consists of episodic release of 15

to 21 secretory events with varying magnitudes in a regular diurnal pattern, with the

lowest amplitude occurring between 8pm and 2am, increasing rapidly throughout the

late night, with the highest amplitude between 8am and 10am, and then, the ampli-

tude declines throughout the day. The amount of cortisol released in each secretory

episode is regulated by variations in amplitude rather than the frequency of secretory

episodes [3].

Cortisol secretion is controlled by the hypothalamic pituitary adrenal axis (HPA),

which is a self-regulated dynamic feedback neuroendocrine system [9]. In hypotha-

lamus, SCN sends a harmonic circadian signal to the paraventricular nuclei (PVN),

which leads to release of the CRH. CRH secreted into the hypophyseal portal blood



vessels induces release of ACTH from the anterior pituitary [3]. ACTH is synthesized

and stored in the anterior pituitary gland. Synthesis and release can occur indepen-

dently, and are stimulated by the neurohormone CRH [6]. Then, via stimulation of

adrenal gland by ACTH, adrenal gland produces and secretes cortisol [13] [3]. After

synthesis, cortisol diffuses into the circulation and is absorbed from the blood plasma

by different tissues where it implements regulatory functions as a steroid hormone.

Then, cortisol is cleared from the plasma by the liver [3]. Moreover, cortisol has

a negative feedback effect on the hypothalamus and pituitary as well as CRH and

ACTH secretion [9] [13] [3].

5.3 Mathematical Models for Cortisol Secretion

Different mathematical models of the HPA and cortisol secretion have been proposed

in the literature. We will provide an overview of the proposed models. However,

instead of using the notations used in each paper, the following notations will be used

for all the models:

Glossary

Cr CRH

A ACTH

C, Cortisol synthesized in the adrenal gland

Ca Cortisol concentration in the adrenal gland

C, Cortisol concentration in the plasma space

R Glucocorticoid receptor

#R Rate of infusion of CRH from the Hypothalamus

3A Rate of infusion of ACTH from the anterior pituitary

0, Rate of infusion of cortisol from the adrenal glands

#GR Rate of degradation for glucocorticoid receptor



!PGR Rate of production for glucocorticoid receptor

/c Rate of clearance of cortisol from the plasma

Op Rate of CRH production

#D Rate of dissociation constant of cortisol receptor complex

K1 Constant between zero and one

K 2 Inhibition Constant

K3 Equilibrium binding affinity

S Circadian activator

F Stress to the HPA axis

5.3.1 Model I [3]

[31 introduces a stochastic differential equation model of diurnal cortisol patterns,

assuming first-order kinetics for synthesis of cortisol in the adrenal gland, infusion

of cortisol from adrenal gland to plasma, and clearance of cortisol from plasma by

the liver (5.1-5.2), while making use of the timing of secretory events and circadian

modulation of amplitude of secretory events:

dCa
~a Ca + C, (Adrenal Gland) (5.1)

dt

dC = /Ca - #cC, (Plasma) (5.2)
dt

where 03 and OC are normal random variables with mean and variance obtained

using cortisol data; C, is a doubly stochastic pulsatile input which has a Gaussian

circadian amplitude with a two-harmonic mean, and a mean-dependent variance, and

a secretory event timing with gamma distributed interarrival times. Since no cortisol

is stored in the adrenal gland, and cortisol synthesis is initiated by ACTH and is

highly coupled to ACTH, it is possible to replace C, with ACTH (variable A). In this

model, Guassian noise is added to C, to obtain the cortisol profile. The simulations

obtained using this model have a plasma cortisol diurnal pattern, which agrees with



the physiology.

5.3.2 Model II [19]

[19] introduces five mathematical models of HPA axis based on a negative feedback

mechanism with and without time delay, and shows that the systems introduced

are stable and hence do not generate diurnal oscillations. They then introduce a

sixth model, a circadian activator S with periodic stimulus from SCN (5.3-5.5), which

results in a time-periodic pattern:

dCr S (1-K 1  Ca K - ORCr (Hypothalamus) (5.3)
dt OD + Ca

d A
= =RCr - 3AA (Anterior Pituitary) (5.4)

dt

dCa = /AA - /3Ca (AdrenalGland) (5.5)
dt

where S is either a value greater than one or one, and the CRH production rate Op

varies between zero and a positive value in a pulsatile manner.

This study suggests that HPA axis is asymptotically stable and does not oscillate at

all; moreover, the time-periodic signal from SCN results in the observed cortisol con-

centration behavior. This model results in a smooth time-periodic pattern; however,

it does not include any of the fluctuations observed in the actual cortisol profile, and

even if some noise is added to the simulations obtained from this method, the result-

ing pattern still does not agree with the physiology because there are other trends in

the data that can not be explained by adding noise (e.g. multiple local maximums).

Moreover, parameters are chosen arbitrarily, and this model does not include all the

external inputs to drive the system.



5.3.3 Model III [9]

[9] contains four differential equations. The first equation (equation 5.6) considers

stress as the stimulus (the input to the system) that results in CRH release; also,

cortisol inhibits the synthesis of CRH to regulate its own synthesis. Then, the second

and third equations are coupled; one of the two equations (equation 5.7) shows that

CRH results in ACTH release while glucocorticoid receptor (GR) and cortisol inhibit

ACTH release; the other equation (equation 5.8) shows that GR and cortisol bind to

each other with very fast kinetics. Finally, equation 5.9 shows that ACTH results in

cortisol secretion.

dCr 1+ F
= _ c- - ORG (Hypothalamus) (5.6)

dt 1

d A _Cr

dt - CR !AA (Anterior Pituitary) (5.7)
K 2

dR (CaR)2

=t K3 ± (CaR) 2 + 3 PGR - ORGR (AnteriorPituitary) (5.8)
dt K3 +(CaR)

dCa
da = A - Ca (AdrenalGland) (5.9)
dt

The authors provide a plot that contains both the simulated cortisol data and the

experimental cortisol data, which shows that the simulated results are very similar

to the experimental data. They also provide a plot of the ACTH data, which is

not released in bursts. [11] illustrates that ACTH should be secreted in bursts while

[10] shows that ACTH does not have the same burst firings when stimulated by

Metyrapone. Hence, we suspect that the model proposed by [9] is describing cortisol

secretion under injection of some stimulus to account for stress. Also, the authors

do not clarify whether they used a mathematical approach to find the stress as the

input to the system or they were aware of the timing and magnitude of the stimulus

injected to the subject, which resulted in the observed cortisol pattern.



5.3.4 Comparison of Models I-III

Comparing the discussed models, one can observe that equation 5.1 in model I, equa-

tion 5.5 in model II, and equation 5.9 in model III agree with each other with the

only difference that the rate of cotisol synthesis in the adrenal glands and infusion

of cortisol from the adrenal glands are different in these models. Considering that

model I is the only model that uses actual data to estimate the rate, equation 5.1

(model I) is more reliable. Models II and III do not include a neural firing model or

an euroendocrine model for CRH and ACTH while CRH and ACTH are released in

pulsatile bursts.

In the literature, we found the following mathematical models for ACTH release via

CRH regulation; [15] investigates CRH regulating ACTH secretion using the Hodgkin-

Huxley(HH) mathematical model that results from the intracellular signaling system.

In a later paper, [16] reduces the model in [15] to one with three differential equa-

tions. Later on, [20] includes a K+ current which takes two values depending on the

value of the action potential in the model in [15]. These models only include the

ACTH release, and do not include a model for ACTH regulating cortisol release and

cortisol secretion. Moreover, the neural firing model used in these papers is more

complicated, and we suspect a simpler model (e.g. FHN with time varying spiking

threshold) could be used for such modeling.

As discussed, reviewing the literature, we could not find a paper that provides a

mathematical model for cortisol secretion that includes the entire process, starting

from a deterministic neural firing model for secretion of CRH in the hypothalamus to

cortisol secretion. In the next chapter, we will propose a more comprehensive model

by bringing more pieces together and improving the current models. Considering

that Model I describes the physiology and is capable of generating the fluctuations

observed in the cortisol profile, we will use Model I as a starting point for this study.



Then, we will employ the FHN model with time-varying spiking threshold to study

ACTH release. Our proposed model is different from model I in the sense that model

I uses a doubly stochastic model for the input to the system while we will use a

deterministic model, which includes a neural firing piece, and such model allows to

study the kind of pulsatile mechanism the body uses for hormone secretion. Also, we

include the negative feedback effect of cortisol in our model. Moreover, our proposed

ACTH secretion model is simpler than the existing dynamical models for ACTH

secretion.
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Chapter 6

A Feedback Control Model of

Cortisol Secretion using FHN

Model with Time-varying Spiking

Threshold

6.1 Model I: A Linear Model for Cortisol Secretion

As discussed in the previous chapter, reviewing the literature, we could not find a

paper that provides a mathematical model for cortisol secretion that includes the

entire process, starting from a deterministic neural firing model for secretion of CRH

in the hypothalamus to cortisol secretion. Considering that Model I [3] describes

the physiology and is capable of generating the fluctuations observed in the cortisol

profile, we will use Model I as a starting point for this study:

dCa - /3iCa + C, (Adrenal Gland) (6.1)
dt



dC= 31Ca - #cCp (Plasma) (6.2)
dt

The variables and the parameters of this model were introduced in the previous

chapter. Model I [3] estimates #1 and #c to be normal random variables with mean

values 2.71 and 0.646, respectively. Throughout this chapter, we will assume that

these mean values are the parameter values in the described model.

6.2 Obtaining the Input to Model I

The solutions to the linear time-invariant state equations in model I are as follows:

Ca(t) = eI'Ca(0) + j eI(t-')CdT (Adrenal Gland) (6.3)

CP(t) - e-SctC_(0) + j e-c(-'T)1CadT (Plasma) (6.4)

When the cortisol level in blood is available, one could rewrite the above system by

replacing the two integrals by two convolutions. Then, considering that the datasets

are discrete, one could rewrite each convolution in the form of a Toeplitz matrix. Let

Ga be the Toeplitz matrix that corresponds to the convolution in 6.3 and let G, be

the Toeplitz matrix that corresponds to the convolution in 6.4. In other words, when

cortisol data is available at times to, ti, ...,ts, one could rewrite the convolutions in

equations 6.3 and 6.4 as:

e-oIto 0 0 ... 0 CS(to)

e-)it e- 3 ito 0 ... 0 CS(t 1 )

e-_Ot" e tn- e-1t.-2 ... e-OIto Cs(in) G



/13e-3cto 0 0 --- 0 Ca(to)

/1e-3cti BIe--cto Ca(t c1)
. . . . . GCa

/3e-Oct" OIe~Oct"1 Oie-ctn-2 ... 31e-3cto Ca(tn)

Then, let uP=e~3ctC,(to) and Ua=e-' t Ca(to). When one has access to the cortisol

data, C,(to) is available, and hence, up is a known quantity. Then, by formulating.

the optimization problem 6.5, one could solve for Ca; hence, Ca(to) and Za will be

known quantities. In order to obtain Cs, one could solve the optimization problem

6.6:

minca>o||CP - up - GPCa||2  (6.5)

minc>o||Ca - Ua -GaCs|| 2  (6.6)

The value of C, obtained using this formulation is an estimate of the pulsatile input

to the system in model I.

6.3 Modeling the pulsatile Input that Induces C,

Secretion

As mentioned in the previous chapter, C, secretion is highly coupled to ACTH secre-

tion, and ACTH is induced by CRH. Considering that CRH has a varying frequency

secretion profile, one could model the CRH secretion using the varying frequency neu-

ral firing model described in chapter 2 where a two-harmonic spiking threshold was

used in the FHN model. Considering that the circadian rhythm plays an important

role in the cortisol secretion, periods T=24, and T=12 could be used as the periods

of such a two-harmonic function. Let Vin be the output of the FHN model with a

two-harmonic spiking threshold. Then, let the CRH secreted be C,=max(2.5vin,0).

C, induces the ACTH secretion; however, the ACTH secreted is affected by the neg-



ative feedback effect of the cortisol level. In the following section, we will describe

how one could model this negative effect.

6.4 Negative Feedback Effect of Cortisol Level

Our goal is to model C, in a deterministic manner by using a neural spiking model

as well as feedback control. We suspect that the negative feedback effect of the cor-

tisol level in plasma on ACTH secretion and cortisol secretion can be modeled as a

tracking problem. In other words, if the cortisol level is below a certain time-varying

threshold, there will be ACTH secretion, and if the cortisol level is above a certain

threshold, the negative feedback effect of the cortisol level prevents any ACTH secre-

tion and hence no more cortisol will be secreted.

In order to obtain such a time-varying threshold, one could first inspect the Cs time-

series plot to obtain the times at which there is a pulsatile secretion. Then, form a

dataset that includes the plasma cortisol levels corresponding to the time at which

there is a pulsatile secretion in Cs. Then, using multiple regression, one could fit this

new dataset to a three-harmonic function of the form:

Ythresh = o + cos(-) + ' Sin co + ( )COS( ) + Sin() + cos() + sin()

Periods 24, 12, and 2 are chosen because as mentioned in the previous chapter the

ultradian analysis of cortisol shows significant periods of 24 hours, 12 hours, and 2

hours [12]. The ACTH profile (A) is induced by the secreted CRH and is suppressed

by the cortisol level. Hence, one could model the ACTH profile as:

A (t) = Cr(t) Ythresh > C,

0 Ythresh < Cp

Moreover, C(t)=kA(t), where k is a constant gain.

Fig. 6-1 is a block diagram of the described model. We simulated the 24-hour cortisol

profile using the following parameters and functions:



In the FHN part of the model, a=100, I=1, and c=0.28 were used, and b was defined

as:

10 - 6cos(' (t + 9)) + 3.5sin((t + 9)) - 3.5cos(-(t + 9)) - 1.1720sin(2(t + 9))

Ythresh = -5.8071
2wt

cos( 2)
24

2wt 2wt
- 1.1020sin( 2) - 0.9184cos( 2)

24 12
27rt

+0.1259cos( ) +
2

2wt
- 2.8927sin( 2

12
27rt

0.6564sin( ) + 6.5595
2

Moreover, k=100 was used.

ACTH Generator Function

Output

Figure 6-1: Simulink Block Diagram of the Cortisol Feedback Control Model

Fig. 6-2 is the 24-hour cortisol profile obtained using this simulation. This profile

closely resembles the profile that cortisol follows, i.e. cortisol level is at the highest

amplitude between 8am and 10am, and declines throughout the day; then, increases

rapidly through the late night (see Fig. 8 in [3]).

FHN with two-harmonic b CR HGenerator Function
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Figure 6-2: Simulated 24-hour Cortisol Profile in Plasma
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Chapter 7

Conclusion and Future Work

7.1 - Conclusion

The proposed approach in extending the FHN model by varying the parameters of

FHN allows for simulating more complex behaviors than the ones that were possible

by keeping the parameters constant. In this thesis, variations in the threshold be-

tween electrical silence and electrical firing were investigated. Then, an estimation

algorithm that exploits the fast-slow dynamics of FHN was proposed.

For constant b, the proposed parameter estimation algorithm performed better than

the EKF when the sampling rate was not very high or when the sensor noise co-

variance was not very low. For time-varying b, this parameter estimation method

performed better than EKF when the sampling rate was low. Another advantage of

this estimation method over EKF is that for cases that the structure of b is unknown

e.g. the underlying structure of b that governs the release of the cortopin releasing

hormone, discrete b estimates can be obtained using our method to add insight to

the underlying structure. On the other hand, EKF can not estimate the coefficients

if the underlying structure of b is not known.

One application of FHN model with time-varying threshold is modeling the secretion

process for some of the hormones such as cortisol or growth hormone. In this thesis,



FHN model with time-varying spiking threshold was used for modeling the cortisol

secretion. Moreover, a more comprehensive model for cortisol secretion was provided

by extending the model in [3] and including the negative feedback effect of cortisol,

and looking at the cortisol secretion as a tracking problem.

7.2 Future Work

In our future work, we will extend our model and estimation method to other parame-

ters of the FHN model. We also plan to explore the physiological factors determining

the parameter variations that lead to variations in neural firing patterns.

Moreover, we will obtain cortisol data to implement our feedback control model on

cortisol data, and analytically investigate trackability in the cortisol secretion process.

We might also add to the current feedback control model of cortisol another piece

that includes the negative feedback effect of cortisol on CRH secretion. We could

also use a similar approach to study growth hormone, luteinizing hormone, follicle-

stimulating hormone, or thyroid hormone. We also plan to study why the body uses a

pulsatile mechanism for hormone secretion, and why such a mechanism is efficient in

conserving energy in the body. Furthermore, we plan to study a network of neurons

that are coupled to each other, and result in neural spiking with varying amplitude

as a result of their synchronization.
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