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Abstract

The radiation field introduced by Friedlander provides a direct approach to the asymp-
totic expansion of solutions to the wave equation near null infinity. We use this con-
cept to study the asymptotic behavior of solutions to the Einstein Vacuum equations,
which are close to Minkowski space, at null infinity. By imposing harmonic gauge,
the Einstein Vacuum equations reduce to a system of quasilinear wave equations on
R%;”. We show that if the space dimension n > 5 the Mgller wave operator is an
isomorphism from Cauchy data satisfying the constraint equations to the radiation
fields satisfying the corresponding constraint equations on small neighborhoods of
suitable weighted b-type Sobolev spaces.
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Chapter 1

Introduction

The Einstein vacuum equations determine a manifold M!*™ with a Lorentzian metric

with vanishing Ricci curvature:
R, = 0. (1.1)

The set (Rit",m): standard Minkowski m = d? — Y1, d*z* on R;" describes
the Minkowski space-time solution of the system (1.1). The problem of stability of
Minkowski space appears in Cauchy formulation of the Einstein Vacuum equations:
for a given n dimensional manifold £" with a Riemannian metric gg, and a symmetric
two tensor kg, we want to find a n + 1 dimensional manifold with Lorentzian metirc g
of signature (1, n) satisfying the Einstein vacuum equations (1.1), and an embedding
£ C M such that gy is the restriction of —g to ¥ and ky is the second fundamental
form of (X", go) in (M**", —g). The Cauchy problem is overdetermined which imposes

compatibility condition on the Cauchy data: the constraint equations

Ry — [kolikol! + [koli[kol} =0,  V7[kolij — Vilkol} = 0,¥i =1, ..., n. (1.2)[constraint. 1]

Here R, is the scalar curvature of gy and V is covariant differentiation w.r.t. go.
The seminal result of Choquet-Bruhat [CB1] followed by the work [CBG] showed

existence and uniqueness up to diffeomorphism of a maximal globally hyperbolic

smooth space-time arising from any set of smooth initial data. The global stability of

Minkowski space for the Einstein vacuum equations was shown in a remarkable work
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of Christodoulou-Klainerman for strongly asymptotic flat initial data [CK]. The
approach taken in that work viewed the Einstein vacuum equations as a system of
equations

DaWa575 = 0, D% % Wa,g.ﬂs =0

for the Weyl tensor W,g,s of the metric g,p and used generalized energy inequalities
associated with the Bel-Robinson energy-momentum tensor, constructed from com-
ponents of W, and special geometrically constructed vector fields, designed to mimic
the rotation and the conformal Morawetz vector fields of the Minkowski space-time,
i.e. "almost conformal Killing” vector fields of the unknown metric g. The proof was

manifestly invariant.

The Einstein vacuum equations are invariant under diffeomorphism. In the work
of Choquet-Bruhat, this allows her to choose a special harmonic gauge, also referred
as wave coordinates, in which the Einstein vacuum equations become a system of

quasilinear wave equations on the component of the unknown metric g,

ﬁggﬂu = F,..(9)(0g,0g), where (jg = gaﬁaaﬁ (1'3)

with F'(u)(v,v) depending quadratically on v. Wave coordinates {x*} are required

to be solutions of the wave equations
Ogz* =0, for p=0,1,..,n,
where the geometric wave operator is

O, = Do D* = g*9,05 — g*°T%40,.

«

The metric g, relative to wave coordinates {z#} satisfies the harmonic gauge condi-
tion:
9T = 99 Tapdy = §°"0590u ~ 39°°0ugas

Under this condition the geometric wave operator [J; is equal to the reduced wave
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operator Elg. And the Cauchy problem can reformulate as follows: given a pair of
symmetric two tensors (h%, h') on R;™|,—o, we want to find a Lorentian metric g =
m+h of signature (1, n) satisfying the reduced Einstein equations (1.3) such that ((g—
m)|i=0, 01g)t=0) = (A, h?). Here the Cauchy data (h°, h') satisfy the corresponding

constraint equations such that:
M=o =0, 0I"|t=0 = 0.

The constraint equations for (h°, h!) is deduced in Section 3.1.3. See (3.6) and (3.7)

for details.

The use of harmonic gauge goes back to the work of Einstein on post-Newtonian
and post-Minkowski expansions. In the PDE terminology the result of Choquet-
Bruhat corresponds to the local well-posedness of the Cauchy problem for the Einstein
vacuum equations with smooth initial data. The reduced Einstein vacuum equations
satisfies the null condition for spacial dimension n > 4, which ensures the global
existence theorem for small Cauchy data. The concept of null condition was designed
to detect systems for which solutions are asymptotically free and decay like solutions
of a linear equation. See [Chl], [Kl] and [Hol]. For n = 3, it can be shown that
the Einstein vacuum equations in harmonic gauge do not satisfy the null condition.
Moreover, Choquet-Bruhat [CB2] showed that even without imposing a specific gauge
the Einstein equations violate the null condition. However, the Einstein vacuum
equations in harmonic gauge satisfy the weak null condition and recently Lindblad-
Rodnianski reproved the global existence for Einstein vacuum equations in harmonic
gauge for general asymptotic flat initial data in harmonic gauge by combining it with

the vector field method [LR1] [LR2].

In this paper, we apply the radiation field theory due to Friedlander to study the
asymptotic behavior of solutions to Einstein vacuum equations in harmonic gauge.

Friedlander’s radiation field was used by Hérmander to study the asymptotic behavior
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of solutions to linear hyperbolic equation in the following coordinates:
x
p=—, T=t—r0=— for|z| large.
|| r
For instance, consider the Cauchy problem in Minkowski space-time as follows:
Onu(t,z) =0, u(0,z) =up(z), &Eu(0,z)=u(z), whereup,u; € CZ(R").
By writing u = plg‘lﬂ near p = 0 and studying the equivalent equation

(O + ==y = 0

with the conformal metric m = p?m near p = 0, Friedlander showed that @ is smooth

‘up to p = 0. The radiation field is the image of the map

Rep t HH(R™) x LAR™) 3 (ug, u1) — il =0 € LA (R, x SF7Y),

which is an isomorphism. Here R.p is essentially the Myller wave operator and also

the free space translation representation of Lax and Phllips. I generalize this idea by

considering the conformal transformation of the reduced Einstein vacuum equations

(fig.1)

on a suitable compactification of Ri}'" as follows. Here S is the compactification

Figure 1-1: the blown-up space X
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of null infinity and ¥y is Cauchy surface, and po, p1,p2 are defining functions for
corresponding boundary hypersurfaces. See Section 2.1 for precise description of this
space.

Denote by UM the space of elements (h°,h!) satisfies the constraint equations
(3.6) and (3.7) and in a small neighborhood of (0,0) in the space pg;_IHH,fV“(EO) X
pgj"’iMHév“(Eo) for some N > n+6,1 > 6 > 0 and € > 0 small. See Section 2.1.3 for
the definition of weighted b-Sobolev spaces. Then by energy estimate method, I show
that for n > 5, if (%, A!) € Z:{;N‘s then the radiation field for A = g — m, denoted by
RS = (popr pg)l‘Tnthl, is well defined, satisfies the corresponding constraint equations

n—;lHéV(Sl) for some 0 <

(3.18) and lies in a small neighborhood of 0 in the space p§ p;
o, 0 < § < min{3,d}. Combining this with the linear radiation field theory and the
implicit function theorem, I improve the decay order and regularity for the radiation
field. Denote by WCN % the space consisting of elements in a small neighborhood of
0in (popz)‘s[Hb%“J(.@; HN+T345(§m=1)) 0 L2(S*Y; HY T (R))] and satisfy the constraint
equations (3.18). Then the main theorem of this paper is the following:

(mainthm)
Theorem 1.0.1. Forn >5, N >n+6,1> 6 >0 and € > 0 small, the nonlinear

Mopller wave operator

Rz : (W, 1Y) — BS:

defines an isomorphism from ZZN& to its image, which is a neighborhood of 0 in ng

for some C > 0.

For n = 4, the perturbation changes the geometry of metric near null infinity a bit
more, i.e. the bicharacteristic curve for perturbed metric are not C* tangent to the
bicharacteristic curve for Minkowski space if they have same limit point on Sli. In
this case, we have to combine the harmonic gauge condition with the energy estimates
method, which ensures some certain component of the metric is small and hence the
geometry of the conformal metric does not changes much actually.

For n = 3, the Cauchy data of interest for reduced Einstein vacuum equations
has an asymptotic leading term —M|z|18;; for some constant M > 0 small, which

has a long range effect at null infinity. Since —M|z|~'4;; provides a solution to the
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linearization of (1.3) in a neighborhood of null infinity in the blow-up space X, we may
conclude that the essential change of the geometry of perturbed solution g = m + h
only comes from the asymptotic leading term, i.e. the constant M. By a change of
coordinates to 7 = ¢t —|z| — M log |z|, which was suggested by Friedlander to study the
‘linear equation Uyu = 0 with such background metric, I expect to find a corresponding

compactification of Rtlj;" such that the above statements can go through.
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Chapter 2

Preliminary Preparation

In this chapter, I set up the basic notation used in this paper and study the conformal

transformation of Minkowski metric intensively.

2.1 Geometric Setting

This section is a preparation for describing the problem and dealing with it in a
manifold with corners arising from a suitable compactification of R; ™. Refer to [Me]

and [Fr] for more details.

2.1.1 Blow-up Space

Let us first introduce the notation we will use throughout this paper. In R};’", we take

t=2°=z¢,z=(z%,...,2") = (21, ..., z,) for simplicity and always use the lower case
English alphabet i, j, k, [, ... as indices taking value in {1, 2, ..., n}, the Greek alphabet
a, B, i, v, ... as indices taking value in {0, 1,2,...,n} and the capital English alphabet

A,B,C, D, ... as indices taking value in specific local coordinates. Set

7‘=IJJ|, T=|t|—‘.’L‘|, 0=




Denote by Rt+" the radial compactification of RH'" with boundary defining func-

tion p. Let X be R”" blown up the embedded submanifold 8Rt+n N {]t = |=|}:
X = [REE™: OREE N {J¢] = |1},

resulting in a manifold with corners up to codimension 2. See Figure 1-1. Here X
has 5 boundary hypersurfaces: Si", 57 the front faces in ¢ > 0 and t < 0 separately,

S5,5; the top and bottom boundary hypersurfaces and Sy the middle one. Then

X~ Xo:={(t'o) eRYT : |t| < 1,|z| < 1,]¢| + |z| < V2},

Sy ~R, xSp7Y, Sy~B,, Sp~[-1,1],xS;".

The corresponding defining functions are p, p7, p3, p3, po. Here pi, pE, po and p are

.smooth positive function on X which can be defined in local coordinates as follows:

e In the domain Q = {|t|? + |z|? < 1000},

p=p=pr=p2=1

e In the domain Q; = [-1, ], x [0,1], x S},

In the domain Qp = [0, 1], x [0, 3], x S,

p=ab, po=0b, pp=a, ps=1.

In the domain Q3 = [—7, 0] % [0,1], X Sg"l for some constant 75 > 8,



e In the domain Q4 = [0, 1]z x [0, 3] X S™,

“Dl
A~
(5]

Il
o
Il
=

p=ab, p1= Po

e In the domain Qs = {|y| < £} x [0,1],,

We omit =+ here, which means if the domain is in =t > 0 then we take p; = pE, or
equivalently p; = pip;, for i = 1,2. Notice that in the intersection of two domains,

the different definitions for defining functions are equivalent:

Definition 2.1.1. We say two defining function p; and p; on a domain 2 C X are

equivalent if and only if

% = e¥ for some 1 € C*(Q).
2

In many cases, for example the energy estimates, finite choices of equivalent defin-
ing functions always give equivalent statements. I change the choice of p; freely from
one domain to the other in the rest of this paper if they give equivalent result. Here
{€, : 1 < i < 5} gives a covering of X. However, when solving equations globally
on X, we have to consider some of the domains together. See Chapter 3 for details.

Denote by X? the double space of X across the front face S; U Sy. Then X 2
is a manifold with boundary and 8X? has 3 components (So)?, (S7)?, (S7)?, with

corresponding defining function pq, p3, p3 -

2.1.2 Vector Fields.
Let #(X) (resp. #;(X?)) be the smooth vector fields on X which are tangent to 0.X
(resp. 0X?). The relation between ¥,(X?)|x and #;(X) is

H(X)x = H(X) + C%(X) 0,
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By [Me], for any p-submanifold & C X, %(X)|x = %(3). If 0% = @, then #(X) =

¥ (£) in usual sense. Set

8o =0, 0;=04, 0;=r(6—0,6")9;,

Zo() = r@r + tat, Zij - Ziaj — a:jc')z-, Z()i = tai + l‘iat.
The vector files 51 are the projection of 9; onto the unit sphere which satisfies
9°0; = 0.

‘Denote by Z any vector field in {04, 2y, : v = 0,...,n} and & any vector field in
Yo(X).

Lemma 2.1.2. The vector fields above satisfy the following properties:

al-b € POPQ%(X)>
(X)) = Spancex){0u, Zpw - p,v =0,1,...,n},

Y (S"1) = Spangeo(sn-1y{0; i = 1,...,n} = Spances(sn-n{Z;j : 1,j = 1,...,n}.
Proof. The third property follows directly by
Zz'j = giéj - Hjéi, 5]‘ = Zijei.

To prove the first and second one, we only need to check them near 9.X:

e In Ql,
0y = pds, 0 = —0ip(pd, + s05) + b,

Z()o = —p@,,, Z()i = 01(1 - Sz)as — 91-3/)3,, + Sé@,

- as = (1 — 82)-—1(201‘91. — SZO()), pap = —Zno.

18



In Qg,
8, = b(bdy — ad,), O = —b;(b3, — (1 — a)ad,) + abd,

Zoo = —bBy,  Zoi = —0;((2 — a)ads — b0) + (1 — a)d;,
- bab = —Zo, ad, = —(2 - a)~1(200 — Zgiei).

o In Qg,
at = 87" ai = _ei(a'r + p2ap) + Pgi,
ZOO = Tar - Pap, ZOi = _01'(7-87 + (1 + pT)pap) + (1 + pT)éi’

- 8T = 8t, pap = —'(2 + ,OT)—I(ZO + Z()iei).

e In (),
8, = b((1 — a)ad; — bd;), 0; = —bl;(ad; — bds) + ab(1 —a)~'4;,
Zoo = —bB5, Zoi = —0;((2 — a)ad; — bd) + (1 —a) ™o,

= 585 = —Z, (_185 = ~(2 - a)—l(zoo + ZOiQi).

e In Qs,

8t = —¢(¢8¢ + yiayi), (?i = ¢ayi,
Zoo = —$0y,  Zoi = Oy — yi(¢0s + 1 0yi),
= ¢8¢ = —‘Zog, 8yi = —(1 —_ RQ)—]y,'(ZQQ — Zojyj) + Z()i.

2.1.3 Sobolev Spaces and Symbol Spaces.

Suppose ¥ C X is a p-submanifold, then it is a manifold with corners up to codimen-
sion < 2. If ¥ is a manifold with corners up to codimension 2, then ¥ has boundary
defining function py equivalent to g|s and defining functions p;|s for boundary hy-
persurfaces S; N X # 0; if ¥ is a manifold with boundary, then ¥ has a boundary
defining function py equivalent to p; for some i € {0,1,2} near ¥N.S; # 0, © € S;; if
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0¥ = (), then px, is equivalent to 1. Let my be the Riemannian metric on X induced
by the diffeomorphism ® : X — X, C R", where we take the metric on X, be the
Irestriction of Euclidean metric.

TakeY = X or Y = ¥, a p-submanifold of X. Then Y is a manifold with corners,
with hypersurfaces 0,Y, ..., 0,Y and corresponding defining function ji, ..., p1. Denote
by py the total boundary defining function and by dvol,’,’m the volume form generated

by restriction of mg to Y.

<def.1>Deﬁniti0n 2.1.3. For any domain Q C X, define the weighted b-Sobolev space
pite pirtHY(Q2NY) for any N € Ny and ¢y, -+, ¢ € R the closure of C*(Q2NY) in
the norm: y
oo = ([ 3 1Z5op =t
oy 1oy PY
ol ety anyy = 161+ By “vll gy @y
We also use the symbol space to characterize the asymptotic behavior of functions
near boundary of Y with smooth regularity in the interior.
(def.2)

Definition 2.1.4. For any ¢;,...,¢ € C, define &/“%(Y) consisting of elements

satisfying
Fr B € I(Y), i i (X)) € LF(Y), V€ Ny,

Definition 2.1.3, 2.1.4 only depend on the equivalent class of boundary defining
functions. The relation between the weighted b-Sobolev spaces and the Symbol spaces

are as follows:

Lemma 2.1.5. Suppose ¢; € C and ¢, € R. If Re; > ¢, then
(YY) C B HN(Y) YN € N

Lemma 2.1.6. Suppose dimY = k, then there exists a constant Cn(Y) for any
N> %—i—l such that

[0l Loqvy < ON(Y) V]l (ry-
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This implies that for any cy,...,c; € R

(o]

In this paper, we consider the map between Cauchy data and Characteristic data
for Einstein vacuum equations, which lie in some weighted b-Sobolev spaces on the

p-submanifolds ¥ = {t = 0} = R™ and S separately.

2.2 Minkowski Space.

Minkowski space-time is a solution to Einstein vacuum equations. In this section, we

list the basic geometric properties of its conformal transformation.

2.2.1 Metric.

1+n

¢» and m its conformal transformation on

Denote by m the Minkowski metric on R
X:

m = d*t — Z d’z' and 1 = p*m.
i=1

Here p is an arbitrary choice of boundary defining function, which is equivalent to
the choice stated in Section 1.1 in each domain. A change of equivalent boundary

defining function only results in a smooth factor e?¥ with ¢ € C*(X).

Lemma 2.2.1. The conformal metric  extends to a Lorentz b-metric on X of

signature (1,n) with Sf U S_ being its characteristic surfaces.

Proof. First notice a smooth factor ¥ with ¢y € C*°(X) preserves this statement.

We only need to check the metric near X with specified choice of p in each domain.

e In O,

m = d*s — 25(1!3%e —(1— sz)(%)2 —d*6.
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In QQ,
m = —Zda%I2 —a(2— a)(fd—b)2 —d*0, M|{a=oy = —d*0.

b
e In Q3
m = —2drdp + p*d*t — d*0, 1h|{p=0) = —d0.
e In Oy, B )
- _db _.,db do -
m = Qda—B— +a(2— a)(ﬁ) _ (1 - d)2’ ml{a:o} — _d%
o In 95,
5 do - i i i
= (L= () = Do dy + 2y <§>.
=1

Hence m is a b-Lorentz metric on X and has signature (0,n — 1) when restricted on

StusT. O

2.2.2 Connection.

To investigate the geometric property of 7 near 0X, we examine the connection
components in local coordinates. For simplicity, we change variable for pg, p2 and

only write out the nonzero connection components.

e In O, change variable by £ = —log p € (0, 00). Then in coordinates {s,&, 6},

m = d*s + 2sdsdé — (1 — s%)d*¢ — d*6,

1 S 0 1—-s%2 s 0
m=|s —1+s2 0 |, m*t= s -1 0 |;
0 0 1 0 0 —1

[(m) =s, Ti(m)= s2, [ge(n) = —s(1 - s%), T%(m) = 2s,

T4,(m) = —1, T%(m)=—s, Tg(m)=—s" T¢m)=-1
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e In Q,, change variable by ¢ = —logb € [log 4, 00). Then in coordinates {a, &, 6},

m = 2dadé — a(2 — a)d*¢ — d°0,

0 1 0 al2—a) 1 0
m=1|1 —al2—a) 0 |, mt = 1 0 0 [
0 0 -1 0 0 -1

I%(m) = —(1—a), T&(h)=a(l—a)(2—a), I(R)=-2(1-a)
[¢ () =1—a, T%(m)=0.

e In Q3, in coordinates {7, p, 6},

m = —2drdp + p*d*t — d°0,

P2 -1 0 0 -1 0
m=|-1 0 0|, m'=|-1 —p* 0 |;
0 0 -1 0 0 -1

e In Qg change variable by £ = —logb, then in coordinates {a, &, 6},

m = —2dadé + a(2 — a)d*¢ — (1 — a)~2d*6,

0 -1 0 —a(2—a) -1 0

Te(m) = —(1—a), Tg(m)="Tg0m)=a(l-a)2-a)
I(m) =2—(n+1)a— (n-1)(1-a)'a,

Té(m) =Th(m) =1—a, TI¥m)=—-(n-1)(1-a)"
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e In 5, change variable by ¢ = —log ¢, in coordinates {¢, ¥, ...,y"},

o= (1- R)d*C — 3 d’y' — 2y'dy'dC,
i=1

1— R2 __yl - _yn
i -yt -1 0
m = . )
— 10 —
L y 0 1 J
F 1 _yl _yn
_ -yt —1+ylyt yty"
m = ) ,
I __,yn ylyn 1 +ynyn |

T¢(m) = —R2 Ti(m)=—-y, TI%

Fzg(fr’z) = —y*(1 — R?), ;C(fn) = y'y;, F}k(ﬁz) = yi5jk, = —(n+ 1)y

2.2.3 Wave Operator.

The Laplace-Beltrami operator w.r.t. m is defined by

O = m/9,0, — TK .

in local coordinates. First the commutator of O,, with Z,, gives:

[Dﬁw Zz]] = Oa [D’fn; ZOO] = 0’

for p = p or p = ¢. The precise formula for [J; and its commutators with vector

fields in #,(X?)|x are listed in the following.

o In Ql,
O = (1 — 5%)8? — 250,00, — 250, — (p8,)* — pd, — Lo,
(D, 0] = 2502, [0, p8,] = (O, o] = 0,
O, Zoi] = —256,(0s +v), with v = (n—124('n—32'
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e In QQ,

O = —20,00, + a(2 — )02 + 2(1 — )0, — D,
(O, a0,] = —20,(b0s — ad,) = O + (a0,)* + ad, + Do,
(O, b3] = By Dol = 0,

(O, 8% = —2k(1 — @)X + k(k + 1)0F,

Oy Zoi) = —2(1 — a)0:(0, +70),  with o = L=t=d,

o In Q3,
O = —28,0, — (p8,)* — pd, — D,
[Dm, 8,] = [Dm, A@] = 0, [th, 6,,] = 2(p8,, + 1)8p
[D,;l,pc'?p] = —25,,& = Dm + (pap)2 + pap + A@,
(O, Zos) = =2(1 + p7)0:(Uim +70), with v = ——("_1)4("4)'
e In Qy,
O =20:00 — a(2 — a)02 — 20, + (n+ 1)ad; — (1 — @) 2L
+ (n—1)(1 —a)"Y(ad; — bd;),
[Dﬁw 585] = [D'I’ﬁa A@] = 0’
(O, @03) =0 — (@03)* — nads + (1 —a) (1 + @)D
— (n—1)(1 — a)"*(ads — bd),
O, Zoi) = —2(1 — @)0:(Um + 70), with 1 = %-
o In Qs,

Dfn - (¢6¢ + RaR)z + n(¢8¢ + RBR) — Ay,
[Dm, ¢6¢] = 0, [I:],—h, 8yi] = —(2R8R + 1)8yi,

[Dﬁla ZOi] = _QyZ(Dm + ’)/0), with Yo = TL24—1.
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2.2.4 Time-like Functions.

Time-like functions is the most important concept for a Lorentzian metric: we use it
to define positive quadratic form and the space-like hypersurface, on which the energy

norm is defined.

Definition 2.2.2. For a Lorentz metric § on X of signature (1,n), say a function

T € CY(Q) is time-like w.r.t. § at p € X if and only if
(VI,VT); >0 atp;
‘null w.r.t. g at pif and only if
(VT,VT); =0 atp.

A hypersurface ¥ C X is called space-like (resp. null) w.r.t. g if and only if XN Q
has a defining function T € C*(X) such that T is time-like (resp. null) on X.

Definition 2.2.3. A quadratic form field associated to time-like function T w.r.t. §

is defined by
F(T,v) = (VT,Vv)3Vv — 3(Vv, Vo); VT + 3700*VT.
‘Here V is the connection w.r.t. § and 7y > 0 is some constant.

Lemma 2.2.4. Suppose T, T' are two time-like function w.r.t. a Loretzian metric
g at p € X such that (NT,VT"); > 0 at p, then (F(T,v),VT"); is a strict positive
quadratic form at p.

(cauchy.2y
Lemma 2.2.5. Suppose ! C X has piecewise smooth boundary 00 with defining

function T, then

/ divy(F(T,v))dvol; = / (F(T,v), VT")gdpl'.
Q o0
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Here dul" is the volume form on 0Q such that dul’ A dT’ = dvolg and

1
divg(F(T,v)) = (Vo, VT);(O5 + v0)v + V*T(dv, dv) + 5('701)2 — (Vv, Vu);)0;T.

Lemma 2.2.5 implies the energy estimates if choosing T" and §2 properly. Here we
list the time-like functions w.r.t. m and the corresponding space-like hypersurfaces
in each domain. For the purpose of energy estimates, we modify the covering of X
to {ﬁi}15k54 such that each domain is bounded by either space like hypersurfaces or

null hypersurface or infinity w.r.t. m.

e In O UQy, define

i
T, = where
! P (r)
$ forr<l1 , "
Y(r) = , 0<yi(r) £1, ¥(r) 2 0.

r forr>2

Set
G={Tie(-LD}, Se={Ih=0}, Z={T1={}
Then in O,
-85 1 ifr>2
(VT17VT1>T7L =

(P(r) 21 = T*('(r)?) = &(p(r)) 2> F  ifr<2 |
Here for r > 2,

[:]mTl = —-28,
divs, F(Ty,v) = —S(|V0U|2 +7v%) + (O + Yo)v,
(F(T3,), VTi)a =31 — 0,0 + 3(1+ s)ls(1 — %)k — pdpl?

+ %(1 — 82)(|V97)|2 -+ ’701)2).
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e In ,, define
T, =—a+logh, T,=-—

Set
={a€[0,}], T; € (—oo,log ]}, %2 ={Tp=logm, a < 3}
Then in s,
(VT3,VT3)m =2+ a(2 —a) > 2,
(VT;,VT3) s =a(2 —a) > a
<VT2, VT2>m =1+ Q(Q — a) > 1.
Here

0:Ts = —2(1 - a),
divi(F(T2,v)) = (1 = a)(10av]* — [89v]* = 710v®) + (O + 70,
(F(T3,v), VTa)im =3[b0yv|? + L[(60y — a(2 — a)Ba)v[* + (1 + a(2 — a))|8,v)?
+3(a(2 — a) + 2)(10pv]* + 70v?),
(F(Ty,v), VTg)m =51b0|* + 3] (b0, — a(2 — a)0u)v|* + 2a(2 — a)|9,v|?
+3(a(2 = a) + 1)(|0v]* + y0v?),
(F(Ty,v), Viogb)m =[0v]* + 3a(2 — a)|0,0]* + 1|8pv[* + Lyov?.

e In Q3 Uy, define for 7y > 8,

Ts=t—o(r), T3=—p(270—7), where
r+p ifr>2

1[)2(7‘) = , 0< wlz(r) <1, g(T) > 0.
2 ifr<l1

Set

_Qg = {Tg S To}\(ﬁl Uﬁz),
23 = (ﬁgmzl)U(Q_gﬂZQ), 24 = {T3=10g’7’0}.
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Here T} is only defined near S; N €3 such that p(279 —7) < 1. Then in Qs,

2-p2>1 ifr>2
(VT5,VT3)5 = ,
P21 = (y(r)?) 2 ifr<2

&l

and for p(2rg — 7) <1,

(VT5, VT3 = p(210 — 7)(2 — p(210 — 7)) > Top,
(VT3, VT3 i = (210 — 7) + p(1 — p(270 — 7)) > T0.

Moreover,

U135 = 2p,
diva(F(Ts,v)) = p(|0pv]* — p*10,0]* + 10v?) + (O + Y0)v,
(F(T3,0), VT3)a =510,0[ + 3]0, + 20,0 + (1 — p2)|0,0]?
+3(2 = p")(18ev|* + volvl?),

(F(T3,v),VT3)s =%(27'0 — 7')|6T’U|2 + %(270 - 7)|0rv + p28pv]2

2

—~

1—3p° = 3p(270 — 7))plO,pv]*

+
+2(2(r0 — 7) + p(1 = p(270 — 7)) (1969]* + 70[0[*).
e In O, U5, define for a > 1,

Ty = —fi(a) — logh, T = —[s(a)b™.

Here f4, f5 are smooth functions on €4 U {25 such that

) fé € (172)a él Z 07 Cs € (]-a %)



Set

e

4 = (Q4 U 95)\93

Then in Qy,
(VT4, VTa)i = fi(a) (2 —a(2 - a) fi(a) > 1,
(VT VIi)a = 6 f3(a)( — a(2 — a) f5(@) + 2af5(a)) > (a — 1)ab™,
(VT4 VI)w = 0*(f5(a)(1 - a(2 — a) f1(@)) + o f1(a) f5(a)) > 167

Here for a € [0, 1),

Ty=—a—logh, T,=—ab",
0Ty = (n+ 1)(1 —a),
div (F(Ty,v)) =(1 — a)( — 020 + 252a(2 — @)|040]?
+ 211 — a) | Vo] + H0?) + (O + 70)v,

(F(Ty, ), VTy)m =310ev)* + 310cv + @(2 — a)0,v]* + (1 — @)?|0av]?
+ 31+ (1 =a2)*)((1 - a)*|Vev[* + yov?),

(F(Ty,v), VTg)m =b*(310 + a(2 — 2)0,v)* + 3a(a — 2 + a + a(1 — a)?)|0,v|?
+ 510ev]” + 5((1 = @) + a@)((1 — @) *|Vev[* + 7007)),

(F(Ty,v), V(—logb))m =|0av|* — 1a(2 — a)|0v|* + $(1—a)7%|Veu|? + 1yv?;

and for a € (3,1],

Ty=—loggp—cq, Ty=—cs¢°,
OzTy = —n,
divia(F(Th,v)) = 21¢0sv + ROrv|* — 252|V,|* + Zy0v® + (O + 70)0,
(F(Ty,v) i =3 (|¢0sv + ROpv|* + |V, 0] 4 yov?),

) VT4
<F(T4v U), VTD

1
m 2
" =%ac5¢°‘(|¢a¢v + RaRUP + |Vyvl2 + ’70112).

Here T; are regular time-like all over ; and T} are time-like in the interior of €2
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but null on S; N Q; w.r.t.sn for 1 < i < 4. We will show in next section for n > 5
with a small perturbation of the metric 7, those properties are preserved w.r.t. the

perturbed metric.

Figure 2-1: domains and hypersurfaces in X N {t > 0}.
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Chapter 3

Cauchy Problem for Einstein

Vacuum Equations with n > 5.

In this section, I consider the Cauchy problem for the conformal transformation of
Einstein Vacuum equations in harmonic gauge on X for n > 5. We first show that
given the Cauchy data small in some weighted b-Sobolev space on ¥y the radiation
field for the solution is well defined. This is done by energy estimates method. Then
applying the linear radiation field theory with a background metric which is close to
Minkowski space-time, I show that the map from constraint Cauchy data to constraint
characteristic data is an isomorphism on some small neighborhoods of weighted b-

Sobolev spaces.

3.1 Problem Description.

In this section, let us set up the Cauchy problem for the conformal transformation of

Einstein Vacuum equations in harmonic gauge on the blown-up space X.
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'3.1.1 Perturbed Metric.

We consider (M, g) as a small perturbation of Minkowski space (R{t",m) and take

(M, g) = (R{t", m + h) with h a symmetric (0, 2)-tensor on Ry

tx >
h = hu,,dsc“d:c" = dt? + 2]101dtdfl'z + hijdxidxj.

Denote by
§= g =i+ Fh (5.1) [auchy 3

the conformal transformation of g on X. In the fixed coordinates (¢, z), it is equivalent
to say that h a function on R;T™ or X valued in (n + 1) X (n + 1) symmetric matrix

‘space SM(n + 1,R) ~ R™“ I this sense, set

~ l-n

H=g¢g'-m™ and h=p7h (3.2) [cauchy.4]

To write the perturbation in local coordinates near boundary, let us first denote by

her = hoo,  Prp = hpr = —(hoo + hoi0"),  Rpp = hoo + 2ho0° + h;6°67,
hri = hir = hoi,  hpi = hip = —(hoi + hijgj)-

Then in each domain with the coordinates set in Section 1.1, the perturbation of

conformal metric 5?h can be expressed as follows:

o Ian»SZ%aP:%aP:P’

. o od d
ﬁzh Zh00d28 + (h0082 + 2hg;0's + hin’HJ) —p£)2 — 2(h008 + ho,)dé‘?p

o . ) d
+ hi;d0'd0’ + 2hgdsdd’ — 2(hoss + hinJ)dOJ?p.

.IHQZaa: —f,b:;i—t,ﬁzab,
d db da db
B == + (g 2ahey + @%her) (5 + 2y + ahry) =2
o da . db
+ hiyd6'de’ + 2hp,-—(-lffaa9z + 2(hyi + ahyy) 7-d6"
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elnQy p=Lr=t—r,p=0p

h = hyp(P0)2 & o dPr + 2 ydrdp + hidd0 + 2phididr + 2hd6 ‘i’)
P

st}
Il
l

sl

oInQ4,c‘1=1—§,B=—

da ., da db

P*h =hop(—)? + (hpp + 2ahipf" +a2hm6’01)( )2 + 2(hyp + Bhyi') —

o da db
+ (1 - a)?hy;d6'de? + 2(1 — )hmde‘—ﬁ +2(1 = @) (hyi + ahy,8)d6' .

~ i i v d i N
ch =(hoo + 2hoyt + hijy yj)(_f)z =+ hijdy dy’ — 2(h0i + hijyj)dy _Q—?

Here in €, for 1 < i < 4 we use the polar coordinates. The metric is the same as
a restriction to R? x Sj~! of the metric on R? x R} with same components. The

restriction is equivalent to imposing a condition
9] =1, 6;d6"=0.

To simplify the expression, let us define the following data depending on h which

control the geometric perturbation of the conformal metric.

Definition 3.1.1. Define for any h € C°(€; SM(n + 1,R)) and 6 > 0,

Aoy =D Ihwl,
wu,v=0,...,n

Ay(R) = sup |py Byl
1<i<n

A1+6(h) = Ipl_l_éhpp[-

Lemma 3.1.2. If h € C°(X; SM(n + 1,R)) satisfying Ag(h), A1(h), A11s(h) < € for
some § > 0 and € > 0 small enough, then § extends to a Lorentzian b-metric on X?

with Sf U ST being its characteristic surfaces.
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Proof. The statement is obviously true if § > 1. For 6 € (0, 1), let

Fo) =4 [ o hyda = 0.
and change the tangent coordinates near S, as follows:
o In Oy, set logh = logb' + f(a),
o In Q3 set 7 =7"+ f(p),
e In Q3, set logb = log¥’ — f(a).

Then in the new coordinates we can see the metric components is uniformly bounded
and {p; = 0} is its characteristic surface. Since the coordinates changing does not
"change the surface SE, we prove the statement. Notice that these coordinates chang-

ing involves a C%? diffeomorphism of X. a

Definition 3.1.3. For any £ € Ny, denote by ©4(h) a real analytic function of
h € SM(n+ 1,R) with C*(X) coefficients such that

Or(h) = O(|hl*) as Aclh| — 0.

For any k € Ny,! € N, denote by ©,(h)(h',...,h!) a l form in (h!,..., h') with coeffi-
cients Ok (h).

Lemma 3.1.4. For any k,l € Ny

Ok(h) + O1(h) = Oniniey (h),  Ok(h)Oi(h) = Bi(h),
Ao(Or(h)) = Ox(Ao(h)).

Lemma 3.1.5. With above notation

H® = —hoo + ©5(h), H" = hg; +©Oy(h), HY = —hy; + O,(h).
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3.1.2 Einstein Vacuum Equation in Harmonic Gauge.

Say a metric g = m + h satisfies the harmonic gauge condition in coordinates (¢, z) if

and only if
O =0 & THg) =0 & ¢*0agus=39""0udas, for p=01,.,n

If g = m + h satisfies the harmonic gauge condition in coordinates (¢, z), then

e In QQ,
(b0 — aB,)(2h,r + trmh) = ©1(a)(8h) + ©1(h)(OR),
(b0, — 0,)(2h; — Bitr,h) = ©1(a)(8h) + 6,1 (h)(Oh),
= (b3, — aBy)h,, = ©1(a)(Oh) + ©1(h)(Oh).
[ ] In Qg,
8,(2h,yr + tr,h) = ©1(p)(9h) + ©1(h)(OR),
0r(2hy; — Oitrnh) = ©1(p)(Oh) + ©1(h)(Oh),
—  8,h,, = 01(p)(Oh) + ©,(h)(5h).
e In Q4,

(605 — @05) (2h,r + t1mh) = ©1(a)(Dh) + ©1(h)(Oh),
(b0 — @0,)(2h, — Bitrh) = ©41(a)(8h) + ©1(h)(h),
— (b3 — @0a)h,p = ©1(a)(Oh) + ©1(h)(Oh).

Here tr,h = m®Phops = hoo — > iy hii-
In harmonic gauge, the Einstein Vacuum equations reduces to a system of quasi-

linear wave equations [LR1].
Oghuw = Fuu(h)(0h,0h), p,v=0,1,..,n,
where O, = EJg = ¢%0,p = Oy + H*0,p
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and Fy,, (h)(0h,0h) is a quadratic form in Oh with coefficients that are real analytic

functions of h. More precisely,
F,(h)(Oh,0h) = P(0,h, 0,h) + Q. (0h,8h) + G, (h)(Oh, Bh),
where @), (0h,0h) is a null form of constant coefficients and

P(Oyh, 8,h) = H(9utrmh)(Dytrmh) — 3m* mPP (8,hap) (Bohars),
Guv(h)(Oh, Oh) = ©1(h)(h, Oh).

By a conformal transformation (3.1) and (3.2), the reduced Einstein equations (1.3)

are equivalent to

(O + (B = (0p2) T p1™ Fp (. O1), (3.3)
where
Y(h) = =" O5p 2" =0+ 5°7 O4(h)) with 7o = —5"T Oaf' 7",
and
Fow = 575 Fu (5 B)(0(5" R), 0(5°F 1))

Lemma 3.1.6. With above notation, 7y is a constant in each domain Q; for1 <i <5

and

n—1 n—5 . n-—3

Oj = O+ (pop2) T (017 hypoPa+py® (% + )],  where
P e %2(){), [Pg,ﬁ] =0 inQy, N3, Q.

Proof. We can compute 0; and y(h) precisely in each domain near 0.X.
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e In Ql)

O; = O + [H® — 2sH0, + s H76,0;10 + [H79,0;](p0,)* + HY 0,0,
+ 2[— HY0, + sHY6,0;)0,(pd,) + 2[H" — sH"16,]0,0;
+2[—HY0;)(00,)0; + [—(n + 1) H"0; + sHY (=6;; + (n + 2)0;0;)]0s
+ [HY9(=6;; + (n+ 1)8,8,)]00, + [-nH"6,]0;

= Op + p"T 6,(1)(8* + ),
v =0+ [HI (2516, + W_—laﬁﬁt?*_)gigj)]’ Yo = ("_-%l-i).

e In Qz,

O = O + a2 [H — 2H™9, + H0,0,](b0, — ada)® + [H76,0,](ad,)?
+ 207 [~ H%0; + HY6,0,)(ad,) (b3, — ad,) + H9;0;
+ 207 [HY — HY6,)8;(b8, — ad,) + 2[—H"6,]0;(ads)
+a 2 [H® — 2H 0, + H0,0; + aH (=5;; + nb;6;) — (n — 1)aH" 6]
(b3 — ada) + [HY (=83 + (n + 1))0:6;]ad, + [~nH"6,)0;,
5

= O — a0 oy (b0 — aBa)? + (b0 — 0,)] + a"T b°T ©4(h)(8? + ),

v = o+ [H9 (=226 + C=B8g.0,)], o = =3

[ ] In Qg,

O; = O + +p72[H® — 2H0; + H9,6,)02 + [H6:0,(p3,)* + H”3,0;
+ 2[—HY0,)(08,)d; + 2p~* [~ H™0; + H"6,6,]0,(p0,)
+ 207 [H® — HY6,10,0; + [H (=0, -+ (n + 1)8:6;)]p0,
+ p 7 =(n — 1)H"6, + HI(—5;j + n:8;)]0- + n[—H"6;]0;
= Op — T 02 + p"T 01(R)(8 + ),

7 = 0 + [HY(— 2520 + =g .0, o = =R,
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e In Q4,

O; =04 + a2 [H® — 2H™0, + HY0,60;](ad; — bd)? + H*®(ab,)?
+ (1 —a)"2HY9,0; — 2a~*[H* — H"0,)(ad,)(ad; — bd;)
—2(1 - a) " H%(ads)d; + 2(a(1 — a)) " [H® — HY6,)(ad; — bd;)0;
+(1—a) 2 [—H"90; — (n — 1)H"]d; + nH*a0,
a *[H® — 2H"0;, + HY0,0; + (n — 1)a(H® — H"4;)
—a(1 - a)" HY(~d; + 6,6,)](ad; — by)

n=5-n—1~ - 3

= O — a7 b7 hyy|(ad; — b05)% + (505 — @0,)] + a"7 b

n—1

0, (h) (8 + ),

y=0+ R HY, =2

e In Q5,

Oj = On + H(¢0, + y* 0, )> + HY9,:0, — 2H" (90 + y*0yr ) Oy
+ TLHOO(¢8¢ + yiayi) — (n + 1)H°i8yi,
= O+ 6" 03 (h)(5° + ),

N = ,70_*_71 n’=1 fro0. 70=n24—-1.

a
We also deduce the equation for 8%k from (3.3) for all k € Ny and J € Y5(X).
Lemma 3.1.7. The equations (3.3) implies that
(O3 + 700"y = [T, 8 + f5,(R) (3.4)[cq.5]
where f* 1, (h) can be expressed as
P (pop)'T > Oo(h)(h -+ ,67h).  (3.5)[canchy 6]

a1+ <k+2, 2<I<k+2, 0<a;<k+1

40



Proof. For k = 0, obviously

n—>35

8, (h) = 5" ma(h) + (pop2) T p1? Fpu.
is of form (3.5). For k > 1,
(D§ + VO)ékB,uu = ékf/w + [Dg, ék]ilw/a

By direct computation, both [[; -0, 5’“]?1“1, and 5’“qu can be expressed as (3.5). O

Here 0* means an element in %;(X)".

a basis of #;(X) and view k as a multi-index. In (3.4), f* in the form of (3.5) is

In particular coordinates, we can choose

quadratic with variable coefficients and the commutator [0y, 5"] gives linear terms

of derivative order < k 4 1 or a nonlinear term in the form of (3.5).

3.1.3 Cauchy Data in Harmonic Gauge.

Given Cauchy data (go, ko) on R which satisfies the constraint equations (1.2) and
is close to (— Y., d*z%,0), we can construct (g|i—o,0:gli=0) satisfying the harmonic

gauge condition at t = 0, [LR1].

Theorem 3.1.8 (Lindblad, Rodnianski). The solution to reduced Einstein equations
(1.8) with the constructed Cauchy data (gli=o, 0:gli=0) salisfies the harmonic gauge
condition globally and hence provides a true solution to Einstein vacuum equations
(1.1).

This is basically a uniqueness theorem for wave equation on the connection com-
ponents I'“(g) for i = 0,...,n. In this paper, we consider the Cauchy problem for
reduced Einstein equation (1.3) with initial data

(glt=0, Begli=0) = (— Z d?z' + hO, hl)

i=1

such that
]'—w(g)|t=0 = 0, atF“g|t:0.
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Denote by
Go=(m+h") =m+06,(r"
= O(m+h)*|g = —G5 G Rl
Hence I'(g)|;=o = 0 implies that for j = 1,...,n
G his + Gy 0;hly — 1G5hl s =
. (3.6)
Ghyg + GOl — 1G3P9;h0,5 = 0

and 0,I'*(g)|i=0 = 0 implies that for j = 1,...,n

(GO 02hos — 1G3P 07 hag) im0 = — G Okt s + Eo(h°, hY),
(Go O hy)limo = ~Gg'Oihjs + 3G5 B + Ey (A, 1)
where

Eo(h%,h') = — 1G6¥ GJ¥ hlyphbs + Go' G3P Bl phbg + G GEP b, 5 0,1k,
Ei(h° h') = — LG§¥' GE7 bk g 0;hls + GO GEP bl ghls + Gi' G B, 5 0,1,

However, the reduced Einstein vacuum equations at ¢ = 0 gives
82 lﬂ/ — (GOO) lF;,w(hO’ hl)

"Here F ", (h°, h') are real analytic functions of (h°, h',8;h°, d;h*, 9;0;h°). Hence this
problem is still overdetermined, which impose a constraint condition on A°, h! such
that for j =1,...,n

G Fip(h®, hY) — 3G3PFls(h0, ) = GX(~GYdshis + Eo(h°, hY)),

(3.7) [constraint. 3]
GPFjg(h°, h') = G(=Gy 0ihlg + 3G370;hl s + E;(R°, b
iB 0 0 af

Now (3.6) and (3.7) give the constraint condition for Cauchy data for reduced Einstein

vacuum equations.

Corallary 3.1.9. Given Cauchy data (h°, h') € C®°(R™; SM(n + 1,R)) small and
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satisfying the constraint condition (3.6) and (3.7), then a solution to (1.3) provides

a true solution to (1.1) in harmonic gauge.

Definition 3.1.10. Define LZN % the space consisting of the elements (h° h') which
satisfies the constrain condition (3.6) and (3.7) such that

RO| - h! <
[ “p;%#lHH;V“(Eo)+“ “po%—_lﬂH,f’(Zo) €

Here ¥y = R” is the radial compactification of R™ and pg is the boundary defining

function for Sy N Xy as set in Section 2.1.

3.2 Energy Estimates for n > o.

In this section, we show by energy estimates that for n > 5 if
(RO, RY) € ?:{;N"s, for N >n—+6,4 € (0, %) and € > 0 small,

then there exists a global solution A to (3.4) which is C®% up to S for some ¢’ € (0, ¢]

and hence the radiation field in Friedlander’s sense is well defined:

Ry(h°, hY) = h|s, € peps T HN(S,) for some o > 0.

3.2.1 Preparation.

In Section 2.1, we give a covering {Q; : 1 < i < 4} of X. Each of these domains is
bounded by space-like hypersurfaces defined by time-like functions or characteristic
hypersurface S; or infinity w.r.t. m. For n > 5 and with small perturbation, we
can choose the same time-like functions and hence same space-like hypersurfaces to
proceed the energy estimates. Refer to Section 2.1, 2.2 for notations. Let us first

deduce an inverse formula for symmetric matrix close to 7 in chosen coordinates.
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Lemma 3.2.1. Suppose in chosen coordinates,

A C
cT B

where AT = A, BT = B and A, B are invertible. Then

~_ Gu G2
g l= where

Gy Go
Gy =A-CB™'cT)™L,
G =GL, = —(A-CcB'ch)"'CcB™,
Goy =B™' + B'CT (A~ CB~CT)"'CB™.

In this section for h small, if not specified, B is always set as follows:
B = _Idnxn + [hij]nxna = B~1 = _[dnxn - [hij]nxn + @2(h),

and A is a 2 x 2 symmetric matrix and C is a 2 X n matrix. We view the metric g as

-a restriction to R? x S?7! of the metric on R? x R? with same components.
9 0

In the following, I omit the constant C' if it is independent of ¢; for ¢; small enough.

3.2.2 In
We solve the equation (3.3) from ¥y to X; with Cauchy data on ¥y such that

Z Hékﬁ“pgf{g(zo) <€, 0<d8<3 >0, small
[k|<N+1

Notice that, in 0y, everything stated in the following also works for n = 4.

e Perturbed metric: by changing variable £ = —log p € (0, 00) near the boundary
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Sy, the metric § can be expressed in coordinate (s,&,0) as follows,

A= 1+ hog s + hgos + ho;
s+ hooS + h()igi -1+ 32 + h0082 + 28h0i9i + h,’j@iej
C = hOl . hOn | .
$h01 + h1j9] e Sh()n + hnjBJ

Hence the m

Connection components: for any I, K, J € {s,¢,0},

DK () = T () + ©1(k) + Op(R)(BR) = T () + po? [01(R) + Oo(R)(GM).

Partial derivatives:

8 € {0s, pd,, 0;}.

Commutator:

O, 0= > als)d,

1<i<k+1

where ¢;(s) are smooth bounded function on ;.

Equations:

O +70)0h =Y cis)dh+ f~.

0<i<k+1

where f’“ can be expressed as (3.5).

Time-like function:

(VTl, VT1>§ = (VT], VT1>m + @1(h)
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e Space-like hypersurface: define for Ty € [0, {],
Zp, = {11 = constant},

and consider the domain Qfl bounded by Xg, X7, and Sy for energy estimates.

e Quadratic form:

(F(Th,v),VTi);
(U T 2 L+ leo” ‘0.

l“lpo 1( )| <

e Sobolev norm: define for || po hHoo < €; with ¢ > 0 small,

W=

Y (Ty,v) <Z/z e”?1800(F(Ty, %), VTh); dMT1> > vllguy sr,)-

Here for €; small enough and near the boundary Sy,

dplt =~ dp —-do.

Moreover, we have

Y 110%lee < COEM (T, v).

N
k<5 +1

where C' is a constant independent of ¢, if it is small enough.

e Divergence of quadratic form field: if H,OO2 Ao + Hp0 (9h,||oo < €} with e} >0

small, then

div§,(e'2cs logro (T3, 9%h))
= e~ Blosro(_o5(F(T, 5’“71), Vlog po)g + divy(F (11, ékﬁ)))
< po P (V0" h, VT1)3 f*(h) + C{F(Th, 8°h), V1) ),
where C' is a constant independent of €] if €] small enough. Here V is w.r.t. §
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and (3.5) implies that for €] small,
N ~y o~ ~ ~
O, [, D div(e s (T, 04t SC(1+ MY (T3, R) (Y (T B))*
N k=0

where C is a constant independent of €] if €] is small enough.

e Energy estimates: for 73 € [0, {]

(MN(Ty, ) = (MM (0,R))? = . div; (e~ 21821 F(Ty, 6% R))dvoly,
Q1

= O (MY (Th, R)? < C(L+ MY (TL, ) (MY (Ty, B)?,
which implies
MN(Ty, h) < CMN(0,h) < Ce. (3.8) [cauchy .7|

Here C is a constant independent of €] if it is small enough. Choose ¢ small
nol. nl .-

enough, we have ||py” hlleo+ 1002 Ohllco < € satisfied. Hence the (3.8) is valid

until 21.

3.2.3 In Q..

We solve the equation (3.3) from ¥; to Xy with Cauchy data on ¥, such that

3 116l gupey < @1 0<8 <3, € >0, small
|k|<N+1

e Perturbed metric: by changing variable £ = —logb, the metric g can be ex-
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pressed in coordinates (a, &, ) as follows,

A a"?h,, 1—hsp—ath,,
1~ hyp—a"hyy —a(2—a) + hyy + 2ahs, + a2her |

O = [ a~thp a " th,m J |
~(hpr +ahr) - —(hpn + ahyy)
Gy = [ a(2 — a) + ©,(h) 1 — a=Y(hy, + Oo(h)) + ©4(h) } |
1 — a7 (hy, + ©2(h)) + 61 (h) —a"%(h,, + ©2(h))
Gy = [ hot +2ah1;07 + O4(h) -+ hpy + 2ah,;07 + O4(h) J
=07 hoy + 0x(h)) o =0 g+ Oa(R))

Gag = —Idnxn — [Rijlnxn + O2(h).

e Connection components:
I5,(5) = @™ b™% (©1(h) + ©y(h)(8h))
g, (3) = —(1—a) +a*T "7 (01 (h) + Op(h)(Ih))
[§e(9) =a(2—a)(1-a

)+ "5 7 (04 (R) + Oo(B)(5R))
<>—aebz‘ ©1(h) + o (R)(9h))
T(5) = ™ b (01(h) + Oo(h)(5h))
I%(5) = a™7 6™ (04(h) + Op(h)(8h))
= I%g) = —2(1—a)+a2b (@1()+®0(h)(8h))
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T¢,(3) = La™7 b (252 Ry, + auhyp) + a“T 07T (O1(R) + ©o(R)(OR))
T%,(5) = a"T°b"T (©1(h) + ©o(R)(5h))
[8(3) =1 —a+a™T b7 (B1(h) + ©o(h)(Oh))
T8.(5) = " Tb°F (0,(h) + ©o(R)(Oh))
T%(3) = a7 b (01(h) + o (h)(Oh))
T%.(3) = a"T'b"T (O1(h) + Oo(R)(OR))
(

e Partial derivatives:

5 € {aaa, b@b, 51}

o Commutator: for ki, ks, ks € Ny,

(O, (ada)* (005)2 5] = (O, (ad)*) (b0) 2 A5°
= (Ckl (a‘aa)kl—lmrh - Z Cij(aaa)iﬂjé) (bab)kzﬁlecs, (3'9)@

i+25<k1+1

where ¢, , ¢;; are constants.

e Equations: inserting (3.9) into (3.4) gives:

(05 + 7100 by = 6.0 Dby + Y, cil'hy + J*

i<k+1

i<k+1

where ¢, are constants and f,’c can be expressed as (3.5).

e Time-like functions:

(VTy, Vo) =2 — a7 b hy, + 0% T O1(h),

n—1_n—1

(VTS VT = a2 — a) +a"T b7 Oy(h),

3, n—

(VTo, VT = 1+ a(2 — a) — a"T b T hy, +a’T b*T 0y(h).
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For n > 5, if ||z b_—h“oo < € for some €3 > 0 small then 75 is regularly
time-like w.r.t. g and T} is time-like in the interior and null on S;; this is same
as w.r.t. m.
o Space-like hypersurfaces: define for T € [—é—, 0],
Yy = {T; = constant} N Q,, ' =T, N{Ty < —p1},
and consider the domain Qg"; bounded by Sy, ¥, 2, Tz and ETé for energy

estimates.

e Quadratic forms:

L <14 a0 0y (h)),

|- | e (h)] < <<

P (Tg,v), CTQ)ﬁL
n-5, n—1 7 <1 (Tz,'l)), :12,)§
— 2 2 < < 2 2

e Sobolev norm: define for Han—Eibﬁ;—lﬁHm < €y with €5 > 0 small,

MY (Th,v) = / Ze*%l%b (Tp, 8*0), VT3);dplt)?
ET’

/ Zb-ﬂf‘ 60,0% 0" + |0, + [VgdFv[? + |8*0 ) dpug?) E
ET’

Ly (p1,v) = /Eplz ~2logb(P(Ty, 85v), Vo) ydul?) s

2 k=0

2(/ z(lbabékv|2 +10,0%0)? + |Vgd*u|? + |0Fv)? )dﬂg2)2
20 o

Here for €3 small enough,

+db
d,uT2 =~ dad®, dpgTz o~ %de.
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Moreover,
> 19| < b MY (T3, v),

N
kS7+1

S 18.8%0] < O a2 MY (T3, v),

N
k<E+1

where C is a constant independent of € if it is small enough.

—5

Divergence of quadratic form field: if ||a™T 5" hljoo+[|a* 7 b"T Oh||o < €, with

€y, > 0 small, then

divg(e 280 F (T, v))
= b"¥(=26(F(Ty,v), Vlogb)s + divg(F(T3,v)))
< b2 (a1 — 26 + €)(OR)))(F(Ta,v), VI3); + (Vv, VT3)5(05 + 70)v)-

Replace v by &*h for |k| < N and then we have

Ory /T/ Z (O + 70)*R(VI*h, VTy) sdvol;
0.2

2 k<N

< Ca™3(1 + MY (T3, h)(MP (T3, h))?,

where C' is a constant independent of €, if it is small enough.

Energy estimates: notice here p; = a = —T3. Then for T; € [—3,0],

(M3 (T3, )Y = (L3 (pr, 1))? — My (=5, h)*

=> / divy(e=2 8 F(Ty, 6% h))dvols,
Q

kl<n ¥ %
which implies that for €, small

Ory (MY (T3, 1))* + Oy (LY (o1, )
< ((1- 28+ &h)a™ + Ca™3 (1 + My (T3, 1)) (M5 (T3, h))*.

(3.10)[canchy |
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Since d > 0, we can choose €, < 2§ and small. Then (3.10) implies:

either M (Ty,h) < MY (-1,h) <1 VTge[—%,O],

or —9,M¥N(—a,h) <= 25+6 =2 M (—a, h)+Ca 2(MN( a,h))?,

E/

= — 0,(M}(~a, h) —5) < O(MY(~a,h)a T2 —0)2 1+ %

bl

B) 5-&2

MY (-
14¢€

1
—— Mz(—-a,iL)S 8’ -
8—21—6__M2N _% h Cfs —14+5— —2

If ¢, is small enough, then

eh+1

MY(T 1) + I (o1, ) < (Cr + Coa® 5 e, (3.11) [cauchy 10]

where C1, Cp are constant independent of ¢; if it is small enough. Now (3.11)

gives

3" 10.8"h] < C¥(Cra™F + Coa®F Ve

k<& +1

- Z |8kh| < de 1+/ Cla 2 +C’2a —1da)61 < Clb§€1.

k<& +1

Here C’ is a constant independent of €; if it is small enough. For ¢; small,

"2 6" hlloo + @™ 0" T Oh|eo < €5 holds and hence (3.11) is valid for all a
up to 0.

e Radiation field: For ¢; small, his 0% up to S; in €y and 71|5an2 is well

defined. Define

- o db
YR =(f > pavilge

5 k+|a|<N
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Then by (3.11)

Ory(QY (T3, h))? < Ca™2 MY (T3, 5)QY (T3, h)
< Ce(Cha™? + Coa®=F71)QY (T4, h)

which implies

QY (T3, h) < Cyer VT3 € [—5,0].

Here C} is a constant independent of ¢, if it is small. Hence

1R sin0) = @3 (0, 1) < Cen.

3.2.4 In O

We solve the equation (3.3) from X3 to ¥4 with Cauchy data on 3 such that
~ r_ 1
LY (p1,h) < (1+ p‘ls 2)ez, 0<d <9d, € >0, small

where

L (p1, h)? = LY (p, h) + ||’~1”?1N+1(23n21)7

Notice here €5 < €, + €9 < € and ¢’ can be chosen as § — %6’2 as set in €2y. The space-
like hypersurface 3 consists of two parts: ¥, if it is above ¥; and ¥, otherwise.

Hence ¥3 N X is in a finite region.
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e Perturbed metric: in the coordinates (7, p, #) near S; N 3,

Ao P*(1+h) =1+ h,, c- phry oo phen
-1+ th p_zhpp p_lhpl e p_lhpn
. N0 (L oyt gy + ©5(h) }
11 — )

~(14 hyp+ hpp+O2(h)) —p*(1+ hyr + hp, + 2k, + O3(h))
)

Gy = —p7 (hp1 + O2(h) —p " (hon + ©2(h))
—p(her + byt +05(R)) -+ =plhen + hgm + O(h)) |

G22 = _Idnxn - [hij]nxn + @2(h)

e Connection components: apply the gauge condition

I7.(§) = p+p"T (O1(R)) + Oo(h)(OP)

T7,(3) = —3p"T (252, + p,h,) + p7° (©1(h) + €0 (R) (5R))
I7.() = 7 (©1(h) + Oo(h)(h))

I7,(3) = p°7 (©1(h) + Oo(h)(5h))

I7,(3) = p°% (©1(h) + Oo(h)(8h))

I7,(§) = p*% (©1(R) + Oo()(3R))

I (g) = 3+p£¥<91< h) + ©o(h)(0h))
)

I%,(9) = p"7 (61(h) + Oq(h)(5h)
I7.(§) = —p+ p"% (01(h) + Oo(h)(5R))
T%.(9) = p°% (O1(h) + ©y(h)(5h))
I%,(§) = p™% (©1(h) + Oo(h)(5R))
I%(5) = p°F (©1(h) + 6o (R)(3h))

= T7(§) =2p+ p"T (€:(h) + ©o(h)(5h))



e Partial derivatives: near S; N g,
5 € {8T7 papa 51}

and extend them smoothly and linear independently to finite region.

e Commutator: near S; N s,

(D, (08,) 082 5] = Dy (095)71(07)"2 A5
W 3.12) [cauchy. 16
= [Clm (pap)kl—lmﬁz + Z cij(pap)@&é](ar)szlgs, ( )

i+2j<k1+1

where ¢, and ¢;; are constants.

e Equations: inserting (3.12) into (3.4) gives:

(05 + Y0)0%h = c0'h+ fi

i<k+1
where f/ can be expressed as (3.5).

e Time-like functions: near S; N 3,

(VTy, VTa); =2 — o> — p,* ©u(h),

(VT3 VT35 =p(2m0 — 7)[2 — p(270 — 7)] + = ©:(h),
<VT3, VTé)g =2'T0 -7+ p[l — p(27'0 — 7')] — p:T—@l(il)

e Space-like hypersurfaces: define

Yqy = {T3 = constant} N (s,
Egl = 23 N {Té S 3T0p1} = (El mﬁg) U 2/2)1,
£ =5, N {T} < rop1}-

We only consider T} near S;. Here £4' and X5' works as X5 in Q; X7y works

as Xy in (2. Consider the domain Qgﬁ bounded by X3, ¥4 and X7y for energy
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estimates.

e Quadratic form:

n-—-5 ~ <F(137v)’ §7T3>g n-5
1—|p.? h)| < < 2
|p1 61( )l —<F(T3,v),VT3>* = 1+Ip1 ®l(h)'7
n-5 - <F(Z3,’U),‘7 lé)g n—5 -
1—1p,?2 < < 2
‘pl @1(,7’)' = <F(T3, U), VTé>m = 1 + |p1 @1(h)|5

e Sobolev norm: define for || p1 h||oo < €3 with €5 > 0 small enough,

MY (Ty,v) = / Ze"\T3 (T, 0%), VT3); d,uT"‘)%
ET’

/ Z ]8 akv!Q +pla 816,0[2 + |Voak?)|2 + lakvl )dug )%’
Sry &
Lo / Ze‘”a (Ty, 80), VT3)pdute)’
2(/2"1 Z(|375kv|2+ 10,002 + |Vodkul? + |5kvl2)du§3)%
4 k=0

where A > 0 is some large constant depending on NV only if €3 is small enough.

Here for €3 small and near 57 N Q3,
Ayl =~ dpdf,  dpl® ~ drdd.

Moreover,

> 18| < MY (T3, v),

k)< X +1

> 10,8 < Co (T30,

k<& +1

where C'is a constant only depend on A, hence N, if €3 is small enough.

e Divergence of quadratic form field: if ||p1 h||o0 + ||p1 (9h||Oo < €y with €5 > 0
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small and A large, then

= e M- )\(

divy(e T F (T3, v))
F(T3, 'U), VT3>Q + dng(F(Tg, 'U))]

< e (eyp,” (F(Ty,v), VTs)g + (Vv, VT3)5(05 + 70)v),

Replace v by 8%h for |k| < N and then we have

aTEI» /T’ Z (Dfl + 70)5kﬁ<Vékil, VT3)§dUOl§

2% k<N

< Opy (1 + My (T3, ) (M (T3, h))*.

o Energy estimates: here Tj = —p(219 — 7) =~ —p; is only defined near S; N Q3.
First, the domain bounded by X3, ¥4, ET5=— 1 is compact finite region. It is

obvious that if €5 is small enough, we can solve the equation up to ZTg:—% and

5220} such that
(M3 (=3, 0)* + (LY (55, h))* < Ce.

Then for T; € [—3,0],

(M (T3, 7))+ (L 01, ) = (5, ) = [ div(e™ ™ F ()l

3

implies for €} small enough,

Ory (M} (T3, 1))? + 01y (LY (p1, 1)) — Oy (L5 (o, 1)*

< ép? (MN(TYR))? + Cpy 2 (1 + MY (Th, b)) (M (T3, h))2.

(3.1 emseny 7]
Then for € < 1 — 2§’ and small enough, (3.13) gives

MY(T3R) + L (o1, B) < (Cr+ Copll P, (3.14) cauchy. 18]

where C1, C, are constants independent of €} if it is small enough. Then (3.14)
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implies

D 18,0%h] < C(Cipy % + Capi e,

k| <& +1

X1

= 3 [l < Calt+ [ Cior* + Gyl )

k<& +1

If €5 is small enough, then le hHoo + le é7h|[oo < €4 is valid for all T3 up to
0. So is (3.14).

e Radiation field: here & is C% up to S;. Hence the radiation field hls, is well
defined in Q23 N S;. Define

Q@b =([ ¥ 505y

T' k+|a|l<N

Then by (3.14)
- _1 - 1 , -
0ry(Q5'(T5, h))* < Cpy* My (T3, 5)Q% (T3, h) < C(Crpy ® + Copl ~)QY (T3, h)

which implies
~ 1
QYT ) < Clea, Y T{ € [-5,0),

where Cj is a constant independent of ¢, if it is small.
”EHHL{V(Ssz) = QéV(O,FL) < Cie.
3.2.5 In Q4
l.We solve the equation (3.4) from 34 up to Sy U S; with Cauchy data on £, such that
LY (p1,h) < (1+ pf,_%)e;;, 8 €(0,9), e >0, small

e Perturbed metric: for a € [0, 1), by changing variable ¢ = —logb, the metric

o8



can be expressed in the coordinates (@, &, 6) as:

Y a~?h,, —1 = a " hyy — hyl
1= a Ry, — bl a2 — a) + by, + 2ah,00 + @hi067 |

- athy e a  hon }
C=(1-a) | N
—(hp1 + @hy;607) -+ —(hpp + ahp;67)
B = (1 — 5)2(—Idnxn + [hij]nxn),
oo —a(2 —a) + 01(h) —1—a"*(h,, + O2(h)) + 61(h)
U S (hy, + 05(h) + 04 (R) —a2(h,, + ©s(h)) ’
GnI(L—@4[hm—5%r+@ﬂm ~-hm—amn+exm}

—a " (hp + 1)) e = (g + O1(R))

G22 = (1 - C_L)--Q(_Idnxn - [hij]nxn + 62(}&)),

fora e (%, 1], by changing variable { = —log ¢ and in the coordinates (¢, ),

G=i+p? O1(h), § ="+ p," O1(R).

e Connection components: for a € [0, 1)

)+ ©o(h)(9N)

n—1

(
e = — (1—a) +b5"Fa"T (01(h) + Oo(h)(OR))

e, =b"T a7 (©1(h) + ©o(h)(0R))
% =a(2 - a)(1 —a)di; +b°% [a°F (©1(h) + ©p(h)(5h))
— T%=2(1-a)— (n—1)a@2-a)l—a)" +5"7 [a"7 (61(h) + Op(h)(5h))
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I, =a" 5" (01(h) + ©o(h)(5h)
Tfe =(1—a) +a"7 b7 (©:1(h) + ©o(h)(5h)

0§, =a"2'5"5" (61(h) + ©o(R)(9R)
Ié =(1— )8y + a7 5" (©1(h) + Oy (R) (5R)

— T=—(n—-1)(1-a) +a"Tb T hy,+a"Tb"T (O1(h) + Oy(h)(5h);

for a € (%, 1], for any I,J, K € {¢,y* :i = 1,...,n},

IK(3) = TE(m) + py° O1(h).

e Partial derivatives:

5 S {ZOOaZijaZOi = 17...,77,}.

e Commutator:

[Dﬁu ZOO] = [Dm, ZU] = O’ [Drh, ZOi] — _2y1<Dﬁ1 + 70)’
) i 3.15 .
Ondl= Y aFGatmw) (3.15)[canchy-21]

0<i<k~1

Here ¢; are smooth and bounded function on Q.
e Equations: inserting (3.15) into (3.4) gives
(05 + 70)0%h = f;.
Here f] can be expressed as (3.5).
e Time-like functions: to simplify the computation, we use

Ty=—a—logh and T, = —ab®
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for some & > 1 to be determined later in the whole domain €, without modifying

them to be smooth near @ = 1. This does not change the norm type.

n_—s el e
(VTy, VTy)g = (VTy, VIi)m — py? Pz hoo + 017 p2° ©1(h),
n—3

(VTy, VTl = (VT Va4 pa ' 7 T (h).

e Space-like hypersurfaces: define
Yq; = {T; = constant}

and consider the domain QZZ bounded by ¥4 and Xy for energy estimates.

e Quadratic form:

n=5 n—1 ~
1410, py? ©,(h)| <

n_5 n-1 ~
L+]p% py? ©1(h)] <

n=5 n=1.
e Sobolev norm: define for ||p;2 py? hlle < €4 With €4 > 0 small,

M (T, v) / Ze“°gE<F(T4,5kv),VTi>§d/¢§é)%
1y &

/ Zp e (aa|0zv]? + |bo5v|* + (1 + aa)((1 — a)~ ?|Veu|* + yov ))dﬂg )%’

T’kO

where a > 1 is a constant to be determined later. Here for €4 small,

7 beddg  ifan~0

du; :
ad~dy ifa~1
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Moreover,
> 10k < Cp3 MY (T3, v),
kl<E+1

S (0.0 < Cpr ?

k| < & +1

1
p3 M{' (T3, v)

n=s n-i. n=s -l ..
Divergence of quadratic form field: for [|p;% py® hlloo + [[p12 p2° Ohllee < €

with €; > 0 small,

divy(e™ s F(Ty,v)) = b1 ((F(Ty, v), V(~ log b))y + divg(F(Ty, v)))
< b7 ((Vo, V)05 + 0)v
+ (€ + Cln, @) (=T9) " (F (T4, ), VT})5).

Here C(n,a) is a constant only depending on n and a which comes from
divy (F(Ty,v)) and its comparative with (F(Ty,v), VT})s. Previous compu-

tation in Section 2.4 gives

_ a(l+ 272 -a)(1 —a) - 3(2 - a))
C(n,a) ~max{oili1<)l 22— a + a2 +ata(l—a)?)
a((n+1)(1 —a)+1)
02}121 (1—a)®+aa b

Choose o large enough, such that ¢, + C(n,a) < 1 — 2§’. Replace v by d*h,

which gives

O,

4

/ o 705+ 208 R(VER, Vi) dyt < O(~T7)~3 (M (T, B

4

Here C is independent of € if it is small enough.

Energy estimates: notice here Tj >~ —p;7,"“ on X4 near S;. Denote by ming, {71} =

to < 0. Then for T; € [to, 0],

(MY (T}, 1) = (LY (o1, )P = [ |, divy(e™ 8P (T}, v))dvol,

0,4
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which implies for €, small,
Oy (ML (T4, ))? < Oy (L (o1, B))? + (1 = 28) (=T5) 7 (MY (T4, h))?
+ C(=T3) " (MY (T4, h)°.
Hence
M (T}, h) < (Cr + Co(=T})" " F)ea. (3.16)

Here (3.16) gives

3 10u8%h] < Cres(Cra3b% + Coa? 150 0)4),
kl< 5§ +1
et (3.17) [cachy 24
= ) |6Fh| < Cegb™@ =203,

lkl< ¥ +1

Choose a such that a(§' — 1)+ 3 > —27%, this can be done since we can choose

a large and € small enough such that
aley + C(n,a)) < n.
Here aC(n, o) ~ 2 for @ — co. Denote by
c=a(l -3)+%2>0

n=b n-l. n=5 n-l oo
Choose €5 small enough, (3.17) gives ||p;2 p3° hlleo + l|P12 P22 Ohllee < € is
valid. Hence (3.16) works until 7; = 0. Notice that o > 0 only depends on n if

the Cauchy data small enough.

Radiation field: here & is C%% up to S; N €. Hence the radiation field hls,na,

is well defined. Define for p; = —T47¢

Yonh) = ([ X BosviE !
X1t k+|BI<N
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Then
00, (Q4 (p1, 1))* < CMY (T4, R)QY (p1, h) < C(C] + Cyp ~H)QY (o1, )

which implies

Qéjlv(pla ]‘:L) < 04/163~

Here C} only depend on the Cauchy data only on X4 if €3 is small enough.

B, < QN(0,h) < Cles.

-1
T HY(S100Q4)

‘3.3 Nonlinear Mgller Wave Operator.

In Section 3.2, we showed for n > 5 by energy estimates that given Cauchy data
(h% k') € UN? for N > n+6, 5 € (0,1) and € > 0 small, then the Einstein vacuum
equations have a solution g = m + h such that h = ﬁl_T"h is C%%" continuous to S;

and

<

h - - RY| ne
I Hpgpy%‘yy(sl) 2kt s g + || ||p022—1+aHg\,(20))

for some 0 < ¢’ < ¢ and o > 0. These result can be extended to § > % easily by same

estimates but with 0 < ¢’ < %

Definition 3.3.1. Define the nonlinear Mgller wave operator for N > 0, 0 < § < 1,

‘o >0 and € > 0 small:
5 7 § o3 N T 1
Rz :Z/{eN’ 3 (ho, h1) — hls, € popy 2 Hy (R x S"7H).

We study this map intensively in this section.

3.3.1 Refinement of Image Space.
First let us consider the Cauchy data with only conormal singularity at 0.
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Proposition 3.3.2. If (ho, k) € UM N o/ *T+5(5g) for § > 0 then for some o >0

he & T 7 (X)

Proof. Fist it is easy to see in £, we have a sequence of constant CN' for all N’ such
that
MN'(Ty, h) < CY'MN(0,h) ¥V T1€0,3].

Then from energy estimates, for € small enough and 7 = 2, 3,4,

n=5 n—1~ ﬂ;S n—1 <~
P17 (pop2) ™ hlleo + o127 (pop2) Ohllee < Cb,
MN(T!, ) < Ce(1 + (~T)" %),

where C is a constant. Hence €, €5, €, are fixed and small. For any N’ > N, (3.5)
and interpolation methods imply that in each domain Q.. i = 2,3,4, the cubic term

in the estimates can be replaced by
O(=T}) MY (T, B (MY (T, 1))
Since (—=T7)~2 MN (T}, h) is integrable and fixed w.r.t. T} near 0, we have
MY (T, h) < Cy + Co(—T})"
where &' € (0,8) only depend on 0 and €, €5, €3, and
Cal +1Caf < C(Hho”pﬁ_l*‘ilfév'“(zo) * “hlnpfg—l”lfﬁ'(zo))'

Hence h only has conormal singularity at 0X. O

Fix some (ho, h1) € UN N "7 5(5,) for N >n+6,6 € (0,1) and € > 0 small.
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Then applying the linear wave operator [ to the solution h gives

Ot = (Og) b + (O — D) b
= F,,(0h,0h) — H*®0,05h,,

c 'Q{n+1+2(5,n—1,2+20(X).
Repeating £ times until 2k + 20 > "T‘l + ¢ and finally we have
he T H(X),

See [MW] for details.

Consider the Cauchy problem for linear equation with fixed h and g = m + h
nguy = F#,,(h)(ak‘, ah), kt:O = k'o, atkltz() = kl.

,Then k = h is a solution if (k% k') = (h9, k). Denote by k = p"="k and define for
TeC,Rre ("T‘l,n— 1)

IRE : prC™® x pi1C™ 3 (K% k') — ks, € (pop2)™ "T C™(S)).

Lemma 3.3.3. For Rr € ("2—‘—1,n — 1), Rz and ™Rx have the same boundary

operator.

Proof. With (k% k') € p§C>® x p5 ™ C>, we first apply [,, as above and have
n—1
kead 77,
Consider the equation

Dmk:u/ =0, 1IE=O = ko’ atklltZO = kl-
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Then

O (k' — k) = Oyk — Ok + F(h)(0h, 0k) € AT H+7+an-125 565742

lnl

Hence k' — k € . If 7 < n—1, this term

contributes zero to the boundary operator. (]

By the same proof for the mapping property of "Rz in [MW], we show that IR~

defines a continuous map for ¢ € (0, 1)

Rt po? " HY(S0) X p* HN“(&)
(popz) [Hz HN+ +6(Sn 1))ﬂL2(Sn 1, HN+1(R))]

with norm bounded by constant C independent of g = m + h for any h as a solution
with Cauchy data (h°, h') € LIN 5 N o7 "z +(,) since they all give same boundary
operator. Here

IRA(RO, BY) = Bz (K0, hY).

Hence by density argument, we showed that

(cauchy.29)
Proposition 3.3.4. The nonlinear Mpller wave operator defines a continuous map

Az 3UeN (Popz) [H2 ( R; HV+3 +5(Sn M) 0L2(Sn—1§sz+l(R))]
for N>n+6,d¢€(0,1) and € > 0 small.

3.3.2 Constraint Condition for Characteristic Data.

For h = p"g'g_liz with & C%% to S for some & > 0, the harmonic gauge condition gives
at p1 =0
aT(FL()() + iloigi) — %BTtrmfz =0
A ] (3.18)
aT(hjg -+ hﬁﬁ') + %Qjartrmh =0
This implies on Sy,

Orhyp = 0.
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3.3.3 Linearization.

The linearization of Zz at (0,0), denoted by R for simplicity, is the Mgller wave
operator for linear equation:

Ol = 0
which is studied intensively in [MW].

‘Theorem 3.3.5. For o € (0,1), the map

n=l,s 2445
Rr:po?  HY ™ (S0) x pd + HY ! (%0)
1.5 — 1 e n— —_
(pop2)’[HE ™" (R; HNT2%9(S™ 1)) n LA(S" 1 HYH(R)))]

18 an isomorphism.

‘Definition 3.3.6. Define V’\ZN % the space consisting of the elements 25t which satisfies
the constraint condition (3.18) such that
[R5

1 5 1 _ S
(popa) (B2 (R HN*270(sn=1))nL2(87 1 Y+ (R))

Then the implicit function theorem and Proposition 3.3.4 show Theorem 1.0.1.
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Chapter 4

Characteristic Initial Value
Problem for Einstein Vacuum

Equations with n > 5.

In this chapter, we consider the Characteristic initial value problem for Einstein
vacuum equations: given AS' a symmetric (n + 1) x (n + 1) matrix on S satisfying

the constraint condition

O, (h3y + hgr6*) — 10, tr,, A% = 0,

0-(R3g + B3M0") + 30;0,tr,,h% =0, j=1,..,n,

we want to find out a solution g = m + h to Ry, = 0 such that 57" h|s, = A, The
uniqueness theorem for Characteristic initial value problem allows us only considering
the reduced Einstein equations (1.3), or equivalently their conformal transformation
(3.3).

First, the isomorphism property of nonlinear Mgller wave operator Z4# shows the

existence and uniqueness theorem for the characteristic initial value problem directly:

Theorem 4.0.7. Given k' € WY for 0 < o < 5N >n+6,¢> 0 smal,
there exists a unique solution h to the Einstein vacuum equations with Cauchy data

(RO, hY) € (73’6” such that hSt provides the radiation field of h.
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However, we also can prove the global existence and uniqueness theorem by energy

estimates for / in a dense subset of WM.

4.1 Backward Energy Estimates for n > 5.

In this section, we prove the the following theorem by energy estimates:

(thmchar) _ N _
Theorem 4.1.1. Given h51 € WN*1 satisfying ||hSl||pgngév+1 < € for some 0 <

o< % <9, N>n+6 and € > 0 small , the Finstein vacuum equation has a unique
solution h with Cauchy data (h°, h!) € ﬁgf such that k' provides the radiation field
“of h.

Now assume hS! € WHN+Le for some N > n + 6, % > o > 0, € > 0 small and
moreover for some & > 2

Hhs1 Hpé‘ngév+1(51) S €.

"Then the constraint condition gives
cs
h,, =0
and forall 0 <k <N -1
1000 Bopllosy) < Cllbllpopnpsmis=

Here C only depend on § > % The global existence theorem and uniqueness hold for
linear equation. We prove the existence theorem by iteration and backward energy
estimates. Then the uniqueness theorem follows automatically.

Consider the a sequence of linear equations and their conformal transformation
for | > 0 starting with A~! = 0:

Oghitt = F(uv)(0ht, 0nth),

g v

(Dgl +"}’(I~Il))ﬁl+1 — fl(ﬁl-i-l)_
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Here ¢' = m + k!, §* = p*g’ and A! all have same characteristic data h. We also study

the equation for A'*! — Al to get the convergence of hl.

Oy (W = b = (0y
(O + (BRI = BY) = FHR) = FH R + @ger = Og)ht + (y(B71) — v (AR,

1 —Og)h! + (F(Oh',0h") — F(OK'™", 8h'))

We basically apply the energy estimates backwards in each domain, which means we

have to change the sign of divergence terms and rebound them.

4.1.1 1In Q4.

We solve the equations up to ¥4. First on S;

~ ~ p— B_ ~ ~ A
10:5°R(B)| =| / b(%a&akh%
0

iy .
Here C only depend on &£ and d > 0 and hence
Haﬁékﬁ(l_))llpg/Hf+2(S1ﬂQ4) < C'Ce,

where C’ only depend on % < ¢ < 6. We choose 1 < a < "T'l for the time-like

function 7T in this case. Define

MZ{V(TLBHI) - (/ 20T Z(F(T4,5itl+l),VT4>§zdul)%,

Iy k<N
K‘{V(Ti, Bl+l) — (/ . o2 Ts Z<F(T4’ 5ﬁl+1)’ VT;)gld/il)%,
AR E<N

where the covariant derivatives are w.r.t. § and volume form is chosen such that

du' A dTy = dvoly.
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n=1 ns ., - -
If Zlkls%ﬂ lp2? p1% OFhY|ao < €4 and MY (T}, h') < €4 for some €4 > 0 small such

that 1 4+ €4 — 28’ < 0 and €4 < &', then the harmonic gauge condition gives
n-1., 1
2% h‘pp[ < &pf.
Apply the energy estimates for h**+! backwards, we have
— Oy (MY (T}, B )2 = Oy (K (T3, )2 < ea(=T3) 75 (MY (T, B2,

Hence for all {

MN (T}, WY + KN (T, WY < Ce,

where C' is a constant independent of ¢4 if it is small. If € small enough, then

n-5 n-1 . . -
> lln? p? B o <€ and  MF(T; A < e
[kl <& +1

hold and hence hold for all [. Moreover, the converges of h follows the energy estimates

for ht*+' — Al
—Ory (MY (T}, i = W) <ea(—T) "2 MY (TY, B = RYMY (T4, B = R,
MN(T), R+ — B < /O‘T‘; ea(=T) 2 MN (T}, B+t — KHdT.
Notice MM (T}, h® — h=') < Ce small and T} is bounded on €, hence
MN (T}, B — Bl < Ceél,.

Hence we can choose € small enough such that
!

MN(T;, Y < Ce(z ) < Ce(1—€2)2 < ¢y

0
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Therefore Al converges to h such that
(K (T3, h))* + MY (T4, h) < Ce < ey
is valid for all Tj. Note T} is bounded above on Q4 and

Lflv(pl,il) <Ce< €4, Vpl S [0, OO)

4.1.2 1In Q.

We solve the equation up to X3 here. Since 7 is bounded in this domain on 57,
ya,,akh(b)| <|0*h(m)| + I/ 673p3khd7"| < C“hHH,f“(stg) < Ce.
Here C only depend on 1y which is fixed in our setting. Hence

|’8P5kil||Hf+2(SlﬁQg) S C’CG'

Define
MY (T3 ) =( / S TR (T, 8, VT dut)
X714 k<N
KN (Ts, T, By =( / S AT(F(Ty, 3R, VTt
Ly {p(2r0—-7)<-T5} <N

where dy' is the volume form on Y7y such that
dp' A dT§ = dvolk.
Here h! all have same characteristic data on S; N 25 and ¥4 with

KY (10,7001, k) = K (p1, k) < Ce, M3 (0,R) <e.
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n-—5 . . ~
Choose A large enough. Then for 37, <~ lp1? OFhY oo < €3 and M (=T3, h') < €3

for some €3 > 0 small enough, by harmonic gauge condition we have
il a5 3
| < /0 10, ldp < Cespl

And apply the energy estimates backwards,

- 3T3’(MéN(T3/., il“'l))? - 3T5(K:§V(—TO,T§, ﬁl+1))2
< = O Ky (10, Th, B + e3(—T2) 3 (MY (T2, R+1))2.

~which implies

MM (T3, BY) + K (=70, T3, B') < Ce.

Here C is independent of €3 if it is small enough. If € is small enough, then

71_-5~ 7 ~
3 llor? Rl S €3 and MY (T3, A < &
[kl<E+1

hold and hence hold for all . The convergence of h! follows the energy estimates for

R+ — Bl similar like in €. The limit & satisfies

Kév(—T(),OO, il) S 036.

4.1.3 In Q..

We solve the equation up to £; and then it follows directly from ¥; to ¥, since that

isa Cauchy problem with inverse time direction. First notice here
. b <~ db
8,05h(b)] =] / b&,@aa’“h?[
0
b
odb 1 T ~_10
<( [ B POl posinan < Cb”
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Here C only depend on § > 0 and hence
||aaakh||(po)a/H:-{-Z(Slsz) S 0,06,
where C’ only depend on 0 < ¢’ < ¢. Define

MY (T3, R = ( / e N (P (Ty, OR ), VT zdp)3.

Iy k<N
where the volume form is chosen such that

dut A dTy = dvoly.

n=l nss oo 8
If nggﬂ llpa? 0,2 0%hY|oo < €2 and MY (Ty, h)! < € for some €5 > 0 small such

that €3 + 20" < 1, then the harmonic gauge condition gives
) S 3
lpo® Rl 5/0 a"2 M, (—a, h')da < epf.
Here —T, = p; = a. Apply the energy estimates for h'*! backwards, we have
~Ory (MY (T3, ) < (o =T3)72 + C) (MY (0, )2

Hence

MY( 2’,5“'1) < Ce.

If € is small enough,

n=5 n-1 . . -
S lm7 py? Fh < and MY (T3 R < 6
lkj<&+1

hold and hence hold for all I. The converges of i follows the energy estimates for
;Lz+1 - ill'
We finish proving Theorem 4.1.1 by energy estimates.
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