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Abstract

Let G be a connected reductive algebraic group over an algebraically closed field of
characteristic p, g the Lie algebra of G and g* the dual vector space of g. This thesis
is concerned with nilpotent orbits in g and g* and the Springer correspondence for g
and g* when p is a bad prime.

Denote W the set of isomorphism classes of irreducible representations of the Weyl
group W of G. Fix a prime number | # p. We denote 24, (resp. 2, ) the set of all
pairs (c,F), where c is a nilpotent G-orbit in g (resp. g*) and F is an irreducible
G-equivariant Q;-local system on ¢ (up to isomorphism).

In chapter 1, we study the Springer correspondence for g when G is of type B, C
or D (p = 2). The correspondence is a bijective map from W to ;. In particular,
we classify nilpotent G-orbits in g (type B, D) over finite fields of characteristic 2.

In chapter 2, we study the Springer correspondence for g* when G is of type
B, C or D (p = 2). The correspondence is a bijective map from W to Ag«. In
particular, we classify nilpotent G-orbits in g* over algebraically closed and finite
fields of characteristic 2.

In chapter 3, we give a combinatorial description of the Springer correspondence
constructed in chapter 1 and chapter 2 for g and g*.

In chapter 4, we study the nilpotent orbits in g* and the Weyl group representa-
tions that correspond to the pairs (c,Q;) € g+ under Springer correspondence when
G is of an exceptional type.

Chapters 1, 2 and 3 are based on the papers [X1, X2, X3|. Chapter 4 is based on
some unpublished work.

Thesis Supervisor: George Lusztig
Title: Abdun-Nur Professor of Mathematics
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Chapter 1

Classical Lie Algebras

Throughout this chapter, k denotes an algebraically closed field of characteristic 2,

F, denotes a finite field of characteristic 2 and F, denotes an algebraic closure of F,.

1.1 Introduction

In [H], Hesselink determines the nilpotent orbits in classical Lie algebras under the ad-
joint action of classical Lie groups over k. In [Spal], Spaltenstein gives a parametriza-
tion of these nilpotent orbits by pairs of partitions. We extend Hesselink’s method
to study the nilpotent orbits in the Lie algebras of orthogonal groups over F,. Using
this extension and Spaltenstein’s parametrization we classify the nilpotent orbits over
F,. We determine the structure of the component groups of centralizers of nilpotent
elements. In particular, we obtain the number of nilpotent orbits over Fi.

Let G be a connected reductive algebraic group over an algebraically closed field
of characteristic p and g the Lie algebra of G. When the characteristic p is large
enough, Springer [Spl] constructs representations of the Weyl group of G which are
related to the nilpotent G-orbits in g. Lusztig [L3] constructs the generalized Springer
correspondence in all characteristic p which is related to the unipotent conjugacy
classes in G. Assume G is of type B,C or D and the characteristic p is 2. We use a
similar construction as in [L3, L5] to give the Springer correspondence for g. Let %,

be the set of all pairs (c, F) where c is a nilpotent G-orbit in g and F is an irreducible
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G-equivariant local system on ¢ (up to isomorphism). We construct a bijective map
from the set of isomorphism classes of irreducible representations of the Weyl group
of G to the set 2. In the case of symplectic group a Springer correspondence (with a
different definition than ours) has been established in [Kal; in that case centralizers of
the nilpotent elements are connected [Spal]. A complicating feature in the orthogonal

case is the existence of non-trivial equivariant local systems on a nilpotent orbit.

1.2 Hesselink’s classification of nilpotent orbits over

an algebraically closed field

We recall the results of Hesselink on nilpotent orbits in orthogonal Lie algebras in
this section (see [H]). Let K be a field of characteristic 2, not necessarily algebraically
closed.

1.2.1 A form space V is a finite dimensional vector space over K equipped with a
quadratic form @ : V' — K. Let (-,-) : V x V — K be the bilinear form (v, w) =
Qv+ w) + Q(v) + Q(w). Let V+ ={v € V|(v,w) =0,V w € V}. Then V is called
non-defective if V+ = {0}, otherwise, it is called defective; V is called non-degenerate
if dim(V+) <1 and Q(v) # 0 for all non-zero v € V+.

Let V be a non-degenerate form space of dimension N over K. Define the orthog-

onal group O(V') = O(V, Q) to be {g € GL(V)|Q(gv) = Q(v), Vv € V}. The orthog-
onal Lie algebra o(V) = o(V,Q) is {z € End(V)[(zv,v) =0, Vv € V and tr(z) = 0}.
In the case where K is algebraically closed, let SO(V) = SO(V, Q) be the identity
component of O(V') and we define Oy (K), on(K) and SOn(K) to be O(V), o(V) and
SO(V) respectively.
1.2.2 A form module is defined to be a pair (V,T) where V is a non-degenerate
form space and T is a nilpotent element in o(V). Classifying nilpotent orbits in o(V)
is equivalent to classifying form modules (V,T') on the form space V.

Let A = K][t]] be the ring of formal power series in the indeterminate ¢. The form

module V' = (V,T) is considered as an A-module by (3,55 ant™v = 3, 55 anT™v.
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Let E be the vector space spanned by the linear functionals t™ : A — K, S aitt —
an, n > 0. Let E, be the subspace ano Kt=2?" and 7y : E — Ey the natural
projection. The space E is considered as an A-module by (au)(b) = u(ab), for a,b €
AuelFE.

An abstract form module is defined to be an A-module V with dim(V) < oo,
which is equipped with mappings ¢ : V x V — E and ¢ : V — Ej satisfying the
following axioms:

(a) The map ¢(-,w) is A-linear for every w € V.

(b) p(v,w) = p(w,v) for all v, w € V.

(c) p(v,v)=0forallve V.

(d) ¥(v +w) = P(v) + Y(w) + m(p(v, w)) for all v,w € V.

(e) ¥(av) = a®y(v) forv eV, a € A.

The following proposition identifies a form module (V,T) with a corresponding ab-

stract form module V = (V, ¢, 9).

Propsition ([H]). If (V,¢,v) is an abstract form module, then (V,(-,-),Q) given by
(i) is a form module. If (V,{-,-),Q) is a form module, there is a unique abstract form
module (V, @,) such that (1) holds; it is given by (ii).

(1) (v,w) = p(v,w)(1), Qv) =1(v)(1).

(i) (v, w) = Y psolt"v, W)t ™, Y(v) = 3,50 QEM)E™"

1.2.3 An element in o(V) is nilpotent if and only if it is nilpotent in End(V'). Let T
be a nilpotent element in o(V'). There exists a unique sequence of integers p; > - - >
ps > 1 and a family of vectors vy, ..., vs such that TPiv; = 0 and the vectors T%uv;,
0<gq <p;—1 form a basis of V. We write p(V,T) = (p1,...,ps). Define the index
function x(V,T) : N = Z by x(V,T)(m) = min{k > 0|T™v = 0 = Q(T*v) = 0}.
Define 1(V) to be the minimal integer m > 0 such that t™V = 0. For v € V (or E),
we define p(v) = min{m > 0|t™v = 0}.

1.2.4 Let V be a form module. An orthogonal decomposition of V' is an expression

of V as a direct sum V = Y_'_, V; of mutually orthogonal submodules V;. The form

module V is called indecomposable if V # 0 and for every orthogonal decomposition
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V=Vi&V, we have ¥} = 0 or V;, = 0. Every form module V has some orthog-
onal decomposition V' = "' _ Vi in indecomposable submodules V4, Vs, ..., V,. The

indecomposable modules are classified as follows.

Proposition 1.2.1 ([H]). Let V be a non-degenerate indecomposable form module.
There exist v1,v2 € V such that V = Av, @ Avy and p(vy) > u(vy). For any such pair
we put m = p(vy), m = p(vy), ® = ¢(v1,v2) and ¥; = ¥(v;). One of the following
conditions holds:

(i) m' = w(®) =m, pu(v;) <2m-—1.

(i) m' = u(®) =m—1, p(¥;) =2m—1> p(,).
Conversely, letm € N, m' € NU{0}, ® € E, ¥y, ¥, € Eq be given satisfying (i) or (ii).
Up to a canonical isomorphism there exists a unique form module V = Av; ® Av,
with m = p(vy),m' = p(ve), ® = @(v1,v2) and Y; = ¥(v;). This form module is
indecomposable. In case (i) it is non-defective. In case (ii) it is defective and non-

degenerate.

From now on assume K is algebraically closed. The indecomposable modules in

Proposition 1.2.1 are normalized in [H, 3.4 and 3.5] as follows.

Proposition 1.2.2 ([H]). The indecomposable non-degenerate form modules over K
are

(i) Wi(m) = Avy & Avg, [%57] < 1 < my p(w) = plvg) = m, P(vy) = 272,
Y(v2) =0 and p(vy,v2) = 1™, (la] means the integer part of a.)

(ii) D(m) = Avy @ Avg, p(v1) = m, u(ve) =m — 1, ¥(v1) = 272, 9)(vy) = 0 and
o(vy,v9) = t27™,

We have Xw,m) = [m;l] and xpwm) = [m;m], where [m;1] : N — Z is defined by
Im; l](n) = max{0, min{n —m +1,1}}. Among these types of indecomposable modules

only the types D(m) are defective.

Remark. The notation we use here is slightly different from that of [H]. The form

module Wimt1, (m) in (i) is isomorphic to the form module W (m) in [H].

Finally this normalization of indecomposable modules is used to classify all form

modules. Let (V,T) be a non-degenerate from module with p(V,T) = (A1,..., Ay, ...,
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Aks---» Ag) where A\; > -+ > A > 1 and index function x = x(V,T). Let m; € N be
the multiplicity of A; in p(V,T). The isomorphism class of (V,T') is determined by
the symbol

S(V,T) = (M)t A2)3Bg - ARt

A symbol S of the above form is the symbol of an isomorphism class of non-degenerate
form modules if and only if it satisfies the following conditions

(1) x(N) = x(ig1) and Xi — x(Xi) = Aip1 — x(Air), fori=1,... k= 1;

(i) & < x(N) S A, fori=1,...,k

(iii) x(A) = A if m; isodd, for i =1,...,k;

(iv) {\i|m; odd} = {m,m — 1} NN for some m € Z.

In the following we denote by a symbol either a form module in the isomorphism

class or the corresponding nilpotent orbit.

1.3 Indecomposable modules over F,

In this section, we study the non-degenerate indecomposable form modules over F,.
Note that the classification of the indecomposable modules (Proposition 1.2.1) is valid
over any field. Similar to [H, 3.5], the non-degenerate indecomposable form modules

over F, are normalized as follows. Fix an element § € Fo\{z? + z|z € F,}.

Proposition 1.3.1. The non-degenerate indecomposable form modules over Fy are

(i) Wi(m) = Auvi @ Avy, [P52] < 1 < m, with p(v) = plvy) = m, d(v) =
£2-2 2(vy) = 0 and @(v1, vg) = 11

(il) WP(m) = Av; ® Avy, =2 <1 < m, with p(vy) = p(ve) = m, Y(v) = 277,
Y(vg) = 627%™ and p(vy,v2) = t17™;

(iii) D(m) = Av; @ Avy with p(vy) = m, p(v2) = m—1, P(vy) = 272", (vz) =0
and @(v1, vg) = t27™.

We have Xwo(my = Xwsm) = [Mi ] and Xpm) = [m;m]. Among these types only

the types D(m) are defective.

Proof. As pointed out in [H], the form modules in Proposition 1.2.1 (ii) over F; can
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be normalized the same as in Proposition 1.2.2 (ii). Namely, there exist v; and v,

such that the above modules have the form (iii).

Now let U(m) = Av; @ Av, be a form module as in Proposition 1.2.1 (i) with
p(v1) = p(ve) = m. We can assume p(¥;) > p(¥,). There are the following cases:

Case 1: ¥; = Wy = 0. We can assume ® = t1=™. Let §; = v; + ™+ 12" 1y, and
Uiy = va. We have 9(#) = t2~2"57), 4(T) = 0, (8, Tp) = 1™,

Case 2: ¥; # 0, ¥y = 0. We can assume ® = t1™™ and ¥; = t2 where
[<m—1 Ifl <[22 let & = vy + grrl=20mt o gme2ly Gy = vy; otherwise,
let 77 = vy, Uy = vo. Then we get ¥(7,) = t7%, [-’”2—"1] <UL <m=1, (i) =
0, ©(ty,0p) = ti—™.

Case 3: Uy #0, Uy # 0. We can assume Uy = ¢t724, @ =¢17™ Wy = 32 g,¢~2
with o <l; <m —1.

(1) & <[], let T2 = vy + 375! 4t'vy, then ¥(7) = 0 has a solution for z;’s and
we get to Case 2.

(2) b > [Z], let T2 = vy + gt witivr. If a1 € {a? + z|z € F,}, then
¥(%2) = 0 has a solution for z;’s and we get to Case 2. If ap,i,_1 ¢ {22 + z|z € F},
then 9(7) = §t~2(m~11=1) has a solution for z;’s.

Summarizing Cases 1-3, we have normalized U(m) = Av; @ Avy with p(v;) = p(vy) =
m as follows:

(1) (2] < x(m) =1 < m, Y1) = 272, P(va) = 0, (v, ve) = t1=™, denoted
by W (m).

(i) 2 < x(m) =1 < m, P(v) = 7%, P(vy) = 572D, vy, vg) = 17,
denoted by W7 (m).

One can verify that these form modules are not isomorphic to each other. O

Remark 1.3.2. It follows that the isomorphism class of the form module W;(m) over
F, remains as one isomorphism class over F, when | = % and decomposes into two
isomorphism classes W?(m) and W) (m) over F, when [ # . The isomorphism class

of the form module D(m) over F, remains as one isomorphism class over F,.

14



1.4 Nilpotent orbits over F,

In this section we study the nilpotent orbits in the orthogonal Lie algebras over F,
by extending the method in [H]. Let V be a non-degenerate form space over F,.
An isomorphism class of form modules on V' over Fq may decompose into several

isomorphism classes over Fy.

Proposition 1.4.1. Let W be a form module ()\1);”(1/\1)(/\2);’32)---(/\s);’(”/\s) on the
form space V.

(i) Assume V is defective. The isomorphism class of W over F, decomposes into
at most 2™ isomorphism classes over F,, where ny is the cardinality of {1 < i <
s = 1x(A) + x(Nir1) < Ay x(No) # Ai/2}

(i) Assume V is non-defective. The isomorphism class of W over If_’q decomposes

into at most 2™ isomorphism classes over F,, where ny is the cardinality of {1 <14 <

slx(A) + x(Aix1) < Ny x(N) # Ai/2} (here define x(As41) = 0).

Note that we have two types of non-defective form spaces of dimension 2n over F,
V*and V~ with a quadratic form of Witt index n and n — 1 respectively. We define
0%, (F,) (resp. Og,(F,)) to be O(V*) (resp. O(V™)) and o3, (F,) (resp. 05,(F,))
to be o(V*) (resp. o(V™)). Let SO5,(F,) = O3,(Fy) N SO (F,). A form module
on V* (resp. V~) has an orthogonal decomposition W' (A1) @ --- @ W;*(Ay) with

#{1 <1 < k|e; = &} being even (resp. odd).

Corollary 1.4.2. (i) The nilpotent Oy (F,)-orbit (M) - (AR, @ 02ni1(Fy)
decomposes into at most 2 Ogpy1(F,)-orbits in 09,41 (Fy).

() If x(N) = Ai/2 ,i = 1,...,s, the nilpotent Oqn(F,)-orbit ATy (As)Z0n)
in 09, (F,) remains one OF,(F,)-orbit in 03, (F,); otherwise, it decomposes into at
most 27 OF, (F,)-orbits in 03, (F,) and at most 2"~ O, (Fy)-orbils in 05, (F,).

Here nq,ny are as in Proposition 1.4.1.

Remark. In Corollary 1.4.2 (ii), if x(A) = Ni/2 ,i = 1,...,s, then n is even; if
x(Ns) # Ai/2 for some i, then ng > 1.

Before we prove Proposition 1.4.1, we need the following lemma.
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Lemma 1.4.3. (i) Assume k > m and | > m. We have W0(k) ® D(m) = Wi(k) @
D(m) if and only if | +m > k.

(ii) Assume m > k. We have D(m) & WQ(k) = D(m) ® W (k).

(ili) Assume ly > o, A\ — 13 > Xy —lp. Ifly + 13 > )y, then W2(\) @ WP (A2) =
Wi (M) @ W (h) and W2 (A1) @ Wi () = Wi (M) @ WO (Aa).

(iv) Assume ly > lg, Ay — 11 > Mg —lo. Ifl; + 15 < )y, then Wit(A) @ Wiz (Ag) =
VVlelil(/\l) <) Vfo(/\g) if and only if €, = €], €3 = €, where €;,¢, =0 oré, i =1,2.

Proof. We only prove (i). (ii)-(iv) are proved similarly. We take vy, w, and v, wy such
that W (k)@D(m) = Avi®Aw,® Avo®Aw, and y(v1) = 122, ¢(wy) = 0, (v, wy) =
7k ug) = 272 h(wa) = 0, p(vg, wa) = 2™, (v, v5) = vy, we) = p(wy,v3) =
p(w1, wz) = 0, and take vf, w) and vy, wh such that W/ (k)®D(m) = Av|® Aw| & Avs®
Auwj and $(}) = B, G(w]) = 68, (o, w) = BF P(uh) = 2 hlup) =
0, (v, wp) = 127™, p(vy, v3) = (v}, wp) = p(wi, vy) = p(w), wp) = 0.

We have WP(k) & D(m) & W/ (k) ® D(m) if and only if there exists an A-module
isomorphism g : V —» V such that ¥(gv) = ¥ (v) and <p(gv gw) = (v, w) for any
v,w € V. Assume gv; = Z;(aj,t’vl + bjtwy) + Zo cjit'vh + %2dﬂtlw2,gwj =

k—1 m—2

Z(ent’ + fiathwy) + Z g5it'vp + Z hjit'wy, j = 1,2. Then WP(k) ® D(m) =
VE/' (k)®D(m) if and only 1f the equatlons Q/J(gvz) = P(v;), ¥(gws) = Y(w;), o(gui, gvj) =
©(vi, v5), o(gus, gw;) = (vi, w;), p(gw;, gw;) = p(w;, w;) have solutions.

If I4+m < k, some equations are €3 5, _,_;+e1 k-1 =6 (I # L) or a3 g+a10b10 =
1, eio +e10fri0 = 6,a10f10 +bigero =1 (I = k—;ﬂ) In each case we get an ” Artin-
Schreier” equation x? + x = §, which has no solution over F,. This implies that
WP (k) & D(m) 2 WP (k) ® D(m).

If [4+m > k, let guy = v}, gwy = w} + VotHm= =10} guy = v, gwy = wh + V60
This is a solution for the equations. It follows that W(k) @ D(m) & W/ (k) @
D(m). O

Proof of Proposition 1.4.1. We prove (i). One can prove (ii) similarly. By the classi-
fication in subsection 1.2.4; we can rewrite the symbol as

(Al)i(,\l)()ﬂ)i(xz) T ()\k)i()\k)()\k"'l)/\lﬂ-l()\k‘f—l - 1)()\k+l"1)(/\k+2)§\k+2 T (>\k+l)?\k+,a
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where A\; > -+« > Apy1 > Mes2 = -+ > Myt (by abuse of notation, we still use A) and
| > 1. A representative W for this isomorphism class over Fy is Wy,)(A1) @ -~ @
W) M) ® D(Akt1) & Wiy (Akg2) ® - -+ & Wi, (Aeti). By Proposition 1.3.1 and
Remark 1.3.2, in order to study the isomorphism classes into which the isomorphism
class of W over Fq decomposes over F, it is enough to study the isomorphism classes
of form modules of the form W, (A1) @+ - & WE, (M) & D(\py1) ®WE2 (Agy2) B

x(Ak) Akt2
c D W;:jr“:(/\k+l), where ¢; = 0 or §. Thus it suffices to show that modules of the
above form have at most 2™ isomorphism classes.

We have ny = #{1 < i < klx(N) + x(Nis1) < A, x(M) # Ai/2}. Suppose
i1,9,. .., in, are such that 1 < i; <k, x(A;,) + x(Aij+1) < Ay x(Ng) # Niy/2,5 =
1,...,n7. Then using Lemma 1.4.3 one can easily show that a module of the above
form is isomorphic to one of the following modules: V' @ - - & Vart @ Vi, 11, where
Ve = WE(/\%_IH)()‘“—IH) D O WS(/\it_l)()\it_l) ® W;E)\it)()\i‘)’ t=1,...,m1, i =0,
e =0ordand V, 41 = WQ()\inl+l)(/\inl+1)®' - '@WS(Ak)()\k)@D()\k+1)@W§\)k+2()\k+2)®
- @ WQ  (Ak+r). Thus (i) is proved. O

1.5 Number of nilpotent orbits over F,

1.5.1 In this subsection we recall Spaltenstein’s parametrization of nilpotent orbits
by pairs of partitions in o(F,) (see [Spal]).

For 02n+1(Fq)7 the orbit (/\1)1(,\1) T ()\k)i(,\k)()\kﬂ)/\kﬂ ()\k-l-l_1)()\k+1*1)(Ak+2)§\k+2 Tt
(Ak+l)§\k+l is written as (0‘1‘*‘51)%,11“) e (ak_*_/@k)?ak.’.l)(ak+1+1)(ak+1+1)(ak+1)ak+1(ak+2)¢21k+2
-+ (o41)%, ,, and the corresponding pair of partitions is (a, B), wherea = (o1 . .., Otg41)
and 8= (B1,...,B) satisfy ag > -+ > agy =0, fr > - > B > 1 and |af+|8] = n.

For 03, (F,), the orbit (A)2 ) -+~ (Ak)%(s,is written as (a1 + B)a, - (ak + Br Z
and the corresponding pair of partitions is («, 3), where a = (a,..., ) and 8 =
(Bi,...,B) satisfy oy > - >ap > 1, 1 >+ > x> 0and |af + |8 = n.

1.5.2 In this subsection we study the number of nilpotent orbits over F,. Denote
by pa(n) the cardinality of the set of pairs of partitions («, 8) such that |a| + 3] =n
and p(k) the number of partitions of the integer .
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Proposition 1.5.1. (i) The number of nilpotent Ogpy1(Fy)-orbits in 02n41(F,) is at
most pa(n).
(ii) The number of nilpotent O3, (F,)-orbits in o3, (F,) is at most 3ps(n) if n is

odd and is at most 3(p2(n) +p(%)) if n is even.

Proof. (i) The set of nilpotent orbits in 0g,.1(F,) is mapped bijectively to the set
{(a, B)||a|+ 8] = m, Bi < 2 +2} := A ([Spal]). By Corollary 1.4.2 (i), a nilpotent or-
bit in 0g441(F,) corresponding to (o, 8) € A, a = (ay, . . ., as), 8= (B,...,0B) splits
into at most 2™ orbits in 09,41(F,), where ny = #{1 <@ < t|ai1 +2 < B; < o; +2}.
We associate to this orbit 2" pairs of partitions as follows. Suppose 71,79, ...,7,, are
such that a1 +2 < B, <, +2,i=1,...,n1. Let o™ = (0p,_,41,..., ), BV =
(Briaatye s Bri)y0® = (Br 41— 2,0, By = 2), 8% = (ar, 1+ 2, +2),i =
L..,n, ™t = (ap, 41,...,0), fMH = (B, +1,- -+ Br). We associate to (o, 3) the
pairs of partitions (G, Gt enr) G = (@l gemom aMHL) Beteeny =
(Bt peem Bty Cwhere € € {1,2},i=1,...,n,.

Notice that the pairs of partitions (&1, Bfl’"'*f"l) are distinct and among them

only (a,8) = (&', f%1) is in A. One can verify that the set of all pairs of

{(a, B)||a|+|B8| = n}, which has cardinality p,(n). But the number of nilpotent orbits
in 02,4+1(Fg) is no greater than the cardinality of the former set. Thus (i) is proved.

(ii) Similarly, the set of nilpotent orbits in 02,(F,) is mapped bijectively to the set
{(a, B)||a]+|B]| = n, B < o5} := A’ ([Spal]). By Corollary 1.4.2 (ii), a nilpotent orbit
in 09, (F,) corresponding to (o, 8) € A’ with a = (a1, as, ..., &), 8 = (B, e, . . . , Bs)
and a # 3 splits into at most 27271 orbits in o, (F,), where ny = #{ilags; < 8 <

a;} — 1. We associate to this orbit 2271 pairs of partitions as follows. We can as-

sume as # 0. Suppose 71,73,...,Ty,, are such that a,,41 < G, < a1 = 1,...,no.
Let oM = (ar,_y41,- -5 00), B = (Bri_yg15. -0, Br), 02 = (Brici1y -, Br), B =
(Qpy a1y -y Q) i =1,...,ng,@™*! = (Qrpyt1y o5 Qs), pretl = (Broy 415+, 0s). We
have 2" distinct pairs of partitions (G€1n2, Betrenz) Gerrntna = (@0l gframz,

anetl)) Beneng = (el | Benpin2 Bnatl) where €; € {1,2},i=1,...,ny. We show

that in these pairs of partitions (¢/, 8') appears if and only if (8',a’) appears. In
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fact we have o; = f3;, for i > r,,, which implies a™* = gm*!. Thus we have

identify (o/, 8') with (4, @), and then associate 2"2~1 pairs of partitions to the nilpo-
tent orbit corresponding to (a, §).

One can verify that the set of all pairs of partitions associated to (a,8) € A" as
above is in bijection with the set of pairs of partitions (e, 8) such that |a| + |B] =
n with (o, 8) identified with (8, a), which has cardinality 1p;(n) if n is odd and
2(pa(n) + p(%)) if n is even. Thus (ii) follows. a

Corollary 1.5.2. The number of nilpotent SO, (F,)-orbits in 03, (F,) is at most
1pa(n) if n is odd and is at most §(pa(n) + 3p(§)) if n is even.

Proof. We show that the O, (F,) orbits that split into two SO3, (F,)-orbits are ex-
actly the orbits corresponding to the pairs of partitions of the form (o, o). The number
of these orbits is p(%). Let z be a nilpotent element in 03, (F,). The Oy, (F,)-orbit of z
splits into two SO, (F,)-orbits if and only if the centralizer ZO;n(Fq)(as) C SO3.(F,).
It is enough to show that for an indecomposable module V/, Zo;n(Fq)(V) C 8O3, (F,)
if and only if x(m) < $m, for all m € N.

Assume V = W?(m) or Wi(m), | > L. Let € = 0 or 6 and vf,v5 be such that
Wi(m) = Avs @ Avg and p(vf) = 1272, (vs) = et ™2™+ o(vf, v5) = t1™. Let w§ =
v5+t2-1=my¢, Define u¢ by u¢(a1v§+aqv5) = a1vi+asws. Thenu € Zogn(Fq)(Wf(m)),
but u¢ ¢ SO3,(F,) (see [H]). This shows that Zo+ (V) € SO, (Fy).

Assume V = W2(m), | = m/2. Let v, v, be such that W(m) = Av; & Av, and
Y(vy) = 7™, P(va) = 0, p(v1,v9) = t1~™. Let W be the subspace of V' spanned by
t, te, i = 2,2 +1,...,m— 1. Then W is a maximal totally singular subspace in

V and Zot (5,)(V) stabilizes W. Hence Zog v)(V) C SO3 . (Fy). O

1.6 Springer corresopondence

Throughout subsections 1.6.1-1.6.5, let G be a connected adjoint algebraic group of
type B,,C, or D, over k and g the Lie algebra of G. Fix a Borel subgroup B of G
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with Levi decomposition B = T'U. Let b,t and n be the Lie algebra of B,T and U
respectively. Let B be the variety of Borel subgroups of G.

We construct in this section the Springer correspondence for the Lie algebra g
following [L3, L5]. The construction and proofs are essentially the same as (actually
simpler than) those for the unipotent case in [L3, L5]. For completeness, we include
the proofs here. We only point out that Lemma 1.6.2 is essential for the construction.
The lemma is probably well-known for which we include an elementary proof.

1.6.1 Let Z be the variety {(z, By, B2) € gxBx B|z € byNb,} and Z’ the Steinberg
variety [St2] {(z, By, B2) € gx Bx B|z € nyNny}. Denote 7 the dimension of 7. Let ¢
be a nilpotent orbit in g. A stronger version of the following lemma in the group case
is due to Springer, Steinberg and Spaltenstein (see for example [Spa2]). We include

a proof for the Lie algebra case here.

Lemma 1.6.1. (i) We have dim(cNn) < 1dime.
(ii) Given x € c, we have dim{B, € Bjz € n;} < (dim G — r — dimc)/2.
(ili) We have dimZ = dim G and dim Z’' = dim G —r.

Proof. We have a partition Z = UpZp according to the G-orbits O on B x B where
Zo = {(=, By, Ba) € Z|(B1, B) € O}. Define in the same way a partition Z’ = Up Z,.
Consider the maps from Zp and Z;, to O: (z, By, Bz) + (By, By). We have dim Zp =
dim(b, Nby)+dim O = dim G and dim Z), = dim(n; Nny) +dim O = dim G —r. Thus
(iif) follows.

Let Z'(c) = {(z,B1,B2) € Z'|z € ¢} C Z'. From (iii), we have dim Z’(c) <
dim G — r. Consider the map Z'(c) — ¢, (z, By, B2) — z. We have dim Z'(c) =
dimc+ 2dim{B; € Blz € iy} <dim G — r. Thus (ii) follows.

Consider the variety {(z,B;) € ¢ x Blz € n;}. By projecting it to the first
coordinate, and using (ii), we see that it has dimension < (dim G —r+dimc)/2. If we

project it to the second coordinate, we get dim(cNn)+dim B < (dim G —r+dimc)/2
and (i) follows. O

1.6.2 Recall that a semisimple element z in g is called regular if the connected

centralizer Z2(z) in G is a maximal torus of G.
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Lemma 1.6.2. There exist reqular semisimple elements in g and they form an open

dense subset in g.

Proof. We first show that regular semisimple elements exist in g.

(i) G = SO(2n + 1). Let V,Q,(,) be as in 1.2.1 with dimV = 2n + 1 and Q
nondegenerate. We take G = SO(V). Since Q is non-degenerate, dimV+ = 1.
Assume V*+ = span{vp}. Then gvy = vy, for any g € G. Hence the Lie algebra is
{z € End(V)[{zv,v) = 0,V v € V;2us = 0}. With respect to a suitable basis, we
can assume Q(v) = Y1, ViUnyi + V3,41, for v = (v;) € V =Kk**'. A maximal torus
of Gis T = {diag(ty,ta,... ,tn, 1/t1,1/ts,... 1/t,, 1)|t; € K*,i = 1,...,n}. The Lie
algebra of T is t = {diag(zy, 2, ..., Tn, T1,Z2,. .. Tn, 0)|z; € k, ¢ = 1,...,n}. Since
every semisimple element in g is conjugate to an element in t under the adjoint action
of G, it is enough to consider elements in t.

Let x = diag(xy,72,...,%n, T1,%2,...Zn,0), where z; # z;, for any i # j and

x; # 0 for any i (such z exists). It can be easily verified that Zg(z) consists of elements

A1 A2 0

of the form g= | A; A, 0 | where A; = diag(a},a?,...,al),i=1,2,3,4, satisfy
0 0 1

a{ag = a%ai =0 and ajl'afi +aéa§ =1,5=1,...,n. Hence we see that Z&(z) = T and

x is regular.

(ii) G is the adjoint group of type C,. We have the following construction of G.
Let V be a 2n dimensional vector space equipped with a non-degenerate symplectic
form (, ): V xV — k. Then G is defined as

{(g:A) € GL(V) x K'|V v,w € V,(gv, gw) = Mv, w) }/{(u], p*)|pn € k"}.

Hence the Lie algebra g is

{(z,)) € End(V) x k|V v,w € V, (zv,w) + (v,zw) = Av,w)}/{(p],0)|n € k}.
With respect to a suitable basis, we can assume (v, w) = > .| VWpy; for v = (v;), w =
(w;)) € V = k™. A maximal torus of G is T = {diag(t1,t2,...,tn, Mt1, /T2, ...
M)t € K56 = 1,...,m A € k*}/{(ul,p?)|u € k*}. The Lie algebra of T is t =
{diag(z1,Za, .-, Tny A+ T1, A+ Toy .. A+ 2,) |z € ki=1,...,n; A € k}/{(nl,0)|p €

k}. Let z = diag(z1, 22, ..., &n, 21 + X\, T2 + A, ... Zp + A) € t, where z; # z;, for any
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i # j and A # x; + z; for any ¢, j (such z exists). It can be verified that the elements
A1 A,

in Zg(z) must have the form g = where each row and each column of

A3 A4
G has only one nonzero entry and (A;)y; # 0 < (A4)i; # 0, (As)y; # 0 & (A3)y; # 0.

Hence we see that Z&(z) = T and z is regular.

(ili) G is the adjoint group of type D,,. We have the following construction of G.
Let V, @, (,) be as in 1.2.1 with dim V' = 2n and Q nondegenerate. Then G is defined
as {(g9,A) € GL(V) x k' |V v € V,Q(gv) = MQ(v)}/{ (], u?)|x € k*}. Hence the Lie
algebra g is {(z,\) € End(V) x k|V v € V, (zv,v) = AQ(v)}/{(1I,0)|u € k}. With
respect to a suitable basis, we can assume Q(v) = >"", VU for all v = (v;) € V =
k*". A maximal torus of G is T = {diag(ty, ta, . .., tn, At Mta, o Aty)|t € K i =
1,...,n; A e K}/{(ul, p?)|p € k*}. The Lie algebra t of T is {diag(z1, zs, ..., Zn, A+
T A+ To, . A+ ay)|zs e ki =1,... ;N € k}/{(ul,0)|p € k}.

Let z = diag(z1,z2,...,2n, 21 + A\, 22+ A,... 2, + \) € t where z; # z;, for any

¢ # j and A # z; + z; for any ¢ # j (such z exists), then similarly one can show that
Z%(z) = T and z is regular.

Now denote by ty the set of regular elements in t. From the above construction,
one easily see that t; is a dense subset in t. Thus dimty = dimt = r. Consider
the map ty x G — g, (z,9) — Ad(g)z. The fiber at y in the image of the map
is {(z,9) € t x G|Ad(g)z = y}. We consider the projection of {(x,g) € t; x
G|Ad(g)z = y} to the first coordinate. The fiber of this projection at = € t; is
isomorphic to Zg(x), which has dimension 7, and the image of this projection is
finite. Hence dim{(z, g) € ty x G|Ad(g)z = y} = r. It follows that the image of the
map ty X G = g, (z,9) — Ad(g)z has dimension equal to dim(ty X G) —r = dim g.

This proves the lemma. O
Remark. Lemma 1.6.2 is not always true when G is not adjoint.

1.6.3 Let Y (resp. fo) be the set of regular semisimple elements in g (resp. t).
By Lemma 1.6.2, dimY = dimG. Let Y = {(z,¢T) € Y x G/T|Ad(g7})(z) € t}.
Definer:Y — Y by m(z,9T) = x. The Weyl group W = NT/T acts (freely) on Y
by n: (z,¢T) — (z,gn1T).
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Lemma 1.6.3. 7:Y = Y isa principal W -bundle.

Proof. We show that if z € g,¢,¢ € G are such that Ad(g~!)z € t, and Ad(¢" ")z €
to, then ¢’ = gn=! for some n € NT. Let Ad(g™ ')z = t; € to,Ad(¢' ")z = t3 € to,
then we have Z%(z) = Z%(Ad(g)t1) = 9Z2(t1)g™ = ¢Tg™', similarly Zg(z) =
Zo(Ad(g")ts) = g'Z2(t2)g'™* = ¢'Tg*, hence ¢~ 'g € NT.

Let X = {(z,gB) € g x G/B|Ad(g7!)z € b}. Define ¢ : X — g by p(z,9B) =
z. The map ¢ is G-equivariant with G-action on X given by go : (v,9B)
(Ad(go)z, gog B)-

Lemma 1.6.4. (i) X is an irreducible variety of dimension equal to dim G.

(ii) ¢ is proper and p(X)=g=Y.
(iii) (z,gT) — (z,gB) is an isomorphism 7y : Y 3 o 1Y),

Proof. (i) and (ii) are easy. For (iii), we only prove that v is a bijection. First we
show that + is injective. Suppose (z1,1T), (€2, 92T) € Y are such that (z,,1B) =
(%2, g2B), then we have Ad(g7})(z1) € to, Ad(g3?)(22) € to and =1 = z2,9; "1 € B.
Similar argument as in the proof of Lemma 1.6.3 shows gy 19, € NT, hence g5 19, €
BN NT =T and it follows that ;7 = g.T. Now we show that v is surjective. For
(z,9B) € p~}(Y), we have z € Y, Ad(g7*)(z) € b, hence there exists b € B,z € to
such that Ad(¢71)(z) = Ad(b)(zo). Then y(z, gbT) = (z, gB). O

Since 7 : Y — Y is a finite covering, W!Ql;, is a well defined local system on Y.

Thus the intersection cohomology complex IC(g, mQ,5) is well defined.

Proposition 1.6.5. ¢,Q;x s canonically isomorphic to IC’(g,mQﬁ,). Moreover,
End(tp!@lx) = End(m@l;) = QI[W]

Proof. By base change theorem, we have o Q; x|y = m@,;,. Since ¢ is proper and X
is smooth of dimension equal to dimY, we have that the Verdier dual D(pQix) =
0(DQix) = »Qix[2dimY]. Hence by the definition of intersection cohomology
complex, it is enough to prove that Vi > 0, dim suppH'(¢1Qix) < dimY —i. For z € g,
the stalk H:(oQix) = Hi(p~'(z), Q;). Hence it is enough to show V i > 0,dim{z €
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gl Hi (¢ (2), Q) # 0} < dimY —i. If Hi(¢p7(z),Q) # 0, then i < 2dim¢~(x).
Hence it is enough to show that V i > 0, dim{z € g|dim¢~!(z) > i/2} < dimY —i.
Suppose this is not true for some 7, then dim{z € g|dim p~*(z) > i/2} > dimY — 3.
Let V = {z € g|dimp~'(z) > i/2}, it is closed in g but not equal to g. Consider
themapp: Z — g, (z, B1, By) = z. We have dimp™ (V) = dim V + 2dim ¢~ (2) >
dimV +i > dimY (for some x € V). Thus by Lemma 1.6.1 (iii), p~}(V) contains
some Zo, O = G-orbit of (B,nBn') in B x B. If z € t,, then (z, B,nBn™') € Zp,
hence z belongs to the projection of p~!(V) to g which has dimension dimV < dimY’.
But this projection is G-invariant hence contains all Y. We get a contradiction.

Since 7 is a principal W-bundle, we have End(mQ,3) = Q;[W]. It follows that
End((p!@lx) = @l[W] O

1.6.4 In this subsection, we introduce some sheaves on the variety of semisimple
G-conjugacy classes in g similar to [L3, L5].

Let A be the set of closed G-conjugacy classes in g. These are precisely the
semisimple classes in g (for a proof in the group case see for example [St1], and one
can prove for the Lie algebra case similarly). By geometric invariant theory, A has
a natural structure of affine variety and there is a well-defined morphism o : g — A
such that o(z) is the G-conjugacy class of z,, where x, is the semisimple part of z.
There is a unique ¢ € A such that ¢7!(c) = {z € gl nilpotent}.

Recall that Z = {(z,B,,B:) € g x B x Blz € by Nby}. Define 5 : Z — A by
G(z,B1,By) = 0(z). Fora € A, let Z* = 671(a).

Lemma 1.6.6. We have dim Z° < dy, where dy = dim G — r.
Proof. Define m : Z* — o~ (a) by (z, By, B2) + z. Let ¢ C 071(a) be a G-conjugacy
class. Consider m : m™!(c) = ¢. We have dimm™1(c) < dimec + 2(dimG — r —

dimc)/2 = dim G —r (use Lemma 1.6.1 (ii)). Since 0~}(a) is a union of finitely many

G-conjugacy classes, it follows that dim Z° < d,. O

Let T = H**5,Q,z. Recall that we set Zp = {(z, By, By) € Z|(By, By) € O},
where O is an orbit of G action on B x B. Let 79 = H?%o0(Q;, where 6°: Zp — A

is the restriction of & on Zp.
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Lemma 1.6.7. We have T° = 5,Q,, where & : t — A 1is the restriction of 0.

Proof. The fiber of the natural projection praz : Zo — O at (B,nBn~') € O can
be identified with V = b N nbn=t. Let 70 = H?%-2dmO4Q), where o' : V — A
is ¢ — o(z). Let T"0 = H2do+2dimHoi(Q where H = BNnBn™! and ¢ : G x
V — Ais (g,z) — o(z). Consider the composition G x V moy 2y A (equal
to ¢”) and the composition G x V' & H\(G x V) = Zo <A (equal to "),
we obtain 770 = H2do+2dmH (gl Q) = H2o+2dm H (5@ [—2dim G]) = TO,T"° =
H2do+2dim H (50p, () = H{2do+2dim H (500, (2 dim H]) = T©. It follows that T = T°.
Now V is fibred over t with fibers isomorphic to n " nnn~!. The map ¢’ : V — A
factors through & : t — A. Since nNnnn~! is an affine space of dimension dy —dim O,
we see that 7€ = T'° = H°5,Q,. Since & is a finite covering (Lemma 1.6.8), we have

T° = 5Q. O
Lemma 1.6.8. The map 7 : t — A is a finite covering.

Proof. We show that for x,z2 € t, if o(z1) = o(x2), then there exists w € W
such that £ = Ad(w)x,. Since o(x;) = o(z2), there exists g € G such that z; =
Ad(g)(z2). It follows that Z%(z,) = gZ%(z9)g~t. We have T C Z&(z) and gTg™" C
Z%(z,). Hence there exists h € Z(z,) such that hTh™' = gTg™'. Let n = g'h, we
have 5 = Ad(g~ )z, = Ad(nh™)z; = Ad(n)z;. O

Denote 7; and 7.° the stalk of 7 and T© at ¢ respectively.

Lemma 1.6.9. Forw € W, let O, be the G-orbit on Bx B which contains (B, n,Bny').

. . . . ~ o
There is a canonical isomorphism T¢ = @ e T

Proof. We have 671(c) = Z' = {(z,B1,Bs2) € g x B x Blz € n; Nny}. We have
a partition Z' = Uyew Zp, , where Zo, = {(x, By, By) € Z'|(By, Bz) € Oy}. Since
dim Z' = dy, we have an isomorphism H?%(Z' Q,) = @, cw H2%(Z},,,Q)), which is
Te = Dew T Ly

Recall that we have Q[W] = End(m@l;,) = End(¢:Qix). In particular, 0iQix is
naturally a W-module and (,0!@1 x ®(,0[@1 x is naturally a W-module (with W acting on
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the first factor). This induces a W-module structure on H?®0y(pQx ® ©1Qix) = T

Hence we obtain a W-module structure on the stalk 7.

Lemma 1.6.10. Let w € W. Multiplication by w in the W-module structure of
Te=®uew 720‘“’ defines for any w' € W an isomorphism TLw TLww"

-1 _-1

Proof. We have an isomorphism f : Z,, = Zp, s (@,9Bg™", gnw Bng/g™t)

w!

~

(z, gny'Bny,g™, gnwBnjlg™!). This induces an isomorphism HX%(Zp ,, Qi) &

HZ%(Zy, Qi) which is just multiplication by w. O

1.6.5 Denote W the set of simple modules (up to isomorphism) for the Weyl group
W (a description of W is given for example in [L2]). Given a semisimple object M of
some abelian category such that M is a W-module, we write M, = Homg, w1 (p, M)
for p € W. We have M = D ,ew (p ® M,) with W acting on the p-factor and M,
in our abelian category. In particular, we have mQ,3 = et (P ® (mQ,3),) and
e Qix = D e (p® (¢:Qix),), where (mQ,), is an irreducible local system on ¥ and
(0 Qux), = IC(g, (mQ5),). Moreover, for a € A, we have T, = D, (p®(Ta),)- Set
Ve ={z € glo(z) = ¢}, X = o }(Y) C X. We have Y = {z € g|z nilpotent} :=
N. Let ¢¢ : XS — N be the restriction of ¢ : X — g.

Lemma 1.6.11. (i) X¢ and N are irreducible varieties of dimension dy = dim G —r.
(ii) We have (01Qix)|n = 0§ Quxs. Moreover, gof@lxc [do] is a semisimple perverse
sheaf on .
(iii) We have (p1Qix),lw # 0 for any p e W.

Proof. (i) N, the nilpotent variety, is well-known to be irreducible of dimension dj.
We have X¢ = {(z,gB) € g x B|Ad(g7!)(z) € n}. By projection to the second
coordinate, we see that dim X¢ = dimn + dim B = dim G — r. This proves (i).

The first assertion of (ii) follows from base change theorem. Since ¢ is proper,
by similar argument as in the proof of Proposition 1.6.5, to show that ¢{Qx<[d] is
a perverse sheaf, it suffices to show V i > 0, dim suppH*(¢{Qix<) < dimN — 4. It is
enough to show Vi > 0, dim{z € N|dim(¢*)~'(z) > i/2} < dim N —i. If this is not
true for some ¢ > 0, it would follow that the variety {(x, By, B2) € gxBxB|z € niNny}
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has dimension greater than dim N = dim G — r, which contradicts to Lemma 1.6.1.
This proves that ¢fQyx<[do] is a perverse sheaf. It is semisimple by the decomposition
theorem ([BBD]). This proves (ii).

Now we prove (iii). By Lemma 1.6.7, we have 7' = HJ(tN o 1(s), Q) # 0.
From Lemma 1.6.10, we see that the W-module structure defines an injective map
QW]®TP — T.. Since 7.°* # 0, we have (Q[W]®7°), # 0 forany p € W, hence
(T)), # 0. We have T, = H29(N, 0,:Qix @ 9 Qix), hence @ e 0@ (T5), = D e PO
H2 (N, (0Qix), ® ¢Qix). This implies that (7;), = H22(N, (¢1Qix), ® oQix)-
Thus it follows from (7), # 0 that (¢ Qix ),y # 0 for any p € W, O

Let 2 be defined for G as in the introduction.

Proposition 1.6.12. (i) The restriction map Endp(g)((p!(@lx) — Endpw)(gof@lx;) 18
an isomorphism.

(ii) For any p € W, there is a unique (c,F) € Uy such that (0 Qix)oln(do] is
IC(g, F)[dim c] regarded as a simple perverse sheaf on N (zero outside €). Moreover,

p > (¢, F) is an injective map v : W — ;.

Proof. (i). Recall that we have Qix = @ e P ® (01 Qix), where (©Qix),[dim g]
are simple perverse sheaves on g. Thus we have (P!QlX v = @f@lxc =@ e P ®
(2:Qix)plx (We use Lemma 1.6.11 (ii)). The restriction map Endpgy(piQix) —
Endpv)(¢fQix<) is factorized as @ Endpg) (p® (91Qix),) LA @D, Endp) (p®
(21Qix)pla) = Endpy (¢fQix<), where b = @,b,, b, : End(p) ©Endpg) (0 Qix),) —
End(p) ® Endppy((9:Qux)pla). By Lemma 1.6.11 (iii), (2Qix)olw # 0, thus
Endp ) ((0Qix),) = Q. C Endpw)((¢:Qix)pln). It follows that b, and thus b is
injective. Since c is also injective, the restriction map in injective. Hence it remains
to show that dim Endp N)(gof@l x<) = dim EndD(g)((ngl x)-

For A, A’ two simple perverse sheaves on a variety X, we have H)(X,A® A') =0
if and only if A is not isomorphic to D(A4’) and dim H)(X, A ® D(A)) = 1 (see
[L4, 7.4]). We apply this to the semisimple perverse sheaf @i Qixs[do] on N and get
dim Endp(/\f)(tpf@lxc) = dim HY(WV, ¢{Qix<[do] ® D (i Quxs[dy)))- We have
dim HO(V, ¢t Qix<[do] ® D(pfQux<[do])) = dim HYN, ofQix<[do] ® 0fQux<[do]) =
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dim H2?(N, ¢{Qixs ® ¢{Qixs) = dimH2(N,pQx ® oQyx) = dimT;
= > wew dim 7% (The third equality follows from Lemma 1.6.11 (ii) and the last
one follows from Lemma 1.6.9). We have 7% = H%(571(), Q) (see Lemma 1.6.7),
hence dim 7% =1 and 3, .y dim TP = |W| = dim Endp(g)(¢:Qix). Thus (i) is
proved.

From the proof of (i) we see that both b and c are isomorphisms. It follows that
the perverse sheaf (¢Qix),\aldo] on N is simple and that for p, o/ € W, we have
(@ Quix)plnldo) = (91 Qix) | w[do) if and only if p = p'. Since the simple perverse sheaf
(01Qux),p|ndo] is G-equivariant and N consists of finitely many nilpotent G-conjugacy

classes, (p1Qix),|n[do] must be as in (ii). O

1.6.6 In this subsection let G = SOn(k) (resp. Spa,(k)) and g = on(k) (resp.
5Py, (k)) the Lie algebra of G. Let G,q4 be an adjoint group over k of the same type
as G and gqq the Lie algebra of G,q4. Let G(F,), g(F,) be the fixed points of a split
Frobenius map §, relative to Fy on G, g. Let Gog(Fy), goa(F,) be defined like G(F,),
g(F,). Let 2y and 2, be defined as in the introduction for G and G4 respectively.
Denote the number of elements in Ay, (resp. ;) by |, .| (resp. |2g]|). We show
that |g,,| = |Ag).

We first show that [2g] is equal to the number of nilpotent G(F,)-orbits in g(F,)
(for g large). To see this we can assume k = F5. Pick representatives z, ...,z for
the nilpotent G-orbits in g. If ¢ is large enough, the Frobenius map §, keeps z; fixed
and acts trivially on Zg(z;)/Zg(x;). Then the number of G(F,)-orbits in the G-orbit
of z; is equal to the number of irreducible representations of Zg(z;)/Z%(z;) hence to
the number of G-equivariant irreducible local systems on the G-orbit of x;. Similarly,
|2g,,| is equal to the number of nilpotent G,q(F,)-orbits in g.q(F,).

On the other hand, the number of nilpotent G(F,)-orbits in g(F,) is equal to the
number of nilpotent G,q(Fy)-orbits in g.q4(F,). In fact, we have a morphism G — G o4
which is an isomorphism of abstract groups and an obvious bijective morphism N —
MN,q between the nilpotent variety N of g and the nilpotent variety A,y of g.q. Thus
the nilpotent orbits in g and g,4 are in bijection and the corresponding component

groups of centralizers are isomorphic. It follows that |2,] = |, |-
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Corollary 1.6.13. |2, = |2,,,| = |W].

Proof. Assume G = SOy(k). From Proposition 1.5.1, Corollary 1.5.2 and the above
argument we see that [2,| = |,,,| < |W|. On the other hand, by Proposition 1.6.12
(ii), we have |2, | > |[W].

Assume G = Span(k). It is known in [Spal] that the number of nilpotent G(F,)-

orbits in g(F,) is equal to |W|. The assertion follows from the above argument. O
Theorem 1.6.14. The map ~y in Proposition 1.6.12 (ii) is a bijection.

Corollary 1.6.15. Proposition 1.4.1, Corollary 1.4.2, Proposition 1.5.1, Corollary
1.5.2 hold with all ”at most” removed.

Proof. For q large enough, this follows from Corollary 1.6.13. Now let ¢ be an ar-
bitrary power of 2. The Frobenius map §, acts trivially on W. Since we have the
Springer correspondence map v in Proposition 1.6.12 (ii), for each pair (c, F) € ™4g,,,
¢ is stable under the Frobenius map §, and we have §;'(F) = F. Pick a ratio-
nal point z in c¢. The G.4-equivariant local systems on c are in 1-1 correspondence
with the isomorphism classes of the irreducible representations of Zg,,(z)/Z&_ ().
Since Zg,,(z)/Z& () is abelian (see Proposition 1.7.1) and the Frobenius map &,
acts trivially on the irreducible representations of Zg,,(z)/Z (z), §, acts trivially
on Zg,,(z)/Z% (z). Thus it follows that the number of nilpotent G,q4(F,)-orbits in

A

9a4(F,) is independent of ¢ hence it is equal to |%g,,| = [W]. O

A corollary of Theorem 1.6.14 is that in this case there are no cuspidal local
systems similarly defined as in [L3]. This result does not extend to exceptional Lie
algebras. (In type Fjy, characteristic 2, the results of [Spa3] suggest that a cuspidal

local system exists on a nilpotent class.)

1.7 Component groups of centralizers

In this section we describe the component groups of centralizers Zg(z)/Z%(z), where

G = SOn(V) and x € on(V) is nilpotent.
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Proposition 1.7.1. (i) Assume V is defective. Let z € o(V) be a nilpotent element
corresponding to the form module (/\1);7‘(1/\1)()\2)%\2) e ()‘3);1(5,\5)' We  have
Zow)(@)/Zyyy(x) = (Z2)™, where ny is as in Proposition 1.4.1 ().

(ii) Assume V' is non-defective. Let x € o(V') be a nilpotent element correspond-
ing to the form module (M)J{,(A2)73,) -+ (Ns)yph,): Then Zsow)(®)/Z3on)(2) =

(Z3)™~!, where ny is as in Proposition 1.4.1 (ii).

Proof. (i) We write Z = Zo(v)(z) and Z° = Z§,,,y(z) for simplicity. We can assume
that ¢ is large enough. (i) is proved in two steps.

Step 1: we show that Z/Z° is an abelian group of order 2™. The group Z/Z°
has 2™ conjugacy classes, since the G-orbit of z splits into 2™ G(F,)-orbits in g(F,)
(Corollary 1.6.15). We show |Z/Z°| = 2™ by showing that

(x)  |Z(F,)| = 2mq¥™@ 1 lower terms in g.

We prove (x) by induction on n;. Suppose n; = 0, then Z/Z° has only one conjugacy
class. It follows that Z/Z° = {1} and (%) holds for n; = 0. Suppose n; > 1.
Let ¢ be the minimal integer such that x(X\;) # A;/2 and x(\¢) + x(Mex1) < i
Let Vi = ()\1);1(1)‘1)()\2):?(%\2) "‘()\t);n(t,\t) and V, = ()\t+1);n(t,\il) e (As);n(s,\s)- Then V3
is non-defective. Write Z; = Zow,)(V;) and Z7 = Z§,,(V;i), i = 1,2. We have
1Zsoy(V1)/Zgowy (VD) = 1 = |Z1/Z0| = 2. Tt follows that |Z,(F,)| = 2¢4m %+
lower terms in . We show that |Z(F,)| = |Z1(F,)| - | Za(Fy)| - ¢imHoma(V1.V2) - Then
the assertion (x) follows from induction hypothesis since we have dim Z; + dim Z, +
dim Hom4 (V3, V3) = dim Z.

Consider V) as an element in the Grassmannian variety Gr(V,r) of dimension
r = Z;:I m;A;. Then C(V) = {g € GL(V)|gz = zg} acts on Gr(V,r). We have
CVVie Vo) =C(VVi& C(V)Vo, =2V, ® V,. By our choice of V; and V4, it follows
that C(V)V1 2 Vi and C(V)V, = V,. Thus the orbit of V; under C(V) coincides with
the orbit of V; under the action of Z. It is easy to verify that this orbit consists of
qlimHoma(Vi.V2) elements (using C(V) action). Since the stabilizer of V; in Z is the
product of Z; and Z,, we get |Z(Fy)| = |Z1(F,)| - | Z(F,)| - qtim Homa(V1,V2),

Step 2: we show that there is a subgroup (Z;)™ C Z/Z°. Thus Z/Z° has to be
(Zz)™. Let 1 <1y,...,0, < s—1besuch that x(Ai;) > A;;/2 and x(\i;) +x(Ai;41) <
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Mot
x(ij_y+1)

Aij, j = 1, ..., M. Let V7 = (Ai]._1+1)
i0 =0, ip,y1 =35 Then V=VidVd - &V, where Vj, i =1,...,n, are non-

(/\ij)zi)’;i.), j=1,...,n1 + 1, where
2

defective and V,, 4, is defective and non-degenerate. We have Zov,)(V;) /Zg(w (Vi) =
Zg,i=1,...,m1, and ZO(Vn1+1)(Vn1+1)/Zg(an+1)(Vn1+1) = {1}. Take g; € Zow;(Vi)
such that giZg,y, (Vi) generates Zowy(Vi)/Z3wy(Vi), i = 1,...,n1. We know each
Vi, i = 1,...,m, has two isomorphism classes V%,V over F,. Let m{ and m{ be
two elements in o(V;)(F,) corresponding to V; and V’ respectively. We can assume
z=miemi® - dmd dmp 1. Let G=ld®-- &g ® - 0ld i=1,...,n.
Then we have §; € Z and g; ¢ Z° since VY@@ VP - d V. @ Vo 2
Ve - aVid &V & Vo (Corollary 1.6.15). We also have that the images
of iy~ Gi,s, 1 <3 << <m,p=1,...,m,in Z/Z° are not equal to each
other. Moreover §2 € Z°. Thus the §;Z°’s generate a subgroup (Z2)™ in Z/Z°.

(i) Let us write Z = Zsow)(z) and Z° = Zg,y(x) for simplicity. Assume
ng > 1. We know that the group Z/Z° has 2"27! conjugacy classes since the G-orbit
of z splits into 2"2~* G(F,)-orbits in g(F,) (we can assume g large enough). The same
argument as in (i) shows that |Z(F,)| = 2" 1¢4™(@) tlower terms. Then it follows
that Z/Z° is an abelian group of order 227!, It is enough to show that there is a
subgroup (Zg)"*~! C Z/Z°. Let 1 <1iy,...,i,, < s be such that x(\;;) > A;;/2 and
x(Ag;) + x(Ag1) S Ay, G =1, na.

Case 1: x(A\s) = As/2. Then i,, < s. Let V; = <)‘ij—1+1);n(i<;l_+1:1)"'()‘ij):(i;ij)’
j=1,...,np+1, where ig = 0, ip,01 = 8. Then V=V, @ --- & V,41. We have
Zo(vi)(Vi)/Zg(m(%) = Zy, ¢ = 1,...,ny and ZO(Vn2+1)(Vn2+1)/Zg(vn2+1)(Vn2+1) =
{1}. Take g; € Zo(,)(Vi) such that g;Z9, (Vi) generates Zowy (Vi) [ Zyy(Vi), & =
1,...,n9. Let Gi =g ®Id® - Dg;®---DId, i =2,...,n;. Wehave g, € Z
and g; ¢ Z° We also have the images of §;, ---Gi,’s, 2 < i1 < -+ < ip < ny,
p=1,...,np—1,in Z/Z° are not equal to each other. Moreover g7 € Z°. Hence the
3:;Z%'s generate a subgroup (Z;)™~! in Z/Z°.

Case2: x(As) > As/2. Then i,, = s. Let V; = ()\,-j~1+1):(i7\::1+1) . ()\ij);n(i/{ij), j=
1,...,n9, whereig =0. Then V = Vi ®---®V,,. We have ZO(W)(VE)/Z(O)(%)(VJ = Zo,
i=1,...,ny. Takeg; € Zov, (Vi) such that g;ZJ ., (Vi) generates Zowi) (Vi)/Zo, (Vi)
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i=1,...,np Let §i=:®1d® - - Dg;®-- - ®Id,i =2, ,ny. The 5, Z”s generate
a subgroup (Z3)™~!in Z/2°. O

1.8 Example

We list the unipotent classes in SO(9) and nilpotent classes in s0(9). We use the

notation in [H], see also section 1.1.

Unipotent classes in characteristic 2: 8511, 64251;, 6413, @, 4214, 432214, 43211,
452,13, 4513, 322,1,, 3313, 241, 241, 2313, 2215, 2215, 2,17, 1.

Nilpotent classes in characteristic 2: 5544, 4311, 431, 4311, 443312, 3313, 3313,
322,1;, 322,11, 3523, 352,1%,241,, 281, 2313, 2215, 2215, 2,17, 19,

Unipotent/nilpotent classes in characteristic not 2: 9s, 74, w, 5122 5114,

411, 335, 3317, 332114, 3318, 2114, 2715, 13,

In each case the component group of the centralizer is trivial except that the
component groups for the underlined ones are Z/2Z and for the double underlined
one is (Z/2Z)?. In this case the number of unipotent classes and nilpotent classes
over an algebraically closed field of characteristic 2 happen to be the same, but this is

not true in higher ranks. Note that the component groups are already quite different.
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Chapter 2

Dual of Classical Lie Algebras

Throughout this chapter, k denotes a field of characteristic 2.

2.1 Introduction

Let G be a connected algebraic group of type B,C or D defined over k and g the
Lie algebra of G. Let g* be the dual vector space of g. We have a natural coadjoint
action of G on g*, ¢g.£(z) = £(Ad(g)~'z) for g € G,€ € g* and z € g. Fix a Borel
subgroup B of G. Let b be the Lie algebra of B and let n* = {£ € g*|{(b) = 0}.
An element ¢ in g* is called nilpotent if there exists g € G such that g.§ € n* (see
[KW]). We classify the nilpotent orbits in g* under the coadjoint action of G in the
cases where k is algebraically closed and where k is a finite field F,. In particular, we
obtain the number of nilpotent orbits over F, and the structure of component groups
of the centralizers of nilpotent elements.

We have constructed a Springer correspondence for g in chapter 1 using a sim-
ilar construction as in [L3, L5]. Let 2, be the set of all pairs (c, F) where c is a
nilpotent G-orbit in g* and F is an irreducible G-equivariant local system on ¢ (up to
isomorphism). We use a similar construction to construct a Springer correspondence
for g*, which is a bijective map from the set of isomorphism classes of irreducible

representations of the Weyl group of G to the set ..
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2.2 Symplectic groups

In this section we study the nilpotent orbits in g* where G is a symplectic group.
2.2.1 Let V be a vector space of dimension 2n over k equipped with a non-degenerate
symplectic form 8:V x V — k. The symplectic group is defined as G = Sp(2n) =
{9 € GL(V) | B(gv, gw) = B(v,w),Y v,w € V} and its Lie algebra is g = sp(2n) =
{z € End(V) | B(zv,w) + B(v,z2w) =0,V v,w € V}.

Let £ € g*. There exists X € Endy(V') such that £(z) = tr(Xz) for any z € g.
We define a quadratic form o, : V — k by

ag(v) = B(v, Xv).
Lemma 2.2.1. The quadratic form o is well-defined.

Proof. Recall that the space Quad(V) of quadratic forms on V coincides with the
second symmetric power S?(V*) of V*. Consider the following linear mapping

® : Endy (V) — S%(V*) = Quad(V), X = ay
where ax(v) = B(v, Xv). It is easy to see that ® is G = Sp(V)-equivariant. One
can show that ker @ coincides with the orthogonal complement gt of g = sp(V) in
Endy (V) under the nondegenerate trace form. It follows that o does not depend on

the choice of X. 0

Remark. The present coordinate free proofs of Lemmas 2.2.1, 2.2.5, 2.8.1, 2.3.5,
2.3.6, 2.3.12 and 2.4.2 are suggested by the referee of [X2]. These proofs replace my

earlier proofs for which coordinates are used.

Let B¢ be the symmetric bilinear form associated to a¢, namely, B¢ (v, w) = ag(v+
w) + 0 (v) + ag(w), v,w € V. Define a linear map Tz : V — V by
B(Tev, w) = Be(v,w).
Assume £ € g*. We denote by (Vg, B3, a¢) the vector space V equipped with the

symplectic form 8 and the quadratic form o.

Definition 2.2.2. Assume £, ¢ € g*. We say that (V, B, a¢) is equivalent to (V¢, 3, o)
if there exists a vector space isomorphism g : V; — V; such that 8(gv, gw) = B(v, w)

and a¢(gv) = ag(v) for all v,w € V.
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Lemma 2.2.3. Two elements £,( € g* lie in the same G-orbit if and only if there

exists g € G such that ag(g™'v) = ac(v), Vv e V.

Proof. The two elements £, ¢ lie in the same G-orbit if and only if there exists g € G
such that g.£(z) = £(g7'zg) = ¢(z), V = € g. Assume &(z) = tr(Xex) and ((z) =
tr(X,z). Similar argument as in the proof of Lemma 2.2.1 shows that g.&(z) =
tr(gXeg~'z) = ((z) if and only if B(gXeg™'v,v) 4+ B(X¢v,v) = 0 if and only if
ag(g™v) = ac(v), Vv evV. O

Corollary 2.2.4. Two elements £,( € g* lie in the same G-orbit if and only if
(Ve, B, ae) is equivalent to (V¢, B, o).

2.2.2 From now on we assume that £ € g* is nilpotent.
Lemma 2.2.5. Let £ € g* be nilpotent. Then T¢ is a nilpotent element in End(V).

Proof. Note that the nilpotent elements in g* (resp. g) are precisely the "unstable”
vectors £ (resp. ), namely, those £ (resp. ) for which the closure of the G-orbit
G.€ (resp. Ad(G)z) contains 0. By Hilbert’s criterion for instability, there exists a
co-character ¢ : G,, — G such that lim,_,g ¢(a).§ = 0. To show that 7% is nilpotent,
it is enough to show that lim,,o Ad(¢(a))T: = 0.

For any G-representation M and i € Z, we write M (¢;) for the i-weight space
of the torus {¢(a)}eeq,, and M(¢;> i) = ®;5:M(¢;7), and similarly for M(¢; > i),
M (¢; < i) ete.

Since £ € g*(¢,> 0), we may choose X € Endk(V)(¢;> 0) such that {(z) =
tr(Xz) for all z € g. Notice that B((Ad(¢(a))T¢)v,w) = B(X¢p(a) v, d(a) w) +
B(#(a) v, Xp(a)'w) = B((Ad(d(a))X)v,w) + B(v,(Ad(4(a))X)w). Since
X € Endy(V)(¢; > 0), Ad(¢(a))X — 0 as a — 0 and thus S(Ad(4(a))Tev,w) — 0 as
a — 0 for any v,w € V. Tt follows that Ad(¢(a))T¢ — 0 as a — 0, since the bilinear

form B is nondegenerate. Thus 7 is nilpotent. O

Recall that A = k[[t]] denotes the ring of formal power series in the indeterminate
t and the A-module E is the vector space spanned by the linear functionals t=% : A —

k, Y a;t' — ag, k > 0 (see 1.2.2). We consider V; as an A-module by (3 axt*)v =
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Y- arTfv. Let Ey and E; be the subspace " kt=% and 3_ kt~2*~! of E respectively.
Denote m; : E — Ej, 1 = 0,1 the natural projections. Define o : VxV — E ¢ :V —
By, 0 : VXV = E¢¢: V= E by
P(0,0) = Ty B0, W), (1) = s B0, tho)t=21
Pe(v,w) = s Be(thv, W)t ™5, e(v) = 34 ag(thv)t =2,

Note that we have B(T¢v,v) = B¢(v,v) = 0 and B¢(Tev,v) = B(Tev, Tev) = 0. By
[H, Proposition 2.7], we can identify (V¢, a0 = 0, 8) with (V¢, ¢, ), (V, as, Be) with
(Vs e, e), hence (Vg, B, a¢) with (Vg, 0,1, ¢, 1¢). The mappings ¢, and g, ¥
satisfy the following properties ([H]): for all v, w € V,

(1) the maps ¢(-, w) and (-, w) are A-linear,

(i) p(v, w) = p(w,v), Ye(v, w) = pe(w,v), v(v,v) = P(v), pe(v,v) = 0,

(1) (v + w) = $(0) + V(w), Ye(v +w) = be(v) + Ye(w) + mole(v, w)),

(vi) Y(av) = a®P(v)Ye(av) = a®yhe(v) for all a € A.

Following [H], we call (V¢, 3, a¢) a form module and (V¢, ¢, ¥, @¢, 1¢) an abstract form
module. Corollary 2.2.4 says that classifying the nilpotent G-orbits in g* is equivalent
to classifying the equivalence classes of the form modules (Vg, 8, a¢). In the following
we classify the form modules (V, 8, o¢) via the identification with (V, ¢, v, ¢, ¥e).
We write Ve = (Vg, B, ae).

Since T is nilpotent (Lemma 2.2.5), there exists a unique sequence of integers
p1 > -+ > ps > 1 and a family of vectors vy,...,vs such that Tg"'vi = 0 and the
vectors Tfv;, 0 < ¢; < p;—1 form a basis of V. We define p(V¢) = p(Tt) = (p1, .. ., ps).
Define an index function xy, : Z — N for (V, 8, a¢) by

xv;(m) = min{i > 0|T{"v = 0 = a¢(T}v) = 0}.
Define u(Vg) to be the minimal integer m > 0 such that T{"V; = 0. For v € V¢, we
define p(v) = p(Av). We define p(E) for E and p(u) for u € E similarly.

Lemma 2.2.6. We have ¥(v) = 0 and p¢(v,w) = to(v,w) for all v,w € V.

Proof. The first assertion follows since §(T¢v,v) = 0, V v € V. The second assertion

follows since B¢(TFv, w) = B(T¢ v, w). O
We study the orthogonal decomposition of V; with respect to ¢, which is also
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an orthogonal decomposition of V¢ with respect to ¢ since o(v,w) = 0 implies
¢e(v,w) = 0 (Lemma 2.2.6). Recall that every form module V" has some orthogonal
decomposition V = >"7_, V; in indecomposable submodules V1, V3,...,V; (see 1.2.4).

We first classify the indecomposable modules (with respect to ¢) that appear in
the orthogonal decompositions of form modules (Vg, 8, ae). Let (V, @, %, @¢, ¥¢) be
an indecomposable module. Since ¥ (v) = 0 for all v € V; (Lemma 2.2.6), by the
classification of modules (V;, ¢,), there exist vy, v, such that Ve = Av, @ Ave with
p(v1) = p(vz) = m and @(vy,v2) = '™ (see [H, 3.5], notice that 3 is non-degenerate
on V). Denote ¢ (v1) = U1, 1e(va) = g and @¢(vy,v3) = 7™ = P¢.

2.2.3 In this subsection assume k is algebraically closed.

Proposition 2.2.7. The indecomposable modules are *W;(m) = Av; @ Av,, [F] <
I < m, with p(v) = p(vs) = m, Ye(v1) = 272, Pe(vg) = 0 and p(vy,v3) = ™. We
have X-w,m) = [m;1], where [m;l] : N — Z is defined by [m;[](k) = max{0, min{k —
m+11}}

Proof. Assume u(¥;) > p(¥;). Let vh = vz + avy. The equation 9e(vy) = ¥y +
a®¥; + mo(a®e) = 0 has a solution for a, hence we can assume ¥, = 0. Assume
v, = Zﬁ:o ait™%, a; € k,a; # 0. Let vj = av;, a € A. We can take a invertible in A
such that v¢(v}) = t~2. Let v§ = a~'vh. One verifies that ¢¢(v}) = t7%, ¢¢(vy) =0
and ¢(v},vy) = t}=™. Furthermore, we can assume [m/2]—1 <1 <m—1. In fact, we
have | < m—1since t™v =0,Vv € V;ifl < [F]-1,let v} = v, m 220 4 gm 2T ]y,
then 1e(v}) = ¢t20F71) and ¢(v},v2) = t™™. One can verify that the modules

*Wi(m), [m/2] <1 < m exist and are not equivalent to each other. O

Lemma 2.2.8. Assume my; > ms.
() If [ < ly, we have *W, (mq) @ *Wi,(mg) = *W,(my) & *W,(my).
(11) Ifml—h < mg—lg, we have *I/Vll (ml)EB*VVlz(mQ) = *I/Vll (ml)EB*sz_ml.,.ll (’I’le)

Proof. Assume *Wj,(m1) ® *Wj,(mg) = Avi & Awy & Av, & Aw, with e (v;) =
272 e (w;) = 0 and @(vi, w;) = 6; ;8™ p(vi,v;) = @(ws, w;) = 0, 4,5 = 1,2. Let

U1 = vi+ (14271 g, @y = wy, U = v, Wo = wo+ (t™ M2 gmi—hmmatl2)y,) - Then we
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have 1 (0;) = 27212, ¢he(w;) = 0 and ¢(;, w;) = 8i 8™ (i, 0;) = p(Wy, ;) = 0,

t,j = 1,2. This proves (i). One can prove (ii) similarly. O

Remark. Notice that we do not have a "Krull-Schmidt” type theorem here, namely,
the indecomposable summands of a form module V' are not uniquely determined by V.

(See also Lemma 2.2.12 (ii).)

By Proposition 2.2.7 and Lemma 2.2.8, for every module V, there exists a unique
sequence of modules *W;,(m;) such that V is equivalent to *W,, (m;) @ *W;,(msg) &
@ Wi, (ms), B S L Sm,mp 2 mp > s > my, bl > 1 > -0 > [ and
my—l >2mg—1ly > > ms — ;. We call this the normal form of the module V.
Two form modules are equivalent if and only if their normal forms are the same. It
follows that p(Ve) = m}---m3, xv (k) = sup;x-w, (m,)(k) for all k € N and xv(m;) =
X+w,, (m;) = ;. Thus the equivalence class of V is characterized by the symbol

(1) )~ ()3
A symbol of the above form is the symbol of a form module if and only if [%] <

x(mi) < my, x(my) > x(mig1) and m; — x(m;) > mipr — x(mi), i =1,...,s.

Proposition 2.2.9. Two nilpotent elements €, € g* lie in the same G-orbit if and
only if T, Te are conjugate by GL(V') and x(Ve) = x(Ve).

2

We associate to the orbit (ml)i(ml) e (ms)x(ms

) & pair of partitions (x(mi),...,

x(ms))(my — x(m4),...,ms — x(m,)). In this way we construct a bijection from the
set of nilpotent orbits in g* to the set {(u,v)||u| + |v| = n,1; < p; + 1}, which
has cardinality pa(n) — p2(n — 2). Recall that py(n) denotes the number of pairs of
partitions (u,v) such that |u| + |v| = n.

2.2.4 In this subsection, let k = F,. Let G(F,), g(F,) be the fixed points of a
Frobenius map §, relative to F; on G, g. We study the nilpotent G(F,)-orbits in
g(F,)*. Fix § € F,\{z? + z|z € F,}. We have the following statements whose proofs

are entirely similar to those in section 1.3. For completeness, we also include the

proofs here.

Proposition 2.2.10. The indecomposable modules over Fy are
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(i) *WP(m) = Avy & Ava, (m —1)/2 <1 < m with Yg(v1) = t272 e(v2) = 0 and
(o1, v2) = 7™
(ii) *W(m) = Av, @ Avg, (m — 1)/2 < | < m with e(v) = t*7%, he(v2) =

§t=2m=1=0 gnd p(vy, vy) = 1™

Proof. Let V; = Av; & Av, be an indecomposable module as in the last paragraph of
subsection 2.2.2. We have ®; = t*>"™. We can assume that p(¥;) > p(¥;). We have
the following cases:

Case 1: ¥, =Wy =0. Let 97 = v, + tm=20%y,, Ty = vy, then we have ¢(0;) =
t272AF] | 1he(3y) = 0 and @(0n, Tg) = t'™™.

Case 2: ¥, # 0, U, = 0. There exist a,b € A invertible, such that ¢¢(avi) =
t=28 e (bvy) = 0 and @(avy,bvy) = t'"™. Hence we can assume ¥; = t=2% where
k<m-—-1 Itk <[Z] -1 let 5 = v + tm=203 1y, 4+ tMm2k=2y,. Ty = vo; otherwise,
let 91 = vy, Uy = vy. Then we get () = t72*, Z]l-1<k<m-1, VYe(V2) =
0, (71, 0) = ™.

Case 3: W) # 0, Uy # 0. There exist a,b € A invertible, such that ¢¢(av;) =t
and @(avy,buy) = t'™™. Hence we can assume ¥; = ¢t~ and ¥, = Ziio a;t™%
where I, < [; < m—1. Let Us = vy + Z;':(;l z;ittv,. Assume [; < -"’2—‘2, then
¥e(Ts) = 0 has a solution for z;’s and we get to Case 2. Assume [ > me2If
am_1,—2 € {z%+ x|z € F}, then 1¢(0) = 0 has a solution for z;’s and we get to Case
2 if amy,—2 ¢ {22 + x|z € Fy}, then 1(f) = 6¢2m~1=2 has a solution for z;’s.

Summarizing Cases 1-3, we have normalized V; = Av; @ Av, with pu(v1) = p(vz) =
m as follows:

() (m - 1)/2 < x(m) = L < m, () = 4, ve(va) = 0, plun,va) = £,
denoted by *W2(m).

(i) (m —1)/2 < x(m) =1 < m, Pe(v1) = >, Pe(vg) = 672170 (v, v9) =
t1=m. denoted by *W?(m).

We show that *WP(m) and *W?(m), where 252 < [ < m, are not equivalent.

Take v;,w;, i = 1,2, such that *W2(m) = Av; & Aw,, *W/(m) = Av, & Awy,
w(vy) = plwy) = m, Ye(vi) = 272 he(wr) = 0,%¢(ws) = 6t*72™+2 and p(v;, w;) =

¢1=m 4 = 1,2. The modules *W?(m) and *W}(m) are equivalent if and only if

39



there exists a linear isomorphism g : *W}(m) — *W{(m) such that ¥¢(gv) = e (v)
and p(gv, gw) = @(v,w) for all v,w € *W}(m). Assume gv; = 3. (aitivy +
bit'ws), gw; = Z;’;Bl(citiw + d;t'wsy). Then a straightforward calculation shows that
if { = 2, among the equations Ye(gv1) = ve(v1), Yelgwn) = Ye(wr), p(gur, gun) =
¢(v1,wy), the following equations appear c2 + dd2 + codyg = 0, agdy + bocy = 1. It
follows that cg, dyp # 0 and thus the first equation becomes an ” Artin-Schreier” equa-
tion (%%)2 + @ = ¢ which has no solutions over F . Similarly if 2 < [ < m, an
” Artin-Schreier” equation ¢3,_,, + ca—m = & appears. It follows that *W?(m) and

*Wf(m), where =1 < | < m, are not equivalent. O

Remark 2.2.11. It follows that the equivalence class of the form module *W,;(m) over
F, remains as one equivalence class over F, when [ = mT‘l or [ = m and decomposes

into two equivalence classes *W?(m) and *W}(m) over F, otherwise.

Lemma 2.2.12. Assume ly > Iy and mq — [} > mg — Is.
(i) If i + I < my, we have that *W] (m1) @ *W},(ma), *WP, (my) & W}, (my),
Wi (m1) @ Wi, (my) and *W? (my) @ *W? (my) are not equivalent to each other.
(ii) If lh + I > my, we have "W}, (my) & "W, (mg) = *W? (my) & *W§ (my) and
WP (my) @ W3 (ms) 2 Wi (my) © *Wi (mg). The two pairs are not equivalent to

each other.

Proof. We show that *W7},(m1) @ *W}, (m2) and *W? (m,) @ *W? (m,) are equiva-
lent if and only if {; 4+l > m;. The other statements are proved entirely similarly.
Assume *W} (m1)®*W},(m,) and *W; (my)®*W? (ms) correspond to € and €’ respec-
tively. Take vy, w; and vy, wq such that *W?l (my) & *W?Q (mg) = Av; @ Aw; © Av, &
Awy and Ye(vy) = 272 e(wr) = 0,¢(vi,w1) = 7™ Yhe(v2) = 2722 ohe(wy) =
§t~2ma=l2=1) [y, wy) = 172 (v, vp) = @(vy,wa) = p(wy,vs) = @(wy,wy) = 0.
Similarly, take v}, w] and v}, w) such that *W?l(ml) O W) (ms) = Avl & Aw) @
Avy @ Awy and Y (v) = 27, g (wy) = 720 (0] wh) = 17, P (vg) =
£27202 he (wh) = 0,p(vy, wy) =172, (v}, vy) = (v}, wp) = p(wi,vy) = p(wf, wh) =
0.

The form modules *W7, (my) ®* W}, (m) and *W? (my) & *W?, (my) are equivalent
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if and only if there exists an A-module isomorphism g : V' — V such that ¢ (gv) =
m1—1 ) )

Ye(v), p(gv, gw) = p(v,w) for any v,w € V. Assume gv; = > (a;t'v] + bjat'wi) +
=0

ma—1 m1—1 mo—1

S (ciatvhdiatwh), gw; = Y (ejatvi+fiatwy)+ 30 (giat'vp+hyatiwy),j = 1,2.
i=0 i=0 i=0
Then *W?}, (m1) ®*W7,(m;) and “W? (m1) ®*W7,(my) are equivalent if and only if the
equations ¥ (gu) = vhe(v:), Yo (gwi) = Ye(wi), p(gui, gv;) = @(vi, v5), o(gui, gw;) =
(v, wy), e(gwi, gw;) = (wi, wj), 1, j = 1,2, have solutions.

If [ + 1, < my, some equations are ef'%_ml + eron-m = 0 (if Iy # %) or
6%70 + el’ofly() + (5f12,0 = 0, al’()fl,() + blyoelyo =1 (lf ll = —T%L) As in the pI‘OOf of
Proposition 2.2.10, we get ” Artin-Schreier” equations which have no solutions over
F,. Hence *W7} (m;) @ W (my) and W3 (m1) @ *W§, (mg) are not equivalent.

If [, + 13 > myq, let gvy = v}, gw; = W) + Vothth—migyl gy, = vl qwy = wh +
Vthtz=m2q - then this is a solution for the equations. It follows that Wi (m1) &
Wi, (my) = W) (1) @ "W, (ms). O

Proposition 2.2.13. The equivalence class of the module
*Wll (ml) DD *Wls(ms),mi > mit1, li = X(ml),l = 1, oy S,

over F, decomposes into at most 2% equivalence classes over F,, where

k=#{1 <i<slli+ L <mi and I > 252},

Proof. By Proposition 2.2.10 and Remark 2.2.11, it is enough to show that form

modules of the form *W;;l(ml) ®---D *Wf;s(ms), where €, = 0 or 4, have at most

2k equivalence classes. Suppose ij,%2,. .., are such that 1 < i; < s,l;; + ;11 <
i;—1 . . .
mi;, bi; > m—%,] =1,...,k. Using Lemma 2.2.12 one can easily show that a module

of the above form is isomorphic to one of the following modules: Vi &--- @V *, where

th = *WO +1(mit—1+1) ®-- 'GS*W?itﬂ(mit—l) GB*W:% (m’it)’ t=1,..., k— 1ip = 0’

by

and Vi = "W (mi_y1) & & W (my,) @ Wi (i) © - & W (),
e =0o0rd,t=1,...,k Thus the proposition is proved. O

Corollary 2.2.14. The nilpotent orbit (m1)? - -+ (m,)? in g(F,)* splits into at most
28 G(F,)-orbits in g(F,)*.

Proposition 2.2.15. The number of nilpotent G(F,)-orbits in g(F,)* is at most
pa(n).
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Proof. Recall that we have mapped the nilpotent orbits in g(F,)* bijectively to the
set {(u, V)||p| + [v| = nyvi < p; + 1} := A. By Corollary 2.2.14, a nilpotent orbit
in g(F,)* corresponding to (u,v) € A, = (u1, pa, - . - Ms), v = (11,1, ..., Vs) splits
into at most 2% orbits in g(Fo)*, where k = #{1 < i < s|piy1 +1 < vy < p; + 1}
We associate to the orbit 2* pairs of partitions as follows. Suppose 71,73, ..., 7 are
such that pir41 +1 < vy < pp, + 1,0 =1, ..,k and let u" = (r_ 41, i), V1 =
Wricatts oo s U )y 12 = W1 = 1, = D)0 = (1 + 1, g, + 1)1 =

' = (Upet1,...,Vs). We associate to (u,v) the

Lokl = (prgr, oo ps), V5F
pairs of partitions ([, gtk fEveth = (pevl gea ek kL) penee —
(verl vl vk A where ¢ € {1,2},i = 1,...,k. Notice that the pairs of
partitions (i€, 7€) are distinct and among them only (u,v) = (b1, 1)
is in A. One can verify that the set of all pairs of partitions constructed as above for

all (1, v) € A is in bijection with the set {(u,v)||u| + |v| = n}, which has cardinality
p2(n). It follows that the number of nilpotent orbits in g(F,)* is less that pa(n). O

2.3 0dd orthogonal groups

In this section we study the nilpotent orbits in g* where G is an odd orthogonal group.
2.3.1 Let V be a vector space of dimension 2n + 1 over k equipped with a non-
degenerate quadratic form o : V — k. Let 8 : V x V — k be the bilinear form
associated to a. Recall that the odd orthogonal group is defined as G = O(2n +
1) = O(V,a) = {g € GL(V) | a(gv) = a(v),V v € V} and its Lie algebra is

=o02n+1)=0o(V,a) ={z € gl(V) | B(av,v) =0,V v € V and tr(z) = 0}. Let £
be an element of g*. There exists X € gl(V') such that £(z) = tr(Xz) for any z € g.
We define a bilinear form

Be: V xV =k, (v,w) » B(Xv,w) + B(v, Xw).
Lemma 2.3.1. The bilinear form B¢ is well-defined.

Proof. Recall that the space Alt(V) of alternate bilinear forms on V coincides with

the second exterior power A?(V*) of V*. Consider the following linear mapping
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® : Endi (V) = A2(V*) = Alt(V), X = Bx
where Bx(v,w) = B(Xv,w) + B(v, Xw) for v,w € V. It is easy to see that ®
is G = O(V)-equivariant. One can show that ker ® coincides with the orthogonal
complement g+ of g = o(V) in Endx(V) under the nondegenerate trace form. It

follows that (¢ does not depend on the choice of X. O

Assume £ € g*. We denote (Vg a, f¢) the vector space V equipped with the

quadratic form « and the bilinear form 3.

Definition 2.3.2. Assume £,( € g*. We say that (Vg a,B¢) and (V,«,f) are
equivalent if there exists a vector space isomorphism g : V; — V; such that a(gv) =

a(v) and B (gv, gw) = Pe(v, w) for any v, w € V;.

Lemma 2.3.3. Two elements £, € g* lie in the same G-orbit if and only if there
ezists g € G such that B¢(gv, gw) = Be(v, w) for any v,w € V.

Proof. Assume £(z) = tr(Xz),{(z) = tr(X'z), Vo € g. Using similar argument as
in the proof of Lemma 2.3.1, one can see that & ( lie in the same G-orbit if and
only if there exists g € G such that 3((gXg~! + X")v,w) + B(v, (¢X g7 + X )w) =
0, VoweV.

Corollary 2.3.4. Two elements £,{ € g* lie in the same G-orbit if and only if
(Ve, o, Be) is equivalent to (V¢, o, Be).

2.3.2 From now on we assume that £ € g* is nilpotent. Let (V;, @, B¢) be defined
as in subsection 2.3.1. Let A be a formal parameter. There exists a smallest inte-
ger m such that there exists a set of vectors vy, . .., v, for which B¢(3 o v A%, v) +
MO, viAl,v) = 0 for any v € V' (see Lemma 2.3.5 below). Lemmas 2.3.5-2.3.10 in
the following extend some results in [LS]. (Most parts of the proofs are included in

[LS]. We add some conditions about the quadratic form a.)

Lemma 2.3.5. The vectors vy,...,vm (up to multiple) and m > 0 are uniquely
determined by B¢ and B. Moreover, B(vi,v;) = Be(vi,v;) =0, 4,7 =0,...,m, a(v;) =

0,7=0,...,m—1 and we can assume a(v,) = 1.
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Proof. Since § is nilpotent, we can find a cocharacter ¢ : G,, — G for which £ €
9" (¢, > 0). Moreover, we can find X € Endy(V)(¢, > 0) such that £(z) = tr(Xz) for
all z € g.

Let wy be a non-zero vector such that S(wp, —) = 0. Then wy is unique up to a
multiple. We have that wy € V(¢,0). If B¢(wo,v) = 0 for all v € V, then m = 0 and
we are done.

Now assume S¢(wo, —) does not vanish on V. Fix v € V. It is easy to show that if
Be(v, wo) = 0, then there is v' € V for which 8(v', —) = B¢(v, —). Moreover, if w;_; €
V(¢,> i — 1), then one can show that for all w; such that 8(@;, —) = Be(wi_1, —), we
have w; € V(&, > 1) + kwp.

We define inductively a set of vectors w;, ¢ = 0,...,m, such that S(wp, —) = 0,
B(wi, —) = Be(wi—1,—), Be(wm,—) = 0 and m is minimal. We have defined wy.
Assume w;_y € V(¢,> i — 1) is found. Then Be(w;_q,wp) = Blwije, wis) = 0 if ¢
is even and B¢(wi—1,wo) = Be(wi—1)/2, Wi-1y2) = 0 if 7 is odd. We define w; to be
the unique vector such that S(w;, —) = Be(wi—1, —) and w; € V(¢, > 7). One readily
sees that we find a unique (up to multiple) set of vectors w;, i = 0,...,m, such that
B(wo, —) =0, B(w;, —) = Be(wi—1, —), Be(wWm,—) = 0 and m is minimal.

Since all w; € V(¢,> 0), we see that S(w;,w;) = 0. Since for i > 0, w; €
V(¢,> 0), we see that a(w;) = 0 for i > 0. Since X € Endy (¢, > 0), it follows that

Be(w;, w;) = 0. We take v; = wp,—;. Moreover, we can assume o(v,) = awy) = 1. O

Lemma 2.3.6. Assume m > 1. There exist ug, u1,...,Um—1 such that B(v;,u;) =
Be(Vig1,u5) = 035, Bluiyuy) = Be(us,uj) =0, 4,7 = 0,...,m =1, a(y;) = 0,1 =
0,...,m—1, and furthermore, B(u;,v) = Pe(ui-1,v), it =1,...,m—1, forallv e V.

Proof. Choose ug such that 8(ug, v;) = 0,7 =1,...,m—1, B(up,vp) = 1 and a(ug) =0
(such ug exists). We find inductively a set of vectors u;, 1 < 7 < m — 1 such that
B(us, —) = Be(ui-1,—) and a(u;) = 0. Assume u;_;, 1 <7 < m — 1 is found. Since
Be(tiz1, V) = B(ug, Um—i) = 0 (note that m—i > 1), there exist a unique u; such that
B(ui, —) = Be(ui—1, —) and a(u;) = 0. (The existence is as in the proof of Lemma

2.3.5 and the uniqueness is guaranteed by the condition a(w;) = 0.)
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Now it follows that if i < 7, B(vi, u;) = Be(vi-1,uj—2) = Be(vo, uj—i—1) = 0; if i > j,
Blvi, uj) = Bvis1,vj41) = B(Vm; Uj—itm) = 05 if @ = J, Bvi,us) = B(vi-1,uim1) =
B(vo,up) = 1. Moreover, B(uiuisor) = Birk,uisk) = 0, Blui,Uirarsr)
= Be(Uitk, Uirk) = 0. It follows that B(u;,u;) = 0. Similarly Be(us,u;) = 0. The

u;’s satisfy the conditions desired. O
Lemma 2.3.7. The vectors vy, V1, - . -, Um, %o, Ul, - - -, Um—1 GT€ linearly independent.

Proof. Assume > 7 a;v; + Z;T;Bl biu; = 0. Then B3 I ,a:v; + 22:)1 bis, u;) =
a; =0, B(C g awi + Sorg biwi,v;) = by =0, j=0,...,m—1and B(37 2, aivi +
Z:i?)l biuiv um—l) = QQm = 0. O

Let Vom41 be the vector subspace of V spanned by vg, v1, ..., Um, Ug, Uty - - -, Um—1-
If m = 0, let W be a complementary subspace of Vo, 11 in V.Ifm > 1, let W = {w €
VelBw,v) = Be(w,v) =0, Vv € Vampr }.

Lemma 2.3.8. We have V; = Va1 L, W.

Proof. Assume m = 0. Lemma follows since by the definition of vy we have 5(vg, v) =
Be(vg,v) = 0 for any v € V. Assume m > 1. A vector w is in W if and only if
Blw,v;) = Be(w,v;) =0,i=0,...,m and B(w,u;) = Be(w,u;) =0,71=0,...,m—1.
By our choice of v; and u;’s, we have B(vp,, w) = B¢(vo, w) = 0, B(w, v;) = Be(w, Vi)
and B(w,u;) = Be(w,u;—1). Hence w € W if and only if S(w,u;) = B(w,v;) = 0,
i=0,...,m—1and Be(w,um—1) = 0. Thus dimW > dim V; — (2m + 1). Now we
show Va1 NW = {0}. Let w = S aw; + Somg bty € Vamer N W. We have
Blw,u;) = a; =0, B(w,v;) =b; =0, 7 =0,...,m — 1, and Be(w, Um-1) = am = 0.

Hence together with the dimension condition we get the conclusion. O

Let Vi = Vomi1 ® W be as in Lemma 2.3.8. Then we get a 2(n — m) dimensional
vector space W, equipped with a quadratic form «|w and a bilinear form Be|lwxw. It
is easily seen that the quadratic form a|w is non-defective on W, namely, B|lwxw is
non-degenerate. Define a linear map T : W — W by

B(Tew, w') = Pe(w, w'), w,w" € W.
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Remark 2.3.9. Assume m > 1. Note that the set of vectors {u;};' in Lemma
2.3.6 and the corresponding subspace W depend on the choice of uy and are uniquely
determined by ug. Suppose we take @y = ug + wp, where wy € W and a(wg) = 0,
then i; = u; + T, gwo defines another set of vectors as in Lemma 2.3.6. Let VzmH,
W, TE be defined as Vomy1, W, T¢ replacing u; by 4;. Then V = %m+1 ® W and
W = {3° B(w, T{wo)v +wlw € W}. On W, we have 7}(2;’;0 B(w, Tiwo)v; +w) =
>0 Blw, T wo)vi + Tew.

Lemma 2.3.10. Assume Vi = Vo 116 @ W is equivalent to V; = Vomet1,c © We,
then me = m¢ and (We, B, Be) is equivalent to (We, 8, B¢)-

i} and Vo 41, = span{vZ, u?}, where v}, v} are

177

Proof. Assume Vo116 = span{v
2

as in Lemma 2.3.5 and u},u? are as in Lemma 2.3.6. By assumption, there exists
9 Vamer1,e © We = Vo v1,c @ We such that B(gv, gw) = B(v, w) and B¢ (gv, gw) =
Be(v,w). Since for all v € V, B(S5v2AEv) + AB(LnS viNv) = 0, we get
Be (3o g7 2N, )+ B, g7 wEA, v) = 0. Hence by Lemma 2.3.5, mg = my
and g7'0? € Vamet1e.

For w € W, suppose gw = >_ a;v? + Y bju? + w’ where w’ € W,. Since g~ 1v? €
Vame+1,¢, we have Be(g7'v2,w) = 0,1 =0,...,mg. It follows that ¢ (v?, gw) = b; = 0,
i =0,....,m¢ — 1. We get gw = Y a;v? + w'. Define p : W — W, w —
gw projects to W. Let wy, we € We. Assume gw; = > alv? + w), gws = Y av? +
wy. We have Blgus, gws) = B(w),wh) = Bluwn,ws), fe(gun, gus) = Be(w), wh) =
Be(wr,w2), namely, B(p(wi), p(wz)) = Bwi,wa), Be(p(wi), p(wa)) = Be (w1, wa).
Now we show that ¢ is a bijection. Let w € W, be such that p(w) = 0. Then
for any v € W, B(v,w) = B(p(v),p(w)) = 0. Since Blw,xw, is nondegenerate,
w = 0. Thus ¢ is injective. On the other hand, we have dim W, = dim W,. Hence ¢

is bijective. O

Corollary 2.3.11. Assume V¢ = Vo116 ® We is equivalent to V; = Vames1,c © We,

then mg = m¢ and T, T¢ are conjugate.
Lemma 2.3.12. Assume § is nilpotent. Then T; is nilpotent.
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Proof. We replace G = Sp(V) by G = O(V) and 3 by B|lwxw in the proof of Lemma
2.2.5. Moreover, when apply Ad(¢(a)) to Ty, we regard ¢(a) as a linear map restricting
to the subspace W of V so that ¢(a) € O(W). Also notice that T € o(W) = {z €
gl(W)|B(zw,w) = 0, V w € W}, since B(Tew,w) = fe(w,w) = 0 for all w € W.
Then the same argument as in the proof of Lemma 2.2.5 applies since Blwxw is

nondegenerate. O

By Lemma 2.3.8, every form module (V¢, @, B¢) can be reduced to the form Vi =
Vams1 ® We, where Voppq has a basis {vi,i = 0,...,m,u;,1 = 0,...,m — 1} as
in Lemmas 2.3.5 and 2.3.6. We have that (V¢,«, ;) is determined by Vor,41 and
(We, alw,, Belwexw,)- Now we consider (W, alw,, Belwexwe) = (W, alw, Belwxw)
and let T; : W — W be defined as above. It follows that Belw xw is determined by
Te and Blwxw.

2.3.3 In this subsection assume k is algebraically closed. Let Vi = Vo1 @ W and
T; be as in the last paragraph of 2.3.2. Since T¢ € o(W) is nilpotent (Lemma 2.3.12),
we can view W as a k[[T¢]]—module (see subsection 1.2.2). By the classification of
nilpotent orbits in o(W) (see [H, 3.5 and 3.9]), W is equivalent to W, (my) @ --- @
W,,(m;) (notation as in Proposition 1.2.2) for some my > -+ > ms, [y > -+ >[5 and

my — 1l > >my — g, where [(m; +1)/2] < 1; < m,.
Lemma 2.3.13. Assume m < k — . We have Va1 © Wi(k) = Vo1 @ Wi (k).

Proof. Assume Va1 = span{v, ..., Um,Ug, - - ., Um—1}, Where v;, u; are chosen as in
Lemma 2.3.5 and Lemma 2.3.6. Assume Va1 & Wi(k) and Vopy1 & Wi (k) cor-
respond to & and &, respectively. Let Ty = Ty, @ Wi(k) — Wi(k) and T, = T, :
Wim(k) = Wi_m(k). There exist pi, py such that Wi(k) = span{ps,..., T " p1,
P2, TE oo}, Thpy = Tpy = 0, a(Tip1) = 611, a(Tip2) = 0, B(Tipy, Tim) =
B(T;p2, T/ p) = 0 and B(Tip, T py) = i+jk—1. There exist 7, 7o such that Wy_n (k) =
span{my, ..., T, 7o, ..., T8 i}, Ty = Ty = 0, a(Tim1) = i pmm1, a(Tim2) =
0, B(Timy, Tim) = B(Tiry, Tim) = 0 and B(Tim, Ty7a) = biyjk-1. Define g : Vo1 @
Wi(k) = Vamsr ® Wiem(k) by gvi = vi, gug = u; + (T8 ™% 4 Tiyry gTip, =
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Tirs, gTipr = Tim + vp_1-j + Umt1-1—j, Where v; = 0, if ¢ < 0 or ¢ > m. Then g is

the isomorphism we want. O

Lemma 2.3.14. Assume m > k —1;,i = 1,2. We have Vapp1 © Wiy (k) = Vo @
Wi, (k) if and only if l; = lp.

Proof. Assume k —m < [; < l,. We show that Va1 @ Wi, (k) 2 Va1 @ Wi, (k).
Let (Vi,a,81) = Vams1 @ Wi (k) and (Va,, B2) = Vo1 @ Wi, (k). Let Ty = T, :
Wi, (k) = Wy, (k) and Ty, = T, : Wj,(k) — Wy, (k). Assume there exists g : Vonq1 @
Wi, (k) = Vams1 @ W, (k) a linear isomorphism satisfying B2(gv, gw) = 51 (v, w) and
a(gv) = a(v). Define ¢ : W, (k) = Wi, (k) by w; — (gw; projects to W,(k)). Then
we have B(p(w1), p(wy)) = B(wi, wi), Ba((wr), p(wy)) = Br(wi, wi) and Ta(p(w)) =
o(T1(w)) (see the proof of Lemma 2.3.10).

Let v;, ¢ = 0,...,m, and w;, ¢ = 0,...,m — 1, be a basis of V5,41 as in
Lemmas 2.3.5 and 2.3.6. Choose a basis ﬂjpi,ﬂ?Ti, i=0,...,k—1,¢i=1,2 of
Wi, (k) such that Tfp; = TFry = 0, B(T) pi, T13) = 8jursp k183, BTV pi, T p;) =
B(ﬂlei,T’]joj) = 0, a(Tijpi) = 0;;,-1 and a(TijTi) = 0. We have gv; = av;,1 =
0,...,m, gu; = u;/a+ Y | pauv + Zf—ol zyTips + Zf—_ol yaTiry. Now we can as-
sume gT?p; = Zf 01 J azT’ﬂpz + Ek b Tt + Yoo Ciili + Do ! dijui, j =
0, k=1gTim = 30 eIy oot 30 ™ fiT g gt S Bty § =
0,...,k — 1. A straightforward calculation shows that we have Since I, > k — m, it
follows that cmy—1 = Gmis—1 = 0 (if lo = k) or cmiz—1 = Copgtm—1 = 0, Gmpp—1 =
Gogp+m—1 = 0 (if Iz < k). Thus ay = ey = 0. On the other hand, one can
show that ap = cmy,—1 and ey = gmy,—1 (note Iy, > i > [k + 1]/2). But from
ﬁ(gpl,gTI’“_lﬁ) = ﬂ(pl,le—lTl) = 1 we have agfg + epbg = 1. This is a contradic-
tion. O

It follows that for any V = (V¢, @, B¢), there exist a unique m > 0 and a unique
sequence of modules Wi, (k;), i = 1,..., s such that
V = Va1 @ Wiy (ki) @ - - - & Wi, (ks),
(ki +1)/2] LS kiyki 2k > 2k, b 2l > 2l andm >k — 1y >
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ko —ly > -+ > k, — l,. We call this the normal form of the module V. Two form
modules are equivalent if and only if their normal forms are the same.

Hence to each nilpotent orbits we associate a pair of partitions (m, k1 —1l1,. .., ks—
I (..., 1), where [y > 1y > -+ >, >0andm >k —lL 2 ke —b 2> 2
ks — 1, > 0. This defines a bijection from the set of nilpotent orbits to the set
{, v = (o, v1,y . vs)y b = (1, oy o) [0+ V] = novy < gyt = 1,...,s},
which has cardinality pe(n) — p2(n — 2).
2.3.4 In this subsection, we classify the form modules (V¢, a, B¢) over F,. Let Ve =
Vams1 ® We and T be as in the last paragraph of 2.3.2. By the classification of
(We, alw,, T¢) over Fy, we have W, = ©W; (ki) where ¢; = 0 or d, my >+ > myg,
L > ->l,m —1 > - >ms— I, and [(m; + 1)/2] < I; < m; (notation as in

Proposition 1.3.1).

Lemma 2.3.15. Assumem >k —1 and | > m. We have Va1 @ WP(k) = Vormy1 &
W (k).

Proof. Let W2(k) = (W1,0,T1) and Wi(k) = (W2, T2). Take py, po such that
WR(k) = span{py,..., T{ o1, p2,- -, T '}, T¥or = Tfp2 = 0, a(Tip1) = bi4-1,
a(Tipy) = 0, B(Tipr, Tip1) = B(Tip2, Tip2) = 0 and B(Tipy, T{p2) = Oiyjk—1. Take
71, Ty such that W)(k) = span{ry, ..., T8 r,79,..., T8 '} , Tk = Th1 = 0,
a(Tim) = 6i1-1, o(Tity) = 6; 518, B(Timy, Tim) = B(Time, Ty72) = 0 and B(Timy, Tima) =
8itjk—1. Let v;,u; be a basis of Vor,q1 as in Lemmas 2.3.5 and 2.3.6. Define g :
Vams1r ® WO(k) = Vamir @ W(k) by gu; = v, gu; = w; + VT3 ™ iry, gTipy =
Tiry, gTips = Tity + V0Us_14m—i, Where v; = 0 if i < 0 or i > m. O

Lemma 2.3.16. Assumem >k —1 and | < m. We have Vapy1 @ WP(E) % Va1 @
WP (k).

Proof. Let v;, i = 0,...,m and u;, ¢ = 0,...,m — 1 be a basis of V41 as in
Lemmas 2.3.5 and 2.3.6. Let W2(k) = (W, , Tp) and W} (k) = (Ws,, T5). Choose
a basis TVp,, Ti7., 7 = 0,...,k — 1, € = 0,8 of W(k) such that T¥p. = TFr. = 0,
BT peys TE7e) = Ojivjab-10er,e00 BT peyy T2 peg) = B(TE 7y, T 7,) = 0, (Tl pe) =
8;:-1 and (TV7.) = €6;k-10c5. Assume there exists g : Vames ® WP(EK) = Vo1 ©
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W] (k) a linear isomorphism satisfying 8(gv, gw) = B(v,w), Bs(gv, gw) = Bo(v, w)
and a(gv) = a(v). We have gv; = av;, gu; = wifa + Y opauv + Zf_ol zyTlps +
S yaTkrs. Now we can assume gTgpy = SV 177 0, T ps + ST BT s +

Z';()cijv,-—i—zy:ol dijui, 5=10,..., k=1,gTI 75 = Zk 1~ T”’Jp<;+zl'C YT e
S gV + oot hijui, § = 0,...,k — 1. By similar argument as in the proof of
Lemma 2.3.14, we get that cpp-1 = 0,9mi-1 = 0,¢5 = Ciy1-1,0ij = Git1,j-1,7 =
0,...,m—1,7=0,...,k—1. Since we have m > I, ¢m; = Coitm = 0 and g,,; =
go,i+m = 0 when i > k — [. We get some of the equations are a2 + agby + 502 = 1, €2 +
eofo+0 /¢ = 0 and ag fo+boeo = 1 (when ! = (k+1)/2) ora? ;_ z-l—zk 1-2i ajbr_1-2i—j+
802, = b1, €2 . 1-{—2’“ e frriz FO0f2, =0, k—1<i<l—1and
aogfo+boeg =1 (when! > (k+1)/2). Wegetag= fo=1,6,=0,i=0,...,2l —k—2

and e2_, ; +ey_x-1+d = 0. This is a contradiction. O
Let G(F,), g(F,) be the fixed points of a Frobenius map §, relative to F, on G, g.

Proposition 2.3.17. The nilpotent orbit in g* corresponding to the pair of partitions
(Yo, 1,5 -« -, Vs) (1, 2, - - -, pis) splits into at most 2% G(Fy)-orbits in g(F,)*, where

= #{'L > 1|V¢ < < Vi—l}'

Proof. Let V = Vo1 @ Wi, (A1) @ - -+ & W, (\s) be the normal form of a module
corresponding to (v, ) over Fq. We show that the equivalence class of V' over Fq
decomposes into at most 2 equivalence classes over F,. It is enough to show that
form modules of the form Va1 @ Wi (A1) @ - -- @ Wi=(),), & = 0 or §, have at most
2k equivalence classes over F,. Suppose iy,...,i; are such that Bi; < pi; < Bij—1,
Jj =1,...,k. Using Lemma 2.3.15, Lemma 2.3.16 and Lemma 1.4.3 (iii), one can
easily verify that a form module of the above form is isomorphic to one of the following
modules: V' @--- @ V* @ Viyq, where V! = Vo @ W2 (M) @ - & ”/z?l_l()‘il—l) oy
Wi (), Ve =WE L i) @ @ W2 (M) @ Wt (N), t =2, k, & =0
ord,i=1,...,k and Vo, = Wlik“()\ikﬂ) @ --- ® WP (),). Thus the proposition
follows. O

—1+1

Proposition 2.3.18. The number of nilpotent G(F,)-orbits in g(F,)* is at most
pa(n).
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Proof. We have mapped the nilpotent orbits in g(F,)* bijectively to the set {(v, u)|v =
(Voy Uy - Vs)y i = (J11, M2y« oy is)s || + V] = nyvy S gyt = 1,...,8} := A. Let
(v,p) € A, v = (vo,v1,...,Vs), b = (p1, 2, ,bs). By Proposition 2.3.17, the
nilpotent orbit corresponding to (v, i) splits into at most 2% orbits in g(F,)*, where
k= #{i > v < p; < v_1}. We associate 2% pairs of partitions to this orbit as
follows. Suppose 71,79, ..., 7 are such that v, < p,, < vp,_1,i = 1,... k. Let N0 =
W0y Ur=1)s 0 = (11, oy phry=1)y VM = (e Vi =1) 800 = (s i -1),
V25 = (s vy Hriga=1)y 20 = Uy ooy V1), 8 = 1Lk — LvYe = (v, ..., vs),
P = (s ), VPR = (g oy ps)y 28 = (Ury, ..., vs). We associate to (v, p)
the pairs of partitions (T fietrek) perrece = (PO pevl pea2 - pek) etk =
(O, peot, 22 . pe*)) where €, € {1,2}, i = 1,...,k. Notice that the pairs of

=101

partitions (&€= fi€-¢) are distinct and among them only (v, u) = (¥ ihol)

i
isin A. One can verify that {(D€%, gt )| (v, u) € A} = {(v, p)|lV|+|pu| =n}. O

2.4 Even orthogonal groups

Let V be a vector space of dimension 2n over k equipped with a non-defective
quadratic form o : V — k. Let 8 : V x V — k be the non-degenerate bi-
linear form associated to a. Recall that the even orthogonal group is defined as
G =02n)=0(V,a)={g € GL(V) | a(gv) = a(v),V v € V'} and its Lie algebra is
g=002n) =o(V,a) ={z € gl(V) | B(zv,v) =0,V v € V}. Let G(F,), g(F,) be the

fixed points of a split Frobenius map §, relative to F, on G, g.

Proposition 2.4.1. The numbers of nilpotent G(F,)-orbits in g(Fy) and in g(Fy)*

are the same.

The proposition can be proved in two ways.

First proof. There exists a G-invariant non-degenerate bilinear form on g = 0(2n)
(G. Lusztig). Hence we can identify g and g* via this bilinear form and the proposition
follows. Consider the vector space A”V on which G acts in a natural way: g(aAb) =

ga A gb. On /\2 V there is a G-invariant non-degenerate bilinear form
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Bla,c) Pla,d)

B(b,c) p(b,d)
Define a map ¢ : A°V — 0(2n) by a Ab — ¢er and extending by linearity where

(aNbcNd)=det

bars(v) = B(a,v)b+ B(b,v)a. This map is G-equivariant since we have @gong =
gdarsg~t. One can easily verify that ¢ is a bijection. Define (and, Dend)o(an) =
(a Abyc A d) and extend it to 0(2n) by linearity. This defines a G-invariant non-
degenerate bilinear form on o(2n).
Second proof. Let £ be an element of g*. There exists X € gl(V) such that
&(z) = tr(Xz) for any € g. We define a linear map 7z : V — V by
B(Tev,v') = B(Xv,v') + B(v, X0'), for all v,v' € V.

Lemma 2.4.2. T is well-defined.

Proof. The same proof as in Lemma 2.3.1 shows that 5(T;v,v’) is well-defined and
thus T is well-defined. O

Lemma 2.4.3. Two elements £,( € g lie in the same G-orbit if and only if there
exists g € G such that gTzg™ = T.

Proof. Assume {(z) = tr(Xez),((z) = tr(X¢x), Vo € g. Then £, ¢ lie in the same
G-orbit if and only if there exists g € G such that tr(gXeg~'z) = tr(X,z), V z € g.
This is equivalent to S((gXeg™! + X¢)v,w) + B(v, (9Xeg™! + X )w) =0, Vv,w € V,
which is true if and only if gTig~! = T. O

Note that §(T¢v,v) = 0 for any v € V. Thus T¢ € g. We have in fact defined a
bijection 0 : g* — g, £ — T;. This induces a bijection 0|y : N7 — N, where N(resp.
N) is the set of all nilpotent elements (unstable vectors) in g*(resp. g). Moreover,

0| n is G-equivariant by Lemma 2.4.3. The proposition follows.

2.5 Springer correspondence

In this section, we assume k is algebraically closed. Let G, g, g*, B, b and n* be

as in the introduction. In subsections 2.5.1 and 2.5.2, we assume that G is simply
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connected. Let B = TU be a Levi decomposition of the Borel subgroup B and U~
a maximal unipotent subgroup opposite to B. Let t, n and n~ be the Lie algebra
of T, U and U~ respectively. Let B be the variety of Borel subgroups of G. Define
t*={€ € glé(mn@®n) =0} An element £ in g* is called semisimple if there exists
g € G such that g.£ € t* (see [KW]). Let r = dimT. The proofs in this section are
entirely similar to those in section 1.6 (see also [L3, L5]). We omit much detail and
refer the readers to [X2| for complete proofs.

2.5.1 Recall that a semisimple element £ in g* is called regular if the connected
centralizer Z2(€) in G is a maximal torus of G ([KW]). By [KW, Lemma 3.2], there
exist regular semisimple elements in g* and they form an open dense subset in g*.
Note that this is not always true when G is not simply connected.

Let t,Y’ be the set of regular semisimple elements in t*,g* respectively. Let
V' = {(&,gT) € Y' x G/T|g7'.¢ € t,}. Define ' : Y' = Y’ by 7'(¢,¢T) = €. The
Weyl group W = NT/T acts (freely) on Y' by n: (€,9T) — (£, gn'T).

Similar to the map = in section 1.6, 7’ is a finite covering. Thus 77!,@1)7/ is a well-
defined local system on Y” and the intersection cohomology complex IC(g*, m Q)
is well-defined.

Let X' = {(¢,9B) € g* x G/B|g~*.€ € b*}, where b* = {¢ € g*|{(n) = 0}. Define
¢ X' — g*by ¢'(£,gB) = £ The map ¢’ is G-equivariant with G-action on X'
given by go : (£, 9B) > (90-€, 909 B).

Proposition 2.5.1. ¢|Qx/ is canonically isomorphic to IC(g*, Q). Moreover,

End(¢/Quxr) = Bnd(miQy,) = QW]

2.5.2 Recall that we denote W the set of simple modules (up to isomorphism) for
the Weyl group W. Similarly as in 1.6.5, we have mQ,y, = D, e (p® (mQ,5.),) and
O\ Qix = D,cw(p® (©1Qix),), where (m{Q3), is an irreducible local system on Y
and (p{Qux'), = IC(g", (mQp),)-

Let N’ be the set of nilpotent elements in g*. Set X’* = ¢ }(N') C X'. Let
¢+ X'S — N’ be the restriction of ¢’ : X' — g*.
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Lemma 2.5.2. There exists a nilpotent element £ in g* such that the set {B, € B|§ €

ni} is finite.

Proof. Let R be the root system of G relative to . We have a weight space decompo-
sition g = t® BcrPa, Where g, = {z € g|Ad(t)z = a(t)x,Vt € T} is one dimensional
for & € R (see for example [Sp2]). Let o;,7 = 1,...,7 be a set of simple roots in R
such that b = t® @acpr+8a and Tq, @ € R, by, a Chevalley basis in g. Let z}, and A},
be the dual basis in g*. Set £ =37, z* . Then £ € n*.

We show that {B; € B|¢ € n}} = {B}. Assume g.£ € n*. We have £(g7'bg) = 0.
By Bruhat decomposition, we can write g=! = wn,b, where v € U N wUw™! and
ny, € NT is a representative for w € W. Assume w # 1. There exists 1 < i < r such
that w™lo; < 0. Let @ = —w™la; > 0. We have £(Ad(vny,)Ts) = £(cAd(v)z_y,) =
£(cx_o,) = ¢, where c is a nonzero constant. This contradicts £(g7'bg) = 0. Thus

w=1and g7'.n* =n* O

Lemma 2.5.3. (i) X" and N are irreducible varieties of dimension dy = dim G —r.
(ii) We have (p|Qux/)|v = ©*Qixr<. Moreover, ¢ Qixi[do] is a semisimple per-
verse sheaf on N'.

(i) We have (&{Qux:)plaw # 0 for any p € W.

Proof. We only prove (i). We have X’* = {(£,¢gB) € g*x B|g~'.£ € n}. By projection
to the second coordinate, we see that dim X’ = dimn* + dim B = dim G — r. The

map ¢’ is surjective and the fiber at some point £ is finite (see Lemma 2.5.2). It

follows that dim A/ = dim G — r. This proves (i). O
Let 2y be the set defined for g* as in the introduction.

Proposition 2.5.4. (i) The restriction map Endp)(p|Qix') = Endpvy (0 Qixr)
s an isomorphism.

(ii) For any p € W, there is a unique (c, F) € Age such that (1 Qux7) plar[do] is
IC(g, F)[dimc] regarded as a simple perverse sheaf on N' (zero outside ¢). Moreover,

p > (¢, F) is an injective map v : W — D/
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2.5.3 In this subsection let G = SOn(k) (resp. Span(k)) and g = on(k) (resp.
sp,, (k)) the Lie algebra of G. Let G, be a simply connected group over k of the same
type as G and g, the Lie algebra of G,. For ¢ a power of 2, let G(F,), g(F,) be the
fixed points of a split Frobenius map §, relative to Fy on G, g. Let G5(F,), gs(Fy)
be defined like G(F,), g(F,). Let Ay (resp. Ug:) be defined for g* (resp. g;) as in

the introduction. For a finite set S, we denote its cardinality by |S].

By similar argument as in subsection 1.6.6, |g«| (resp. |2g:]) is equal to the
number of nilpotent G(F,) (resp. Gs(F,))-orbits in g(F,)* (resp. gs(F,)*) (for ¢
large). On the other hand, the number of nilpotent G(F,)-orbits in g(F)* is equal to
the number of nilpotent G,(F,)-orbits in gs(F,)*. In fact, we have a morphism G5 —
G which is an isomorphism of abstract groups and an obvious bijective morphism
N’ — N! where N (resp. N!) is the set of nilpotent elements in g* (resp. g;). Thus
the nilpotent orbits in g* and g’ are in bijection and the corresponding component
= |ng§

groups of centralizers are isomorphic. It follows that |g-

Corollary 2.5.5. |- = |W|.

= |Q(g;‘

Proof. Assume G is SOy, (k). The assertion follows from the above argument, Propo-
sition 2.4.1, and Corollary 1.6.15. Assume G is Spa,(k) or Ogpt1(k). It follows from
Proposition 2.5.4 (ii) that |Ag-| = |Ag:| > |W|. On the other hand, it is known that

|W| = pa(n) (see [L2]). Hence |2y | = [g:| < |W| by Proposition 2.2.15, Proposition

2.3.18 and the above argument. O
Theorem 2.5.6. The map 7y in Proposition 2.5.4 (ii) is a bijection.

Corollary 2.5.7. Proposition 2.2.13, Corollary 2.2.14, Proposition 2.2.15, Proposi-
tion 2.8.17 and Proposition 2.3.18 hold with all ”at most” removed.

Proof. For g large enough, this follows from Corollary 2.5.5. Now let g be an arbitrary
power of 2. Let (c, F) be a pair in g+ Since the Springer correspondence map v in
Proposition 2.5.4 (ii) is bijective (Theorem 2.5.6), there exists p € W corresponding
to (c, F) under the map 7. It follows that the pair (§;'(c),§;'(F)) corresponds to
Sq‘l(p) € W. Since the Frobenius map §, acts trivially on W and + is injective, it
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follows that c is stable under §, and §,'(F) = F. Pick a rational point £ in c. The
Gs-equivariant local systems on c¢ are in 1-1 correspondence with the isomorphism
classes of the irreducible representations of Zg,(€)/Zg,(€). Since Zg,(£)/Z2 (€) is
abelian (see Proposition 2.6.2 and 2.6.7) and the Frobenius map §, acts trivially on
the irreducible representations of Zg,(£)/Zg,(€), §4 acts trivially on Zg,(§)/22 (€).
Thus it follows that the number of nilpotent G(F,)-orbits in g,(F,)* is independent
= |W|. O

of ¢ hence it is equal to |Ag.

Remark. Let G4 be an adjoint algebraic group of type B,C or D over k and gqq
its Lie algebra. Let g%, be the dual space of gqq. In chapter 1, we have constructed a
Springer correspondence for go.q. One can construct a Springer correspondence for gk,
using the result for g.q and the Deligne-Fourier transform. We expect the two Springer
correspondences coincide (up to sign representation of the Weyl group). We use the
approach presented above since this construction is more suitable for computing the

explicit Springer correspondence (see chapter 3).

2.6 Centralizers and component groups

In this section we study some properties of the centralizer Zg(€) for a nilpotent
element £ € g* and the component group Zg(£)/Z2(€).

2.6.1 Inthissubsection assume G = Sp(2N). Let V' = *W () (m1) D" W y(mgq) (m2) P
B Wy (my) (M), m1 > -+ > my, be a form module corresponding to § € g*. Let T
be defined as in subsection 2.2.1. We have Z¢(§) = Z(V) = {g € GL(V)|B(gv, gw) =
Bv,w), o¢(gv) = ag(g), Vv,w eV}

Proposition 2.6.1. dim Z(V) = >"7_ ((4i — 1)m; — 2x(m;)).

Proof. We argue by induction on s. The case s = 1 can be easily verified. Let C(V) =
{9 € GL(V) | gT; = Teg}. Let Vi = "Wyimy)(ma) and Va = "Wy (ma) @ -+ &
*Wx(ms)(ms). We consider V) as an element in the Grassmannian variety Gr(V,2m,)

and consider the action of C(V') on Gr(V,2m,). Then the orbit of V; has dimension
dim Hom4(V4,V2) =437 , m;. Now we consider the action of Z(V) on Gr(V,2m;).
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The orbit Z(V)V; is open dense in C(V)V; and thus has dimension 47 _, m;. We
claim that

() the stabilizer of V; in Z(V) is the product of Z(V1) and Z(V2).
Thus using induction hypothesis and (x) we get dim Z(V) = dim Z(V1)+dim Z(V3) +
dim Z(V)Va = 3y — 2x(mn) + S5 (41 - 5yms — 2x(m.)) +4 38y me = i, (4i -
Lym; — 2x(m,)).

Proof of (x): Assume g: Vi &V, — V1@V, lies in the stabilizer of V; in Z(V). Let
pij» 1,5 = 1,2 be the obvious projection composed with g. Then p;; = 0. We claim
that pyq is non-singular. It is enough to show that py; is injective. Assume p1;(vy) =0
for some v; € V4. Then we have B(gu1, gv}) = B(p1vi, gv;) = 0 = B(vy,v}) for any
v} € V;. Since Bly, is non-degenerate, we get v; = 0. Now for any v € Vo, v; € V3, we
have B(gv1, gv2) = B(P11v1, P21va + P22va) = B(p11v1, parv2) = B(v1,v2) = 0. Since Blwv,

is non-degenerate and p;; is bijective on V;, we get pg;(ve) = 0. Then (x) follows. O
Let r = #{1 < i < s[x(m:) + x(mis1) < m; and x(m;) > 5=}
Proposition 2.6.2. The component group Z(V)/Z°(V) is (Z/2Z)".

Proof. Assume ¢ large enough. By the same argument as in Proposition 1.7.1, one
shows that Z(V)/Z°(V) is an abelian group of order 2". We show that there is
a subgroup (Z/2Z)" ¢ Z(V)/Z(V)?. Thus Z(V)/Z(V)° has to be (Z/2Z)". Let
1 <iy,...,i, < s be such that x(mj,) > (mi, —1)/2 and x(my;) + x(mi;+1) < My,
j=1,...,r. Let V; = *WX(mij__1+1)(m":j—1+1) < RN *Wx(mij)(mij), j=1,...,r—1,
where 4o = 0, and V, = *Wym, (M 111) & - @ *Wym,y(m;). Then V' =
VieVa®---@V,. We have Z(V;)/Z2°(V;) =Z/2Z,i=1,...,r. Take g; € Z(V;) such
that ¢;Z%(V;) generates Z(V;)/Z°(Vi),i=1,...,r. Let ; =Id®-- - ® ¢:®--- ® Id,
i=1,...,7. Then we have §; € Z(V) and §; ¢ Z°(V'). We also have that the images
of Giy - Gi,)s, 1 <iy < - <ip <r,p=1,...,r, in Z(V)/Z%(V) are not equal to
each other. Moreover g2 € Z%(V). Thus the §;Z°(V)’s generate a subgroup (Z/2Z)"
in Z(V)/Z°(V). O

2.6.2 In this subsection assume G = O(2N + 1). Let (V,a, ¢) be a form module
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corresponding to § € g*. Let C(V) = {g € GL(V)|B(gv, gw) = B(v,w), Be(gv, gw) =
Be(v,w), Vv,w € V}. Wehave Zg(§) = Z(V) = {g € C(V)|a(gv) = a(v), Vv € V}.

Lemma 2.6.3. |Z(Vaopi1)(Fy)| = ¢™ and |C(Vams1)(Fy)| = ¢

Proof. Let Vomy1 = span{vg, -+ ,Um,Uo," " ,Um-1}, Where v;,u; are chosen as in
Lemma 2.3.5 and Lemma 2.3.6. Let g € C(Vapmyy). Then g : Vo1 — Voryq satisfies
B(gv, gw) = B(v,w) and Be(gv, gw) = Be(v,w) for all v, w € Vap1 1. One easily shows
that gv; = av;, 1 = 0,...,m and gu; = u;/a + Z;’;Oaijvj, t =0,...,m— 1, where
aij = Qji, Gije1 = @541, 0 < 4,5 < m — 1. Hence |C(Vam41)(Fy)| = ¢#™ L.

Now assume g € Z(Vame1). Then we have additional conditions a = 1 and

al +a;/a=0,i=0,...,m— 1. Hence |Z(Vams1)(Fy)| = g™ 0
Write V = Vo1 @ W as in Lemma 2.3.8.
Lemma 2.6.4. |C(V)(F,)| = |C(Vams1)(Fy)| - |CW)(F,)| - ¢timW.

Proof. Let g € C(V). Let p11 : Vams1 = Va1, 012 © Vomir = W, po1 : W = Vo
and pyy : W — W be the projections composed with g. Let v;, u; be a basis of V41
as before. By the same argument as in Lemma 2.3.10, we have gv; = av; for some a
and pea € C(W). Moreover, one easily shows that we have gu; = Z;’;O a;;vj +u;/a+
Tgpu(UO), t=0,....m—-1lgw = E?lo aﬂ(Tgplz(Uo),pzzw)Ui + pa2(w), Vw € W.
Now note that pi2(ug) can be any vector in W. It is easily verified that the lemma

holds. O
Proposition 2.6.5. dim Z(V) = vo+ >0 vs(4i + 1) + >0 pa(4i — 1).

Proof. Let V = Va1 & Wi, (ma) @ -+ & Wi, (ms) = (V; o, B). Let W = Wi, (my) @
- @W,, (ms). We have dim C(W) = "7_,(4i—1)m; and dim C (V1) = 2m+1. By
Lemma 2.6.4, dim C(V') = dim C(W)+dim Vopp1+dim W = 37 (4i—1)m;+2m+1+
2%7_, m;. Consider Vomy1 as an element in the Grassmannian variety Gr(V,2m+1).
Let C(V)Vam41 be the orbit of Vap,41 under the action of C(V). The stabilizer of
Vams1 in C(V) is the product of C(Vomy1) and C(W). Hence dim C(V)Vapyy =
dim C(V) — dim C(Vom41) — dimC(W) = 2377 | m;. We have dim Z(V)Vapmqr =
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dim C(V)Vams1. Hence dim Z(V) = dim Z(Vam41) + dim Z(W) + dim Z(V)Vomsr =
m o+ S0 (i + Dmy — 2L) = v+ Y oiy vi(4i + 1) + 300 (40— 1), O
Lemma 2.6.6. |Z(V)(F,)| = 2¢¢¥™Z(V)+ lower terms, where k = ##{i > 1|v; <
pi S vic1}

Proof. If #{i > 1|v; < p; < v;_1}=0, the assertion follows from the classification of
nilpotent orbits. Assume 1 < ¢t < s is the minimal integer such that v; < puy < V1.
Let Vi = Vamy1 ® Wy where Wy = Wy, (m) & - & W,,_, (my—1) and W = W, (my) @
< @® W, (ms). We show that

1Z(V)(Fo)l = 1Z(V1)(Fy)| - |Z(W2)(Fo)l - ™ (2.1)

where r; = dim W, + dim Hom4 (W1, W,). We consider V; as an element in the

Grassmannian variety Gr(V,dim V;). We have

[C(V)(Fo)|
[C(V1)(Fy)| - [C(Wa)(F,)]
_1C(Vami1)(F)| - [C(W1 & Wa) (Fy)| - Wit
[CVoms) (F)] - [COW)(F ) - g3n¥7 - [C(Wo) (Bl *

IC(V)Vi(F)] (2.2)

In fact, let p;;, 4,7 = 1,2,3 be the projections of g € C(V). Assume g is in the
stabilizer of V; in C(V'). Then we have p13 = pz3 = 0. It follows from the same argu-
ment as in Lemma 2.6.4 that pyy is nonsingular and gv; = av;,7 =0,...,m, gu; =
Yo G+ uifa+ Tipra(u), i =0,...,m—1,gw; = Yoimo aB(TEpra(uo), paawr)vs +
paa(wr), ¥V wy € Wi, gwa = > 10, aﬁ(Tgiplz(uo)ypzzw + Paswa)v; + Paa(w2) + Pas(w2),
YV wy € Wa. Now B(gwr, gwz) = B(paa(wn), paa(ws) + pas(we)) = B(pa2(wr), paa(ws)) =
0, for any wy € W, and wy € Ws. Since pao is nonsingular and S|w, xw, is nondegen-
erate, we get pog(wy) = 0 for any wy, € Wa. Thus the stabilizer of V; in C'(V) is the
product of C(V1) and C(W2) and (2.2) follows.

We have C(V)(Vi & Wy) = C(V)(V1) & C(V)(W2) implies C(V)(V1) = V1 and
C(V)(Wy) = W,. Thus |C(V)(V1)(Fy)| = |Z(V)Vi(F,)| = ¢™. Since the stabilizer of
Vi in Z(V) is the product of Z(V;) and Z(W2), (4.1) follows. Now the lemma follows
by induction hypothesis since we have dim Z(V) = dim Z(V;) + dim Z(W,) + ;. O

99



Proposition 2.6.7. The component group Z(V')/Z°(V) is (Z/2Z)*, where k = #{i >

Hyvg < ps Svica}.

Proof. Lemma 2.6.6 and the classification of nilpotent orbits in g(F,)*(¢ large) show
that Z(V')/Z°(V) is an abelian group of order 2*. It is enough to show that there exists
a subgroup (Z/2Z)* C Z(V)/Z°(V). Assume V = Vo1 @ W (m1) @+ - @ W ().
Let i1 <1z < -+ < be the I’s such that v; < p; < vy Let Vo = Vo @ Wi (1) @
@ W'lzl__ll(mh_l) and W, = I/Vlzf(m”) ® b WlZ’:’ll__ll(miHl_l), Jg=1,...k,
where ix1 = s+ 1. We have Z(V5)/Z2°%(Vo) = {1} and Z(W;)/Z°(W;) = Z/2Z,
j=1,...,k. Take g; € Z(W;) such that g;Z°(W;) generates Z(W,)/Z°(W;). Let
§i=1d® - ®g;®---®Id, j=1,...,k Then g; € Z(V), g; ¢ Z°(V), 37 € Z°(V)
and §,Gj, -+ Gj, ¢ Z°%(V) forany 1 < j)y < jo < -+ < j < s, 7 =1,..., k. Thus
G;Z°(W;), 7 =1,...,k generate a subgroup (Z/2Z)*. O
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Chapter 3

Combinatorics of the Springer
Correspondence for Classical Lie

Algebras and their Duals

Throughout this chapter, k denotes an algebraically closed field of characteristic 2.

3.1 Introduction

Assume G is a connected algebraic group of type B,C or D defined over an alge-
braically closed field of characteristic p, g is the Lie algebra of G and g* is the dual
vector space of g. When p is large, Shoji [Sh1] describes an algorithm to compute
the Springer correspondence for g which does not provide a close formula. A combi-
natorial description of the generalized correspondence for G is given by Lusztig [L3]
for p # 2 and by Lusztig, Spaltenstein [LS2] for p = 2. Spaltenstein [Spal| describes
a part of the Springer correspondence for g (when p = 2) under the assumption
that the theory of Springer representation is still valid in this case. We describe the
Springer correspondence for g and g* constructed in chapter 1 and chapter 2 (when
p = 2) using similar combinatorics that appears in [L3, LS2]. It is very nice that this
combinatorics gives a unified description for (generalized) Springer correspondence of

classical groups in all cases, namely, in G, g and g* in all characteristic. Moreover, it
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gives rise to close formulas for computing the correspondence.

3.2 Recollections and outline

3.2.1 For a finite group H, we denote H” the set of isomorphism classes of irre-
ducible representations of H.

Forn > 1,let W, be a Weyl group of type B, (or C,,). The set W is parametrized
by ordered pairs of partitions (u,r) with Y- pu; + > 15 = n. We use the convention
that the trivial representation corresponds to (i, v) with x4 = (n) and the sign repre-
sentation corresponds to (u,v) with v = (1"). Moreover, u = (3 > pg > -+ > 0),
v=(1n>wr>--->0).

For n > 2, let W;, C W,, be a Weyl group of type D,,. Let W{ = W/ = {1}. Let

W' be the quotient of (W?)" by the natural action of W,, /W' . The parametrization
of W,, by ordered pairs of partitions induces a parametrization of W/ by unordered
pairs of partitions {u, v}. Moreover, {u, v} corresponds to one (resp. two) element(s)
of (W/)" if and only if p # v (resp. u = v). We say that {u, v} and the corresponding
elements of W/’ and (W’ )" are non-degenerate (resp. degenerate).
3.2.2 Recall that 2, (resp. 2y ) denotes the set of all pairs (¢, F) with ¢ a nilpotent
G-orbit in g (resp. g*) and F an irreducible G-equivariant local system on ¢ (up to
isomorphism). The set 2, (resp. y-) is the same as the set of all pairs (z, @) (resp.
(&,¢)) with € g (resp. £ € g*) nilpotent (up to G-action) and ¢ € Ag(z)" (resp.
¢ € Ac(§)"), where Ag(z) = Zg(z)/Zg(x), Ac(§) = Za(§)/2&(8), Zo(z) = {g €
G|Ad(g)r = z} and Zg(€) = {9 € Glg.£ = £}.

We denote N (resp. NV-) the variety of nilpotent elements in g (resp. g*).

3.2.3 Assuming G is adjoint (resp. simply connected), in chapter 1 (resp. chapter
2) we have constructed a Springer correspondence for g (resp. g*), which is a bijective
map from A, (resp. Ay+) to Wg (we denote W the Weyl group of G). This induces
a Springer correspondence for any g (resp. g*) with G of the same type. In fact,
there are natural bijections between the sets of nilpotent orbits in two Lie algebras

(resp. duals of the Lie algebras) of groups of the same type, and the corresponding
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component groups of centralizers are isomorphic. Hence the sets 2, (resp. Ag.) are
naturally identified.

3.2.4 Assume G = Sp(2n) or G = O(2n + 1). The Springer correspondence for g
(resp. g*) is a bijective map 7, : 5 = W2 (resp. v : Ag- = W)).

Assume G = SO(2n). Let G = O(2n). The group G/G acts on 2, and on the
set of all nilpotent G-orbits in g. An element in 2, or a nilpotent orbit in g is called
non-degenerate (resp. degenerate) if it is fixed (resp. not fixed) by this action. Then
(z,¢) € A, is degenerate if and only if z is degenerate, in this case Ag(x) = 1 and
thus ¢ = 1. Let ﬁlg be the quotient of A, by G/G. The Springer correspondence
for g (or g*) is a bijective map v, : Ay = A — (W,,)", which induces a bijection
Ty Ay S W
3.2.5 For a Borel subgroup B of G, we write B = TU a Levi decomposition of
B and denote b, t and n the Lie algebra of B,T and U respectively. Recall that
n* = {¢£ € g*|¢(b) = 0} and b* = {¢ € g"|¢{(n) = O}.

For a parabolic subgroup P of G, we denote Up the unipotent radical of P, p and
np the Lie algebra of P and Up respectively. For a Levi subgroup L of P, we denote
[ the Lie algebra of L. Define p* = {£ € g*|¢(np) = 0}, np = {€ € g*|[{(ID np) = 0}
and I* = {€ € g*|¢(np ® np) = 0} where g =@ np ®np. We have p* =" & np.
3.2.6 Let P be a parabolic subgroup of G with a Levi decomposition P = LUp
such that the semisimple rank of L is 1 less than that of G. Let z € N and '’ € M.
Consider the variety

Y, = {g € G|Ad(g7!)(z) € 2’ + np}.
Let dy v = (dim Zg(z) + dim Z1(2'))/2 + dimnp. We have dimY »» < dy o (see
Proposition 3.3.1 (ii)). Let S, be the set of all irreducible components of Y, . of
dimension d ;. The action of Zg(x)x Zy(z")Up on Yy o by (g0, 91).9 = goggr ! induces
an action of Ag(z) x Ar(2') on Sy 4. Denote €4 the corresponding Ag(z) x Ar(z')-
representation. We prove in section 3.3 the following restriction formula
(R)  (6© ¢ c0w) = (ResWerC, b p)w,.
where 6 € Aa(z)",¢' € AL(@), %y = (@ 8)) € WS, sy = w((&', ) € W},

To prove the restriction formula (R) it suffices to assume that G is adjoint (see
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3.2.3). The proof is essentially the same as that of the restriction formula in unipotent
case [L3].
3.2.7 Let P,L be as in 3.2.6. Let { € N+ and & € M.. We define Y ¢/, Seer, ¢ e
as Yza, Se.o'y o, TEPlacing x, 2’,p, n,,, adjoint G-action on g by &, £ ,p*, np, coadjoint
G-action on g* respectively. We have the following restriction formula

(R)  ($© ¢, cce) = (Reswrly b hws,
where ¢ € AG(E)".¢' € AL(E)", p€, = 1o ((6,9)) € W, pk = e((€,¢))) € W,
The proof of (R’) is entirely similar to that of (R) and is omitted.
3.2.8 Assume G = SO(V, Q) (see 1.2.1). Let G = O(V, Q). Note that G # G if and
only if dim(V') is even. Let & C V be a line such that Q|5 = 0. Let P be the stabilizer
of £ in G and P the identity component of P. Then P is a parabolic subgroup of
G. Let L be a Levi subgroup of P and L= Np(L). Then P = LUp and L = L°.
Fix a Borel subgroup B C P and let B = Ng(B). Denote B = {gBg~!|g € G},
P ={gPg g € G}.

Let = € N,. Define B, = {gBg~' € B|Ad(g7')(z) € b} and P, = {gPg~! €
P.|Ad(g71)(z) € p}. The natural morphism g, : B, — Py, gBg~! — gPg~! is Za(x)
equivariant. We have a well defined map

fo:Pe = CN(p/np), gPg~* — orbit of Ad(g~")z + np,
where CN (p/np) is the set of nilpotent P/Up-orbits in p/np. Let ¢’ € fx(75w) be a
nilpotent orbit. Define Y = f;}(¢/) and X = o7 (Y).

We can assume P € Y. We identify L with P/Up, | with p/np. Let 2’ be the
image of z in [ and let A'(z') = A;(z') = Zi(a')/Z3(a"), H = Za(@)NP = Zp(x), K =
Zg(a:)ﬂﬁ. The natural morphisms H — Z(z), H — Z;(2') and K — Z;(2’) induce
morphisms H — As(z), H — A;(z') and K — A;(z'). Let Ap be the image of H
in Az(z) and A/, the image of K in A;(z'). Then we have a natural morphism
Ap — Aoy A

IfG = C:’, then we omit the tildes from the notations, for example, Ap = Ap and
etc.

3.2.9 We preserve the notations in 3.2.8. Let )~’m/ and S'MI be defined as in 3.2.6
replacing G by G and L by L. Note that Sw,zf # () if and only if dim X = dim B;,
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where X is defined as in 3.2.8 with ¢’ the orbit of z’. If S . # 0, then Y, . is a single
orbit under the action of Zx(z) x Z;(«')Up (see Proposition 3.4.2). It follows that
S, is a single Ax(z) x Az (2')-orbit. Hence Spw = Ag(x) x Ap(a")/Hy, for some
subgroup H, ., C Ag(z) x A;(z'). The subgroup H, . is described as follows.

If A, B are groups, a subgroup C of A x B is characterized by the triple (Ao, By, k)
where Ay = pr,(C), By = BN C and h : Ag = Np(By)/By is defined by a — bBy
if (a,b) € C. Then Flggym/ is characterized by the triple (Ap, A, h), where h is the
natural morphism Ap — A'(z')/A’» described in 3.2.8.

Assume G = SO(2n). The subset S; 5 of Sm/ is the image in S"x’m/ of the subgroup
of Az(z) x Aj(2) consisting of the elements that can be written as a product of even

number of generators. This is also the image of Ag(z) x Ap(z").

3.2.10 Assume G = Sp(V) or O(V). The definitions in 3.2.8 apply to g* (if G =
Sp(V), T is an arbitrary line). Let g, f¢, Ap, A etc. be defined in this way. Then
Ye e, See are described in the same way as Y, o/, Sz o in 3.2.9.

3.2.11 The correspondence for symplectic Lie algebras is determined by Spaltenstein
[Spal] since in this case the centralizer of a nilpotent element is connected and
A, = {(c,Q;)}. We rewrite his results in section 3.8 using different combinatorics.
The Springer correspondence for orthogonal Lie algebras is described in section 3.9.
The proof will essentially be as in [L3], which is based on the restriction formula
(R) and the following observation of Shoji: if n > 3, an irreducible character of W,
(resp. a nondegenerate irreducible character of W) is completely determined by its
restriction to W,,_; (resp. W/ _,). We need to study the representations &, ;-, which
require a description of the groups Ap and fl}g. Extending some methods in [Spa2],
we describe these groups for orthogonal Lie algebras, duals of symplectic Lie algebras

and duals of odd orthogonal Lie algebras in section 3.4, 3.5 and 3.6 respectively.

3.2.12 The Springer correspondence for the duals of symplectic Lie algebras and
orthogonal Lie algebras is described in section 3.10. The proofs are very similar to

the Lie algebra case. We omit much detail.
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3.3 Restriction formula

Assume G is adjoint. Fix a Borel subgroup B of G and a maximal torus 7' C B.
Recall that B denotes the variety of Borel subgroups of G. A proof of the restriction
formula in unipotent case is given in [L3]. The proof for nilpotent case is essentially
the same. For completeness, we include the proof here.
3.3.1 We prove first a dimension formula following [L3]. Let P be a G-conjugacy
class of parabolic subgroups of G. For P € P,let P = P/Up,p = p/npand m, : p — p
the natural projection. Let ¢ be a nilpotent G-orbit in g. Assume for each P € P,
given a nilpotent P-orbit cg C p with the following property: for any P;, P, € P and
any g € G such that P, = gP1g™", we have 7' (cp,) = Ad(g)(m;  (cp,))- Let
Z'={(z,P, P2) € g x P x Plz € m,;}}(c,) N7y, (cp,) }-

We have a partition Z’ = UpZ,,, where O runs through the G-orbits on P x P and
Zp =A{(z, P, P,) € Z'|(P,, P2) € O}.

We denote v¢ the number of positive roots in G and set 7 = vp (P € P). Let

c¢=dimc and ¢ = dimc; for P € P.

Proposition 3.3.1. (i) Given P € P and T € c5, we have dim(cN7,'(Z)) < 3(c—o).

(ii) Given x € ¢, we have dim{P € Plz € m;*(c5)} < (vg — §) — (7 — £).
(ili) If do = 2vg — 20 + ¢, then dim Z}, < dy for all O. Hence dim Z' < dj.

Proof. We prove the proposition by induction on the dimension of the group. Assume
P = {G}, the proposition is clear. Thus we can assume that P is a class of proper
parabolic subgroups of G and that the proposition holds when G is replaced by a
group of strictly smaller dimension.

Consider the map Zy, — O, (z, P, P,) — (P, P,). We see that proving (iii) for
Zy, is equivalent to proving that for a fixed (P', P”) € O, we have

dimm; (cp) N7y (cpr) < 2wg — 20+ & — dim O. (3.1)

Choose Levi subgroups L’ of P’ and L” of P” such that L’ and L” contain a common

maximal torus. An element in p’ N p” can be written both in the form «' + n’ (z’ €
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I',n’ € np/) and in the form z” +n” (z” € I",n” € npr). It is easy to see that there are
unique elements z € V'NI",u" € 'Nnpr, v’ € I'Nnpr, such that o’ = z4+u”, 2" = 2+

Hence (3.1) is equivalent to

dim{(n’,n" ", v, z) € npr x npr x ( Anpr) x ("Nup) x (N W +n' = + 0",

z+u" €cy,z+u €cpr} <20g—20+¢—dimO. (3.2)

(We identify I' = p',I” = p”, and then view ¢z C I,cg» C I".) When (u”, ') €
(' Nnpr) x ("N np) is fixed, the variety {(n/,n") € np x npv|u” +n' = v’ +n"} is
isomorphic to np Nnpr. Since dim(np Nnpr) = 2vg — 20 — dim O, we see that (3.2)

is equivalent to
dim{(u”, U, z) € ([/ Nnpn) X ([/’ Nnpr) X ([’ N [")l z+u" € Cpry 2+ u € Cf,//} <eé (3.3)

By the finiteness of the number of nilpotent orbits, the projection prs of the variety

in (3.3) on the z-coordinate is a union of finitely many orbits & UéU---Uép, in I'NI"
(note that z is nilpotent). The inverse image under pr; of a point z € &; is a product
of two varieties of the type considered in (i) for a smaller group (G replaced by L' or
L"), thus by the induction hypothesis it has dimension < 1(¢—dim &)+ (¢ —dim¢;).
Hence dim pr3*(&;) < ¢ V 1 <i < m. Then (3.3) holds. This proves (iii).

We show that (ii) is a consequence of (iii). Let Z’(c) = {(z, P, P») € Z'|z € ¢} C
Z'. 1If Z'(c) is empty then the variety in (ii) is empty and (ii) follows. Hence we
may assume that Z’(c) is non-empty. From (iii), we have dim Z’(c) < dp. Consider
the map Z'(c) — ¢, (z, P, P2) — z. Each fiber of this map is a product of two
copies of the variety in (ii). It follows that the variety in (ii) has dimension equal to

1(dim Z’(c) — dime) < $(do — ¢) = vg — 7 + § — §. Then (ii) follows.

We show that (i) is a consequence of (ii). Consider the variety {(z, P) € cxP|z €

,n.—l

. (cg)}. By projecting it to the z-coordinate and using (ii), we see that it has

dimension < Vg—.l"/—i-g—l—-g-. If we project it to the P-coordinate, each fiber is isomorphic
to the variety ¢ N, !(cp). Hence dim(c N7y (c;)) < vg — 7+ § + § —dimP = <=,

Now m, maps cN 7, '(cz) onto c; and each fiber is the variety in (i). Hence the variety
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in (i) has dimension < €€ — ¢ = £, The proposition is proved. O

3.3.2 Let P D B be a parabolic subgroup of G with a Levi subgroup L such that
T C L. Let W, = Ni(T)/T. Then @Q[W,] is in a natural way a subalgebra of
QW]
Recall that we have the map (see 1.6.3)

m:Y ={(z,gT) €Y x G/T|Ad(g71)(z) € to} = Y, (z,9T) = «,
where Y, {; is the set of regular semisimple elements in g, t respectively. Let

i = Uyer Ad(9)to, Vi = {(z,9L) € g x G/LIAd(g7")(2) € Y1)
Then 7 factors as

Y Oy,
where 7' is (z,9T) — (z,gL) and " is (z,gL) — z. Themap 7 : Y — Y, is a
principal bundle with group W It follows that End(mQ,3) = Q,[W_] and that we
have a canonical decomposition
mQyp = Doews (' ® (MQ7)p);
where (M Q) = Homg,jw,j(¢', 1/Q,3) is an irreducible local system on Y;. We have
mQy = (MQ7) = B yewy (0 @ T ((1Q7) ),

hence 7} ((mQ,3)y) = Homg,jw,(¢', mQ,y) = Homg,jw,;(¢/, Dpews (0 ® (mQ3),)).
(Recall that mQ,y = @pewg (p ® (mQy5),), where (mQ3), = Hom@l[wq] (p, mQ5)

is an irreducible local system on Y'.) We see that for any p’ € W7,

W;I((W!/@z?)p’) = GB ((m@l?)p ® Hosz[WL](P/»P))' (3.4)
pEWA
3.3.3 Recall that we have the map (see 1.6.3)
¢: X ={(z,9B) € g x G/B|Ad(g7")(z) € b} — g, (z,9B) = z.
Let
X1={(z,9P) € g x G/P|Ad(g7")(z) € p}.
Then ¢ factors as
x4 x %y

where ¢ is (z,¢9B) — (z,gP) and ¢" is (z,gP) — z. The maps ¢', " are proper
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and surjective. We have a commutative diagram

Y
J'ol jll ]'2J(
X

‘P’ (P“
— Xy —— 9

where j, is z — x, jo is (z,gT) — (x, gB) (an isomorphism of Y with the open subset
0~ YY) of X) and j; is (z,9L) — (z,9P) (an isomorphism onto the open subset
¢"1(Y) of X;). Note also that Y, is smooth (since Y is smooth). We identify Y.V,
with open subsets of X, X; via the maps jo, j1 respectively. Let
Xy ={(z,9(BNL) €lx L/(BNL)Ad(g7")(z) € bN 1},
X" ={(g1,2,pB) € G x p x P/B|Ad(p~!)(z) € b}.

We have a commutative diagram with cartesian squares

X p1 X " D2 XL

T

XlLGXﬂpX[L‘) [

where p; is (g1,7,pB) — (Ad(g1)(z),g1pB), a principal P-bundle; ps is (g1, +
n,gB) — (I,¢(BN L)) with{ € [,n € np,¢g’ € L, a principal G X np-bundle; p3
is (g1,m,1) — (Ad(g1)( +n), g1 P), a principal P-bundle; p4 is (g1,7,1) — [, a prin-
cipal G x np-bundle; ¢y is (z,g(BN L)) — z; ¢ is (g1, + n,¢'B) — (g91,n,1), with
lel,nenp, g € L.

Let 7, be the map Yz = {(z, ¢T) € [ x L/T|Ad(g7")(z) € &} — Y1, (z,9L) — z.
Since ps, p4 are principal bundles with connected groups, we have p5IC(Xy, m @l;,) =
piIC(L,mQ,p ) (both can be identified with IC(G x np X [,pzm@lf@)). From
the commutative diagram above it follows that pggof@l x = qbgp’{@l x = ¢gp§QlXL =
pionQix, = pIC(1, WLg@lT,L) (the last equality comes from Proposition 1.6.5 for L
instead of G), hence pipiQix = p3! C(Xl,w{@ﬁ/). Since p3 is a principal P-bundle
we see that p|Qix = IC(X1,mQp). It follows that End(¢|Qix) = Q[W.] and
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P Qix = Dyewy (V' ® (¢|Qix),7) where
(¥1Qux)y = IC(X, (mQpp) ). (3.5)

Next we show that
o (9 Qix)y) = IC(g, @' (mQy3),)), for any p € W1, (3.6)

From (3.5) we see that the restriction of ¢}((¢{Qix)y) to Y is the local system
' (m/(Q,3)y). Since ¢” is proper, (3.6) is a consequence of (3.5) and the following
assertion:

For any i > 0,dimsuppH' (¢} ((¢|Qix) ) < dim g — 4. (3.7)

We have suppH* (¢} ((¢1Qix)p)) C suppM(¢} (#iQix)) = suppH(:Qix), thus (3.7)
follows from the proof of Proposition 1.6.5. Hence (3.6) is verified. Combining (3.6)
with (3.4), we see that for any p' € W%,

o (11Quix)0) = D (9 Qix), ® Homg,w, (¢, p))- (3.8)

A
PE WG

(Recall that we have p,Qix = @pewg (P @ (0 Qix),p), (0 Qix), = IC(g, (mQ3),)-)

3.3.4 Let (¢, F) € Uy, (¢, F) € U and p = v((c, F)) € WA, o = n((c, F)) €
W7, where 7, and ~y are the Springer correspondence maps for g and [ respectively.
Let Xt = {(z, gP) € Xi|z nilpotent} and
R={(z,gP) € g x (G/P)|Ad(g7)(z) € ¢ +np} C X¥.
We show that
supp(¢1Qix)y N XY C R. (3.9)

Let (z, gP) € supp(¢|Qix)NXY. The isomorphism p¢|Qix = peniQix, is compati-
ble with the action of Wy. Thus p3(¢iQix), = pi(¢Qix, ), and p3* (supp (¢|Qix),)
p1 (supp(¢rQix, ). Hence there exists (g1,n,l) € G x np x [ such that (z,gP) =
(Ad(g1)(n+1),1P) and [ € supp(¢r/Qix, )y Since z is nilpotent, n + [ is nilpotent
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and thus [ is nilpotent. Hence | € ¢’ since by Proposition 1.6.5 (for L instead of G),
(o0 Qux,) o |ay, is 1C(¢, F')[dim ¢’ — 2v]( extend by zero outside c),(3.10)

where N, is the nilpotent variety of [. We have g = g;p for some p € P and
z = Ad(gy)(n + 1), hence Ad(g!)(z) = Ad(p~!)(n + 1) € ¢ + np and (z,gP) € R.
This proves (3.9).

We have a partition R = Uy Rw, where ¢ runs over the nilpotent L-orbits in c
and Ry = {(x,gP) € g x (G/P)|Ad(¢g7')(z) € & +np}. Then R’ = Ry is open in R.
It is clear that p; '(R) = p;*(¢) = G x np x ¢ and p;'(Ry) = p; (€) = G xnp x €.

Let 7' be the local system on R’ whose inverse image under p3 : G xnp x ¢’ = R’
equals the inverse image of 7' under py : G x np x ¢’ — ¢’. Since ps, p4 are principal
bundles with connected groups, it follows that the inverse image of IC(R, F') under
ps: Gxnpxc — R equals the inverse image of IC(c’, F') under py : G xnpxc — ¢

It follows that (using pj this is reduced to (3.10))
(01 Qix)p|xe = IC(R, F')[dim ¢’ — 2v;]( extend by zero outside R). (3.11)

For any subvariety S of X;, we denote g¢” : S — g the restriction of ¢” : X; — g to
S.

Proposition 3.3.2. Letd = I/G_% dimec, d = i(dimc—dimc’) and d” = vg—v—d'.
The following five numbers coincide:

(i) dim Homg,(w(#'s p);

(ii) the multiplicity of F in the local system L1 = H>* (o] (0{Quix)y)lc;

(iii) the multiplicity of F in the local system Lo = H* (re!IC(R, F))e;

(iv) the multiplicity of F in the local system L3 = 7—[2dl'(R/(p§'lC(R,f~"))|c =
H (pgl F')e;

(v) the multiplicity of F' in the local system H?® fi(F) on ¢, where f : 7y (¢ )Ne —

¢ is the restriction of m, 1 p — L.
Proof. For p € W4, the multiplicity of F in H24((¢:Qix)5)|c is 1 if 5 = p and is 0 if
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p # p. Hence it follows from (3.8) that the numbers in (i)(ii) are equal.

We show that £; = L. By (3.11), we have L, = H*(re! ((0iQix)p|R))|e- Tt
suffices to show that (x,—r)¢}((¢|Qix)py|x,-r)|c = 0. Assume this is not true. Then
there exists (z, gP) € X; — R such that = € ¢ and (z, gP) € supp (¢|Qix),. Since z
is nilpotent, this contradicts (3.9).

We show that £, = L3. For any z € ¢ we consider the natural exact se-
quence HX-(o"1(z) N (R — R), (6iQux)y) & HH(o'(2) N R, (6Qux)y) —
H2 (" (z) N R, (p|Qix)p) = HX(¢" Y (z) N (R — R'), (¢|Qix),). It is enough to
show that H2*(¢""*(z) N (R — R'), (¢{Qix)y) = 0 and that a = 0. By (3.11), we can
replace (0{Qix )y |xe by IC(R, F)[dim ¢’ — 2vg]. Tt is enough to show

Hgd"((p”_l(il,‘) N (R . R,),IC(R, jf-l)) — O, (312)
H2'"Y(p" Y (2) N (R — R),IC(R, 7)) % H2"'(¢"~}(z) N R, IC(R, F"))

is zero. (3.13)
From Proposition 3.3.1, we see that for any L-orbit & in ¢/,
. 7—1 1. 1. ~/
dim(¢" " (z) N Re) < (vg — 3 dime) — (vp, — 3 dim&'). (3.14)
If (3.12) is not true, then using the partition

& @) N (R~ R) = | (¢" @) N Re), (3.15)
G

we see that H2?'(¢"~'(z) N Ry, IC(R, F')) # 0 for some & # <. Hence there exist
i,7 such that 2d” = i + j and H:(¢"~'(z) N Ry, H/(IC(R, F"))) # 0. It follows that
i < 2dim(¢" ! (z)NRe) < 2vg—dimec—2v,+dim& (we use (3.14)). The local system
HI(IC(R,F')) # 0 so that Ry C supp H/(IC(R,F")) and dim Ry < dimR — j. It
follows that 7 < dim R — dim Ry = dimc¢’ — dim & and 7 + 7 < 2d” in contradiction

to ¢ + 7 = 2d". This proves (3.12).
To prove (3.13), we can assume that k is an algebraic closure of a finite field F,,

that G has a fixed Fg-structure with Frobenius map F : G — G, that P, B, L, T (hence
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X1, ") are defined over Fy, that any ¢’ as above is defined over Fy, that F'(z) = z and
that we have an isomorphism F*F' — F' which makes F' into a local system of pure
weight 0. Then we have natural (Frobenius) endomorphisms of H2¥'~*(¢"~!(z) N
(R — R)),IC(R, 7)) and H*'(¢"~Y(z) N R, IC(R,F)) = H? (¢"\(z) N R, F)
compatible with a. To show that a = 0, it is enough to show that

H*' ("~} (z) N R, IC(R, F')) is pure of weight 2d"; (3.16)
HX' (" () N (R~ R), IC(R, ")) is mixed of weight < 2d"—1(3.17)

Since dim(¢""}(z) N R') < d” (see(3.14)), (3.16) is clear. Using the partition (3.15),
we see that to prove (3.17), it is enough to prove that H2¢'~(¢"~!(z)N Ry, IC(R, F)
is mixed of weight < 2d” — 1 for any & # ¢

Using the hypercohomology spectral sequence we see that it is enough to prove
if i, j are such that 2d” — 1 = i + j, then Hi(¢"'(z) N Rer, HI(IC(R, F))) is mixed
of weight < 2d” — 1 for any &. By Gabber’s theorem [BBD, 5.3.2], the local system
HI(IC(R, F")) is mixed of weight < j. Then by Deligne’s theorem [BBD, 5.1.14(i)],
Hi(¢""Y(z) N Ry, HI(IC(R, F'))) is mixed of weight < i + j = 2d” — 1. This proves
(3.17). Hence Ly = L3 is proved.

Now consider the diagram V RER VIR ¢, where V' = ¢""Y(¢c)N R = {(z,9P) €
¢ x (G/P)|Ad(g™")(z) € ¢ + np}, V = P\(¢' x G) with P acting by p : (z,g) —
(Ad(n(p))(z),gp™*), m : P — L the natural projection, fa(z,gP) = P-orbit of
(my(Ad(g~Y)(2)), 9), fi(z,gP) = . We have G-actions on V by ¢': (z,9) — (2, 9'9),
on V' by ¢ : (z,9P) — (Ad(¢')(z),g'gP) and on ¢ by ¢ : z — Ad(¢')(z). Then f,
and f, are G-equivariant and G acts transitively on V and c.

Note all fibers of f; have dimension < d” and all fibers of f, have dimension < d'.
Applying [L5, 8.4(a)] with £ = F and with & the local system on V whose inverse
image under the natural map ¢’ x G — V is F' X Q;, we see that the numbers (iv)

and (v) are equal. This completes the proof of the proposition. a

3.3.5 Now we are ready to prove the restriction formula (R). Let the notation be

as in 3.2.6. Let ¢ be the G-orbit of z and ¢’ be the L-orbit of . Let 7: G/Z2(z) —
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G/Zg(z) ~ c be a covering of ¢ with group Ag(z). We have the following commutative

diagram
}/x,:c’ —‘E_> Yx,m//Zg(x)

d |
(' +np)Nc +—— 771(2' + np) Nc),
where a is the natural projection and b is given by g — Ad(g™!)(z). Then a induces
an Ag(x)-equivariant bijection between S; . and the set of irreducible components of
7 1((z' +np) Nc) of dimension d' = Z(dimc—dimc’) (note that dim(z'+np)Nc < d’
by Proposition 3.3.1, (i)).

Assume F corresponds to ¢ € Ag(z)" and F' corresponds to ¢’ € Ap(z')". We
have F ~ Homag(s) (4, 7.Qy) and thus H2?((z' + np) Nc, F) = (H2 ((z' + np) N
¢, Q) ® ¢")Ac@ = (H2(771((z' + np) Nc), Q) ® ¢")49@). Then the number (v)
in Proposition 3.3.2 is equal to (¢, H*¥ (f~X(z'), F))a,@) = (¢, H*¥((z' + np) N
&, F))ar@) = (¢ ® ¢ €za) ag(a)xAL(zr)- Hence the restriction formula (R) follows
from Proposition 3.3.2 ((i)=(v)).

3.4 Orthogonal Lie algebras

In this section we assume G = SO(N). Let G = O(N). Let z € N,
3.4.1 The G-orbit c of z is characterized by the following data ([H]):

(d1) The sizes of the Jordan blocks of z give rise to a partition A of 2n, 0 < \; <

Ay <o < A
(d2) For each \;, i = 1,...,s, there is an integer x()\;) satisfy % < x(A) < A
Moreover, x(A;) 2> x(Xiz1), Ai — x(Ai) > Aic1 — x(Niz1), i =2,..., 5.

Denote m();) the multiplicity of A; in the partition A. If N is even, then m()\;) is
even for each A; > 0. If N is odd, then the set {\; > 0|m()\;) is odd} is {a,a—1}NZ+
for some positive integer a.

We write

z (or ¢) = (A x) = (As)xra) -+ (M)x)-
The component groups A(z) = Zg(x)/Z(x) and A(z) = Zg(z)/Zg(z) can be de-
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scribed as follows (see Proposition 1.7.1). Let ¢; correspond to A;, @ = 1,...,s. Then
A(z) is isomorphic to the abelian group generated by {€;,1 < i < s|x(\) # A\i/2}
with relations

(rl) e =1,

(r2) & = €ir if X(N) + x(Ait1) > Aiga,

(r3) €, = 1 if m(\;) is odd.
If N is even, A(z) is the subgroup of A(x) consisting of those elements that can be
written as a product of even number of generators.
3.42 Let ¢ = (N,X) € fo(P2), Y = f71(c') and X = o;'(Y) (see 3.2.8). Spal-
tenstein [Spal] has described the necessary and sufficient conditions for dimX =

dim B, as follows.

Proposition 3.4.1 ([Spal]). We have dim X = dim B, if and only if (X, x’) satisfy
(a) or (b):

(a) Assume that Xy # Aiy1 # Mgz and X(Nig2) = Nig2. Aj = Xj, J # 1+ 2,1+ 1,
Moy = Aira — LMy = At — L, XX = xO) i 5 > 642, X'(\) = X, if j < i+2.
In this case, dimY =s—17 — 2.

(b) Assume that Migr = Xy > Xic1. Ny =X, j# i+ L4, Ay = A — LA =A -1,
YN = X(O), 5 # Bi+ 1 and X)) = X(Npn) € {x(h),x(A) — 1} satisfies
A2 < X(N) < AL x(amn) < X)) £ x(Xima) A= Aier — 1 In thas case,
dimY =s—1 if Y (X)) = x(\) and dimY = s -7 — 1 if x'(A}) = x(N\) — L.

3.4.3 TFrom now on let ¢’ be as in Proposition 3.4.1. Let Ap and A’ be defined as
in 3.2.8.

Proposition 3.4.2. The group Zs(x) acts transitively on Y. The group Ap is the
subgroup of fl(m) generated by the elements €; which appear both in the generators of
A(z) and of A'(z"). The group Al is the smallest subgroup of A'(z') such that the

map Ap — A'(2)/ Al given by €; — €, is a morphism.

Corollary. (i) The variety Y has two irreducible components (and |A(z) JAp| =2)
if ¢ is as in Proposition 8.4.1 (b) with x(A) = 2, Aia — x(Aig2) > 2kl gnd
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X'(A) = x(M) = 1. In this case, suppose D = {1,¢;} = {1,e;01} C A(z), then
A(z) = D x Ap. In the other cases, Y is irreducible and Ap = A(z).

(ii) The group A%y is trivial, except in the following cases where it has order 2:
(a) Ap = {1,€,, 3} C A'(¢') if ¢ is as in Proposition 3.4.1 (a) with Aiys + X(Aiys) = |
Aigz + 1.

(b) A = {1,€,,€,,} C A(z') if ¢ is as in Proposition 3.4.1 (b) with x(\;) #
AL x(Mig2) + x(M) = Aigz + 1 and X' (X)) = x(\) — 1.

3.4.4 Assume G =0(2n +1) = O(V,a) and z corresponds to the form module
V=W,(M) @ W, (M) & D(Mit1) & Wi, (Aisa) - @ Wy, (Ns),

where [; = x(\;),t = 1,...,k. (Note \; are different from those in 3.4.1. We use

notations from Proposition 1.2.2.) We describe the orbits ¢’ and the corresponding

set Y.

We view V' as an A = k[[t]]-module by > a;t'v = > a;(x'v). For all 4 > 1, let
W; = kert N Im(¢*~!). Denote P(W) the set of all lines in the space . We identify
P, with P(kerz N a~1(0)). Let Y be as in 3.4.3. There exists a unique 4y such that
Y C P(W;,) — P(Wi;+1). Then ig = A; for some j = 1,...,s or ig = Appy — 1. Write
V' = £1 /5. We have the following cases.

(i) Assume ip = A;, 1 <7<k, A\j—12> XN and A\ —1;—1> Ajg1 — L.

=W,(M)@- - @W, (N —1)& - @& Dig1) B+ ® Wy, (Ns).
Y = {(ktVw|thw = 0,w ¢ Im t}, if [; = \;j/2 or I; = Ly
Y = {kthtw|thw = 0,w ¢ Im ¢, a(t~1w) # 0}, otherwise.
dimY =2j — 1.

(ii) Assume dp = Aj, 1 <j <k, Aj—12>2Nyq, ,—1>land ;- 12> (A;/2].

Let Y' = {kt" lw|thw = 0,w ¢ Im ¢, a(ti~1w) = 0}.
¢ = Wy (M) @ Wyea(hy — 1)@ - ® DAes) @ & Wi, (A,).

Y =Y’ except if Ay — 1o > Aj_1 — ljq, forall A\, > \j_y, and ;3 =1; > 5"21—“,
then Y =Y’ — {X € Y'|xy/(\j_1) = ;-1 — 1}(an open dense subset in Y').
dimY =25 — 2.

(iii) Assume ig = A;, j > k+2and A\j > A\ + 1.

=W,(M)® O DMey1) ®--- O Wy1( N — 1)@ ® Wy, (N).
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Y = {kthlw|thw = 0,w ¢ Im ¢, a(tw) = 0},

dimY =25 — 2.

(iv) Assume ip = Ag41 and I = M.

=W, (M) @ ®D(M) ® Wiy m1 (M — 1) & - @ Wi (As).
Y = {k(t*+ "t + tM1w!)|tM1 71w spans V- tw’ = 0,w' ¢ Im ¢,
a(t* ') = a(tM+171w)},

dimY =2k - 1.

(v) Assume ig = A1 — 1 and Mg — 2 > Agyo. Let Y/ = {ktren =2yt 1y =

0,w ¢ Im ¢, a(tM+172w) = 0}.
¢/ =W,(\) @ @ W, (M) & D(Ars1 — 1) & Wi, (Meg2) @ - @ Wi, (As).

Y =Y’ except if \y — I, > Ay — I, for all Ay > A, and [y = A\py1 > ﬁzil,
then Y =Y’ — {Z € Y'|xv (M) = I, — 1}(an open dense subset in Y’),
dimY = 2k.

3.4.5 Letz,c¢,Y,Xbeasin3.4.4. Assume L € Y C P(W,,) —P(W;y11). Let X(X)

be the set of nondegenerate submodules M of V satisfying the following conditions:

cl) ¥ € M and M has no proper submodule containing 3,
c2) xum(io) = xv(4o). Moreover, in case (v) of 3.4.4, xar(Ax) = xv (M)

We describe the set X (X) in the cases (i)-(v) of 3.4.4 in the following.

(i) Let & = kv € Y, where v = t¥~'w. There exists v' € Wy, — W), _,, such that
B(v',w) # 0. Take w' such that v = t%'w’. Then M = Aw @ Aw' € X(Z) and
every module in X (X) is obtained in this way. It is easily seen that M = W, (\;).

(ii) Let ¥ = kv € Y, where v = t%~lw. There exist v/ = ¥ 'w' € Wy, — Wi,
such that B(v',w) # 0 and a(ti~'w’) # 0. Then M = Aw & Aw' € X(X) and every
module in X (X) is obtained in this way. It is easily seen that M = W, ();).

(iii) Let = = kv € Y, where v = 1w, There exists v/ = tvw’ € Wy, —Wi,,,,
such that B(v,w) # 0 and a(t¥'w’) # 0. Then M = Aw @ Aw’ € X(X) and every
module in X () is obtained in this way. It is easily seen that M = W), (};).

(iv) Let ¥ = kv € Y, where v = tAe+1=1yy + M1y There exists v; = t**+1 2w, €
Wi,i-1 — Wa,,, such that B(w,v;) # 0 and v = t* w) € Wy, — Wy, 41 such that
B(vy, t* 1) # 0. Then M = Aw & Aw, & Aw' @ Aw| € X(X) and every module in
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X(X) is obtained in this way. It is easily seen that M = W), (A¢) © D(Aey1).

(v) Let & =kv € Y, where v = t*+17%w. There exists v/ = t"+1~ ' € W), ,, —

Wiesi+1 such that S(w',v) # 0. Then M = Aw & Aw' € X(Z) and every module in
X (X) is obtained in this way. It is easily seen that M = D(\¢y1).
3.46 Let M € X(X) and M+ = {v € V|B(v, M) = 0}. Then M* is a non-
degenerate submodule of V. In cases (i)-(iii) of 3.4.4, we have that V = M @ M*.
In cases (iv)-(v), we have V.= M + M+ and M N M+ = V1. The nondegenerate
submodule M+ has orthogonal decomposition M+ = M’ @& D(1), where M’ is a non-
defective submodule. Hence V = M’ @ M (direct sum of orthogonal submodules).
Now the map ' : ¥+ /¥ — £+ /% induced by t is given by the form module &QM@M !
where M’ is defined as above in cases (iv)-(v) and M’ = M* in cases (i)-(iii). We
write M = &Sﬁ

We explain case (ii) of 3.4.4 in detail and the other cases are similar. In this
case M = W, (\;),M = W;,_1(}; — 1). Recall that xw, (A) = [N © 1], where
[m : 1] : N = N is defined by [m;{](k) = max{0, min{k — m + [,1}}. We have
that x(\) = max{xar(X:), xar(N)} and x'(Ai) = max{xa (), x;7(Xi)}. One easily
check that x(A\i) = x'(A) fori > 7+ 1, x(\; —1) = ¥'(A\j = 1) = ; — 1, and
x(N) = i = max{xam(N), i}, X' (As) = max{xar(N),l; — 1} fori < j — 1.

If ;.1 > lj, then l; > I;, Vi < j— 1. It follows that xar(N\) = I; and thus
X' (Ni) =1, Vi< j—1. Assume [;_; = I; and there exists some \; > \;_; such that
A=l = N1 — i1, then I > Ij and xar(As) = L. Tt follows that yar(Aj_1) = Ay —
A+l = 1;1 and thus xpr(N) = 1;, Vi < j— 1. Assume l;_y = 1; > [(A\j_1+1)/2]+1
and for all A\; > Aj_1, Ay — 1 > Aj_1 — ;1. Since we require xy/(\j—1) = L1,
xm(Aj-1) = lj—1 and thus xpr(N) = [,V @ < j— 1. In any case, x'(\) = 1,
Vi < j—1. Hence ¢’ is of the form as stated.

3.4.7 The form modules (X1 N M)/ are described in the following.

(1) Assume z = W,,(2m), m > 1. Then P, = P(kerz) and f,(P,) = Win(2m—1).

(2) Assume & = Wyny1(2m+1), m > 1. Then P, = P(kerz), Yy = [ (Win(2m))
consists of two points and Yy = f;}(W,,41(2m)) = P, — Y.

(3) Assume z = Wi(m), (m +1)/2 < | < m. Then P, = P(kerz), Y; =
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f-Y(Wi_1(m — 1)) consists of one point and Yy = f}(Wi(m — 1)) = P — Y.

(4) Assume z = W,,(m), m > 2. Then P, consists one point and fo(P;) =
Wh-1(m —1).

(5) Assume z = Wy(1). Then P, consists of two points and f,(P;) = {0}.

(6) Assume z = W,,(m) ® D(k), m > k > 1. Then P, = P(ker z N a~(0)) and
foH(D(m) @ Wioa(k — 1)) = P(Wi = Wiea) N a7(0)).

(7) Assume z = D(m), m > 2. Then P, consists of one point and fo(Pe) =

D(m —1).
3.4.8 We prove Proposition 3.4.2 for O(2n + 1). The proof for O(2n) is entirely
similar and simpler. We use similar ideas as in [Spa2]. We first show that Zg(z)
acts transitively on Y. Consider Y* = {(£,M)|Z € Y, M € X(£)*}, where X(Z)*
is the nonempty subset {M € X (Z)xae(Aa) = xv(Aa),Va # j in cases (i)-(iii),a #
k,k + 1in case (iv) and a # k + 1 in case (v)} in X(¥). For M € pra(Y*), the
equivalence classes of M, M+ do not depend on the choice of ¥ € Y such that
(2, M) € Y*. It follows that Zg(z) acts transitively on pro (Y*).

Fix ¥ € Y and M € X(X)*. Let Zy be the stabilizer of M in Zg(z). The
quadratic form o on V restricts to nondegenerate quadratic forms on M, M L (or M/,
if M' # M*). Let G(M), G(M™) (or G(M")) be the groups preserving the respective
quadratic forms and g(M), g(M*) (or g(M’)) the Lie algebras. Let zpr, zpo (or
zp) be the restriction of x on M, M+ (or M’) respectively. Then zy € g(M),
zye € g(M*1Y) (or zpr € g(M’)). We have that Zy is isomorphic to Zga)(Ta) X
Zemty(Tpe). Set Y:, = pry'(M) = {Z € Y|M € X(X)*}. By examining the
cases (1)-(7) from 3.4.7 we see that Zy acts transitively on Y3,. Thus Zg(z) acts
transitively on Y* and hence acts transitively on Y = pr; (?*)

Let Zs, be the stabilizer of £ in Zg(x). The morphism Ap — A'(z')/A’ is induced
by the natural morphism Zs/Z2 — A’(2’). Since X(X)* is irreducible, Zsy =
Zs, N Z)r meets all the irreducible components of Zs. Thus to study the morphism
Ap — A'(z') /A%, it suffices to study the natural morphism Zs a/Z3 )y — A'(2').

Let zy; be the endomorphism of M = (£+ N M)/ induced by zp. Then zy €
o(M). Let A'(zy) = Zguin (@) /2 g (@i)- Let Z = {z € Zgon(om)|2E = X}
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We have a natural isomorphism Zs p = Z X Zg1)(zpys) and Zsp /28 = Z/Z° x
A(zpr1). The morphism A(zp1) — A'(z') is the one obtained as follows. Note that
A(zp1) is naturally isomorphic to A(zpr). The system of generators of A(z) is the
union of the generators of A(zy) and A(x)s1) and the morphism A(zpr) X A(zpn) —
A(z) is equal to the one induced by Zos)(zar) X Zgrey(Tps) = Zy C Zg(z). On
the other hand, we have a morphism A'(z ;) x A(zp) — A’'(z') which comes from the
isomorphism X+ /% & M@ M’ and it is given by the system of generators. Hence the
map A(zpyr) = Zsm/Z3p — A'(2') is given by generators. It remains to identify
the morphism Z/Z° — A'(z').

We can show by explicit calculation on the cases (1)-(7) in 3.4.7 that the natural
morphism Z/Z° — A(z)s) is injective and the image is generated by {&1N; # Ny e
belongs to the system of generators of A(zy) and A’(zy;)}. Using this description
of Z/Z° and the above description of the morphism A'(zy) x A(zy) — A'(z'), we
see that the morphism Z/Z° — A'(z’) is given by the system of generators. So we
have obtained a complete description of the morphism Zs a/Z3 ,; — A’(2) and we
deduce easily that A and the homomorphism Ap — A’(z')/A) are as in Proposition

3.4.2.

3.5 Dual of symplectic Lie algebras

Assume G = Sp(V) in this section. Let £ € N+ and let o , T¢ be defined for € as in
subsection 2.2.1.
3.5.1 The G-orbit c of £ is characterized by the following data (see section 2.2):
(d1) The sizes of the Jordan blocks of T give rise to a partition of 2n. We write
itas A\; < Ag < -+ < Agsq1, where A; = 0.
(d2) For each \;, there is an integer x(\;) satisfy 252 < x(\;) < ;. Moreover,
x(A) > x(Nic1), A — x(N) 2 A1 — x(Nis1),1=2,...,25 + 1.
Then m();) is even for each \; > 0. We write

6 (Or C) = ()\7X) = ()‘2s+1)x()\2s+1) T (/\1))(0\1)‘
The component group A(§) = Zg(£)/Z2(€) can be described as follows (see subsec-
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tion 2.6.1). Let ¢; correspond to A;. Then A(€) is isomorphic to the abelian group
generated by {e;|x(\:) # (A — 1)/2} with relations

(r]) € =1,

(r2) € = €1 if x(A) + x(Niv1) 2 A,

(r3) ¢, =1,if \; = 0.

3.5.2 Let P be the stabilizer of a line ¥ = {kv} C V in G.
Lemma 3.5.1. £ € p’ if and only if ag(v) =0 and T¢(v) = 0.

Proof. P is the stabilizer of the flag {0 C {kv} C {kv}* C V}. Write v; = v. There
exists vectors v;, i = 2,...,2nsuch that v;, i = 1,...,2n span V and B(v;, v;) = 0 itn,
i < j. Let z € np. We have zv; = 0, zv; = a;v1,0 # 1,n+ 1 and 2vp4 = buy +
S o Qi+ 9 i QiUngi. Assume E(z') = tr(X2') for any 2’ € g. A straightforward
calculation shows that tr(Xz) = S0, aiBe(v1, Vnti) + D ieg ntibe(v1, vi) + bag(v1).
Moreover, Te(v1) = 3271 Be(v1, Unag)vj + 2oy Be(v1, v3)Unsse

We have ¢ € p’ if and only if £(z) = 0 for any z € np if and only if B¢(vi,v;) =
Be(v1,vnts) = 04 = 2,...,n and ag(vy) = 0. Thus £ € p’ if and only if ag(vi) = 0
and T¢(v1) = av; for some a € k. Since T; is nilpotent, T¢(v1) = av; if and only if

a = 0. The lemma is proved. O
3.5.3 Assume ¢’ = (X,X) € fe(Pe), Y = f}(¢)) and X = ;' (Y) (see 3.2.10).

Proposition 3.5.2. We have dim X = dim B¢ if and only if (N, X') satisfies:

Assume Aip1 = A > Ay A; = Ay, J # i+ 1,4, Ap1 = A — LA = A — 1,
X'(N) = x(N;), § # ,i+1 and X' (X)) = X' (\iy1) € {x(N), x(A) —1} satisfies [A;/2] <
X' (A <N, x(Niz1) < (V) < x(Xic1) + A — Ao — 1. We have dimY = 2s —i+ 1
if X'(N) = x(Ai) and dimY = 25 — 4 if X'(X) = x(Mi) — 1.

From now on let ¢’ be as in Proposition 3.5.2. Let Ap and A be as in 3.2.10.

Proposition 3.5.3. The group Zg(€) acts transitively on Y. The group Ap is the
subgroup of A(£) generated by the elements €; which appear both in the generators of
A(€) and of A'(€'). The group A is the smallest subgroup of A'(§') such that the

map Ap — A'(&') /A given by €; — €, is a morphism.
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Corollary. (i) The variety Y has two irreducible components (and |A(E)/Ap| = 2) if
¢’ 1s as in Proposition with x(\;) = &, Miz2 — x(Niv2) > Ai/2 and X' (M) = x(\) — 1.
In this case, suppose D = {1,¢;} = {1,€;41} C A(E), then A(§) = D x Ap. In the
other cases, Y is irreducible and Ap = A(E).

(ii) The group A'p is trivial, except if ¢’ is as in Proposition with x(\;) # %’4, X(Air2)+
X(Ai) = Aig2 and X' (N)) = x(X) —1. In this case, we have Ap = {1,¢€,,,€;,,} C A'(E).

Propositions 3.5.2 and 3.5.3 are proved entirely similarly as in the orthogonal Lie
algebra case. We describe the orbits ¢’ and the varieties Y. The detail is omitted.
Assume ¢ corresponds to the form module V = *W; (A1) & --- & *W,_(),), where
l; = x(\;) (notations are as in Proposition 2.2.7).

We regard V as an A = k[[t]]-module by 3 a;it'v = 3 a;T{v. By Lemma 3.5.1, we
can identify P, with P(W), where W = {v € kert|og(v) = 0}. Let ¥ =kv € Y and
vt = {v' € V|B(v',Z) = 0}. The quadratic form o, induces a well-defined quadratic
form a; : £+/E — £+/T (note that B¢(X+,X) = 0) and T; induces a linear map
T¢ : ©+/% — 4/8. Then @, defines an element & € sp(X+/%)* = I*. Moreover,
¢ €, ag = & and Ty = T;. We have the following cases.

(i) Assume 1 < j < s, \j—12>Ajppand Aj— 1 — 1> Njyg — L.
¢ =*W,(A\)@® - @& Wi,(\—1)& & Wy, (\). Y = {kt¥ w|thw = 0,w ¢ Im ¢}
if i =\ —1)/20r liy1 =1;, Y = {ktvw|thw = 0,w ¢ Im ¢, ae(t5w) # 0},
otherwise. dimY =25 — 1.

(i) Assume 1 <7< s, \j =12 A1, i — 1> and I — 1 > [(A; — 1)/2].

Let Y = {kt'w|thw = 0,w ¢ Imt,ae(tv"w) = 0}. ¢/ = *W,,(\) @ - @
WA =10 @@ Wi, (X). Y =Y except if A\g —la > A\j_1 —1j_q, for all A, >
N1, and [j_; = I; > =L then Y =Y’ — {£ € Y'|xv+(\j_1) = l;_1 — 1} (an open
dense subset in Y'). dimY =25 — 2.

3.6 Dual of odd orthogonal Lie algebras

Let G=0(2n+1) = O(V,a). Let £ € Nj. Let V = Voppy1 ® W be a normal form
of € (see subsection 2.3.3), B¢ and Tz : W — W defined for ¢ as in section 2.3.
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3.6.1 The orbit c of ¢ is characterized by the following data (see section 2.3):

(d1) An integer 0 < m < n.

(d2) The sizes of the Jordan blocks of Ty give rise to a partition of 2n — 2m. We
write it as Ay < Ag < -+ < Ags.

(d3) For each )\;, there is an integer x(\;) satisfy & < x(X;) < ;. Moreover,
x(N) = x(Nic1), M — x(A) = Aicr — x(Xic1), 1= 2,..., 2s.

(d4) m > a5 — x(A2s)-
Then m();) is even for each \; > 0. We write

€ (or ¢) = (m; A x) = (M3 (A2s)xrae) ** * (A)xan))-

The component group A(£) = Zg(€)/Z2(€) can be described as follows (see subsection
2.6.2). Let ¢; correspond to A\;, i = 1...,2s. Then A(§) is isomorphic to the abelian
group generated by {€;|x(\;) # Ai/2} with relations

(r]) e =1,

(r2) € = €41 if x(N) + x(Nit1) > Aigr,

(r3) €25 = L if x(Aos) = m.
3.6.2 Let P be the stabilizer of a line ¥ = {kv} C V in G, where a(v) = 0.

Lemma 3.6.1. £ € p’ if and only if Be(v,v") =0 for anyv' € V.

Proof. P is the stabilizer of the flag {0 C {kv} C {kv}* C V'}. Write v; = v. There
exists vectors v;, i = 2,...,2n+1such that v, t = 1,...,2n+1span V and B(v;, v;) =
8jitn, 1 <1< 7 <20, B(vs,V2n41) =0,i=1,...,2n+ 1, avy) = 0,7 =1,...,2n,
a(vons1) = 1. Let z € np. We have zv; = 0, zv; = a;v1,i # 1,n+1,2n + 1 and
TUny1 = 9 g g Qnpili + I i GiUnti + DVni1, TV2ng1 = 0. Assume £(2) = tr(Xa') for
any ' € g. A straightforward calculation shows that tr(Xz) = Y., ;e (v1, Un4s) +
S o @nsiBe(v1,v;) + bBe(v1, von41). Thus if £ € p’ then B(vy,v;) = 0,7 #n+ 1.
Now let W be the subspace of V spanned by v;,% = 1,...,2n. Then /3 is nondegen-
erate on W. We defineamap T : W — W by 8(Tw, w) = Be(w,w'), w,w’ € W. Then
similar argument as in Lemma 2.3.12 shows that T is nilpotent. One easily shows that
Tv, = Z;-lzl Be(v1, Untj)vj + 2?21 Be(v1,vj)Unyj. It follows that Ty = Be(v1, Ung1)v1

and thus B¢(v1,vp41) = 0. The lemma follows. O
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3.6.3 Let ¢’ = (m; N, x') € fe(Pe), Y = f'(c') and X = p;'(Y) (see 3.2.10).

Proposition 3.6.2. We have dim X = dim B¢ if and only if (N, x’) and m’ satisfy
(a) or (b):

(a) Assume m —1 > dos — x(Aas). m' = m —1, X, = X\ and X'(\)) = x(\),
i1=1,...,2s. We have dimY = 0;

(b) Assume that iy = N\ > \i_1. m' = m, No=Xj, J#F i+ 14, Ay = Ny —
LA =X =1, xX(X) =x(N), j #1,i+1 and X'(A) = X' (Aiz1) € {x(N\), x(\) — 1}
satisfies Aj/2 < x'(A) < A, x(hic1) < XN < x(Nio1) + A — Miop — 1. We have
dimY =2s —i+ 1 if X' () = x(\) and dimY = 2s — 7 of x'(\)) = x(\) — 1.

From now on let ¢’ be as in Proposition 3.6.2 and Ap, A} defined as in 3.2.10.

Proposition 3.6.3. The group Zg(€) acts transitively on Y. The group Ap is the
subgroup of A(§) generated by the elements €; which appear both in the generators of
A(€) and of A'(§'). The group Alp is the smallest subgroup of A'(£') such that the

map Ap — A'(&')/Ap given by €; — €, is a morphism.

Corollary. (i) The variety Y has two irreducible components (and |A(€)/Ap| = 2)
if ¢ is as in Proposition 8.6.2 (b) with x(\;) = 2, /(X)) = x(\;) — 1, and Ay —
x(Aig2) = N+ 1)/24fi <2s—1, m > (N+1)/2 if i = 25— 1. In this case,
suppose D = {1,¢;} = {1,€;41} C A(E), then A(§) = D x Ap. In the other cases, Y
is irreducible and Ap — A(£).

(ii) The group A’ is trivial, except if ¢ is as in Proposition 3.6.2 (b) with x(\;) #
AL X () = x(N) = 1, and x(Nirg) + x(N) = Miga+1 i1 < 25— 1, x(A) =m+1
ifi=2s—1. We have Ap = {1,€/ €/, ,} CA(E) ifi <2s—1 and A = {1,6,,} C
A€ ifi=2s—1.

Write £ = Vo1 @ W, where W = Wi, (M) @ - @ W,(Xs), L = x(N), N >
Ai+1 (notation as in section 2.3). Let {v;,i = 0,...,m} be the set of vectors as in
Lemma 2.3.5. We view W as a kl[t]] module by ) ait'w = Y a;T{w. It follows
from Lemma 3.6.1 that P¢ is identified with P((kvy @ kert) N a~1(0)) (« is the non-
degenerate quadratic form on V). Let £ € Y and &+ = {v/ € V|3(v',Z) = 0}. The
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bilinear form J¢ induces a bilinear form Bﬁ on £1/%. Then B& defines an element
¢ € o(SL/T)* = I*. We have that ¢ € ¢’ and B¢ = B¢. The variety Y in various
cases is described in the following.

(i) Assume m > 1land m —1 2> A\ — ;.

& =Vom1 ®@Wi, (M) ® -+ D W, (As), Y = {kuvo} consists of one point.

(i) Assume \; —1; — 1> Njj1 — big1, Ay 2 Ajy1 + 1. Thenm > 1.
£ = Va1 ®Wi, (M) @ - dW, (N - 1)@ - W, (). Y = {kv|v = avg+thw,w €
W,thvw = 0,w ¢ tW}ifl; = Aj/2 or ljy1 = 1;; Y = {kvlv = ayg +thvlw,w €
W, thiw = 0,w ¢ tW, a(t""'w) # a1, } otherwise. dimY = 2j.

(iii) Assume [; — 1 >[40, 0 > [N/2]+ 1,0 > Ajpq + 1.
¢ =Vamm ®W,(M) @ &W,0(\ - 1)@ &W,(A\) Y CY = {kofo =
avy + N lw,w € W, thiw = 0,w ¢ tW, a(t5"'w) = a?dpm a1, } (for a description of
Y see below). dimY = 25 — 1.

Case (i) is clear. We explain case (iii) in detail. Case (ii) is similar. Let ¥ =
kv € Y, where v = avg + tY 1w, Let {u; € Vamyr,@ = 0,...,m — 1} be a set
of vectors as in Lemma 2.3.6. Assume a # 0. There exists wy € W such that
Blwg, t*'w) = 1 and afwp) = 0. Let iy = awy + up and we define Vams1, W as
in Remark 2.3.9. Then V = Va1 @ 1474 (we can choose wg such that x;, () = )
and £ C W. Note that v = t¥~1(), where @ = w + Y7, B(awo, tiw)v; € W and
a(th ) = a(ti~ w) + a®6m -1,

Now we can assume V = V.1 @ W is a normal form of £, with ¥ =kv C W
and v = tN"lw,w € W. Then L1/ = Vorp1 @ (BN W)/E. We apply the results
for orthogonal Lie algebras to (X+ N W)/Z (see 3.4.4). Write W' = (Z+ NnW)/%.
The set Y = Y', except if [;_; =1[; > 5‘21;“, m > Aj_1 — {;—1 and for all A, > A;_1,
Ae — la > Aj — [, then Y consists of those v such that xwr(Aj—1) = lj-1.

3.6.4 We prove Proposition 3.6.3. In case (i), we have L = {kvo} C Vap41. For any
g € Zg(€), we have that guy = vo. Hence H = Zp(€) = Zg(€), K = Zp(§) N Z&(E) =
Z3(€) and Ap = A(E), Ap = 1.

In cases (ii) and (iii), we can find a normal form V' = Va1 @ W such that X C W

(see subsection 3.6.3). Let X (X) be the set of all such W. We first show that Zg(§)
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acts transitively on Y. Let Y = {(Z,W)|Z € Y, W € X(X)}. Then Zg(€) acts
transitively on pry(Y). Set Yy = pry (W) = {EeY|W e X(2)}. It follows from
the results in the orthogonal Lie algebra case that Zy acts transitively on ?W (see
Proposition 3.4.2). Then Zg(€) acts transitively on Y and hence acts transitively on
Y =pn (?)

Fix¥ € Y and W € X(X). Let Zw and Zs, be the stabilizer of W and £ in Zg(€)
respectively. The morphism Ap — A’(¢')/A% is induced by the natural morphism
Zs/Z3 — A'(£). Since X (X) is irreducible, Zs.w = ZxN Zw meets all the irreducible
components of Zy. Thus to study the morphism Ap — A'(¢')/A%, it suffices to study
the natural morphism Zsw /23, — A'(€').

The quadratic form « on V restricts to nondegenerate quadratic forms on W and
W+, Let G(W), G(W1) be the groups preserving the respective quadratic forms
and g(W), g(W+) the Lie algebras. The bilinear form 3¢ on V restricts to bilinear
forms on W and W+. Let &w and &y. be the corresponding elements in g(W)*
and g(W1)* respectively. Moreover, the bilinear form B¢ induces a bilinear form on

W = (- NW)/Z. Let & be the corresponding element in g(W)* and A'(&;) =
Zaaw) (ﬁW)/Zg(W) (Ew)-

Let Z = {z € Zow)(éw)|?Z = Z}. Since Zw = Zow)(éw) X Zow)(Ewi),
we have natural isomorphisms Zsw = Z X Zgw)(Ewe) and Zgw/Z8 y = Z/Z° x
A(&w<). Note that A(§wr) = {1}. On the other hand, we have a morphism A4’(&y,) x
A(&wr) — A'(&') which comes from the isomorphism ¥+ /% = W@ WL and it is given
by the system of generators. It follows form the results for orthogonal Lie algebras
that the morphism Z/Z° — A'(&y,) is given by generators (see Proposition 3.4.2). We
then deduce easily that A% and the morphism Ap — A’(¢')/A) are as in Proposition
3.6.3.

3.7 Some combinatorics

In this section we recall some combinatorics from [L3, LS2]. The combinatorics goes

back to [L1], where it is used to parametrize unipotent representations of classical
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groups. We will use the same kind of combinatorial objects to describe the Springer

correspondence for classical Lie algebras and their duals in characteristic 2.

3.7.1 Let r,s,n € N ={0,1,2,...}, d € Z, e = [¢] € Z ([~] means the integer
part). Let X’in be the set of all ordered pairs (A, B) of finite sequences of natural
integers A = (ai1,0as,...,0myq) and B = (by, by, ..., by) (for some m) satisfying the

following conditions: a;4; —a; >r+s, i=1,....m+d—1, by1 —b; >2r+s, i =
1,....m=1,bp >s Y a;+S by=n+r(m+e)(m+d—e—1)+s(m+e)(m+d—e).
The set X w5 is equipped with a shift o,.;. If (A, B) is as above, then o;,(4, B) =
(A, B, A = (0,01 +7+5,...,amia+T7+5), B =(s,b1+r+s,... by +7+5). Let
X, be the quotient of X% by the equivalence relation generated by the shift and
= Uy oaa Xny- The equivalence class of (4, B) is still denoted by (A, B).
Assume s = 0. Then there is an obvious bijection X . X;O o (A4, B) — (B, A).

o . . . . r,0 r
This induces an involution on each of the following sets Xn even = U even Xnds Xmodd =

Ud oad XT0 Let Y7 (resp. X7, ,q4) by this

n,even

(resp. Y 44) be the quotient of X7 ..,
involution. For d > 0, the image of X", ea 10 Y e o Y7 gy is denoted Y7, and the
image of (A, B) is denoted {A, B}.
3.7.2 When we consider simultaneously two elements (A, B) € X, and (A', B') €
X;:Z’, with d — d’ even, with A = (ay,...,ams4), B = (b1,...,by) and A" = (a}, ...,
anyiq), B = (b},...,b,,), we always assume that we have chosen representatives
such that 2m + d = 2m’ + d’. We use the same convention for {A, B} € Y7, and
{A,B'} €Y, with d,d’ >0 and d — d’ even.

There is an obvious addition X% x Xr,fi — X;j[;,’sd“ (A,B) + (A,B') =
(A", B"),a] = a; + a;,b] = b; + b;. The same formula defines Y,/ ; x Y- Y;j_’;, a4

Let Ag] € Xg7 (resp. Agy € X)) be the element represented by (4, B) = (0,0)
(resp. (A,B) = (0,0)). If s =0, let Aj, € Yy, (resp. Aj, € Yj,) be the image
of AS’? (resp. Afy). We have the following bijective maps: Xg: X5 A=
A+AGY, Yo, =Y, Am A+Af,d=0,1

Since Yn,d, d > 1, and Xg:g are obviously in bijection with the set of all pairs of
partitions (u,v) such that 3 u; + > v = n and thus with W}, Y2/ is in bijection

with the set of all unordered pairs of partitions {u, v} such that Y u;+ > v; =n and
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thus with W', we get bijections

Wi 5 X05, WA S Y, WA Sy
3.7.3 An element (A, B) € X is called distinguished if d = 0, a; < b < ap <
o <ap Sbporifd=1,a; <b <as < <ay < by < ams1. An element
{A,B} € Y, (d > 0) is called distinguished if (A, B) or (B, A) is distinguished.
Let D75, D D}, oaas Doy Dy, 4 be the set of all distinguished elements in X7,

Yo ovens Yorodds Xnas Yo T€SPectively.

Assume r > 1. For (A4, B) € X';”fi, we regard A, B as subsets of N. Two elements
(A,B),(C,D) € X]»* are said to be similar if AUB=CUD and ANB =CnD.
We define similarity in Y ., and Y] 44 in the same way.

Let S = (AUB)\(ANB). A nonempty subset I of S is called an interval of (4, B)
or {A, B} if it satisfies the following conditions:

(i) if © < j are consecutive elements of I, then j —i < r + s;

(iiftel,jeSand |i—j] <r+s,thenj€ I
We call I an initial interval if there exists ¢ € I such that i < s and a proper interval
otherwise.

Let S C Xp° (resp. Y, 44 OF Y, 0,) be a similarity class and (A, B) (resp.
{A,B})e S. Let E be the set of all proper intervals of (A4, B) (resp. {4, B}). The
set A(E) of all subsets of E is a vector space over Fy. If § C X", it acts simply
transitively on S as follows. The image of (A, B) under F' C E is the pair (C, D)
such that

ANI=DnNnI,BNI=CnNIif and only if I € F.
IS CY, qq (0r Y on), as E transforms (4, B) to (B, A), the same formula defines
a simply transitive action of A(E)/{0, E} on S. For A € X[* (resp. Y, 44 O Y (oo,
let V{* (resp. V) denote the vector space A(E) (resp. A(E)/{0, E}), where E is
the set of all proper intervals of A. For F' € V** (resp. V), let A be the image of
A under the action of F.
3.7.4 Examples (1) Xi;? and Y} are used in [L2] to describe W} and W2’ re-

spectively.

(2) Assume char(k) # 2. X', Y2 ., and Y2 ;4 are used in [L3] to describe the

» * n,even
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generalized Springer correspondence for Spa,, SO(2n) and SO(2n + 1) respectively.

(3) X22 and Y} .., are used in [LS2] to describe the generalized Springer corre-
spondence for unipotent classes of Sp(2n) (or SO(2n + 1)) and SO(2n) respectively.

(4) Yl jaq X3t and X1 = Uy evenXpg are used in [L5] to describe the gen-
eralized Springer correspondence for disconnected groups O(2n), Gant1 with G° type
A,,,, and Gy, with G° type Aj,_; respectively.

(5) We will use X2"+!, X1+1n+1 and Y41 to describe the Springer correspon-
dence for 6(2n + 1), sp(2n) and o(2n) (or 0(2n)*). The set D" (resp. Dpttrtl
Drtl..) is in bijection with the set of O(2n+1) (resp. Sp(2n), O(2n))-nilpotent orbits
in 0(2n + 1) (resp. sp,,, 0(2n)).

(6) We will use Y}, and X} to describe the Springer correspondence for

o(2n + 1)* and sp(2n)*. The set DIty (resp. Dy™*') is in bijection with the set of
O(2n + 1) (resp. Sp(2n))-nilpotent orbits in o(2n + 1)* (resp. sp3,).

3.8 Springer correspondence for symplectic Lie al-

gebras

Assume G = Sp(2n). Let z € g be nilpotent.
3.8.1 The orbit c of z is characterized by the following data ([H]):

(d1) The sizes of the Jordan blocks of z give rise to a partition of 2n. We write it
as A\ < Ay < -+ < Aggy1, where Ay = 0.

(d2) For each );, there is an integer x(\;) satisfy 0 < x(A\;) < 3. Moreover,
x(A) = x(Nic1), di — x(Mi) = Aicn —x(Niz1), 1=2,...,2s + 1.

We can partition the set {1,2,...,2s+ 1} in a unique way into blocks of length 1
or 2 such that the following holds:

(b1) If x(\i) = A;/2, then {i} is one block;

(b2) All other blocks consist of two consecutive integers.
Note that if {i,7 + 1} is a block, then A; = Ajy1 and x(Ai) = x(Aig1)-

We attach to the orbit ¢ the sequence ¢, ..., cos41 defined as follows:
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(1) If {4} is a block, then ¢; = X\;/2 + (n+ 1)(Z — 1);
(2) If {,i+1} is a block, then ¢; = X\;—x(\;)+(n+1)(i—1), cip1 = x(Nig1)+(n+1)i.
Taking a; = ci—1, i1 =1,...,8+1,b; =cg;, i = 1,..., s, we get a well defined element

(4, B) € Xp 1t We denote it pg(z), p(z) or p(c).

Lemma. (i) ¢ — p(c) defines a bijection from the set of all nilpotent Sp(2n)-orbits

in sp(2n) to DPIm+L

n+1l,n+1
Vp(z)

(ii) Ag(x)" is isomorphic to
Proof. (i) It is easily checked from the definition that p(c) € D**1"*! and the map
¢ > p(c) is injective. Note that X, 1""*! = Dn+1m+1 is in bijection with W/ and
the number of nilpotent orbits is equal to |W/| by Spaltenstein [Spal]. Hence the
bijectivity of the map follows. In fact, given (A, B) € D11 the corresponding
nilpotent orbit can be obtained as follows. Let ¢; < ¢y < -+ < cg541 be the sequence
a1 <b < <agpr. fegq <+ (n+1), then {4,7+ 1} is a block. We can recover
Ai = Aip and x(A;) = x(Ai1) from (2) of the definition. All blocks of length 2 are
obtained in this way. For the other blocks, we can recover A; and thus x(\;) = A;/2
from (1) of the definition.

(ii) One easily checks that (A, B) has no proper intervals. It follows that Vp’;

{0}. On the other hand, A(z) = 1 since Zg(z) is connected by [Spal]. O

+1n+1 __
z) -

3.8.2 Consider a pair (z,¢) € 2y, then ¢ = 1.

Theorem 3.8.1. The Springer correspondence vy : Ay — W = XL+ s given by
(z,1) = p(z).

Remark. Theorem rewrites the description of Springer correspondence given by Spal-
tenstein [Spal] using pairs of partitions. Note that he works under the assumption

that the theory of Springer representations is valid for g in characteristic 2.

3.8.3 Let c,¢y be the nilpotent G-orbit in g which is open dense in the nilpotent
variety N of g. Let cq be the 0 orbit.

Lemma 3.8.2. The pair (Creg, Qi) corresponds to the unit representation and the pair

(Cirivial; Q1) corresponds to the sign representation.
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Proof. One can show that the Weyl group action on H*(B) defined in section 1.6 co-
incides with the classical action. Assume x € W/ correspond to the pair (¢, F) € 2.
We write X = X(c,7). Recall that we have the following decomposition 01 Qx| [dim G—
n] = @ F)en, X(e.r) @IC(C, F)[dim]. Thus for z € N, H¥ (B2, Qi) = @ 5) X(e. ) ®
(H2Hdime—dimGin (G, F)),. Taking i = 9m8=" and z = 0, we get H4™¢™(B, Q) =
X(co.@) Since A(co) = 1. It follows that x(c, g, i the sign representation. Taking i =0
and z = 0, we get H(B,Q)) = X(c,.,.q) ® (HIC(Crey, Q1))o since A(creg) = 1. It

follows that x(,., @, is the unit representation. O

Proof of Theorem 38.8.1. By the discussion in 3.2.10, it is enough to show that the
map 7, is compatible with the restriction formula (R). When n = 1, by Lemma
3.8.2, the pair (creg,1) corresponds to the unit representation and the pair (co,1)
corresponds to the sign representation. When n = 2, there are two representations
of W, restricting to unit representation and two representations of Wy restricting
to sign representation. But again we know the pair (c,eq, 1) corresponds to the unit
representation and the pair (cg,1) corresponds to the sign representation. When
n > 3, we show that the map ~, is compatible with the restriction formula. Let z € g
and z’ € [ be nilpotent elements. Note that we have Ag(z) = Ap(z’) = 1. Hence it

is enough to show that

(L eza) = (Resw_, pc(x), pL(2)) Wy (3.18)

Note that X4 =0 if d # 1 is odd. Thus X1 +1 = X711+ Let (4, B) €
Xrtlntl correspond to x € WA. The pairs (A, B') € X", which correspond to the
components of the restriction of x to W,_; are those which can be deduced from
(A, B) by decreasing one of the entries ¢; by ¢ and decreasing all other entries c; by
j — 1. This can be done if and only if i > 3 and ¢; —¢c;i2o 2 2n+3,1=2,¢c; >2n+2
ori=1,c >1. We write (A, B) — (A4’, B') if they are related in this way.

Now (3.18) follows since S, # 0 if and only if z,2’ are as in Proposition 3.8.3

(see below) if and only if pg(z) — pr(a’). O

3.8.4 Consider a nilpotent class ¢’ € f;(P;) corresponding to (A, ;)y(x,

S+1)
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(AMDx o) = (X, X'). Suppose Y = f71(¢') and X = g;1(Y) (see 3.2.8).

Proposition 3.8.3 ([Spal]). The group Zg(z) acts transitively on Y. We have
dim X = dim B, if and only if (X', x') satisfies a) or b):

a) Assume A; — Ni—1 2> 2, x(A) = Ni/2 and x(Aj) > N\j — N\i/2+ 1 for each j < i.
N =X, J# AN =X =2, X'(N)) = x(N;) for each j # i and X' (X)) = N,/2. In this
case dimY =2s — ¢+ 1.

b) Assume Xi1 = A > Ai_q. No=XN,JF i+ 1L Ny =M =N—1, x'()\;) = x(A))
for each j #i,i+1 and X'(X) = X' (A1) € {x(X:), x(X) — 1} satisfy 0 < x'(]) <
A/2, x(Nic1) < X'(N) < x(Nic1) + A — Ai-i — 1. We have dimY = 25 —i + 1 if
X' (A) = x(Ai) and dimY = 25 — i if x'(X) = x(N\:) — L.

3.9 Springer correspondence for orthogonal Lie al-

gebras

3.9.1 In this subsection we assume G = O(2n + 1).

Let £ = (A2s+1)x(r2sr1) * * * (A1)x(n) € @ be a nilpotent element (see 3.4.1). Assume
A1 = 0. There exists a unique 3 < my < 2s+ 1 such that mg is odd and A,y > Apy—1.
We have x(X;) = A; if j < mo; Aoy = Agjr, J # m92;l and Ay, = Apg—1 + 1.

We attach to the orbit c of z the sequence ¢y, ..., cs11 defined as follows:

" %:{ Moy = XQap) +n+14(G—Dn+3) 25 <mo

Agj = xX(Agj) +1+n+1+ (G~ 1)(n+3) if 25 >my
_— { XOoj)+ (G —D)n+3)  if2j—1<mg
X(Azj-1

Taking a; = cgi—1,1=1,...,8+1,b; =c9,7=1,...,5, we get a well-defined element

(A,B) € Xﬁ:'{“. We denote it pg(z), p(z) or p(c).

Lemma 3.9.1. (i) ¢ — p(c) defines a bijection from the set of all nilpotent O(2n+1)-

orbits in o(2n + 1) to D2m+1,

V2,n+1

(ii) Ag(z)" is isomorphic to V, ;s
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Proof. (i) It is easily checked from the definition that p(c) € DZ"*! and the map
¢ > p(c) is injective. Note that DZ"*! is in bijection with the set A consisting of all
pairs of partitions (u,v) such that > pu; + > v = n,v; < p; + 2. Since the number
of nilpotent orbits is equal to |A| by Spaltenstein [Spal], the bijectivity of the map
follows. In fact, given (4, B) € D2™*!  the corresponding nilpotent orbit can be
obtained as follows. Let ¢; < cp < -+ < ¢9541 be the sequence a3 < by < -+- < agyr.
There exists a unique odd integer mq such that c3; > (n+ 1) + (j — 1)(n + 3) if and
only if 2j > mg. If j < %=L then Ayj = Agjr1 = x(Ag;) = x(A2j11) = cgj41—j(n+3).
Ifj > ﬂ‘QZl, then Agj = Agjy1 = €5 + 2541 — (2 — 1)(n +3) — (n+ 1) and x(Agj) =
X(Agjs1) = Cojyr — j(n +3) + 1. If j = &= then Ayj = x(Agj) = Mgjp1 — 1 =
X(A2j1) =1 =cojp1 = j(n+3) + 1.

(ii) The component group Ag(z) is described in 3.4.1. Let (A, B) = p(z) and
c1,...,C541 be as above. Let S = (AU B)\(AN B). Note that ¢; = 0,¢,...,Cm,
all lie in S and they belong to the same interval, which is the initial interval. For
i > mg, x(\i) # \/2 if and only if ¢; € S. The relations (r2) and (r3) of 3.4.1 say
that if ¢;, ¢; belong to the same interval of (A, B), then ¢;, ¢; have the same images
in A(z). Thus we get an element o; of A(z) for each interval I of (A, B) and 0% = 1.
Moreover (r3) means that oy = 1 if I is the initial interval.

The isomorphism Vli’zn)ﬂ — Ag(z)" is given as follows. Let F' € Vp2(’z")+1. We
associate to F' the character of Ag(z) which takes value —1 on oy if and only if

IeF. O

Let (z,¢) € A,. We have defined p(z). Let p denote also the map Ag(z)" — V;(’z";“l

Theorem 3.9.2. The Springer correspondence v, : Ay — WH = X2 s given by

(2, 8) = p(T)o(g)-

Proof. As in the proof of Theorem 3.8.1, it is enough to prove the map ~, is compatible
with the restriction formula (R). Note that XEZZH =Pifd # 1is odd. Thus X2 =
X211 Let (A, B) € X2™+! correspond to x € W}. The pairs (4, B') € X" which
correspond to the components of the restriction of x to W,_; are those which can

be deduced from (A, B) by decreasing one of the entries a; by 4 (or b; by i + 1) and
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decreasing all other entries a; by j — 1, b; by j. We can decrease a; by i (resp. b;
by i+ 1) if and only if i > 2, a; —a;.y > n+4dori=1,a; > 1 (resp. i > 2,
bi—bi_y>n+4ori=1,b >n+2). Wewrite (4, B) — (4, B') if they are related
in this way. Suppose that (4, B) — (A’, B'). One can easily check that if (4, B) and
(A, B') are similar to A € D2"*1 and A’ € D>"" respectively, then A — A.

Let z € g nilpotent and z’ € [ nilpotent. Then S, . # 0 if and only if z,z’ are
as in Proposition 3.4.1 if and only if A = pg(z) - A’ = pr(z’). To verify the map is

compatible with the restriction formula, it is enough to show that the set

{(FF) e Vit x V2L [Ap — A} (3.19)
is the image of the set
{(¢,¢) € Ac(z)" x AL(2')" (P ® ¢/, e0,01) # 0} (3.20)

under the map p.
Let ¢; < -+ < cgsqq and ¢ < -+ < ¢,y correspond to A and A’ respectively.

Then Ag(z) is generated by {e;|c; # c;,Vj # i}, AL(z') is generated by {e}|c; #
c;,Vj # i} and Ap is generated by {e|c; # ¢;,¢; # ¢},Vj # i}. There are various
cases to consider. We describe one of the cases in the following and the other cases
are similar.

Assume cory1 > cop + 1, Cokg2 = Copr + 1+ 2 and chyy = a1 — (kK + 1),
Coir1 = Coip1 — 0,0 F k, €y = c3 — 1,4 =1,...,s. Let I (resp. I') be the interval of
A (resp. A') containing cox41 (resp. chy,,) and J' the interval of A’ containing ch;_ .
Note that cgj11 —coj < n+2, except if x = (n+ 1)p417,. In the latter case A(z) = 1.
Moreover cj12 — czj41 = 2. Hence all other intervals of A and A’ can be identified
naturally. There are two possibilities:

(i) I is a proper interval of A. Then Ap — Ap if and only if

(a) F\{I} = F\{I',J'};

by FN{I}=Fn{Il'J'}=0or {I} Cc F,{I')J'} C F.
On the other hand, Ag(x) (resp. Ap(z')) is an Fy vector space with one basis el-
ement og (resp. oY) for each proper interval K of A (resp. A’) and S, is the

quotient of Ag(z) x AL(z") by the subgroup H, . generated by elements of the form
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o104, 010", ool with K a proper interval of both A and A’. Now the compatibility
between (3.19) and (3.20) is clear.

(ii) I is an initial interval of A. Then Ap — Ap if and only if F = F'. On the
other hand, Ag(z), A(z') and S, are obtained by setting o; = o}, = 1 in (i). Again
the compatibility between (3.19) and (3.20) is clear. O

3.9.2 In this subsection we assume G = SO(2n), G = O(2n) and g = o(2n). We
describe 7, : 2, — W2 instead of g : Uy — (W,)" (see 3.2.4).

Let = (Ags)x(has) ** * (A1)x(2) € @ be a nilpotent element (see 3.4.1). Note that
A2i—1 = Ag;. We attach to the orbit ¢ of = the sequence ¢y, ..., cos defined as follows:

(1) 25 = x(Ao5) + (G — D(n +1),

(2) e2jm1 = Agj-1 = X(Agj-1) + (G — D(n +1).

Taking a; = cgi—1, by = €24, 1 = 1,..., s, we get a well defined element {A, B} €
Y7+l We denote it pa(z), p(z) or p(c).

Lemma. (i) ¢+ p(c) defines a bijection from the set of all nilpotent O(2n)-orbits in

o(2n) to DIl

n,even”

ii) Ag(z)" is isomorphic to V™11,
p(z)

Proof. (i) It is easily checked from the definition that p(c) € Dit.,, and the map

n,even

¢ = p(c) is injective. Note that DJtl  is in bijection with the set A consisting of
all pairs of partitions (i, v) such that 3 u; + > v = n,v; < ;. Since the number of
nilpotent O(2n)-orbits in 0(2n) is equal to |A| by Spaltenstein [Spal], the bijectivity

of the map follows. In fact, given {A, B} € D™l with preimage (A, B) € DZ’J{,LO,

the corresponding nilpotent orbit can be obtained as follows. Let ¢; < cp < -+ < e
be the sequence a; < by < -+ < a; < b, We have A\gj = Agj_1 = cg5 + Coj—1 — (25 —
2)(n+ 1) and x(Ag;) = x(A2j—1) = ¢z — (4 — 1)(n + 1).

(i) The component group Ag(z) is described in 3.4.1. Note that in this case, the
condition (r3) is void. By similar argument as in the proof of Lemma 3.9.1 (i), one

shows that Ax(z) is a vector space over Fy with basis (07)reg, where E is the set

of all intervals of p(z). Since Ag(z) consists of the elements in Ax(z) which can be
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written as a product of even number of generators, from the natural identification

As(z)" = A(E), we get the isomorphism Ag(z)" = A(E)/{0,E} = V1! O

p(z)

Let (z,¢) € 2. We have defined p(z). Let p denote also the map Ag(z)" — Vp'(‘j)l.

Theorem 3.9.3. The Springer correspondence 7, : A, —» WA 2 yntl g given b
g 8 n Y

(z,8) = p(z)p(9)-

Proof. Again it is enough to prove the map 7, is compatible with the restriction
formula (R). Note that Y;' = 0 if d > 0 is even. Thus Y&l = Y’ Let

{A,B} € YL, correspond to x € WA'. The pairs {A',B'} € Y, which

n,even n—1,even
correspond to the components of the restriction of x to W/ _; are those which can
be deduced from {A, B} by decreasing one of the entries a; by i (or b; by i) and
decreasing all other entries a; by j — 1, b; by j — 1. We can decrease a; by i (resp.
b by i) if and only if ¢ > 2, a; —a;-y > n+2o0ri =1,a; > 1 (resp. i > 2,
b;—bi_1>2n+2ori=1b>1). Wewrite {4, B} — {A4', B'} if they are related in
this way. Suppose that {4, B} — {A’, B'}. One can easily check that if {A, B} and
{A’, B'} are similar to A € Dl and A’ € Dp_, .. respectively, then A — A’.

Let = € g nilpotent and ' € [ nilpotent. Then S, . # 0 (& S, # 0) if and
only if z,z’ are as in Proposition 3.4.1 if and only if A = pg(z) = A’ = pr(z'). Let
g <o <egsand ) <o+ <, correspond to A and A’ respectively. Then As(z)
is generated by {ei|c; # ¢;,Vj # i}, Az(2') is generated by {¢j|c; # ¢}, Vj # i} and
Ap is generated by {eilei # ¢j,¢) # ¢},¥5 # i}. The discussion in 3.2.9 allows us to
compute £, and the set {(¢, ¢') € Ag(z)" X AL(@)(p® ¢, €42r) # 0}. One verifies

the compatibility with the set {(F, F') € V™! x Vv

@) X Vor@)!Ar = A} under the map

p as in the proof of Theorem 3.9.2. |

3.10 Springer correspondence for duals of sym-
plectic and odd orthogonal Lie algebras

3.10.1 Weassume G = Sp(2n) in this subsection. Let £ = (Aast1)x(asrr) * - (A1) x(0)
€ g* be nilpotent (see 3.5.1), where A\; = 0. We have \y; = Ag;41. We attach to the
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orbit ¢ of £ the sequence cy, ..., cas41 defined as follows:
(1) ca5 = dgj = x(Agj) +n+ 1+ (G — D(n+2),
(2) c2j-1 = x(A2j—1) + (G = D(n +2).
Taking a; = cai1, @ = 1,...,8+ 1, b = ¢, 1 = 1,...,5, we get a well-defined

(A,B) € Xi:'f“. We denote it pg(€), p(§) or p(c).

Lemma. (i) ¢ — p(c) defines a bijection from the set of all nilpotent Sp(2n)-orbits
in sp(2n)* to DEmtL.

(i) Ag(&)" s isomorphic to Vpl(’g;“.

Proof. (i) It is easily checked from the definition that p(c) € Dy"*' and the map
¢ — p(c) is injective. Note that D™ is in bijection with the set A consisting of all
pairs of partitions (i, v) such that > u; + > v; = n,v; < p; + 1. Since the number of
nilpotent orbits is equal to |A| by Corollary 2.5.7, the bijectivity of the map follows.
In fact, given (A, B) € D11, the corresponding nilpotent orbit can be obtained as
follows. Let ¢; < ¢ < -+ < cgg41 be the sequence a; < by < --+ < ag41. Then Ay =
Aaj1 = Coj+Co41— (27— 1)(n+2) — (n+1) and x(Az;) = X(Agj1) = 241 = (n+2),
ji=1,...,8 A =0.

(ii) The component group Ag(£) is described in 3.5.1. Let (A, B) = p(§) and
€1,...,Cos41 be as above. Let S = (AU B)\(AN B). Then x(\;) # (A\; — 1)/2 if and
only if ¢; € S. The relation (r2) of 3.5.1 says that if ¢;, ¢; belong to the same interval
of (A, B), then ¢;,¢; have the same images in Ag(€). Thus we get an element oy of
Ag(€) for each interval I of (A, B) and o7 = 1. Moreover (r3) means that oy = 1 if

I is the initial interval.

The isomorphism Vpl(gﬂ — Ag(€)" is given as follows. We associate to F' the
character of Ag(€) which takes value —1 on oy if and only if I € F. O

Let (¢, ) € Ay-. We have defined p(€). Let p denote also the map Ag(§)" — Vpl(gﬂ.

Theorem 3.10.1. The Springer correspondence vg- : Uy — W) =2 X1n+l s given by
(&, 0) = p(E)pe)-
Proof. By similar argument as in the proof of Theorem 3.8.1, it is enough to prove

the map 7, is compatible with the restriction formula (R'). Note that XTILIZH =0 if
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d # 1is odd. Thus X} = X 7" Let (4, B) € X}™*! correspond to x € W.
The pairs (4, B') € X" which correspond to the components of the restriction of
to W,,_; are those which can be deduced from (A, B) by decreasing one of the entries
a; by i (or b; by i + 1) and decreasing all other entries a; by j — 1, b; by 7. We can
decrease a; by i (resp. b; by ¢ + 1) if and only if i > 2, a; —a;_; > n+3ori =1,
a; > 1 (resp. 1> 2,b;—b_; >n+3ori=1,b >n+2). Wewrite (4, B) — (4’, B)
if they are related in this way. Suppose that (A, B) — (A’, B’). One can easily check
that if (4, B) and (A’, B') are similar to A € D}™*! and A’ € D}, respectively, then
A=A

Let £ € g* and ¢ € [* be nilpotent. Then S¢e # 0 if and only if &, ¢ are
as in Proposition 3.5.2 if and only if A = pg(§) — A’ = p(¢'). The verification of

compatibility with restriction formula is entirely similar to that in Theorem 3.9.2. O

3.10.2 We assume G = O(2n + 1) in this subsection.

Let £ = (m; (A2s)x(ras) - - (M1)x(ry)) € 8° be nilpotent (see 3.6.1). We have Ay; 1 =
Ag2;. We attach to the orbit ¢ of £ the sequence cy, ..., cos41 defined as follows:

(D) eyy=xAgj)+(G—-1(n+1),57=1,....,s

(2) eajm1 = Agj1 = X(Agjm1) + (G = D(n+ 1), j=1,...,s,

(3) cast1 =m+s(n+1).
Taking a; = ci-1,1=1,...,s+1, b;=co, 1 =1,...,s, we get a well defined element

{A, B} € Y){'. We denote it pa(€), p(£) or p(c).

Lemma 3.10.2. (i) ¢ — p(c) defines a bijection from the set of all nilpotent O(2n+1)-
orbits in 0(2n +1)* to Dt}

(i) Ag(&)" is isomorphic to Vp’zg’)l.

Proof. (i) It is easily checked from the definition that p(c) € DZ:;}M and the map
¢ — p(c) is injective. Note that DZ;}M is in bijection with the set A consisting
of all pairs of partitions (u,v) such that Y u; + > v; = n,u < v Since the
number of nilpotent orbits is equal to |A| by Corollary 2.5.7, the bijectivity of the
map follows. In fact, given {4, B} € Dyt 3, with inverse image (4, B) € D,"ljl’o, the

corresponding nilpotent orbit can be obtained as follows. Let ¢; < ¢3 < -+ < cog11
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be the sequence a; < by < -+ < agy1. Then Agj = Agj1 = o5+ C25-1— (25 —2)(n+1),
x(Aoj) = x(Agjm1) = e — (G —1)(n+1),j=1,...,s and m = cps41 — s(n+1). The
corresponding orbit is (m; (A2s)x(azs) = * (A1)x(A1))-

(ii) The component group Ag(€) is described in 3.6.1. Let {A, B} = p(¢), (A, B)
and ¢, ..., Ca41 be as above. Let S = (AU B)\(AN B). Note that cps < cast1, thus
Cosr1 € S. Fori=1,...,2s, x(\) # \/2 if and only if ¢; € S. The relation (r2) of
3.6.1 says that for 1 < i < j < 2s, if ¢;, ¢; belong to the same interval of {A, B}, then
€, €; have the same images in Ag(§). Let Iy be the interval containing cgs1. The
relation (r3) says that ¢; = 1 if ¢; € Iy. Thus we get an element o; of Ag(§) for each
interval I # I, of {A, B} and 07 = 1.

The isomorphism Vpr(‘gl — Ag(€)" is given as follows. Let F' € V,:EEL)I = A(E)/{0, E}

and F the inverse image of F' in A(E) that does not contain I,. We associate to F

the character of Ag(£) which takes value —1 on oy if and only if I € F. O

Let (€, ¢) € Y,-. We have defined p(€). Let p denote also the map Ag(§)" — Vp’g)l.

Theorem 3.10.3. The Springer correspondence g« : Age — W/ = Yn’fjdld s given by

(& 0) = p(€)p(0)-

Proof. Again it is enough to prove the map <y, is compatible with the restriction
formula (R’). Note that Yn”,jl = (@ if d # 1is odd. Thus Yn'f:dld = Y7 Let
{A,B} € Yg:;d with inverse image (A, B) € X;’jl’o correspond to x € W,. The
pairs {A’, B'} € Y| 44 with inverse images (4, B') € X:’_Ol,l which correspond to
the components of the restriction of x to W,,_; are those which can be deduced from
(A, B) by decreasing one of the entries a; by ¢ (or b; by 7) and decreasing all other
entries a; by j — 1, b; by j — 1. We can decrease a; by ¢ (resp. b; by i) if and only
ifi>2 a,—ai.y>n+2ori=1,a;>1(resp. 1 22, b;—bj_1 >2n+2o0ri=1,
b; > 1). We write {A, B} — {A’, B'} if they are related in this way. Suppose that
{A,B} — {A’,B'}. One can easily check that if {A, B} and {A’, B'} are similar to
Ae Ditiyand A € D}, 44 respectively, then A — A'.

Let £ € g* and & € I* be nilpotent. Then Sge # 0 if and only if & & are as
in Proposition 3.6.2 if and only if A = pg(§) = A’ = pr(§’). To verify the map is
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compatible with the restriction formula, it is enough to show that the set

{(F,F) e Vi X Vit o |Ap — A} (3.21)
is the image of the set
{(¢,9") € Ac(§)" x AL(E) (¢ ® ¢',ec¢r) # 0} (3.22)

under the map p.

Let c; <--- < cge1 and ¢ < -+ < ¢, correspond to the pre-image (4, B) and
(A, B’) of A and A’ in DZILO and DZle respectively. Then Ag(£) is generated by
{eilei # ¢,V # i}, AL(E') is generated by {€|c; # ¢},Vj # i} and Ap is generated
by {eilci # cj, ¢; # ¢}, Vi # i}. There are various cases to consider. We describe one
of the cases in the following and the other cases are similar.

Assume k > 1, cop > cop-1+1, Cort1 = cop+n and ¢y, = cop—Kk, ¢h; = co;—(i—1),i #
k, chi1 = Coiy1 — 4, %@ = 1,...,5. Let I (resp. I') be the interval of A (resp. A’)
containing cori1 (resp. chyyy) and J' the interval of A’ containing cf,. Note that
Ca5 —Caj-1 = 2X(A25) — Agj < mand caj1 — o5 = nA 14 Agjp1 — x( A1) — X(Ag5) 2 2,
except if m = 0, x(A2s) = A2s = n. In the latter case, £ correspond to m’ = 0,
X'(M5,) = Ay, =n—1and Ag(€) = AL(£') = 1. Hence all other intervals of A and A’
can be identified naturally. Let Iy (resp. I}) be the interval of A (resp. A’) containing
Cas+1 (resp. cy,,1) There are two possibilities:

(i) I # Ip. Let F (resp. E’) be the pre-image of F' (resp. F') in A(FE) (resp.
A(E")) that does not contain Iy (resp. Ij). Then Ap — Ap if and only if

(2) F\{I} = F'\{I', J'};

(b) FN{I}=Fn{l',J}=0or {I}Cc F.{I''J'} C F.

On the other hand, Ag(€) (resp. AL(€')) is an Fy vector space with one basis element
ok (resp. o) for each interval K # I, (resp. K # I) of A (resp. A’) and S ¢ is the
quotient of Ag(€) x AL(£') by the subgroup He e generated by elements of the form
o10h, 010", 00 with K # Iy an interval of both A and A’. Now the compatibility
between (3.21) and (3.22) is clear.

(i) I = Ip. Then Ap — A if and only if £ = F’. On the other hand, Ag(€),
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Ar(€') and Sgg are obtained by setting o7 = o7, = 1 in (i). Again the compatibility
between (3.21) and (3.22) is clear. O

3.11 Complement

3.11.1 In [L7], Lusztig gives an a priori description of the Weyl group representa-
tions that correspond to the pairs (c, 1) under Springer correspondence, where c is a
unipotent class in G or a nilpotent orbit in g. We list the results of [L7] here.

Let R be a root system of type By, C, or D,, with IT a set of simple roots and W
the weyl group. There exists a unique o € R\II such that « —o; ¢ R,V oy € II. Let
J € TTU {og} be such that J = |II|. Let W be the subgroup of W generated by
Sa, € J.

(i) Denote Sw the set of special representations of W. The set of unipotent classes
when char(k) # 2 is in bijection with the set Sty = {jw-E, E € Sws} (see [L2, L3]),
where W% is defined as W by taking ag such that & — d&; ¢ R,V o € II (R is the
coroot lattice and dyg, ¢; are coroots).

(i) The set of unipotent classes when char(k) = 2 is in bijection with the set
S%& = {iw,E, E € S, } (see [L6]).

(ili) The set of nilpotent classes when char(k) = 2 is in bijection with the set

72, defined by induction on [W| as follows (see [L7]). If W = {1}, T, = W". If
W £ {1}, then T is the set of all E € W* such that either E € Siy or E = jw , E
for some W, # W and some E; € Ty,
3.11.2 One can show that the set of nilpotent orbits in g* when char(k) = 2 is
in bijection with the set 753 defined by induction on |W| as follows. If W = {1},
T = W, If W # {1}, then T3r is the set of all E € W" such that either E € S
or £ = jvvé,’,}El for some W% # W and some E; € 7‘2*3, where W7 is defined as in
3.11.1 (i).
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Chapter 4

Dual of Exceptional Lie Algebras

4.1 Introduction

Let G be a connected semisimple algebraic group defined over an algebraically closed
field k of characteristic exponent p > 1 and g the Lie algebra of G. Let g* be the
dual vector space of g. We show that the number of nilpotent G-orbits in g* is finite.
It suffices to assume that G is simple and simply connected. The nilpotent orbits for
type B, C or D have been studied in chapter 2. In this chapter we study the nilpotent
G-orbits in g* when G is an exceptional group of type Gq, Fy or E, (n=16,7,8).

Denote Oy~ the set of nilpotent G-orbits in g* and 2y the set of all pairs (c, F)
where ¢ € O, and F is an irreducible G-equivariant local system on ¢ (up to isomor-
phism). Denote W the Weyl group of G and W" the set of irreducible representations
of W (up to isomorphism). In chapter 2, we have constructed a Springer correspon-
dence g+ : W" — g+ when G is of type B,C or D and p = 2. The same construction
gives an injective map 7, : W" — A for G an exceptional group. Note that the
pairs (c, @) lie in the image of the map 7. Let %(g*) be the inverse image of the
set {(c,Q))|c € Op} under the map ;. We describe the set J3(g*) explicitly and
give an a priori definition of this set following [L7].

In [K, Theorem 2.2], Kac constructs an invariant non-degenerate bilinear form
on a symmetrizable Kac-Moody Lie algebra over C. Assume G is of type G2 and

p # 3, of type Fy, Eg or E; and p # 2, or of type Eg (resp. G is of type Eg or
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E; and p = 2). Then the Cartan matrix is symmetrizable and one can apply the
method used in {loc.cif] to construct an invariant non-degenerate bilinear form (resp.
pairing) on g (resp. between g, (the Lie algebra of the simply connected group) and
gaq (the Lie algebra of the adjoint group)). Thus in the above cases g* and g (resp.
g: and goq) can be identified via the bilinear form (resp. pairing). It follows that the
nilpotent orbits in g* and g (resp. in g} and g,¢) are identified and the set R(g*)
(resp. R(g:)) is identified with the similarly defined set PR(g) (resp. R(gaq)) for g
(resp. @aq), which has been described in [Spl, Sh2, AL, Spa3, HS, L7]. Hence it
remains to study the nilpotent orbits in g* and the set fR(g*) for G2 in characteristic
3 and Fj in characteristic 2.

Let Fq be a finite field of characteristic 3 (resp. 2). From now on we assume G is

a connected group of type Gy (resp. Fy) defined over Fy.

4.2 Recollections and outline

4.2.1 Let T be a maximal torus of G, R the root system of (G,T) and II a set
of simple roots in R. We have a Chevalley basis {h,, a € II; €4, @ € R} of g
satisfying [ha, hg] = 0; [has €] = Aapes; [€ar€—a] = ha; [€ases] = 0, if a+ B ¢ R;
(€ €3] = Nageatp, if @+ B € R, where the constants A, s and N, g are integers.

For each @ € R, there is a unique 1-dimensional connected closed unipotent
subgroup U, C G and an isomorphism xz, of the additive group G, onto U, such
that sz4(t)s™ = za(a(s)t) for all s € T and t € G,. We assume that dz,(1) = eq
and ng(t) = T4(t)T_o(—t71)z4(t) normalizes T. Let t be the Lie algebra of T and
let t* = {£ € g*|€(ea) = 0, V o € R}. We define €, € g* by e, (t) = 0; el (e5) =
d_ap,V B € R and define k), € t* by hl(h) = a(h), ¥V h € t. We have

Calt) € = € — tE(ha)ely € € €5 Talt).€g = €L+, — 2
ma(t)-e/ﬁ = Z(_l)itiMa,—ia—ﬂ,ie'Iia—(»ﬁ, a 7£ —Ba (41)

i

where Mg, = %NaﬁNa’a_}_lB -+ Ng (i-1)a+p (for determination of structural constants

N, s see [Ch]).
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4.2.2 Let B be the Borel subgroup UT of G, where U = {[l.cg+ Talta) ta €
G,}. By Bruhat decomposition, every element in G can be written uniquely in
the form bn,u, for some w € W = NT/T, some b € B and some u, € U, =
{Ha>0,w(a) <0 %a(ta)|ta € Ga}, where n,, is a representative of w in NT. We can
choose n, = nq(1) to be the representative of the simple reflections s,, a € II.
4.2.3 We study the nilpotent G(Fq)-orbits in g(Fq)*. The strategy is as follows.
We find representatives for the nilpotent orbits and calculate the number of rational
points in the centralizers and thus count the number of rational points in each orbit.
Then we show that the numbers of rational points in all orbits add up to ¢*, where
N is the number of positive roots in R. As the number of nilpotent elements in g(Fq)*
is ¢V (shown by G. Lusztig), we get all the orbits.

To compute the centralizer, we use Bruhat decomposition (see 4.2.2) and the
formulas (4.1). In particular, we need knowledge on the set {w € W|Zg(§)N(BwB) #
0}. We can assume that £ € n* and thus £ = Y g+ Ga€,. Denote A* = {a €

R*|ay # 0}. For o, 8 € R*, recall that we have order relation o > 8 meaning that
3

a — B can be written as a sum of positive roots. Let A;; be the set of minimal
elements in A¢ under this order relation. If Zg(¢§)NBwB # 0, then for any a € Al
there exists § € A, such that w(a) > 8.

4.2.4 Tor a parabolic subgroup P of G, let Up, np, L, [, p*,up, [* be as in 3.2.5.
Let ¢’ be a nilpotent L-orbit in [*. Since g* has finitely many nilpotent G-orbits
(see sections 4.3 and 4.4), there exists a unique nilpotent G-orbit ¢ in g* such that
cN(c’+n}) is dense in ¢’ +n}. Following [LS1], we say that ¢ is obtained by inducing ¢’
from [* to g*. One can adapt the proof in [LS1] to show that the orbit c is independent
of the choice of P. We denote ¢ = Ind? ¢'.

4.2.5 Let £ € g*. For a Borel subgroup B of G with Lie algebra b and nilpotent
radical n, we define b* = {£ € g*|¢(n) = 0}. Let Bg be the variety of all Borel

subgroups of G. We define Bf = {B € Bg|¢ € b*}. We have
Propsition. dim Bf = (dim Zg(¢) — dimT)/2.

The proposition is proved using induction on dim G and the following arguments.
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(a) Let L be a Levi subgroup of a proper parabolic subgroup of G. Assume £ € I*
is a nilpotent element such that dim Z;(£) = 2dim Bf + dimT". Then dim Zg(§) =
2dim B§ + dim T'. The argument is the same as [Spa2, II 3.14].

(b) If € lies in the orbit obtained by inducing the orbit of £ in I* (see 4.2.5), where L

is as in (a), and dim Z1(¢’) = 2dim B; +dim 7. Then dim Zg(¢) = 2dim BE +dimT.
The argument is the same as [LS1, Theorem 1.3].
4.2.6 We describe the set RR(g*) following the methods used in [AL]. Let ¢ € Oy
and ¢ € c. We write peg = Y5+(c,Q;). The map & — pg¢ is determined by the
following properties for which the proofs are essentially the same as in [AL] and are
omitted.

(a) If € lies in the orbit induced from the nilpotent orbit of & € [*, where L is a
Levi subgroup of a proper parabolic subgroup of G, then p¢ ¢ = ji¥:(per 1), where W’
is the corresponding parabolic subgroup of W and j is the truncated induction (see
[AL] and the references there).

(b) by = dim Bf, where for p € Irr(W), b, is the minimal integer d such that
p occurs in the W-module 4(V) of all homogeneous polynomials of degree d on the
reflection space V.

(c) If € € I*, where L is a Levi subgroup of a proper parabolic subgroup of G, then
pe,c has non-zero multiplicity in Indy.f¢ 1, where per = Y (—1)'H'(BE) and W' is
the corresponding parabolic subgroup of W.

4.2.7 Let RY be the set of coroots. For a € R, we denote «" the corresponding
coroot. Define © = {8 € R|BY—a" ¢ RY,V a € I}, and for a positive integer r, A’ =
{J c ©|J is linearly independent and ¥ . Za¥/3 scs ZBY is finite of order 7* for
some k € Zso}. For J € A’ let W, be the subgroup of W generated by the reflections
Sa, @ € J. Following [L7], we define a set 7" defined by induction on |W]| as follows.
W = {1}, Ty = W*. If W # {1}, then T;}* is the set of all E € W” such that
either E € S}, or E = j} E; for some J € A, and some E; € Ty}, where S}, is
defined as in [L2, 1.3]. The j-induction can be computed using the tables in [A]. One
can then verify easily that the set R(g*) coincides with the set T} (where p is the

characteristic exponent of the base field).

106



4.2.8 For irreducible characters of Weyl groups of type G2 and Fy (in table 4.2 and

table 4.4), we use the same notation as in [A].

4.3 Type G,

We assume that IT = {a, 3} with o short and 3 long. Fix ¢ € Fg\{z?/z € Fq} and
w € Fq\{z® + z|z € Fq}. The representatives ¢ for nilpotent G(Fq)-orbits in g(Fq)*
and the number of rational points in the corresponding centralizers are listed in Table

4.1. The map § — p,c (see 4.2.6) is described in Table 4.2.

Orbit  Representative § |Zc(&)(Fq)|
Gy, e, +ep q?
Ga(a1) e:ﬁ + e%aw / 6qi
Ga(a1) €g 1 €048 — WEaaig 3q4
GQ/_(\EM) elﬂ - Ce,2a+ﬂ 2q
A e q*(q® - 1)
Ay 6?3 d®(q®> - 1)
/) q’(¢®* - 1)(g° - 1)
Table 4.1:
Orbit of £ pec Orbit of £ pec
G, X1,1 Ay X1,4
Gz(Agll) X2,1 0 X1,2
A X2,2
Table 4.2:

4.4 Type F}

We assume that [T = {p,q,, s} with p, ¢ long, r,s short and (q,7) # 0. We denote
apbgerds the root ap+bg+cr+ds. Fixn € Fo\{z?+z|z € Fq} and w € F\{z*+z|z €
F,}. The representatives ¢ for nilpotent G(Fgq)-orbits in g(Fq)* and the number of
rational points in the corresponding centralizers are listed in Table 4.3. The map

§ — pec (see 4.2.6) is described in Table 4.4.
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Orbit  Representative & 1Zc(€)(Fq)]
£y e;+e' +el +e q?
Fy(a1) e, + e, + eqzr + e 2q°
Fy(a1) e, +¢€, + eqr + e + nega, 2q°
Fy(az) e, +e .+ el +eq2r25 q®
B3 6 + eqrs + eq27‘ + epq2rs qu
03 C + eq?r + epqr qS(q2 - 1)
Fy (a3) pq'r + eqrs + epq2r + 65121'23 24q12
F4 (G'B) + epqr + eq2rs + eq2r2s + nepq2r 8q12
F4 (a3) pqr + eqrs + epq2r + eq2r2s + nepq2'r25 4q12
F4(a’3) 6 + epqr + eq2rs + eq2'r‘2$ + 776 4q12
F4(a3) pqr + eqrs + eq2r + eq2r25 + wepq27"2s 3q12
(B3)2 6 + 6 rt eq2r2$ qIO(q - 1)
C3(a’1> pqr + eq2rs + eq2'r23 2q12(q - 1)
03(a1) 6 + epqr + eq?rs + nepq2r 2q12(q - 1)
By pqr + eq2r23 2q9%(q® — 1)
B, + epqr + eq2r23 + nepq2r 2q12(q - 1)
Ay + é} €pgr T €gars T €p2q2r2s a*(q®* - 1)
A2 iAl e;.)2q2'r + 6227'23 + 6;q2rs qlﬁ(q2 - 1)
A, Ws + eqws a“(a*-1)(a® - 1)
A2 ep2q27' + equrZs + e;2q37'25 q20(q - 1)
A+ AL €05 T Cpagars a”(q® — 1)
(4%)2 e;2q2r + e;q2r2.s qQO(q - 1)(q6 - 1)
Al g, 29*'(q* — 1)(q® - 1)(q*
Ay e;z2q2r23 + e;2q3'r25 + ne;)2q4r2s 2q21(q - 1)(q3 + 1)(q4
A 612p3q4r23 q24(q 1)(q4 - 1)(q6 -
0 a*(a® —1)(a® - 1)(a® -
Table 4.3:
Orbit of £  pec Orbit of £  pec Orbit of £  pe
Fy X1,1 (Bs)2 X2,1 A2 Xsa
Fy(ar) X4,2 Cs(a1) X6 A+ A1 Xou
Fy(az)  Xon B X9,2 (A2)2 X2
Bs X8,1 A+ A1 Xen Ay X4,5
Cs Xs,3 A+ A1 Xap Ay X2,4
F4(a3) X12,1 Ay X8,2 0 X1,4
Table 4.4:
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