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Abstract

Recently, there has been much research on processes that are mostly random, but also
have a small amount of deterministic choice; e.g., Achlioptas processes on graphs.
This thesis builds on the balanced allocation algorithm first described by Azar,
Broder, Karlin and Upfal. Their algorithm (and its relatives) uses randomness and
some choice to distribute balls into bins in a balanced way. Here is a description of
the opposite family of algorithms, with an analysis of exactly how unbalanced the
distribution can become.
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Chapter 1

Introduction

Suppose you have a set of n bins, and you want to distribute m balls into these bins.

One way to do so would be to choose a bin uniformly at random for each ball. In the

limit, this would produce a Poisson distribution. The expected size of each bin would

be m/n. However, bin sizes would range from very small to very large. Recall that

under the Poisson distribution the probability of a particular bin having size k is

(m)ke-m/n

k!

So the expected number of empty bins would be ne-m/n. To bound the bin sizes from

above, note that, if m = cn, the probability of a bin existing of size 1 logn is bounded

by ni-y+,/loglogn. To bound this probability by 1/n, it's enough to set 7 = 2+ C. So

we see that almost surely all bins are of size O(log n/ log log n). On the other hand,

with probability

(1/n)(n (1 / log log n)(log c+1+log log log n) log log ; (1/n)(loglogn),)27 log n

there is a bin of size log n/log log n.

Suppose you want a more even distribution. For example, if balls are service

requests and bins are servers, then you would want to minimize wait time, i.e. bin

size. You could try a new method, first described by Azar, Broder, Karlin, and Upfal



in [2]: Place the balls sequentially. For the ith ball, select a few (say some constant

d) bins uniformly at random, then place the ball in the currently least full of these

bins.

This flattens the distribution. It reduces the maximum bin's growth rate from

log n/ log log n to log log n. It also decreases the number of empty bins (when n = m)

from n/e ~ .37n to .34n or less, depending on d.

Furthermore, this is easy to implement. It doesn't require memory of prior ball

placements. That is, there is no need to remember previous decisions, as long as bin

sizes can be queried. It doesn't require much randomness; there are only dm random

choices necessary to place all m balls. It is robust against attacks. For example, when

the number of balls is cn, if an adversary were to destroy a bin, there is no strategy

that would damage more than c balls in expectation and O(log n/log log n) in the

worst case.

Many variations have been explored since this algorithm was first introduced.

Initially, it was studied with n bins and m = cn balls (c an arbitrary constant), the

number of options d some small constant, and all choices made uniformly at random

(i.e. the selection of the d options, and any tie-breaking). Since then, researchers

have considered several other cases. To study the case m much greater than n in

[3], new proof techniques were developed. In the course of that paper, it was also

discovered that asymmetrical tie-breaking can make the overall distribution more

level; this notion was studied further in [9].

Often, real-world implementations have further constraints; not every ball (service

request) can go in every bin (server). The option sets cannot be uniformly distributed.

This case, of d options under different distributions, has been studied in [6] and [5].

Each of these cases has natural real-world applications. In all these applications,

the goal is the same: an algorithm using a small amount of randomness and a small

amount of bin inspection that produces a flat distribution, with the balls as evenly

spaced as possible.

My problem grew out of a different application. Suppose each ball is charged rent

for using a bin. Furthermore, suppose the rent is a buy-at-bulk function: placing ten



balls in the same bin costs less than placing five balls in two bins. Then it would be

beneficial to have many empty bins, and a few bins with many balls in them. This

models many real world problems; for example, purchasing software licenses for a

large company that needs many applications.

A natural algorithm would be to choose d option bins for each ball, but place the

ball in the most (not least) full bin among them. This thesis will focus on analyzing

the distribution created by this process. In the next chapter, I analyze what happens

when the number of balls and number of bins are roughly equal. The third chapter

includes theorems about the distribution that hold for arbitrary numbers of balls and

bins. The last chapter considers the case when the number of balls is much greater

than the number of bins.

1.1 Definitions

More formally, the distribution analyzed here is

Definition 1. Let GREEDY(m, n) be the algorithm as follows. For time t = 1

through time t = m, select uniformly at random from [n] = {1, 2, ... n} d times, for

some predetermined d. Call the set of at most d indices selected at time t St. Let the

bins be labeled B1 ... B,. Let the number of balls in Bi at time t be bi(t). Place the

tth ball into BM, where bM(t) = maxiESg{bi(t)}. If there is a tie, break it uniformly

randomly.

Throughout, we use m for the number of balls and n for the number of bins. We

consider the asymptotic behavior as n goes to infinity. Usually m > n and d is a

small constant (e.g., 2), but many results hold even when this is not the case. I will

note which restrictions on m and d are necessary throughout the text.

Often, it is convenient to compare GREEDY with other distributions. For ease

of notation, we will call these FAIR (the distribution first described in [21) and

UNIFORM (the uniform distribution).

Definition 2. Let FAIR(m, n) be the algorithm as follows. For time t = 1 through



time t = m, select uniformly at random from [n] d times. Let St be the set of at most

d indices selected at time t. Place the tth ball into Bi,, where b.(t) = minies±{bi(t)}.

If there is a tie, break it uniformly.

Definition 3. Let UNIFORM(m, n) be the algorithm as follows. For time t = 1

through time t = m, select uniformly at random from [n] once. Place the tth ball into

the bin selected.



Chapter 2

The case m = cn

We first consider the case m = cn. Many proof techniques that were used in earlier

work on FAIR are also applicable in this case (see e.g. [8], [31, [9]). The differential

equations ideas used in [8] are used here for computing the expected number of bins

of any constant size. Previous work on UNIFORM is also useful (see e.g. [1], [4]).

2.1 Differential equation techniques

A natural question to ask about GREEDY is how well it achieves the cost minimiza-

tion goal. As smaller bins are more expensive, we would hope GREEDY has most of

its balls in bins of large size, with a few bins of smaller size, and many bins that have

no balls at all. We first calculate how many bins of small size there are.

At first glance, this seems easy. Certainly it's easy to analyze how many times a

bin is an option. The expected value is d/n, with some lucky bins being options up to

Q(log n/ log log n) times. However, it is possible that a bin could be an option many

times without being chosen. If every time the bin is an option, there is another bin

in the option set that has more balls, then the bin will end with zero balls. So the

size of each bin depends on how many times it is an option and on its relative size

each time it is an option.

To analyze this more complicated dependency, we turn to Kurtz's theorem (see

Appendix A). The idea of applying Kurtz's Theorem in this context was first devel-



oped in [8]. We first use Kurtz's theorem to calculate the expected number of empty

bins. We then turn to the more complicated case of bins of arbitrary constant size.

Theorem 2.1.1. For the case m = cn, the expected number of empty bins after all

the balls have been distributed is (cd - c + 1)1/(1-d).

Proof. We will first calculate the expected change in the number of empty bins at

each time step, then convert that formula into a differential equation, then solve the

differential equation. The solution to the differential equation will also be the desired

expected value.

First, let's consider the number of empty bins at an arbitrary time. For conve-

nience we will rescale time so that at time t, tn balls have been distributed. Let y(t)

be the proportion of empty bins at time t. Then y(O) is how what fraction of bins are

empty before any balls have been placed. Since all bins are empty initially, y(O) = 1.

We know that y(t + 1/n) depends on y(t). Recall that our algorithm chooses an

option set, then places the ball in the bin in the option set with the most balls in it

already. The number of empty bins changes only if a ball is placed in a previously

empty bin. In that case, the number decreases.

But a ball would be placed in an empty bin only if an empty bin were the fullest

among the options, i.e., if all the bins in the option set were empty. The probability

of this happening at time t + 1/n is y(t)d. So the expected change in y from time t

to time t + 1/n is -y(t)d.

We now translate this into the language of Kurtz's theorem1 . As in the appendix,

the ith coordinate of X, will represent the proportion of bins, out of n, that have size i.

Since we know that the change in empty bins depends only on the proportion of empty

bins, we may truncate {X,} after the first coordinate. So the state space of X,, is

contained within {n 1 k~k E N}. There is only one possible transition, {-1} = L. So

we need only find #-1 = . By the discussion in the previous paragraph, #(x) = -x.

We now check that the conditions of Kurtz's theorem are satisfied. Since F(x) =

O(x), the Lipschitz condition is satisfied by M such that Ixd - y < M x - y| for all

See Appendix A for a more detailed discussion of Kurtz's theorem. The presentation here will
follow the structure of the example there



x and y in the state space. Since x and y must be between 0 and 1, it's enough to

find M such that lxd - y 5di MIx - yI for all pairs x and y in [0,1].

Recall that
d-1

x -_yd| = I Z j xiyd-1-i

i=o

For x and y in [0, 1], $_o ziyd-i < d. Therefore setting M = d is enough to

satisfy the Lipschitz condition.

We now check that lim,, X,(0) = xo for some constant xO. Since initially all

bins are empty, X,(0) = 1 for all n. Therefore limn, 0s Xn(0) = 1, and the second

condition is satisfied.

To find a neighborhood K around {X(u)Iu < t}, we first need to find X. Recall

that X(t) = xo + f F(X(u))du. We know that F(x) = -xd, so we compute X by

solving the differential equation i = -xe.

First we find the general solution.

dx
-=dt

xd

X-(d-
1)

- + C =t
d - 1

Now we use the initial condition x(0) = 1.

1 -(d-1)
+ C =0

d - 1
d-1

C = -1
d - 1

So x is such that
1 x-(d-1)

+ td-1 d-1 =

and therefore

-+ x~(d-1) = (d - 1)t

x-(d-1) = (d - 1)t + 1



x = ((d - 1)t + 1)~ (d-i

Note that X = ((d - 1)t + 1) i-1 is non-negative and decreasing, so for u < t,

X(u) X(0) = 1. Therefore we can let K = [0, 2]. Then

Ill sup 0(x) =supxd--2 ,
IEL xEK xEK

which is finite. So X,(c) approaches X(c) for any constant c, and the expected

proportion of empty bins under GREEDY(cn, n) is X(c) = ((d - 1)c + 1)-1.

Using these results, we can compare statistics for FAIR, UNIFORM, and GREEDY

explicitly. For example, the expected number of empty bins after n balls have been

distributed is as follows:

Table 2.1: Expected number of empty bins

GREEDY UNIFORM FAIR

d = 2 n/2 n/e 0.2384
d = 3 n/ 3 n/e 0.1770n

d nd-1/(d-1) n/e -

Note that, even for d = 2, GREEDY is already significantly different from FAIR.

More suprisingly, it is different from UNIFORM. The shift from one to two choices

increased the number of empty bins significantly. Also note that the proportion of

empty bins increases with d. As d -+ oc, d- 1/(d- 1) -+ 1.

We can use this same technique to compute arbitrary constant bin size statis-

tics. The requirements of Kurtz's theorem are satisfied for any constant bin size and

constant time. Since we have scaled time so that at time c, cn balls have been dis-

tributed, this means we can compute the expected number of bins of constant size

for any number of balls a constant multiple of n.

Theorem 2.1.2. For the case m = cn and options number d a constant, the expected

number of bins of size k under GREEDY(m, n) is yk(c) where yA satisfies the system



of differential equations

{y'(t) = 2(y 1 (t) + ... + yo(t))d - (y- 2 (t) + ... + yo(t))d - (y,(t) + ... + yO(t))d}, 2 ,

y' (t) = 2 yo(t)d - (yo(t) + y1(th),

yo(t) = -yO(t)d

with initial values yo(O) = 1 and yj = 0 for all i > 0.

Proof. This proof is similar to the previous one. We first informally determine the

dependencies of bin size statistics. We then translate this into the language of Kurtz's

theorem. We check that the conditions are satisfied, and discover the expected values.

First, compute the dependencies of the bin sizes. Let yi(t/n) be the proportion of

bins of size i at time t. That is, if b1(5/4) = 1, b2(5/4) = 1, b3(5/4) = 0, b4 (5/4) = 3,

then yo( 5 / 4 ) = 1/4, y1( 5 / 4 ) = 1/2, y2( 5 / 4 ) = 0, y3(5/4) = 1/4. The probability that

y (t + 1/n) is different from y (t) depends on values of yj (t) for j < i. The number of

bins of size i increases if St+1 /n, generates only bins of size at most i - 1 and includes

at least one bin of size i - 1. The number of bins of size i decreases if St+1 /n generates

only bins of size at most i, and includes at least one bin of size i.

We know that L = {ei - e_1}iEN. Now we need to find #1. The previous discussion

makes it clear that

ej-ej = (Yi-1 + ... ) - (Yi-2 + .. . + yo)

because the probability of the option set containing only bins of size at most i - 1 is

(yii + ... yO)d and the probability of it containing only bins of size less than i - 1 is

(Yi-2 + ... + yo)d.

Putting these definitions together, we see that

F(y) = l 1(x) = Z(e - ei_ 1)((yi_1 + .. . - (Yi-2 + ... + yo)d.

IEL iEN



The ith coordinate of F(y) is thus

2(yi_ 1 (t) + .. . + yo(t))d - (yi- 2 (t) + .. . + yO(t) - (yi(t) + . . . + yo(t))d.

As in the previous proof, we truncate X,, to satisfy Kurtz's conditions. Suppose

we are interested in calculating the expected number of bins of size k. Then consider

only the first k + 1 coordinates and let Xn E {n- 1xIx E N+' 1}. Note that, as before,

each coordinate only depends on the coordinates of smaller index. So this truncation

is valid.

We now verify that the conditions of Kurtz's theorem are satisfied. As X, now

has k + 1 coordinates,

k+1

IF(x) - F(y)|= (Z[2(xi_1(t) + ... + x 0 (t))d - (Xi-2(t) + ... + xO(t))d - (x,(t) + ... + xO(t))d

i=1

-2(yi_ 1 (t) + ... + yo(t))d + (yi- 2 (t) + ... + yo(t))d + (y,(t) + ... + yo(t))d]2)1/2.

For ease of notation, let

ni = 2(xi_1 + ... x 0 )d - (xi- 2 (t) + ... + x 0 (t))d - (xi(t) + .. +. xO(t))d

and

vi = 2(yi_ 1 (t) + .. . + yo(t))d - (yi- 2 (t) + ... + yo(t))d - (y(t) + ... + yo(t))d.

Then to satisfy the Lipschitz condition we want to find M such that

k

< M j(xi - yi) 2.
i=0

We will do this by first fixing j and finding Mj such that

k

(uj - V) 2 < M Z(x, - y,)2
i=0

k+1

EUi -~ vi)2

i=1



Then letting M = Ejt Mj will be sufficient.

Note that

d-1

- - -- 9) +... + Xo)-(yj-- +... + Y 0 )d-1-i

i=O
d-1

-(j + .. .+ X0 ~~ Yj - - -~~9) E (Xi -|- .--- 0 i -+-
i=O

d-1

-(Xj- 2 + - - - 0 ~~ j-2 - O - 0) (Xj-2 + - - - XO)(Yj-2 +
i=0

Since the xi and y2 are all between 0 and 1, we know that

d-1

+ -. + -~ )i (yj1 + + Y0 )d-1i d -1

and similarly

-+ Y-0 )dl--1i d(j + d-1
d-1

i=0

and
d-1

Z(X-2 + - + XO)(Yj- 2 + - - y 0)d-1-i d( - ) d-1

i=a

By the triangle inequality, the overall formula is bounded

d-1

ju - Uj I 2(j-i + .o . 0-- yj-1 ~- - yo~9) E(xj-1 ~I --
i=0

S+ Xo)i(yj-1

d-1

+ -(Xi + ... + .X - Yj ... - -YO)

+ - + Y 0 )d-1-i

+ - -YO)d-1-i

+ X0)(Yj- 2 +
d-1

S(xj- 2 +

uj -v, = 2(xj-1 -- - 0 - j-1 ~~ -

- -O - 0d-1-i

- -I~9 )d-1-i.

E(xj-l
i=O

-. -- 0 UYj ~+ -

-. - - O 90d-1-i
- - -(xj-2



So

+uj - v( | x 2 (x-1 +. + xo - y - yo)|dj-1

+|(xj + -.-. o - yj - ...- yo)| d(j + 1)d-1

+|I(Xj-2 + . . . + Xo - yj-2 - ..-- yo)| d(j - 1)-1.

Now let m be the index such that |xM - Ym l lxi - yg| for all i < k. Then by

breaking the overall difference xi + . . . + xo - y- - yo into pairs Xr - Yr, we can

use the triangle inequality again and see

4(k +1)|x, - yml 2 |xi-1+...+ o - yi- ...- yol

+|Ixi +... -+ xo - yi -.. -Y0|

+lxi- 2 +...+xo -Yi- 2 - - Yo|

for all i < k.

We now combine the previous bounds to see

luj - vg| I 4(k + 1)d(j + 1)d-~ Km -- yI -

For arbitrary j < k

|uj -vI < 4d(k + 1)d Xm -Ym.

However, we need to bound (un - v,) 2 . So square each side to see

(uj - v) 2 < 16d 2 (k + 1)2d(Xm - Ymi) 2 .

Note that Zio(x - y) 2 > (Xm - y.) 2 , and we have the bound

k+1 k

3(uj - v) 2 < 16d 2 (k + 1 )2d+1 Z(x -

j=1 i=O



which means setting M = 16d 2 (k + 1)2d+1 is sufficient for the Lipschitz condition.

We now check the other conditions. For all n, X,(O) = eo (the starting position

is always that all bins are empty), so lim+ X, (0) = eo. All that remains is to find

K such that 1EEL 1' SUPxEK lW(x) is finite. Let K = [-1, 2 ]k+1. Then

SUP #eje _ (X) < (2 + 2 + . .. + 2)d + (1 + ... + 1)d - (2d + Id.
xEk

Since all 1 E L have Ill < 2, and ILI = k + 1, we see

k+1

Z sup # 1(x) 2 (2 d + 1)id < (2 d+1 + 2)(k + 1)d+1
lEL xEK

which is finite

Therefore all the conditions of Kurtz's theorem are satisfied, and so X, approaches

X, where X = xo + f F(X(u))du. That is, each coordinate y2 of X can be determined

by solving the system of differential equations

{y (t) = 2(ys_ 1(t) + ... + yo(t))d - (y- 2 (t) + ... + yo(t))d - (y,(t) + ... + yo(t=2,

y'(t) = 2 yo(t)d - (yo(t) + y1(t))d,

yI(t) = -yo(t)d

with initial values yo(O) = 1 and yj = 0 for all i > 0.

So forGREEDY, as for FAIR, Kurtz's theorem can be applied to calculate ex-

pected numbers of bins of constant size. For FAIR and similar algorithms, Kurtz's

theorem is also effective in estimating numbers of bins of larger sizes. In those cases,

the differential equations for higher bin sizes can be bounded in a simple way, which

in turn leads to bounds on the probability of very large bins existing. There are no

analogous bounds on the differential equations for GREEDY. In the next section, we

use other techniques to bound the expected numbers of large bins.



2.2 Maximum bin size

Recall that one of our goals was an algorithm that had many large bins. In particular,

the hope was that the largest bin size under GREEDY is much more than that under

UNIFORM (and hence FAIR). This seems like a reasonable hope; FAIR decreases

the maximum bins size dramatically, so GREEDY ought to increase it.

A natural proof technique would be to use Kurtz's theorem and find a bin size m

such that xm is almost 0, e.g. m such that xm < 1/n2 . Then the probability of a bin

of size m existing is almost 0, and we have an upper bound. This idea works well for

FAIR, for which

F(xi) = (1 -zi-2 -zi-3 - o)'+ (1 -Xi - o) -2(1 - i_1 - -0)

By changing notation and letting si = 1 - xi - ... - xo, the equation simplifies to

F(si) = s _ - s .

This lends itself to some simple bounds utilizing the facts that si_1 > si and si is

between 0 and 1; for example, s < sf 1 . Combining these ideas leads to an upper

bound on si - si-1 = xi, as desired.

The same technique doesn't work as well for GREEDY. Setting

si = 1 - xi-1 -... - xo

means F(si) = (1 - s8 )d - (1 - s5 _1 )d. The fact that si-1 si is no longer useful, as

signs are now reversed. Other tricks don't make the equation any easier to estimate.

Instead, we use a coupling between GREEDY(m, n) and UNIFORM(dm, n) to

bound the maximum bin size. Unfortunately, this bound is not significantly greater

than the upper bound for UNIFORM(m, n); GREEDY does not increase the size of

the largest bin.

Theorem 2.2.1. With probability greater than or equal to 1 - 1/n, the most full bin



under GREEDY(cn, n) (c an arbitrary constant) has size less than "_ohas ize ess hanloglogn-logd-logc

for all e > 0.

Proof. Consider UNIFORM(dcn, n) coupled with GREEDY(cn, n) as follows: the

(d(t - 1) + i)th ball is placed by UNIFORM(dcn, n) in the ith bin chosen for St.

(If a bin is chosen twice for St, then it receives two balls.). This is clearly a valid

coupling. Furthermore, if bin Bi receives a ball under GREEDY(cn, n) at time t,

then i E St, so bin Bi also receives a ball under UNIFORM(dcn, n). Therefore once

all cn balls have been distributed under GREEDY(cn, n) and all dcn balls have been

distributed under UNIFORM (dcn, n), every bin in the uniform distribution is at least

as full as its counterpart in the greedy distribution. Therefore to bound the fullest

bin in the greedy distribution, it's enough to bound the fullest bin under the uniform

distribution.

Let's formalize this idea. Consider X' = Em1 X, where each Xj is a random

variable equal to 1 with probability 1 - (1 - 1/n)d and 0 with probability (1 - 1/n)d

(so X' has the same distribution as a count of the times some fixed bin B was one

of the d options). Let X = E", Xi be the sum of random variables, each equal to 1

with probability d/n. Note that Pr(X > m) Pr(X' > m) for any m. Furthermore,

let Y = Xi - d/n. Note that E(Y) = 0 and Y = E" Y = X - n(d/n) = X - d.

We now prove a lemma about Y, which will lead to a bound on X, which in turn

gives a bound on bin sizes under GREEDY.

Lemma 2.2.2. For Y as defined above, and for arbitrary 3,

Pr(|YJ > (# - 1)d) < (e-l#-4)d.

Proof. First recall the standard inequality Pr(|YJ > a) < 2e2 2 /", where Y =

j=" Y, Pr(Y = 1 - d/n) = d/n, and Pr(Y = -d/n) = 1 - d/n. (See, e.g.,

Appendix A of [1].) Now consider E[eAY], for some arbitrary fixed A.



E[eAY] = J E ~eA) = f[(d/n)(eA(1-d/n) + (1 - d/n)(e-Ad/n)
i=1 i=1

= e Ad((d/n)eA + 1 -d/)

Now note that Pr[Y > a] = Pr[eY > ea]. Apply Markov's inequality to see

Pr[eAY > e A] < E[eY /eAa]. Combining that with the previous inequality, we see

Pr[Y > a] < e-A(d+a) ((d/n)e + 1 - d/n)"

for all A and a. Let a = (-1)d and A = log3 #to get Pr(IYI ;> (#-1)d) < e'-l#3-)d,

as desired. 0

We want to upper bound the probability by 1/n2 . Setting # = (2,) "g is sufficient

for arbitrary c 2 log log log n (for example, any constant E will do):
llog n-log loglg

lim log(e~l- )d n2 
-

n-+oo
lim d# - d - #dlog# + 2logn.

n-oo

Setting # 2=E( logn gives us

lim (2 + E) log n
n-+oo d log log n

-d (2 + E) log n

(log log n )
log(2 + ) log n) + 2log n

(d log log n )

(2 + c) log n

log log n
-d- ((2 + c) log n (log(2+e)+log log n-log d-log log log n)+2 log n,

log log n /

which is

lim - clog n + (log log log n
n-*oo

- log d + log(2 + E) + 1) - d = -0o.
log log n)

Therefore the probability is < 1/n 2 for n sufficiently large. On the other hand,

Pr(|Y| > M) > Pr(X > M +d) > Pr(X' > M+d).



So the probability of a bin having more than #d - (2,) log balls is thus < 1/n forlog log n

n sufficiently large, and we have an upper bound on the likely size of the maximum

bin. E

We can strengthen the above theorem to get an upper bound for non-constant d.

Even if d grows with n, as long as it grows slowly, the asymptotic behavior of the

maximum is the same as if d were a constant. In fact, if d(n) = O(log log n), then

the upper bound is the same.

Theorem 2.2.3. With probability at least 1-1/n the most full bin under GREEDY(n, n)

with number of options d(n) dependent on n has size less than

(2 + e) log n
log(2 + c) + log log n - log d(n)

for all 6 such that

(2 + c) log n >1
d(n)(log(2 + c) + log log n - log d(n)) ~

Proof. All that is necessary is a constant e such that (2+f) log n > d(n)(log(2+,E)±log log n-log d(n))

(Note that this rules out, e.g. d(n) > log n.) Let a = (2+E) logn and # = >

1. Then the probability that X > #d(n) is bounded by (e-1#-l)d(n) < 1/n 2 for

n sufficiently large. Therefore the maximum bin almost surely contains less than

d(n) = (2+E) log " balls 0
log(2+e)+log log n-log d(n)

So we now have statistics for smaller bins' sizes, and one upper bound on the

largest bin size. In the next section, we will turn to different statistics about bin sizes

that give another way to compare GREEDY with other distributions.
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Chapter 3

Results for arbitrary m

The previous results were limited in several ways. They only held for a number of

balls linear in the number of bins. Even with that restriction, we were only able to

compute the expected numbers of bins of constant size. Furthermore, the upper bound

on the size of the maximum bin didn't take into account the particular structure of

GREEDY.

In this chapter, we develop bounds that hold for arbitrary values of m and n. These

bounds do take into account the structure of GREEDY, letting us see exactly how the

bins are growing and moving. Some of these bounds are on the size of a percentage

of the bins, rather than one particular bin, which allows for better estimates. Others

look at the overall sequence of bin sizes produced by GREEDY, and compare it with

other sequences that are already well-studied.

3.1 Bounds on a fraction of the bins

Our previous results focused on the expected number of bins of an exact size. We

now take a different perspective. Rather than calculating the proportion of bins of a

certain size, we calculate the size of a certain proportion of bins. That is, we calculate

the total number of balls within a certain subset of the bins. We bound the number

of balls in the smallest fraction of bins from above and below. These bounds are valid

for arbitrary numbers of balls and bins, unlike previous bounds. They are tight; the



gap between the upper and lower bounds is independent of m, n, and the fraction of

bins considered.

Theorem 3.1.1. Under GREEDY(m, n), the expected number of balls in the last xn

bins, once the bins have been arranged in decreasing order, is at most xdm for all

values of x, m, n, and d. The probability of the last xn bins having at least k balls is

upper bounded by 1 - ji=) (1 -x

Proof. We first relabel the bins and redefine GREEDY to make it easier to analyze.

Let i(t) be the index of the ith largest bin at time t. Break ties in this labeling

randomly; for example, if bi(t) = 3, b2 (t) = 3, and b3 (t) = 2, then 1(t) is equally

likely to be 1 or 2. Now think of the option sets in terms of this relabeling. Choosing

(ii, .. . , id) from [n]d at time t gives as options bins Bei(t), ... , Bigt). The bin that gets

the ball is the one with the smallest index under this labeling. For ease of notation,

let im = min{ii, ... , id}.

Note that this redefined version is indistinguishable from the original. Option sets

are still chosen uniformly at random, and the largest bin in the option set is the one

which gets a ball. Ties are broken uniformly randomly, as before.

This redefinition both confuses and clarifies the algorithm. It is helpful in deter-

mining which bin gets the ball. In the original labeling, it was equally likely that

bi(t) > b2 (t) or b2 (t) > bi(t). Now, it is always true that bl(t)(t) ;> b2(t)(t). On

the other hand, it is no longer the case that giving the tth ball to bin i implies bin

i is larger at time t + 1. For example, suppose the bin sizes are 2, 2, 2, 1, 1, 0 and

St = {3,4,6} (so ii = 3, i2 = 4, and i3 = 6). Then the ball goes into bin B3 (t). At

time t + 1, the configuration is 3, 2, 2, 1, 1,0 . Although bin B3(t) was given the ball,

b3(t) = b3(t+l). The increase is for bl(t): b1(t+1)(t + 1) = bi(t)(t) + 1.

So putting the ball into bin Bim doesn't guarantee that bim(t+1)(t+1) = bim(t)(t)+1,

but it does guarantee that the increase must be in a bin of index at most im. The

increased bin may move to the left in the reordering, but never to the right. Therefore

we do know that

bj(t)(t) + 1 = bj(t+1)(t + 1).
ml j=1



We can use this observation to get bounds on ball placement. It is clear from the

above equation that j >(1 x)n bj(t) can increase only if im > (1- x)n. In other words,

the last x of the bins increase in size only if the list of options is contained within

them. This happens at each time step with probability xd. Therefore the expected

number of times this has happened, once all m balls have been distributed, is mxd.

So once all balls have been distributed, the number of balls in the union of the last x

bins has expectation at most mxd.

Furthermore, the last x bins contain at least k balls only if the option set has

been contained within the last x bins at least k times. Therefore the probability of

the last x bins containing at least k balls is at most

k- 1 ( ,n ik- 1 ( ) d ( - d m i1-E Pr(St is in last x)zPr(St is not in last x)m - - X
i=O i=O

This gives us another statistic by which to compare GREEDY and UNIFORM.

As the expected number of bins of size k under UNIFORM(m, n) is known to be

(m/n)ke-m/n

k!'

we can compute the expected fraction of bins that contain a particular fraction of

balls. For example, when m = n, the expected number of bins of size 0 is n/e, of size

1 is n/e, and of size 2 is n/2e. So if we take just the emptiest bins until we have half

the balls, the expected number of bins would be

n/e + n/e + (n/2 - n/e)(1/2) ~~ 0.8n.

We can use the same type of calculations to get Table 3.1.

Note that, as desired, the majority of the balls under GREEDY are concentrated

in the largest few bins. This effect becomes more pronounced as d grows. For example,

when d > 4, half the balls take up at least the lower 2-1/4 ~ 0.84. Therefore there are



Table 3.1: Expected lower fraction of bins x containing fraction of balls y, m = n

UNIFORM d = 2 d = 3 d

y = 1/3 x = 0.7 x > 1/3 x 1/3 1/ 3  x > (1/3)1/d

y = 1/2 x = 0.8 x 1/ 2 x > 1/21/ 3  x > (1/2)1/d

y = 2/3 x = 0.88 x V/(2/3) x (2/3)1/3 x > (2 / 3 )1/d

at least half the balls within the top .16 bins, unlike under UNIFORM, where they

take up the top 0.2 bins.

Also note that this argument holds regardless of m, n, and d. It is equally valid

for n = m, m linear in n, and m exponential in n. It is valid for d constant or a

function of n or m. It is also valid for arbitrary x, as long as xn > 1. For example,

we can use this to see the expected number of balls in the last 1/,/n fraction of the

bins is at most n-d/ 2 m. Furthermore, the last bin (i.e. the last 1/n fraction of bins)

remains empty until m = E(nd) mxd = m(1/n)d - 7

Theorem 3.1.2. The expected number of balls under GREEDY(m, n)in the last xn

bins, once the bins have been arranged in decreasing order, is at least

2d +I~d 1 )xdm > e- 1/2 ( adm
2dd+ 2 d+ 2 +x- 2dx ( 2d + 2)

for all values of m, n, d, and x.

Proof. This proof relies on a case-by-case analysis of the behavior of GREEDY. We

first prove a weaker bound, to demonstrate a simple version of the technique used.

We then alter parameters to prove the stronger bound.

Note that, if a bin within the last xn bins receives a ball, the only case in which

the total number of balls in the last xn bins doesn't increase is if there were a string of

bins of the same size that overlapped the dividing line. For example, suppose x = 1/2,

the bins are 322221, and the option set is {4, 5, 6}. This option set is contained within

the last half, so under our estimate we would expect the last half to increase. The

ball goes in the 4 th biggest bin, but the new bin size sequence is 332221. The last half

has the same size as it did before, because the increase "leapt up" the string of 2s.



When the (xn + j)t" bin is given a ball, but the (xn - k)th bin is the one that

increases, then the bins between the (xn - k)th and the (xn + j)th must have all had

the same size. More formally, if im(t) = xn + j and

b(xn+j)(t)(t)= b(xn+±)(t+l)(t + 1)

and

b(xn-k)(t)(t) + 1 = b(xn-k)(t+1)(t + 1),

then

b(xny(t)(t) == . . . = b(xn+j)(t)(t).

In order to find a lower bound on the size of the last x bins, we will bound how

often there is a string of equally-sized bins stretching from the left to the right of

Bxn(t). We now give a sketch of the argument's structure, using simple parameters.

We then optimize the parameters to find a tighter bound.

Suppose at a particular time step all the option bins are within the last xn. Call

this type of time step "good". There are two possibilities for each good round: the

increased bin will be within the last 2xn bins, or it won't. Let g be the number of

good time steps. Then the first or the second case will happen at least g/2 times. If

the first case happens at least g/2 times, then the last 3xn bins will have at least g/2

balls.

The second case is more tricky. Suppose it happens at least g/2 times. Consider

the (1-2x)n-1't largest bin (i.e., the smallest bin outside of the least 2x). Every time

a case-two step occurs, that bin must be in a string of equally-sized bins that stretches

from some index greater than (1-x)n to some index less than (1-2x)n. Furthermore,

that string's length decreases every time a case-two step occurs. Therefore, after at

most n - 2xn case-two steps, the string no longer contains the (1 - 2x)n - 1t bin.

This means that boundary bin must have increased in size. If there are g/2 case-two



steps, then the (1 - 2x)n - 1" bin must contain at least

number of case-two steps
n - 2xn

g
2(1 - 2x)n

balls. There are xn bins at least as full as that one in the last 3xn, so the last 3xn

bins must contain at least

( 9 > 9x
(xn) (2(1 -2x)n J 2(1 - 2x)

balls. Therefore, the last 3xn bins contain at least

(g/2)(min{1, x/(1 - 2x)})

balls overall. The expected value of g is xdm, so the last 3xn bins are expected to

contain at least

(xdm/2)(min{1, x/(1 - 2x)})

balls.

This isn't the tightest possible bound, of course. All the parameters used can be

altered to give a better bound. For example, we can alter the proportion of cases

one and two. For any p + q = 1, case one happens at least p of the time or case two

happens at least q. This gives bounds of

pmxd

and
qmx d

n(1 - 2x) nx.

Setting them equal to find the best p and q gives q -=- and p = , which gives

the lower bound
mxd+1

in either case.



The other parameter to tighten is the split, i.e. the boundaries for case one and

case two. Let 6n be the overall section whose balls are bounded (corresponding to

3xn in the original proof). Break this large 6 section into three smaller sections, of

length -yn (the emptiest bins, corresponding to the smallest xn bins in the original

proof), #n (next emptiest, the middle xn), and an (most full within the last 6n, the

largest xn). Case one will now mean that the option set was contained within the

last -y bins, and the increase occurred within the last 3 + -y. Case two is when the

option set was contained within the last y bins, but the last # + 7 did not increase.

We know that case one happens p times or case two happens q times. If case one

happens p times, then the expected increase of the last 6 bins is

d
pmy.

If case two happens q times, then as before we need to divide the expected number of

case two occurrences by the maximum length of a string of equal bins that spans the

boundary between the larger bins and the last # + 7, then multiply it by the number

of bins within 6 but above # + y. This gives an expected increase of

qmyd\

n(1-# -y)) an.

So overall we have the lower bound

min{pmy', ( l7 ) an}
(n(1 - -7))

for the number of balls in the last 6n bins.

Note that this bound is largest when # 0. Setting the two bounds to be equal

to find the best p and q, we see

1-6+a
q 1 - 6 + 2a

35



and

1- -6 +2a

Now plug in a + 7 6 and the above value for p to the generic lower bound

pm-yd d ma(6-a)d

1+ 2a - 6

and solve the derivative for zero to see the maximum is at

y/(1-6) 2(1 + d)2 + 2d(6)(1 - ) - (1 - 6)(1 + d)
a= 2d

This is pretty unwieldy. Approximate the maximum by setting a = n. Then

6 6 2d+1)=6-a( d+ 2

pmYd 2+2d 2 d dm
1- d ( 2d+ 2 d2d + 2 2d+2+6-2d 6 m.

Recall that (1 - 6)1/E >

2d + 1
2d + 2

e- 1 for 0 < c < 1, so

i2d+2

2d+ 2

Also note that 1 < 2d, so

1 1
2d+2+6-2d6 - 2d+2

So we have the simpler lower bound

E(number of balls in the last 6n bins) > e-1/2
2d+ 2 )6dm

Note that the upper and lower bounds differ from each other by only a constant

and

d
2d+2

d

e- 2d2 e-.1/2.



factor, independent of x, m, and n. We know therefore that as the fraction of bins

x increases, the fraction of balls increases as xd. The only unknown is the correct

constant.

3.2 Majorization results

The previous results give us tight (up to constant) estimates on the number of balls in

subsets of bins. They don't estimate the size of specific bins. We now bound specific

bins by using the reordering according to size. Here, we use coupling to compare the

bin size sequence produced by GREEDY with that produced by UNIFORM.

Theorem 3.2.1. For all values of m and n, the expected sequence of bin sizes under

GREEDY, arranged in decreasing order, majorizes the expected sequence of bin sizes

under UNIFORM(m, n).

Theorem 3.2.2. Given a sequence x, let M, be the set of sequences with the same

length and sum that majorize x. Then for any particular bin size sequence a =

a1,.... a, with probability of pi under UNIFORM(m, n), the probability of Ma under

GREEDY(m, n) has probability P2 > P1.

Theorem 3.2.3. For any S a set of sequences, the probability of UxesMx under

GREEDY(m, n) is at least as great as the probability of Uxesx under UNIFORM(m, n).

Proof. These three theorems follow from a simple coupling. Consider running two

algorithms in parallel. Each process has its own set of n bins ({A 1,..., A,} and

{B 1 ,... , Bn, }, respectively) and m balls which will be distributed sequentially into

the Ai (respectively Bj). We will assume the process runs from time 1 to time m,

with the ith ball being placed at time i. Consider the bin size sequence. As before,

let bin Ai(t) be the ith largest bin at time t (breaking ties uniformly randomly), and

define Bi(t) analogously. Let ai(t) be the number of balls in bin Ai(t) at time t, similarly

define bi(t). At time t, choose option set ii, ... , id E [n] uniformly randomly. For the

greedy algorithm, place the tth ball in bin Aim(t), where m = min{ii, ... id}. For the

uniform algorithm, place the tth ball in bin Bi1 (ty.



At any time t, the sequence al(t), . .. an(t) majorizes the sequence bl(t), ... , bn(t)-

This can be proved by induction on time, although the proof is less trivial then it

might look at first glance. Suppose i balls have been distributed, and a1(i), ... n(i)

majorizes the sequence bi1(), ... , bnti). Look at what happens when the i + 1s' ball is

distributed.

By the definitions of A and B, the bin in which ball i + 1 is placed is the same

as, or to the left of, the bin for B at time i. However, that does not necessarily mean

that the position in the ordering of Am(i) at time i + 1 is to the left of the position

in the ordering of Bil(j) at time i + 1. For example, suppose A = 7632 and B = 6552

at time i, and the chosen indices are 3 and 4. In that case, for A, 3 becomes 4, and

for B, 5 becomes 6. At time i + 1, A = 7642 and B = 6652. The bin whose size

increased for B was to the left of the bin whose size increased for A.

So we have to be more subtle. Suppose it does happen that the bin whose size

increased for B is, at time i + 1, to the left of the bin whose size increased for A. For

convenience, let its index at time i + 1 be a for A and b for B. Let the indices at time

i be a and #, respectively. Then for this to have happened, all bins in A with indices

between a and a must have equal size at time i, and similarly for all bins in B with

indices between # and b.

Now, suppose for contradiction that A at time i + 1 no longer majorizes B. In

particular, there is some index j such that

k k

Saj(i+) Zb(i+1)
j=1 j=1

For this to be true, # < k < a and

k k

E aj (j) E 5b ().
j=1 j=1

Suppose ak(i) < bk(i). By the above discussion, bk(i) = bk+1(i) and, by definition,



ak(i) ak+1(i). Therefore
k+1 k+1

Zaj (j) <K Zbj(j),
j=1 j=1

which contradicts the induction hypothesis.

Suppose ak(i) > bk(i). Then it's even simpler: - a,(i) < E bj()-

Suppose ak(i) = bk(i). Since A majorizes B at time i, for

t = max a(j) # bj(j))
j<k

ap(i) > bpt). Therefore, if p exists and is greater than 1,

p-1 p-1

Za(j) <K Zbj j.
j=1 j=1

Furthermore, such a y must exist. Suppose it did not. Then A and B would be

equal up through the kth bin at time i. But we also know that all bins between # and

b are equal for B and not for A. Therefore the bin size for A must decrease at some

index 1, for # < 1 < b. But then A no longer majorizes B, as E aj(j) < EI-1 bj(i)-

Suppose y = 1. Then E _j aj) > E _ bj(j), contradicting our original assump-

tion.

So we have now proved that al(t), ... an(t) majorizes b1(t),. .. bn(t). From this fact,

all three theorems follow:

To prove the first theorem, recall that the weighted averages of pairs of sequences,

for each of which one majorizes the other, must majorize each other. That is, if

there exists a bijection f : S -+ T such that f(x) majorizes x, then for any {A,}xEs

such that ExeS AX = 1, ExES Axx is majorized by ExeS Axf(x). Expected value

fits this definition, so this coupling proves that the expected bin size sequence under

GREEDY majorizes the expected bin size sequence under UNIFORM.

To prove the second theorem, note that for any sequence of option sets that gen-

erated a under UNIFORM, the same sequence will lead to some b under GREEDY,

where b majorizes a. The probability of a is the probability of any of those bin



size sequences occurring. If any of those sequences occurs, then b will majorize a. So

Pr(Ma) under GREEDY is at least the probability of any of those sequences occuring,

which is Pr(a) under UNIFORM. So P2 > pi, as desired.

To prove the third theorem, we generalize the previous paragraphs. Let S' be the

set of option set sequences s that lead to a bin size sequence in M, under GREEDY.

Let S" be the set of option set sequences s that lead to the bin size sequence x under

UNIFORM. Then the coupling tells us that S" C S' so the probability of S' is

at least the probability of S". By the definitions of S' and S" we know that S" is

disjoint from S" for all x # y. Thus Exes|S 'I Exes IS'., and so the probability

of UxesM, under GREEDY is at least the probability of Ucesx under UNIFORM.

We can also bound the bin size sequence of GREEDY from above by coupling with

UNIFORM. The key is to consider UNIFORM with d times as many balls. Then the

same arguments used to prove the lower bound also prove an upper bound.

Theorem 3.2.4. For all values of m and n, under GREEDY(m, n) the expected se-

quence of bin sizes, arranged in decreasing order, is majorized by the expected sequence

of bin sizes under UNIFORM(dm, n).

Theorem 3.2.5. Given a sequence x, let M,, be the set of sequences of the same

length as x and with sum y (y is not necessarily the same as the sum of x =" xi)

that majorize x. Then for any particular bin sequence b = b1 ,... bn with probability

P2 under GREEDY(m, n), the probability pi under UNIFORM(dm, n) of Mb,dm is

greater than P2.

Theorem 3.2.6. For all S sets of sequences, the probability of UxeSM,dm under

UNIFORM(dm, n) is at least as great as the probability of UxesX under GREEDY (m, n).

Proof. A similar argument works for this second group of theorems. As before, A will

be the greedy process and B the uniformly random process (but now with d times as

many balls as A). That is, A is GREEDY(m, n) and B is UNIFORM(dm, n). The

same induction shows that the sequence generated by GREEDY(m, n) is majorized



by that of UNIFORM(dm, n). Modify the coupling to allow a step to be (A doesn't

get a ball and B does) or (A and B both get balls). The two processes are coupled

by choosing il, ... Id uniformly at random from [n] at time steps of the form xd for

x a natural number. At time steps of the form xd + im(xd), bins Aim(xd) and Bim(xd)

get a ball. At time steps of the form xd + j, j # im(xd), bins in A do not get a ball,

but bin Bi, does. At time dm, then, all m balls have been distributed in A and all

dm have been distributed in B.

We can show by an argument similar to the previous one that a1 (dm) ... a, (dm)

is majorized by bi(dm)... bs(dm). Suppose a1(i) ... an(i) = a(i) is majorized by

bi(i) .. .bn(i) = b(i). We want to prove that a(i+ 1) is majorized by b(i+ 1). If i+ 1

is not of the form xd + im(xd), then a(i) = a(i + 1). Since b(i + 1) majorizes b(i),

we know that b(i + 1) majorizes a(i + 1). On the other hand, if i + = xd + im(xd),

then the same bin gets a ball under A and B. We are now in the situation described

in the previous proof. We have two bin size sequences at time i, one majorizing the

other, and the bins receiving balls under A and B are both indexed by xd + n(xd).

So the same analysis works here as did in the previous case. Thus we know that the

sequence generated by A is majorized by the sequence generated by B.

As before, we use this argument to prove all three theorems. The weighted average

of majorizing sequences is a majorizing sequence, so the expected sequence of bin

sizes under GREEDY(m, n) is majorized by the expected sequence of bin sizes under

UNIFORM(dm, n). The option sets argument also proves that p ;> P2, as before.

And a coupling of option set sequences again proves the third theorem.

These theorems are powerful tools in analyzing the growth of GREEDY(m, n).

For example, they show that the largest bin under GREEDY(m, n) is at least as

large as the largest bin under UNIFORM(m, n). On the other hand, it is less than

UNIFORM(dm, n). As a corollary to these theorems, then, we can generate Theorem

2.2.1 and Theorem 2.2.3.
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Chapter 4

Results for m much larger than n

In this final chapter, we consider the case m >> n. Once the number of balls

gets much larger than the number of bins, UNIFORM and FAIR both approach an

even distribution of m/n balls per bin. On the other hand, GREEDY becomes more

lopsided. How lopsided GREEDY becomes, and how quickly, will be discussed below.

4.1 Relative position of bins

The difficulty of estimating the size of a particular bin in the previous chapter was

due to the bins and balls changing position. If bin B is currently part of a string of

equally-sized bins, then giving it a ball means B leaps to the head of the string after

reordering. Note that the probability of any particular bin getting a ball depends

only on its position in the size ordering, so this is especially frustrating. We now

bound the probability of two bins changing position.

Theorem 4.1.1. For any starting configuration of bins and balls, if bin Bi is currently

6n/(d - 1) balls more full than bin Bj, then the probability of bin Bi becoming smaller

than bin B at any time in the future (i. e. for any value of m) under GREEDY is at

most e-.

Proof. Let's view the changing ball statistics of the two bins as a random walk. Fix

two bins, without loss of generality say B1 and B 2, and consider 1bi - b2| at each time



step. For most steps, this statistic doesn't change; usually the ball doesn't get placed

in B1 or B 2. Let's condition on one of those two bins getting a ball. If the larger bin

gets a ball, the distance between them increases, so the statistic increases by 1. If the

smaller bin gets a ball, it decreases. This is a random walk with a reflecting barrier

at 0. Since a larger bin is more likely to get a ball than a smaller bin, it is biased in

favor of +1

How much more likely is the larger bin to get a ball? Suppose B1 and B 2 are

currently ranked the ith and jth bins, with i > j, where the 1" bin is the smallest and

the nth bin is the biggest. Then the probability, given that one of the two bins gets

a ball, of the bigger bin getting it is

Z d _(i _ 1 )d

id - (i -1)d + jd - (j -1)d

That is because the ith bin gets a ball with probability () - ( ) overall, and the

Jth with probability ()d ( 2 i)d. So the probability that, given that either the ith

or Jth gets a ball, of the ith getting it is

(i)d _ (i-1)d + (ji)d _ (IJ:1)d id - (i - 1)d +jd - (j - 1)d

We now minimize this probability. First, note the minimum must be such that

j+ 1 = i. That is clear from considering the model; the closer together two bins are,

the closer together their respective probabilities of getting a ball are. If the two bins

are neighbors, then the only option sets for which bin i would get a ball but bin i - 1

would not are those which include both bins.

So we need to minimize

i (i - d

id-(i -1 )d +(I 1 )d-(i -2 )d Zd-(1- 2 )d



We first take the derivative.

d xa - (X - 1)d~

dx xd -(x - 2)d

(xd - (x - 2)d)(dxd- - d(x - 1)d-1) - (dxd-1 - d(x - 2 )d-1)(Xd - (x - I)d)

(xd - (x -2))2

Note that the denominator is positive, so we can determine the behavior of the func-

tion by looking at the sign of the numerator.

(xd - (x - 2 )d)(xd-1 - (x - 1 )-1) - (XdI - (x - 2 )d-1)(Xd - (X - 1 )d)

1 )d-2-J

1d-1-i

- (x -(x -2))

-(x -(x -2))

d-1I

j=0 xd(x -2)d-l-j (X - (X -1)

(d-2
jxi(x -2)d-2-j)( _ (X_ 1

d-1 d-2 d-2 d-1

2 ( xi (x - 2 )d-1- ( xi (x - 1 )d~2-j - 2 E xi (x - d-2- x _ d-1-

j=0 j=0 j=0 j=0

d-2

E xj (x -

j=0

(d-1x~

j=0

Let a = Exd(x

becomes

- 2 )d-2-i and b = I-2xi(x - 1)d-2-j. Then the difference

d-2

2((x - 2) E x (x - 2 )d-2-j + d-1)

j=0

d-2

-2 (xd (x - 2)d-2-j (

(j=0

d-2

(E2 xi(X - d-2-j

j=0

d-2

j X_ d-2-)
j=0

= 2[(a(x - 2) + xd-1)(b) - a((x - 1)b + xd-1)

= 2[abx - 2ab + bxd-1 - abx + ab - axd-1]

= 2[(b - a)xd-1 - ab]

We want this to be negative: (b - a)x d- - ab < 0. Therefore we need to show

bxd-1

b+ xd-1 < a.



Expand b and a to get the equivalent inequality

Xd-1 X d~1-(X-1 )d-1 d-1 )d-1
x-(x-1) ) - (x - 2)

(xd-1-(x-1)d-1 d-1 x (x -2)

X-(x-1))

Simplifying further gives

xd-d-1 _ (X 1)d- 1 ) d-1 (x 2 )d-1)

2xd1 - (x - 1)d1

Dividing the left hand numerator and denominator by xd-1 gives

Xd-1 - (X - 1 <(1/ 2 ) (Xdl - (x - 2 ) d-1).

2xd<1 - (I ()d-1

Note that xd- - (X- -)d1 < Xd- - (x - 2 )d-1 and 2Xz-1 - (x 1)d-1 > 2, so the

inequality is true.

Therefore the original derivative is negative, and the original function is minimized

at i = n. That is, the probability of the larger of two bins getting a ball is minimized

when they are the largest and second largest bins. In that case the larger bin gets a

ball with probability
nd - (n - 1)d

nd - (n - 2)d'

We will now formalize the coupling of the changing gap size with a random walk.

For ease of notation, let i3 be the jth time step at which bin B1 or B 2 gets a ball. Let

Xi be the position of a random walk with bias e at time i, where

1+ c nd - ( - )d

2 nd - (n - 2)d'

That is, the random walk has the same bias as that between the largest and second

largest bins.

Couple the sequence Ibi(ii) - b2 (ii)|, bi(i 2 ) - b2 (i 2 )|,... with X 1 , X2 , ... as fol-

lows. If at time j the larger bin has probability -y of being chosen over the smaller



bin, then Xj = Xj+1 + 1 with probability

1+
2

and Xj = Xj_1 - 1 with probability 1 if

|b1(ij) - b2(ij)| < |bi(ij_1) - b2(ij-1)|

That is, the random walk takes a -1 step every time the bin sizes step closer together,

and additionally may take a -1 step even if the bins don't step closer, in such a way

that the probability of a +1 step in the random walk is always L.

If B1 and B2 switch relative positions, then there exists a time step t at which

bi (t) = b2 (t). Therefore they switch positions only if there exists t such that lbi (t) - b2 (t) =

0. The coupling above shows that if the bin size gap reaches 0 at time t, the random

walk must have also reached 0 at time t or earlier. We now bound the probability

that the random walk reaches 0.

This bound uses a gambler's ruin argument

ruin starting from position x is

q X 
(1- E)/2 )X

p (1+ E)/2

(see Appendix B). The probability of

1 (1)X

Therefore to bound this probability by e-6 , we need

6
X~ log((1+ E)/(1 - E))

Since 1/2 + c/2 = - -(n2) , we know that += - _" 2). Recall that n isnd-(n-)d i1-cE (n-l)d-~(n-2)d R cl ha ii

|b1(ij) - b2(ij)| > |bi(ij_1) - b2(ij-1)|



approaching infinity, so we can estimate using leading terms

nd - (n - 1) nd - n + dnd1 - ()nd-2

(n - 1)d - (n - 2)d nd - dnd-1 + (d)nd-2 - nd + 2dnd-1 - 4d nd-2

dn - (d ) 2) d - 1
=1+=1

dn - 3() dn - 3(n) - (3/2)(d - 1)

For small a, log(1 + a) ~ a. Therefore log(1 + d-(3;)(d-1)) ~ -(3)(1)- So

6n 6(n - (3/2)(d - 1)) j
(d - 1) (d - 1) log 1 + (d-1)

8n- (3/2) (d-1)

6

log nd-(n-1)d
lg(n-l0d-(-2)d

If x > n , for n sufficiently large, then a random walk starting at x with bias
2(d-1)'

c will reach 0 with probability less than e-6. Therefore the probability of two bins

switching position under GREEDY(m, n), if they start at least 6n apart, is less

than e-6

Note that the gap needed is linear in n. So for m = cn, for example, this theorem is

not useful; we know the largest bin has size on the order of log n/ log log n. Therefore

there are no two bins that are far enough apart from each other for this theorem to

apply.

However, once m is larger, this gap does appear. For example, if m = 6n2/2(d- 1),

then the expected bin size under UNIFORM(m, n) is 6n/2(d - 1). We know that the

bin sizes under GREEDY(m, n) majorize UNIFORM(m, n), so that means there is

expected to be a bin under GREEDY(m, n) of size at least 6n/2(d - 1). Therefore

the largest bin has size at least 6n/2(d - 1).

We also know from the upper bounds on the number of balls in the last few bins,

that that last (2c(n1) In-2/d bins have at most c balls total. Therefore the last

(2c(d-1) ld ni-2/d - c bins are empty. So for constant c the gap between the largest

bin and the smallest (2c(d 1) ni-2/d - c bins is at least 6n/2(d - 1). So we can

apply this theorem to see that once 6n2/2(d - 1) balls have been distributed, none



of the smallest 2c(d-1) l/d 1-2 /d - c will become the largest bin at any time in the

future.

4.2 Bins of equal size

If we knew putting a ball in the currently ith largest bin at time t would make the ith

largest bin one ball bigger at time t + 1, it would be easy to predict how big each bin

gets. Unfortunately, that's not true. If all the bins between i and j have the same

size, then putting a ball in any bin between i and j will mean the ith bin is the one

that increases. So it is useful to study how strings of equally-sized bins can occur.

In this section, we first prove a warm-up theorem about how putting a ball in one

bin instead of another can affect the final distribution. We then bound the probability

that any two bins have a constant size gap. In particular, this bounds the probability

that any two bins have the same size. This gives us a bound on how long any string

of equally-sized bins is likely to be.

Theorem 4.2.1. For any distribution of balls b = (bi, b2 ,... bn), and any i # j,

consider the effect of GREEDY(m, n) on initial configurations of b + ej and b + ej.

For m = O(n log n), the final size of Bi starting from b + ej will be greater than the

final size of Bi starting from b + ej with high probability.

Proof. One would think that giving a ball to one bin instead of another would have

only a positive effect on the winning bin's final size. However, it could happen that

the bin that initially receives the ball would have been better off if the ball had gone

to the other bin. There are some sequences of option sets that can lead to Bi's final

size being greater starting from b + ej than b + ej.

For example, suppose b = (1, 1, 1), i = 1, and j = 2 (so we are comparing

GREEDY on b + ei = (2, 1,1) and b + e2 = (1,2,1)). Further suppose that the

option sets are S1 = S2 = {1, 3} and S3 = S4 = {2, 3}. The following table shows

possible outcomes.

Note that a tie is broken at time t = 3 for initial configuration (2, 1, 1) and at time



Table 4.1: Bin sizes under different configurations and tie breaks

B 2 > B3  B 3 > B 2 B 1 > B3  B 3 > B1

t = 0 211 211 121 121
t = 1 311 311 221 122

t = 2 411 411 321 123
t = 3 421 412 331 124
t = 4 431 413 341 125

t = 1 for initial configuration (1, 2, 1). Recall that GREEDY breaks ties uniformly at

random. In the above table, Bi > Bj indicates that the tie between bins Bi and B, is

broken in favor of bin Bi. Therefore we see that, if the tie is randomly broken in favor

of B 2 at time t = 3 and in favor of B3 at time t = 1, b2(4) = 3 starting from (2, 1, 1)

and b2(4) = 2 starting from (1, 2, 1). The effect of bin B2 being larger initially is to

make B 2 smaller after more balls have been placed.

Note that the difficulty in the above case was the result of option sets intersecting.

Ball placement at time 1 influenced placement at time 2, for example, because their

option sets were the same. In general, if the option sets containing Bi and the option

sets containing B3 have no intersection or chain of intersections, it is impossible for

an extra ball in Bi to cause B to increase. This condition is necessary for our

"paradoxical" event to occur.

We analyze the probability of options sets intersecting now. For ease of notation,

assume the starting configurations are b + ei and b + e2. We call the chain of

intersections generated by a sequence of option sets an "influence set". We define T

to be the influence set at time i. Initially, To = {B 1, B 2}. Given a sequence of option

sets {S}, define T recursively.

T = T_ 1 U {xjx E Si and Si n T_ 1 # 0}

Note that the only case in which there could be a paradox is if a subsequent option

set St contains B1 or B2 and some other bin which was already influenced by the initial

choice of ei or e2. So it is enough to bound the probability of |St n Tt_1 I > 2.



Let's do so. If St does contain both B1 or B 2 and some bin that is in T_ 1,

then there must be a subsequence of option sets St, Str-) Str 2 ,* .. St1 such that St,

intersects St, 1 and St, contains B1 or B 2. There are (t) choices for indices of a

subsequence of length r. The probability that any particular length-r subsequence is

intersecting is bounded by (d/n)r. There are two choices for St, and St, to contain

B1 or B 2, and the probability of each is less than d/n. So the overall probability of

an intersecting subsequence of length r is bounded by 4(t)(d/n)r+1. Then for the

existence of any sequence of any length, we have the bound

t

4 (d/n)' < (4d/n)(1 + d/n)' -+ (4d/n)et d/".
r=1

Note that when t = cn log n for c any constant, this is Q(n-1). In particular, if c < 1,

this is o(1).

We now turn to a more complex theorem.

Theorem 4.2.2. For each j, for any constant 6, for all m = Q(n 2 log n) any pair

of bins outside a set of size 6n are with high probability at least j balls different from

each other.

Proof. This theorem uses the same sorts of ideas in its proof as the previous one did.

In order to show two bins are likely to have different sizes, we analyze the option sets

and determine which types of option sets have an effect. We then count the number

of effective option sets. Finally, we bound how likely it is that a sequence of option

sets will have the wrong effect.

We first bound the probability of any two bins having the same size, once the

process has run a sufficiently long time. Let the number of balls to be distributed be

m = m' + t, where appropriate values for m' and t will be discussed later. We fix

two bins, A and B, and consider the probability that they are of the same size after

all m balls have been distributed. We distribute the balls in two phases. In the first

phase, distribute m' balls. We will then analyze the remaining t steps based on the

bins' positions at time m'.



We first find a set of bins that are much smaller than bin A or bin B at time

m'. If we assume that A and B are within the largest (1 - 6)n bins at time m',

we can fix g, and find c such that the last c bins at time m each have size at most

min{a(im), b(m)} - g. (Appropriate values for 6, g and c will be discussed later.)

Now look at the final t rounds. We'll reveal the option sets {Si} 1 in several

phases. In the first phase, we'll reveal all the sets that don't contain A or B. Then,

reveal all the sets that contain A or B and at least one bin outside of the least e at

time m'.

Call the remaining sets "important". These sets are useful, as (since the bins

competing with A or B are all much smaller), they guarantee A or B gets a ball. To

assure this guarantee, we also need to be careful that the other bins in the important

option sets haven't gotten too much bigger, i.e. they are still smaller than A or B.

We choose the gap size x so that cannot happen. The exact value of x is discussed

below.

Now reveal all the non-A or B elements of the q important option sets. Each of

them contains exactly one of A or B. So there are 2 q possibilities, {A, B}q, once the

other elements are revealed. Let's partially order the vectors by setting A < B (so,

e.g., ABBAB < BBBAB). We will show that this partial ordering corresponds to

an ordering in terms of bin size: let v < u if, for any fixed sequence of sets with A or

B hidden in the q important sets, the v sequence of As and Bs would result in fewer

balls in bin B and more in bin A than the u sequence with high probability.

This is just a repetition of the theorem above. We already know that, as t was

chosen to be small, there is unlikely to be a chain of intersection within the option

sets. So the placement of a ball into A or B at any of the important stages is unlikely

to increase the size of the other bin. If v < u under the A < B vector ordering, then

the v sequence will generate a smaller B than the u sequence, unless there is a chain

of intersection within the option sets. The previous theorem guarantees with high

probability that this won't happen.

This tells us that, with high probability, the set of revealed sequences such that

A and B have the same size is an anti-chain. Therefore, with high probability, it has



size at most (g) by Sperner's Lemma. So, given that there are exactly q important

option sets, and that the gap between the last en bins and A and B is as expected,

and that the sequence of important sets is non-intersecting, the probability of A and

B having the same number of balls after all m balls have been distributed is at most

.q-) We can bound q so that this probability is small, to complete the proof.

We now calculate the actual probabilities. First consider 6. Note that, if A and

B are in the upper 1 - 6 proportion of bins at time m', then A and B have at least

as many balls as the 6nth bin at time m'. That bin has at least as many balls as the

average of the last 6n bins' sizes. Recall that we know the number of balls in the last

6 bins is at least (number of times option set is within last 6)/(e1 /2 (2d - 2)). So if

the option set is within the last 6 x times, then the number of balls in the last 6 bins

is at least x/e 1/2 (2d - 2).

Note that the option sets are distributed uniformly, so we can use the standard

Chernoff bound

Pr(x < 6dm' - a) < e-2a2/m,

to see that the number of balls in the last 6 bins is at least 6dm' - a with probability

at least 1 - e-2a/m'. Because the 6nth bin has at least as many balls as the average,

if A and B are in the upper (1 - 6)n bins, they will each have at least

6dnm - a
6n

balls with probability at least

1 - e-2 2 /m'

Now turn to e. Suppose the number of balls in the least 2en bins at time m' is

x. Then the enth smallest bin would contain at most x/en balls: because there are x

balls total, and the next En bins each have at least as many balls as the enth smallest,

eny < x where y is the number of balls in the Enth bin.

Furthermore, we can bound x using previous results. Recall that x is at most the

number of times the option set is within the last 2en. Again, the Chernoff bound tells



us that

Pr(x > (2c)dm' + < e-2 2

So the least en bins will each have size at most

2dedm' + 3
en

with probability at least

1 -e-22 '

We can combine these two results to see that, with probability at least

(1 e-2a2/m')(1 _ e-232 /m'),

the gap between A or B and any bin within the least en will have size at least

6dm' - a 2dedm' +#

6n en

To make the probability of error exponentially small in n, it is thus sufficient to let

a = va'nm' and # = /#'m'n for any constants a' and 0'. Since rnm' < m' for

m' Q(n 2 log n), by choosing suitable e given 6, it is possible to guarantee a gap of

size g = co(m'/n) for any arbitrary constant co.

Recall that we assumed the gaps between A or B and the least en were so large at

time m' that A and B would still be larger than the least en at time m'+ t. We now

determine exactly how large a gap is necessary to guarantee it will not be closed after

t steps. Each bin in the least en may increase only if it is a member of an option set.

So it is enough to bound the number of times any of the least bins appear in an option

set during the last t time steps. Again, note that the number of times x that one of

the least en bins is an option can be Chernoff bounded: Pr(x > edt + A) !; e-2A2 /t.

If A = vA'tn for some constant A', this bound is again exponentially small in n.

We now turn to t and q. First note that we can again use Chernoff bounds to

guarantee a value of q within a certain range. The probability of an option set being



important is 2((E + I/n)d - d). Therefore the number of important rounds in the last

t steps is at least 2((c + 1/n)d - ed)t - _Y with probability at least 1 - ey 2 /t . Again,

setting -y = ''nit is sufficient to give an exponentially small error probability.

Given that the important sets are non-intersecting, the probability of the impor-

tant set sequence making A and B have equal size is at most

2q /2q -V'7r(2((+ 1/n)d -ed)t -

We finally choose t. To guarantee the smaller bins don't get too big, we need t

such that

g > co(m'/n) > edt + AVm.

To guarantee the important set sequence doesn't make A and B equal, it is enough

to find t such that

v/2_1

V/7r(2((E + 1/n)d - Ed)t - 7log n

Setting t > c1n log n and m' > (ci/co)edn2 log n for any constant ci is sufficient for

both conditions. So overall we need

m = m'+ t' > (c1 )((ed/co)rn + 1)n log n

for arbitrary constants E, co, c1 . Therefore m = Q(n2 log n) is enough to guarantee A

and B are not equal with probability

(1 - 6)2(1 _ e-2a'n)(1 _ e-20'n)(I - e-2\'n)(I _ e-2-'n)

cvlogin

Note that the same argument could apply for any arbitrary difference j between

A and B. Important sets are the same, and the sequences that guarantee B is exactly

j balls greater than A still form an antichain. So B and A are almost surely at least

j balls apart for m = Q(n 2 log n).



Furthermore, we can use this result to bound the total number of equally sized

bins.

Corollary 4.2.3. With high probability, for m = Q (n2 log n), the greatest number of

bins of the same size is less than y, for any y such that =1g) = o(y). (For example,

with high probability there are no more than 1/5 bins of any one size.)

Proof. First, let x be the number of bins of the same size as Bi. Then

E xi) = O(n2  lon

We can use Markov's Inequality to see that

Pr xi> a = O(n 2 /a log n).

Now, suppose there were y bins of the same size. Then the sum would be at least

y(y - 1)/2 (as there would be at least (Y) pairs of the same size). The probability of

that happening is

O(n 2/y 2  logn).

If y is such that
n

=0(y),
(log n)1/4 '

this probability goes to zero. E



Appendix A

Kurtz's theorem

We now justify the use of differential equations in calculating expected values. This

appendix will define necessary terms, state Kurtz's theorem, and demonstrate the

technique by applying it to a simple example. The source of this theorem is [7]; it

was originally used in this context in [8].

Definition 4. A density dependent family of Markov chains is a sequence of jump

Markov processes {Xn} that all have the same transition functions, once renormalized.

More formally, it satisfies the following requirements: For each n C N, the state space

of X,, is contained within {n-lkjk E Z*}, where Z* is Zd for some constant d or

ZN. There exists a set of non-negative functions /i, where 1 ranges over the set of

transitions L, that generates the transition probability for any pair of states in any

chain Xn. That is, the probability of going from x to y in X, is q1,y = On(x-y)(X).

For convenience, let F(x) = ZEL( l 1 1(x), i.e. the expected change in x.

Note that GREEDY, FAIR and UNIFORM all generate density dependent families

of Markov chains. For example, consider UNIFORM(m, n). In this setting, Z* = ZN

The ith coordinate represents the proportion of bins of size i. The possible transitions

are that, for arbitrary i, the number of bins of size i increases by one and the number

of size i - 1 decreases by one. Therefore L = {ei - ei_ 1} C ZN. The probability

of the transition (ei - ei_ 1 )/n is just the proportion of bins of size i - 1. Therefore

pei-ei-_(X) = ei_1 - x. Note that 3 doesn't change with n. For all Xn, i.e. for all



numbers of bins, the probability of a bin statistic increasing or decreasing is dependent

on the same coordinate in the same way.

Theorem A.0.4 (Kurtz). Suppose {X} is a density dependent family of Markov

chains such that IF(x) - F(y)| I M |x - y| for some constant M, liman, Xn(O) =

xo. Let X(t) = xo+fo F(X(u))du. If there exists a neighborhood K around { X(u) ju <

t} such that ZlCL I SPxCK / (x) is finite, then lim , supu<t |Xn(u) - X(u)| = 0.

In other words, as n tends to infinity, Xn tends to X.

Note that X can be thought of as a solution to the differential equation X = F(X).

In most applications of Kurtz's theorem, this differential equation is solved, then used

to predict the limit of the Markov process. Let's see how this works by doing a simple

example, analyzing UNIFORM.

First, UNIFORM(m, n) is a density dependent family of Markov chains, so the

first condition is satisfied. Second,

m

F(x) = E l 1 (x) = (ei - ei-_)(ei-1 -x) = ox - X,

l6 L i=1

where a is the operation that translates each coordinate to its right neighbor, and

leaves the first coordinate 0, i.e. o(xo,. . .xn) = 0, x 1 , ... Xn_ 1 . Therefore

|F(x) - F(y)| I <x - y|+lo-x - uy I < 2|x - y|

and the second condition is satisfied. Third, Xn(0) = eo for all n, so in particular

limnl.+ Xn(0)= eo and x0 = eo.

To check the next condition, we must first find X. Note that X(t) = L1 t

satisfies X = F(X). (We normalize so that nt balls have been placed at time t.)

Because we have the Lipschitz condition IF(x) - F(y)| I M x - y| and the initial

values, there is exactly one X that satisfies X = F(X). So we know that is the X we

seek.

Now we find K a neighborhood of {X(u)|u < t} that makes the sum finite. This



is difficult; for each coordinate 1 < nt, #1(x) can be as large as

lie- 1
21

Therefore

nt

ll sup 3(x) > 2 (1/V/2'I) > (1/v7) log nt - 1,
IEL xE{X(u)|u<t} i=O

which diverges as n goes to infinity.

However, for specific applications, we can find a converging sum. Suppose we just

want to know the number of bins of some constant size, say c. Then we could look

at a new Xn, where we truncate each vector at the cth coordinate. The ith coordinate

is still the proportion of bins of size i for i < c. Note that the #1 (xi) depends only

on x, for j < i, so this truncated version will still accurately simulate the smaller bin

statistics. Furthermore, we can now let K be [-1, 2]c+1 and bound supXEK 43(x) by

2, to get

I|l sup 03(x) _ 6c
1EL xEk

for all t and n. So the final condition is satisfied. Therefore as n tends to infinity, at

fixed time t the expected number of bins of size i for any constant approaches .

For example, if we consider UNIFORM(n, n), then the expected proportion of bins

of size 1 is e- 1 . The same technique can be used for any constant bin size at any

constant time, i.e. for any number of balls that is a constant multiple of n.
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Appendix B

Gambler's Ruin

We now discuss the random walk results necessary in bounding bin position switches.

We start with gambler's ruin in the finite case, and then turn to the infinite case.

Much of this discussion comes from [4].

Definition 5. A random walk will here refer to a random walk on N, which makes a

+1 step with probability p and a -1 step with probability q. More formally, let

k

Xk,c = C + Yi,
i=1

where the Y are independent random variables, each with probability p of being 1 and

q of being -1. Xk,c thus represents the position of a random walk on Z at time k

starting at c.

We will be considering the relationship between the starting position c and the

probability of the walk reaching 0. We first consider the finite case, calculating the

probability of reaching 0 before some constant a. We then use this result to calculate

the probability of ever reaching 0, for an arbitrarily long walk.

Theorem B.O.5. The probability of a random walk as defined above reaching 0 before

it reaches a is (qp)a-(1lp)"
(q/p)f-1

Proof. We first define q, to be the probability of reaching 0 before a from starting



position z. Then for z = 1, 2,.. .a - 1 we have

qz = pqz+1 + qqz-1.

That's because from z the next step is to z + 1 with probability p and to z - 1 with

probability q. We can rearrange that equation to see

p(qz+1 - qz) = q(qz - qz-1)-

Therefore

qz+1 - qz = (q/p)(qz - qz-1)-

We also know qa= 0 and qO = 1. Since we have difference equations and boundary

conditions, we can now solve for qc and get

(q/p)a _(q/p)c

(q/p)a - 1

as desired.

We now consider the infinite case.

Theorem B.O.6. The probability of a random walk as defined above reaching 0 at

any time is min{(q/p)c, 1l}

Proof. We simply take the limit of the previous formula as a -+ oc. When q < p,

limaoo(q/p)a = 0, and

lim (q/p)a _ (q/p)c

a-+oo (q/p)a - 1
= lim

a-+oo (q/p)a - 1

1 - (q/p)c
-1 -

1 - (q/p)a

pq /

1 - (q/p)c

(q/p)a - 1



When q > p, lim_,o(q/p)a = oo, and

lim (q/p)a _(q/p)c
"-Moo (q/p)" - 1I

- r (q/p)a _ 1 1 - (q/p)c
a4oo (q/p)a - 1 (q/p)a - 1

1 - (q/p)"
= 1- =1

1 - (q/p)a 1

This theorem can be used to find the necessary bias for a random walk to reach 0

with a certain low probability, which is what we need for our applications.

Definition 6. Say a random walk has bias e if the probability of a +1 step is (1+ 6)/2

and a -1 step is (1 - e)/2.

Then we have the following corollary.

Corollary B.O.7. To guarantee probability of at most e-' of reaching 0 for a random

walk with bias c, it is sufficient to start at

C log((' + )/(1 - 0)

This follows from the theorem by some simple manipulation. When the bias is e,

p = (1 + E)/2 and q = (1 - e)/2. So (q/p)c becomes (i). Then

1 - e 6

when

c(log(1 - 6) - log(1 - 6)) < -6,

and we see

c> log(6)
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