
MIT Open Access Articles

An implementation of auditory
context recognition for mobile devices

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Perttunen, M. et al. “An Implementation of Auditory Context Recognition for Mobile
Devices.” Mobile Data Management: Systems, Services and Middleware, 2009. MDM '09. Tenth
International Conference on. 2009. 424-429. © 2009 IEEE.

As Published: http://dx.doi.org/10.1109/MDM.2009.74

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/60225

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/60225

An Implementation of Auditory Context Recognition for Mobile Devices

Mikko Perttunen1, Max Van Kleek2, Ora Lassila3, Jukka Riekki1

1Department of Electrical and

Information Engineering
University of Oulu

Oulu, Finland
{first.last}@ee.oulu.fi

2Computer Science and Artificial

Intelligence Laboratory
MIT

Cambridge, MA, USA
emax@csail.mit.edu

3Nokia Research Center Cambridge

Cambridge, MA, USA
ora.lassila@nokia.com

Abstract—Auditory contexts are recognized from
mixtures of sounds from mobile users’ everyday
environments. We describe our implementation of
auditory context recognition for mobile devices. In our
system we use a set of support vector machine classifiers
to implement the recognizer. Moreover, static and
runtime resource consumption of the system are
measured and reported.

Keywords: pattern recognition, classification, pervasive
computing

I. INTRODUCTION
In addition to speech, humans routinely use other

sounds emitted from mundane things happening around
them in everyday environments [1]. It has been shown
that they base their analysis on recognizing the sources
of the sounds in the audio entering the ears. The
combination of different sources produces a scene, for
example, a person riding a bus with people chatting
around her. The study of processing and understanding
these audio signals by computers is called
computational auditory scene analysis (CASA) [2].

It has been suggested that recognizing the overall
audio scene could be useful in context-aware systems
that react to changes in their usage environment [3-6].
Peltonen calls the classification of the mixtures of audio
themselves into predefined classes, without trying to
recognize the sources of audio, computational auditory
scene recognition (CASR) [4].

Importantly, analyzing the auditory scene is
unobtrusive and does not require extra instrumentation;
microphones in mobile devices can be used to record
excerpts of audio. Moreover, as opposed to most
positioning systems, auditory scenes can be analyzed
without using a fixed network infrastructure.

The main contributions of this paper are the design
and implementation of auditory context recognition for
mobile devices, and an evaluation of the resource
consumption thereof.

The rest of this paper is organized as follows: In the
next section we describe the design of the system.

Section 3 goes through our experiments and results.
Section 4 is about ongoing and future work. In section 5
related work is reviewed. Finally, in section 6 we
summarize.

II. DESIGN AND IMPLEMENTATION
In this section we describe an implementation of

auditory context recognition system for Symbian OS
(version 9.1) mobile phones and for the Linux based
mobile computing platform Maemo (http://maemo.org).

A. Architecture
The system components of our basic scene

recognition application are shown in Fig. 1 and
described in the following subsections. As shown in
Fig. 2, the system uses a (microphone specific)
threshold to discriminate between silence and all other
auditory contexts. When the threshold is not exceeded,
the more complex spectral features need not be
calculated.

B. Feature Extraction
Feature extraction is done from 3s segment of audio

(8kHz, 8bit). Stäger et al. [7] showed that the on-time of
sensors dominate power consumption of audio and
accelerometer based recognition. In our previous work
[8], we showed that for the Ma et al. dataset [5],
recognition accuracy is not improved significantly for
segments longer than 3s. For these reasons, we fixed the
segment duration to 3s in our experiments.

The segment is windowed using a Hamming
window into 512-sample frames with an overlap. We
used 0, 128, 256, and 384 sample overlaps in the

Fig. 1. System components

2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware

978-0-7695-3650-7/09 $25.00 © 2009 IEEE

DOI 10.1109/MDM.2009.74

424

2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware

978-0-7695-3650-7/09 $25.00 © 2009 IEEE

DOI 10.1109/MDM.2009.74

424

Fig. 2. System flowchart

experiments described in the following sections. Thus,
FFT is extracted from 64ms windows. Then, triangular
bandbass filters are applied to yield the Mel spectrum.
Using the 40 Mel spectrum coefficients, 13 MFFCs for
the current frame are determined through DCT. To get
the final features, the MFCCs are averaged over all the
frames in the segment through

where is the mth averaged MFCC and K is the
number of frames in the segment. Similarly, the Mel
spectrum coefficients (Ej) are averaged by

where J=40, to yield the averaged Mel spectrum over
the segment length. Both of these feature vectors are
then normalized independently using

where is the ith element (e.g. MFCC0) of a averaged
spectral feature vector over the segment length, and

denotes the final normalized feature value. Here, x
refers to the outputs either of (1) or (2). The above
formulas are adapted from [9].

As mentioned in [9] averaging has the advantage
that the final feature set of a segment always has the
same size, regardless of the segment length. This allows
experimentation with different segment lengths in the
case of SVMs without the feature set growing
proportional to segment length. Intuitively, averaging
has the effect of making the segment features look the
more distinctive of the environment they are extracted
from, the longer the segment length. For example, a
random short sound might be averaged off. However,
also a short but distinctive sound might vanish.

We do not use features directly related to audio
volume; when deploying auditory context recognition
to practical usage situations, the audio signal energy
captured from semantically same contexts varies. This
could be due to a phone being carried in a hand versus
in a bag. In our previous experiments we quantified this
through evaluating recognition accuracy of energy-
dependent feature vectors against a dataset with and
without applying gain [8].

The feature extraction implementation is based
MeapSoft1 , the Mel spectrum and MFCC extraction
implementations of which we converted to ANSI C.

C. Classification
We utilize support vector machines [10] to

implement the auditory context recognizer. As
LibSVM 2 [11] version 2.85 is used to train and
implement our support vector machine based auditory
context recognizers, the “one-against-one" [10] multi-
class classification scheme is applied. In this scheme
k(k-1)/2 SVMs are trained and classification is done
through voting: each classifier output is considered a
vote and the predicted class is determined through
maximum number of votes.

To be able to run classification on our target
devices, we first ported and built the feature extraction
and classifier subset of the LibSVM [11] from C++ to
ANSI C, and then used the compiler settings for the
targets devices as described in Section 4.1.

As with our previous investigation, models were
pre-trained on our workstation using dataset 1 from Ma
et al. which constituted 5-minute recordings of 12
classes each, and tested on another set of 5-minute
recordings (dataset 2).

LibSVM was set to produce a classifier of type “C-
SVC” [11, 12], with probability estimation enabled. For
RBF kernel the regularization parameter and gamma
were tuned using values from 0.1 to 1000 with a decade
step. For polynomial kernel, kernel degrees from 1 to 4
were tried in addition, resulting in a three dimensional

1 http://labrosa.ee.columbia.edu/meapsoft/
2 http://www.csie.ntu.edu.tw/~cjlin/libsvm

425425

grid of parameter values. The resulting models were
then transferred to each of the devices, and loaded into
our test application.

D. Test Aapplication
The test application, shown in Fig. 3, was built to

allow a simple investigation of how pre-trained audio
scene classifiers would work on real devices in real
usage situations “in the field”. To enable controlled
analysis, we additionally incorporated the facility to
keep captured audio for later analysis, as well as to “re-
play” e.g., simulate previously recorded audio against
the classifier on each device.

III. EXPERIMENTS AND RESULTS

A. Platform Details
The devices we chose were a standard smartphone

and a handheld linux-based touchscreen Internet tablet.
The smartphone is Nokia E61
(http://www.forum.nokia.com/devices/E61) with 21MB
free RAM and ARM 9 CPU at 220 Mhz, running
Symbian OS 9.1 with S60 3rd edition. Binaries were
built without debug information.

The internet tablet was a Nokia N800 with 128 MB
RAM and 256 MB internal flash memory and an TI
OMAP2420 ARM 11 CPU at 400Mhz running Internet
Tablet OS 2008 edition. For compiling the code, we
used the scratchbox build environment and gcc. To
optimize the code and to use floating point unit on
N800, the optimisation flags mfpu=vfp, mfloat-
abi=softfp, and mcpu=arm1136j-s were used.

B. Static Measures
Table I shows the dependency of recognition

accuracy on the window overlap used in feature
extraction. LibSVM models with 3s segment duration
using Mel spectrum (40 features) or MFCC (13
features) as features were used. For RBF kernel the
regularization parameter and gamma were tuned using
values from 0.1 to 1000 with a decade step. For
polynomial kernel, kernel degrees from 1 to 4 were
tried in addition, resulting in a three dimensional grid of
parameter values. For both kernel types, the kernel
providing the best accuracy is reported. Accuracy was
determined by training on dataset1 and testing against
dataset2 of Ma et al. [5]. All models were trained to
output probability estimates. Although accuracy does
not increase monotonically with increasing overlap it
can be seen that either 128 or 256 sample overlap is
suitable. This is significant for runtime characteristics;
we chose to use 128 sample overlap in our runtime
experiments, described in the next section.

From Table II it can be seen that the resulting model
file sizes, varying from 80kb to 210kb, lend themselves
to be loaded into modern mobile devices. Moreover,

Fig. 3. Test application on a Symbian phone (Nokia
E61). The figure shows the two most likely auditory
contexts for the processed audio segment.

using MFCC features produces models with more
support vectors, but as each vector is shorter than in the
case of Mel spectrum features, the model sizes are
smaller.

The file size of executable (including the test
application) on N800 varies from 80kb to 100kb with
the different build options. On Symbian, the DLLs of
both feature extraction and classifier are a bit over
10kb. In the next section we study runtime
characteristics of these models.

C. Runtime Performance
Both feature extraction and the classifier

implementations use floating-point calculations.
According to the Symbian documentation3 floating-
point calculations are multitudes of slower than integer
calculations on a device with no floating-point unit.

Thus, we wanted to evaluate the runtime
performance on a device with and without a floating-
point unit. On the Nokia N800 device we run tests both
with and without using floating-point unit, and
compared these results with the corresponding
performance on a Symbian phone without a floating-
point unit, namely Nokia E61. We note that our code
assumed floating point capability, and that if we had
converted it manually to use only fixed-point
arithmetic, our results would likely be different.

The runtime measurements were done using timing
and memory monitoring facilities built into each
device’s operating system platform. We averaged each
metric over ten runs for our reported results. For
classification, only the time taken to produce a
prediction is measured; that is, the time taken to load
model into memory was not measured, because that
needs to be done only once. However, it can be said that

3
http://www.symbian.com/developer/techlib/v9.1docs/d
oc_source/index.html

426426

our test application produces no noticeable delay at
startup, when the model is loaded.

It should also be noted that because in our scheme
the length of feature vector is independent of the
analyzed segment length, runtime resource
consumption of classification is independent of the
segment duration, respectively. This is not the case
when using a HMM-based classifier (as in e.g. [5, 6]),
because the features extracted from one window
constitute an element in the HMM input sequence.

Table III and Table IV show the results for the E61
and N800 devices. The use of the floating point unit of
this device can be enabled and disabled with build flags
of the Maemo SDK, causing alternative instruction sets
to be used. The measurements without using floating
point unit are shown in parenthesis. Comparing the
results in these tables, it can be seen that floating point
unit of the N800 device contribute a large difference in
running times. As the tables show, the feature
extraction takes far longer than SVM prediction
(classification).

Table IV shows that using floating point unit on
N800, the feature extraction and classification takes
about 0.3s combined for polynomial kernel with 40-
element Mel spectrum as features. This is fast enough
for near real time operation, because recording audio

and feature extraction can be done in parallel. Thus, the
latency of recognition equals the duration of the
segment (here, 3s). The same task takes about 1.5s on
the Symbian device (Table III); latency is still clearly
equal to the segment length.

From Table IV it can be also noticed that using our
system, MFCC calculation consumes about double the
time that Mel spectrum determination takes. Due to
this, and due to the fact that the running time of
classification is dominated by the feature extraction,
using Mel spectrum instead of MFCC features seems to
be more efficient.

IV. ONGOING AND FUTURE WORK
The work described in this paper is part of our

ongoing effort at finding methods for sensing and
extracting context that can be directly applied to make
applications more aware of their user and environment
using readily available hardware and software platforms
today. Initially, we collected a small database of
recordings from our typical auditory environments for
training and testing classifiers using LibSVM. The
auditory contexts included subway, office, walking on a
crowded street, and home with TV on. Additionally, a

TABLE I. DEPENDENCY OF RECOGNITION ACCURACY ON WINDOW OVERLAP IN FEATURE EXTRACTION.

 RBF Polynomial
window overlap MFCC Mel MFCC Mel

0 78.5% 85.7% 79.6% 85.4%
128 86.8% 93.6% 87.1% 93.5%
256 87.6% 95.5% 88.5% 95.3%
384 88.6% 94.5% 89.6% 94.8%

TABLE II. DETAILED MODEL INFORMATION FOR THE MODELS PRODUCED USING 128 SAMPLE OVERLAP, CORRESPONDING TO TABLE I

 RBF Polynomial
 MFCC Mel MFCC Mel

#training examples 1200 1200 1200 1200
#support vectors 468 380 415 329
model size (kb) 110 210 80 180
kernel degree - - 4 2
gamma 1 0.1 0.1 0.1

TABLE III. RUNTIME MEASUREMENTS ON NOKIA E61 (3S SEGMENT, 8BIT, 8000HZ). THIS DEVICE DOES NOT HAVE A FLOATING POINT UNIT

 RBF Polynomial
 MFCC Mel MFCC Mel

Feature extraction (s) 3.70±0.01 1.39±0.01 3.70±0.01 1.39±0.01
Classification (s) 0.12±0.00 0.14±0.01 0.11±0.00 0.12±0.00

TABLE IV. RUNTIME MEASUREMENTS ON NOKIA N800 (3S SEGMENT, 8BIT, 8000HZ)

 RBF kernel Polynomial kernel
 MFCC

with fpu (without fpu)
Mel

with fpu (without fpu)
MFCC

with fpu (without fpu)
Mel

with fpu (without fpu)
Feature extraction (s) 0.59±0.01 (2.44±0.03) 0.28±0.02 (0.72±0.01) 0.59±0.01 (2.44±0.03) 0.28±0.02 (0.72±0.01)
Classification (s) 0.02±0.01 (0.07±0.01) 0.02±0.01 (0.06±0.01) 0.02±0.00 (0.05±0.01) 0.02±0.01 (0.06±0.01)
Peak memory (MB) 4.84 (4.84) 4.84 (4.84) 4.80 (4.80) 4.80 (4.80)

427427

separate SVM was trained to discriminate between music
and speech. With this dataset, we were able to perform
simple ‘action research’, that is, we carried the mobile phone
running our recognizer application in those environments
where the recordings were from and observed its
functioning. As these tests were informal, it can only be
mentioned that environments such as riding subway, office,
and street with traffic and people seemed to be well
recognized in practice. As a next step we plan to measure the
power consumption of our implemented system.

We have also begun to integrate the auditory context
recognizer with our user modeling framework [13] to collect
more comprehensive data about user’s computer activity.

In addition to the above work, we are planning a
comparative study of the effects of microphone
characteristics on scene classification performance. For this,
we are in the process of collecting a dataset using a variety of
microphones, both embedded in consumer devices and
professional-grade audio equipment, such as laptops,
palmtops and mobile phones, Bluetooth headsets, and studio-
quality field recording gear.

Finally, we aim to improve our scheme by utilizing
temporal smoothing over a longer duration, perhaps using
heuristic rules or HMMs to model the possible transitions
between contexts, to filter out unlikely context changes from
the recognizer output.

V. RELATED WORK
We limit the content of this section on research on

auditory scene and auditory context recognition and leave
out other work on context-awareness. Perhaps the first
attempt at recognizing auditory contexts is due to Sawhney
[3]. In the work following his introduction the most relevant
to ours is Ma et al., who classified 12 auditory contexts using
a HMM-based classifier [5]. They achieved a reported 96%
true positive accuracy by using 9-stage left-to-right HMMs.
The authors used 12 MFCCs and a log energy term with their
respective deltas, resulting in a 39-element feature vector.

Eronen et al. developed a HMM-based classifier for 28
auditory contexts, using a dataset they collected [6]. Eronen
et al. performed also a study on the human perception of the
same set of auditory contexts. This was done through
listening tests, where the time taken to make a decision was
recorded, and the resulting recognition accuracy compared to
that of their system. In these experiments, 18 contexts were
used as test inputs, and both the system and the test subjects
had to choose from the full set of 28 contexts. The average
accuracy for the human subjects was 69%, and the decision
time averaged 14s. By comparison, their automatic system
showing a steady increase in recognition accuracy until 20s,
and a plateau of 72% accuracy at 60s.

Korpipää et al. use naïve Bayes classifiers to recognize 7
auditory contexts [14] from 1s segments. However, they
used temporal smoothing (majority voting) in a 5s window to
improve the classification results. This yielded about 90%
accuracy.

In [15], Lu et al. apply support vector machines (SVMs)
for classifying among four classes: non-pure speech, pure
speech, background sound, demonstrating 80% to 96%
accuracy from 0.1 to 1 second duration audio segments,
respectively. Like our approach presented in this paper, they
derive a single set of MFCC based features (means and
variances) for each segment, instead of treating the problem
as sequence classification task using HMMs.

Ward et al. [16] classified 9 workshop activities (e.g.
drilling and sawing) using sound and acceleration. Using
sound only, their system achieved 95.6% accuracy for user-
dependent and 77.2% accurady for user-independent
training. The authors also evaluated segmentation methods
for continuous workshop audio.

Stäger et al. [7] studied the tradeoff between recognition
accuracy and power consumption. A wearable device
containing both accelerometers and a microphone were used
in the study. Different methods and parameters were tested
for feature extraction and classification. The authors found
that through parameter optimization power consumption may
be reduced by a factor of 2-4, causing only a slight
degradation in recognition performance. A particularly
interesting finding was the large difference in power
consumption of a mic (<0.5mW) and an accelerometer
(~3mW) in the sampling stage of a typical setup. Moreover,
the various feature sets did not contribute remarkably to the
overall power consumption, which was dominated by on-
time of sensors and the length of FFT sample array. A
limitation of the study is that it considers only power
consumption, whereas key contributors such as memory
consumption and model size were not thoroughly analyzed.

VI. SUMMARY
In this paper we have described an implementation of

auditory context recognition for mobile devices and analyzed
its resource consumption. The results show that static model
sizes of SVM-based auditory recognition system are not
restrictive for typical mobile devices. Moreover, the runtime
memory consumption and computational load are
manageable. The results also demonstrate that, while MFCCs
are often used for this task, the use of the Mel spectrum
features seems to provide better performance both in terms
of resource consumption and in terms of accuracy.
Classification ran in almost negligible time for all used
models. These results may be used as a basis when selecting
components for such systems, and as a baseline for
comparison in any future studies using other devices or
variations of the recognition system.

ACKNOWLEDGMENT
The authors would like to thank the Nokia Research

Center. The first author would like to thank the Fulbright -
Technology Industries of Finland and the Finnish Graduate
School in Electronics, Telecommunication, and Automation
(GETA).

428428

REFERENCES
[1] A.S. Bregman, Auditory Scene Analysis: The Perceptual

Organization of Sound. Cambridge, MA: The MIT Press, 1994.
[2] D. Wang and G.J. Brown, Computational Auditory Scene Analysis -

Principles, Algorithms, and Applications. Wiley-IEEE Press, 2006.
[3] N. Sawhney, “Situational Awareness from Environmental Sounds,”

url: http://web.media.mit.edu/~nitin/papers/Env_Snds/EnvSnds.html.
[4] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and T. Sorsa,

“Computational auditory scene recognition,” Proc. Acoustics,
Speech, and Signal Processing (ICASSP '02), IEEE Press, May 2002,
pp. 1941-1944.

[5] L. Ma, B. Milner, and D. Smith, “Acoustic environment
classification,” ACM Trans.Speech Lang.Process., Vol. 3, 2, pp. 1-22,
doi: 10.1145/1149290.1149292.

[6] A.J. Eronen, V.T. Peltonen, J.T. Tuomi, A.P. Klapuri, S. Fagerlund,
T. Sorsa, G. Lorho, and J. Huopaniemi, “Audio-based context
recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, Vol. 14, Jan 2006, pp. 321-329, doi:
10.1109/TSA.2005.854103.

[7] M. Stäger, P. Lukowicz, and G. Tröster, “Power and accuracy trade-
offs in sound-based context recognition systems,” Pervasive and
Mobile Computing, Vol. 3, June 2007, pp. 300-327.

[8] M. Perttunen, M. Van Kleek, O. Lassila, and J. Riekki, “Auditory
Context Recognition Using SVMs,” Proc. Mobile Ubiquitous
Computing, Systems, Services and Technologies (UBICOMM’08),
IEEE Press, Oct. 2008, Valencia, Spain, pp. 102-108, doi:
10.1109/UBICOMM.2008.21.

[9] C. Lee, C. Chou, C. Han, and R. Huang, “Automatic recognition of
animal vocalizations using averaged MFCC and linear discriminant
analysis,” Pattern Recognition Letters, Vol. 27, Jan. 2006, pp. 93-101,
doi: 10.1016/j.patrec.2005.07.004.

[10] C.M. Bishop, Pattern Recognition and Machine Learning. Singapore:
Springer, 2006.

[11] C. Chang and C. Lin, “LIBSVM: a library for support vector
machines”, 2001.

[12] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach.Learn.,
Vol. 20, Sep. 1995, pp. 273-297, doi: 10.1023/A:1022627411411.

[13] M. Van Kleek and H. Shrobe, “A Practical Activity Capture
Framework for Personal, Lifetime User Modeling,” Lecture Notes In
Artificial Intelligence; Vol. 4511, Springer-Verlag 2007, pp. 298-302,
doi: 10.1007/978-3-540-73078-1_33.

[14] P. Korpipää, M. Koskinen, J. Peltola, S. Mäkelä, and T. Seppänen,
“Bayesian approach to sensor-based context awareness,” Personal
Ubiquitous Comput., Vol. 7, July 2003, pp. 113-124, doi:
10.1007/s00779-003-0237-8.

[15] L. Lu, H. Zhang, and S.Z. Li, “Content-based audio classification and
segmentation by using support vector machines,” Multimedia
Systems, Vol. 8, April 2003, pp. 482-492, doi:10.1007/s00530-002-
0065-0.

[16] J.A. Ward, P. Lukowicz , G. Troster, and T.E. Starner, “Activity
Recognition of Assembly Tasks Using Body-Worn Microphones and
Accelerometers,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, Vol. 28, Oct. 2006, pp. 1553-1567, doi:
10.1109/TPAMI.2006.197.

429429

