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Abstract—Auditory contexts are recognized from 
mixtures of sounds from mobile users’ everyday 
environments. We describe our implementation of 
auditory context recognition for mobile devices. In our 
system we use a set of support vector machine classifiers 
to implement the recognizer. Moreover, static and 
runtime resource consumption of the system are 
measured and reported. 
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I.  INTRODUCTION 
In addition to speech, humans routinely use other 

sounds emitted from mundane things happening around 
them in everyday environments [1]. It has been shown 
that they base their analysis on recognizing the sources 
of the sounds in the audio entering the ears. The 
combination of different sources produces a scene, for 
example, a person riding a bus with people chatting 
around her. The study of processing and understanding 
these audio signals by computers is called 
computational auditory scene analysis (CASA) [2].  

It has been suggested that recognizing the overall 
audio scene could be useful in context-aware systems 
that react to changes in their usage environment [3-6]. 
Peltonen calls the classification of the mixtures of audio 
themselves into predefined classes, without trying to 
recognize the sources of audio, computational auditory 
scene recognition (CASR) [4].  

Importantly, analyzing the auditory scene is 
unobtrusive and does not require extra instrumentation; 
microphones in mobile devices can be used to record 
excerpts of audio. Moreover, as opposed to most 
positioning systems, auditory scenes can be analyzed 
without using a fixed network infrastructure.  

The main contributions of this paper are the design 
and implementation of auditory context recognition for 
mobile devices, and an evaluation of the resource 
consumption thereof.  

The rest of this paper is organized as follows: In the 
next section we describe the design of the system. 

Section 3 goes through our experiments and results. 
Section 4 is about ongoing and future work. In section 5 
related work is reviewed. Finally, in section 6 we 
summarize. 

II. DESIGN AND IMPLEMENTATION 
In this section we describe an implementation of 

auditory context recognition system for Symbian OS 
(version 9.1) mobile phones and for the Linux based 
mobile computing platform Maemo (http://maemo.org). 

A. Architecture 
The system components of our basic scene 

recognition application are shown in Fig. 1 and 
described in the following subsections. As shown in 
Fig. 2, the system uses a (microphone specific) 
threshold to discriminate between silence and all other 
auditory contexts. When the threshold is not exceeded, 
the more complex spectral features need not be 
calculated. 

B. Feature Extraction 
Feature extraction is done from 3s segment of audio 

(8kHz, 8bit). Stäger et al. [7] showed that the on-time of 
sensors dominate power consumption of audio and 
accelerometer based recognition. In our previous work 
[8], we showed that for the Ma et al. dataset [5], 
recognition accuracy is not improved significantly for 
segments longer than 3s. For these reasons, we fixed the 
segment duration to 3s in our experiments.  

The segment is windowed using a Hamming 
window into 512-sample frames with an overlap. We 
used 0, 128, 256, and 384 sample overlaps in the 

 

 
 

Fig. 1. System components 
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Fig. 2. System flowchart 
 
experiments described in the following sections. Thus, 
FFT is extracted from 64ms windows. Then, triangular 
bandbass filters are applied to yield the Mel spectrum. 
Using the 40 Mel spectrum coefficients, 13 MFFCs for 
the current frame are determined through DCT. To get 
the final features, the MFCCs are averaged over all the 
frames in the segment through 
 

 
 
where  is the mth averaged MFCC and K is the 
number of frames in the segment. Similarly, the Mel 
spectrum coefficients (Ej) are averaged by 
 

 
 
where J=40, to yield the averaged Mel spectrum over 
the segment length. Both of these feature vectors are 
then normalized independently using 

 

 
 

where  is the ith element (e.g. MFCC0) of a averaged 
spectral feature vector  over the segment length, and    

denotes the final normalized feature value. Here, x 
refers to the outputs either of (1) or (2). The above 
formulas are adapted from [9]. 

As mentioned in [9] averaging has the advantage 
that the final feature set of a segment always has the 
same size, regardless of the segment length. This allows 
experimentation with different segment lengths in the 
case of SVMs without the feature set growing 
proportional to segment length. Intuitively, averaging 
has the effect of making the segment features look the 
more distinctive of the environment they are extracted 
from, the longer the segment length. For example, a 
random short sound might be averaged off. However, 
also a short but distinctive sound might vanish. 

We do not use features directly related to audio 
volume; when deploying auditory context recognition 
to practical usage situations, the audio signal energy 
captured from semantically same contexts varies. This 
could be due to a phone being carried in a hand versus 
in a bag. In our previous experiments we quantified this 
through evaluating recognition accuracy of energy-
dependent feature vectors against a dataset with and 
without applying gain [8].  

The feature extraction implementation is based 
MeapSoft1 , the Mel spectrum and MFCC extraction 
implementations of which we converted to ANSI C. 

C. Classification 
We utilize support vector machines [10] to 

implement the auditory context recognizer. As 
LibSVM 2  [11] version 2.85 is used to train and 
implement our support vector machine based auditory 
context recognizers, the “one-against-one" [10] multi-
class classification scheme is applied. In this scheme 
k(k-1)/2 SVMs are trained and classification is done 
through voting: each classifier output is considered a 
vote and the predicted class is determined through 
maximum number of votes. 

To be able to run classification on our target 
devices, we first ported and built the feature extraction 
and classifier subset of the LibSVM [11] from C++ to 
ANSI C, and then used the compiler settings for the 
targets  devices as described in Section 4.1. 

As with our previous investigation, models were 
pre-trained on our workstation using dataset 1 from Ma 
et al. which constituted 5-minute recordings of 12 
classes each, and tested on another set of 5-minute 
recordings (dataset 2).  

LibSVM was set to produce a classifier of type “C-
SVC” [11, 12], with probability estimation enabled. For 
RBF kernel the regularization parameter and gamma 
were tuned using values from 0.1 to 1000 with a decade 
step. For polynomial kernel, kernel degrees from 1 to 4 
were tried in addition, resulting in a three dimensional 

                                                           
1 http://labrosa.ee.columbia.edu/meapsoft/ 
2 http://www.csie.ntu.edu.tw/~cjlin/libsvm 
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grid of parameter values. The resulting models were 
then transferred to each of the devices, and loaded into 
our test application.  

D. Test Aapplication 
The test application, shown in Fig. 3, was built to 

allow a simple investigation of how pre-trained audio 
scene classifiers would work on real devices in real 
usage situations “in the field”. To enable controlled 
analysis, we additionally incorporated the facility to 
keep captured audio for later analysis, as well as to “re-
play” e.g., simulate previously recorded audio against 
the classifier on each device. 

III. EXPERIMENTS AND RESULTS 

A. Platform Details 
The devices we chose were a standard smartphone 

and a handheld linux-based touchscreen Internet tablet. 
The smartphone is Nokia E61 
(http://www.forum.nokia.com/devices/E61) with 21MB 
free RAM and ARM 9 CPU at 220 Mhz, running 
Symbian OS 9.1 with S60 3rd edition. Binaries were 
built without debug information.  

The internet tablet was a Nokia N800 with 128 MB 
RAM and 256 MB internal flash memory and an TI 
OMAP2420 ARM 11 CPU at 400Mhz running Internet 
Tablet OS 2008 edition. For compiling the code, we 
used the scratchbox build environment and gcc. To 
optimize the code and to use floating point unit on 
N800, the optimisation flags mfpu=vfp, mfloat-
abi=softfp, and mcpu=arm1136j-s were used. 

B. Static Measures 
Table I shows the dependency of recognition 

accuracy on the window overlap used in feature 
extraction. LibSVM models with 3s segment duration 
using Mel spectrum (40 features) or MFCC (13 
features) as features were used. For RBF kernel the 
regularization parameter and gamma were tuned using 
values from 0.1 to 1000 with a decade step. For 
polynomial kernel, kernel degrees from 1 to 4 were 
tried in addition, resulting in a three dimensional grid of 
parameter values. For both kernel types, the kernel 
providing the best accuracy is reported. Accuracy was 
determined by training on dataset1 and testing against 
dataset2 of Ma et al. [5]. All models were trained to 
output probability estimates. Although accuracy does 
not increase monotonically with increasing overlap it 
can be seen that either 128 or 256 sample overlap is 
suitable. This is significant for runtime characteristics; 
we chose to use 128 sample overlap in our runtime 
experiments, described in the next section.  

From Table II it can be seen that the resulting model 
file sizes, varying from 80kb to 210kb, lend themselves 
to be loaded into modern mobile devices. Moreover,  

 

 
 

Fig. 3. Test application on a Symbian phone (Nokia 
E61). The figure shows the two most likely auditory 
contexts for the processed audio segment. 

 
using MFCC features produces models with more 
support vectors, but as each vector is shorter than in the 
case of Mel spectrum features, the model sizes are 
smaller.  

The file size of executable (including the test 
application) on N800 varies from 80kb to 100kb with 
the different build options. On Symbian, the DLLs of 
both feature extraction and classifier are a bit over 
10kb. In the next section we study runtime 
characteristics of these models. 

C. Runtime Performance 
Both feature extraction and the classifier 

implementations use floating-point calculations. 
According to the Symbian documentation3 floating-
point calculations are multitudes of slower than integer 
calculations on a device with no floating-point unit.  

Thus, we wanted to evaluate the runtime 
performance on a device with and without a floating-
point unit. On the Nokia N800 device we run tests both 
with and without using floating-point unit, and 
compared these results with the corresponding 
performance on a Symbian phone without a floating-
point unit, namely Nokia E61. We note that our code 
assumed floating point capability, and that if we had 
converted it manually to use only fixed-point 
arithmetic, our results would likely be different. 

The runtime measurements were done using timing 
and memory monitoring facilities built into each 
device’s operating system platform. We averaged each 
metric over ten runs for our reported results. For 
classification, only the time taken to produce a 
prediction is measured; that is, the time taken to load 
model into memory was not measured, because that 
needs to be done only once. However, it can be said that 

                                                           
3 
http://www.symbian.com/developer/techlib/v9.1docs/d
oc_source/index.html 

426426



our test application produces no noticeable delay at 
startup, when the model is loaded.  

It should also be noted that because in our scheme 
the length of feature vector is independent of the 
analyzed segment length, runtime resource 
consumption of classification is independent of the 
segment duration, respectively. This is not the case 
when using a HMM-based classifier (as in e.g. [5, 6]), 
because the features extracted from one window 
constitute an element in the HMM input sequence. 

Table III and Table IV show the results for the E61 
and N800 devices. The use of the floating point unit of 
this device can be enabled and disabled with build flags 
of the Maemo SDK, causing alternative instruction sets 
to be used. The measurements without using floating 
point unit are shown in parenthesis. Comparing the 
results in these tables, it can be seen that floating point 
unit of the N800 device contribute a large difference in 
running times. As the tables show, the feature 
extraction takes far longer than SVM prediction 
(classification). 

Table IV shows that using floating point unit on 
N800, the feature extraction and classification takes 
about 0.3s combined for polynomial kernel with 40-
element Mel spectrum as features. This is fast enough 
for near real time operation, because recording audio 

and feature extraction can be done in parallel. Thus, the 
latency of recognition equals the duration of the 
segment (here, 3s). The same task takes about 1.5s on 
the Symbian device (Table III); latency is still clearly 
equal to the segment length. 

From Table IV it can be also noticed that using our 
system, MFCC calculation consumes about double the 
time that Mel spectrum determination takes. Due to 
this, and due to the fact that the running time of 
classification is dominated by the feature extraction, 
using Mel spectrum instead of MFCC features seems to 
be more efficient. 

IV. ONGOING AND FUTURE WORK 
The work described in this paper is part of our 

ongoing effort at finding methods for sensing and 
extracting context that can be directly applied to make 
applications more aware of their user and environment 
using readily available hardware and software platforms 
today. Initially, we collected a small database of 
recordings from our typical auditory environments for 
training and testing classifiers using LibSVM. The 
auditory contexts included subway, office, walking on a 
crowded street, and home with TV on. Additionally, a 

TABLE I.  DEPENDENCY OF RECOGNITION ACCURACY ON WINDOW OVERLAP IN FEATURE EXTRACTION.  

          RBF    Polynomial 
window overlap MFCC Mel MFCC Mel 

0 78.5% 85.7% 79.6% 85.4% 
128 86.8% 93.6% 87.1% 93.5% 
256 87.6% 95.5% 88.5% 95.3% 
384 88.6% 94.5% 89.6% 94.8% 

TABLE II.  DETAILED MODEL INFORMATION FOR THE MODELS PRODUCED USING 128 SAMPLE OVERLAP, CORRESPONDING TO TABLE I 

          RBF    Polynomial 
 MFCC Mel MFCC Mel 

#training examples 1200 1200 1200 1200 
#support vectors 468 380 415 329 
model size (kb) 110 210 80 180 
kernel degree - - 4 2 
gamma 1 0.1 0.1 0.1 

TABLE III.  RUNTIME MEASUREMENTS ON NOKIA E61 (3S SEGMENT, 8BIT, 8000HZ). THIS DEVICE DOES NOT HAVE A FLOATING POINT UNIT 

             RBF        Polynomial 
 MFCC Mel MFCC Mel 

Feature extraction (s) 3.70±0.01 1.39±0.01 3.70±0.01 1.39±0.01 
Classification (s) 0.12±0.00 0.14±0.01 0.11±0.00 0.12±0.00 

TABLE IV.  RUNTIME MEASUREMENTS ON NOKIA N800 (3S SEGMENT, 8BIT, 8000HZ) 

            RBF kernel       Polynomial kernel 
 MFCC 

with fpu  (without fpu) 
Mel 

with fpu  (without fpu) 
MFCC 

with fpu  (without fpu) 
Mel 

with fpu  (without fpu) 
Feature extraction (s) 0.59±0.01 (2.44±0.03) 0.28±0.02  (0.72±0.01) 0.59±0.01 (2.44±0.03) 0.28±0.02 (0.72±0.01) 
Classification (s) 0.02±0.01 (0.07±0.01) 0.02±0.01  (0.06±0.01) 0.02±0.00  (0.05±0.01) 0.02±0.01 (0.06±0.01) 
Peak memory (MB) 4.84 (4.84) 4.84 (4.84) 4.80 (4.80) 4.80 (4.80) 
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separate SVM was trained to discriminate between music 
and speech. With this dataset, we were able to perform 
simple ‘action research’, that is, we carried the mobile phone 
running our recognizer application in those environments 
where the recordings were from and observed its 
functioning. As these tests were informal, it can only be 
mentioned that environments such as riding subway, office, 
and street with traffic and people seemed to be well 
recognized in practice. As a next step we plan to measure the 
power consumption of our implemented system. 

We have also begun to integrate the auditory context 
recognizer with our user modeling framework [13] to collect 
more comprehensive data about user’s computer activity.  

In addition to the above work, we are planning a 
comparative study of the effects of microphone 
characteristics on scene classification performance. For this, 
we are in the process of collecting a dataset using a variety of 
microphones, both embedded in consumer devices and 
professional-grade audio equipment, such as laptops, 
palmtops and mobile phones, Bluetooth headsets, and studio-
quality field recording gear.  

Finally, we aim to improve our scheme by utilizing 
temporal smoothing over a longer duration, perhaps using 
heuristic rules or HMMs to model the possible transitions 
between contexts, to filter out unlikely context changes from 
the recognizer output. 

V. RELATED WORK 
We limit the content of this section on research on 

auditory scene and auditory context recognition and leave 
out other work on context-awareness. Perhaps the first 
attempt at recognizing auditory contexts is due to Sawhney 
[3]. In the work following his introduction the most relevant 
to ours is Ma et al., who classified 12 auditory contexts using 
a HMM-based classifier [5]. They achieved a reported 96% 
true positive accuracy by using 9-stage left-to-right HMMs. 
The authors used 12 MFCCs and a log energy term with their 
respective deltas, resulting in a 39-element feature vector.  

Eronen et al. developed a HMM-based classifier for 28 
auditory contexts, using a dataset they collected [6]. Eronen 
et al. performed also a study on the human perception of the 
same set of auditory contexts. This was done through 
listening tests, where the time taken to make a decision was 
recorded, and the resulting recognition accuracy compared to 
that of their system. In these experiments, 18 contexts were 
used as test inputs, and both the system and the test subjects 
had to choose from the full set of 28 contexts. The average 
accuracy for the human subjects was 69%, and the decision 
time averaged 14s. By comparison, their automatic system 
showing a steady increase in recognition accuracy until 20s, 
and a plateau of 72% accuracy at 60s.  

Korpipää et al. use naïve Bayes classifiers to recognize 7 
auditory contexts [14] from 1s segments. However, they 
used temporal smoothing (majority voting) in a 5s window to 
improve the classification results. This yielded about 90% 
accuracy. 

In [15], Lu et al. apply support vector machines (SVMs) 
for classifying among four classes: non-pure speech, pure 
speech, background sound, demonstrating 80% to 96% 
accuracy from 0.1 to 1 second duration audio segments, 
respectively. Like our approach presented in this paper, they 
derive a single set of MFCC based features (means and 
variances) for each segment, instead of treating the problem 
as sequence classification task using HMMs. 

Ward et al. [16] classified 9 workshop activities (e.g. 
drilling and sawing) using sound and acceleration. Using 
sound only, their system achieved 95.6% accuracy for user-
dependent and 77.2% accurady for user-independent 
training. The authors also evaluated segmentation methods 
for continuous workshop audio. 

Stäger et al. [7] studied the tradeoff between recognition 
accuracy and power consumption. A wearable device 
containing both accelerometers and a microphone were used 
in the study. Different methods and parameters were tested 
for feature extraction and classification. The authors found 
that through parameter optimization power consumption may 
be reduced by a factor of 2-4, causing only a slight 
degradation in recognition performance. A particularly 
interesting finding was the large difference in power 
consumption of a mic (<0.5mW) and an accelerometer 
(~3mW) in the sampling stage of a typical setup. Moreover, 
the various feature sets did not contribute remarkably to the 
overall power consumption, which was dominated by on-
time of sensors and the length of FFT sample array. A 
limitation of the study is that it considers only power 
consumption, whereas key contributors such as memory 
consumption and model size were not thoroughly analyzed.  

VI. SUMMARY 
In this paper we have described an implementation of 

auditory context recognition for mobile devices and analyzed 
its resource consumption. The results show that static model 
sizes of SVM-based auditory recognition system are not 
restrictive for typical mobile devices. Moreover, the runtime 
memory consumption and computational load are 
manageable. The results also demonstrate that, while MFCCs 
are often used for this task, the use of the Mel spectrum 
features seems to provide better performance both in terms 
of resource consumption and in terms of accuracy. 
Classification ran in almost negligible time for all used 
models. These results may be used as a basis when selecting 
components for such systems, and as a baseline for 
comparison in any future studies using other devices or 
variations of the recognition system. 
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