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Abstract

There are two algebras associated to a reductive Lie algebra g: the De Concini-
Kac quantum algebra and the Kac-Moody Lie algebra. Recent results show that the
principle block of De Concini -Kac quantum algebra at an odd root of unity with

(some) fixed central character is equivalent to the core of a certain t-structure on the
derived category of coherent sheaves on certain Springer Fiber. Meanwhile, a certain
category of representation of Kac-Moody Lie algebra at critical level with (some)
fixed central character is also equivalent to a core of certain t-structure on the same
triangulated category.

Based on several geometric results developed by Bezurkvanikov et. al. these two
abelian categories turn out to be equivalent. i.e. the two t-structures coincide.
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Chapter 1

Introduction

Let g be a simple Lie algebra, b be the affine Lie algebra associated with g and

Rep(Ulk) the category of g integral highest weight b-modules of level k-h, where h

denotes the dual Coxeter number of the Lie algebra g. Kazhdan and Lusztig used a

'fusion type' product to make Rep(Ukg) a tensor category. On the other hand,let U

be the quantized enveloping algebra with parameter q = exp(7r -I/d - k), where d

=1 if g is a simple algebra of types A,D,E,d=2 for types B,C,F, and d=3 for type

G. Let Rep(U) be the tensor category of finite dimensional U-modules. In [KL2]

the authors have established an equivalence of tensor categories Rep(U) e Rep(Uk).

The subcategory block(U) C Rep(U) goes under the equivalence to the corresponding

principal block block(U k) C Rep(Ulk)

Let GrL be the affine Grassmanian of the dual loop group, N be the Springer

resolution of the nilpotent cone of G, in [ABG], the authors proved:

Db(block"'(U)) - DGL xG- (coh(N)) - Db (Pervyi(GrL))
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and by comparing the t-structure, they proved:

block(U) - Pervio(GrL)

In their proof, the geometry of Springer fiber plays an important role.

In a sequence papers of Lusztig [LI], there are various relations between repre-

sentations of quantum group at root of unity, representations of affine Lie algebra

at certain level and representations of Lie algebra over characteristic p. There are

various groups of people proved many results in this direction. The main results of

this paper is that the principle block of De Concini -Kac quantum algebra at an odd

root of unity with (some) fixed central character is equivalent a certain category of

representation of Kac-Moody Lie algebra at critical level with (some) fixed central

character. More precisely, the principle block of De Concini -Kac quantum algebra at

an odd root of unity with (some) fixed central character is equivalent to the core of

a certain t-structure on the derived category of coherent sheaves on certain Springer

Fiber. Meanwhile, a certain category of representation of Kac-Moody Lie algebra at

critical level with (some) fixed central character is also equivalent to a core of certain

t-structure on the same triangulated category. And in this paper, we will prove that

these two t-structures coincide.



Chapter

Geometric Langlands Duality

2.1 Triangulated Category, t-structure and Per-

verse Sheaves

In this section we will take a brief review of some basic notations and basic results

in perverse sheaves.

Definition 1. A triangulated category is a category with

a) a shift functor [1] : C F-> C (which is an autoequivalence)

b) a family of triangles X : Y Z : X[1] (which are called dis-

tinguished triangles)

satisfying the following axioms:

-1) Every triangle isomorphic to a distinguished triangle is a distinguished triangle.

0) Every morphism f : X -- T can be completed to a distinguished triangle.



1) X Id X F- 0 F_ X[1] is a distinguished triangle.

2) If X i-* Y a Z is a distinguished triangle, then X[1] F-4 Y[1] - Z[1] F-> is a

distinguished triangle.

3) Given two triangles X -* Y -* Z - X[1] and X' F-- Y' Z' X'[1], and

morphism $ : X - X' , $ : Y -* Y' such that the first square in the following

diagram is commutative, then there is (not unique) a morphism & Z - Z'

such that the whole diagram is commutative:

X

4
X'

4#[1]
Y' 9 Z' X'/[1]

4) (Octahedral). Suppose we have the first three triangls, then we have the fourth

one.
X Y Z X [1]

X M N X[1]

Y M Q Y [1]
Z N Q Z[1]

A typical example of triangulated category is the derived category of an abelian

category.

Definition 2. A t-structure T in a triangulated category C is a pair of full subcategoies

C"O and C 0 such that: (for any n, we denoted e " = CO[-n] and C " = Cko[-n])

1) CB0 C ell, el 1 C C>0,

2) If A E C 0,B E Cr1 , Hom(A,B) =0
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3) For any X C C, there is A C C 0 , B c Chl,, such that there is a distinguished

triangle:

A X :B >A[1]

If furthermore we have the following:

" e:!= 0, nen = 0.
nEZ nEZ

We will call this t-structure non-degenerated. This is the only case we will consider

in this article.

Remark 1. There is an easy fact. To give a t-structure we only need to specify

D50(resp. D O), since we have D"l =1 (D O) (resp. D 1 = (D O)L).

Given a t-structure on C, it is easy to see that the natural embedding functor

i<o : C - C (resp. i>o : C O - C) has a natural right (resp. left)adjoint functor

T<O : C -* C O. (resp. T>o : C F-4 C ). The core of this t-structure Co 0 n CF is an

[n]
abelian category, and the functor "H" : C F-4 CF" n C,, n Ct ] n CFD is called the

n-th T-cohomology functor.

Definition 3. Let (C1 , TI), (C2 , T2) be two triangulated categories with t-structure, a

triangulated functor F : C1 H-> C2 is left t-exact(resp. right t-exact) if F(C 0 ) C

C!0 (resp. F(CeC) C CC)

Let X be a (reasonable) topological space, Db(X) - Db(sh(X)) be the bounded

derived category of constructible sheaves on X, 1 we introduce the perverse t-structure

'In the following sections, we will take X to be a scheme over field of non zero characteristic and

11



DO = {T E Dbldim supp'(3) < -i, for any i}

D' != {T E DIDx() E D <}
perv ~'Perv

where Dx is the Verdier duality functor on Db(X).

The core of the perverse t-structure is the abelian category of perverse sheaves

and the n-th cohomological functor (which we denoted by) PH' is the perverse coho-

mological functor.

When we work in the perverse t-structure, the six functors formulism is a useful

tool and we give a brief recollection. Suppose we have two (reasonable) spaces X and

Y and a (reasonable) map f: X -4 Y. There are several standard functors defined

between D'(X) and Db(Y). i.e. fi, f,, f , f*, Dx and Dy. Besides the usual adjoint

properties, there are several isomorphisms of functors:

f* Dx f Dy,

f, - DxfDy,

DxDx & id

Supposed that we have a devissage

consider the derived category of 1-adic sheaves, these are some standard setting, we do not repeat
them here.cf. [KW]



where i is a closed embedding and j is an open embedding and U = X\Z, there are

more properties involved with the functors ii, i* i!, jjj* Dz, Dx and DU. Espe-

cially, if we consider the perverse t-structure on the corresponding derived categories

of constructible sheaves, some properties of these functors are summarized in the

following theorem. (cf [BBD])

Theorem 1. Some formal properties of functors:

1) it, j* are t-exact, i!, j* are left t-exact, i*, ji are right t-exact.

2) if f is affine then f, is right t-exact and f! is left t-exact.

3) if j is an affine embedding, then jj! are t-exact. especially, PH(j,) = j* and

PH(j!) = J!.

In case we have a devissage, there is one more convenient way to characterize the

perverse t-structure on Db(X):

Dbo (X) = {EDe,(X)|i*T E DbO(Z), j* -D (U)}

perv 'PerY'I perv)J -Perv~i'i

D = (X) { E De,v(X |I i E D' 3b,(Z' 7  ED (U}perv - -'- prkI pervk''~ perv(f

The above characterization is very useful; especially, in case we have a stratifica-

tion consisting of affine strata.

Example 1. Let G be a simple algebraic group, B be a Borel subgroup, G/B be the

flag variety. The B-orbits on G/B are affine and parameterized by the Weyl group

W.i.e. G/B= U A,. Moreover, A, A'(') is the affine space, where l(w) is the
wEW



length of w. Let Jw : A,, -* G/B be the natural embedding, then it is an affine map.

By Theorem 1, jW!(C[l(w)]),jw,(C[l(w)]) are indecomposable perverse sheaves, there

is a natural morphism jw!(C[l(w)]) - ja,(C[l(w)]), the image is irreducible which will

be denoted by jw!,(C[l(w)]). These are the standard objects, costandard objects and

irreducible objects in PerN(G/B).

2.2 Mirkovic-Vilonen Duality

Let G be a reductive algebraic group over some algebraic closed field, B be a

Borel subgroup, T be a maximal torus. We have two lattices: the character lattice

A = Hom(T, Gm) and the cocharacter lattice A = Hom(Gm, T). Let R C A be the

root system and R C A be the coroot system. The reductive algebraic groups G were

determined by the root datum (A, R; A, R). Associated to a root datum (A, R; A, R),

there is another root datum (A, R; A, R) which determins another reductive algebraic

group-the Langlands dual group GL of G.

We first review some basic notations and results about the irreducible finite di-

mensional representations of G. They are parameterized by A+-the dominant weights

and we have a decomposition of tensor product.

VA ® VA2 C m 3 VA3
A3

where m A2 E Z!0. Let x, be the character of the representations V, then theA 3

14



equation gives us:

X>l X,2 -: X )''&)2::: m, A3  X\ 3
1\3

These equations gives a multiplication on class functions on G.

Let X denote a p-adic field or C((t)), 0 denote the p-adic integer or C[[t]]. The

well known Satake isomorphism states an algebraic isomorphim:

C(GL(X)//GL(0)) a Class Functions onG

where the multiplication on L.H.S. is convolution, on the R.H.S. is the multiplication

we introduced before.

On the L.H.S, due to the sheaves-functions principle, every GL(0)-equivariant

perverse sheaf produce a spherical function on GL(X), while on the R.H.S., the char-

acters of finite dimensional irreducible representations of G(C) form a basis of class

functions. The Satake isomorphism now can be understood as:

K(PervGL()(GrL)) K(Rep(G)).

In [MV], they provided a categorical version of the above results, i.e. the following

categories are equivalent as tensor categories.

PervGL(0)(GrL) - Rep(G) coh([pt/G]).

15



where [pt/G] is the algebraic stack2 classifies G -torsors. Noticed that the irreducible

objects on PervG0 (Gr) are parameterized by the same index. We denote them by

ICA, for any A E A+.

2Here we do not really need the notion of algebraic stack, the only thing we need to keep in mind
is coh[X/G] 2 cohG(X)



Chapter 3

Affine Hecke Algebra

3.1 Kazhdan-Lusztig Results

Let G be an adjoint reductive group, F be a local field, the affine Hecke algebra

by definition is Yaff =' C(G(F)//I), where I is Iwahori-subgroup. In this subsection,

we will review some well known results.

Let Waff be the affine Weyl group with generators si, i = 0, 1, ...n. and relations

2
Si

aijcopies ajjcopies

where (ai,) is the affine Cartan matrix associated to G.

Associated to this Coxeter group, we can define the affine Hecke algebra Yaff with



parameter q as following: it has generators T; i = 0, 1 ...n over C[qi/ 2, q- 1 / 2] such that

(Ti + 1)(T - q) = 0

Ti T... = T T...

aij, copies aijcopies

It is well known that the admissible representations of G(F) are in one-one cor-

respondence with the finite dimensional representations of some Hecke algebras. Un-

derstanding the representations of G(F) is thus reduced to understanding the finite

dimensional modules of Hecke algebra. Especially, the admissible representations

with non-zero I-fixed vectors are in 1-1 correspondence with the finite dimensional

modules of the affine Hecke algebra. Deligne and Langlands proposed a classification

of such representations which was proved by Kazhdan and Lusztig in [KL1].

To make our statement more precisely, we would like to fix some notations. Let

G be an algebraic group, B be a Borel subgroup, N be a unipotent radical of B, B-

be opposite Borel subgroup of B and N- be the unipotent radical. Let gL be the Lie

algebra of GL, NL be the nilpotent cone, IrN : NL NL be the Springer resolution,

7gL : gL P> gL be the Grothendieck simultaneous resolution, StL L X NL be the
gL

Steinberg variety, PL : StL gL and PR : StL FNL All these varieties have natural

GL action, so we can consider the GL-equivariant coherent sheaves on these vareities.

The Deligne Langlands conjecture states that these representations are parame-

terized by (s, u, p), where s is semisimple, u is unipotent such that sus- 1 = U and

p is a representation of some finite groups. In this section, we will quickly review

several important steps of the proof.



In [L], Lusztig started studying the K theory of the Springer fiber. Especially, he

proved the following:

Theorem 2. K(coh([NL/(GL x G)])) has an ,5ff module structure, which is iso-

morphic to the anti-spherical module Masp = Ind(Sgn), where Sgn stands for the

sign representation of X (the Hecke algebra associated to Weyl group).

In the sequence papers[CG][KL1], they provided a K-theoretical interpretation of

aff.i.e. They proved:

Theorem 3. K(coh([StL/(GL x Gn]))) has an algebra structure such that it is iso-

morphic to the affine Hecke algebra.

3.2 Categorical Version: Bezrukavnikov Correspon-

dence

The Satake isomorphism states that we have the algebra isomorphism C(G(X)//0)

K(Rep(GL)), while the geometric Langlands duality upgraded this isomorphism to

categorical level:

PervG(O)(Gr) e Rep(GL) e coh([pt/GL])

In the previous subsection we have

aff e C(G(F)/|I) L K(coh([StL/(GL x G,)])).

19



Motivated by the geometric Langlands duality, in [CG], Ginzburg proposed a cate-

gorical version of the above isomorphism, which was proved by Bezrukavnikov and

claimed in [B]. We will recall this and several related results. For saving notation in

future, we would like to fix some conventions which are abstract nonsense.

Convention 1. Suppose that we have several pairwise equivalent categories Aj, j =

1,.., k., we can take an abstract category A which is equivalent to these categories(and

we will fix the corresponding equivalence F), and call it the abstract model of these

categories and these Aj are realizations of A. If furthermore, these Aj, j = 1,.., k.

are triangulated categories with t-structure ti, j = 1, ..k. respectively, we will denote

At the abstract model A with t-structure translated by the equivalence F. In more

concrete contexts, i.e. supposed that we have two realizations of A in coherent sheaves

context and perverse sheaves context, we will use cohA and perVA to remind reader

which realization we are thinking about.

Let Flajj = G(X)/I be the affine flag variety,(For more precise description of affine

flag variety and related topics, cf [B]) the I-orbits and Io(the unipotent radical of I)-

orbits on Flaff are parameterized by Waff. There are Io equivariant perverse sheaves

category Pervio(Flaff) and I-equivariant perverse sheaves category Perv(Flaff).

The irreducible objects of these two categories are both parameterized by Waff. Since

results concerning perverse sheaves on the affine flag variety will be intensively used

below, we briefly review them in this subsection.

For each orbit IowI/I, we denote by Jw the natural embedding. Let J. =

jW,(Qi), Jw! = jw!(Q),and J,!* = jw!*(Q1) be the costandard, standard and irreducible

20



objects in the category Per,, (Fl) (by slightly abusing the notations, the correspond-

ing objects in Perv(Fl)). The basic property of these objects summarized in the

following theorem:

Theorem 4. The following results are proved in [2]:

1) Let M E perv7. (resp. per7,0v), then for any w E W, M* J., (resp. M* Jw!)

E perv ,e"Iv (resp. pervr7,e0,>)

2) J.** J! Je,;

3) Jw! Jw'! Jwwi!, J, * Jw, = Jwwi, if l(ww')=l(w)+l(w').

where * stands for the convolution.

Fix a generic character Vb : N F- Ga, it defines a character of Io. In [ArBe],

they introduced the Iwahori-Whittaker(i.e. (Io, @)-equivriant) perverse sheaves cate-

gory Pervw, which turns out to be a quotient category of the I-equivariant perverse

sheaves category Perv(Flaff). More precisely, irreducible objects in Pervw(Flaff)

are parameterized by A E A, which can be identified with the minimal length repre-

sentatives in W\Waff. Let Av, Vv v E W\Waff be the standard, costandard obejcts

in the Iwahori-Whittaker perverse sheaves category. Especially, there is a special ob-

ject Lo C Pervlw(Flaff), such that the following convolution functor is a quotient

functor:

conv : Pervl(Flaff) F-4 Pervlw(Flaff); 'T F-+ A0 * T (3.1)

More precisely, in [AB], they proved the following lemma

21



Lemma 1. a) We have

A0 * Jw!*=0 W g W\Waff

b) We have

Zdo 2 : VO

c) For w = uv,u E W,v E W\Waff, we have

0 * Jw! A v

LO * J, VV

Slightly modifying the argument in [AB], we can prove the following result.

Theorem 5. The convolution functor:

conv' : D b(Flaff) i-> D bw(Flaff); -4 Ao *T (3.2)

is t-exact. (both sides with the tautological t-structures.)

As the subsection title suggested, there are some categorical results corresponding

to the K-theory results, which are due to Bezrukavnikov et.al. The main results we

will recall is the following[AB][B1]:

Theorem 6. In the following equivalences, the superscript""" standards for the mixed

version. (cf. [ABG].)



1) Basp Db(coh([NL/GL])) - Db(Pervw(Fl)) - Db(fP)

Ba?: Db(coh([NIK/(GL x G.)|)) Db(Pervyrj(Fl)) Db(f Pix)

2) Baf : Db(coh([StL/GL])) e Db(PervI0 (Fl))

a Db(coh( [StL/(GL x G,)])) - Db(PervI0 (Fl))

3) Baa : Db(coh([NL/GL])) - Db(fPf)

Bemx : Db(coh([NL/(GL x Gm)])) c Db(fPMix'f)

where fP and fPf will be explaining in following.

We will denote the abstract model of the triangulated category in the first line

by 8 (resp. S""), the triangulated categories in the second line by ' (resp.Tn"x) and

the triangulated category in the third line by X (resp. X"nx). Besides the coherent

realization and (Iwahori-Whittaker) perverse sheaves realization, we would like to

emphasize that 8 has another realization which we call the quotient realization and

denote by quo8 Db(fP). This is a result in [AB], where fP is a Serre quotient

category of perv1(Fl). Furthermore, in [B1], there is a Serre quotient category of

fP, followed their notation, which we denoted by fPf. This category provides us a

quotient realization of the triangulated category X.

To help reader keep the previous convention in mind, we will introduce two com-

mutative diagram, which are theorems due to Bezrukavnikov et. al.:(and we wrote

out the corresponding realizations to help reader familiar with those convention)

Theorem 7. We have following commutative diagrams[4]:
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1) coh'T(' Db(coh([StL/GL]))) perv'(e Db(Pervi0 (Fl)))

Rp! *

coh8( Db(coh([N/GL) perv8(e Db(Perviw(Fl)))

2) co hS( Db(coh([NL/GL]))) quoS(- Db(fP)) pervS(e Db(Pervw(Fl)))

Rwr L 2 quotient

cohX(e Db(coh([NL/GL]))) aa quotX( Db(f !))



Chapter 4

Affine Braid Group Action on

Triangulated Categories

4.1 Affine Braid Group

Given a Coxeter group G =< si; i = 1, 2,...n > / < s2 = 1, ss ... = sjS,... >,

a%,j copies ai,jcopies

where aij are some fixed integers (may include oo), there is a braid group '3 associated

to it which is generated by the symbol T, i = 1, ..., n. with the same relations except

Tj2= 1. For any element w E G, fix a minimal length representative of w = si....si,,

there is a well defined element T = TiT2...Ti E 'B. This assignment gives an

embedding t : G -> '3 (not a group morphism), and we will denote by '3+ (resp '3-

)the semi-group generated by t(G) (resp. t(G) 1 ).

Definition 4. A weak action of 3 on a category e is an assignment b E 3 -> Rb C

Auto(C) such that Rb o Rb' Rbb'



The following lemma is obvious:

Lemma 2. To define a weak braid group action, we only need the assignment t(w) -

R,(,) E Auto(C) satisfying:

Rtgw) o Rotwig ' Rtgwig ), if l(ww') =(w) + l(w')

Given a rank n root system (A, R) with a set of fixed simple roots {a E A, j =

1, 2, ..n}, there are n simple reflections sj. Besides these simple reflections, there is

one more affine reflection so which is the reflection defined by the affine root cao. The

group Waff =< si, i = 0, ..n > is a Coxeter group, hence there is an affine braid

group 3 aff associated to it.

Suppose we have two triangulated categories with t-structures (( 1 , Ti), (C2 , -r2 ) and

a triangulated functor F : C1  - C2 , furthermore, if we assume there is an (affine)

braid group '3 aff action C1.

Definition 5. The t-structure T1 is called braid left t-(resp. right t exact) positive

for any M e C1  b C 3Bf (resp. M C C1% ,b 3 aff), we have b.M C C1
0 (resp.

b.M e Ci% .) And it is called braid positive, if it is both left and right braid positive.

Definition 6. The t-structure T1 is called braid positive above r2 by F, if T1 is braid

positive and:

1) for any M E C1
0, b E 9', we have F(b.M) E C2<0.

2) for any M C 1$%0,b E 1;, we have F(b.M) C C2 0.



In next section, we will introduce some examples to help reader understand those

definitions.

4.2 Affine Braid Group Action I: Perverse Sheaves

Version

Let us consider the perverse sheaves realization pervT - Db(pervio(Fl)) of T and

with the perverse t-structure rper.

Due to Theorem 4, the functor L, : perv7 - pervT defined by mapping T E pervT

to J,, * Y is an equivalence and moreover we have

L, o L, rL', if I (ww') = 1 (w)+ l(w').

i.e. We have a weak (affine) braid group action of '3 aff acts on perv7 (hence T).

Similarly ,we can define R, by convolution from the R.H.S, which introduced another

affine braid group action. From the obvious reason, we call them the left affine braid

group action and the right affine braid group action.

From Theorem 4, it is easy to see the perverse t-structure on T is braid positive

(for both left and right action). We will provide various examples of the Definition 3

and Definition 4 which will be used in future.

Example 2. The perverse t-structure Tperv on perv7 is braid positive above the perverse

t-structure sperv on per8v for both left braid group action and right braid group action.

Proof This is an almost trivial consequence of Theorem 4 and Theorem 5. i.e.

27



In the perverse sheaves realization, the functor from pervT to pervS is the convolution

functor conv'(--) = Ao * -- which is also exact with respect to the perverse t-

structures. For any M E perv750 , we have M*J., Eperv 'TE0 , hence A* M* J, Eperv

75 0 . For any M E perv'T o, we have M* J,, Eperv 7 0, hence Ao* M* J,,, Eperv 7'T0.

i.e. -rperv is right braid positive above sperv. The left braid positivity can be proved

by similar argument.

Example 3. There is a braid group action on 8 which inherited from the right braid

group action on T. The perverse t-structure sperv onpervS a Db(PervIw(Flaff)) is

braid positive w.r.p.t. this braid group action.

Proof This follows from the proof of Example 2.

Example 4. With the (affine) braid group action on 8, the perverse t-structure spe,,

is braid positive above the perverse t-structure rperv on X.

Proof It is almost trivial in the quotient realization. i.e.In this realization, we

have quot2 Db(fP), cohX - Db(JPJ). By Theorem 4, this statement is trivial.

Now, we would like to introduce another easy example of braid positive t-structure.

There is a special maximal commutative subalgebra in 'Yaff, which is generated by

the characteristic functions ChIAI on G(X) for A c A. On the categorical level,

we also have a special subset of objects in Perv0 (Fl), i.e. the Wakimoto sheaves

WA, A c A. To define them, we need to take an (any) decomposition of A = A - A2

where A,, A2 E A+, we define WA = JA, * JA2.

Lemma 3. 1) WA is a well defined perverse sheaf.
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2) W,\ * W,1 = ,+

Proof

1) Let A = A, - A2 = V1 - v2 be two decompositions. (i.e. Aj, vj C A+ ). Since

Jl+v2,! = JA!* Ju = JA2 ! * JuI = JA2 +V!, we get JAI! * JA2 = JA1 ! * Ju2 * Ju21 *

JA,, = Jl!*J 2 !*JA 2 +v 2 ,* = JA 2 !*Ju!*JA 2 +v 2 , = Jui!*JA2 !*JA 2 **J 2 * = Ju!*Jv2 *

2) This follows from part 1).

After introducing the Wakimoto sheaves, we define new t-structure rew 1 on pervT

pero w = {MIM* WA Eper perv for anypenew {M' W

and new t-structure gnew2 on pervS by

per Sew = {M M * WA E perv S,eov for any

Example 5. a) The t-structure Tnew on 7 is braid positive with respect to the left

hand braid action.

b) The t-structure -T, is braid positive above the t-structure snew on 8.

Proof

a) Let ME pervT e, ,for any A E A and w E Waff, we have (Jw, * M) * WA

Jw* * (M * WA) E perv7,peosv. i.e. Tnew is left braid positive.

'Here we secretly used the fact that it is a well defined t-structure. This was proved in [FG]
2The fact that it is a t-structure will be proved in section 4

A c A}

A E A}



For M E pervnen,, we need prove J,! * M E perv T~Q,, however for any N E

perevT,-' we have Hom(J,, * N, M) = 0 i.e. Hom(N, Jw! * M) = 0 for any N E

perv ne-j, which proves that -new is right braid positive.

b) The functor is Ao*(--) pervT - pervcS is t-exact with perverse t-structure on

both sides, so for any M Eperv'lew, we have (Ao*M)*WA = o*(M*WA) c

pero perv, for any A. i.e. Ao * M E pervSj50.. In other words, Ao * (--) is left

t-exact with respect to the new t-structures on T and S.

To prove that Ao * (--) is right t-exact with respect to the new t-structures

on T and 8, notice that there is a left adjoint functor F of Ao * (--) 3 such

that F(8 0 . ) c cr<0,', we have that for any NE SjE& => F(N * WA)perv perv, e

F(N) * WAG 70,. i.e. F(N) c T<T0. So for M G T , N E 8C0 , we have

Hom(N, Ao * (M)) = Hom(F(N), M) = 0. i.e. We have Ao * (--) is right

t-exact.

We now recall some facts about perverse sheaves on stratified spaces.

For F G DI(Flaff), let W = {w c Waff|j* F # 0}; W! = {W C Waff5|j*F 74 0}.

The following result was proved in [AB]:

Theorem 8. For X c DI(Flaff) there exists a finite subset S C Waff, such that for

all w E Wa!5 we have

W x, W x C w -S;

3This follows from the coherent realization of 7, since in this realization Ao is equivalent to the
push down Rir3 .

'This is because we have adjoint pair (F, A0 *(--)) and Lo * (--) is exact with respect to the
perverse t-structures on T and 8



W W c S-w;x *3 w* x*]w!

The above notation can be applied to DIw(Flaff). Slightly modifying the proof

of the above theorem, we can prove (and to save notation, we will identify A with

W\Waff):

Theorem 9. For X E DIW(Flaff) there exists a finite subset S C A, such that for

all w C Waff we have

W*j W*,, C S -w C A;

4.3 Affine Braid Group Action II: Coherent Sheaves

Version

The variety gL is smooth, and the map 7rgL is proper and generically finite of

degree jW|, where W is the Weyl group. It factors as a composition of a resolution

of singularities rL :gL M gL X L/W 1L and the finite projection gL X L/W L FgL;

here L is the Cartan algebra of gL. Let gLreg C gL denote the subspace of regular

(not necessarily semi-simple) elements, and gL,reg be the preimage of gLreg in gLreg;

then 7rgL induces an isomorphism gL,reg =L X L/w 0L

We now introduce the affine braid group action. Let A be the root lattice of GL

For A E A, we will write O(A) for the corresponding GL-equivariant line bundle on

the flag variety B, and we set F(A) = F 0 O(A) if F E Db(coh(X)) for some X with

natural map mapping to B. Let W be the Weyl group, and set Waj f = W < A. Then

W, Waff are Coxeter groups. Notice that Waff is the affine Weyl group of the group
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GL. It was mentioned above that gLreg = L XOL/W [L; thus W acts on this space via

its action on the second factor. The formulas A -> A : F F-- F(A), W C w : F - w.(F)

are easily shown to define an action of Waf on the category of coherent sheaves on

L,reg

Recall that to each Coxeter group one can associate an Artin braid group; Let

Baff denote the group corresponding to Waff . It admits a topological interpreta-

tion, as the fundamental group of the space of regular semi-simple conjugacy classes

in the universal cover of the dual group G. For w E Waf consider the minimal

decomposition of w as a product of simple reflection, and take the product of cor-

responding generators of Baff . This product is well known to be independent on

the choice of the decomposition of w, thus we get a map Waff C Baff which is

one-sided inverse to the canonical surjection Baff E Waff . We denote this map

by w E T. The map is not a homomorphism, however, we have T", = T" . T, for

any u, v E Waff such that l(uv) = 1(u) + 1(v), where 1(w) denotes the length of

the minimal decomposition of w. Let B- - c Baff be the sub-monoid generated by

-2
T, w E Waff . For a simple reflection si C W let Si E gL be the closure of the

graph of si acting on 9 Lreg. We let St denote the intersection of Si with N2 . Let

pri : Sii 1--- NLIPr : S, F gLpri : , 4 NL, where l( resp. r)

standards for the the projections to the first factor(resp. second factor). Let A+ c A

be the set of dominant weights in A. For a scheme Y over g we set Y' = NL Xg Y

Y = xg Y . We have the following theorem which claimed in [B] and partially

proved in [BM]



Theorem 10. a) There exists an (obviously unique) action of Baff on D(coh(j)),(resp.

D(coh(NL))) such that for A E A+ C A C Waff we have A F -> F(A) and

for a simple reflection si E W we have si : F v- (pr ).(pr *2)F. (respectively,

S'/ : F (pr''*).(pr' )F).

b) This action induces an action on D(coh(Y )), D(coh(Y')) for any scheme Y over

g such that Torg (0b, Dy) = 0, respectively TorL ((D, ,Cy) = 0, for i > 0.

c) There is a unique t-structure on Db(coh(Y)) (resp. Db(coh(Y'))) which is braid

positive above the tautological t-structure on coh(Y) (resp. Db(coh(Y'))).

d) The above results have an equivariant version and dg-fiber version(i.e. Without

the higher torsion vanishing condition).

Remark 2. Though we will not replicate the proof of the above results, I would like

to emphasize one result coming from in the proof, the braid positive t-structure on

Db(coh(S)) above the tautological t-structure on Db(coh(S)) is characterized by:

Db'-<(coh(5)) = {MIir,(b'.M) E D ;& (coh(S)), for any b' E Ba

And moreover, the above results can be modified to the other t-structure on Db(coh(S)).

Remark 3. The induced action of Baff on the Grothendieck group K(NL) factors

through Waff . If one passes to the category of sheaves equivariant with respect to

the multiplicative group, acting by dilations in the fibers of the projection NL -> B,

then the induced action factors through the affine Hecke algebra H. Furthermore, this

construction yields an action of H on the Grothendieck group K(,r (e)) for each
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e E NL; these H modules are called the standard H-modules. Thus the Theorem

provides a categorification of the standard modules for the affine Hecke algebra.

Particularly, let us consider the coherent realization coh7 of T. Notice that StL

L XL NL L =NL, hence as the perverse sheaves realization, there are two braid

group actions on this coherent realization. Moreover, the equivalence Baf: pervT

cohY is compatible with these braid group actions on both sides[B2).

Similarly, in the coherent realization ohS of 8, noticed that NL L X NL there is
OL

a braid group action, which compatible with the equivalence: Basp: coh 8 pervS[B2].

For more convenience, we can take this braid group action as inherited from the

left braid group action on T, so that, the commutative diagram in Theorem 7 is

compatible with this left braid group action.



Chapter 5

Two t-structures on Derived

Category of Coherent Sheaves over

Springer Fiber

5.1 Localization of De Concini-Kac Quantum group

at Odd Root of Unity

In this section, we will review some results of [BK],[BK1], and we will follow [BK]'s

assumption on q: if it is 1-th root of unity then it is primitive of odd order and in

case G has a component of type G2 the order is also prime to 3.

Let itq (resp. Uq)be the De Concini-Kac (resp. Lusztig ) integral form of the

simply connected quantized enveloping algebra of gL/C. Let Z be the center of Uq, in

case q is root of unity, it contains the Harish-Chandra centher ZHC and the 1-center
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Z. The Harish-Chandra homomorphism provids an algebra isomorphism:

Z CZ- ZHC (5.1)
z, n zHC

A cental character of tq consists of compatible pair (x, A) where X is a character

of 1-center and A is a character of Harishi-Chandra center, and we will denote by

a - mod the category of modules with Harish-Chandra character A and 1-character

x.

For each q (root of unity), there is an algebra morphism Uq - Uq whose image is

Uq with algebraic kernel is the augmented ideal of ZM.

In [KB2], they introduce a category of quantum D-module DA (Gq) and proved

that:

Db('DGq)) - D'(It - mod)

where A is integral and regular. If furthermore, let us fix a x in BB and is unipotent,

we get:

Db(D A,(Gq)X) - D (U - mod)

where the L.H.S. denote those (complexes of) D ,-modules supported on the Springer

fiber of (x, A) and the R.H.S. denote it' modules which are locally annihilated by a

power of the maximal ideal in Z' corresponding to x (generalized central 1-character



By the Azumaya splitting we have

q L(Gq) 2 Qcoh(T*X)x

where the latter category is the quasi coherent 0-modules on T*X supported on the

Springer fiber of x (with respect to the usual Springer resolution).

By standard base change argument, the above equivalence can be rewritten as:

Db(UAA - mod) c Db(Qcoh(Sprx))

L~
where Spr' {x} x NL.

2 4L

Moreover, in [BK2], they proved that if the Harish-Chandra character is general-

ized character, the above equivalence of the form:

Db(IA - mod) Db(Qcoh(Sprx))

L ~
where Spry = {x} x gL is the derived Springer fiber.

gL

From Theorem 10, the R.H.S. has a affine braid group action, and in a forth-

coming paper [K], the tautological t-structure on L.H.S. is braid positive above the

tautological t-structure on Db (coh( {x})).



5.2 New t-structure Introduced by Frenkel-Gaitsgory

Given a simple algebra g, the category 0 is equivalent to the category of N-

equivariant holonomic D-modules on the flag vareity. The Riemann-Hilbert corre-

spondence tells us there is an equivalence:

Perv(X) 2 D - mod(X)H.R.S

Thus, we have the following equivalence:

( 2 D - mod(G/B)N r PervN(G/B)

This is the well known localization theorem for gmod. Suggested by this theory, there

are various localization theories in other context. We will briefly recall the results in

[FG]. Let b be the Kac-Moody algebra associated to g, gcrit - mod be the category

of continuous b - mod at the critcal level, bcrit - modnalp be the abelian category of

gcri - mod, on which the center 3, = Z(U(b)crit) acts through its quotient 3 ""p (see

[FG) for the precise definition). Unlike the classical finite dimensional Lie algebra

case, we no longer have well behavior localization type results in the affine algebra

case, however, we still have the following gloabl section functor:

F : Db(D(Flaff )crit - mod) H- Db(bcrit - modnaip)

This functor can not be essentially surjective, due to the existence of large center
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on the right hand side.

hand side and we have

Res : Op"p -4 NL/GL,

Notice that there is an action of Db(coh(NL/GL)) on the left

a geometric realization of Z. O (OpliP) with residue map

the above functor can be upgraded to

U,,p : Db(coh(Op"P)) x
Db(coh(N4L/GL))

Db('D(Flaff)crit - mod) -> Db(6crit- modneil)

which they conjectured to be equivalence.

This conjecture holds partially, i.e. when restricted to some subcategory, the

functor is an equivalence. More precisely, considering the 10-equivariant object in the

right hand side, in [FG], they proved the following:

Theorem 11. The functor

Fnap : Db(coh(Opnilp)) x
Db(coh(NL/GL))

Db(D(Flaff)crit - mod)'o e Db(bcrit - modnilp)Io

is an equivalence of categories.

However, with the tautological t-structures on both sides, the functor Fnil, is not

t-exact. Due to the Riemann-Hilbert correspondence, we have

Db('D (Flaff)crit - mod)'o e Db (perviO (Flaff))

Hence, the special family of the perverse sheaves (i.e. Wakimoto Sheaves) has its

D-module context realization which we still denoted by WA, A E A, and the previous
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category is equivalent to

D'= Db(coh(Op"P)) x
Db(coh(NL/GL))

Db(pervi (Flajj))

They introduced the new t-structure on D = Db('D(F1aff)crit - mod)'o by

Dc = {M E DWA* M E D:5ut for anyA E A}

where WA is Wakimoto modules. This new-t structure easily defines a new t-structure

on D'. In Theorem 11, after introducing the new t-structure on L.H.S. , with the

tautological t-structure on R.H.S, Fna, is a t-exact functor.

Due to the Riemann-Hilbert correspondence and the previous Bezrukavnikov cor-

respondence we have:

Db(coh(Opnilp))

Db (coh(Op"i'p))

Db (coh(Opnp))

x
Db(coh(NL/GL))

xD

Db(coh(NL/GL))

Db(coh(NL/GL))

Db('D(Flaff)crit - mod)'o

Db(pervio (Fla55))

Db(coh([StL/GL]))

Let us fix a nilpotent oper with the residue image ,then we have the following

equivalence: (after base change from the above results).

L ~
IF : D b(bicrit - mnodnilp, )/ '-- D b(Qcoh( X gL)) (5.2)



where x gL which will be denoted by Spr is the derived Springer

R.H.S, the t-structure inherited from the new t-structure on 7 makes F

with the tautological t-structure.) In next section, we will prove this

braid positive above the tautological t-structure on Db(Qcoh( )).

fiber. And on

exact. (L.H.S

t-structure is

5.3 Comparing t-structure

In this section, we will prove that the new t structure -rew on T is braid positive

above the coherent t structure geoh on 8, and as an application, after a base change,

the following equivalence

Db(Ito - mod) 2 Db(Qcoh(Spr )) e Db(berzt - mod's ).

can be upgraded to equivalence of two abelian categories:

S- mod e Scrit - mod . (5.3)

L ~
where Spr - x gL is the derived Springer fiber.

gL

We start the proof with a lemma:

Lemma 4. In coherent realization of 8, we have the following:

1) Dcoh (coh([NL/GL]))= {O(A)(i]|A E Ai > 0.}

2) 7r,(Rw0(A)) E D (coh([NL/GL]))

h) bNOL]) D<oh'NGL]))

3) <(coh([N/GL])) c Dne(coh([N/G
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Proof:

1) This is obvious.

2) The statement in coherent realization is not obvious, howeverif we use the

quotient realization, it follows from the Example 4.

3) Note that the quotient t-structure gequt on quotS is braid positive above the

quotient t-structure hquot on quotX. After a slightly modification of the proof of

the result mentioned in Remark 2, we have:

quot 8t = {M E 8|7r,(M.b) c quotX qt}

Then 3) follows from 1) and 2) and the coherent realization of the above results.

Theorem 12. 1) The new t-structure snew on 8 coincide withe the tautological

t-StTUCtUTC coh On coh8-1

2) The new t-structure -rnew on 'T is braid positive above sne, on 8

Proof

1) The lemma implies that cohaS' 0 C coh8<0e, we know these two categories are

'As a direct corollary, we proved that snew is a t-structure.



coincide if we can prove that coh85ew C coh<c0<0 2

ME coh8: h Exth g(M®V,O(A))=0,VAEA,i>0,VERep(GL)

Ext, s(M * Zv, Lo * WA), VA E A, i > 0, V C Rep(GL)

Ext' (M * Zv * W,, Ao * W, * W,), VA, e E A, i > 0, V c Rep(GL)
pero r

Due to the Theorem 9, the support of M*Zv consists of a finite S of the I-orbits

on Flaff. Moreover, the theorem tell us the support of Wrizy-w, c S+v, i.e. if

v > 0, then the support of M*Zv*W, consists of finite I-orbits on Flaff which

all parameterized by some positive weights. Noted that Lo * WA * W, = AV+A

is a standard object, for any A + v > 0, hence we get M * Zv * W, E perS5

However from (--)*Zv is an eaxtact functor, we know M * W, perv Pervfo

v > 0.

On the other hand, if M*W8 peroSp!e"o VV > 0, by inverse the above argument,

we know M E cohSio. i.e. M E cohS:o e M * W E per oiero for any v > 0.

i.e. we proved that 850 Ccoh '

2) (This is the example 5)

Remark 4. Since we proved that the new t-structure on T is braid positive above the

new t-structure( hence coherent t-structure) on 8, after a base change argument, in

the equivalence (4), the tautological t-structure on L.H.S introduced a braid positive t-

2We want make a remark on the notation, in [G], there is a functor maps spherical perverse

sheaves to the central sheaves in pervro (Gr), and by geometric Langlands duality, the category of

spherical perverse sheaves a Rep(GL), we will denote Zv be the corresponding central sheaves.

43



structure on the R.H.S (w.r.p.t the tautological t-structure on Qcoh(pt)), and Theorem

10 assert there are only one t-structure braid positive above the tautological t-structure

on Qcoh(pt), hence it coincide with the one introduced by De Concini-Kac Quantum

group. Hence we proved the equivalence (5).
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