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Abstract

In this thesis, we consider different aspects of the functional compression problem. In
functional compression, the computation of a function (or, some functions) of sources
is desired at the receiver(s). The rate region of this problem has been considered
in the literature under certain restrictive assumptions. In Chapter 2 of this Thesis,
we consider this problem for an arbitrary tree network and asymptotically lossless
computations. In particular, for one-stage tree networks, we compute a rate-region
and for an arbitrary tree network, we derive a rate lower bound based on the graph
entropy. We introduce a new condition on colorings of source random variables'
characteristic graphs called the coloring connectivity condition (C.C.C.). We show
that unlike the condition mentioned in Doshi et al., this condition is necessary and
sufficient for any achievable coding scheme based on colorings. We also show that,
unlike entropy, graph entropy does not satisfy the chain rule. For one stage trees
with correlated sources, and general trees with independent sources, we propose a
modularized coding scheme based on graph colorings to perform arbitrarily closely
to the derived rate lower bound. We show that in a general tree network case with
independent sources, to achieve the rate lower bound, intermediate nodes should
perform some computations. However, for a family of functions and random variables
called chain rule proper sets, it is sufficient to have intermediate nodes act like relays
to perform arbitrarily closely to the rate lower bound.

In Chapter 3 of this Thesis, we consider a multi-functional version of this problem
with side information, where the receiver wants to compute several functions with
different side information random variables and zero distortion. Our results are ap-
plicable to the case with several receivers computing different desired functions. We
define a new concept named multi-functional graph entropy which is an extension of
graph entropy defined by K6rner. We show that the minimum achievable rate for this
problem is equal to conditional multi-functional graph entropy of the source random
variable given the side information. We also propose a coding scheme based on graph
colorings to achieve this rate.

In these proposed coding schemes, one needs to compute the minimum entropy
coloring (a coloring random variable which minimizes the entropy) of a characteristic



graph. In general, finding this coloring is an NP-hard problem. However, in Chapter
4, we show that depending on the characteristic graph's structure, there are some
interesting cases where finding the minimum entropy coloring is not NP-hard, but
tractable and practical. In one of these cases, we show that, by having a non-zero joint
probability condition on random variables' distributions, for any desired function,
finding the minimum entropy coloring can be solved in polynomial time. In another
case, we show that if the desired function is a quantization function, this problem is
also tractable. We also consider this problem in a general case. By using Huffman
or Lempel-Ziv coding notions, we show that finding the minimum entropy coloring is
heuristically equivalent to finding the maximum independent set of a graph. While
the minimum-entropy coloring problem is a recently studied problem, there are some
heuristic algorithms to approximately solve the maximum independent set problem.

Next, in Chapter 5, we consider the effect of having feedback on the rate-region
of the functional compression problem . If the function at the receiver is the identity
function, this problem reduces to the Slepian-Wolf compression with feedback. For
this case, having feedback does not make any benefits in terms of the rate. However,
it is not the case when we have a general function at the receiver. By having feedback,
one may outperform rate bounds of the case without feedback.

We finally consider the problem of distributed functional compression with distor-
tion. The objective is to compress correlated discrete sources such that an arbitrary
deterministic function of those sources can be computed up to a distortion level at
the receiver. In this case, we compute a rate-distortion region and then, propose a
simple coding scheme with a non-trivial performance guarantee.

Thesis Supervisor: Muriel Medard
Title: Professor
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Chapter 1

Introduction

In this thesis, we consider different aspects of the functional compression problem over

networks. In the functional compression problem, we would like to compress source

random variables for the purpose of computing a deterministic function (or some

deterministic functions) at the receiver(s). Traditional data compression schemes are

special cases of functional compression, where their desired function is the identity

function. In other words, in traditional data compression, sources are compressed so

that the receiver can receive the whole sources' information. However, if the receiver

is interested in computing a function (or some functions) of sources (and not the

whole sources), they may be compressed further. In the rest of this chapter, first, we

mention some major applications and motivations of this problem. Next, we review

some prior relevant research and illustrate some research challenges of this problem

through some motivating examples which will be discussed in the following chapters.

1.1 Applications and Motivations

In this section, we present two major applications for functional compression: data

gathering and privacy issues. We explain these applications by two examples.

Example 1. Consider Figure 1-1 as an example of a distributed sensor network.

Some nodes have sensors to measure the temperature of their locations. These nodes

are called source nodes. The network of this example has four sources, named X 1,



Source Nodes

Intermediate
Nodes

X1 l

X2 f1(X1,X 2,X 3,X 4)

f2(X 1 ,X 2,X 3,X 4)

X4

Figure 1-1: A example of a sensor network. Receivers want to compute different func-
tions of source random variables. In example 1, fi(X1 , X 2 , X 3, X 4 ) -- 4
and f 2 (X 1 , X 2 , X 3, X 4 ) = max(XI, X2 , X 3 , X4 ).

X 4 . For this network, we have two receivers. One of the receivers desires to compute

the average temperature of source locations, while the other one, the maximum tem-

perature of sensors is desired. There are some nodes in this network which are neither

a source, nor a receiver. We call them intermediate nodes. These intermediate nodes

can perform some computations if required, but computations of functions at the re-

ceivers are only demands of this sensor network. Our objective here is to transmit as

little data as possible so that receivers are able to compute their desired functions. In

this thesis, we will investigate different aspects of this problem.

Let us explain the second application, privacy issues, by another example.

Example 2. Suppose a hospital has a database of medical records of patients such as

their heights, weights, blood pressures, etc., which are private information. However,

assume for a certain research program, some statistical information of these data (or,

a certain function of these data) is required. To guarantee the privacy of patients'

information, the database manager wants to release a certain amount of information

which on one hand, researchers are able to compute their desired functions, and on



XiD f(XlX2) Xf(X
1,X2)

X2  X2

(a) (b)

Figure 1-2: a) A network topology for functional compression with side information
b) A network topology for distributed functional compression.

the other hand, the privacy of patients' medical records is being kept. In this thesis,

we propose a framework to data-base managers to be able to deal with this problem.

Examples 1 and 2 demonstrate two major applications of the functional compres-

sion problem. There are also some other applications in the cloud computing, sensor

networks, etc.

We proceed this chapter by investigating previous research progresses in this prob-

lem.

1.2 Prior Work in Functional Compression

We categorize prior work into the study in lossless functional compression and that

in functional compression with distortion.

1.2.1 Lossless Functional Compression

By lossless computation, we mean asymptotically lossless computation of a function.

In other words, we would like to have the error probability goes to zero as our block

length goes to the infinity. We explain this concept later in more detail.

First, consider the network topology depicted in Figure 1-2-a which has two

sources and a receiver. One of the sources is available at the receiver as a side

information. Sometimes, this problem is referred to the side information problem.



X,

0
0
0

0
0

XkE]

Figure 1-3: A general one-stage tree network with a desired function at the receiver.

Shannon was the first one who considered this problem in [23] for a special case when

f(X 1, X 2) = (X 1 , X 2) (the identity function). For a general function, Orlitsky and

Roche provided a single-letter characterization in [21]. In [11], Doshi et al. proposed

an optimal coding scheme for this problem.

Now, consider the network topology depicted in Figure 1-2-b which has two sources

and a receiver. This problem is a distributed compression problem. For the case

that the desired function at the receiver is the identity function (i.e., f(X 1, X 2)

(X1, X 2)), Slepian and Wolf provided a characterization of the rate region and an

optimal achievable coding scheme in [24]. Some other practical but suboptimal coding

schemes have been proposed by Pradhan and Ramchandran in [22]. Also, a rate-

splitting technique for this problem is developed by Coleman et al. in [7]. Special

cases when f(X 1 , X2) = X1 and f(X 1 , X 2 ) = (X1 +X 2) mod 2 have been investigated

by Ahlswede and Kdrner in [2], and K6rner and Marton in [20], respectively. Under

some special conditions on source distributions, Doshi et al. in [11] investigated this

problem for a general function and proposed some achievable coding schemes.

Some parts of this Thesis consider different aspects of this problem (asymptotically

lossless functional compression). In particular, we are going to answer to the following

questions:

e For a one-stage tree network with one desired function at the receiver (as shown

in Figure 1-3), what is a necessary and sufficient condition for any coding scheme
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oo0 00
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Figure 1-4: A general tree network setup with a desired function at the receiver.

to guarantee that the network is solvable (i.e., the receiver is able to compute its

desired function)? What is a rate region for this network (a rate region is a set

of rates for different links of the network under which the network is solvable)?

" For a general tree network with one desired function at the receiver (as shown in

Figure 1-4), what is the optimal computation to be performed in an intermediate

node? When do intermediate nodes need to perform some computations and

what is a rate-region for this network?

" How do results extend to the case of having several desired functions at different

receivers?

" Are there some special functions or some special source structures which lead

to easy and practical coding schemes?

" What does happen if we have a feedback in our system?

1.2.2 Functional Compression with Distortion

In this section, we review prior results in functional compression for the case of being

allowed to compute the desired function at the receiver within a distortion level.



First, consider the network topology depicted in Figure 1-2-a called the side in-

formation problem. Wyner and Ziv [27] considered this problem for computing the

identity function at the receiver with distortion D. Yamamoto solved the side infor-

mation problem for a general function f(x, y) in [28]. Then, Doshi et al. gave a new

characterization of the rate distortion function given by Yamamoto in [10].

For the network topology depicted in 1-2-b and for a general function, the rate-

distortion region has been unknown, but some bounds have been given by Berger

and Yeung [5], Barros and Servetto [41, and Wagner et al. [25], which considered a

specific quadratic distortion function. Feng et al. [16] considered the side information

problem for a general function at the receiver in the case the encoder and decoder

have some noisy information.

In this Thesis, we characterize a rate-distortion function for a distributed net-

work depicted in Figure 1-2-b. This proposed characterization is not a single letter

characterization. However, we propose an achievable coding scheme for this problem.

In the rest of this chapter, we explain some research challenges of the functional

compression problem by some examples. In the next chapters, we will explain these

research challenges with more detail.

1.3 Research Challenges in Functional Compres-

sion

In this section, we address high level ideas of different research challenges in the

functional compression problem. We use different simple examples to illustrate these

ideas which will be carefully explained later in this Thesis.

Let us proceed by an example.

Example 3. Consider the network shown in Figure 1-2-b which has two source nodes

and a receiver. Suppose source nodes have two independent source random variables

(RVs) X 1 and X 2 such that X 1 takes values from the set X = {0, 1, 2, 3}, and X 2

takes values from the set X 2 = {0, 1}, both with equal probability. Suppose the receiver



x1 =0 x1 =1

x2 =0 X2=1

4 3
x =3 x1 =2

(a) (b)

Figure 1-5: Characteristic graphs described in Example 3: a) Gx1 , b) Gx 2 -

desires to compute a function f (X1 , X 2 ) = (X 1 + X 2) mod 2.

If X1 = 0 or X 1 = 2, for all possible values of X 2, we have f (X1 , X 2 ) = X 2 . Hence,

we do not need to distinguish between X 1 = 0 and X 1 = 2. The same argument can

be expressed for X 1 = 1 and X 1 = 3. However, cases X 1 = 0 and X 1 = 1 should be

distinguished at a coding scheme, because for X 2 = 0, the function value is different

when X1 = 0 than the one when X 1 = 1 (i.e., f (0, 0) = 0 : f (1, 0) = 1).

In this, we notice that for each source random variable, depending on the function

at the receiver and values of the other source random variable, we should distinguish

some possible pair values. In other words, values of source random variables which

potentially can cause a confusion at the receiver should be assigned to different codes.

To determine which pair values of a random variable should be assigned to different

codes, we make a graph for each RV, called the characteristic graph or the confusion

graph of that RV. Vertices of this graph are different possible values of that RV. We

connect two vertices if they should be distinguished. For the problem described in

Example 3, the characteristic graph of X1 (called Gx,) is depicted in Figure 1-5-a.

One may notice that we have not connected vertices which lead to the same function

value for all values of X2. The characteristic graph of X2 (Gx 2) is shown in Figure

1-5-b.

Now, we seek to assign different codes to connected vertices. This code assignment

is called a graph coloring where we assign different colors (codes) to connected vertices.



x1=0 x1
2=1 x1 '=0 x1

2=1 x01

Y Y
x1=3 x1 =2 x1

4=3 xj=2 x1
4=3 x13=2

(a) (b) (c)

Figure 1-6: Graph coloring examples: (a) and (b) are valid colorings, while (c) is
not a valid coloring. (For black and white prints, different letters written over graph
vertices indicate different colors.)

Vertices that are not connected to each other can be assigned to the same or different

colors (codes). Figure 1-6-(a,b) show two valid colorings for Gx1 , while Figure 1-6-c

is not a valid coloring of Gx1 .

Now, we propose a possible coding scheme for this example. First, we choose valid

colorings for Gx, and Gx2 . Instead of sending source random variables, we send these

coloring random variables. At the receiver side, we use a look-up table to compute

the desired function value by using the received colorings. Figure 1-7 demonstrates

this coding scheme.

However, this coloring-based coding scheme is not necessarily an achievable scheme.

In other words, if we send coloring random variables instead of source random vari-

ables, the receiver may not be able to compute its desired function. Hence, we need

some conditions to guarantee the achievability of coloring-based coding schemes. We

explain this required condition by an example.

Example 4. Consider the same network topology as explained in Example 3 shown in

Figure 1-2-b. Suppose X1  {0, 1} and X2  {0, 1}. The function values are depicted

in Figure 1-8-a. In particular, f(0, 0) = 0 and f(1, 1) = 1. Dark squares in this

figure represent points with zero probability. Figure 1-8-b demonstrates characteristic

graphs of these source random variables. Each has two vertices, not connected to each

.......... ................ ::::.::::::: ............ _ = _ .............. ..............



x1
1=0

x2 =0 X22

x 14=3 x1
3=2

Xi
color

X2
color

function
value

r y 0

r g 1

b y 1

b g 0

(c)

Figure 1-7: a) Gx, b) Gx 2, and c) a decoding look-up table for Example 3. (For
black and white prints, different letters written over graph vertices indicate different
colors.)

other. Hence, we can assign them to a same color. Figure 1-8-b shows these valid

colorings for Gx, and Gx2 . However, one may notice that if we send these coloring

random variables instead of source random variables, the receiver would not be able

to compute its desired function.

Example 4 demonstrates a case where a coloring-based coding scheme fails to

be an achievable scheme. Thus, we need a condition to avoid these situations. We

investigate this necessary and sufficient condition in Chapter 2. We call this condition

the coloring connectivity condition or C. C. C. The situation of Example 4 happens



f(xlx 2) Gx
x11 =0 X12

0 1

S x2=0 Gx2  2

(a) (b)

Figure 1-8: An example for colorings not satisfying C.C.C. (For black and white
prints, different letters written over graph vertices indicate different colors.)

when we have a disconnected coloring class (i.e., a coloring class is a set of source

pairs with the same color for each coordinates). C.C.C. is a condition to avoid this

situation.

Hence, an achievable coding scheme can be expressed as follows. Sources instead

of source random variables, send colorings of their random variables which satisfy

C.C.C. Then, they perform a source coding on these coloring random variables. The

receiver, by using these colors and a look-up table can compute its desired function.

However, there are some other coding schemes which are not included in this

proposed scheme. In other words, we can compress source random variables more

than the one of the proposed coloring-based coding scheme. We explain this fact by

another example.

Example 5. Consider the network shown in Figure 1-2-b. Suppose X1 is uniformly

distributed over X1 {0, 1, 2, 3, 4}. Consider X2 and f(X 1 , X2) such that we have a

graph depicted in Figure 1-9 for Gx 1 . Figure 1-9 also demonstrates a valid coloring for

this graph. Let us call this coloring random variable cGx. Hence, we have H(cGx,)

1.52. Now, instead of X1, suppose we encode X1 x X1 (X2), a random variable with



X1
1 =0

x15=4 x =1

x1 =3 x1 =2

Figure 1-9: Gx, described in Example 5. (For black and white prints, different letters
written over graph vertices indicate different colors.)

25 possibilities ({00,01,...,44}). To make its characteristic graph, we connect two

vertices when at least one of their coordinates are connected in Gx,. Figure 1-10

illustrates the characteristic graph of X (referred by Gx and called the second power

of graph Gx1). A valid coloring of this graph, called cG2 is shown in this figure. One

may notice that we use eight colors to color this graph. We have,

1

Example 5 demonstrates this fact that if we assign colors to a sufficiently large

power graph of Gxl, we can compress source random variables more. In Chapter 2, we

show that sending colorings of sufficiently large power graphs of characteristic graphs

which satisfy C.C.C. followed by a source coding (such as Slepian-Wolf compression)

leads to an achievable coding scheme. On the other hand, any achievable coding

scheme for this problem can be viewed as a coloring-based coding scheme satisfying

C.C.C. In Chapter 2, we will explain these concepts with more detail.

Now, by another example, we explain some research challenges of this problem

over tree networks.

.............
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Figure 1-10: G 2 , the second power graph of Gx1, described in Example 5. Letters
a1 ,...,a8 written over graph vertices indicate different colors. Two subsets of vertices
are fully connected if each vertex of one set is connected to every vertex in the other
set.

Example 6. Consider the network topology depicted in Figure 1-11. This is a tree

network with four sources, two intermediate nodes and a receiver. Suppose source

random variables are independent, with equal probability to be zero or one. In other

words, Xi {0, 1} for i = 1, 2,3,4. Suppose the receiver wants to compute a parity

check function f (X1 , X 2 , X 3 , X4) - (X1 + X 2 + X3 + X4) mod 2. Also, intermediate

nodes are allowed to perform some computations.

In Example 6, first notice that characteristic graphs of source random variables

are complete graphs. Hence, coloring random variables of sources are equal to source

random variables. If intermediate nodes act like relays (i.e., no computations are

performed at intermediate nodes), the following set of rates is an achievable scheme:

Ri > 1 for 1 < i < 4

Ri > 2 for 5 < i < 6 (1.2)
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Figure 1-11: An example for a tree network with intermediate nodes and a desired
function at the receiver.

where R, for 1 < i < 6 are rates of different links depicted in Figure 1-11.

However, suppose intermediate nodes perform some computations. Assume source

nodes send their coloring random variables satisfying C.C.C. (which in this case, they

are equal to source random variables because characteristic graphs are complete).

Then, each intermediate node makes its own characteristic graph and by using the

received colors, it picks a corresponding color for its own characteristic graph and

send that one. The receiver, by using the received colors of intermediate nodes' char-

acteristic graphs and a look-up table, can compute its desired function. Figure 1-12

demonstrates this encoding/decoding scheme. Hence, for this example, intermediate

nodes need to transmit one bit. Therefore, the following set of rates is achievable:

R, > I for 1 < i < 6. (1.3)

It is worth to note that, in Example 6, by allowing intermediate nodes to compute,

we can reduce transmission rates of some links. This problem is investigated in

Chapter 2. In particular, we show what an optimal operation that an intermediate

node is. Also, we show that for a family of functions and source random variables,

intermediate nodes do not need to perform some computations and acting like relays

is an optimal operation for them.

The problem of having more receivers than one with different desired functions
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Figure 1-12: Characteristic graphs and a decoding look-up table for Example 6.

is considered in Chapter 3. For this problem, instead of a characteristic graph, we

compute a new graph, called a multi-functional characteristic graph. This graph is

basically an OR function of individual characteristic graphs with respect to different

functions. In this chapter, we find a rate region and propose an achievable coding

scheme for this problem.

In our proposed coding schemes for different functional compression problem, one

needs to compute the minimum entropy coloring (a coloring random variable which

minimizes the entropy) of a characteristic graph. In general, finding this coloring

is an NP-hard problem ([6]). However, in Chapter 4, we show that, depending on

the characteristic graph's structure, there are some interesting cases where finding

the minimum entropy coloring is not NP-hard, but tractable and practical. While

the minimum-entropy coloring problem is a recently studied problem, there are some

Gx3 ,x4

(X3,X4)=(O,O) (X3,X4)=(0,1)

(X3,X4)=(1,1)

..............



heuristic algorithms to approximately solve the maximum independent set problem

[8].

The effect of having a feedback on the rate-region of functional compression prob-

lem is investigated in Chapter 5. If the function at the receiver is the identity function,

this problem is the Slepian-Wolf compression with feedback. For this case, having

feedback does not give us any gain in terms of the rate. However, it is not the case

when we have a general function f at the receiver. By having feedback, one may

outperform rate bounds of the case without feedback.

Finally, we consider the problem of distributed functional compression with dis-

tortion in Chapter 6. The objective is to compress correlated discrete sources such

that an arbitrary deterministic function of those sources can be computed at the re-

ceiver up to a distortion level. For this case, we compute a rate-distortion region and

propose an achievable coding scheme. Conclusions and future work are expressed in

Chapter 7.
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Chapter 2

Functional Compression Over Tree

Networks

In this chapter, we consider the problem of functional compression for an arbitrary

tree network. Suppose we have k possibly correlated source processes in a tree net-

work, and a receiver in its root wishes to compute a deterministic function of these

processes. Other nodes of this tree (called intermediate nodes) are allowed to perform

some computations to satisfy the node's demand. Our objective is to find a lower

bound on feasible rates for different links of this tree network (called a rate lower

bound) and propose a coding scheme to achieve this rate lower bound when sources

are independent.

The rate region of functional compression problem has been an open problem.

However, it has been solved for some simple networks under some special conditions.

For instance, [12] considered a rate region of a network with two transmitters and a

receiver under a condition on source random variables. Here, we derive a rate lower

bound for an arbitrary tree network based on the graph entropy. We introduce a new

condition on colorings of source random variables' characteristic graphs called the col-

oring connectivity condition (C.C.C.). We show that unlike the condition mentioned

in [12], this condition is necessary and sufficient for any achievable coding scheme.

We also show that unlike the entropy, the graph entropy does not satisfy the chain

rule. For one stage trees with correlated sources, and general trees with independent



sources, we propose a modularized coding scheme based on graph colorings to perform

arbitrarily close to this rate lower bound. We show that in a general tree network

case with independent sources, to achieve the rate lower bound, intermediate nodes

should perform some computations. However, for a family of functions and random

variables called chain-rule proper sets, it is sufficient to have intermediate nodes act

like relays to perform arbitrarily close to the rate lower bound.

In this chapter, after giving the problem statement and reviewing previous results,

we explain our main contributions in this problem.

2.1 Problem Setup

Consider k discrete memoryless random processes, {X'} 1 , ..., {X.} 1 , as source

processes. Memorylessness is not necessary, and one can approximate a source by

a memoryless one with an arbitrary precision [9]. Suppose these sources are drawn

from finite sets X1 = {xi, Ix . o1 }, ... , Xk { ,X ... , ) XkX }. These sources have

a joint probability distribution p(x 1 , ... , Xk). We express n-sequences of these random

variables as X1 = {Xi}=+n-1 ..., Xk {Xk 1+n-1 with the joint probability dis-

tribution p(x1, ... , Xk). Without loss of generality, we assume I = 1, and to simplify

notation, n will be implied by the context if no confusion arises. We refer to the ith

element of xj as xji. We use x), x ,... as different n-sequences of Xj. We shall drop

the superscript when no confusion arises. Since the sequence (x1 , ... , Xk) is drawn

i.i.d. according to p(x 1 , ... ,Xk ), one can write p(x 1 , ...,Xk) = ] 1 p(Xii, ... ,xki).

Consider an arbitrary tree network shown in Figure 2-1. Suppose we have k

source nodes in this network and a receiver in its root. We refer to other nodes of

this tree as intermediate nodes. Source node j has an input random process {X 0}.

The receiver wishes to compute a deterministic function f : X1 x ... x Xk - Z, or

f : X 1n x ... x Xk"-± Z", its vector extension.

It is worthwhile to notice that sources can be in any nodes of the network. How-

ever, without loss of generality, we can modify the network by adding some fake leaves

to source nodes which are not located in leaves of the network. So, in the achieved
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Figure 2-1: An arbitrary tree network topology.

network, sources are located in leaves (as an example, look at Figure 2-2).

Source node j encodes its message at a rate Rx,. In other words, encoder enx,

maps enx, : X a{, ... , 2 nRx3 }

Suppose links connected to the receiver perform in rates R , 1 < j < wi, where

wi is the number of links connected to the receiver (we explain these notations care-

fully in Section 2.4). The receiver has a decoder r which maps r: f{1, ... , 2 nR! } -

Zn.

In other words, the receiver computes r(Uj1i f4,.) = r'(enx1 (x 1),..., enx,(Xk)),

where Uj" =1 f/ is the information which the decoder gets at the receiver. We some-

times refer to this encoding/decoding scheme as an n-distributed functional code. In-

termediate nodes are allowed to compute functions. However, they have no demand

of their own. Computing the desired function f at the receiver is the only demand we

permit in the network. For any encoding/decoding scheme, the probability of error

is defined as Pn = Pr[(x1, ... , xk) : f(x 1 , ... , Xk) # r(enx,(xi), ... , enx, (xk))]. A rate

sequence is achievable iff there exist k encoders in source nodes operating in these

rates, and a decoder r at the receiver such that Pen -+ 0 as n -+ oo. The achievable

rate region is the set closure of the set of all achievable rates.
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Figure 2-2: a) Sources are not necessarily located in leaves b) By adding some fake
nodes, one can assume sources are in leaves of the modified tree.

2.2 Definitions and Prior Results

In this part, first we present some definitions used in formulating our results. We

also review some prior results. Consider X1 and X2 as two random variables with

the joint probability distribution p(x1, x 2 ). f(X 1 , X 2 ) is a deterministic function such

that f : X1 x X2 -+ Z.

Definition 7. The characteristic graph Gx 1 = (Vx,, Ex1 ) of X 1 with respect to

X 2 , p(x1 , x 2), and function f(X 1 , X 2 ) is defined as follows: Vx, = X1 and an edge

(xi, X2) E X12 is in Ex, iff there exists a x E X2 such that p(xI, x )p(x, xI) > 0 and

f(XI, X1) # f(X2, XI).

In other words, in order to avoid confusion about the function f(X 1, X 2) at the

receiver, if (XI, X2) E Ex, descriptions of x1 and x2 must be different. Shannon first

defined this when studying the zero error capacity of noisy channels [23]. Witsen-

hausen [26] used this concept to study a simplified version of our problem where one

encodes X1 to compute f(X 1 ) with zero distortion. The characteristic graph of X2

with respect to X 1, p(x 1, x 2 ), and f(X 1 , X 2) is defined analogously and denoted by

Gx 2. One can extend the definition of the characteristic graph to the case of having

more than two random variables. Suppose X 1, ... , Xk are k random variables defined



in Section 6.1.

Definition 8. The characteristic graph Gx, = (Vx1 , Ex) of X1 with respect to ran-

dom variables X2, .,Xk, p(x1,..., x), and f(X 1 , ... , Xk) is defined as follows: Vx1 =

X 1 and an edge (xi,x2) E X12 is in Ex, if there exist x1 E X for 2 j< k such that

p(x 1, X2, ... , zk)p(x', x1, ... , xz) > 0 and f (x, xI, ... , I) f (x2, xI, ..., Xi).

Example 9. To illustrate the idea of confusability and the characteristic graph, con-

sider two random variables X 1 and X 2 such that X1 = {0, 1, 2, 3} and X 2 = {O,1}

where they are uniformly and independently distributed on their own supports. Sup-

pose f(X 1 , X 2 ) = (X 1 + X2) mod 2 is to perfectly reconstructed at the receiver. Then,

the characteristic graph of X1 with respect to X2, p(x1, x 2 ) = and f is shown in

Figure 1-5-a.

The following definition can be found in [19].

Definition 10. Given a graph Gx, = (Vx,, Ex) and a distribution on its vertices

Vx1, graph entropy is

HGxJ (XI) min I(Xi; Wi), (2.1)
X1 ciwcr(Gx,)

where F(Gxl) is the set of all maximal independent sets of Gx 1.

The notation Xi E W1 E F(Gx,) means that we are minimizing over all distri-

butions p(wi, xi) such that p(wi, xi) > 0 implies xi E wi, where wi is a maximal

independent set of the graph G 1.

Example 11. Consider the scenario described in Example 9. For the characteristic

graph of X1 shown in Figure 1-5-a, the set of maximal independent sets is W1 =

{{0, 2}, {1, 3}}. To minimize I(X1; W1 ) = H(X 1 ) -H(X 1 |W1 ) = log(4) -H(X 1 IW1),

one should maximize H(X 1 |W1). Because of the symmetry of the problem, to maxi-

mize H(X 1 |W1 ), p(wi) must be uniform over two possible maximal independent sets

of Gx,. Since each maximal independent set w1 C W1 has two X1 values, thus,

H(X 1 |w1) = log(2) bits, and since p(w1) is uniform, H(X 1 |W1 ) = log(2) bits. There-

fore, HGx (XI) = log(4) - log(2) = 1 bit. One can see if we want to encode X1



ignoring the effect of the function f, we need H(Xi) = log(4) = 2 bits. In this exam-

ple, functional compression saves us 1 bit in every 2 bits compared to the traditional

data compression.

Witsenhausen [26] showed that the graph entropy is the minimum rate at which

a single source can be encoded such that a function of that source can be computed

with zero distortion. Orlitsky and Roche [21] defined an extension of K6rner's graph

entropy, the conditional graph entropy.

Definition 12. The conditional graph entropy is

(2.2)HGx(X X 2) = min I(W1; X1IX 2).
XiEWiEF(Gxj)

W1-X 1 -X 2

Notation W1 - X 1 - X 2 indicates a Markov chain. If X1 and

HGx, (X X? 2 ) = HGx, (X 1). To illustrate this concept, let us

borrowed from [21].

X 2 are independent,

express an example

Example 13. When f(X 1 , X 2 ) = X 1 , HGX 1(XIA? 2 ) = H(X|X2 ).

To show this, consider the characteristic graph of X 1 , denoted as Gxj. Since

f(X 1, X?2) =A 1, then for every xi c X2, the set {xi : p(xi, x') > 0} of possible x' are

connected to each other (i.e., this set is a clique of Gx). Since the intersection of a

clique and a maximal independent set is a singleton, X 2 and the maximal independent

set W1 containing X 1 determine X 1. So,

HGI (X 1|X2) min I(W1 ;X1 |AX 2 )
XiEWieF(Gx 1 )

= H(XIX2 ) - max H(X1|W1, X2)
XiEWiE)(Gx1)

= H(X1|X2).

Definition 14. A vertex coloring of a graph is a function cGx, (X 1 ) : V 1 -+ N of

a graph Gxj = (Vxl, Exj) such that (xi,x2) C Ex1 implies c2.x cGxlx.

The entropy of a coloring is the entropy of the induced distribution on colors. Here,

(2.3)



p(ccx, (xIi)) = p(c (cGx, (xI ))), where cGX (cGx (xI)) = {x1 cx) 1 cGx(xD}

for all valid j which is called a color class. We refer to a coloring which minimizes

the entropy as a minimum entropy coloring. We also call the set of all valid colorings

of a graph Gx 1, CGx1 -

Example 15. Consider again the random variable X 1 described in Example 9, which

its characteristic graph Gx, is shown in Figure 1-5-a. Two valid colorings for Gx1

are shown in Figure 1 - 6-(a,b). Figure 1 - 6-c is not a valid coloring for this graph.

Consider the coloring shown in Figure 1-6-b. One can see that two connected vertices

are assigned to different colors. Specifically, cGx (X 1) = {r, b} standing for red and

blue vertices (or equivalently, R, B letters in black and white print). So, p(cGx xi) =

r) = p(xI = 0) + p(xI = 2), and p(cGx, (x') = b) = p(x' = 1) +p(x' = 3).

Definition 16. The n-th power of a graph Gx, is a graph Gn1  (V , E 1 ) such that

V , = X1" and (xi, xi) G E"l when there exists at least one i such that (xI x i) E

Ex 1. We denote a valid coloring of Gn by cG; (X 1 ).

Definition 17. Given a non-empty set A C X1 x X 2, define P(x1, x2) = p(x1, x2)/p(A)

when (x1, x2) E A, and P(x, y) = 0 otherwise. p is the distribution over (x 1, x 2 )

conditioned on (xI, x 2 ) e A. Denote the characteristic graph of X 1 with respect to

X 2 , P(x1, x 2), and f(X 1 , X 2 ) as Gx, (Vx 1, Ex,) and the characteristic graph of

X 2 with respect to X 1, P(xI,x 2 ), and f(X 1, X 2) as Gx 2 = (Vx 2 , Ex 2 ). Note that

Ex, C Ex, and Ex2 C Ex2 . Finally, we say that cGx1 (X 1 ) and cGx 2 (X 2) are e-

colorings of Gx, and GX2 if they are valid colorings of Gx, and Gx 2 defined with

respect to some set A for which p(A) > 1 - e.

In [3], the Chromatic entropy of a graph Gx 1 is defined as,

Definition 18.

Hi (X1) min H(cGx (X 1 )).
CGX1 is an E-coloring of Gx 1

The chromatic entropy is a representation of the chromatic number of high proba-

bility subgraphs of the characteristic graph. In [12], the conditional chromatic entropy



is defined as,

Definition 19.

H G ( X1|IX2) =mwin H (cGx, (X1)IX 2).
CGXI is an E-coloring of Gxj

Regardless of c, the above optimizations are minima, rather than infima, because

there are finitely many subgraphs of any fixed graph Gx1 , and therefore there are

only finitely many e-colorings, regardless of E.

In general, these optimizations are NP-hard ([6]). But, depending on the desired

function f, there are some cases that they are not NP-hard. For other cases, there

exist some heuristic algorithms to approximate them. We will discuss these cases in

Chapter 4.

K6rner showed in [19] that, in the limit of large n, there is a relation between the

chromatic entropy and the graph entropy.

Theorem 20.

1
lim - HG3 (X1) = HGx, (X1). (2.4)

n->oo n X1

This theorem implies that the receiver can compute a deterministic function of a

discrete memoryless source with a vanishing probability of error by first coloring a

sufficiently large power of the characteristic graph of the source random variable with

respect to the function, and then, encoding achieved colors using any encoding scheme

which achieves the entropy bound of the coloring RV. In the previous approach, to

achieve the encoding rate close to HGx1 (XI), one should find the optimal distribution

over the set of maximal independent sets of Gx1. But, this theorem allows us to

find the optimal coloring of GX1 , instead of the optimal distribution on maximal

independent sets. One can see that this approach modularizes the encoding scheme

into two parts, a graph coloring module, followed by an entropy-rate compression

module.

The conditional version of the above theorem is proved in [II].
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Figure 2-3: a) Functional compression with side information b) A distributed func-

tional compression problem with two transmitters and a receiver c) An achievable

encoding/decoding scheme for the functional compression.

Theorem 21.

1
lim -HN X 1|2 y(1X) (2.5)

n-+oo n XI

This theorem implies a practical encoding scheme for the problem of functional

compression with side information where the receiver wishes to compute f(X 1 , X 2),

when X 2 is available at the receiver as the side information. Orlitsky and Roche

showed in [21] that HG,, (X 1 | IX2) is the minimum achievable rate for this problem.

Their proof uses random coding arguments and shows the existence of an optimal

coding scheme. This theorem presents a modularized encoding scheme where we

first find the minimum entropy coloring of Gn for large enough n, and then use a

compression scheme on the coloring random variable (such as Slepian-Wolf [24]) to

achieve a rate arbitrarily close to H(CGn (X 1) |X2). This encoding scheme guarantees

the computation of the function at the receiver with a vanishing probability of error.

All the mentioned results considered only functional compression with side infor-

...........................



mation at the receiver (Figure 2-3-a). Consider the network shown in Figure 2-3-b.

It shows a network with two source nodes and a receiver which wishes to compute

a function of the sources' values. In general, the rate-region of this network has not

been determined. However, [12] determined a rate-region of this network when source

random variables satisfy a condition called the zigzag condition. In the following, we

explain this condition.

We refer to the joint-typical set of sequences of random variables X 1, ... , Xk as T.

k is implied in this notation for simplicity. We explicitly mention k if some confusion

arises. T, can be considered as a strong or weak typical set ([9]).

Definition 22. A discrete memoryless source {(X, Xi)} eN with a distribution p(x1 , x 2 )

satisfies the zigzag condition if for any e and some n, (xi, xI), (x2, x2) E Tn, there

exists some (xi, x3) e Tn such that (xi, Xi), (xi, x3) E Tn for each i E {1, 2}, and

(x 3 i) = (x, zi) for some i E {1, 2} for eachj.

In fact, the zigzag condition forces many source sequences to be typical. We first

explain the results of [12]. Then, in Section 2.3, we compute a rate-region of this

network in a general case without having any restrictive conditions on source random

variables (such as the zigzag condition). Then, We extend our results to the case of

having k source nodes.

Reference [12] shows that, if the source random variables satisfy the zigzag condi-

tion, an achievable rate region for this network is the set closure of the set of all rates

that can be achieved through graph colorings. In other words, under the zigzag con-

dition, any colorings of high probability subgraphs of sources' characteristic graphs

will allow the computation of the function with a vanishing probability of error. In

[12], it is not claimed that this condition is necessary, but sufficient. In other words,

[12] computed a rate-region only in the case that source random variables satisfy

the zigzag condition. The zigzag condition is a restrictive condition which does not

depend on the desired function at the receiver.
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Figure 2-4: A general one-stage tree network topology.

2.3 A Rate Region for One-Stage Tree Networks

In this section, we want to find a rate region for a general one stage tree network

without having any restrictive conditions such as the zigzag condition. Consider the

network shown in Figure 2-4 with k sources.

Definition 23. A path with length m between two points Z1 = (x', xl,..., x), and

Zm= (x2)x,.,x2) is determined by m - I points Zi, 1 < i K m such that,

i) P(Z) > 0, for all 1 < i Km.

ii) Zi and Zi+1 only differ in one of their coordinates.

Definition 23 can be expressed for two n-length vectors as follows.

Definition 24. A path with length m between two points Z1  (x',x,.x) E T",

and Zm = (x2, x, ... , x) cE T" are determined by m - 1 points Zi, 1 < i < m such

that,

i) Zi (E T", for all 1 < i K m.

ii) Zi and Zi+1 only differ in one of their coordinates.

Definition 25. A joint-coloring family Jc for random variables X 1, ... , Xk with

characteristic graphs Gx1, ... .,GXk, and any valid colorings cGx , ... ,cGXk , respectively

is defined as JC where j' =(x X . x ,( : cGxcGX 2 (2

. Xk = x ) for any valid ,. and ... = ICGxi X 1CGx2 X ... X CGx|. We call

each j' as a joint coloring class.

.. ...... .. BNOW



Definition 25 can be expressed for random vectors X1,...,Xk with characteristic

graphs G',..., Gx, and any valid c-colorings cGn ,---,cG , respectively.

Definition 26. Consider random variables X 1, ... , Xk with characteristic graphs Gx 1,

... , Gxk, and any valid colorings cGxl, ---, CG x- We say these colorings satisfy the

Coloring Connectivity Condition (C. C. C.) when, between any two points in j' C Jc,

there exists a path that lies in jC, or function f has the same value in disconnected

parts of ji.

C.C.C. can be expressed for random variables X 1, ..., Xk with characteristic graphs

Gx G ... Gx, and any valid c-colorings cGn, ---, cG , respectively.

Example 27. For example, suppose we have two random variables X 1 and X 2 with

characteristic graphs Gx, and Gx 2 . Let us assume cGx and cGx 2 are two valid color-

ings of Gx, and Gx2, respectively. Assume cGx(XI) = cGx (X2) and cGx 2

cox 2 (xl). Suppose j' represents this joint coloring class. In other words, j
{(xi,x')}, for all 1 < i,j < 2 when p(xi,x') > 0. Figure 2-5 considers two dif-

ferent cases. The first case is when p(xi, x2) = 0, and other points have a non-zero

probability. It is illustrated in Figure 2-5-a. One can see that there exists a path be-

tween any two points in this joint coloring class. So, this joint coloring class satisfies

C. C. C. If other joint coloring classes of cGx, and cGX2 satisfy C.C.C., we say CGx,

and cGX 2 satisfy C.C.C. Now, consider the second case depicted in Figure 2-5-b. In

this case, we have p(xi, x2) = 0, p(x, x) = 0, and other points have a non-zero

probability. One can see that there is no path between (xi, x) and (xi,x2) in ji.
So, though these two points belong to a same joint coloring class, their corresponding

function values can be different from each other. Thus, j" does not satisfy C. C. C. for

this example. Therefore, cGx1 and cGX2 do not satisfy C. C. C.

Lemma 28. Consider two random variables X 1 and X 2 with characteristic graphs

Gx, and Gx 2 and any valid colorings cGx,(X 1) and cGX2 (X 2) respectively, where

cGX2 (X 2 ) is a trivial coloring, assigning different colors to different vertices (to sim-

plify the notation, we use cGX2 (X 2) -- X 2 to refer to this coloring). These colorings

satisfy C.C.C. Also, cGn (X 1 ) and cG (X2 ) = X 2 satisfy C. C. C for any n.
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Figure 2-5: Two examples of a joint coloring class: a) satisfying C.C.C. b) not satis-
fying C.C.C. Dark squares indicate points with zero probability. Function values are
depicted in the picture.

Proof. First, we know that any random variable X2 by itself is a trivial coloring of

Gx 2 such that each vertex of Gx 2 is assigned to a different color. So, Jc for cGx (X 1)

and cG(X 2 ) X2 can be written as Jc = {j1,...,jc } such that j - {(zz)

cGx (x) = o-i}, where oi is a generic color. Any two points in j" are connected to

each other with a path with length one. So, j1 satisfies C.C.C. This arguments hold

for any j; for any valid i. Thus, Jc and therefore, cG, (X1 ) and cGx (X2 ) -

satisfy C.C.C. The argument for cGn (X1 ) and cGn (X 2 ) = X2 is similar. E

Lemma 29. Consider random variables X 1, ... , Xk with characteristic graphs Gx1 ,

.. ,GXk , and any valid colorings cGx 1, ---, c~x with joint coloring class Jc ={j : i}.

For any two points (4i, ... , 4) and (X2, ..., X2) in j*, f (zI, ..., I) = f (X2, ..., X2) if and

only if j' satisfies C.C.C.

Proof. We first show that if jC satisfies C.C.C., then, for any two points (zi, ..., i)
and (x, ..., 42) in j, f(xI, ..., 41) = f(z2, ..., I) . Since j* satisfies C.C.C., either

f(zX ., 1 z 4) = f(X2, ..., 42), or there exists a path with length m - 1 between these

two points Z1 = (4i, ..., 4) and Zm = (X2, ... , I), for some m. Two consecutive

points Z and Zj+ 1 in this path, differ in just one of their coordinates. Without loss

of generality, suppose they differ in their first coordinate. In other words, suppose

Zy= (4'l, 4..., z) and Zj+ (41, 42..., k). Since these two points belong to jj,



CGx (Xj1 ) cGx l0 )- If f(Zj) / f(Zj+1 ), there would exist an edge between xi'

and xz in Gx, and they could not have the same color. So, f(Zj) = f(Zj+1 ). By

applying the same argument inductively for all two consecutive points in the path

between Z1 and Zm, one can get f(Z 1 ) = f(Z 2 ) ... f(Zm).
If j' does not satisfy C.C.C., it means that there exists at least two points Z1 and

Z 2 in j* such that no path exists between them. So, the value of f can be different

in these points. As an example, consider Figure 2-5-b. The value of the function can

be different in two disconnected points in a same joint coloring class. E

Lemma 30. Consider random variables Xi, ... , Xk with characteristic graphs GX1 ,

... , GkX, and any valid c-colorings CG , ---, CG with the joint coloring class JC =

{ji : For any two points (xI, ..., x) and (x,..., x) in j, f (x , ..., ) = f(z2 . )

if and only if j satisfies C. C. C.

Proof. The proof is similar to Lemma 29. The only difference is to use the definition of

C.C.C. for cG', ---, cG. Since j' satisfies C.C.C., either f(zi, ... , z) = f(X2, ... , X2),

or there exists a path with length m-I between any two points Z1 = (xi, ... , x ) E Tn

and Zm = (x, ..., x2) c Tn in j , for some m. Consider two consecutive points Zj

and Zj+1 in this path. They differ in one of their coordinates (suppose they differ

in their first coordinate). In other words, suppose Z - (x 1 , x..., xk) c Tn and

Zj+1 - (x , x 2..., xik) C Tr. Since these two points belong to j, cGx (X- 1)

cGx, (x'10). If f(Zj) # f(Zj+1 ), there would exist an edge between x 11 and x 0 in Gn

and they could not get the same color. Thus, f(Zj) = f(Z]+1 ). By applying the same

argument for all two consecutive points in the path between Z1 and Zm, one can get

f(Zi) = f(Z 2) = ... = f(Zm). The converse part is similar to Lemma 29. E

Next, we want to show that if X1 and X 2 satisfy the zigzag condition mentioned

in Definition 22, any valid colorings of their characteristic graphs satisfy C.C.C., but

not vice versa. In other words, we want to show that the zigzag condition used in

[12] is not necessary, but sufficient.

Lemma 31. If two random variables X1 and X 2 with characteristic graphs Gx, and

Gx 2 satisfy the zigzag condition, any valid colorings cGx, and cGX2 of Gx1 and Gx



satisfy C.C.C., but not vice versa.

Proof. Suppose X1 and X 2 satisfy the zigzag condition, and cGx, and cGx 2 are two

valid colorings of Gx, and Gx 2, respectively. We want to show that these colorings

satisfy C.C.C. To do this, consider two points (Xi, zA) and (X2, X2) in a joint coloring

class ji. The definition of the zigzag condition guarantees the existence of a path

with length two between these two point. Thus, cGxI and cGx2 satisfy C.C.C.

The second part of this Lemma says that the converse part is not true. In other

words, the zigzag condition is not a necessary condition, but sufficient. To have an

example, one can see that in a special case considered in Lemma 28, C.C.C. always

holds without having any condition.

Definition 32. For random variables X 1, ... , Xk with characteristic graphs Gx1 ,

Gxk, the joint graph entropy is defined as follows:

1
HGx ,...,Gxk (X1, ... ,Xk) lim min -H(cG (X1), ... ,cGn (Xk)) (2.6)

n-oo CGn ... CGn n
X 1  Xk

in which cG' (X 1 ), ... , cGn (Xk) are c-colorings of GX1 , ... , G satisfying C.C.C.X1  Xk Xk

We sometimes refer to the joint graph entropy by using HUk Gx X 1 , ... , Xk). It is

worth to note this limit exists because we have a monotonically decreasing sequence

bounded below. Similarly, we can define the conditional graph entropy.

Definition 33. For random variables X 1, ... , Xk with characteristic graphs Gx1,

Gxk, the conditional graph entropy can be defined as follows:

HGx, ...,Gx, (X,..., XiIXi, ..., Xk)
1

A lim min -H(cG (X1) CG (Xi)ICGX (Xi+1),k..,cG- (Xk))
neo n 1 Xi X+1 X

in which minimization is over cG (X1 ), ... , cG (Xk), which are c-colorings of Gn1 ,

.G satisfying C.C.C.

Lemma 34. For k = 2, Definitions 12 and 33 are the same.



Proof. By using the data processing inequality, we have

1
HG,(XX 2) = lim min -H(cG (Xi)IcG (X 2 ))

n-+oo CGf ,CGfX nt 2

1
= lim min -H(cG (X)1IX 2).n- oo CGnn X

Then, Lemma 28 implies that CG' (X 1 ) and CGX (X2 ) = X2 satisfy C.C.C. A direct

application of Theorem 21 completes the proof. l

By this definition, the graph entropy does not satisfy the chain rule.

Suppose S(k) denotes the power set of the set {1, 2, ., k} excluding the empty

subset (this is the set of all subsets of {1, . . . , k} without the empty set). Then, for

any S C S(k),

Xs {X : i E S}.

Let SC denote the complement of S in S(k). For S

empty set. To simplify notation, we refer to a subset

S(2) = {{1}, {2}, {1, 2}}, and for S {1,2}, we

HGx, ,G X2 (X1, X2).-

Theorem 35. A rate region of the network shown

these conditions:

= {1, 2, ..., k}, denote SC as the

of sources by Xs. For instance,

write HUs yGx, (X,) instead of

in Figure 2-4 is determined by

VS c S(k) -- > E Rx, ;> Hui,,Gx,(XsIsc ). (2.8)

Proof. We first show the achievability of this rate region. We also propose a modu-

larized encoding/decoding scheme in this part. Then, for the converse, we show that

no encoding/decoding scheme can outperform this rate region.

1)Achievability:

Lemma 36. Consider random variables X 1, ... , Xk with characteristic graphs Gn,

., Gnk, and any valid c-colorings cGn, ---, cG satisfying C.C.C., for sufficiently



large n. There exists

f: CG' (X1) X ... X CGn (Xk) -+ Zn (2.9)

suCh that f(CG (xi), ... , CG (Xk)) =f(X, ... , Xk), for all (Xi, ... , Xk) 6 Tn.

Proof. Suppose the joint coloring family for these colorings is Jc {j: i}. We

proceed by constructing f. Assume (xlI, ... , X J) c j and CGn (XI) -o, ... , CGn (Xk

o-k. Define f (o-1, .. o-k) -- f(X , ... x).

To show this function is well-defined on elements in its support, we should show

that for any two points (xi, ... , X') and (X2, ..., X2) in T", if ( CG (X ), ...

CGX (Xk) = CGk (Xk) then f(xl,..., Xk) =(XI ..., X)

Since CG1 (Xl) - CGg (Xi), ... , CG (X) - CGn (Xi), these two points belong to

a joint coloring class like j'. Since CGn, ... , CGn satisfy C.C.C., by using Lemma

30, f(Xl, ... , xi) = f(X2, ... , X2). Therefore, our function f is well-defined and has the

desired property. D

Lemma 36 implies that given c-colorings of characteristic graphs of random vari-

ables satisfying C.C.C. at the receiver, we can successfully compute the desired func-

tion f with a vanishing probability of error as n goes to the infinity. Thus, if the

decoder at the receiver is given colors, it can look up f based on its table of f. The

question is at what rates encoders can transmit these colors to the receiver faithfully

(with a probability of error less than e).

Lemma 37. (Slepian-Wolf Theorem)

A rate-region of the network shown in Figure 2-4 where f(X1, ... , Xk) - (X 1 , ... , Xk)

can be determined by these conditions:

VS C S(k) -- > ( Rx, > H(XsIXse). (2.10)
iPS

Proof. See [24]. F-



We now use the Slepian-Wolf (SW) encoding/decoding scheme on achieved color-

ing random variables. Suppose the probability of error in each decoder of SW is less

than -k. Then, the total error in the decoding of colorings at the receiver is less than

c. Therefore, the total error in the coding scheme of first coloring G , ... , G , and

then encoding those colors by using SW encoding/decoding scheme is upper by the

sum of errors in each stage. By using Lemmas 36 and 37, the total error is less than

E, and goes to zero as n goes to infinity. By applying Lemma 37 on achieved coloring

random variables, we have,

VS E S(k) -- > ( Rx, > I H(cG cGc )' (2.11)
n XS XSC

iES

where CG , and CGs are c-colorings of characteristic graphs satisfying C.C.C. Thus,

using Definition 33 completes the achievability part.

As an example, look at Figure 2-3-c. This network has two source nodes and

a receiver. Source nodes compute c-colorings of their characteristic graphs. These

colorings should satisfy C.C.C. Then, an SW compression is performed on these col-

orings. The receiver, first, perform SW decoding to get the colors. Then, by using

a look-up table, it can find the value of its desired function (As an example, look at

Figure 1-7).

2) Converse: Here, we show that any distributed functional source coding scheme

with a small probability of error induces c-colorings on characteristic graphs of random

variables satisfying C.C.C. Suppose E > 0. Define F" for all (n, e) as follows,

S{f :Pr[f (X 1 , ... , Xk) 5 f(X 1 , ... , Xk)] <c}. (2.12)

In other words, TT is the set of all functions equal to f with c probability of error.

For large enough n, all achievable functional source codes are in T". We call these

codes E-achievable functional codes.

Lemma 38. Consider some function f : X1 x ... x Xk -4 Z. Any distributed functional

code which reconstructs this function with zero error probability induces colorings on



Gx 1 ... ,Gx with respect to this function, where these colorings satisfy C. C. C.

Proof. To show this lemma, let us assume we have a zero-error distributed functional

code represented by encoders enx, ..., enxk and a decoder r. Since it is error free,

for any two points (X, ... ,Xz) and (X2, ..., X2), if p(XI, ... XI) > 0, p(z2, ..., X2) > 0,

enx 1(z4) = enx1(xi), ... , enx() - enx,(X), then,

f( .. 1) = f ( . ) = r'(enx, (x ), ..., enx, (x')). (2.13)

We want to show that enx, ..., enxk are some valid colorings of Gx1, ..., GXk

satisfying C.C.C. We demonstrate this argument for X1. The argument for other

random variables is analogous. First, we show that enx, induces a valid coloring

on Gx1 , and then, we show that this coloring satisfies C.C.C. Let us proceed by

contradiction. If enx, did not induce a coloring on Gx1 , there must be some edge

in Gx, with both vertices with the same color. Let us call these vertices x' and

z4. Since these vertices are connected in Gx 1 , there must exist a (i, ... , A) such

that, p(zi zX, ..., zX)p(z2, X1, ... , z') > 0, enx (xz) = enx(X2), and f(x, ,..., )
f ..., 1). By taking x = , ... , 4 = in (2.13), one can see that it is not

possible. So, the contradiction assumption is wrong and enx, induces a valid coloring

on Gx,.

Now, we should show that these induced colorings satisfy C.C.C. If it was not true,

it means that there must exist two point (zi, ..., 4 ) and (X2, ..., X2) in a joint coloring

class jj such that there is no path between them in j'. So, Lemma 29 says that the

function f can get different values in these two points. In other words, it is possible to

have f(z, ... , 4) # f(4, ... , 4), where cGx (4) - cGx (4), ... , cGx ( = cGx (

which is in contradiction with (2.13). Thus, achieved colorings satisfy C.C.C. D

In the last step, we should show that any achievable functional code represented

by F induces c-colorings on characteristic graphs satisfying C.C.C.

Lemma 39. Consider random variables X1 , ... , Xk. All c-achievable functional

codes of these random variables induce c-colorings on characteristic graphs satisfying



Second Stage Fkst Stage

f(X 1,X2,X3)

Figure 2-6: A simple tree network.

C.C.C.

Proof. Suppose g(xI, ... , Xk) = r(enx (x 1 ), ..., enx, (xk)) E F is such a code. Lemma

38 says that a zero-error reconstruction of g induces some colorings on characteristic

graphs satisfying C.C.C., with respect to g. Suppose the set of all points (x1, ... ,x)

such that g(x 1 , ... , Xk) 7 f(x 1 , ..., Xk) be denoted by C. Since g E F, Pr[C] < c.

Therefore, functions enxl, ..., enXk restricted to C are e-colorings of characteristic

graphs satisfying C.C.C. (by definition).

Lemmas 38 and 39 establish the converse part and complete the proof. El

If we have two transmitters (k = 2), Theorem 35 can be simplified as follows.

Corollary 40. A rate region of the network shown in Figure 2-3-b is determined by

these three conditions:

Rx,

Rx2

Rx,

> HGxj (X1|JX2)

> HGx2(X 2|X1)

+Rx2 > HGx,GX2 (X 1, X 2).

(2.14)

mom



2.4 A Rate Lower Bound for a General Tree Net-

work

In this section, we seek to compute a rate lower bound of an arbitrary tree network

with k sources in its leaves and a receiver in its root (look at Figure 2-1). We refer

to other nodes of this tree as intermediate nodes. The receiver wishes to compute

a deterministic function of source random variables. Intermediate nodes have no

demand of their own in terms of the functional compression, but they are allowed to

perform some computations. Computing the desired function f at the receiver is the

only demand we permit in the network. Also, we show some cases in which we can

achieve this lower bound.

First, we propose a framework to categorize any tree networks and their nodes.

Definition 41. For an arbitrary tree network,

e The distance of each node is the number of hops in the path between that node

and the receiver.

e dmax is the distance of the farthest node from the receiver.

e A standard tree is a tree such that all source nodes are in a distance dmax from

the receiver.

* An auxiliary node is a new node connected to a leaf of a tree and increases

its distance by one. The added link is called an auxiliary link. The leaf in

the original tree to which is added an auxiliary node is called the actual node

corresponding to that auxiliary node. The link in the original tree connected to

the actual node is called the actual link corresponding to that auxiliary link.

e For any given tree, one can make it to be a standard tree by adding some con-

secutive auxiliary nodes to its leaves with distance less than dmax. We call the

achieved tree, the modified tree and refer to this process as a tree standardization.



These concepts are depicted in Figure 2-6. Auxiliary nodes in the modified tree

network act like intermediate nodes. It means one can imagine that they can compute

some functions in demand. But, all functions computed in auxiliary nodes can be

gathered in their corresponding actual node in the original tree. So, the rate of the

actual link in the original tree network is the minimum of rates of corresponding

auxiliary links in the modified network. Thus, if we compute the rate-region for

the modified tree of any given arbitrary tree, we can compute the rate-region of the

original tree. Therefore, in the rest of this section, we consider the rate-region of

modified tree networks.

Definition 42. Any modified tree network with k source nodes with distance dmax

from the receiver can be expressed by a connection set ST = {s : 1 < i < d } where

s= {Bij : 1 j < w}. wi is the number of nodes with distance i from the receiver

(called nodes in the i-th stage) and a subset of source random variables is in Eij when

paths of those source nodes have the last i common hops.

For example, consider the network shown in Figure 2-6. Its connection set is

ST= {si, s} such that s= {(X 1 , X 2), X3 } and s= {X 1 , X 2 , X 3}. In other words,

11l (X 1 , X 2 ), =12 = X 3 , =21 = X 1 , 222 = X 2 and 523 = X 3. One can see that

ST completely describes the structure of the tree. In other words, there is a bijective

map between any modified tree and its connection set ST. By using ST, we wish

to assign some labels to nodes, links and their rates. We label each node with its

corresponding Ejj as nL . We call the outgoing link from this node e. . The rate of

this link is referred by Rh . For instance, nodes in the second stage of the network

shown in Figure 2-6 are called n, n 2 and n 2 with outgoing links e 2, e and e 2

respectively. Nodes in the first stage of this network are referred by nix 2 and ni

with outgoing links ei,x 2 and el.

We have three types of nodes: source nodes, intermediate nodes and a receiver.

Source nodes encode their messages by using some encoders and send encoded mes-

sages. Intermediate nodes can compute some functions of their received information.

The receiver decodes the received information and wishes to be able to compute its



desired function. The random variable which is transmitted in the link e= is called

fg. Also, we refer to the function computed in an intermediate node ni as g.

For example, consider again the network shown in Figure 2-6. Random variables sent

through links e 1 , e, e 3 , e>,x 2 and e> are fj1 , f 2 2 fk 3 2 f 1,x2 and fk3 such

that fk1 x2 = 9>,x 2(fk1, f 2 ), and f13  g1 (f2.

2.4.1 A Rate Lower Bound

Consider nodes in stage i of a tree network representing by EBj for j {1, 2, ..., wi}

where wi is the number of nodes in stage i. S(wi) is the power set of the set

{ 1,2, ..., wi} and si c S(wi) is a non-empty subset of {1, 2,..., wi}.

Theorem 43. A rate lower bound of a tree network with the connection set ST

{s i} can be determined by these conditions,

Vsi G S(w) -z ZR=> H- G (iz i (2.15)
jEst

for alli 1, S where 7i= < and {X 1 ,..., Xk} - {is}.

Proof. In this part, we want to show that no coding scheme can outperform this rate

region. Consider nodes in the i-th stage of this network, n! for 1 < j < wi. Suppose

they are directly connected to the receiver. So, the information sent in links of this

stage should be enough to compute the desired function. In the best case, suppose

their parent nodes sent all their information without doing any compression. So, by

direct application of Theorem 35, one can see that,

Vsi E S(wi) -> R= Hisisj (2-16)
jEst

This argument can be repeated for all stages. Thus, no coding scheme can outperform

these bounds. E

In the following, we express some cases under which we can achieve the derived

rate lower bound of Theorem 43.



2.4.2 Tightness of the Rate Lower Bound for Independent

Sources

In this part, we propose a functional coding scheme to achieve the rate lower bound.

Suppose random variables X 1, ... , Xk with characteristic graphs GX , ..., GL are

independent. Assume CG , .--, c are valid c-colorings of these characteristic graphs

satisfying C.C.C. The proposed coding scheme can be described as follows: source

nodes first compute colorings of high probability subgraphs of their characteristic

graphs satisfying C.C.C., and then, perform source coding on these coloring random

variables. Intermediate nodes first compute their parents' coloring random variables,

and then, by using a look-up table, they find corresponding source values of their

received colorings. Then, they compute c-colorings of their own characteristic graphs.

The corresponding source values of their received colorings form an independent set

in the graph. If all are assigned to a single color in the minimum entropy coloring,

intermediate nodes send this coloring random variable followed by a source coding.

But, if vertices of this independent set are assigned to different colors, intermediate

nodes send the coloring with the lowest entropy followed by a source coding. The

receiver first performs an entropy decoding on its received information and achieves

coloring random variables. Then, it uses a look-up table to compute its desired

function by using achieved colorings.

To show the achievability, we show that, if nodes of each stage were directly

connected to the receiver, the receiver could compute its desired function. Consider

the node n' in the i-th stage of the network. Since the corresponding source values

E of its received colorings form an independent set on its characteristic graph (G=,,)

and this node computes the minimum entropy of this graph, it is equivalent to the

case that it would receive the exact source information, because both of them lead

to the same coloring RV. So, if all nodes of stage i were directly connected to the

receiver, the receiver could compute its desired function and link rates would satisfy

the following conditions.



Vsj E S(wi) z> R' > HUz, Gaiz i) (2.17)

Thus, by using a simple induction argument, one can see that the proposed scheme

is achievable and it can perform arbitrarily close to the derived rate lower bound, while

sources are independent.

2.5 A Case When Intermediate Nodes Do not Need

to Compute

Though the proposed coding scheme in Section 2.4.2 can perform arbitrarily close to

the rate lower bound, it may require some computations at intermediate nodes.

Definition 44. Suppose f (X 1 , ... , Xk) is a deterministic function of random variables

X1,...,Xk. (f, X 1, ... , Xk) is called a chain-rule proper set when for any s E S(k),

HU iEGx (Xs) = HGx, (XS).

Theorem 45. In a general tree network, if sources X1,...,Xk are independent random

variables and (f, X 1 , ... , Xk) is a chain-rule proper set, it is sufficient to have inter-

mediate nodes as relays to perform arbitrarily close to the rate lower bound mentioned

in Theorem 43.

Proof. Consider an intermediate node n, in the i-th stage of the network whose cor-

responding source random variables are X, where s E S(k) (In other words, X, = ).

Since random variables are independent, one can write up rate bounds of Theorem

43 as,

Vsj E S(wi) R R= > HUze, Gizis) (2.18)

Now, consider the outgoing link rate of the node n. . If this intermediate node

acts like a relay, we have R = HU Gx (X,) (since X, = j). If (f, X1 , ... , Xk) is

55



a chain-rule proper set, we can write,

= HUE Gx(Xs)

= HGX,(Xs)

= HG=.. ij) - (2-19)

For any intermediate node ng where j E si and si c S(wi), we can write a similar

argument which lead to conditions (2.18). As mentioned in Theorem 43, to perform

arbitrarily close to the rate lower bound, this node needs to compress its received

information up to the rate HGx, (X,). If this node acts as a relay and forward the

received information from the previous stage, it would lead to an achievable rate

HU SGx (Xs) in the next stage which in general is not equal to HGx, (X,). So,

this scheme cannot achieve the rate lower bound. However, if for any s E S(k),

HUES Gx, (Xs) = HGx, (X), this scheme can perform arbitrarily close to the rate

lower bound by having intermediate nodes as relays. E

In the following lemma, we provide a sufficient condition to guarantee that a set

is a chain-rule proper set.

Lemma 46. Suppose X 1 and X 2 are independent and f(X 1 , X 2) is a deterministic

function. If for any x and x2 in X 2 we have f(x, x) f f(x{, X2) for any possible i

and j, then, (f, X1, X 2) is a chain-rule proper set.

Proof. We show that under this condition any colorings of the graph Gx,x 2 can

be expressed as colorings of Gx, and Gx 2, and vice versa. The converse part is

straightforward because any colorings of Gx, and Gx 2 can be viewed as a coloring of

Gx1,x 2-

Consider Figure 2-7 which illustrates conditions of this lemma. Under these con-

ditions, since all x 2 in X2 have different function values, graph Gx,x 2 can be decom-

posed to some subgraphs which have the same topology as Gx1 , corresponding to

each x2 in X2. These subgraphs are fully connected to each other under conditions

of Corollary 46. So, any coloring of this graph can be represented as two colorings
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Figure 2-7: An example of Gxi,x2 satisfying conditions of Lemma 46, when X2 has

two members.

of Gx, and Gx2, which is a complete graph. Thus, the minimum entropy color-

ing of Gxi,x2 is equal to the minimum entropy coloring of (Gx,, Gx2). Therefore,

HGXI,GX 2 (X1, X2) HGx1,X2 (X 1, X 2).

2.6 Summary of Results

In this chapter, we considered the problem of functional compression for an arbitrary

tree network. In this problem, we have k possibly correlated source processes in a

tree, and a receiver in its root wishes to compute a deterministic function of these

processes. Intermediate nodes can perform some computations, but the computing

of the desired function at the receiver is the only demand we permit in this tree

network. The rate region of this problem has been an open problem in general.

But, it has been solved for some simple networks under some special conditions (e.g.,

[12]). Here, we have computed a rate lower bound of an arbitrary tree network in

an asymptotically lossless sense. We defined joint graph entropy of some random

variables and showed that the chain rule does not hold for the graph entropy. For one

stage trees with correlated sources, and general trees with independent sources, we

proposed a modularized coding scheme based on graph colorings to perform arbitrarily

close to this rate lower bound. We showed that, in a general tree network case with



independent sources, to achieve the rate lower bound, intermediate nodes should

perform some computations. However, for a family of functions and random variables

called chain-rule proper sets, it is sufficient to have intermediate nodes act like relays

to perform arbitrarily close to the rate lower bound.



Chapter 3

Multi-Functional Compression

with Side Information

In this chapter, we consider the problem of multi-functional compression with side

information. The problem is how we can compress a source X so that the receiver

is able to compute some deterministic functions fi(X, Y), ... , fm(X, Ym), where Y,

1 i < m, are available at the receiver as side information.

Results explained in Chapter 2 only consider the case where the receiver desires

to compute one function (m=1). Here, we consider a case in which computations of

several functions with different side information random variables and zero distortion

are desired at the receiver. Our results do not depend on the fact that all desired

functions are in one receiver and one can apply them to the case of having several

receivers with different desired functions (i.e., functions are separable). We define

a new concept named the multi-functional graph entropy which is an extension of

the graph entropy defined by Kbrner in [19). We show that the minimum achievable

rate for this problem is equal to the conditional multi-functional graph entropy of the

source random variable given side informations. We also propose a coding scheme

based on graph colorings to achieve this rate.

In this chapter, after giving the problem statement, our main contributions are

explained.
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Figure 3-1: A multi-functional compression problem with side information

3.1 Problem Setup

Consider discrete memoryless sources (i.e., {X'} 1 and {Yk'}01 ) and assume that

these sources are drawn from finite sets X and Yk with a joint distribution p(x, Yk).

We express n-sequence of these random variables as X = {Xi_ 1n-1 and Yk

{Yk}1+n- 1 with joint probability distribution pk(x, Yk). Assume k = 1,..., m (we

have m random variables as side information at the receiver).

The receiver wants to compute m deterministic functions fk X x Yk -+ Zk or

fk X x Ykg -+ Zk, its vector extension. Without loss of generality, we assume 1 = 1

and to simplify the notations, n will be implied by the context. So, we have one

encoder en and m decoders ri, ..., r, (one for each function and its corresponding

side information). Encoder enx maps

enx : X" __1, I..., 2 , (3.1)

and, each decoder rk maps

rk : {1, ..., 2 n} x {11, ..., 2"} n_ Zk", (3.2)

The probability of error in decoding fk is

Pe, = Pr[(X, yk) : fk(X, yk) z rk (ex(x), yk) (3.3)



X ENCODER DECODER f(X,Y)

Y

Figure 3-2: A functional compression problem with side information with one desired
function at the receiver

and, total probability of error is

P2 1- (1 - Pe"). (3.4)

k

In other words, we declare an error when we have an error in the computation of at

least one function. A rate Rx is achievable if Pe -± 0 when n -> oo. Our aim here is

to find the minimum achievable rate.

3.2 Main Results

Prior work in the functional compression problem consider a case when the computa-

tion of a function is desired at the receiver (m= 1). In this chapter, we consider a case

when computations of several functions are desired at the receiver. As an example,

consider the network shown in Figure 3-1. The receiver wants to compute m functions

with different side information random variables. We want to compute the minimum

achievable rate for this case. Note that our results do not depend on the fact that all

functions are desired in one receiver. In other words, one can apply them to the case

of having several receivers with different desired functions (functions are separable).

First, let us consider the case m = 2 (i.e., the receiver has two different functions

to compute). Then, we extend results to the case of arbitrary m. In this problem,

the receiver wants to compute two deterministic functions fi (X, Y) and f2 (X, Y2);

while, Y and Y2 are available at the receiver as side information. We want to find

....................
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Figure 3-3: Source coding scheme for multi-functional compression problem with side
information

the minimum achievable rate in which the source node X may encode its information

so that the decoder is able to compute its desired functions.

Let us call Gxj - (V, Ef) the characteristic graph of X with respect to Y1,

pi(x, Yi) and fi(X, Y1), and Gx,f2 = (V, Ef2) the characteristic graph of X with

respect to Y2, P2(x,Y2) and f 2(X, Y2). Now, define Gx,f,fh (V, Ef1 f2) such that

Ef1f, = E  I U E. In other words, Gx,fi,f 2 is the or function of Gx,f1 and Gx,f2 . We

call Gx,fhf the multi-functional characteristic graph of X.

When we deal with one function, we drop f from the notations (as in Chapter 2).

Definition 47. The multi-functional characteristic graph Gx 1,f 2 - (V, E 112 ) of X

with respect to Y1, Y2, p1(x, y1), p 2 (x, Y2) ,and fi(x, y1),f 2(x, y2) is defined as follows:

V = X and an edge (x 1 , x 2 ) G X 2 is in EF1 h iff there exists a yi e Y1 such that

pi(xi,y 1)P1(x 2, Y1 ) > 0 and fi(xi, yi) # f(x 2, y1 ) or there exists a Y2 E Y2 such that

p2(Xi, Y2)P2(x2, Y2) > 0 and f2(X1, Y2) f 2(x 2, Y2) -

Similarly to Definition 20, we define the multi-functional graph entropy as follows.

Theorem 48.

1
HGx,f,f2n(X) = lim - n Xf1 2  

(3.5)n-+oo n Xfi2

mom



The conditional multi-functional graph entropy can be defined similarly to Defini-

tion 21 as follows,

Theorem 49.

1
HGXl 2 (XIY) = lim -HN (XIY). (3.6)

n-*oo n X,fi,f2

where Gnfs 2 is the n-th power of Gx,flf 2. Now, we can state the following

theorem.

Theorem 50. HGX'ff 2 (X1Y1 , Y2) is the minimum achievable rate for the network

shown in Figure 3-1 when m = 2.

Proof. To show this, we first show that Rx > HGx,ff 2 (XIYI, Y2) is an achievable

rate (achievability), and no one can outperform this rate (converse). To do this,

first, we show that any valid coloring of Gn' for any n leads to an achievable

encoding-decoding scheme for this problem (achievability). Then, we show that every

achievable encoding-decoding scheme performing on blocks with length n, induces a

valid coloring of GXf 1f 2 (converse).

Achievablity: According to [11), any valid coloring of GX, leads to successfully

computing of fi(X, Y1 ) at the receiver. If cG' is a valid coloring of G,, there

exists a function r1 such that rl(cG (X), Y1) = fi(X, Y1 ), with high probability.

A similar argument holds for Gx,f2 . Now, assume that cGnf f2 is a valid coloring of
C EJ2

G~f~f. Since, E7" C E71f2 and Efn C E-n , any valid coloring of G" induces

valid colorings for GX, and Gf 2 . Thus, any valid coloring of G x ,hleads to

successful computation of fi(X, Y1) and f 2(X, Y 2) at the receiver. So, cG'f leads

to an achievable encoding scheme (i.e. there exist two functions ri and r2 such that

r1 (cG n (X), Y1 ) = fi(X, Y1 ) and r2(cGf (X), Y 2 ) - f2 (X, Y2 )), with high

probability.

For the case of having the identity function at the receiver (i.e., the receiver wants

the whole information of the source node), Slepian and Wolf proposed a technique in

[24] to compress source random variable X up to the rate H(XIY) when Y is available



at the receiver. Here, one can perform Slepian-Wolf compression technique on the

minimum entropy coloring of large enough power graph and get the given bound.

Converse: Now, we show that any achievable encoding-decoding scheme perform-

ing on blocks with length n, induces a valid coloring of Gf 1,f 2 . In other words, we

want to show that if there exist functions en, r1 and r 2 such that ri(en(X), Y1 )

fi(X, Y1 ) and r2(en(X), Y 2) = f 2 (X, Y2 ), en(X) is a valid coloring of G, 1,f 2.

Let us proceed by contradiction. If en(X) were not a valid coloring of G,

there must be some edge in E7f with both vertices with the same color. Let us call

these two vertices x1 and x 2 which take the same values (i.e., en(xi) = en(x 2 )), but

also are connected. Since they are connected to each other, by definition of G,

there exists a yi E Yi such that p1 (x 1 , y 1)p1 (x2 , yi) > 0 and fi(x1, yi) # fi(x2, Yi) or

there exists a Y2 e Y2 such that p2 (x 1 , y 2 )p2 (x 2 , y 2 ) > 0 and f2 (x 1 , y 2 ) / fi(x 2 , y 2 ).

Without loss of generality, assume that the first case occurs. Thus, we have a yi E Y1

such that p1(x 1 , y 1 )p1 (x 2, y 1 ) > 0 and fi(xi, yi) # f 1 (x 2, y1 ). So, ri(en(xi), yi) /

r1 (en(x 2), y1 ). Since en(x 1 ) = en(x 2 ), then, r 1 (en(x 1), y1 ) # r 1 (en(xi), yi). But, it

is not possible. Thus, our contradiction assumption was not true. In other words,

any achievable encoding-decoding scheme for this problem induces a valid coloring of

Gff and it completes the proof. E

Now, let us consider the network shown in Figure 3-1 where the receiver wishes

to compute m deterministic functions of source information having some side infor-

mation.

Theorem 51. HGx,,,5,fi (XI, ... , Y) is the minimum achievable rate for the net-

work shown in Figure 3-1.

The argument here is similar to the case m 2 mentioned in Theorem 50. So, we

only sketch the proof. To show this, one may first show that any colorings of multi-

functional characteristic graph of X with respect to desired functions (Gx,f...,fm)

leads to an achievable scheme. Then, showing that any achievable encoding-decoding

scheme induces a coloring on Gx...., m completes the proof.



3.3 Summary of Results

In this chapter, we considered the problem of multi-functional compression with side

information. The problem is how we can compress a source X so that the receiver

is able to compute some deterministic functions fi(X, Y), ..., fm(X, Yn), where Y is

available at the receiver as the side information.

In particular, we considered a case when the receiver wants to compute several

deterministic functions with different side information random variables and zero

distortion. Our results do not depend on the fact that all functions are desired in one

receiver and one can apply them to the case of having several receivers with different

desired functions (i.e., functions are separable). We defined a new concept named the

midti-functional graph entropy which is an extension of the graph entropy defined by

K6rner in [19]. We showed that minimum achievable rate for this problem is equal to

the conditional multi-functional graph entropy of the source random variable given

side informations. We also proposed a coding scheme based on graph colorings to

achieve this rate.
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Chapter 4

Polynomial Time Cases for Finding

the Minimum Entropy Coloring of

a Characteristic Graph

In this chapter, we consider the problem of finding the minimum entropy coloring

of a characteristic graph. This problem arises in the functional compression prob-

lem where the computation of a function of sources is desired at the receiver. We

considered some aspects of this problem in Chapters 2 and 3 and proposed some

coding schemes. In those proposed coding scheme, one needs to compute the mini-

mum entropy coloring (a coloring random variable which minimizes the entropy) of

a characteristic graph. In general, finding this coloring is an NP-hard problem (as

shown by Cardinal et al. [6]) . However, in this chapter, we show that depending

on the characteristic graph's structure, there are some interesting cases where finding

the minimum entropy coloring is not NP-hard, but tractable and practical. In one of

these cases, we show that, having a non-zero joint probability condition on random

variables' distributions, for any desired function f, makes characteristic graphs to be

formed of some non-overlapping fully-connected maximal independent sets. There-

fore, the minimum entropy coloring can be solved in polynomial time. In another

case, we show that if f is a quantization function, this problem is also tractable. We

also consider this problem in a general case. By using Huffman or Lempel-Ziv coding



notions, we show that finding the minimum entropy coloring is heuristically equiva-

lent to finding the maximum independent set of a graph. While the minimum-entropy

coloring problem is a recently studied problem, there are some heuristic algorithms

to solve approximately the maximum independent set problem.

We proceed this chapter by stating the problem setup. Then, we explain our

contributions to this problem.

4.1 Problem Setup

In some problems such as the functional compression problem, we need to find a

coloring random variable of a characteristic graph which minimizes the entropy. The

problem is how to compute such a coloring for a given characteristic graph. In other

words, this problem can be expressed as follows. Given a characteristic graph Gx,

(or, its n-th power, Gxl), one can assign different colors to its vertices. Suppose CGx,

is the collection of all valid colorings of this graph, Gx1 . Among these colorings, one

which minimizes the entropy of the coloring random variable is called the minimum-

entropy coloring, and we refer to it by c"'. In other words,

ci" = argmin H(cGx,). (4.1)
G cGX1 ECGX(

The problem is how to compute cG given Gxl.

4.2 Main Results

In this section, we consider the problem of finding the minimum entropy coloring of

a characteristic graph. The problem is how to compute a coloring of a characteristic

graph which minimizes the entropy. In general, finding cG is an NP-hard problem

([6]). However, in this section, we show that depending on the characteristic graph's

structure, there are some interesting cases where finding the minimum entropy color-

ing is not NP-hard, but tractable and practical. In one of these cases, we show that,
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Figure 4-1: Having non-zero joint probability distribution, a) maximal independent
sets cannot overlap with each other (this figure is to depict the contradiction) b)
maximal independent sets should be fully connected to each other. In this figure, a
solid line represents a connection, and a dashed line means no connection exists.

by having a non-zero joint probability condition on random variables' distributions,

for any desired function f, finding c" can be solved in polynomial time. In anotherGx1

case, we show that, if f is a quantization function, this problem is also tractable.

We also consider this problem in a general case. We show that by using Huffman

or Lempel-Ziv coding notions, finding the minimum entropy coloring is heuristically

equivalent to finding the maximum independent set of a graph.

For simplicity, we consider functions with two input random variables, but one

can extend all discussions to functions with more input random variables than two.

4.2.1 Non-Zero Joint Probability Distribution Condition

Consider the network shown in Figure 1-2-b. Source random variables have a joint

probability distribution p(Xi, x 2 ), and the receiver wishes to compute a deterministic

function of sources (i.e., f(X 1 , X 2 )). In Chapter 2, we showed that in an achievable

coding scheme, one needs to compute minimum entropy colorings of characteristic

graphs. The question is how source nodes can compute minimum entropy colorings of

their characteristic graphs Gx, and Gx 2 (or, similarly the minimum entropy colorings



of G' and G', for some n). For an arbitrary graph, this problem is NP-hard ([6]).

However, in certain cases, depending on the probability distribution or the desired

function, the characteristic graph has some special structure which leads to a tractable

scheme to find the minimum entropy coloring. In this section, we consider the effect

of the probability distribution.

Theorem 52. Suppose for all (x 1 ,x 2 ) E X1 x X2, P(X1 ,x 2 ) > 0. Then, maximal

independent sets of the characteristic graph Gx1 (and, its n-th power Gxl, for any n)

are some non-overlapping fully-connected sets. Under this condition, the minimum

entropy coloring can be achieved by assigning different colors to its different maximal

independent sets.

Proof. Suppose F(Gx1 ) is the set of all maximal independent sets of Gx,. Let us

proceed by contradiction. Consider Figure 4-1-a. Suppose w1 and w2 are two different

non-empty maximal independent sets. Without loss of generality, assume xi and x2

are in wi, and x and x3 are in w2. In other words, these sets have a common element

x . Since w1 and W2 are two different maximal independent sets, x' ( w 2 and wi.

Since xi and x are in wi, there is no edge between them in Gx1 . The same argument

holds for x2 and x. But, we have an edge between xi and x, because wi and w2 are

two different maximal independent sets, and at least there should exist such an edge

between them. Now, we want to show that it is not possible.

Since there is no edge between xi and x2, for any Aj E X2, p(z , X)p(X2, X) > 0,

and f(x, x) f(X2, Ai). A similar argument can be expressed for x2 and x3. In

other words, for any x) C 22, p(Xz, Xz)p(X3, XI) > 0, and f(X2, x1) = f(X3, X).

Thus, for all x2 E X2, p(Xz, x)p(z ,x) > 0, and f(x', x') = f(zX). However,

since xi and x3 are connected to each other, there should exist a x E 2 such that

f(Xz1, X) f(X3, XI) which is not possible. So, the contradiction assumption is not

correct and these two maximal independent sets do not overlap with each other.

We showed that maximal independent sets cannot have overlaps with each other.

Now, we want to show that they are also fully connected to each other. Again, let

us proceed by contradiction. Consider Figure 4-1-b. Suppose wi and w2 are two



different non-overlapping maximal independent sets. Suppose there exists an element

in w2 (call it x') which is connected to one of elements in wi (call it x1) and is not

connected to another element of wi (call it 1i). By using a similar discussion to

the one in the previous paragraph, we may show that it is not possible. Thus, x3

should be connected to x. Therefore, if for all (X1 , x 2) E X 1 x X 2 , p(x 1 , x 2 ) > 0, then

maximal independent sets of Gx1 are some separate fully connected sets. In other

words, the complement of Gx, is formed by some non-overlapping cliques. Finding

the minimum entropy coloring of this graph is trivial and can be achieved by assigning

different colors to these non-overlapping fully-connected maximal independent sets.

This argument also holds for any power of Gx,. Suppose xi, x2 and x3 are some

typical sequences in X1. If x1 is not connected to x2 and x3, it is not possible to

have x2 and x3 connected. Therefore, one can apply a similar argument to prove the

theorem for G , for some n. This completes the proof. E

One may note if the characteristic graph satisfying conditions of Theorem 52 is

sparse, its power graph would also be sparse (a sparse graph with m vertices is a

graph whose number of edges is much smaller than (--1).

One should notice that the condition p(x 1, x 2 ) > 0, for all (x 1 , x 2 ) E X 1 X X 2 ,

is a necessary condition for Theorem 52. In order to illustrate this, consider Figure

4-2. In this example, xi, x2 and x3 are in X 1, and zI, x2 and x3 are in X2. Suppose

p(x2, x2) = 0. By considering the value of function f at these points depicted in the

figure, one can see that, in Gx 1, xir is not connected to x1 and Xz. However, xl and

I are connected to each other. Thus, Theorem 52 does not hold here.

It is also worthwhile to notice that the condition used in Theorem 52 only re-

stricts the probability distribution and it does not depend on the function f. Thus,

for any function f at the receiver, if we have a non-zero joint probability distribution

of source random variables (for example, when source random variables are indepen-

dent), finding the minimum-entropy coloring is easy and tractable.
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Figure 4-2: Having non-zero joint probability condition is necessary for Theorem 52.
A dark square represents a zero probability point.

4.2.2 Quantization Functions

In Section 4.2.1, we introduced a condition on the joint probability distribution of

random variables which leads to a specific structure of the characteristic graph such

that finding the minimum entropy coloring is not NP-hard. In this section, we consider

some special functions which lead to some graph structures so that one can easily find

the minimum entropy coloring.

An interesting function is a quantization function. A natural quantization function

is a function which separates the X1 - X2 plane into some rectangles such that each

rectangle corresponds to a different value of that function. Sides of these rectangles

are parallel to the plane axes. Figure 4-3-a depicts such a quantization function.

Given a quantization function, one can extend different sides of each rectangle in

the X1 - X2 plane. This may make some new rectangles. We call each of them a

function region. Each function region can be determined by two subsets of X1 and

X 2 . For example, in Figure 4-3-b, one of the function regions is distinguished by the

shaded area.

Definition 53. Consider two function regions X1 x X1 and X? x 2. If for any

xc X1 and xi E 4, there exist x 2 such that p(X ,x 2 )p(x{,x 2 ) > 0 and f(xI, x 2) #
f1(xi, x 2), we say these two function regions are pairwise X1-proper.



(a) (b)

Figure 4-3: a) A quantization function. Function values are depicted in the figure

on each rectangle. b) By extending sides of rectangles, the plane is covered by some
function regions.

Theorem 54. Consider a quantization function f such that its function regions

are pairwise X 1 -proper. Then, Gx, (and GnX, for any n) is formed of some non-

overlapping fully-connected maximal independent sets, and its minimum entropy col-

oring can be achieved by assigning different colors to different maximal independent

sets.

Proof. We first prove it for Gx,. Suppose X1 x Xj, and X2 x X2 are two X-proper

function regions of a quantization function f, where X1 = X?. We show that X11 and

X2 are two non-overlapping fully-connected maximal independent sets. By definition,

X1 and X2 are two non-equal partition sets of X 1. Thus, they do not have any element

in common.

Now, we want to show that vertices of each of these partition sets are not connected

to each other. Without loss of generality, we show it for X 1 . If this partition set of X1

has only one element, this is a trivial case. So, suppose xi and x2 are two elements

in X1. By definition of function regions, one can see that, for any x2 E X2 such

that p(XI, x2)p(Xi, x 2) > 0, then f(Xz, x 2 ) = f(XI, x2). Thus, these two vertices are



not connected to each other. Now, suppose x' is an element in X. Since these

function regions are X1-proper, there should exist at least one x2 E X2, such that

p(xx 2 )p(x , x 2 ) > 0, and f(Xz, x 2 ) # f(1 ,x 2). Thus, x' and xI are connected to

each other. Therefore, Xi and X2 are two non-overlapping fully-connected maximal

independent sets. One can easily apply this argument to other partition sets. Thus,

the minimum entropy coloring can be achieved by assigning different colors to different

maximal independent sets (partition sets). The proof for G'l, for any n, is similar

to the one mentioned in Theorem 52. This completes the proof. El

It is worthwhile to mention that without X1 -proper condition of Theorem 54,

assigning different colors to different partitions still leads to an achievable coloring

scheme. However, it is not necessarily the minimum entropy coloring. In other words,

without this condition, maximal independent sets may overlap.

Corollary 55. If a function f is strictly increasing (or, decreasing) with respect to

X 1, and p(x1 , x 2 ) # 0, for all x1 G X1 and x 2 E X2 , then, Gx, (and, G' 1 for any n)

would be a complete graph.

Under conditions of Corollary 55, functional compression does not give us any

gain, because, in a complete graph, one should assign different colors to different

vertices. Traditional compression in which f is the identity function is a special case

of Corollary 55.

4.2.3 Minimum Entropy Coloring for an Arbitrary Graph

Finding the minimum entropy coloring of an arbitrary graph (called the chromatic

entropy) is NP-hard ([6]). Specially, [6] showed that, even finding a coloring whose

entropy is within (} - e) log n of its chromatic entropy is NP-hard, for any e > 0,

where m is the number of vertices of the graph. That is a reason we have introduced

some special structures on the characteristic graph in order to have some tractable and

practical schemes to find the minimum entropy coloring. While cases investigated in

Sections 4.2.1 and 4.2.2 cover certain practical cases, in this part, we want to consider

this problem without assuming any special structure of the graph. In particular, we



show that, by using a notion of an empirical Huffman coding scheme or a Lempel-Ziv

coding scheme, one can heuristically have an equivalence between the minimum-

entropy coloring problem and the maximum independent set problem. While the

minimum-entropy coloring problem is a recently studied problem, there are some

heuristic algorithms to solve the maximum independent set problem [8].

Suppose Gx, is the characteristic graph of X1 . Without loss of generality, in

this section, we consider n = 1. All discussions can be extended to GX1 , for any

n. Suppose p(xi) is the probability distribution of X1 . Let us define the adjacency

matrix A = [aij] for this graph as follows: ai= 1 when x' and x3 are connected

to each other in Gx1, otherwise, aij = 0. One can see that the adjacency matrix

is symmetric, with all zeros in its diagonal. A one in this matrix means that its

corresponding vertices should be assigned to different colors.

Let us define a permutation matrix P with the same size of A. This matrix has

only a one in each of its rows and columns. The matrix PAPt would be a matrix

such that rows and columns of A are reordered simultaneously, with respect to this

permutation matrix P. For any valid coloring, there exists a permutation matrix P,

such that PAPt has zero square matrixes on its diagonal. This reordering is such

that, vertices with the same color are adjacent to each other in PAPt. Each of these

zero square matrixes on the diagonal of PAPt represents a maximal independent

set, or equivalently a color class. One can see that there exists a bijective mapping

between any valid coloring and any permutation matrix P which leads to have some

zero square matrixes on the diagonal of PAPt.

Example 56. For an example, consider a coloring of a graph depicted in Figure 1-9.

This coloring leads to the following PAPt matrix.

0 0
D1  D2

0 0

PAPt = 0 0 (4.2)

0 0

D2 D3 0



where Di, i = 1, 2, 3 are non-zero matrixes. Each of zero square matrixes on the

diagonal represents a color class, or a maximal independent set of this graph. The

permutation matrix P in this case is,

0 0 1 0 0

0 0 0 1 0

P 1 0 0 0 0 . (4.3)

0 1 0 0 0

0 0 0 0 1

Now, we want to take the probability distribution into account. To do this, we

repeat each vertex x' in the adjacency matrix, ni times, such that p(x) , for
P(Xi) fl,

any valid i and j. We call the achieved matrix, the weighted adjacency matrix

and show it by A. The above argument about the permutation remains the same.

In other words, any valid coloring can be represented by a permutation matrix P

such that PAW Pt has some zero square matrixes on its diagonal. Since we represent

the probability distribution of each vertex as its number of repetitions in A., the

proportional sizes of zero square matrixes on the diagonal of PAWPt represent the

corresponding probability of that color class. In other words, a color class of a larger

zero square matrix has more probability than a color class with a smaller zero square

matrix.

Now, one can heuristically use Huffman coding technique to find a coloring (or its

corresponding permutation matrix) to minimize the entropy. To do this, we first find

a permutation matrix which leads to the largest zero square matrix on the diagonal

of PA P'. Then, we assign a color to that class, and eliminate its corresponding

rows and columns. We repeat this algorithm till all vertices are assigned to some

colors. One can see that, finding the largest zero square matrix on the diagonal of

PA.Pt is equivalent to finding the maximum independent set of a graph. One should

notice that, it is a heuristic algorithm, and does not necessarily reach to the minimum

entropy coloring. The other point is that, here, we have assumed that the probability

distribution of X1 is known. If we do not know this probability distribution, one can



use an empirical distribution, instead of the actual distribution. In that case, using

a Lempel-Ziv coding notion instead of Huffman coding leads to a similar algorithm.

4.3 Summary of Results

In this chapter, we considered the problem of finding the minimum entropy coloring

of a characteristic graph. This problem has been raised in the functional compression

problem described in Chapters 2 and 3. In general, finding this coloring is an NP-hard

problem ([6]).

Here, first we considered this problem under some conditions which make it to

be solvable in polynomial time. We showed that, depending on the characteristic

graph's structure, there are some interesting cases where finding the minimum en-

tropy coloring is not NP-hard, but tractable and practical. In one of these cases, we

showed that, by having a non-zero joint probability condition on random variables'

distributions, for any desired function f, finding the minimum entropy coloring can be

solved in polynomial time. In another case, we showed that, if f belongs to a natural

and intuitive family of quantization functions, this problem is also tractable. Finally,

we considered this problem in a general case. By using Huffman or Lempel-Ziv cod-

ing notions, we showed that finding the minimum entropy coloring is heuristically

equivalent to finding the maximum independent set of a graph.
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Chapter 5

Feedback in Functional

Compression

In this section, we investigate the effect of having feedback on the rate-region of the

functional compression problem. If the function at the receiver is the identity function,

this problem is the Slepian-Wolf compression with feedback. For this case, having

feedback does not improve rate bounds. However, for a general desired function at

the receiver, having feedback may improve rate bounds of the case without feedback.

5.1 Main Results

Consider a distributed functional compression problem with two sources and a receiver

depicted in Figure 5-1-a. This network does not have feedback. In Chapter 2, we

derived a rate-region for this network. In this section, we consider the effect of

having feedback on the rate-region of the network. For simplicity, we consider a

simple distributed network topology with two sources. However, one can extend all

discussions to more complicated networks considered in Chapters 2 and 3.

Consider the network shown in Figure 5-1-b. In this network, sources can get

some information from the receiver. If the desired function at the receiver is the

identity function, this problem is the SW compression with feedback. For this case,

having feedback does not change the rate region [24]. However, when we have a



X1 X -

f(X1,X2) f(X1,X2)

X2  X2  - -

(a) (b)

Figure 5-1: A distributed functional compression network a) without feedback b) with
feedback.

general function at the receiver, by having feedback, one may improve rate bounds

of Theorem 40.

Theorem 57. Having feedback may improve rate bounds of Theorem 40.

Proof. Consider a network without feedback depicted in Figure 5-1-a. In Chapter 2,

we showed an achievable scheme where sources send their minimum entropy colorings

of high probability subgraphs of their characteristic graphs satisfying C.C.C., followed

by SW compression. This scheme performs arbitrarily closely to rate bounds derived

in Theorem 40. Now, we seek to show that, in some cases, by having feedback, one

can outperform these bounds. Consider source random variables X1 and X2 with

characteristic graphs Gx and Gx 2 , respectively. Suppose SCyn Gn and ScGn' G
X' X2 X1 ' X2

are two sets of joint colorings of source random variables defined as follows,

1
Scmin - arg min -H(cGn , CG4

X1 , X2  (CG flcGnX)ECGn XCGn yi 2xX 2  x 1  X2

SI 1
SxG G =Garg mm -H(ccn ,cGn ). (5.1)

XC ' X2 (cGCGfl )ECGn XCGn nx, 2  x1  X2
satisfying C.C.C.

Now, consider the case when Se mn -nSc 0, i.e., suppose any cG , E

Se min does not satisfy C.C.C. Thus, C.C.C. restricts the link sum rates of any
X1 , X2



X , X , --- -- -- -

0
f(X1 X2) f(X1,X2)

1/

X2 X2 E-

(a) (b)

Figure 5-2: An example of the proposed feedback scheme. a) Since xi ( Ax 1 , source
X1 sends 0. Since x 2 E Ax 2, source X2 sends 1. b) The receiver forward signaling
bits to the sources. Then, sources can use the coloring scheme c ,G

<~ H (c fo anymiachievable scheme, because H(cG, G" G fa c G E Sc

and c'G G C S '2

Choose any two joint colorings c , G E Sc , 2 and c'G n ,G Sc'

Suppose set A contains all points (x 1 , x 2) such that their corresponding colors in

the joint-coloring class of cgGn do not satisfy C.C.C. Now, we propose a coding

scheme with feedback which can outperform rate bounds of the case without having

feedback. If sources know whether or not they have some sequences in A, they can

switch between cn ,G and c'G, in their coding scheme with feedback. Since

H(c ,G < H(c'GGn ), this approach outperforms the one without feedback in

terms of rates. In the following, we present a possible feedback scheme.

Before sending each sequence, sources first check that if their sequences belong

to A or not. To do this, say Ax, is the set of all x1 where there exists a x 2 such

that (x1 , x 2 ) E A. Ax 2 is defined similarly. One can see that A C Ax, x Ax 2 - So,

instead of checking if a sequence is in A or not, sources check that if the sequence

belong to Ax. x Ax 2 or not by exchanging some information. In order to do this,

source X1 sends a one to the receiver when xi E Ax 1 . Otherwise, it sends a zero.

Source X2 uses a similar scheme. The receiver exchanges these bits using feedback

channels. When a source sends a one, and receives a one from its feedback channel,

it uses c'G G as its joint coloring. Otherwise, it uses CG in in its coding scheme.

Depending on which joint coloring scheme has been used by sources, the receiver uses



a corresponding look-up table to compute the desired function. Hence, this scheme

is achievable. An example of this scheme is depicted in Figure 5-2.

Since the length of sequences is arbitrarily large, one can ignore these four extra

signaling bits in rate computations. If we did not have feedback, according to Theorem

40,
1

Rx, + Rx 2 > -H(c', n (5.2)

Say Pa = Pr[(xI, x 2 ) E Ax, x Ax 2 ] . Thus, for the proposed coding scheme with

feedback, we have,

R 1 + R2 ; [PaH(CG Gn + (1 - Pa)H(c Gu (5.3)

where Rf is the rate of link X, with feedback. Thus,

(Rf + R j - [Rx, + Rx 2  -(1 - Pa) [H(c G - H(c'G ,G, )]. (5.4)ni X1 2 X

The right-hand side of (5.4) represents a gain in link sum rates one can achieve

by having feedback. When, Pa # 1 and c , G c'/ CG , this is strictly positive

which means the proposed coding scheme with feedback outperforms the one without

having feedback in terms of rate bounds. For the identity function at the receiver,

cx , G ,Gn, and the proposed coding scheme with feedback does not improve

rate bounds. Note that, for the identity function at the receiver, the SW compression

can perform arbitrarily closely to min-cut max-flow bounds. E

5.2 Summary of Results

In this section, we investigated the effect of having feedback on the rate-region of a

distributed functional compression problem. Particularly, we showed that for some

functions in which the minimum entropy colorings of sources do not satisfy C.C.C.,

by having feedback, one may outperform rate bounds of the case without feedback.

However, if the function at the receiver is the identity function, this problem is the



Slepian-Wolf compression with feedback for which having feedback does not improve

rate bounds. In a general network, for cases where the minimum entropy colorings

of sources satisfy C.C.C., it is not known whether or not feedback can improve rate

bounds.
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Chapter 6

A Rate-Distortion Region for

Distributed Functional

Compression

In this chapter, we consider the problem of distributed functional compression with

distortion. The objective is to compress correlated discrete sources so that an arbi-

trary deterministic function of those sources can be computed up to a distortion level

at the receiver. In this chapter, we derive a rate-distortion region for a network with

two transmitters and a receiver. All discussions can be extended to more general

networks considered in Chapters 2 and 3.

A recent result is presented in [10] which computes a rate-distortion region for the

side information problem (a case here one of sources is available at the receiver). The

proposed result in [10] gives a characterization of Yamamoto's rate distortion function

[28] in terms of a reconstruction function. Here, we extend it to the distributed

functional compression problem. In this case, we compute a rate-distortion region and

then, propose a practical coding scheme with a non-trivial performance guarantee.

In the rest of this chapter, first we express problem statement and previous results.

Then, we explain our contributions in this problem.



6.1 Problem Setup

Consider two discrete memoryless sources (i.e.,{Xi}7O 1 and {Yi} 1 ) and assume these

sources are drawn from finite sets X and Y with a joint distribution p(x, y). We ex-

press a n-sequence of these random variables as X = {Xi} - 1 and Y i{Y i}-+n--1

with joint probability distribution p(x, y). To simplify the notations, n and I will be

implied by the context. The receiver wants to compute a deterministic function

f : X x Y -± Z or f : X" x Y' -* Z', its vector extension with distortion D with

respect to a given distortion function d : Z x Z -+ [0, oc). A vector extension of the

distortion function is defined as follows:

d(zi, z2 ) = d(zli, z2i) (6.1)
i=1

in which zi, z 2 c Z'. As in [27], we assume that d(zi, z 2 ) = 0 if and only if

Zi = z2 . This assumption causes vector extension to satisfy the same property (i.e.,

d(zi, z 2 ) = 0 if and only if z1 = z 2 ).

Consider the network depicted in Figure 6-1-a. The sources encode their data at

rates Rx and Ry using encoders enx and eny, respectively . The receiver decodes

the received data using decoder r. Hence, we have:

enx: X a {1, ...,2Rx}

eny :yn {,..., 2"RY}

and a decoder map,

r : {1, ..., 2nRx X 1, ... , 2nRy 3n.

The probability of error is

P," = Pr({(x, y) : d(f (x, y), r(enx(x), eny(y))) > D}].



Table 6.1: Research progress on nonzero-distortion source coding prob

Problem types f (X, y) = (x, y) General f(x, y)

Feng et al. [16]
Side information Wyner and Ziv [27] Yamamoto [28]

Doshi et al. [10]

Coleman et al. [7]

Distributed Berger and Yeung [5] *

Barros and Servetto [4]
Wagner et al. [25]

lems

We say a rate pair (Rx, Ry) is achievable up to a distortion D if there exist enx,

eny and r such that Pj -* 0 when n -± oo.

Now, consider the network shown in Figure 6-1-a. Our aim is to find feasible rates

for different links of this network when the receiver wants to compute f(X, Y) up to

a distortion D.

6.2 Prior Results

In this part, we overview prior relevant work. Consider the network shown in Figure

6-1-b. For this network, in [28], Yamamoto gives a characterization of a rate-distortion

function for the side information functional compression problem (i.e., Y is available

at the receiver). The rate-distortion function proposed in [28] is a generalization of

the Wyner-Ziv side-information rate-distortion function [27]. Specifically, Yamamoto

gives the rate distortion function as follows.

Theorem 58. The rate distortion function for the functional compression problem

with side information is

R(D) = min I(W; X|Y)
pCP(D)

where P(D) is the collection of all distributions on W given X such that there exists

a g : W x Y -± Z satisfying E[d(f(X, Y), g(W, Y))] < D.

This is an extension of the Wyner-Ziv rate-distortion result [27]. Further, the



X1 ff (X1,X2)

X2  X2

(a) (b)

Figure 6-1: a)X and Y encode their data such that f(X, Y), a representation of
f(X, Y) with distortion D, can be computed at the receiver. b) X encodes its data
such that f(X, Y), a representation of f(X, Y) with distortion D, can be computed
at the receiver.

variable W E l'(G) in the definition of the Orlitsky-Roche rate, Definition 12, (a vari-

able over the independent sets of G) can be seen as an interpretation of Yamanoto's

auxiliary variable, W, for the zero-distortion case. In other words, when the distor-

tion D = 0, the distributions on W given X for which there exists a reconstruction

function g place nonzero probability only if w describes an independent set of G and

x E w.

A new characterization of the rate distortion function given by Yamamoto was

discussed in [10]. It was shown in [10] that finding a suitable reconstruction function,

f, is equivalent to find g on W x Y from Theorem 58. Let F,(D) denote the set of

all functions fm  xm  Y m -+ Z' such that

lim E[d(f(X, Y), fm(X, Y))] < D
n-+co

and let F(D) Um(N Fm(D). Also, let Gxf denote the characteristic graph of X

with respect to Y, p(x, y), and f for any f E F(D). For each m and all functions f E
F(D), denote for brevity the normalized graph entropy LHGg (XIY) as HGf(XY).

The following theorem was given in [10].

Theorem 59. A rate distortion function for the network shown in Figure 6-1-b can



be expressed as follows:

R(D) =inf HG, (X|Y ).
fGE(D) '

The problem of finding an appropriate function f is equivalent to finding a new

graph whose edges are a subset of the edges of the characteristic graph. A graph

parameterization by D was proposed in [10] to look at a subset of T(D). The resulting

bound is not tight, but it provides a practical technique to tackle a very difficult

problem.

Define the D-characteristic graph of X with respect to Y, p(x, y), and f(x, y), as

having verticies V = X and the pair (X1 , X2 ) is an edge if there exists some y E Y

such that p(Xi, y)p(x 2, y) > 0 and d(f(xi, y), f(X 2, y)) > D. Denote this graph as

Gx(D). Because d(zi, z2) = 0 if and only if zi = z2, the 0-characteristic graph is the

characteristic graph (i.e., Gx(0) = Gx). So, the following corollary was given in [101.

Corollary 60. The rate HGx(D)(X|Y) is achievable.

6.3 Main Results

This section contains our contributions in this problem. Our aim is to find a rate-

distortion region for the network shown in Figure 6-1-a. Recall the Yamamoto rate

distortion function (Theorem 58) and Theorem 59. These theorems explain a rate

distortion function for the side information problem. Now, we are considering the

case when we have distributed functional compression.

Again, for any m, let Fm(D) denote the set of all functions fm Xm x Ym - Z'

such that

lim E[d(f (X, Y), fm(X, Y))] < D.
n-cx

In other words, we consider n blocks of m-vectors; thus, the functions in the

expectation above will be on Xm n x yn. Let F(D) = UmeN Fm(D). Let Gx

denote the characteristic graph of X with respect to Y, p(x, y), and f for any f G

T(D) and Gy; denote the characteristic graph of Y with respect to X, p(x, y),

and f for any f E F(D). For each m and all functions f E F(D), denote for



brevity the normalized graph entropy 1HG f(X|Y) as HGyf(XIY), HGyf(YlX)

as HGYf (YIX) and 1HGXf,Gyf (X, Y) as HGXf,Gyf (X, Y).

Now, for a specific function f E F(D), define Rf(D) (R' (D), Rf,(D)) such

that

R fc > HGXf (XIY) (6.2)

Ry > HGyj(Y|X)

R{ + Ry > HGXf,Gyf (X, Y).

Theorem 61. A rate-distortion region for the network shown in Figure 6-1-a is

determined by Uf6F(D) Rf(D).

Proof. We want to show that U;EF(D) Rf(D) determines a rate-distortion region for

the considered network. We first show this rate-distortion region is achievable for

any f E F(D), and then we prove every achievable rate region is a subregion of it

(converse).

According to Theorem 40, Ri(D) is sufficient to determine the function f(X, Y)

at the receiver. Also, by definition,

lim E[d(f(X, Y), f (X, Y))] < D.
n-+oo

Thus, for a specific f C F(D), Rf(D) is achievable. Therefore, the union of these

achievable regions for different f E F(D) (i.e., U;FT(D) Rf(D)) is also achievable.

Next, we show that any achievable rate region is a subregion of UfC(D) Rf(D).

Assume that we have an achievable scheme in which X encodes its data to enx(X)

and Y encodes its data to eny(Y). At the receiver, we compute r(enx(X), eny(Y)).

Since it is an achievable scheme up to a distortion D, there exists f E T(D) such

that r(enx(X), eny(Y)) = f(X, Y). Thus, considering Theorem 40, this achievable

rate-distortion region is a subregion of UfET(D) Ri(D). It completes the proof. E

Next, we present a simple scheme which satisfies Theorem 61. Again, the problem

of finding an appropriate function f is equivalent to finding a new graph whose



edges are a subset of the edges of the characteristic graph of random variables. This

motivates Corollary 62 where we use a similar graph parameterization by D. Our

scheme is as follows:

Define the D-characteristic graph of X with respect to Y, p(x, y), and f(x, y), as

having verticies V = X and the pair (X1 , x 2 ) is an edge if there exists some y - Y

such that p(xi, y)p(x 2 , y) > 0 and d(f(xi, y), f(x 2 , y)) > D. Denote this graph as

Gx(D). Similarly, we define Gy(D). Following Corollary 60 and Theorem 61, we

have the following Corollary.

Corollary 62. If (Rx, Ry) satisfies the following conditions, (Rx, Ry) is achievable.

Rx ;> HGx(D)(X|Y) (6.3)

Ry > HGy(D)(YIX)

Rx+Ry > HGX(D),Gy(D)(X,Y).

One may note when the number of vertices is small, constructing these graphs is

not computationally difficult. Among all f which lead to the same D-characteristic

graphs, one can choose a function which minimizes the distortion.

6.4 Summary of Results

In this chapter, we considered the problem of functional compression with distortion

D. In this problem, a deterministic function of some correlated sources is desired

at the receiver with distortion D. Some work ([10] and [28]) has addressed the side

information version of this problem. Here, we considered distributed functional com-

pression. We computed a feasible rate-distortion region and proposed an achievable

scheme. For the case D = 0, our results are simplified to the lossless functional

compression's results discussed in Chapter 2.
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Chapter 7

Conclusions and Future Work

In this thesis, we considered different aspects of the functional compression prob-

lem where computing a function (or, some functions) of sources is desired at the

receiver(s). The rate region of this problem has been considered in the literature

under certain restrictive assumptions. In Chapter 2 of this thesis, we considered this

problem for an arbitrary tree network and asymptotically lossless computations. For

one-stage tree networks, we computed a rate-region and for an arbitrary tree network,

we derived a rate lower bound based on graph entropy. We introduced a new condi-

tion on colorings of source random variables' characteristic graphs called the coloring

connectivity condition (C.C.C.) and showed that, unlike the condition mentioned

in Doshi et al., this condition is necessary and sufficient for any achievable coding

scheme based on colorings. We also showed that, unlike entropy, graph entropy does

not satisfy the chain rule. We proposed a modularized coding scheme based on graph

colorings which performs arbitrarily closely to the derived rate lower bounds for one

stage trees, with correlated sources and general trees, with independent sources. We

also showed that, in a general tree network case with independent sources, to achieve

the rate lower bound, intermediate nodes should perform some computations. How-

ever, for a family of functions and random variables called chain rule proper sets, it

is sufficient to have intermediate nodes act like relays to perform arbitrarily closely

to the rate lower bound.

The problem of having receivers with different desired functions was considered



in Chapter 3. For this problem, we defined a new concept named multi-functional

graph entropy which is an extension of graph entropy defined by K6rner. We showed

that the minimum achievable rate for this problem with side information is equal to

conditional multi-functional graph entropy of the source random variable given the

side information. We also proposed a coding scheme based on graph colorings to

achieve this rate.

In these proposed coding schemes, one needs to compute the minimum entropy

coloring of a characteristic graph. In general, finding this coloring is an NP-hard

problem. However, in Chapter 4, we showed that depending on the characteristic

graph's structure, there are certain cases where finding the minimum entropy color-

ing is not NP-hard, but tractable and practical. In one of these cases, we showed

that, by having a non-zero joint probability condition on random variables' distribu-

tions, for any desired function, finding the minimum entropy coloring can be solved

in polynomial time. In another case, we showed that if the desired function is a

quantization function, this problem is also tractable. Then, we considered this prob-

lem in a general case. By using Huffman or Lempel-Ziv coding notions, we showed

that finding the minimum entropy coloring is heuristically equivalent to finding the

maximum independent set of a graph. While the minimum-entropy coloring problem

is a recently studied problem, there are some heuristic algorithms to approximately

solve the maximum independent set problem.

Next, in Chapter 5, we investigated the effect of having feedback on the rate-region

of the functional compression problem. If the function at the receiver is the identity

function, this problem reduces to the Slepian-Wolf compression with feedback, for

which having feedback does not increase the rate. However, in general, feedback can

improve rate bounds.

We finally considered the problem of distributed functional compression with dis-

tortion. The objective is to compress correlated discrete sources such that an arbitrary

deterministic function of those sources can be computed up to a distortion level at

the receiver. In this case, we computed a rate-distortion region and then, proposed a

simple coding scheme for this problem.



For possible future work, one may consider a general network topology rather

than tree networks. For instance, one can consider a general multi-source multicast

network in which receivers desire to have a deterministic function of source random

variables. For the case of having the identity function at the receivers, this problem

is well-studied in [11, [18] and [17] under the name of network coding for multi-

source multicast networks. Specially, [17] shows that random linear network coding

can perform arbitrarily closely to min-cut max-flow bounds. To have an achievable

scheme for the functional version of this problem, one may perform random network

coding on coloring random variables satisfying C.C.C. If receivers desire different

functions, one can use colorings of multi-functional characteristic graphs satisfying

C.C.C., and then use random network coding for these coloring random variables.

This achievable scheme can be extended to disjoint multicast and disjoint multicast

plus multicast cases described in [18]. This scheme is an achievable scheme; however

it is not known whether it is optimal or not.

Throughout this thesis, we considered the asymptotically lossless or lossy compu-

tation of a function. For possible future work, one may consider this problem for the

zero-error computation of a function. This problem is a communication complexity

problem. One can use tools and schemes we have introduced in this thesis to attain

some achievable schemes in the zero error computation case.
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