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Abstract

The radiation field introduced by Friedlander provides a direct approach to the asymp-

totic expansion of solutions to the wave equation near null infinity. We use this con-

cept to study the asymptotic behavior of solutions to the Einstein Vacuum equations,
which are close to Minkowski space, at null infinity. By imposing harmonic gauge,
the Einstein Vacuum equations reduce to a system of quasilinear wave equations on

R"j". We show that if the space dimension n > 5 the Moller wave operator is an
isomorphism from Cauchy data satisfying the constraint equations to the radiation
fields satisfying the corresponding constraint equations on small neighborhoods of
suitable weighted b-type Sobolev spaces.
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Chapter 1

Introduction

The Einstein vacuum equations determine a manifold Mi+n with a Lorentzian metric

with vanishing Ricci curvature:

R, =0. (1.1)|eg.1

The set (R ", m): standard Minkowski m = d2 t - 1 d 2X on R " describes

the Minkowski space-time solution of the system (1.1). The problem of stability of

Minkowski space appears in Cauchy formulation of the Einstein Vacuum equations:

for a given n dimensional manifold En with a Riemannian metric go, and a symmetric

two tensor ko, we want to find a n + 1 dimensional manifold with Lorentzian metirc g

of signature (1, n) satisfying the Einstein vacuum equations (1.1), and an embedding

E" C Mi+n such that go is the restriction of -g to E and ko is the second fundamental

form of (En, go) in (Mi+n, -g). The Cauchy problem is overdetermined which imposes

compatibility condition on the Cauchy data: the constraint equations

Ro- [ko]1[ko]' + [ko][ko]= 0, Vi[ko]j - Vj[ko]j = 0,Vi = 1, ... ,rn. (1.2) constraint.1

Here Ro is the scalar curvature of go and V is covariant differentiation w.r.t. go.

The seminal result of Choquet-Bruhat [CB1] followed by the work [CBG) showed

existence and uniqueness up to diffeomorphism of a maximal globally hyperbolic

smooth space-time arising from any set of smooth initial data. The global stability of

Minkowski space for the Einstein vacuum equations was shown in a remarkable work



of Christodoulou-Klainerman for strongly asymptotic flat initial data [CK]. The

approach taken in that work viewed the Einstein vacuum equations as a system of

equations

D"Waoy3 = 0, D" * Wap 6 = 0

for the Weyl tensor WOfl6 of the metric g,1 and used generalized energy inequalities

associated with the Bel-Robinson energy-momentum tensor, constructed from com-

ponents of W, and special geometrically constructed vector fields, designed to mimic

the rotation and the conformal Morawetz vector fields of the Minkowski space-time,

i.e. "almost conformal Killing" vector fields of the unknown metric g. The proof was

manifestly invariant.

The Einstein vacuum equations are invariant under diffeomorphism. In the work

of Choquet-Bruhat, this allows her to choose a special harmonic gauge, also referred

as wave coordinates, in which the Einstein vacuum equations become a system of

quasilinear wave equations on the component of the unknown metric g,,:

0gY, = F,,(g)(0g, Og), where LI = g"#Bay (1.3) eq.2

with F(u)(v, v) depending quadratically on v. Wave coordinates {x"} are required

to be solutions of the wave equations

I9x" = 0, for p = 0, 1,...,n,

where the geometric wave operator is

Og = D D 9g8,90 - g ",3a0.

The metric g,, relative to wave coordinates {x"} satisfies the harmonic gauge condi-

tion:

gpVF" = g a,3 v 0, = g 2  ggg, -- g

Under this condition the geometric wave operator E19 is equal to the reduced wave



operator 0g. And the Cauchy problem can reformulate as follows: given a pair of

symmetric two tensors (hD, hl) on RI t=O, we want to find a Lorentian metric g =

m+h of signature (1, n) satisfying the reduced Einstein equations (1.3) such that ((g-

m)It=o, OtgIt=o) = (h', h'). Here the Cauchy data (h', hl) satisfy the corresponding

constraint equations such that:

F 1t=O = 0, Ot]F'lt=o = 0.

The constraint equations for (h0 , hl) is deduced in Section 3.1.3. See (3.6) and (3.7)

for details.

The use of harmonic gauge goes back to the work of Einstein on post-Newtonian

and post-Minkowski expansions. In the PDE terminology the result of Choquet-

Bruhat corresponds to the local well-posedness of the Cauchy problem for the Einstein

vacuum equations with smooth initial data. The reduced Einstein vacuum equations

satisfies the null condition for spacial dimension n > 4, which ensures the global

existence theorem for small Cauchy data. The concept of null condition was designed

to detect systems for which solutions are asymptotically free and decay like solutions

of a linear equation. See [Chl], [KlI] and [Hol]. For n = 3, it can be shown that

the Einstein vacuum equations in harmonic gauge do not satisfy the null condition.

Moreover, Choquet-Bruhat [CB2] showed that even without imposing a specific gauge

the Einstein equations violate the null condition. However, the Einstein vacuum

equations in harmonic gauge satisfy the weak null condition and recently Lindblad-

Rodnianski reproved the global existence for Einstein vacuum equations in harmonic

gauge for general asymptotic flat initial data in harmonic gauge by combining it with

the vector field method [LR1I] [LR2].

In this paper, we apply the radiation field theory due to Friedlander to study the

asymptotic behavior of solutions to Einstein vacuum equations in harmonic gauge.

Friedlander's radiation field was used by H6rmander to study the asymptotic behavior



of solutions to linear hyperbolic equation in the following coordinates:

1 X
p =- , = t - r,0 = -, for | xIlarge.lxi r

For instance, consider the Cauchy problem in Minkowski space-time as follows:

0Emu(t, x) = 0, u(0, x) = uo(x), &tu(0, x) = u1(x), where ao, ai E Cc (R").

By writing U p 2 u near p = 0 and studying the equivalent equation

(7 + (n-l)(n- 3 )ij= 0

with the conformal metric f1= p2m near p = 0, Friedlander showed that ii is smooth

-up to p = 0. The radiation field is the image of the map

Rp : t1(R"n) x L 2 (R"n) 3 (ao, ui) -> Btjl=o c L 2 (R, x So"-'),

which is an isomorphism. Here Rp is essentially the Moller wave operator and also

the free space translation representation of Lax and Phllips. I generalize this idea by

considering the conformal transformation of the reduced Einstein vacuum equations

on a suitable compactification of RI"K as follows. Here S: is the compactification

*1f

Figure 1-1: the blown-up space X
(fig. 1)



of null infinity and EO is Cauchy surface, and po, P1, P2 are defining functions for

corresponding boundary hypersurfaces. See Section 2.1 for precise description of this

space.

Denote by Of' the space of elements (h0 , h') satisfies the constraint equations

(3.6) and (3.7) and in a small neighborhood of (0, 0) in the space po 2  HN+ 1(Eo) X

pO 2+6HN+1 (Eo) for some N > n+6, 1 > 6 > 0 and e > 0 small. See Section 2.1.3 for

the definition of weighted b-Sobolev spaces. Then by energy estimate method, I show

that for n > 5, if (h0 , h') E ?4T6 then the radiation field for h = g - m, denoted by

= (popip2) hlsi, is well defined, satisfies the corresponding constraint equations

(3.18) and lies in a small neighborhood of 0 in the space p6 p 2 H (Si) for some 0 <

o-, 0 < 6' < min{, 6}. Combining this with the linear radiation field theory and the

implicit function theorem, I improve the decay order and regularity for the radiation

field. Denote by WP the space consisting of elements in a small neighborhood of

0 in (pop2) 6 LHJ (R; HN+$+ (2n-)) n L2 (§ 1 ; H +1(R))] and satisfy the constraint

equations (3.18). Then the main theorem of this paper is the following:

(mainthm)
Theorem 1.0.1. For n > 5, N > n + 6, 1 > 6 > 0 and e > 0 small, the nonlinear

Moller wave operator

R-z : (h0 , h') hsi

defines an isomorphism from O43 to its image, which is a neighborhood of 0 in WN

for some C > 0.

For n = 4, the perturbation changes the geometry of metric near null infinity a bit

more, i.e. the bicharacteristic curve for perturbed metric are not C' tangent to the

bicharacteristic curve for Minkowski space if they have same limit point on S: . In

this case, we have to combine the harmonic gauge condition with the energy estimates

method, which ensures some certain component of the metric is small and hence the

geometry of the conformal metric does not changes much actually.

For n = 3, the Cauchy data of interest for reduced Einstein vacuum equations

has an asymptotic leading term -Mxj~16 g for some constant M > 0 small, which

has a long range effect at null infinity. Since -Mlxlo6gy provides a solution to the



linearization of (1.3) in a neighborhood of null infinity in the blow-up space X, we may

conclude that the essential change of the geometry of perturbed solution g = m + h

only comes from the asymptotic leading term, i.e. the constant M. By a change of

coordinates to r = t -|x|- M log Ix|, which was suggested by Friedlander to study the

-linear equation Lg, = 0 with such background metric, I expect to find a corresponding

compactification of R" such that the above statements can go through.



Chapter 2

Preliminary Preparation

In this chapter, I set up the basic notation used in this paper and study the conformal

transformation of Minkowski metric intensively.

2.1 Geometric Setting

This section is a preparation for describing the problem and dealing with it in a

manifold with corners arising from a suitable compactification of R". Refer to [Me]

and [Fr] for more details.

2.1.1 Blow-up Space

Let us first introduce the notation we will use throughout this paper. In R1+', we take

t = X0 = xo,x = (xi, ... x) = (x 1 , ..., x,) for simplicity and always use the lower case

English alphabet i, j, k, 1, ... as indices taking value in {1, 2, ..., n}, the Greek alphabet

a, 0, p, v, ... as indices taking value in {0, 1, 2, ..., n} and the capital English alphabet

A, B, C, D, ... as indices taking value in specific local coordinates. Set

r =IxI, =IL I O=x = = 1 1 x
xi= p=- <=-, y=- R=|y,

a=1 t _ 1 d x - 1
xI' |xi - |t|' |t|' - t| - |x|



Denote by R" the radial compactification of Rijn with boundary defining func-

tion p. Let X be R" blown up the embedded submanifold RtI" n {|t| = |x}:

X=[Rtj" : Rtj" n {|t| = |x|}],

resulting in a manifold with corners up to codimension 2. See Figure 1-1. Here X

has 5 boundary hypersurfaces: S+, S- the front faces in t > 0 and t < 0 separately,

-S2, S the top and bottom boundary hypersurfaces and So the middle one. Then

X ~ Xo := {(t', x') E Rt,, : t| < 1, jx| < 1, |t| + Ix <| N y2},)

S± ~ ,X Sn"-1, ' ~ ( So ~ [-1, 1]s X S-1.

The corresponding defining functions are p+, pj, p , p2, po. Here p, pipoand1 5are

.smooth positive function on X which can be defined in local coordinates as follows:

" In the domain Qo {|t|2 + IX|2 < 1000},

P Po = P1 2 - 1

" In the domain Q1 = [-, ] x [0, 1], x S"-1

p =Po=P, P2=P1= 1 .

" In the domain Q2 = [0, ']a X [0, xb "

p =ab, po=b, pi=a, P2= 1 .

" In the domain Q3 = [-To, To>T x [0, 1], x S n- for some constant To > 8,

P1 = P, PO = P2 = 1



" In the domain Q4 = [0, 1]a X [0, ]b X S,

#= ab, p1=a, p2 =b, Po 1 .

" In the domain Q5  {|Iy 8} x [0, 1]0,

# = P2 = #, Pi po= 1

We omit ± here, which means if the domain is in ±t > 0 then we take pi = p±, or

equivalently p = pp, for i = 1, 2. Notice that in the intersection of two domains,

the different definitions for defining functions are equivalent:

Definition 2.1.1. We say two defining function #1 and #2 on a domain Q C X are

equivalent if and only if

= = e* for some b c C (Q).
P2

In many cases, for example the energy estimates, finite choices of equivalent defin-

ing functions always give equivalent statements. I change the choice of pi freely from

one domain to the other in the rest of this paper if they give equivalent result. Here

{Q: 1 < i < 5} gives a covering of OX. However, when solving equations globally

on X, we have to consider some of the domains together. See Chapter 3 for details.

Denote by X 2 the double space of X across the front face Si U ST. Then X 2

is a manifold with boundary and OX 2 has 3 components (So)2, (S+) 2, (S-) 2, with

corresponding defining function po, p+, p2-

2.1.2 Vector Fields.

Let 2Ib(X) (resp. b(X 2 )) be the smooth vector fields on X which are tangent to OX

(resp. OX2 ). The relation between (X 2)Ix and 1'b(X) is

,y(X 2)Ix =(f(X)+C(X)O.



By [Me], for any p-submanifold E c X, 2f(X)|:E = Y'(E). If OE= 0, then -Y' (E)

-f/(E) in usual sense. Set

00 = Ot, Oi =8, r (6 - O003)8,

Zoo = rDr + tat, Zi = xios - x 3O, Zoi = toi + xiat.

The vector files 8, are the projection of 8, onto the unit sphere which satisfies

OA; 0.

Denote by Z any vector field in {8, Zp,, v = 0, ..., n} and 5 any vector field in

Y'(X ).

Lemma 2.1.2. The vector fields above satisfy the following properties:

0, E pop 22f%(X),

11b (X) = Spanco(x){I,, Zlv : p, v = 0 1, ..., n},

fl (Sn-1)= Spanco(sn-1){D, : i = 1, ..., I} = Spanc.(sn-1){Zij ij =. n.

Proof. The third property follows directly by

Z -i = 0385 -JO8 , 6i = zi.0*.

To prove the first and second one, we only need to check them near OX:

e In Q1,

t= ps, o, = -Oip(pa + so") + pi,

Zoo= - POP, Zo0 = O(i - s -

==> as = (1 - s 2 )- 1 (Zoioi - sZoo),

Oispop + s~i,

pop = -Zoo.



" In Q2,

81 = b(bo -- aOa), o= -bOj(bOb a)aOa) + abOA,

Zoo = -bOb, Zo0 = -Oi((2 - a)aOa - bOb) + (1 - a)6,

-- > bOb -Zoo, a~a = -(2 - a)-'(Zoo - ZoiO').

" In Q3,

Ot =Dor, 0" = -(, + p2Op) + pi,

Z oo  OrT - pOp, Zoi -O(To-r + (1 + PT)pOp) + (1 + PTA),

--> t=, pOp (2 + pr3(Zo + Zo 0').

" In Q4,

a=b((1 - a)a- b a), Di -bOj(daoc - bOb) + ab(1 - a)-5(,

Zoo = -6bD, Zo0 = -O6((2 - d)daca - ba8) + (1 -

-- = -Zoo, dia = -(2 - a)-'(Zoo + Zoi0 i).

e In Q5,

at= -#O(#D, + yi'yD), Di = #8yi,

Zoo = -#00, Zoi = Dyi - y(o, + ya y),

: 4 = -Zoo, Oyi = -(1 - R2) 1 yi(Zoo - Zojyj) + Zoi.

2.1.3 Sobolev Spaces and Symbol Spaces.

Suppose E C X is a p-submanifold, then it is a manifold with corners up to codimen-

sion < 2. If E is a manifold with corners up to codimension 2, then E has boundary

defining function pE equivalent to 5E and defining functions pilE for boundary hy-

persurfaces Si n E # 0; if E is a manifold with boundary, then E has a boundary

defining function pr equivalent to pi for some i E {0, 1, 2} near E n Si # 0, E Z S; if



OE 0, then pr is equivalent to 1. Let mo be the Riemannian metric on X induced

by the diffeomorphism <b : X - Xo C R", where we take the metric on X0 be the

restriction of Euclidean metric.

Take Y = X or Y = E, a p-submanifold of X. Then Y is a manifold with corners,

with hypersurfaces 01 Y, ... , OzY and corresponding defining function pi, ... , #1. Denote

by py the total boundary defining function and by dvoly the volume form generated

by restriction of mo to Y.

(def . 1)'
Definition 2.1.3. For any domain Q C X, define the weighted b-Sobolev space

-.. -l pHbN(Q n Y) for any N C No and ci,. -, cl E R the closure of Cc (Q n Y) in

the norm:
v||f(GY) I0 dvolIVIIHN(Qny) V 2jS 2(.~ Vln)

bn 121
nY cIIIN c Y

PII' ... c l Qy) - 0-'... 'vbN n)-

We also use the symbol space to characterize the asymptotic behavior of functions

near boundary of Y with smooth regularity in the interior.

(def .2)
Definition 2.1.4. For any ci,..., cl E C, define d'IcI(Y) consisting of elements

satisfying

p5Ci ... -cIo E L (Y), A6c 1 - - - QI-'(X)|y)kv C L*(Y), Vk c No.

Definition 2.1.3, 2.1.4 only depend on the equivalent class of boundary defining

functions. The relation between the weighted b-Sobolev spaces and the Symbol spaces

are as follows:

Lemma 2.1.5. Suppose ci E C and c' C R. If Rc > c', then

dC.'CI(Y) C p1 - - 'H (Y) VN E No.

Lemma 2.1.6. Suppose dimY = k, then there exists a constant CN(Y) for any

N > + 1 such that

||V||Lo(y) < CN(Y) VIIHN(Y).



This implies that for any c1 ,..., ci E R

00

O pb . p HN(Y) c dCl/ ci(Y).

N=O

In this paper, we consider the map between Cauchy data and Characteristic data

for Einstein vacuum equations, which lie in some weighted b-Sobolev spaces on the

p-submanifolds Eo = {t = 0} =Rn and Si separately.

2.2 Minkowski Space.

Minkowski space-time is a solution to Einstein vacuum equations. In this section, we

list the basic geometric properties of its conformal transformation.

2.2.1 Metric.

Denote by m the Minkowski metric on R1n and ni its conformal transformation on

X:
n

m = d2t - d 2xi and fi = 2m.
i=1

Here p is an arbitrary choice of boundary defining function, which is equivalent to

the choice stated in Section 1.1 in each domain. A change of equivalent boundary

defining function only results in a smooth factor e2V with 0 E C (X).

Lemma 2.2.1. The conformal metric in extends to a Lorentz b-metric on X2 of

signature (1, n) with S' U S_ being its characteristic surfaces.

Proof. First notice a smooth factor e2V with 0 E C0 0(X) preserves this statement.

We only need to check the metric near OX with specified choice of 5 in each domain.

* In Q1,

f = d2s - 2sds dp - (1 - s2)( )2 - d2 o.
p p



m = -2da db - a(2 - a)( )2 - d2,
b - - d2 0,

i ~= -2d-rdp +p 2 d 2 T - d2 0, ff

-( dO

- 1- a ,

filla=O = -d 20.

J{p=o} = -d 20.

fija=o} = -d 2 0.

h = (1 -y12) (2 - d2y2 + 2y dy(-).

Hence fn is a b-Lorentz metric on X and has signature (0, n - 1) when restricted on

S+uSj-. E

2.2.2 Connection.

To investigate the geometric property of fi near aX, we examine the connection

components in local coordinates. For simplicity, we change variable for Po, P2 and

only write out the nonzero connection components.

* In Q1, change variable by (= - log p c (0, oo). Then in coordinates {s, , 0},

f = d2 s + 2sdsd( - (1 - s2)d2 - d2 0,

S 01
-1 + s2 0

0 -1

fi 1 S

0

,(fn) = s,

-4 =1

1-s 2  s 0

s -1 0

0 0 -1

Ffi) = -s(1 - S2),

fi() = -1, FT(rin) = -s, I (() = -s2, () 1

e In Q2,

* In Q3 ,

e In Q4 ,
db db

m = 2dd- + a(2 - a)( )b dA

* In Q5,

Fs (fin) = 2s,



9 In Q 2 , change variable by = - log b C [log 4, oo). Then in coordinates {a, , 0},

= 2dad - a(2 - a)d2( - d2 0,

0 1 01
1 -a(2 - a) 0O

0 0 -1J

a(2

= -

n= -(1- a), I(i) = a(1 - a)(2 - a),

FQ(rii) = 1 - a,

-a) 1 0

(0 0 ;

0 0 -1

F~a(?7) = -2 (1 -a);

r (7h) = 0.

* In Q3, in coordinates {T, p, O},

M = -2dTdp + p2d2, - d2 0,

p2

1

0

-1 0
0 0 =

0 -1

Fr(ih) =p,

P(in) = p,

0K
0,

IF-r(ff) =0,

7( = p,

-1 0
-p 2 0

0 -

PP(fi) = 2p.

* In Q4 , change variable by = -log b, then in coordinates {a, (, o},

rfn = -2dd< + 6(2 - d)d 2 _ (1 - ,

-1 0
- ) 0
0 -( -d)2

--1

2-a) -1 0

0 0
-1 0 0

Fa (rh) = F,(id) = a(1 - d)(2 - d),

PE(77) = -(n - 1)(1 - a)-

0

0

I ()= -(1 - a,

r,(6 = 2 - (n + 1)d - (n-1)1- )- ,

r (in-) = F O (in-) = I0



* In Q5 , change variable by ( = -log #, in coordinates {, y, ,

n

= (1 - R2)d2( - [ d2y' - 2y'dy'd(,

1- R2

-y 1

_yn

-y

-1

n
... _yn

-- 0

0

-1

i1 (m) = -yy(1 - R2),

1 -y

-y1 -1+y y

-y n y1y

Fr (rh) -y,

Fri)

2.2.3 Wave Operator.

The Laplace-Beltrami operator w.r.t. fii is defined by

Of = ffi8183 - FKOK-

in local coordinates. First the commutator of D, with Z., gives:

[DOh, Zij] = 0, [Din-, ZOO] = 0,

for # = p or ; =. The precise formula for l1n and its commutators with vector

fields in 1(X 2 )Ix are listed in the following.

* In Q1,
Ef = (1 - S2)0, - 2spo - 2so0 - (8po)2 _ p _

[ 8, a,] = 2s0 , [ZIff, pOp] = [EliO, AO] = 0,

[077n, Zo0 ] = -2si(0,:n + yo), with -yo = (n-1)(n-3)

i n

-y

- -f-= +6 i,

Flk (f) = -Yijk = -(n +1)y'.

FC((f) = n,



o In Q2,

Eli = -2&abOb + a(2 - a)O2 + 2(1 - a)Da - Ao,

[Df, a~a] = -28a(bab - a9a) = DO + (a~a) 2 + aoa + Ao,

[D, bab] = [{D, Ao] = 0,

[07, 8a] = -2k(1 - a)Dak1 + k(k + )a,

[077n, Zoi] = -2(1 - a)j(Oj + 7}o), with -7o = (n-1)(n-3)

" In Q3 ,

O. = -20,ap - ( pD) 2 
_ p _A,

[O, 0r] = [Df, A 0] = 0, [OD, ,p] = 2(p, + 1)ap.

[Ds, pap] = -2apa = s[i + (pDp) 2 + pap + A0 ,

[Ef, Zoi] -2(1 + pT)6(Of + -yo), with 7o (n-1)(n-3)

" In Q4 ,

077 =28ab8 - d(2 - d)Da - 20a + (n + 1)dos - (1 -)

+ (n - 1)(1 - a)l(daa - bab-) ,

[EOff, bab-] = [EOin, AO] = 0

[offi, da] =E]m - (dDa) 2 - nD+ (1 - d)3(1 + a)A0

- (n - 1)(1 - a)-2(da - bab),

[DfiO, Zoi] = -2(1 - a)Oi(Of 7 + '70), with 7Yo = n 21

* In Q5 ,

Li = (#84 + RDR) 2 + n(#84 + RaR) - A,

[El, #00] = 0, [3 7h, Dyi] = -(2RR + 1)Dyi,

[D7ff, Zoi] = -2yi(Ofn + 70), with _yo = n 21



2.2.4 Time-like Functions.

Time-like functions is the most important concept for a Lorentzian metric: we use it

to define positive quadratic form and the space-like hypersurface, on which the energy

norm is defined.

Definition 2.2.2. For a Lorentz metric j on X of signature (1, n), say a function

T E C1 (Q) is time-like w.r.t. j at p E X if and only if

(VT, VT) > 0 at p;

-null w.r.t. at p if and only if

(VT, VT)§ = 0 at p .

A hypersurface E C X is called space-like (resp. null) w.r.t. j if and only if E n Q

has a defining function T E C1 (X) such that T is time-like (resp. null) on E.

Definition 2.2.3. A quadratic form field associated to time-like function T w.r.t. g

is defined by

F(T, v) = (VT, Vv)jVv - !(Vv, Vv) VT + jyov 2 VT.

Here V is the connection w.r.t. j and -yo > 0 is some constant.

Lemma 2.2.4. Suppose T, T' are two time-like function w.r.t. a Loretzian metric

j at p C X such that (VT, VT'); > 0 at p, then (F(T, v), VT') is a strict positive

quadratic form at p.

(cauchy.21
Lemma 2.2.5. Suppose Q C X has piecewise smooth boundary &Q with defining

function T', then

div (F(T, v)) dvol= (F(T, v), VT')dp P.
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Here dyi' is the volume form on &Q such that d T' A dT' = dvoli and

1
divj(F(T, v)) = (Vv, VT)j(E]§ + -yo)v + V 2 T(dv, dv) + 1 (Yov 2 - (Vv, Vv)j)I T.

2

Lemma 2.2.5 implies the energy estimates if choosing T and Q properly. Here we

list the time-like functions w.r.t. rh. and the corresponding space-like hypersurfaces

in each domain. For the purpose of energy estimates, we modify the covering of X

to {Qi}1<k<4 such that each domain is bounded by either space like hypersurfaces or

null hypersurface or infinity w.r.t. rh.

* In Q1 U Q0, define

t
1r= where

b1 (r)

for r < 1
20 (r) 1, '1'(r) > 0.
r for r > 2

Set

1= {T 1 E ( )}, EO = {T 1 = 01, Ei = (T1 =

Then in Q1,

(VT1, VT1)2 = > if r > 2

( 2(1 - T 2 (V'(r)) 2) > l(#@(r))-2 > _ if r < 2

Here for r > 2,

O7T 1 = -2s,

div:F(TI, v) = -s(IVovI 2 + yov 2 ) + ( + _yo)v,

(F(T, v), VT 1)1 =1(1 - s2)2 |D8vI 2 + I(1 + s2)|s(1 - s2)&8 v - p8vj 2

+ j(1 - s2)(1Vov1 2 + yov 2).



* In Q2 , define

T2 --a+ log b, T = -a.

Set

2= {a c [0,], T2 E (-oo, log To]},

Then in Q2 ,

E2= (T 2 = log ro, a < }}.

(VT2 , VT 2)i = 2 + a(2 - a) > 2,

(VT 2, VT); = a(2 - a) > a,

(VT2, VT2),- = 1 + a(2 - a) > 1.

Here

L7T 2 = -2(1 - a),

divf(F(T2, v)) = (1 - a)(IBav12 - I8evl 2 - _yov 2) + (D + yo)v,

(F(T 2, v), VT 2)a =filbbv12 + 1|(bOb - a(2 - a)Oa)vl 2 + (1 + a(2 - a))I8avl 2

+ 2(a(2 - a) + 2)(|Bovj 2 + yov 2),

(F(T 2, v), VT2), =flbbv|2 + 1|(b8b - a(2 - a)&a)v12 + la(2 - a)Iaav12

+ 2(a(2 - a) + 1)(|8evl 2 + -yov2),

(F(T2, v), V log b) =|Iav12 + 'a(2 - a)|aav|2 + 1|ov2 + jyov 2.

* In Q3 U Q0 , define for To > 8,

T 3 = t - 02(r),

if r> 2

if r < 1

= -p(2To - r), where

0 0 2/(r) 1,

Set

Q3 = {T3  To}\(Q1 U Q2),

E3 = ( 3o E1)U (oE 2), E4 ={T 3= logo}-

2 (r) = rp

2



Here T3 is only defined near Si n Q3 such that p(2ro - T) < 1. Then in Q3 ,

(VT3, VT3 )7 =

2 - p2 > 1
p- (1 (?(r))2) >16

if r > 2

if r < 2

and for p(27ro - T) < 1,

(VT', VT3)f = p(2ro - T)(2 - p(2To - T)) > Top,

(VT 3 , VT>') = (2To - T) + p(l - p( 2To - T)) > To.

Moreover,

E:iT3 = 2 p,

divf(F(T3 , v)) = p(|ovI2 _ p2I8vI2 + 'yov2 ) + (D- + yo)v,

(F(T 3, v), VT 3 ), )a-=|TV|2 + 2 |8TV + p2a V12 + (1 _ p2 )|8,v| 2

+ 1(2 - p2)(I|ov l2 + _yoIv12),

(F(T 3 , v),VT; ) ={2To -T)|faV| 2 +- (270 - F)|8TV + P2 &pVI 2

+ (1 -p' - { p(2To - T))PI pV| 2

+ {(2(ro - r) + p(1 - p(2To - T)))(1|9V12 + TyolvI 2)

* In Q4 U Q5 , define for a > 1,

T4 = -f4(a) - log b, T' = -f 5 (a)b".

Here f4, f5 are smooth functions on Q4 U Q5 such that

f4(a) =

log 5 + C4

f() = {CO'

if d E [0, I)4
if a E (3, 1]

f' C [1, 1], c4 C (0, 1);

2), f '" > 0, C5 E (1, 2)

if a E [0,k )

if a C (3, 1]
,f f' E (1,



Set

n4 = (Q4 U Q5)\Q3.

Then in n 4,

(VT4, VT 4) = f (d)(2 - a(2 - a)f4(d)) ;> 2

(VT, VTI), = 2"fj(d)( - d(2 - '()fa) + 2aef5(a)) > (a - 1)aI ",

(VT4, VT4), = (f5(d)(1 - 6(2 - a)f (a)) + af (a)f5(e)) ;> i60.

Here for d c [0, ),

T4 =-a -logb, T=--ab",

D-7T4 = (n + 1)(1 -d),

div,(F(T4 , v)) =(1 - 6)- 10aV12 + '-d(2 - 6,)10aV| 2

+ -L(1 - 2)2 |Vov 2 + "-$_7OV2) + ([] + _yo)v,

(T4 , v), VT 4), =j1lv12 + ijOv + d(2 -d)OaV2 + (1 -- a)2|aVl2

+ 2(1 + (1 - a)2)((1 - d)-2|VovI 2 + _yov 2 ),

(T 4, v), VT), =b"(1l0e + d(2 - i)OaVl
2 + jd(a - 2 + d + a(1 - d)2)|aVl2

+ 11Ev12 + }((1 - d) 2 + C)((1 - 2)2 |Vov1 2 + yov2 )

), V(- log b))n =JOav 2
- d(2 - a)|Vav12 + 1(1 - a)~ 2 |Vovl 2 + jyov 2;

and for a E (3, 1],

T4 =-1og -c 4, T = -c 5 o,

DnT4 = -n

div:(F(T4, v)) = LL|#000v + RnvR2 _ nIVV1 2 + y7ov 2 + (Df + -yo)v,

(F(T4, v), VT4), = 1 (|$00v + R9Rv12 + IVVI 2 + io 2 ),

(F(T4, v), VT )f =Iac$"(|$8&4v + RORv| 2 + IVYV1 2 + YOv 2).

Here T are regular time-like all over Qi and Tj' are time-like in the interior of ni
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but null on Si n Q, w.r.t.ri for 1 < i < 4.

with a small perturbation of the metric fn,

perturbed metric.

We will show in next section for n > 5

those properties are preserved w.r.t. the

3-

Figure 2-1: domains and hypersurfaces in X n {t> O}.
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Chapter 3

Cauchy Problem for Einstein

Vacuum Equations with n > 5.

In this section, I consider the Cauchy problem for the conformal transformation of

Einstein Vacuum equations in harmonic gauge on X for n > 5. We first show that

given the Cauchy data small in some weighted b-Sobolev space on Lo the radiation

field for the solution is well defined. This is done by energy estimates method. Then

applying the linear radiation field theory with a background metric which is close to

Minkowski space-time, I show that the map from constraint Cauchy data to constraint

characteristic data is an isomorphism on some small neighborhoods of weighted b-

Sobolev spaces.

3.1 Problem Description.

In this section, let us set up the Cauchy problem for the conformal transformation of

Einstein Vacuum equations in harmonic gauge on the blown-up space X.



3.1.1 Perturbed Metric.

We consider (M, g) as a small perturbation of Minkowski space (R,", m) and take

(M, g) = (R", m + h) with h a symmetric (0, 2)-tensor on R 4:

h = h,dx"dx" = dt 2 + 2hoidtdxi + hi3dxidx3 .

Denote by

j = 2g = i + #52 h (3.1) cauchy.3

the conformal transformation of g on X. In the fixed coordinates (t, x), it is equivalent

to say that h a function on R" or X valued in (n + 1) x (n +1) symmetric matrix
(n+2)(n+S)

space SM(ri + 1, R) c~R 2 . In this sense, set

H = g- 1 - m-1 and I 1 h. (3.2) cauchy.4

To write the perturbation in local coordinates near boundary, let us first denote by

hr = hoo, = p hp = -(hoo + hoi0) hpp = hoo + 2hoi0' + hi0003 ,

hTi = hiT = hoi, hpi = hip = -(hoi + hig0i).

Then in each domain with the coordinates set in Section 1.1, the perturbation of

conformal metric #2 h can be expressed as follows:

* In Q 1, s = j, p = 1, p

p2 h =hood2s + (hoos 2 + 2hoi0 's + hij0t0J)( )2
P

+ hijd0'd03 + 2hoidsd' - 2(hois + hij0j)d03 d.
p

*In Q2 , a =1 - , b= -- ab,

,52h =hpp(-)2 + (hyp + 2ahp + a2hrr)(-)2 + 2(hp +a b
dad~ +(h,± db

+ hijd02d03 + 2h' a dO' + 2(hpi + ahri) dd 2 .

- 2(hoos + hoi)ds dp
P

da db
ahp) aba b



* In Q 3 , P = i, = t - r, 9=p

p 2 h = h PP(LP)2 + p2hTd 2 _ + 2hrpdTdp + hijdO dO3 + 2phridQ'dT + 2hpid6' .
p p

SInQ 4, =1 - , 6 = 1 , p =

d2 da 2  O 2h db)2 dd db
ph = hP( -2+ (hP P + 2ahipO + a2hi _ '0 (-=2 + 2(hpp + ahpi0)--

a, b a b
.d. .db

+ (1 - 5) 2hijdO'dOj- + 2(1 - 6,)hpidO'-- + 2(1 - d)(hpi + dhiOi)dO'-=-.
a b

e In , = , y = , P

-2 dq5) hJJdO
p h =(hoo + 2 hojy + h 3y'ys)(-) 2 -+ hijdy'dy' - 2(hoi + hijyl)dy'-

Here in Qj for 1 < i < 4 we use the polar coordinates. The metric is the same as

a restriction to R2 x S,-1 of the metric on R2 x R' with same components. The

restriction is equivalent to imposing a condition

101 = 1, OjdO' = 0.

To simplify the expression, let us define the following data depending on h which

control the geometric perturbation of the conformal metric.

Definition 3.1.1. Define for any h C C0(Q; SM(n + 1, R)) and 6 > 0,

Ao(h) = > hv ,

A 1 (h) = sup |p-1hpil,
1<i<n

A1+6(h) = |pj 1 6 haP|.

Lemma 3.1.2. If h E C 0(X; SM(n + 1, R)) satisfying Ao(h), A1 (h), A1+3 (h) < e for

some 6 > 0 and e > 0 small enough, then j extends to a Lorentzian b-metric on X2

with Si+ U S- being its characteristic surfaces.



Proof. The statement is obviously true if 6 > 1. For 6 E (0, 1), let

f(Pi) = 1 Pi1-2h da = 0( ).

and change the tangent coordinates near Si as follows:

" In Q2, set logb = logb'+ f(a),

* InQ 3, set T = T' + f (p),

" In Q 3 , set logb = logb' - f(d).

Then in the new coordinates we can see the metric components is uniformly bounded

and {pi = 0} is its characteristic surface. Since the coordinates changing does not

change the surface S:-, we prove the statement. Notice that these coordinates chang-

ing involves a C0'3 diffeomorphism of X. E

Definition 3.1.3. For any k E No, denote by Ok(h) a real analytic function of

h C SM(n + 1, R) with C (X) coefficients such that

ek(h) = O(|hIk ) as AoIhI -+ 0.

For any k E No, I E N, denote by Ek(h)(h', ... , h') a I form in (h', ..., h') with coeffi-

cients Ok(h).

Lemma 3.1.4. For any k, 1 C No

Ek(h) + 1(h) = eminfk,l}(h), eOk(h) E)(h) Ek±I(h),

Ao(9k(h)) = Ek(Ao(h)).

Lemma 3.1.5. With above notation

H 0 - -hoo + 8 2(h), H0 = hoi + 9 2(h), H 2 = -hy + 9 2(h).



3.1.2 Einstein Vacuum Equation in Harmonic Gauge.

Say a metric g = m + h satisfies the harmonic gauge condition in coordinates (t, x) if

and only if

G1xA = 0 - P' (g) = 0 for y =0,1,...,n.

If g = m + h satisfies the harmonic gauge condition in coordinates (t, x), then

* In Q2,

(bdb - aOa)(2hpr + trmh) =81(a)(5h) + E1 (h)(5h),

(b8b - aOa)(2hn - Oitrmh) = E1 (a)(5h) + E1 (h)(5h),

= (bO& - a~a)hpp = e 1(a) (5h) + E1(h)(5h).

e In Q3,

a 7r(2hpr + trmh) = 1(p)(6h) + e 1(h)(6h),

Dr (2h,4 - Oitrmh) = 81(p)(Oh) + 8 1 (h)(6h),

=- 8,hpp = E)(p) (6h) + E1 (h)(6h).

* In Q4,

(bag - d&c)(2hpr + trmh) = 8 1(d)(5h) + 8 1(h)(Oh),

(b8 - OD8)(2hpi - Oitrmh) =1(d)(Oh) + 8 1(h)(0h),

= (6b8 - d9a)hpp = 8 1(a)(Oh) + 8 1(h)(ah).

Here trmh = maaha = hoo - E_ 1 hij.

In harmonic gauge, the Einstein Vacuum equations reduces to a system of quasi-

linear wave equations [LR1].

gh,v=F,,(h)(&h,&h), y,,v=0,1,...,n,

where 119 = C19= g",8 = lm + H ao0 p

g" a 9gua = i9499a a



and F,,(h)(oh, Oh) is a quadratic form in Oh with coefficients that are real analytic

functions of h. More precisely,

F4,(h)(Oh, Oh) = P(04h, oh) + Q,,(Oh, Oh) + G,,,(h)(Oh, Oh),

where Q,,(Oh, Oh) is a null form of constant coefficients and

P(Omh, Ovh) = {(Otrmh)(Ovtrmh) -

GPV (h) (Oh, o8h) = E)1 (h) (Oh, Oh).

,By a conformal transformation (3.1) and (3.2), the reduced Einstein equations (1.3)

are equivalent to

n-i 5(IZj + -y(h))hav (PoP2) 2 Pi 2F,, (h, Oh), (3.3) e.

where

7Y(h) = -p 2 p = -o + p 2E1(h)) with Yo = -p 2 Eip 2

and

p-+ - n- -F, (pi -2 ) (0 (p 2 ), 0(; - h))

Oo(h)(Oh, 6h) + E1(h)(5h) + E 2 (h).

Lemma 3.1.6. With above notation, yo is a constant in each domain Qj for 1 < i < 5

and

E=r.+(pop2) p1 2hppP2++p12 (O2+)],

P2 C /bE2 (X), [P2 , p] = 0 in Q2,Q 3 ,Q 4.

Proof. We can compute EIl and 'y(h) precisely in each domain near OX.

where



* In Qj,

El§] - l,, +- [H00 - 2sHOzOi + S 2 H'jOiOj]0& +I [H'jOiOj](p) ) 2 + H" . (98)~

" 2[-HOO + sH'jOiOj]eas(pap) + 2[HoZ - s'~]96

" 2[-H'jO](,p)5i + [-(n -+ 1)H 0OO + sH' 3(-6ij + (ni + 2)OiOj)]Os

+ [Ht3 (-6ij + (n + i)OiOj)1pap + [-nH'jOj]ai

1:77 + ~P n 2l h)(62±+a),

+ y i [H'j(-n-'6% +s (n-1)(n+3)OO) o = (n-i)(n-3)
24 0A 0 4

" In Q2,

D~+ a-2 [H00 - 2H' 0O2 +1 H'jOiOj](bab - aa) 2 
+[H2jOiOj](aa)

2

"F 2a 1 [-HOO +1 H 3OiO ] (aaa) (bab - aaa) +Hzj&iDj

"I 2a-[Ho' - H'J3o3]a&(bab - a~a) + 2[HJOjah(Uaa)

"I a-2 [H 00 - 2H' 00i +F H'~~ +I aHl'j(-%j +F rOiOj) - (ni - 1)aHO%1i

(bab - aaa) +I [Hij(-6ij +I (ni +1 1))OiOjla(9a +[-nH'jO31Oi,

-17 - a p(a - a~a )2 +1 (bDa - aaa)1 +I a n23b ne21 E)(h) (6 2 +I 0),

" In Q3,

LI~ D~~H P2 [H00 - 2H" 0Oi + H'~~ja [H+~,(D) -F i 6i~

+ 2[-H'jOj](pap)6j +I 2p1 '[-H0 Oi +I H'~~larpp

"F 2p- 1 [H' 0 - H'i Oj ] r 6i + [H'i(- 6i +P (ni +F 1) OiOj)]pap

"F p1 [-(ri - 1)HOO +F H'j(-6ij +I nriOjO)]D,- +I ri[-H'jOj]6i

n 21 5 ph~D 2 + p 2 E) I(h) (62 +I 6),

-yo +P [Hj-n'i + (n-l)(n+3) )ioQ3 - (n-1)(n-3)



* In Q4 ,

F4 =E] + d- 2 [H0 0 - 2H' 0O6 + H'jOjOj](a6Oe - ba-) 2 + H 0 0 (5da) 2

+ (1 - a)- 2Hij&is - 2- 1 [H0 0 - H 0 o'O](di8a)(diit - b0-)

- 2(1 - d)"Ho'(684)5; + 2(d(1 - ))-"[H 0 - H0, ](60a - b5b)Oi

+ (1 - )~2[-Hi'j8 - (n - 1)Ho2]5; + nH0dia

- d-2[H 0 - 2H 0 0i + H'j040, + (n - 1)d(H 0 - H'0j)

- d(1 - a)- 1 H'i(-oij + OiOj)1(Wd5 - 680)

- n - 56n 2 1[(a - bo) 2 + (bob - a)] + a 5b81(h)(52 + 5),

y = 7o + 2
1 Ho 7 o -1

* In Q5,

Li = Lln- + HO(q&4 + ykayk)2 + Hi'&8,i8y - 2H" (#84 + y"k O)ayi

+ nH 0(O4 + yi yi) - (n + 1)H 0yi,

= r + # 21 (h)(52 + 5),

7o + f2 1 H0, 'Yo =41

We also deduce the equation for kh from (3.3) for all k E No and 0 E 14b(X).

Lemma 3.1.7. The equations (3.3) implies that

(Ej + 7y)5kh = [-D1 6k]h, + fk, (h)

where fk,(h) can be expressed as

n-5 n-1

pi 2 (pop2 ) 2

a1+...ai5k+2, 2<1<k+2, o0aisk+1

(3.5) cauchy.6

(3.4)|eg.5

6o (h) (6c"1h, .-- ,' h).



Proof. For k = 0, obviously

f,,(h) = + (pop2) p F .

is of form (3.5). For k > 1,

(E]§~ + _Y)kjj kf" + [Z6k~hj

By direct computation, both [El-Zj , - k]I, and bkf1 , can be expressed as (3.5). D

Here 0 k means an element in b(X)k. In particular coordinates, we can choose

a basis of %'l(X) and view k as a multi-index. In (3.4), fk in the form of (3.5) is

quadratic with variable coefficients and the commutator [O,, 5k] gives linear terms

of derivative order < k + 1 or a nonlinear term in the form of (3.5).

3.1.3 Cauchy Data in Harmonic Gauge.

Given Cauchy data (go, ko) on R n which satisfies the constraint equations (1.2) and

is close to (- Ej_1 dx, 0), we can construct (gIt=o, otgIt=o) satisfying the harmonic

gauge condition at t = 0, [LR1].

Theorem 3.1.8 (Lindblad, Rodnianski). The solution to reduced Einstein equations

(1.3) with the constructed Cauchy data (glt=o,atglt=o) satisfies the harmonic gauge

condition globally and hence provides a true solution to Einstein vacuum equations

(1.1).

This is basically a uniqueness theorem for wave equation on the connection com-

ponents FP(g) for i = 0, ..., n. In this paper, we consider the Cauchy problem for

reduced Einstein equation (1.3) with initial data

n

(g It=o, tg|t=o) = ( d2Xi + ho, h')
i=1

such that

F, (g)|It=o = 0, BeF~g~t=o.



Denote by

Go = (m + ho)- 1 =m + 81(h)

-=> t (m + h)"' t=o = Ge"'Go'h,

Hence F"(g)|t=o 0 implies that for j = 1, ... n,

G 'hO +G 08th ) -h 1 Gh= 0,
G31 0 0(3.6) constraint .2

Gnha+ G 30po - irGa30-haa = 0 ;0j3 0 ij 20 J'c0 0

and OtP"(g)|t=o = 0 implies that for j 1, ...,n ,

(Gnohoo - !Go3otha)| = -G 30& hla + EO(h, h'),

(G 0t|hjo) t= -Glooihl + {Giaoah10 + Ej (h0, hi)

where

Eo(h", h') = - !G3 'h',,, + G"'G0a'h',,h1a + G 'G3'hl,,,h p,

Ej(ho, h) = - G +G 'Gg'h',h h +G G'h

However, the reduced Einstein vacuum equations at t = 0 gives

2hit, = (G 0)1 F' (h0, h1).

Here F'(h', h') are real analytic functions of (h0 , h', &ih 0 , 9jh1 , Os&h0). Hence this

problem is still overdetermined, which impose a constraint condition on h0 , h' such

that for j = 1, ..., In,

GgaFo(h", h') - {GoaF'(h 0 , h') = GOO(-G'00ihla + Eo(h0 , hl)),

GOO j ( 0 , 1 ) = C (-G'0 h' +(3.7) constraint.3
G '3Fj(h , hi G0(- 0 jho + 1 Go'130 h' 0 + Ej (ho, hl )).

Now (3.6) and (3.7) give the constraint condition for Cauchy data for reduced Einstein

vacuum equations.

Corallary 3.1.9. Given Cauchy data (hO, h') c Co1 (R"; SM(n + 1, R)) small and



satisfying the constraint condition (3.6) and (3.7), then a solution to (1.3) provides

a true solution to (1.1) in harmonic gauge.

Definition 3.1.10. Define u('6 the space consisting of the elements (h', h') which

satisfies the constrain condition (3.6) and (3.7) such that

11l -1+6 N + 11h11 a241+ 6  < 6.
|h 2| H +(>0) p HbN(Zo)

Here Eo = R is the radial compactification of R and po is the boundary defining

function for So n Eo as set in Section 2.1.

3.2 Energy Estimates for n > 5.

In this section, we show by energy estimates that for n > 5 if

(h0 , hl) C ON, for N > n + 6, 6 E (0, j) and e > 0 small,

then there exists a global solution h to (3.4) which is C00' up to Si for some a' E (0, 6]

and hence the radiation field in Friedlander's sense is well defined:

Rth ,hl)= hs 1 E popo HbN(S1) for some o > 0.

3.2.1 Preparation.

In Section 2.1, we give a covering {Q : 1 < i < 4} of X. Each of these domains is

bounded by space-like hypersurfaces defined by time-like functions or characteristic

hypersurface Si or infinity w.r.t. rin. For n > 5 and with small perturbation, we

can choose the same time-like functions and hence same space-like hypersurfaces to

proceed the energy estimates. Refer to Section 2.1, 2.2 for notations. Let us first

deduce an inverse formula for symmetric matrix close to in in chosen coordinates.



Lemma 3.2.1. Suppose in chosen coordinates,

A C
CT B

where AT = A, BT = B and A, B are invertible. Then

g =[ G21
G12

G22
where

Gnl =A - CB-1CT>- 1,

G12 =G1 = -(A - CB-1CT|-~lCB-1,

G22 =B~1 + B-1 CT (A - CB-1CT)~1 CB-1 .

In this section for h small, if not specified, B is always set as follows:

B = -Idnxn + [hijlnxn, => B- 1 = -Idnxn - [hij]nxn + 6 2 (h);

and A is a 2 x 2 symmetric matrix and C is a 2 x n matrix. We view the metric g as

,a restriction to R2 x gg-1 of the metric on R2 x Rn with same components.

In the following, I omit the constant C if it is independent of e, for ej small enough.

3.2.2 In n 1

We solve the equation (3.3) from Eo to E1 with Cauchy data on Eo such that

k
IkI<N±1

Ikh||,H o) < 60, 0 < < j, EO > 0, small.

Notice that, in Q1 , everything stated in the following also works for n = 4.

e Perturbed metric: by changing variable ( = - log p E (0, oo) near the boundary



So, the metric j can be expressed in coordinate (s, (, 0) as follows,

A = 1 + hoo

s + hoos + hojO'

C
sho1 +-

s + hoos + hoi

-1 + s2 + hoos 2 + 2shoi0i + hij00j

1 ... hon

h1j05 ... sh0 + hnj 0J

Hence the m

n=1 -

j-1 = n-1 + 8 1(h) = m-1 + po 2 1(I).

Connection components: for any I, K, J E {s, , 0},

n-1 ~ ~ ~~

)= Pi(h) + e 1(h) + e0 (h)(5h) = FI(i) + Po 2 [01(h) + E0 (h)(0h)].

" Partial derivatives:

SC {Ds, pOp, A}.

" Commutator:

[Offik ]= ( c(s)i,
1 i4k+1

where ci(s) are smooth bounded function on Q1 .

" Equations:

(D +0)$kI = ( ci(s)5i h + fk.
0%isk+1

where fk can be expressed as (3.5).

* Time-like function:

(VT 1 , VT1 ) = (VT 1, VT1)i + E1 (h).



e Space-like hypersurface: define for T1 E [0, 7],

ET {T 1 = constant},

and consider the domain QT' bounded by Eo, ET and So for energy estimates.

e Quadratic form:

-jpO 2  ((h) <

n-1 ~
eSobolev norm: define for ||pO h

F(T1, v), V7T1)- n-1 ~

F(T, v), VT1)m ~

||oo < Ei with ei > 0 small,

N

k=O T1

e 2 logpo(F(T 1 , 5kv), VT1)dp4

Here for ei small enough and near the boundary So,

T, dp 1
d,'-du.

p

Moreover, we have

k
where C is a constant independent of Ei if it is small enough.

n-1 ~ n-1 -_

Divergence of quadratic form field: if ||p 2 hllo + |lp 2 ahI|o < EI with E' > 0

small, then

divg (e 2 l o F(T, kjh))

= e 2
<logo (-26(F(T, 5kh), V log po)p + div (F(T, kh)))

<P 2((v5kI, VT 1 )fk(h) + C(F(T, bkh), VT 1 )7),

where C is a constant independent of E' if E' small enough. Here V is w.r.t. g

MI (TI,v) = ~ ||IV||IP'0 HN (ET1 -

5k||o CpMJN (T1, V).



and (3.5) implies that for c' small,

N

OT, ET~ div (,- 2 5 bog piF(T1 , 6k h) ) dMT
1 k=O

< C(1 + MI (T, h))(M (T1, h)) 2

where C is a constant independent of c' if E' is small enough.

* Energy estimates: for T1 E [0, 7]

(Mf (T1, h)) 2 - (M' (0, h))2 = fITj2
whi c (M (T1, h))2 < C(1 + M (T1, h))(MI (T1, ))2

which implies

MJN(T1, h) < CMJN (0, h) < CEO. (3.8) cauchy.7

Here C is a constant independent of E' if it is small enough. Choose EO small
n-1 - n-1 ~~

enough, we have ||p hKoo + flp 2  hll,, c' satisfied. Hence the (3.8) is valid

until E1 .

3.2.3 In Q2.

We solve the equation (3.3) from Ei to E2 with Cauchy data on E1 such that

|| 16hNlHo(ri) < i,

|k|<N+1

0 < 3 < 2' ei > 0, small.

* Perturbed metric: by changing variable ( = -log b, the metric g can be ex-

divj (e~-2n og p1 F(T1, 6k h))dvolj,



pressed in coordinates (a, , 0) as follows,

a -2 hPP

1-h,P - a-lhaP

C a-lhp1
-hp1 + a

a(2 - a) + 81(h

1 - a-1 (hpp + 6 2(h)) +

hp1 + 2ahi1Oi+ E)
-a- 1 (hp1 + 82(

G22 =-Idn

1 - hTP - a~1 hP

-a(2 - a) + hPP + 2ahp + a2h,J

-.-. a-l hpn

h,1)----(hpn+ ah~w)

) 1 - a-(hp, +E82(h)) + 81(h)
E e 1(h) -a-2(hpp + 2(h))

2(h) --- hn+ 2ahnjOj + 6 2(h)

h)) -.. -a-(hp) +62(h))

xn - [hijlnxn + 82 (h).-

* Connection components:

aag = a b (8 1(h) + eo(h)(Oh))

Fa = -(1 - a) + a b ( 1 (I) + eo(I)(5I))

I]pa ) = a(2 - a)(1 - a) + an2 b 21(EI(h) + Eo(h) ((9h))

a(j)= a b (6 1(h) + Eo(h)(A))

)= aab (8 1 (I) + 2o(In)(I))

F )=a b (E 1(h) + Eo(h) (h))

-= F"(g) = -2(1 - a) + a2 3 bn (E1 (I) + -E(I)(h))

Gil

G12



j' l() = a b n( nhpp + a~ahpp) + a2 b n(81(h) + E0 (h)(5h))aa M 22

( -) = a5 b (E)(h) + E0 (h)(5h))

F() 1- a + an3 b 2(6 1(h) + 80(h)(5h))

a a ( n) = a5 b n2(61(h) + E0()(5h))

a = a b n(81(h) + E0 (h)(5h))

=F P(a) = b(01(h) + (())()))

-= nCg = a b n 1 p + a n23b n21(E)1 (h) + 80O(h) (5h))

" Partial derivatives:

0 E {aa, bab, 5}.

* Commutator: for k1, k2, k3 E NO,

[0ZJ, (aOa )k1(bOb)k k2A3] = [Z17, (a~a)k1](bab)k2Ak3

(cki(a~a)k1lDm+ z cij(a~a)iAj)(bab)k2Aks, (3.9) cauchy.8

i+2j<ki+1

where Cki, cij are constants.

* Equations: inserting (3.9) into (3.4) gives:

(L + _0 )5k hy, = ck k--Lfnhv + Z CkiNhy + jk

i<k+1

i<k+1

where c' are constants and f' can be expressed as (3.5).

" Time-like functions:

(VT2, VT 2) = 2 - a' b' h,, + a b 81(h),

(VT2, VT2) = a(2 - a) + a b' 1 (),

(VT 2, VT2)p = 1 + a(2 - a) - a2 b np + an2 b n 1(1).



For n ;> 5, if Ia nb n |2h < E2 for some E2 > 0 small then T2 is regularly

time-like w.r.t. g and T2 is time-like in the interior and null on Si; this is same

as w.r.t. rfn.

Space-like hypersurfaces: define for T2 E [-1, 0],

Erg = {T = constant} n Q2 , EZ1 = E2 n {T

and consider the domain Q22 bounded by So, E1, E2

estimates.

* Quadratic forms:

< -P1},

and Er; for energy

1 - |a'bE81(h)|

1 - a bE8 1 (h)l

< (F(T2, v), VT 2) j
(F(T2, v), VT 2 ):

< (F(T2, v), V7T2) j

(F(T2, v), 17T2), 7n

< 1 + a b 81(h)

- 1 + Ia b E1(h)-

* Sobolev norm: define for ||a 2 b 2|h <; 62 with 62 > 0 small,

M2N2 (T , V ) SL T 2

T2

Lj( p1,v)=

N
--2 3logb(F(T 2kv) VT )gdy )I

k=O

N

b-26( 6bokV2 + a|8a~kV 2 + 1V706v1 2 + IkVI2  ) I

k=O

N

e-210g(F(T2 , kv),VT 2 )pdy42)
k=0

f1  5b b kV12 + 10a5kV12 + jVo5kVI 2 + 162 T2

Here for E2 small enough,

dp2~ dadO, dp ~- dO.
- db



Moreover,

( 6 |kv| Cb'M 2N (T,v),
k<N+1

3 |8a'kv| < aCb a-M 2N(T2 ,0)
k<N+1

-2

where C is a constant independent of C2 if it is small enough.

e Divergence of quadratic form field: if la nb hIloo+||a b &I oc e' with

2C > 0 small, then

div (e-26logbF(T2, v))

= b-21(-26(F(T 2, v), V log b)j + divj(F(T2 , v)))

< b-26(a- 1 (1 - 2J + 6')(AI))|) (F(T 2, v), VT2)j + (Vv, VT 2 ) (CI + 7 0 )v).

Replace v by QkhI for Iki I N and then we have

oI ( EII +YO)5kh(V5kh, VT 2 );dvolj
2 |k| N

SCa-I(1 + M2N (T', I))(M2N(T, ))2

where C is a constant independent of E2 if it is small enough.

* Energy estimates: notice here pi = a -T2. Then for T2 E 0],

(M 2N 2 - (LN(pi, h)) 2  M2N(-_, h) 2

= (IN divj(e- 23 logbF(T2 , 6kh))dvolg,
k|N 2

which implies that for e' small

aT(M 2N(T, h))
2  T(L 2 Pi, h)) 2

((1 - 23+ '2)a' -+ Ca(1+ M 2N (T,, h)))(M 2N(T/, h)) 2
(3.10) cauchy.9



Since J > 0, we can choose c' < 26 and small. Then (3.10) implies:

either M2N 2N( h) < 1 V ' C [1VT2 C-O
8

or - &aM 2N1- +a, < M2 -aN(a, h) + Ca (M2N(-a, I))2

- -Ba(M2 (-a, h)a 2 ) < C(M 2N(- a, 2 ) a-1+6-,

M2(-a, I) < ,
8-3

If ci is small enough, then

M2N(T , h) + L2(pi, 12) (C1 + C2a'~ 2)Ei, (3.11) cauchy.10

where C1, C2 are constant independent of ei if it is small enough. Now (3.11)

gives

S: |8a5kIj < Cb'(Cia-2 + C2 a~ ~1)ei

0
C1a- + C2a6-4~1da)je C'b'e1.

For Ei small,Here C' is a constant independent of ei if it is small enough.

Ia 2b I|| +| |a 5b nihIK < E' holds and hence (3.11) is valid for all a

up to 0.

* Radiation field: For ei small, h is

defined. Define

Q2(T2,I) = h JT k

up to S1 in Q2 and hIsinQ2 is well

Ib(bVo vI-b dO) 2

+|a| N

-- |1kj| < Cb'(1+
kl +1

M2N{_ fta'28

- MN _j 0) 1+o-2 d



Then by (3.11)

B(QN (TI, Ih))2 < a- M2N (T,2 N(I )

< Cei(Cia~-2 + C2a -2 Q (T2 I2

which implies

Here C2 is a constant independent of ci if it is small. Hence

flhIHN(lsnQ
2)

3.2.4 InQ 3

We solve the equation (3.3) from E3 to E 4 with Cauchy data on E3 such that

L N(pi, h) (1+p )62, 0 < ' < 6, 62 > 0, small.

where

LN 2 = L (pi, I) + |If||2N+1(23 fl1),

Notice here 62 < 61 + EO < 60 and 5' can be chosen as 6 - c' as set in Q2. The space-

like hypersurface E3 consists of two parts: E 2 if it is above E1 and Ei otherwise.

Hence E3 n E1 is in a finite region.

Q2( , Ih) < C'ei VT2 E - , 0.

QN (0, h) < C2 C1.



* Perturbed metric: in the coordinates (T, p, 0) near Si n03,

A= p2(1+hTT) 1+h'"]
-1I+ h,p P- 2 hPP

Gil = _2hp+ 62(h))
-(1+ hrp+ hp + 82(h))

G12 = F p-1 (hpi + E2(h))
-p(h, 1 + hp1 +8 2(h))

G22 =-Idnxn -

C - ph,1 --- ph~n

p-1hp1 --- p-1hpn

-(1+ hrp+ hp+ 8 2 (h))

-p 2 (1+h,+hpp +2hTp+ 62 (h))

... -p-'(hpn + 6 2(h))

- -p (h)n+hpn+62(h))

[hijlnxn + 82(h).

* Connection components: apply the gauge condition

F P += p + ( p()1(h)) + E0(h)(5h)

P,() ( + ph) + p(E(h) E(h) (h))

IpTG(W) p 2 (91(h) +8 o(h)(O))

IT = p 25 (6 1(h) + E0 (h) (5h))

- -> F (T ) = p, 2(3 1(h) + o(h) (Oh))

F p() = p (1(E(h) + (0(h)(5h))

I= , F( ) (E1(h) + p) h (Oh) )

IP T~= 3 p n+3 (~~~)O)

Fi~) p (81 (h) + 8 0 (h)(55))

-=p + p+2 (E1 (h) + Go (h) (Oh))

F(g) = p (E1(h) + E0 (h)(6h))

e)= p ( 1(h) + (h) ( h))

-> MPg = p + ()1(h) + Go(h) (Oh))

I7P(j) =2p + p2 1 (E)1(h) + 0 (h) (6h))



. Partial derivatives: near Si n Q3,

6 E {r, Pap, &i}

and extend them smoothly and linear independently to finite region.

* Commutator: near Si n Q3,

[D' (P0 )klOk2Ak3] n' (po) 0 r) )k2Ak3

= [cki(pOp)k-lF], +
i+2j<ki+1

c (pop) A ] (p)k 2 Ak3
(3.12) cauchy.16

where Ck, and cij are constants.

* Equations: inserting (3.12) into (3.4) gives:

(E + y0)5kh = c + f
i<k+1

where fA can be expressed as (3.5).

* Time-like functions: near Si n 03,

(V T3 , VT 3)j =2 - p2  2

(VTj, VT ) =p(2ro - r)[2 - p(2ro - T)] + p 2E 1 (h),
n-3 ~

(VT3 , VT ); =2To - T + p[1 - p(2To - T)] - pi 2 E1 (h).

* Space-like hypersurfaces: define

ET; = {T = constant} n Q3,

E3 = E3 n {T 5 3ropi} = (E1 n _a3) U E',

EV = E4 n {T <opi}.

We only consider T3 near S1. Here EP' and E1 works as EP1 in Q2; ET works

as ET, in Q2. Consider the domain QT" bounded by E3, E4 and ET; for energy



estimates.

e Quadratic form:

n-5 ~ (F(T 3, v), VT 3)~
1- 2 ( (F(T 3, v), VT3)p

n-s ~ (F(T3, v), VT3)-

IP1 (h)I <(F (T3, v) , V T3) ?!

n-5
< 1+ p1

2 E1 (h)|;

< 1 + Ipi12 0 1 (h);

n-5 S
eSobolev norm: define for | pi -h||, -< E3 withe3 > 0 small enough,

-AT3 (F(T 3, jkv), VT)ddyT) 2
k-O

87j(,5kV12 + PIgg6 V 2 +|IV1obkV2 + 16kV2 T

k 0T3'

4

-AT3(F(T 3 , 5kv), VT 3)dy4) 2

k=O

N

E o0r~kij2 +|8a)"kV2 +|IVoSkI2

k=0

+ d

where A > 0 is some large constant depending on N only if 63 is small enough.

Here for 63 small and near Si n03,

dp 3-~ dpdO, dp,43 ~ dTdO.

E |kv| C4'M(T3V),

k +1kl<+

where C is a constant only depend on A, hence N, if 63 is small enough.

n-5 D n-5~
eDivergence of quadratic form field: if ||pil2hllo,, +|lp1 2Ohll,, < c' with E' > 0

Moreover,

M3N jr T3



small and A large, then

div (e-AT3F(T 3, v))

= e-AT3[- A(F(T 3, v), VT 3); + div (F(T 3, v))]

< e-AT3 (Cp7 (F(T 3, v), VT 3); + (Vv, VT 3)j(E + 7yo)v),

Replace v by &kh for kI N and then we have

Tr E (E] + 70)&kh(a, VT3);dvol
3 |k|<N

Cp 2 (1 + M3N(T, h))(M3N(T, h)) 2.

* Energy estimates: here T3 = -p(2o - T) ~ -pi is only defined near Si n Q3 .

First, the domain bounded by E 3 , E 4 , ET=-i is compact finite region. It is

obvious that if E2 is small enough, we can solve the equation up to ET and

420} such that

(M3N(-, h)) 2 + (L N (o, h)) 2 < C62.

Then for T3 E 0],

(M 3N (TI, h)) 2 + (p 1 , h)) 2 - (L N(Pi, h 2 div(e- AT3F(T 3))dvolj

implies for E' small enough,

8T(M3 (TN ) 2 + NT(L4 (Pi, h)) 2 - BT(L3 (P1, h)) 2

'p7 (M3N h)) 2 + Cp 2 (1 + M3N(T', N))(MN 2.

Then for c' < 1 - 26' and small enough, (3.13) gives

M3N(T , h) + L (pi, h) (C1 + C2P )62,

(3.13) cauchy.17

(3.14) cauchy.18

where C1, C2 are constants independent of e' if it is small enough. Then (3.14)

P1



implies

|8bh1 I C(CpV2 + C2p'~)e
|k|1 )+1

Sk I < C6 2(1 + C' p $ + C2p'-Idp1).

If 62 is small enough, then Ip zh|| + |p 52 h1Ko < e' is valid for all T3 up to

0. So is (3.14).

e Radiation field: here h is C6' up to S1. Hence the radiation field hIls is well

defined in Q3 n Si. Define

|8,VgVI | dO) 2
k(T3,Ih)=

T3' k+|a|$N

Then by (3.14)

trT (QN(T', h))2 < Cp 2M3N Qi + C 2p)'-1TQN

which implies

QN (TI, I) C'E2, V T' E [ , 0],

where C3 is a constant independent of E2 if it is small.

||IIHN|(sinn3) =Q(0, h) <C'e2.

3.2.5 In Q4

.We solve the equation (3.4) from E4 up to S2 U Si with Cauchy data on E4 such that

L ( , I ) 61
6' E (0, 6), E3 > 0, small.

* Perturbed metric: for d E [0, 1), by changing variable ( = - log I, the metric

> E

|kl<N+1



can be expressed in the coordinates (a, (, 0) as:

A -

Gil =

G12 =

d-s hPP 1 a-'hpp - hPi6'

-1 - a-lhpp - hpi6' a(2 - a) + hpp + 26hiO6' + d2 hij 020
-h1 -1-- - han0

C= (1-) [ ha)
-(h, + dh1j63) ---- (hpn + ahnj6j)

B =(1 - d)2 (-Idnx , + [hij]nxn),

-C(2 - a) + 6 1(h) -1 - -1 (hpp + 6 2(h)) + 8 1(h)

-1 - a-l(hp +8 2(h)) + E1 (h) -a- 2 (hpp + 82 (h))

( -P - ho1 + 62(h) -hpn - dhon + 82(h)
-~(h,1 + 9 1(h)) - -a- 1 (hpn + 0 1 (h))

G22= (1 - (-Idnx - [hijlnxn + E2 (h));

for a E (1, 1], by changing variable ( = - log < and in the coordinates ((, y),

n-1

fi=ne + p2 2 )t i comp s + p2 2 E1 (h).

eConnection components: for d E [0, 41)

a

Fig.

17,
ad

r3Fdi

r d

Fig

-r da

=bn 2n2
5 (61(h) + E0 (h)(5h))

= - (1 -- 2) b E)(e1(h) + E0 (h)(9h))

= + d(2 - 6)(1 - a) + b2 [a (1(h) + 8 0 (h)(5h))

=b 2 3 (81(h)+o(h) (5h))

=b"2"- (E)1(h)+ eo(h) (5h))

=5(2 - )(1 - a)6i + V2- [,(23 8 1(h) + E0 (h)( ))

=2(1 - 6) - (n - 1)d(2 - 6,)(1 - )-1 + V23 [a(8 1(E) + 0 ()(5))
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I = - } 2 ( hI0' daIp) + d 2 2( 1() + E0(h)(55)
r n 5b2 (e)(h) +Eo(h)(h)

r =(1 a) + ctb 2 (0 1(h) + 8o0 (h)(5h)

Ii =n 2in2 (( 1 (h) + eo(h) (6h)

i =s+ &V(e 1(1) + eo(h)(Oh)

F =(1 - a)6ij + a'b!Y (8 1(h) + Eo(h)(Oh)

-> r- = - (n - 1)( - n) + 1 h I0 + d n b (81j(I) + E8o(h)(6h);

fordE (, 1], for any I, J, K {(, y : i = 1 n},

r]K) rK (fin+ p 2 ei(h).

e Partial derivatives:

E {Zoo, Zjj, Zoi : i = 1, ..., n}.

e Commutator:

[lin, ZOO] = [Di, Zij] = 0,

O<i<k-

[Dh, Zoil - -2y'(Df + yo),

Ci5(D, + )-

Here ci are smooth and bounded function on n 4.

" Equations: inserting (3.15) into (3.4) gives

(II + YO)=kh =

Here f( can be expressed as (3.5).

" Time-like functions: to simplify the computation, we use

T 4=-d-logb and

(3.15) cauchy.21

T4 -ab"'



for some a > 1 to be determined later in the whole domain a 4 without modifying

them to be smooth near , = 1. This does not change the norm type.

n-5 n-1 ~ n-3 n-1 

(VT4, VT4= (VT4, VT 4 ) f- p1
2 P22 hP, + pl 2 P2 2 8 1 (h),

(VT 4 , VT4)p = (VT 4, VnT)T + p2 p 1 (h).

* Space-like hypersurfaces: define

ET; = {T4 = constant}

and consider the domain Q4 bounded by E4 and ET, for energy estimates.

* Quadratic form:

n-5 n-i

1p1 2 P22 8 1(h)| <

1+1 2 P22 61(h) <

(F(T4, v), VT4 )-

(F(T4, v), VT4)?
(F(T4, v), VT4)- 4

(F(T4, v), V7T4)7-

n-5 n-1 ~

<1 + Ip1 2 P2 2 61 (h),

n-5 n-i ~

1+pl1 2 P22 )1(h)|.

n-5 n-1-

* Sobolev norm: define for 1||p P22 h|K < e4 with 64 > 0 small,

N
MN'T~v - lo FT6k) 4(f N , 1T4jp

~ ( P2" (ad|adv12 + |baIV 2 + (1 + Zia)((1 - d) 2 |VovI 2 + -yov 2 )
T4 k=O

where a > 1 is a constant to be determined later. Here for E4 small,

, -a dy

aop-cdy

if a ~ 0

if a ~ 1

' ) Id1i T4 2

9



Moreover,

Zjkkhj< CP'2M4(T,'V),

|k|<N+1

Z la5kjl < Cp p MN (TI v)
|k|<{+1

n-5 n-1~ n-5 n-1

Divergence of quadratic form field: for 11 p 2 2 hIKoc + lipi 2 p2
2 0h||K < E'

with e' > 0 small,

divj (e- 1o9bF(T4, v)) =6-1 ((F(T4, v), V (- log b)) ; + divj (F (T4, v)))

5 -( V ,V 4)§(El§ + 70o)v

+ (E' + C(n, a))(-T4)-(F(T4, v), VT') ).

Here C(n, a) is a constant only depending on n and a which comes from

div (F(T 4 , v)) and its comparative with (F(T 4, v), VT4),. Previous compu-

tation in Section 2.4 gives

d(1 + "(2 - a)(1 - a) - 1(2 - Ct))
C(n, a) = max{ sup 2 2

o<d<1 ld(2 - ) a- 2 + a + a(1 ))

su ((n + 1)(1 - a) + 1
sup }

o<a<1 (1 - a) 2 + aa

Choose a large enough, such that e' + C(n, a) < 1 - 2J'. Replace v by &kh,

which gives

T4 fT~
1 (Lj + yo)5kh(V&kI, VT 4 )<d C(-T)~$(M (T, h)) 3 .

4

Here C is independent of e' if it is small enough.

* Energy estimates: notice here T' ~ -pi-ro o on E4 near S1 . Denote by min 4 {T} =

to < 0. Then for T4 E [to, 0],

- (LN(pi, h)) 2 = div(e-lo8bF(T4, v))dvol§,
4



which implies for c' small,

NT / T 4 h))2 N &T(~pI,h)) 2 + (1-
r (M4(T, O))2 2(+ (1 - 2Y')(-T41)-'(M (T4, h))2

+_ C(TI )- (M4N (TI, Ih))3.

Hence

M4(T, I) (C1 + C2(-T (3.16) cauchy.23

Here (3.16) gives

k
IkI N+l

|a :5kIz 5 C1E 3(CI--Ib- + C2d6')

(3.17) cauchy.24

k E3 2

|kl<N+1

Choose a such that a(6' - ) + > -", this can be done since we can choose

a large and c' small enough such that

4(' + C(n, a)) n.

Here aC(n, a) - for a -- > o. Denote by

o- = a(6' - 1) + a > 0

n-5 n-1

Choose 63 small enough, (3.17) gives ||pI2 p hllO
n-5 n-i ~

+||p 1
2 P2 2 &h|o < c is

valid. Hence (3.16) works until T = 0. Notice that o- > 0 only depends on n if

the Cauchy data small enough.

e Radiation field: here h is CDJ' up to Si nQ 4 . Hence the radiation field hI-sinQ4

is well defined. Define for pi = -Tjroa

T4 k+|0|IN

I-OkVhj-20~n 1db
a~v3 hj 2 7+ -=dO) -2

b



Then

OP1 (Q (p1, Ih))2 < CM4N(TI, h) QN(p1, h) : C (C' + C2 p' 1)QN (p1, h)

which implies

Q2N(pi, h) <C E3.

Here C' only depend on the Cauchy data only on E 4 if 63 is small enough.

|||P2- Hb(5n4 Q4 (0, Ih) < C4 es

3.3 Nonlinear Moller Wave Operator.

In Section 3.2, we showed for n > 5 by energy estimates that given Cauchy data

(h0 , h') E Uf' for N > n + 6, 3 c (0, ') and E > 0 small, then the Einstein vacuum

equations have a solution g = m + h such that I = p h is C"'' continuous to Si

and

||Ih|\ n-1I < C (||h l || n-1 + ||ht|| n-1 )
p p 2- H (S ) ph " H bN+1 h -+ H N( o)

for some 0 < 3' < 3 and o- > 0. These result can be extended to 3 > ! easily by same-2

estimates but with 0 < 3' < j
Definition 3.3.1. Define the nonlinear Moller wave operator for N > 0, 0 < 3 < 1,

o- > 0 and E > 0 small:

3 : U 3 (h o , h i ) -> I1 E PP HbN(1 X S"-1).

We study this map intensively in this section.

3.3.1 Refinement of Image Space.

First let us consider the Cauchy data with only conormal singularity at &Eo.



Proposition 3.3.2. If (ho, hi) E n g g Y±o(E 0) for 6 > 0 then for some a > 0

h c W 1',,"(X)

Proof. Fist it is easy to see in n 1 , we have a sequence of constant C"N' for all N' such

that

V T1 E [0, 1].

Then from energy estimates, for e small enough and i = 2, 3, 4,

||p (pop 2) h|oo+ Ip1 (pop2)-9hloo < CE,

MW(Tl h) < Co (1 ± "'

where C is a constant. Hence c'2, E3, E4 are fixed and small. For any N' > N, (3.5)

and interpolation methods imply that in each domain aj, i = 2, 3, 4, the cubic term

in the estimates can be replaced by

C(-T|)-iM N (T, h )( M'(l, h)) 2

Since (-T)--MN(Ti, h) is integrable and fixed w.r.t. T near 0, we have

MV'(T, ) C1 + C2(-T )

where 6' C (0,6) only depend on 6 and e', c3, e', and

C1|+|C 2| I C(lhll || ,N'±1(Eo) h +6H '(Eo)

Hence h only has conormal singularity at OX. El

Fix some (ho, hi) E 0NA d gW+6(Zo) for N> n + 6,6 C (0,1) and e > 0 small.

MJN'(T1, h) < CJN'MJ'(0, )



Then applying the linear wave operator O,, to the solution h gives

Olffhp = (L])h,, + (OZ - L1Og)hjj

= Fj,(Oh, Oh) -- H aO0h,,

E wn+1+26,n-1,2+2o(X)

Repeating k times until 2k + 2o- > "-2 + 6 and finally we have

h c n2+6, +6(X).

See [MW] for details.

Consider the Cauchy problem for linear equation with fixed h and g = m + h

09kAV = F 1 (h)(Ok, Oh), kt=0 = ko, Otklt=o = k1.

,Then k = h is a solution if (k0 , k1 ) = (h0 , h'). Denote by k = p k and define for

T E C, RTF E (-g, n - 1

7ZT : prC, x pr+l1C D (k, k1) -> Ics1 C (pop2)7n2 C'(S1).

Lemma 3.3.3. For RT E ("-29,n - 1), 9RZy and mR1  have the same boundary

operator.

Proof. With (k0 , k) G poC) x prC , we first apply EOm as above and have

kc 2e,

Consider the equation

k'0 = k", Otk'|t 0 = k1.Omk', =0,



Then

lm(k' - k) = g k - LI mk + F(h)(ah, ok) c A"+6+T+2,n-1,2+6+T+2

Hence k' - k E A ± AT+6+T+2,n~n1. If r < n - 1, this term

contributes zero to the boundary operator. 1

By the same proof for the mapping property of mR7 in [MW], we show that 9RF

defines a continuous map for J 6 (0, 1)

97Y: p2 +6HN+1(0) X p0+ 6 HN+1(0)

( OP2 )6 [H2 (IR; HN+o (n1 L n ; HbN 1(R))]

with norm bounded by constant C independent of g = m + h for any h as a solution

with Cauchy data (h0 , hl) E iNM n W+ 6 (E0 ) since they all give same boundary

operator. Here

9Ry(h0 , h') = o (h h').

Hence by density argument, we showed that

Proposition 3.3.4. The nonlinear Moller wave operator defines a continuous map

R9 : UN (pop 2)'[H (R; HN+}+6(gn1)) L2 (§n-1; HN+ (1))]

for N > n + 6, 6 E (0,1) and E> 0 small.

3.3.2 Constraint Condition for Characteristic Data.

For h = p h with h C0'" to Si for some 3' > 0, the harmonic gauge condition gives

at pi = 0

Or (hoo + hoi00) - 1Ojtrmh = 0

aor( IN0 + hIt90s) + 0OjatrmIh = 0
(3.18) constraint .4

This implies on Si,

Or hP = 0.

(cauchy.29)



3.3.3 Linearization.

The linearization of 9. at (0, 0), denoted by R) for simplicity, is the Moller wave

operator for linear equation:

OI1-hpt = 0

which is studied intensively in [MW].

Theorem 3.3.5. For o- C (0, 1), the map

nN±1

R :+p0 12 HN+1(o)Xp H N+1(Z 0)

(p2)( (; HN+}1+5(5n-1) n 2(sn--1; HN+

is an isomorphism.

'Definition 3.3.6. Define N the space consisting of the elements Ii which satisfies

the constraint condition (3.18) such that

Te te (pop2)mplci ( (n;H N+ tho +e (n -1))nL2(gn-1;HN+1 ())] - T1

Then the implicit function theorem and Proposition 3.3.4 show Theorem 1.0.1.



Chapter 4

Characteristic Initial Value

Problem for Einstein Vacuum

Equations with n > 5.

In this chapter, we consider the Characteristic initial value problem for Einstein

vacuum equations: given hsi a symmetric (n + 1) x (n + 1) matrix on Si satisfying

the constraint condition

OT(hOs + hsOi) - !0,trNhs1 = 0,

(-(h' + hI3 O1) + 203&Ttrmhs1 = 0, j n,

we want to find out a solution g = m + h to Rp, = 0 such that p152 hisi hsI. The

uniqueness theorem for Characteristic initial value problem allows us only considering

the reduced Einstein equations (1.3), or equivalently their conformal transformation

(3.3).

First, the isomorphism property of nonlinear Moller wave operator 9z shows the

existence and uniqueness theorem for the characteristic initial value problem directly:

Theorem 4.0.7. Given hsi c WN,' for 0 < o- < 1, N > n + 6, E > 0 small,

there exists a unique solution h to the Einstein vacuum equations with Cauchy data

(h0 , h') E UN,a such that h's provides the radiation field of h.



However, we also can prove the global existence and uniqueness theorem by energy

estimates for h in a dense subset of WV.

4.1 Backward Energy Estimates for n > 5.

In this section, we prove the the following theorem by energy estimates:

(thmchar)
Theorem 4.1.1. Given hsl G WN±o satisfying WNhS1+IKpHN+1 < E for some 0 <

- < < , N > n + 6 and E > 0 small , the Einstein vacuum equation has a unique2

solution h with Cauchy data (h0 , h') E UN, such that hSl provides the radiation field

of h.

Now assume si , for some N > n + 6, > - > 0, E > 0 small and

moreover for some 6 > 1

|Sflh1H N+l E.

Then the constraint condition gives

hs) = 0

and for all 0 < k < N - 1

||(p1k ppLo(S1) p C ohh(P0 P2 )6H k+2.

Here C only depend on 6 > 2. The global existence theorem and uniqueness hold for

linear equation. We prove the existence theorem by iteration and backward energy

estimates. Then the uniqueness theorem follows automatically.

Consider the a sequence of linear equations and their conformal transformation

for I > 0 starting with h- 1 = 0:

Egi h'+' = F(pv)(Oh', Ohi+1

(Dg +7



Here gi = m + h', jl = p 2g' and h' all have same characteristic data h. We also study

the equation for hl+1 - h' to get the convergence of h'.

E91 (hl+1 - hl) =(G9i - Ei9 1)hl + (F(Ohl, Ohl+1 ) - F(Oh'-1 , Ohl))

( + -Y(l)(ll- h') PI(TI+l ) - f'-(h ) + (0§-1-r -D4)h' + (6 --- 1)l

We basically apply the energy estimates backwards in each domain, which means we

have to change the sign of divergence terms and rebound them.

4.1.1 In n 4 .

We solve the equations up to E 4 . First on Si

D~Dkh(b)I =1J -
db

0 b

b 1,db" k+2 ~< '|23 C )C|h|lpH +2(snQ4)

Here C only depend on k and 6 > 0 and hence

|8ok I61b H k+2 < C CE ,2 s 0Cc,

where C' only depend on 1 < J' < J.

function T4 in this case. Define

We choose 1 < a < "-- for the time-like

2 k'T (F(T4, A'+1), 7T)g dyl)

k<N

2' ( F(T4,6h+),NT4)pdp')2
k<N

where the covariant derivatives are w.r.t. l and volume form is chosen such that

d pl A dT| = dvoll.

M4N (T4 +1)

K4N(T4 !+1)

isT4'

z4\4T4/



If nLk + j p2 2 5khll 4 and M(Tj, h') < E4 for some E4 > 0 small such

that 1 + E4 - 26' < 0 and E4 < ', then the harmonic gauge condition gives

n--1 - 1

2p2 h' 2 ~lP2 baPI w< h

Apply the energy estimates for h'+' backwards, we have

-Tr;M 4(T4 , I'+1j)2 - Br;(K 4 (TJ, h+1 ))2 <

Hence for all I

M4(T4, h'+1 ) + K4(T4, h+ 1 ) < CE,

where C is a constant independent of 64 if it is small. If E small enough, then

|pI p Dkh1+1|o 6 and M4 (T1, h+1) < 64

hold and hence hold for all 1. Moreover, the converges of h follows the energy estimates

for h'+ - hi!.

-TB(M 4 (TI, h+1 _ h)) 2
2N4 (-Tj)~MH(T , IH+1 - I')Mh(T , I -I),

M4(T, I-+1 _ h') e4 (-T)~ M4(T', h+ 1 - h)dT4.

Notice MN(T4, h0 - h-') CE small and T4 is bounded on Q4, hence

Mj(Tj, I1+1 - hI) < Ce6.

Hence we can choose E small enough such that

Mg(Tj, I'+1) C(Z 6) 5 CE(1 - ) <64.

0

I:
|kl<N+1
2

- I N 1+1))2.E4 (-T4' ) 2 ', hA (T4



Therefore h' converges to h such that

(K4N h)) 2 + MN 2T,) h CE < 64

is valid for all T4. Note T' is bounded above on Q4 and

L4(pi, h) < CC < 64, Vpi E [0, 00).

4.1.2 In Q3-

We solve the equation up to E3 here. Since r is bounded in this domain on Si,

|8Pskh(b)I $k/i(0)j + I OrOp6kdT'I CjjhI 1H k+2 (s, Q) <C.
b

Here C only depend on T0 which is fixed in our setting. Hence

||8p6kh||Hk+2 < C'CE.

Define

X AT3(F(T 3 , k1+1), VT/)dp1) ,
k<N

eAT 3 (F(T3, jkhl+1),
n{p(2ro-r) -T1} k<N

where dp is the volume form on ET; such that

d pi A dT' = dvoll.

Here h' all have same characteristic data on Si nQ 3 and E4 with

KN(TOTopi,I) = K4N (pih) <CI,

VT 3)dyl) 

M3N, l+ 1)

T;3

KsN(T3 l+1

3N(0



Choose A large enough. Then for EZkl<+1 lP17k ohIKo < 63 and M3N(-T 3) <E3

for some 63 > 0 small enough, by harmonic gauge condition we have

|h i j Ihj!,Idp < CeapW.

And apply the energy estimates backwards,

-r(M3N (TI h+1) 2 - OT 3 70-r, T"h+1))2- (T33 h - (K 3(T 3 h)

<-- 09r K3 (TO, T3, h 1 ) + E3 (-T3) (M 3, +1) 2

which implies

MN(T3, h) + K 3 (TO, T h) < CE.

Here C is independent of 63 if it is small enough. If c is small enough, then

k p1< 5k+1||oo + 63
|k|<N+1

and M3N(T3 h+ 1) 6 3

hold and hence hold for all 1. The convergence of h follows the energy estimates for

- It similar like in n 4 . The limit h satisfies

KN(7-0, c, h) C3e-

4.1.3 In Q2 -

We solve the equation up to E1 and then it follows directly from E1 to E0 since that

is a Cauchy problem with inverse time direction. First notice here

|0ask i(b)=1j bOa db

2( b2o d C11h||b1H k2(sn 2)b 10b 2 bS~



Here C only depend on 6 > 0 and hence

||OaN I|(po)"'Hb 2(SlnQ2 ) CCE,

where C' only depend on 0 < o' < o. Define

M2 (T' h+1) 2YT2 E(F(T2, 6h1+1), VT2) i dyl) -2.

T4 k<N

where the volume form is chosen such that

dpA / dT2 = dvolzi.

n-1 n-5-

If Zkig+1 pP) 2 kiK oo 6E2 and M 2N (T h) 62 for some E2 > 0 small such

that 62 + 2o' < 1, then the harmonic gauge condition gives

n-1. P1

|po 2hI hj aM2N(-a, h) da E2po

Here -T2 = pi = a. Apply the energy estimates for h+1 backwards, we have

-87;1(M2N(I h+1))2 < ( 2 - )i + C) (M2N (,h+1) 2.

Hence

If e is small enough,

jjP
2 P 2 akh1+lh E< |+ | E2

|kl<N+1

and M 2N(T2, h1+ 1) 62

hold and hence hold for all 1. The converges of h follows the energy estimates for

h+1 - hi.

We finish proving Theorem 4.1.1 by energy estimates.

M2N(T2 +1)<CE
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